File size: 29,294 Bytes
a9dc537 76c3b0a a9dc537 76c3b0a a9dc537 76c3b0a a9dc537 76c3b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
"""
LangGraph State Definitions for SPARKNET
Defines state schema, enums, and output models for workflows
"""
from typing import TypedDict, Annotated, Sequence, Dict, Any, List, Optional
from enum import Enum
from datetime import datetime
from pydantic import BaseModel, Field
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messages
class ScenarioType(str, Enum):
"""
VISTA/Horizon EU scenario types for Technology Transfer Office (TTO) automation.
Each scenario has a dedicated multi-agent workflow aligned with TTO operations.
Coverage Status:
- FULLY COVERED (3): Patent Wake-Up, Agreement Safety, Partner Matching
- PARTIALLY COVERED (5): License Compliance, Award Identification, IP Portfolio, Due Diligence, Reporting
- NOT COVERED (2): Grant Writing, Negotiation Support
"""
# Fully Implemented Scenarios
PATENT_WAKEUP = "patent_wakeup" # Scenario 1: Dormant IP valorization
AGREEMENT_SAFETY = "agreement_safety" # Scenario 2: Legal agreement review
PARTNER_MATCHING = "partner_matching" # Scenario 5: Stakeholder matching
# New Scenarios (Placeholder - Partially Implemented)
LICENSE_COMPLIANCE = "license_compliance" # Scenario 3: License tracking & compliance
AWARD_IDENTIFICATION = "award_identification" # Scenario 4: Funding & award opportunities
# Future Scenarios (Not Yet Implemented)
IP_PORTFOLIO = "ip_portfolio" # IP portfolio management
DUE_DILIGENCE = "due_diligence" # Technology due diligence
REPORTING = "reporting" # TTO metrics and reporting
# General Purpose
GENERAL = "general" # Custom/general purpose tasks
class TaskStatus(str, Enum):
"""
Task execution status throughout workflow.
"""
PENDING = "pending"
PLANNING = "planning"
EXECUTING = "executing"
VALIDATING = "validating"
REFINING = "refining"
COMPLETED = "completed"
FAILED = "failed"
class AgentState(TypedDict):
"""
LangGraph state for SPARKNET workflows.
This state is passed between all agents in the workflow.
Uses Annotated with add_messages for automatic message history management.
"""
# Message history (automatically managed by LangGraph)
messages: Annotated[Sequence[BaseMessage], add_messages]
# Task information
task_id: str
task_description: str
scenario: ScenarioType
status: TaskStatus
# Workflow execution
current_agent: Optional[str] # Which agent is currently processing
iteration_count: int # Number of refinement iterations
max_iterations: int # Maximum allowed iterations
# Planning stage outputs
subtasks: Optional[List[Dict[str, Any]]] # From PlannerAgent
execution_order: Optional[List[List[str]]] # Parallel execution layers
# Execution stage outputs
agent_outputs: Dict[str, Any] # Outputs from each specialized agent
intermediate_results: List[Dict[str, Any]] # Intermediate results
# Validation stage
validation_score: Optional[float] # Quality score from CriticAgent
validation_feedback: Optional[str] # Detailed feedback
validation_issues: List[str] # List of identified issues
validation_suggestions: List[str] # Improvement suggestions
# Memory and context
retrieved_context: List[Dict[str, Any]] # From MemoryAgent
document_metadata: Dict[str, Any] # Metadata about input documents
input_data: Dict[str, Any] # Input data for the workflow (e.g., patent_path)
# Final output
final_output: Optional[Any] # Final workflow result
success: bool # Whether workflow completed successfully
error: Optional[str] # Error message if failed
# Metadata
start_time: datetime
end_time: Optional[datetime]
execution_time_seconds: Optional[float]
# Human-in-the-loop
requires_human_approval: bool
human_feedback: Optional[str]
class WorkflowOutput(BaseModel):
"""
Structured output from SPARKNET workflows.
Used for serialization and API responses.
