MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Semantic Chunking Utilities
Strategies for splitting and merging document content
into semantically meaningful chunks.
"""
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
from ..chunks.models import (
BoundingBox,
ChunkType,
DocumentChunk,
)
@dataclass
class ChunkingConfig:
"""Configuration for semantic chunking."""
# Size limits
min_chunk_chars: int = 50
max_chunk_chars: int = 2000
target_chunk_chars: int = 500
# Overlap for context preservation
overlap_chars: int = 100
# Splitting behavior
split_on_headings: bool = True
split_on_paragraphs: bool = True
preserve_sentences: bool = True
# Merging behavior
merge_small_chunks: bool = True
merge_threshold_chars: int = 100
class SemanticChunker:
"""
Semantic chunking engine.
Splits text into meaningful chunks based on document structure,
headings, paragraphs, and sentence boundaries.
"""
# Patterns for text splitting
HEADING_PATTERN = re.compile(r'^(?:#{1,6}\s+|[A-Z0-9][\.\)]\s+|\d+[\.\)]\s+)', re.MULTILINE)
PARAGRAPH_PATTERN = re.compile(r'\n\s*\n')
SENTENCE_PATTERN = re.compile(r'(?<=[.!?])\s+(?=[A-Z])')
def __init__(self, config: Optional[ChunkingConfig] = None):
self.config = config or ChunkingConfig()
def chunk_text(
self,
text: str,
metadata: Optional[Dict[str, Any]] = None,
) -> List[Dict[str, Any]]:
"""
Split text into semantic chunks.
Args:
text: Input text to chunk
metadata: Optional metadata to include with each chunk
Returns:
List of chunk dictionaries with text and metadata
"""
if not text or not text.strip():
return []
metadata = metadata or {}
chunks: List[Dict[str, Any]] = []
# Split by headings first
if self.config.split_on_headings:
sections = self._split_by_headings(text)
else:
sections = [{"heading": None, "text": text}]
for section in sections:
section_chunks = self._chunk_section(
section["text"],
section.get("heading"),
)
for chunk_text in section_chunks:
if len(chunk_text.strip()) >= self.config.min_chunk_chars:
chunks.append({
"text": chunk_text.strip(),
"heading": section.get("heading"),
**metadata,
})
# Merge small chunks
if self.config.merge_small_chunks:
chunks = self._merge_small_chunks(chunks)
return chunks
def _split_by_headings(self, text: str) -> List[Dict[str, Any]]:
"""Split text by heading patterns."""
sections = []
current_heading = None
current_text = []
lines = text.split("\n")
for line in lines:
if self.HEADING_PATTERN.match(line):
# Save previous section
if current_text:
sections.append({
"heading": current_heading,
"text": "\n".join(current_text),
})
current_heading = line.strip()
current_text = []
else:
current_text.append(line)
# Save last section
if current_text:
sections.append({
"heading": current_heading,
"text": "\n".join(current_text),
})
return sections if sections else [{"heading": None, "text": text}]
def _chunk_section(
self,
text: str,
heading: Optional[str],
) -> List[str]:
"""Chunk a single section."""
if len(text) <= self.config.max_chunk_chars:
return [text]
# Split by paragraphs
if self.config.split_on_paragraphs:
paragraphs = self.PARAGRAPH_PATTERN.split(text)
else:
paragraphs = [text]
chunks = []
current_chunk = ""
for para in paragraphs:
para = para.strip()
if not para:
continue
# Check if adding this paragraph exceeds limit
if len(current_chunk) + len(para) + 1 <= self.config.target_chunk_chars:
if current_chunk:
current_chunk += "\n\n" + para
else:
current_chunk = para
else:
# Save current and start new
if current_chunk:
chunks.append(current_chunk)
# If paragraph is too long, split further
if len(para) > self.config.max_chunk_chars:
sub_chunks = self._split_long_text(para)
chunks.extend(sub_chunks[:-1])
current_chunk = sub_chunks[-1] if sub_chunks else ""
else:
current_chunk = para
if current_chunk:
chunks.append(current_chunk)
return chunks
def _split_long_text(self, text: str) -> List[str]:
"""Split long text by sentences."""
if not self.config.preserve_sentences:
# Simple character-based split
return self._split_by_chars(text)
sentences = self.SENTENCE_PATTERN.split(text)
chunks = []
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk) + len(sentence) + 1 <= self.config.target_chunk_chars:
if current_chunk:
current_chunk += " " + sentence
else:
current_chunk = sentence
else:
if current_chunk:
chunks.append(current_chunk)
if len(sentence) > self.config.max_chunk_chars:
# Sentence too long - split by chars
sub_chunks = self._split_by_chars(sentence)
chunks.extend(sub_chunks[:-1])
current_chunk = sub_chunks[-1] if sub_chunks else ""
else:
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
return chunks
def _split_by_chars(self, text: str) -> List[str]:
"""Split text by character count with overlap."""
