MHamdan's picture
Initial commit: SPARKNET framework
d520909
"""
Image Cropping Utilities
Functions for extracting and managing region crops from document images.
"""
import hashlib
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from PIL import Image
from ..chunks.models import BoundingBox, DocumentChunk
logger = logging.getLogger(__name__)
def crop_region(
image: Union[np.ndarray, Image.Image],
bbox: BoundingBox,
padding_percent: float = 0.02,
) -> np.ndarray:
"""
Crop a region from an image.
Args:
image: Source image (numpy array or PIL Image)
bbox: Bounding box to crop (can be normalized or pixel)
padding_percent: Padding to add around the crop (0-1)
Returns:
Cropped image as numpy array
"""
# Convert to numpy if needed
if isinstance(image, Image.Image):
image = np.array(image)
height, width = image.shape[:2]
# Convert to pixel coordinates if normalized
if bbox.normalized:
pixel_bbox = bbox.to_pixel(width, height)
else:
pixel_bbox = bbox
# Apply padding
pad_x = int(pixel_bbox.width * padding_percent)
pad_y = int(pixel_bbox.height * padding_percent)
x_min = max(0, int(pixel_bbox.x_min) - pad_x)
y_min = max(0, int(pixel_bbox.y_min) - pad_y)
x_max = min(width, int(pixel_bbox.x_max) + pad_x)
y_max = min(height, int(pixel_bbox.y_max) + pad_y)
# Ensure valid crop region
if x_max <= x_min or y_max <= y_min:
logger.warning(f"Invalid crop region: ({x_min}, {y_min}, {x_max}, {y_max})")
return np.zeros((1, 1, 3), dtype=np.uint8)
return image[y_min:y_max, x_min:x_max].copy()
def crop_chunk(
image: Union[np.ndarray, Image.Image],
chunk: DocumentChunk,
padding_percent: float = 0.02,
) -> np.ndarray:
"""
Crop the region corresponding to a chunk.
Args:
image: Page image
chunk: Document chunk with bbox
padding_percent: Padding around crop
Returns:
Cropped image
"""
return crop_region(image, chunk.bbox, padding_percent)
def crop_multiple_regions(
image: Union[np.ndarray, Image.Image],
bboxes: List[BoundingBox],
padding_percent: float = 0.02,
) -> List[np.ndarray]:
"""
Crop multiple regions from an image.
Args:
image: Source image
bboxes: List of bounding boxes
padding_percent: Padding around crops
Returns:
List of cropped images
"""
return [crop_region(image, bbox, padding_percent) for bbox in bboxes]
class CropManager:
"""
Manages crop extraction and storage.
Provides caching and organized storage for document crops.
"""
def __init__(
self,
output_dir: Union[str, Path],
format: str = "png",
quality: int = 95,
):
self.output_dir = Path(output_dir)
self.format = format.lower()
self.quality = quality
self._cache: Dict[str, str] = {}
# Ensure output directory exists
self.output_dir.mkdir(parents=True, exist_ok=True)
def get_crop_path(
self,
doc_id: str,
page: int,
bbox: BoundingBox,
) -> Path:
"""Generate a path for a crop."""
# Create stable filename from bbox
bbox_str = f"{bbox.x_min:.4f}_{bbox.y_min:.4f}_{bbox.x_max:.4f}_{bbox.y_max:.4f}"
bbox_hash = hashlib.md5(bbox_str.encode()).hexdigest()[:8]
filename = f"{doc_id}_p{page}_{bbox_hash}.{self.format}"
return self.output_dir / doc_id / filename
def save_crop(
self,
image: Union[np.ndarray, Image.Image],
doc_id: str,
page: int,
bbox: BoundingBox,
padding_percent: float = 0.02,
) -> str:
"""
Crop and save a region.
Args:
image: Source page image
doc_id: Document ID
page: Page number
bbox: Region to crop
padding_percent: Padding around crop
Returns:
Path to saved crop
"""
# Check cache
cache_key = f"{doc_id}_{page}_{bbox.xyxy}"
if cache_key in self._cache:
return self._cache[cache_key]
# Crop region
crop = crop_region(image, bbox, padding_percent)
# Convert to PIL
pil_crop = Image.fromarray(crop)
# Ensure directory exists
crop_path = self.get_crop_path(doc_id, page, bbox)
crop_path.parent.mkdir(parents=True, exist_ok=True)
# Save
if self.format == "jpg" or self.format == "jpeg":
pil_crop.save(crop_path, format="JPEG", quality=self.quality)
else:
pil_crop.save(crop_path, format=self.format.upper())
# Cache
path_str = str(crop_path)
self._cache[cache_key] = path_str
return path_str
def save_chunk_crop(
self,
image: Union[np.ndarray, Image.Image],
chunk: DocumentChunk,
padding_percent: float = 0.02,
) -> str:
"""
Save crop for a document chunk.