"""
task_id: str = Field(..., description="Unique task identifier")
scenario: ScenarioType = Field(..., description="Scenario type executed")
status: TaskStatus = Field(..., description="Final task status")
success: bool = Field(..., description="Whether task completed successfully")
# Results
output: Any = Field(..., description="Primary output/result")
intermediate_results: List[Dict[str, Any]] = Field(
default_factory=list,
description="Intermediate results from agents"
)
# Quality metrics
quality_score: Optional[float] = Field(
None,
ge=0.0,
le=1.0,
description="Quality score from validation (0.0-1.0)"
)
validation_feedback: Optional[str] = Field(
None,
description="Feedback from CriticAgent"
)
# Execution metadata
iterations_used: int = Field(..., description="Number of refinement iterations")
execution_time_seconds: float = Field(..., description="Total execution time")
agents_involved: List[str] = Field(
default_factory=list,
description="List of agents that participated"
)
# Workflow details
subtasks: List[Dict[str, Any]] = Field(
default_factory=list,
description="Subtasks created during planning"
)
agent_outputs: Dict[str, Any] = Field(
default_factory=dict,
description="Outputs from individual agents"
)
# Validation score (alias for quality_score for compatibility)
@property
def validation_score(self) -> Optional[float]:
"""Alias for quality_score for backward compatibility."""
return self.quality_score
# Message history
message_count: int = Field(..., description="Number of messages exchanged")
# Error handling
error: Optional[str] = Field(None, description="Error message if failed")
warnings: List[str] = Field(default_factory=list, description="Warnings during execution")
# Timestamps
start_time: datetime = Field(..., description="Workflow start time")
end_time: datetime = Field(..., description="Workflow end time")
class Config:
json_schema_extra = {
"example": {
"task_id": "task_12345",
"scenario": "patent_wakeup",
"status": "completed",
"success": True,
"output": {
"valorization_roadmap": "...",
"market_analysis": "...",
"stakeholder_matches": [...]
},
"quality_score": 0.92,
"validation_feedback": "Excellent quality. All criteria met.",
"iterations_used": 2,
"execution_time_seconds": 45.3,
"agents_involved": ["PlannerAgent", "DocumentAnalysisAgent", "MarketAnalysisAgent", "CriticAgent"],
"message_count": 18,
"start_time": "2025-11-04T10:00:00",
"end_time": "2025-11-04T10:00:45"
}
}
class ValidationResult(BaseModel):
"""
Structured validation result from CriticAgent.
Compatible with existing CriticAgent implementation.
"""
valid: bool = Field(..., description="Whether output meets quality thresholds")
overall_score: float = Field(..., ge=0.0, le=1.0, description="Overall quality score")
dimension_scores: Dict[str, float] = Field(
...,
description="Scores for individual quality dimensions"
)
issues: List[str] = Field(
default_factory=list,
description="List of identified issues"
)
suggestions: List[str] = Field(
default_factory=list,
description="Improvement suggestions"
)
details: Dict[str, Any] = Field(
default_factory=dict,
description="Additional validation details"
)
class SubTask(BaseModel):
"""
Individual subtask from PlannerAgent.
Compatible with existing PlannerAgent implementation.
"""
id: str = Field(..., description="Unique subtask ID")
description: str = Field(..., description="What needs to be done")
agent_type: str = Field(..., description="Which agent should handle this")
dependencies: List[str] = Field(
default_factory=list,
description="IDs of subtasks this depends on"
)
estimated_duration: float = Field(
default=0.0,
description="Estimated duration in seconds"
)
priority: int = Field(default=0, description="Priority level")
parameters: Dict[str, Any] = Field(
default_factory=dict,
description="Agent-specific parameters"
)
status: TaskStatus = Field(
default=TaskStatus.PENDING,
description="Current status"
)
# Helper functions for state management
def create_initial_state(
task_id: str,
task_description: str,
scenario: ScenarioType = ScenarioType.GENERAL,
max_iterations: int = 3,
input_data: Optional[Dict[str, Any]] = None,
) -> AgentState:
"""
Create initial AgentState for a new workflow.
Args:
task_id: Unique task identifier
task_description: Natural language task description
scenario: VISTA scenario type
max_iterations: Maximum refinement iterations
input_data: Optional input data for workflow (e.g., patent_path)
Returns:
Initialized AgentState
"""
return AgentState(
messages=[],
task_id=task_id,
task_description=task_description,
scenario=scenario,
status=TaskStatus.PENDING,
current_agent=None,
iteration_count=0,
max_iterations=max_iterations,
subtasks=None,
execution_order=None,
agent_outputs={},
intermediate_results=[],
validation_score=None,
validation_feedback=None,
validation_issues=[],
validation_suggestions=[],
retrieved_context=[],
document_metadata={},
input_data=input_data or {},
final_output=None,
success=False,
error=None,
start_time=datetime.now(),
end_time=None,
execution_time_seconds=None,
requires_human_approval=False,
human_feedback=None,
)
def state_to_output(state: AgentState) -> WorkflowOutput:
"""
Convert AgentState to WorkflowOutput for serialization.
