Spaces:
Sleeping
Sleeping
File size: 13,057 Bytes
492772b 2e4cf18 492772b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
"""
FastAPI Binary Segmentation Service
Hugging Face Space compatible
"""
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import Response, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import cv2
import numpy as np
from PIL import Image
import io
import logging
from typing import Literal, Optional
import base64
import os
from binary_segmentation import BinarySegmenter
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Binary Segmentation API",
description="Remove background from images using AI models",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mount static files
if os.path.exists("static"):
app.mount("/static", StaticFiles(directory="static"), name="static")
# Global model instance (lazy loading)
segmenter_cache = {}
def get_segmenter(model_type: str = "u2netp") -> BinarySegmenter:
"""Get or create segmenter instance"""
if model_type not in segmenter_cache:
logger.info(f"Loading {model_type} model...")
segmenter_cache[model_type] = BinarySegmenter(model_type=model_type)
logger.info(f"{model_type} model loaded successfully")
return segmenter_cache[model_type]
@app.get("/")
async def root():
"""Serve the web interface"""
if os.path.exists("static/index.html"):
return FileResponse("static/index.html")
# Fallback to API info
return {
"name": "Binary Segmentation API",
"version": "1.0.0",
"endpoints": {
"/segment": "POST - Segment image and return PNG with transparency",
"/segment/mask": "POST - Return binary mask only",
"/segment/base64": "POST - Return base64 encoded results",
"/health": "GET - Health check",
"/models": "GET - List available models"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"models_loaded": list(segmenter_cache.keys())
}
@app.get("/models")
async def list_models():
"""List available segmentation models"""
return {
"models": [
{
"name": "u2netp",
"description": "Lightweight, fast model (1.1M params)",
"speed": "⚡⚡⚡",
"accuracy": "⭐⭐",
"size": "4.7 MB"
},
{
"name": "birefnet",
"description": "High accuracy model",
"speed": "⚡",
"accuracy": "⭐⭐⭐",
"size": "~400 MB",
"requires": "transformers package"
},
{
"name": "rmbg",
"description": "Balanced model",
"speed": "⚡⚡",
"accuracy": "⭐⭐⭐",
"size": "~200 MB",
"requires": "transformers package"
}
],
"default": "u2netp"
}
@app.post("/segment")
async def segment_image(
file: UploadFile = File(..., description="Image file to segment"),
model: str = Form("u2netp", description="Model to use: u2netp, birefnet, or rmbg"),
threshold: float = Form(0.5, description="Segmentation threshold (0.0-1.0)", ge=0.0, le=1.0)
):
"""
Segment image and return PNG with transparent background.
Returns: PNG image with transparency
"""
try:
# Validate model
if model not in ["u2netp", "birefnet", "rmbg"]:
raise HTTPException(
status_code=400,
detail=f"Invalid model: {model}. Choose from: u2netp, birefnet, rmbg"
)
# Read image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise HTTPException(status_code=400, detail="Invalid image file")
# Get segmenter
segmenter = get_segmenter(model)
# Segment image
logger.info(f"Segmenting with model={model}, threshold={threshold}")
_, rgba = segmenter.segment(image, threshold=threshold, return_type="rgba")
if rgba is None:
raise HTTPException(status_code=500, detail="Segmentation failed")
# Convert to bytes
img_byte_arr = io.BytesIO()
rgba.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
logger.info("Segmentation successful")
return Response(
content=img_byte_arr.getvalue(),
media_type="image/png",
headers={
"Content-Disposition": f"attachment; filename=segmented_{file.filename}"
}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in segmentation: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/segment/mask")
async def segment_mask(
file: UploadFile = File(..., description="Image file to segment"),
model: str = Form("u2netp", description="Model to use"),
threshold: float = Form(0.5, description="Segmentation threshold (0.0-1.0)", ge=0.0, le=1.0)
):
"""
Segment image and return binary mask only.