Args:
image: Page image
chunk: Chunk to crop
padding_percent: Padding around crop
Returns:
Path to saved crop
"""
return self.save_crop(
image=image,
doc_id=chunk.doc_id,
page=chunk.page,
bbox=chunk.bbox,
padding_percent=padding_percent,
)
def get_cached_crop(
self,
doc_id: str,
page: int,
bbox: BoundingBox,
) -> Optional[str]:
"""Get path to cached crop if it exists."""
cache_key = f"{doc_id}_{page}_{bbox.xyxy}"
return self._cache.get(cache_key)
def load_crop(self, path: Union[str, Path]) -> Optional[np.ndarray]:
"""Load a crop from disk."""
path = Path(path)
if not path.exists():
return None
try:
img = Image.open(path)
return np.array(img)
except Exception as e:
logger.warning(f"Failed to load crop {path}: {e}")
return None
def clear_cache(self) -> None:
"""Clear the path cache."""
self._cache.clear()
def cleanup_doc(self, doc_id: str) -> int:
"""
Remove all crops for a document.
Returns number of files removed.
"""
doc_dir = self.output_dir / doc_id
if not doc_dir.exists():
return 0
count = 0
for crop_file in doc_dir.glob(f"*.{self.format}"):
try:
crop_file.unlink()
count += 1
except Exception:
pass
# Remove directory if empty
try:
doc_dir.rmdir()
except OSError:
pass
# Clear cache entries
self._cache = {
k: v for k, v in self._cache.items()
if not k.startswith(f"{doc_id}_")
}
return count
def create_annotated_image(
image: Union[np.ndarray, Image.Image],
bboxes: List[BoundingBox],
labels: Optional[List[str]] = None,
colors: Optional[List[Tuple[int, int, int]]] = None,
line_width: int = 2,
font_size: int = 12,
) -> np.ndarray:
"""
Create an annotated image with bounding boxes.
Args:
image: Source image
bboxes: Bounding boxes to draw
labels: Optional labels for each box
colors: Optional colors for each box (RGB tuples)
line_width: Line width for boxes
font_size: Font size for labels
Returns:
Annotated image as numpy array
"""
from PIL import ImageDraw, ImageFont
# Convert to PIL
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image).copy()
else:
pil_image = image.copy()
draw = ImageDraw.Draw(pil_image)
width, height = pil_image.size
# Default colors - rotating palette
default_colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 0, 255), # Magenta
(0, 255, 255), # Cyan
(255, 128, 0), # Orange
(128, 0, 255), # Purple
]
# Try to load font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", font_size)
except Exception:
font = ImageFont.load_default()
for i, bbox in enumerate(bboxes):
# Get color
if colors and i < len(colors):
color = colors[i]
else:
color = default_colors[i % len(default_colors)]
# Convert to pixels if normalized
if bbox.normalized:
x_min = int(bbox.x_min * width)
y_min = int(bbox.y_min * height)
x_max = int(bbox.x_max * width)
y_max = int(bbox.y_max * height)
else:
x_min = int(bbox.x_min)
y_min = int(bbox.y_min)
x_max = int(bbox.x_max)
y_max = int(bbox.y_max)
# Draw rectangle
draw.rectangle(
[(x_min, y_min), (x_max, y_max)],
outline=color,
width=line_width,
)
# Draw label if provided
if labels and i < len(labels):
label = labels[i]
# Draw label background
text_bbox = draw.textbbox((x_min, y_min - font_size - 4), label, font=font)
draw.rectangle(text_bbox, fill=color)
# Draw text
draw.text(
(x_min, y_min - font_size - 4),
label,
fill=(255, 255, 255),
font=font,
)
return np.array(pil_image)
def highlight_region(
image: Union[np.ndarray, Image.Image],
bbox: BoundingBox,
highlight_color: Tuple[int, int, int] = (255, 255, 0),
opacity: float = 0.3,
) -> np.ndarray:
"""
Highlight a region in an image with semi-transparent overlay.
Args:
image: Source image
bbox: Region to highlight
highlight_color: Color for highlight (RGB)
opacity: Opacity of highlight (0-1)
Returns:
Image with highlighted region
"""
# Convert to numpy
if isinstance(image, Image.Image):
img_array = np.array(image).copy()
else:
img_array = image.copy()
height, width = img_array.shape[:2]
# Convert to pixels if normalized
if bbox.normalized:
x_min = int(bbox.x_min * width)
y_min = int(bbox.y_min * height)
x_max = int(bbox.x_max * width)
y_max = int(bbox.y_max * height)
else:
x_min = int(bbox.x_min)
y_min = int(bbox.y_min)
x_max = int(bbox.x_max)
y_max = int(bbox.y_max)
# Clip to valid range
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(width, x_max)
y_max = min(height, y_max)
# Create overlay
overlay = np.full((y_max - y_min, x_max - x_min, 3), highlight_color, dtype=np.uint8)
# Blend with original
region = img_array[y_min:y_max, x_min:x_max]
blended = (region * (1 - opacity) + overlay * opacity).astype(np.uint8)
img_array[y_min:y_max, x_min:x_max] = blended
return img_array