Args:
state: Current workflow state
Returns:
WorkflowOutput model
"""
end_time = state.get("end_time") or datetime.now()
execution_time = (end_time - state["start_time"]).total_seconds()
# Handle None values by providing defaults
subtasks = state.get("subtasks")
if subtasks is None:
subtasks = []
agent_outputs = state.get("agent_outputs")
if agent_outputs is None:
agent_outputs = {}
return WorkflowOutput(
task_id=state["task_id"],
scenario=state["scenario"],
status=state["status"],
success=state["success"],
output=state.get("final_output"),
intermediate_results=state.get("intermediate_results") or [],
quality_score=state.get("validation_score"),
validation_feedback=state.get("validation_feedback"),
iterations_used=state.get("iteration_count", 0),
execution_time_seconds=execution_time,
agents_involved=list(agent_outputs.keys()),
subtasks=subtasks,
agent_outputs=agent_outputs,
message_count=len(state.get("messages") or []),
error=state.get("error"),
warnings=[], # Can be populated from validation_issues
start_time=state["start_time"],
end_time=end_time,
)
# ============================================================================
# Patent Wake-Up Scenario Models (Scenario 1)
# ============================================================================
class Claim(BaseModel):
"""Individual patent claim"""
claim_number: int = Field(..., description="Claim number")
claim_type: str = Field(..., description="independent or dependent")
claim_text: str = Field(..., description="Full claim text")
depends_on: Optional[int] = Field(None, description="Parent claim number if dependent")
class PatentAnalysis(BaseModel):
"""Complete patent analysis output from DocumentAnalysisAgent"""
patent_id: str = Field(..., description="Patent identifier")
title: str = Field(..., description="Patent title")
abstract: str = Field(..., description="Patent abstract")
# Claims
independent_claims: List[Claim] = Field(default_factory=list, description="Independent claims")
dependent_claims: List[Claim] = Field(default_factory=list, description="Dependent claims")
total_claims: int = Field(..., description="Total number of claims")
# Technical details
ipc_classification: List[str] = Field(default_factory=list, description="IPC codes")
technical_domains: List[str] = Field(default_factory=list, description="Technology domains")
key_innovations: List[str] = Field(default_factory=list, description="Key innovations")
novelty_assessment: str = Field(..., description="Assessment of novelty")
# Commercialization
trl_level: int = Field(..., ge=1, le=9, description="Technology Readiness Level")
trl_justification: str = Field(..., description="Reasoning for TRL assessment")
commercialization_potential: str = Field(..., description="High, Medium, or Low")
potential_applications: List[str] = Field(default_factory=list, description="Application areas")
# Metadata
inventors: List[str] = Field(default_factory=list, description="Inventor names")
assignees: List[str] = Field(default_factory=list, description="Assignee organizations")
filing_date: Optional[str] = Field(None, description="Filing date")
publication_date: Optional[str] = Field(None, description="Publication date")
# Analysis quality
confidence_score: float = Field(..., ge=0.0, le=1.0, description="Analysis confidence")
extraction_completeness: float = Field(..., ge=0.0, le=1.0, description="Extraction completeness")
class MarketOpportunity(BaseModel):
"""Individual market opportunity"""
sector: str = Field(..., description="Industry sector name")
sector_description: str = Field(..., description="Sector description")
market_size_usd: Optional[float] = Field(None, description="Market size in USD")
growth_rate_percent: Optional[float] = Field(None, description="Annual growth rate")
technology_fit: str = Field(..., description="Excellent, Good, or Fair")
market_gap: str = Field(..., description="Specific gap this technology fills")
competitive_advantage: str = Field(..., description="Key competitive advantages")
geographic_focus: List[str] = Field(default_factory=list, description="Target regions")
time_to_market_months: int = Field(..., description="Estimated time to market")
risk_level: str = Field(..., description="Low, Medium, or High")
priority_score: float = Field(..., ge=0.0, le=1.0, description="Priority ranking")
class MarketAnalysis(BaseModel):
"""Complete market analysis output from MarketAnalysisAgent"""
opportunities: List[MarketOpportunity] = Field(default_factory=list, description="Market opportunities")
top_sectors: List[str] = Field(default_factory=list, description="Top 3 sectors by priority")
# Overall assessment
total_addressable_market_usd: Optional[float] = Field(None, description="Total addressable market")
market_readiness: str = Field(..., description="Ready, Emerging, or Early")
competitive_landscape: str = Field(..., description="Competitive landscape assessment")
regulatory_considerations: List[str] = Field(default_factory=list, description="Regulatory issues")
# Recommendations
recommended_focus: str = Field(..., description="Recommended market focus")
strategic_positioning: str = Field(..., description="Strategic positioning advice")
go_to_market_strategy: str = Field(..., description="Go-to-market strategy")
# Quality
confidence_score: float = Field(..., ge=0.0, le=1.0, description="Analysis confidence")
research_depth: int = Field(..., description="Number of sources consulted")
class StakeholderMatch(BaseModel):
"""Match between patent and potential partner"""
stakeholder_name: str = Field(..., description="Stakeholder name")
stakeholder_type: str = Field(..., description="Investor, Company, University, etc.")
