File size: 10,775 Bytes
492772b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""
API Client Examples for Binary Segmentation Service

These examples show how to interact with the FastAPI service
from Python, JavaScript, and curl.
"""

import requests
import base64
import json
from pathlib import Path


# =============================================================================
# Python Client Examples
# =============================================================================

class SegmentationClient:
    """Python client for segmentation API"""
    
    def __init__(self, base_url: str = "http://localhost:7860"):
        self.base_url = base_url.rstrip('/')
    
    def segment_image(
        self,
        image_path: str,
        output_path: str,
        model: str = "u2netp",
        threshold: float = 0.5
    ):
        """
        Segment image and save as PNG with transparency
        
        Args:
            image_path: Path to input image
            output_path: Path to save output PNG
            model: Model to use (u2netp, birefnet, rmbg)
            threshold: Segmentation threshold (0.0-1.0)
        """
        with open(image_path, 'rb') as f:
            files = {'file': f}
            data = {
                'model': model,
                'threshold': threshold
            }
            
            response = requests.post(
                f"{self.base_url}/segment",
                files=files,
                data=data
            )
            
            response.raise_for_status()
            
            with open(output_path, 'wb') as out:
                out.write(response.content)
            
            print(f"✓ Saved to: {output_path}")
    
    def get_mask(
        self,
        image_path: str,
        output_path: str,
        model: str = "u2netp",
        threshold: float = 0.5
    ):
        """Get binary mask only"""
        with open(image_path, 'rb') as f:
            files = {'file': f}
            data = {
                'model': model,
                'threshold': threshold
            }
            
            response = requests.post(
                f"{self.base_url}/segment/mask",
                files=files,
                data=data
            )
            
            response.raise_for_status()
            
            with open(output_path, 'wb') as out:
                out.write(response.content)
            
            print(f"✓ Mask saved to: {output_path}")
    
    def segment_base64(
        self,
        image_path: str,
        model: str = "u2netp",
        threshold: float = 0.5,
        return_type: str = "both"
    ):
        """
        Get segmentation results as base64
        
        Returns:
            dict with 'mask' and/or 'rgba' as base64 strings
        """
        with open(image_path, 'rb') as f:
            files = {'file': f}
            data = {
                'model': model,
                'threshold': threshold,
                'return_type': return_type
            }
            
            response = requests.post(
                f"{self.base_url}/segment/base64",
                files=files,
                data=data
            )
            
            response.raise_for_status()
            return response.json()
    
    def batch_segment(
        self,
        image_paths: list[str],
        model: str = "u2netp",
        threshold: float = 0.5
    ):
        """
        Segment multiple images
        
        Args:
            image_paths: List of paths to images (max 10)
            
        Returns:
            dict with results for each image
        """
        files = [
            ('files', open(path, 'rb'))
            for path in image_paths
        ]
        
        data = {
            'model': model,
            'threshold': threshold
        }
        
        try:
            response = requests.post(
                f"{self.base_url}/segment/batch",
                files=files,
                data=data
            )
            
            response.raise_for_status()
            return response.json()
        finally:
            # Close all file handles
            for _, f in files:
                f.close()
    
    def list_models(self):
        """List available models"""
        response = requests.get(f"{self.base_url}/models")
        response.raise_for_status()
        return response.json()
    
    def health_check(self):
        """Check service health"""
        response = requests.get(f"{self.base_url}/health")
        response.raise_for_status()
        return response.json()


# =============================================================================
# Usage Examples
# =============================================================================

def example_basic():
    """Basic usage"""
    client = SegmentationClient("http://localhost:7860")
    
    # Segment image
    client.segment_image(
        image_path="input.jpg",
        output_path="output.png",
        model="u2netp",
        threshold=0.5
    )


def example_mask():
    """Get binary mask"""
    client = SegmentationClient("http://localhost:7860")
    
    client.get_mask(
        image_path="input.jpg",
        output_path="mask.png",
        model="u2netp",
        threshold=0.5
    )


def example_base64():
    """Get base64 results"""
    client = SegmentationClient("http://localhost:7860")
    
    result = client.segment_base64(
        image_path="input.jpg",
        return_type="both"
    )
    
    # Save base64 images
    if 'rgba' in result:
        # Remove data URL prefix
        rgba_data = result['rgba'].split(',')[1]
        with open('output_rgba.png', 'wb') as f:
            f.write(base64.b64decode(rgba_data))
    
    if 'mask' in result:
        mask_data = result['mask'].split(',')[1]
        with open('output_mask.png', 'wb') as f:
            f.write(base64.b64decode(mask_data))


def example_batch():
    """Process multiple images"""
    client = SegmentationClient("http://localhost:7860")
    
    results = client.batch_segment(
        image_paths=["image1.jpg", "image2.jpg", "image3.jpg"],
        model="u2netp",
        threshold=0.5
    )
    
