""" PaddleOCR Engine High-accuracy OCR using PaddleOCR. Supports detection, recognition, and angle classification. """ import time from typing import List, Optional, Tuple import numpy as np from loguru import logger from .base import OCREngine, OCRConfig, OCRResult from ..schemas.core import BoundingBox, OCRRegion # Try to import PaddleOCR try: from paddleocr import PaddleOCR HAS_PADDLEOCR = True except ImportError: HAS_PADDLEOCR = False logger.warning( "PaddleOCR not installed. Install with: " "pip install paddleocr paddlepaddle-gpu (or paddlepaddle for CPU)" ) class PaddleOCREngine(OCREngine): """ OCR engine using PaddleOCR. Features: - High accuracy text detection and recognition - Multi-language support - GPU acceleration - Angle classification for rotated text """ # Language code mapping (PaddleOCR uses different codes) LANGUAGE_MAP = { "en": "en", "ch": "ch", "chinese_cht": "chinese_cht", "fr": "french", "german": "german", "es": "es", "it": "it", "pt": "pt", "ru": "ru", "japan": "japan", "korean": "korean", "ar": "ar", "hi": "hi", "latin": "latin", } def __init__(self, config: Optional[OCRConfig] = None): """Initialize PaddleOCR engine.""" super().__init__(config) self._ocr: Optional[PaddleOCR] = None def initialize(self): """Initialize PaddleOCR model.""" if not HAS_PADDLEOCR: raise RuntimeError( "PaddleOCR not installed. Install with: " "pip install paddleocr paddlepaddle-gpu" ) if self._initialized: return logger.info("Initializing PaddleOCR engine...") # Map language codes lang = self.config.languages[0] if self.config.languages else "en" paddle_lang = self.LANGUAGE_MAP.get(lang, "en") try: self._ocr = PaddleOCR( use_angle_cls=self.config.use_angle_cls, lang=paddle_lang, use_gpu=self.config.use_gpu, gpu_mem=500, # GPU memory limit in MB det_db_thresh=self.config.det_db_thresh, det_db_box_thresh=self.config.det_db_box_thresh, rec_batch_num=self.config.rec_batch_num, drop_score=self.config.drop_score, show_log=False, # Suppress verbose logging ) self._initialized = True logger.info(f"PaddleOCR initialized (lang={paddle_lang}, gpu={self.config.use_gpu})") except Exception as e: logger.error(f"Failed to initialize PaddleOCR: {e}") raise def recognize( self, image: np.ndarray, page_number: int = 0, ) -> OCRResult: """ Perform OCR on an image using PaddleOCR. Args: image: Image as numpy array (RGB, HWC format) page_number: Page number for multi-page documents Returns: OCRResult with recognized text and regions """ if not self._initialized: self.initialize() start_time = time.time() try: # Run OCR results = self._ocr.ocr(image, cls=self.config.use_angle_cls) # Process results regions = [] all_texts = [] total_confidence = 0.0 # Results format: [[[box], (text, confidence)], ...] if results and results[0]: for idx, line in enumerate(results[0]): if line is None: continue box_points = line[0] # [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] text, confidence = line[1] # Skip low confidence results if confidence < self.config.min_confidence: continue # Convert polygon to bounding box bbox = self._polygon_to_bbox(box_points, image.shape[:2]) # Create polygon points polygon = [(float(p[0]), float(p[1])) for p in box_points] region = OCRRegion( text=text, confidence=float(confidence), bbox=bbox, polygon=polygon, page=page_number, line_id=idx, engine="paddleocr", ) regions.append(region) all_texts.append(text) total_confidence += confidence processing_time = (time.time() - start_time) * 1000 return OCRResult( regions=regions, full_text="\n".join(all_texts), confidence_avg=total_confidence / len(regions) if regions else 0.0, processing_time_ms=processing_time, engine="paddleocr", success=True, ) except Exception as e: logger.error(f"PaddleOCR recognition failed: {e}") return OCRResult( regions=[], full_text="", confidence_avg=0.0, processing_time_ms=(time.time() - start_time) * 1000, engine="paddleocr", success=False, error=str(e), ) def _polygon_to_bbox( self, points: List[List[float]], image_shape: Tuple[int, int], ) -> BoundingBox: """Convert polygon points to bounding box.""" x_coords = [p[0] for p in points] y_coords = [p[1] for p in points] height, width = image_shape return BoundingBox( x_min=max(0, min(x_coords)), y_min=max(0, min(y_coords)), x_max=min(width, max(x_coords)), y_max=min(height, max(y_coords)), normalized=False, page_width=width, page_height=height, ) def get_supported_languages(self) -> List[str]: """Return list of supported language codes.""" return list(self.LANGUAGE_MAP.keys()) def recognize_with_structure( self, image: np.ndarray, page_number: int = 0, ) -> Tuple[OCRResult, Optional[dict]]: """ Perform OCR with structure analysis (tables, layout). Args: image: Image as numpy array page_number: Page number Returns: Tuple of (OCRResult, structure_info) """ # First do regular OCR ocr_result = self.recognize(image, page_number) # PaddleOCR can also do table structure recognition # This would require ppstructure which we can add later structure_info = None return ocr_result, structure_info