chunks = []
start = 0
text_len = len(text)
while start < text_len:
end = min(start + self.config.target_chunk_chars, text_len)
# Try to break at word boundary
if end < text_len:
# Look for last space before limit
space_idx = text.rfind(" ", start, end)
if space_idx > start:
end = space_idx
chunks.append(text[start:end].strip())
# Apply overlap
start = end - self.config.overlap_chars
if start < 0 or start >= text_len:
break
return chunks
def _merge_small_chunks(
self,
chunks: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
"""Merge chunks smaller than threshold."""
if not chunks:
return chunks
merged = []
current = None
for chunk in chunks:
text = chunk["text"]
if current is None:
current = chunk.copy()
continue
# Check if should merge
current_len = len(current["text"])
new_len = len(text)
if (current_len < self.config.merge_threshold_chars and
current_len + new_len <= self.config.max_chunk_chars and
current.get("heading") == chunk.get("heading")):
# Merge
current["text"] = current["text"] + "\n\n" + text
else:
merged.append(current)
current = chunk.copy()
if current:
merged.append(current)
return merged
class DocumentChunkBuilder:
"""
Builder for creating DocumentChunk objects.
Provides a fluent interface for chunk construction with
automatic ID generation and validation.
"""
def __init__(
self,
doc_id: str,
page: int,
):
self.doc_id = doc_id
self.page = page
self._chunks: List[DocumentChunk] = []
self._sequence_index = 0
def add_chunk(
self,
text: str,
chunk_type: ChunkType,
bbox: BoundingBox,
confidence: float = 1.0,
metadata: Optional[Dict[str, Any]] = None,
) -> "DocumentChunkBuilder":
"""Add a chunk."""
chunk_id = DocumentChunk.generate_chunk_id(
doc_id=self.doc_id,
page=self.page,
bbox=bbox,
chunk_type_str=chunk_type.value,
)
chunk = DocumentChunk(
chunk_id=chunk_id,
doc_id=self.doc_id,
chunk_type=chunk_type,
text=text,
page=self.page,
bbox=bbox,
confidence=confidence,
sequence_index=self._sequence_index,
metadata=metadata or {},
)
self._chunks.append(chunk)
self._sequence_index += 1
return self
def add_text(
self,
text: str,
bbox: BoundingBox,
confidence: float = 1.0,
) -> "DocumentChunkBuilder":
"""Add a text chunk."""
return self.add_chunk(text, ChunkType.TEXT, bbox, confidence)
def add_title(
self,
text: str,
bbox: BoundingBox,
confidence: float = 1.0,
) -> "DocumentChunkBuilder":
"""Add a title chunk."""
return self.add_chunk(text, ChunkType.TITLE, bbox, confidence)
def add_heading(
self,
text: str,
bbox: BoundingBox,
confidence: float = 1.0,
) -> "DocumentChunkBuilder":
"""Add a heading chunk."""
return self.add_chunk(text, ChunkType.HEADING, bbox, confidence)
def add_paragraph(
self,
text: str,
bbox: BoundingBox,
confidence: float = 1.0,
) -> "DocumentChunkBuilder":
"""Add a paragraph chunk."""
return self.add_chunk(text, ChunkType.PARAGRAPH, bbox, confidence)
def build(self) -> List[DocumentChunk]:
"""Build and return the list of chunks."""
return self._chunks.copy()
def reset(self) -> "DocumentChunkBuilder":
"""Reset the builder."""
self._chunks = []
self._sequence_index = 0
return self
def estimate_tokens(text: str) -> int:
"""
Estimate token count for text.
Uses simple heuristic: ~4 characters per token.
"""
return len(text) // 4
def split_for_embedding(
text: str,
max_tokens: int = 512,
overlap_tokens: int = 50,
) -> List[str]:
"""
Split text for embedding model input.
Args:
text: Text to split
max_tokens: Maximum tokens per chunk
overlap_tokens: Overlap between chunks
Returns:
List of text chunks
"""
max_chars = max_tokens * 4
overlap_chars = overlap_tokens * 4
config = ChunkingConfig(
max_chunk_chars=max_chars,
target_chunk_chars=max_chars - 100,
overlap_chars=overlap_chars,
)
chunker = SemanticChunker(config)
chunks = chunker.chunk_text(text)
return [c["text"] for c in chunks]