""" RAG (Retrieval-Augmented Generation) Subsystem for SPARKNET Provides: - Vector store interface with ChromaDB implementation - Embedding adapters (Ollama, OpenAI) - Document indexing with metadata - Grounded retrieval with evidence - Answer generation with citations """ from .store import ( VectorStoreConfig, VectorStore, VectorSearchResult, ChromaVectorStore, get_vector_store, ) from .embeddings import ( EmbeddingConfig, EmbeddingAdapter, OllamaEmbedding, get_embedding_adapter, ) from .indexer import ( IndexerConfig, IndexingResult, DocumentIndexer, get_document_indexer, ) from .retriever import ( RetrieverConfig, RetrievedChunk, DocumentRetriever, get_document_retriever, ) from .generator import ( GeneratorConfig, GeneratedAnswer, Citation, GroundedGenerator, get_grounded_generator, ) from .docint_bridge import ( DocIntIndexer, DocIntRetriever, get_docint_indexer, get_docint_retriever, reset_docint_components, ) __all__ = [ # Store "VectorStoreConfig", "VectorStore", "VectorSearchResult", "ChromaVectorStore", "get_vector_store", # Embeddings "EmbeddingConfig", "EmbeddingAdapter", "OllamaEmbedding", "get_embedding_adapter", # Indexer "IndexerConfig", "IndexingResult", "DocumentIndexer", "get_document_indexer", # Retriever "RetrieverConfig", "RetrievedChunk", "DocumentRetriever", "get_document_retriever", # Generator "GeneratorConfig", "GeneratedAnswer", "Citation", "GroundedGenerator", "get_grounded_generator", # Document Intelligence Bridge "DocIntIndexer", "DocIntRetriever", "get_docint_indexer", "get_docint_retriever", "reset_docint_components", ]