""" SOTA Multi-Agentic RAG System A production-grade RAG system following FAANG best practices: - Query decomposition and planning - Hybrid retrieval (dense + sparse) - Cross-encoder reranking - Grounded synthesis with citations - Hallucination detection and self-correction - LangGraph orchestration Architecture: User Query | [QueryPlannerAgent] - Decomposes complex queries, identifies intent | [RetrieverAgent] - Hybrid search with query expansion | [RerankerAgent] - Cross-encoder scoring, filters low-quality | [SynthesizerAgent] - Generates grounded answer with citations | [CriticAgent] - Validates for hallucination, checks citations | (Loop back if critic fails) | Final Answer """ from .query_planner import QueryPlannerAgent, QueryPlan, SubQuery from .retriever import RetrieverAgent, RetrievalResult, HybridSearchConfig from .reranker import RerankerAgent, RankedResult, RerankerConfig from .synthesizer import SynthesizerAgent, SynthesisResult, Citation from .critic import CriticAgent, CriticResult, ValidationIssue from .orchestrator import AgenticRAG, RAGConfig, RAGResponse __all__ = [ # Query Planner "QueryPlannerAgent", "QueryPlan", "SubQuery", # Retriever "RetrieverAgent", "RetrievalResult", "HybridSearchConfig", # Reranker "RerankerAgent", "RankedResult", "RerankerConfig", # Synthesizer "SynthesizerAgent", "SynthesisResult", "Citation", # Critic "CriticAgent", "CriticResult", "ValidationIssue", # Orchestrator "AgenticRAG", "RAGConfig", "RAGResponse", ]