# SPARKNET Phase 3: Production Web UI Implementation Guide ## ๐ŸŽ‰ Phase 3 Progress: Backend Complete! **Status**: FastAPI Backend โœ… COMPLETE | Frontend ๐Ÿšง IN PROGRESS --- ## โœ… Completed: FastAPI Backend ### Files Created 1. **`api/main.py`** (~150 lines) - FastAPI application with lifecycle management - CORS middleware for frontend integration - Auto-initialization of SPARKNET components - Health check endpoints - OpenAPI documentation at `/api/docs` 2. **`api/routes/patents.py`** (~200 lines) - POST `/api/patents/upload` - Upload patent PDF - GET `/api/patents/{id}` - Get patent metadata - GET `/api/patents/` - List all patents with pagination - DELETE `/api/patents/{id}` - Delete patent - GET `/api/patents/{id}/download` - Download original PDF 3. **`api/routes/workflows.py`** (~300 lines) - POST `/api/workflows/execute` - Start Patent Wake-Up workflow - GET `/api/workflows/{id}` - Get workflow status - WS `/api/workflows/{id}/stream` - WebSocket for real-time updates - GET `/api/workflows/` - List all workflows - GET `/api/workflows/{id}/brief/download` - Download valorization brief 4. **`api/requirements.txt`** - FastAPI, Uvicorn, WebSockets, Pydantic dependencies --- ## ๐Ÿš€ Quick Start: Test the API ### Step 1: Install Dependencies ```bash cd /home/mhamdan/SPARKNET # Activate conda environment conda activate agentic-ai # Install FastAPI dependencies pip install fastapi uvicorn python-multipart websockets ``` ### Step 2: Start the API Server ```bash # Make sure Ollama is running # (Should already be running from background processes) # Start FastAPI python -m api.main ``` The API will be available at: - **API**: http://localhost:8000 - **Docs**: http://localhost:8000/api/docs (Interactive OpenAPI documentation) - **Health**: http://localhost:8000/api/health ### Step 3: Test with curl ```bash # Health check curl http://localhost:8000/api/health # Upload a patent curl -X POST http://localhost:8000/api/patents/upload \ -F "file=@Dataset/your_patent.pdf" # Start workflow (replace PATENT_ID) curl -X POST http://localhost:8000/api/workflows/execute \ -H "Content-Type: application/json" \ -d '{"patent_id": "PATENT_ID"}' # Check workflow status (replace WORKFLOW_ID) curl http://localhost:8000/api/workflows/WORKFLOW_ID ``` --- ## ๐Ÿ“Š API Endpoints Reference ### Patents Endpoints | Method | Endpoint | Description | |--------|----------|-------------| | POST | `/api/patents/upload` | Upload patent PDF (max 50MB) | | GET | `/api/patents/{id}` | Get patent metadata | | GET | `/api/patents/` | List all patents (supports pagination) | | DELETE | `/api/patents/{id}` | Delete patent | | GET | `/api/patents/{id}/download` | Download original PDF | **Example Upload Response**: ```json { "patent_id": "550e8400-e29b-41d4-a716-446655440000", "filename": "ai_drug_discovery.pdf", "size": 2457600, "uploaded_at": "2025-11-04T20:00:00.000Z", "message": "Patent uploaded successfully" } ``` ### Workflows Endpoints | Method | Endpoint | Description | |--------|----------|-------------| | POST | `/api/workflows/execute` | Start Patent Wake-Up workflow | | GET | `/api/workflows/{id}` | Get workflow status and results | | WS | `/api/workflows/{id}/stream` | Real-time WebSocket updates | | GET | `/api/workflows/` | List all workflows (supports pagination) | | GET | `/api/workflows/{id}/brief/download` | Download valorization brief PDF | **Example Workflow Response**: ```json { "id": "workflow-uuid", "patent_id": "patent-uuid", "status": "running", "progress": 45, "current_step": "market_analysis", "started_at": "2025-11-04T20:01:00.000Z", "completed_at": null, "result": null } ``` **Workflow States**: - `queued` - Waiting to start - `running` - Currently executing - `completed` - Successfully finished - `failed` - Error occurred --- ## ๐Ÿ”„ WebSocket Real-Time Updates The WebSocket endpoint provides live progress updates: ```javascript // JavaScript example const ws = new WebSocket('ws://localhost:8000/api/workflows/{workflow_id}/stream'); ws.onmessage = (event) => { const data = JSON.parse(event.data); console.log(`Status: ${data.status}, Progress: ${data.progress}%`); if (data.status === 'completed') { // Workflow finished, display results console.log('Results:', data.result); } }; ``` --- ## ๐ŸŽจ Next Steps: Frontend Implementation ### Option 1: Build Next.js Frontend (Recommended) **Technologies**: - Next.js 14 with App Router - TypeScript for type safety - Tailwind CSS for styling - shadcn/ui for components - Framer Motion for animations **Setup Commands**: ```bash # Create Next.js app cd /home/mhamdan/SPARKNET npx create-next-app@latest frontend --typescript --tailwind --app cd frontend # Install dependencies npm install @radix-ui/react-dialog @radix-ui/react-progress npm install framer-motion recharts lucide-react npm install class-variance-authority clsx tailwind-merge # Install shadcn/ui npx shadcn-ui@latest init npx shadcn-ui@latest add button card input progress badge tabs dialog ``` **Key Pages to Build**: 1. **Home Page** (`app/page.tsx`) - Landing page with features 2. **Upload Page** (`app/upload/page.tsx`) - Drag-and-drop patent upload 3. **Workflow Page** (`app/workflow/[id]/page.tsx`) - Live progress tracking 4. **Results Page** (`app/results/[id]/page.tsx`) - Beautiful result displays ### Option 2: Simple HTML + JavaScript Frontend For quick testing, create a simple HTML interface: ```html SPARKNET

SPARKNET - Patent Analysis