    # Save results
    for i, result in enumerate(results['results']):
        if result['success']:
            rgba_data = result['rgba'].split(',')[1]
            with open(f'output_{i}.png', 'wb') as f:
                f.write(base64.b64decode(rgba_data))


def example_models():
    """List available models"""
    client = SegmentationClient("http://localhost:7860")
    
    models = client.list_models()
    print(json.dumps(models, indent=2))


# =============================================================================
# JavaScript Examples (for frontend)
# =============================================================================

JAVASCRIPT_EXAMPLES = """
// Example 1: Basic fetch
async function segmentImage(file) {
    const formData = new FormData();
    formData.append('file', file);
    formData.append('model', 'u2netp');
    formData.append('threshold', '0.5');
    
    const response = await fetch('/segment', {
        method: 'POST',
        body: formData
    });
    
    const blob = await response.blob();
    return URL.createObjectURL(blob);
}

// Example 2: Get base64
async function segmentBase64(file) {
    const formData = new FormData();
    formData.append('file', file);
    formData.append('model', 'u2netp');
    formData.append('threshold', '0.5');
    formData.append('return_type', 'rgba');
    
    const response = await fetch('/segment/base64', {
        method: 'POST',
        body: formData
    });
    
    const data = await response.json();
    return data.rgba; // data:image/png;base64,...
}

// Example 3: Batch processing
async function segmentBatch(files) {
    const formData = new FormData();
    
    for (const file of files) {
        formData.append('files', file);
    }
    formData.append('model', 'u2netp');
    formData.append('threshold', '0.5');
    
    const response = await fetch('/segment/batch', {
        method: 'POST',
        body: formData
    });
    
    return await response.json();
}

// Example 4: With progress
async function segmentWithProgress(file, onProgress) {
    const formData = new FormData();
    formData.append('file', file);
    formData.append('model', 'u2netp');
    formData.append('threshold', '0.5');
    
    const xhr = new XMLHttpRequest();
    
    return new Promise((resolve, reject) => {
        xhr.upload.addEventListener('progress', (e) => {
            if (e.lengthComputable) {
                onProgress(e.loaded / e.total);
            }
        });
        
        xhr.addEventListener('load', () => {
            if (xhr.status === 200) {
                const blob = xhr.response;
                resolve(URL.createObjectURL(blob));
            } else {
                reject(new Error('Upload failed'));
            }
        });
        
        xhr.addEventListener('error', () => reject(new Error('Upload failed')));
        
        xhr.open('POST', '/segment');
        xhr.responseType = 'blob';
        xhr.send(formData);
    });
}
"""


# =============================================================================
# cURL Examples
# =============================================================================

CURL_EXAMPLES = """
# Example 1: Basic segmentation
curl -X POST "http://localhost:7860/segment" \\
  -F "file=@input.jpg" \\
  -F "model=u2netp" \\
  -F "threshold=0.5" \\
  --output result.png

# Example 2: Get mask
curl -X POST "http://localhost:7860/segment/mask" \\
  -F "file=@input.jpg" \\
  -F "model=u2netp" \\
  -F "threshold=0.5" \\
  --output mask.png

# Example 3: Get base64 JSON
curl -X POST "http://localhost:7860/segment/base64" \\
  -F "file=@input.jpg" \\
  -F "model=u2netp" \\
  -F "threshold=0.5" \\
  -F "return_type=both"

# Example 4: Batch processing
curl -X POST "http://localhost:7860/segment/batch" \\
  -F "files=@image1.jpg" \\
  -F "files=@image2.jpg" \\
  -F "files=@image3.jpg" \\
  -F "model=u2netp" \\
  -F "threshold=0.5"

# Example 5: List models
curl -X GET "http://localhost:7860/models"

# Example 6: Health check
curl -X GET "http://localhost:7860/health"
"""


if __name__ == "__main__":
    print("API Client Examples")
    print("=" * 50)
    print("\nPython Examples:")
    print("  example_basic()     - Basic segmentation")
    print("  example_mask()      - Get binary mask")
    print("  example_base64()    - Get base64 results")
    print("  example_batch()     - Batch processing")
    print("  example_models()    - List models")
    print("\nUncomment the example you want to run!")
    
    # Uncomment to run:
    # example_basic()
    # example_mask()
    # example_base64()
    # example_batch()
    # example_models()