""" Document Classification Schemas Pydantic models for document type classification and categorization. """ from enum import Enum from typing import List, Dict, Any, Optional from pydantic import BaseModel, Field from .core import EvidenceRef class DocumentType(str, Enum): """ Common document types for classification. Extensible for domain-specific types. """ # Legal & Business CONTRACT = "contract" INVOICE = "invoice" RECEIPT = "receipt" PURCHASE_ORDER = "purchase_order" AGREEMENT = "agreement" NDA = "nda" TERMS_OF_SERVICE = "terms_of_service" # Technical & Scientific PATENT = "patent" RESEARCH_PAPER = "research_paper" TECHNICAL_REPORT = "technical_report" SPECIFICATION = "specification" DATASHEET = "datasheet" USER_MANUAL = "user_manual" # Financial FINANCIAL_REPORT = "financial_report" BANK_STATEMENT = "bank_statement" TAX_FORM = "tax_form" BALANCE_SHEET = "balance_sheet" INCOME_STATEMENT = "income_statement" # Identity & Administrative ID_DOCUMENT = "id_document" PASSPORT = "passport" DRIVERS_LICENSE = "drivers_license" CERTIFICATE = "certificate" FORM = "form" APPLICATION = "application" # Medical MEDICAL_RECORD = "medical_record" PRESCRIPTION = "prescription" LAB_REPORT = "lab_report" INSURANCE_CLAIM = "insurance_claim" # General LETTER = "letter" EMAIL = "email" MEMO = "memo" PRESENTATION = "presentation" SPREADSHEET = "spreadsheet" REPORT = "report" ARTICLE = "article" BOOK = "book" # Catch-all OTHER = "other" UNKNOWN = "unknown" class ClassificationScore(BaseModel): """Score for a single document type classification.""" document_type: DocumentType = Field(..., description="Document type") confidence: float = Field(..., ge=0.0, le=1.0, description="Classification confidence") reasoning: Optional[str] = Field(default=None, description="Reasoning for classification") class DocumentClassification(BaseModel): """ Document classification result with confidence scores. """ document_id: str = Field(..., description="Document identifier") # Primary classification primary_type: DocumentType = Field(..., description="Most likely document type") primary_confidence: float = Field( ..., ge=0.0, le=1.0, description="Confidence in primary classification" ) # All classification scores scores: List[ClassificationScore] = Field( default_factory=list, description="Scores for all considered types" ) # Evidence evidence: List[EvidenceRef] = Field( default_factory=list, description="Evidence supporting classification" ) # Classification metadata method: str = Field( default="llm", description="Classification method used (llm/rule-based/hybrid)" ) model_used: Optional[str] = Field(default=None, description="Model used for classification") # Warnings and flags is_confident: bool = Field( default=True, description="Whether classification meets confidence threshold" ) warnings: List[str] = Field(default_factory=list, description="Classification warnings") needs_human_review: bool = Field( default=False, description="Whether human review is recommended" ) # Additional attributes detected attributes: Dict[str, Any] = Field( default_factory=dict, description="Additional detected attributes (language, domain, etc.)" ) def get_top_k(self, k: int = 3) -> List[ClassificationScore]: """Get top k classifications by confidence.""" sorted_scores = sorted(self.scores, key=lambda x: x.confidence, reverse=True) return sorted_scores[:k] def is_type(self, doc_type: DocumentType, min_confidence: float = 0.5) -> bool: """Check if document is classified as a specific type with minimum confidence.""" for score in self.scores: if score.document_type == doc_type and score.confidence >= min_confidence: return True return False class DocumentCategoryRule(BaseModel): """ Rule for rule-based document classification. """ name: str = Field(..., description="Rule name") document_type: DocumentType = Field(..., description="Target document type") # Matching criteria title_keywords: List[str] = Field( default_factory=list, description="Keywords to match in title" ) content_keywords: List[str] = Field( default_factory=list, description="Keywords to match in content" ) required_sections: List[str] = Field( default_factory=list, description="Required section headings" ) file_patterns: List[str] = Field( default_factory=list, description="Filename patterns (regex)" ) # Confidence adjustment base_confidence: float = Field( default=0.8, ge=0.0, le=1.0, description="Base confidence when rule matches" ) keyword_boost: float = Field( default=0.05, ge=0.0, le=0.2, description="Confidence boost per matched keyword" ) # Priority priority: int = Field( default=0, description="Rule priority (higher = checked first)" ) class ClassificationConfig(BaseModel): """ Configuration for document classification. """ # Confidence thresholds min_confidence: float = Field( default=0.6, ge=0.0, le=1.0, description="Minimum confidence for classification" ) human_review_threshold: float = Field( default=0.7, ge=0.0, le=1.0, description="Below this, flag for human review" ) # Classification method use_llm: bool = Field(default=True, description="Use LLM for classification") use_rules: bool = Field(default=True, description="Use rule-based classification") hybrid_mode: str = Field( default="llm_primary", description="Hybrid mode: llm_primary, rules_primary, or ensemble" ) # Custom rules custom_rules: List[DocumentCategoryRule] = Field( default_factory=list, description="Custom classification rules" ) # Document types to consider enabled_types: List[DocumentType] = Field( default_factory=lambda: list(DocumentType), description="Document types to consider" ) # Evidence requirements require_evidence: bool = Field( default=True, description="Require evidence for classification" ) max_evidence_snippets: int = Field( default=3, description="Maximum evidence snippets to include" )