Returns: PNG image (binary mask - black and white)
"""
try:
# Validate model
if model not in ["u2netp", "birefnet", "rmbg"]:
raise HTTPException(
status_code=400,
detail=f"Invalid model: {model}. Choose from: u2netp, birefnet, rmbg"
)
# Read image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise HTTPException(status_code=400, detail="Invalid image file")
# Get segmenter
segmenter = get_segmenter(model)
# Segment image
logger.info(f"Generating mask with model={model}, threshold={threshold}")
mask, _ = segmenter.segment(image, threshold=threshold, return_type="mask")
if mask is None:
raise HTTPException(status_code=500, detail="Segmentation failed")
# Convert to PNG
_, buffer = cv2.imencode('.png', mask)
logger.info("Mask generation successful")
return Response(
content=buffer.tobytes(),
media_type="image/png",
headers={
"Content-Disposition": f"attachment; filename=mask_{file.filename}"
}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in mask generation: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/segment/base64")
async def segment_base64(
file: UploadFile = File(..., description="Image file to segment"),
model: str = Form("u2netp", description="Model to use"),
threshold: float = Form(0.5, description="Segmentation threshold (0.0-1.0)", ge=0.0, le=1.0),
return_type: str = Form("rgba", description="Return type: rgba, mask, or both")
):
"""
Segment image and return base64 encoded results.
Returns: JSON with base64 encoded images
"""
try:
# Validate inputs
if model not in ["u2netp", "birefnet", "rmbg"]:
raise HTTPException(
status_code=400,
detail=f"Invalid model: {model}. Choose from: u2netp, birefnet, rmbg"
)
if return_type not in ["rgba", "mask", "both"]:
raise HTTPException(
status_code=400,
detail=f"Invalid return_type: {return_type}. Choose from: rgba, mask, both"
)
# Read image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise HTTPException(status_code=400, detail="Invalid image file")
# Get segmenter
segmenter = get_segmenter(model)
# Segment image
logger.info(f"Segmenting (base64) with model={model}, threshold={threshold}, return_type={return_type}")
mask, rgba = segmenter.segment(image, threshold=threshold, return_type=return_type)
# Prepare response
response = {
"success": True,
"model": model,
"threshold": threshold
}
# Encode mask if requested
if return_type in ["mask", "both"] and mask is not None:
_, buffer = cv2.imencode('.png', mask)
mask_base64 = base64.b64encode(buffer).decode('utf-8')
response["mask"] = f"data:image/png;base64,{mask_base64}"
# Encode RGBA if requested
if return_type in ["rgba", "both"] and rgba is not None:
img_byte_arr = io.BytesIO()
rgba.save(img_byte_arr, format='PNG')
rgba_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
response["rgba"] = f"data:image/png;base64,{rgba_base64}"
logger.info("Base64 encoding successful")
return JSONResponse(content=response)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in base64 encoding: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/segment/batch")
async def segment_batch(
files: list[UploadFile] = File(..., description="Multiple image files"),
model: str = Form("u2netp", description="Model to use"),
threshold: float = Form(0.5, description="Segmentation threshold (0.0-1.0)", ge=0.0, le=1.0)
):
"""
Segment multiple images and return base64 encoded results.
Returns: JSON with array of base64 encoded images
"""
try:
# Validate model
if model not in ["u2netp", "birefnet", "rmbg"]:
raise HTTPException(
status_code=400,
detail=f"Invalid model: {model}. Choose from: u2netp, birefnet, rmbg"
)
# Limit batch size
if len(files) > 10:
raise HTTPException(
status_code=400,
detail="Maximum batch size is 10 images"
)
# Get segmenter
segmenter = get_segmenter(model)
results = []
for idx, file in enumerate(files):
try:
# Read image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
results.append({
"filename": file.filename,
"success": False,
"error": "Invalid image file"
})
continue
# Segment
logger.info(f"Processing batch image {idx+1}/{len(files)}: {file.filename}")
_, rgba = segmenter.segment(image, threshold=threshold, return_type="rgba")
# Encode to base64
img_byte_arr = io.BytesIO()
rgba.save(img_byte_arr, format='PNG')
rgba_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
results.append({
"filename": file.filename,
"success": True,
"rgba": f"data:image/png;base64,{rgba_base64}"
})
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
results.append({
"filename": file.filename,
"success": False,
"error": str(e)
})
logger.info(f"Batch processing complete: {len(results)} images")
return JSONResponse(content={
"total": len(files),
"results": results,
"model": model,
"threshold": threshold
})
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in batch processing: {e}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
# For local development
uvicorn.run(
"app:app",
host="0.0.0.0",
port=7860,
reload=True
)
|