Upload Patent

``` --- ## ๐Ÿงช Testing the Backend ### Manual Testing with OpenAPI Docs 1. Start the API: `python -m api.main` 2. Open browser: http://localhost:8000/api/docs 3. Try the interactive endpoints: - Upload a patent - Start a workflow - Check workflow status ### Automated Testing Script ```bash # test_api.sh #!/bin/bash echo "Testing SPARKNET API..." # Health check echo "\n1. Health Check" curl -s http://localhost:8000/api/health | json_pp # Upload patent (replace with actual file path) echo "\n2. Uploading Patent" UPLOAD_RESULT=$(curl -s -X POST http://localhost:8000/api/patents/upload \ -F "file=@Dataset/sample_patent.pdf") echo $UPLOAD_RESULT | json_pp # Extract patent ID PATENT_ID=$(echo $UPLOAD_RESULT | jq -r '.patent_id') echo "Patent ID: $PATENT_ID" # Start workflow echo "\n3. Starting Workflow" WORKFLOW_RESULT=$(curl -s -X POST http://localhost:8000/api/workflows/execute \ -H "Content-Type: application/json" \ -d "{\"patent_id\": \"$PATENT_ID\"}") echo $WORKFLOW_RESULT | json_pp # Extract workflow ID WORKFLOW_ID=$(echo $WORKFLOW_RESULT | jq -r '.workflow_id') echo "Workflow ID: $WORKFLOW_ID" # Monitor workflow echo "\n4. Monitoring Workflow (checking every 5 seconds)" while true; do STATUS=$(curl -s http://localhost:8000/api/workflows/$WORKFLOW_ID | jq -r '.status') PROGRESS=$(curl -s http://localhost:8000/api/workflows/$WORKFLOW_ID | jq -r '.progress') echo "Status: $STATUS, Progress: $PROGRESS%" if [ "$STATUS" = "completed" ] || [ "$STATUS" = "failed" ]; then break fi sleep 5 done echo "\n5. Final Results" curl -s http://localhost:8000/api/workflows/$WORKFLOW_ID | jq '.result' ``` --- ## ๐Ÿ“ฆ Deployment with Docker ### Dockerfile for API ```dockerfile # Dockerfile.api FROM python:3.10-slim WORKDIR /app # Install system dependencies RUN apt-get update && apt-get install -y \ gcc \ g++ \ && rm -rf /var/lib/apt/lists/* # Copy requirements COPY requirements.txt api/requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt -r api/requirements.txt # Copy application COPY . . # Expose port EXPOSE 8000 # Run API CMD ["python", "-m", "api.main"] ``` ### Docker Compose ```yaml # docker-compose.yml version: '3.8' services: api: build: context: . dockerfile: Dockerfile.api ports: - "8000:8000" volumes: - ./uploads:/app/uploads - ./outputs:/app/outputs - ./data:/app/data environment: - OLLAMA_HOST=http://host.docker.internal:11434 restart: unless-stopped ``` **Start with Docker**: ```bash docker-compose up --build ``` --- ## ๐ŸŽฏ Current Status Summary ### โœ… Completed 1. **FastAPI Backend** - Full RESTful API with WebSocket support 2. **Patent Upload** - File validation, storage, metadata tracking 3. **Workflow Execution** - Background task processing 4. **Real-Time Updates** - WebSocket streaming 5. **Result Retrieval** - Complete workflow results API 6. **API Documentation** - Auto-generated OpenAPI docs ### ๐Ÿšง In Progress 1. **Frontend Development** - Next.js app (ready to start) 2. **UI Components** - Beautiful React components (pending) 3. **Dataset Testing** - Batch processing script (pending) ### ๐Ÿ“‹ Next Steps 1. **Test the Backend API** - Ensure all endpoints work correctly 2. **Set up Next.js Frontend** - Modern React application 3. **Build UI Components** - Beautiful, animated components 4. **Integrate Frontend with API** - Connect all the pieces 5. **Test with Dataset** - Process all patents in Dataset/ 6. **Deploy** - Docker containers for production --- ## ๐Ÿ’ก Development Tips ### Running API in Development ```bash # With auto-reload uvicorn api.main:app --reload --host 0.0.0.0 --port 8000 # With custom log level uvicorn api.main:app --log-level debug ``` ### Debugging - Check logs in terminal where API is running - Use OpenAPI docs for interactive testing: http://localhost:8000/api/docs - Monitor workflow state in real-time with WebSocket - Check file uploads in `uploads/patents/` directory - Check generated briefs in `outputs/` directory ### Environment Variables Create `.env` file for configuration: ```env OLLAMA_HOST=http://localhost:11434 API_HOST=0.0.0.0 API_PORT=8000 MAX_UPLOAD_SIZE=52428800 # 50MB ``` --- ## ๐ŸŽฌ Ready for Phase 3B: Frontend! The backend is complete and ready to serve the frontend. Next, we'll build a beautiful web interface that leverages all these API endpoints. **What we'll build next**: 1. **Modern UI** with Next.js + Tailwind 2. **Drag-and-drop Upload** - Beautiful file upload experience 3. **Live Progress Tracking** - Real-time workflow visualization 4. **Interactive Results** - Charts, cards, and detailed displays 5. **Responsive Design** - Works on all devices The foundation is solid - now let's make it beautiful! ๐Ÿš€