# Contact information
location: str = Field(..., description="Geographic location")
contact_info: Optional[Dict] = Field(None, description="Contact details")
# Match scores
overall_fit_score: float = Field(..., ge=0.0, le=1.0, description="Overall match score")
technical_fit: float = Field(..., ge=0.0, le=1.0, description="Technical capability match")
market_fit: float = Field(..., ge=0.0, le=1.0, description="Market sector alignment")
geographic_fit: float = Field(..., ge=0.0, le=1.0, description="Geographic compatibility")
strategic_fit: float = Field(..., ge=0.0, le=1.0, description="Strategic alignment")
# Explanation
match_rationale: str = Field(..., description="Why this is a good match")
collaboration_opportunities: List[str] = Field(default_factory=list, description="Potential collaborations")
potential_value: str = Field(..., description="High, Medium, or Low")
# Next steps
recommended_approach: str = Field(..., description="How to approach this stakeholder")
talking_points: List[str] = Field(default_factory=list, description="Key talking points")
class ValorizationBrief(BaseModel):
"""Complete valorization package from OutreachAgent"""
patent_id: str = Field(..., description="Patent identifier")
# Document content
content: str = Field(..., description="Full markdown content")
pdf_path: str = Field(..., description="Path to generated PDF")
# Key sections (extracted)
executive_summary: str = Field(..., description="Executive summary")
technology_overview: str = Field(..., description="Technology overview section")
market_analysis_summary: str = Field(..., description="Market analysis summary")
partner_recommendations: str = Field(..., description="Partner recommendations")
# Highlights
top_opportunities: List[str] = Field(default_factory=list, description="Top market opportunities")
recommended_partners: List[str] = Field(default_factory=list, description="Top 5 partners")
key_takeaways: List[str] = Field(default_factory=list, description="Key takeaways")
# Metadata
generated_date: str = Field(..., description="Generation date")
version: str = Field(default="1.0", description="Document version")
# ============================================================================
# License Compliance Monitoring Models (Scenario 3)
# ============================================================================
class ComplianceStatus(str, Enum):
"""License compliance status for monitoring."""
COMPLIANT = "compliant"
NON_COMPLIANT = "non_compliant"
AT_RISK = "at_risk"
PENDING_REVIEW = "pending_review"
EXPIRED = "expired"
class LicenseComplianceAnalysis(BaseModel):
"""
License compliance analysis output from LicenseComplianceAgent.
GDPR Note: This model may contain references to personal data
(licensee contacts, payment info). Implement appropriate access
controls and data retention policies.
"""
license_id: str = Field(..., description="License agreement identifier")
agreement_name: str = Field(..., description="Name of the agreement")
licensee: str = Field(..., description="Licensee organization name")
# Compliance status
overall_status: ComplianceStatus = Field(..., description="Overall compliance status")
compliance_score: float = Field(..., ge=0.0, le=1.0, description="Compliance score 0-1")
# Payment compliance
payments_current: bool = Field(..., description="All payments up to date")
payments_overdue: int = Field(default=0, description="Number of overdue payments")
total_outstanding: float = Field(default=0.0, description="Total outstanding amount")
currency: str = Field(default="EUR", description="Currency code")
# Milestone compliance
milestones_on_track: bool = Field(..., description="All milestones on track")
milestones_overdue: int = Field(default=0, description="Number of overdue milestones")
next_milestone_date: Optional[str] = Field(None, description="Next milestone due date")
# Alerts and issues
active_alerts: List[str] = Field(default_factory=list, description="Active compliance alerts")
issues_identified: List[str] = Field(default_factory=list, description="Identified issues")
recommendations: List[str] = Field(default_factory=list, description="Compliance recommendations")
# Confidence and validation
confidence_score: float = Field(..., ge=0.0, le=1.0, description="Analysis confidence")
human_review_required: bool = Field(default=False, description="Requires human review")
last_reviewed: Optional[str] = Field(None, description="Last human review date")
class RevenueReport(BaseModel):
"""Revenue report for license portfolio."""
report_id: str = Field(..., description="Report identifier")
period_start: str = Field(..., description="Reporting period start")
period_end: str = Field(..., description="Reporting period end")
# Revenue summary
total_revenue: float = Field(..., description="Total revenue in period")
currency: str = Field(default="EUR", description="Currency code")
by_license: Dict[str, float] = Field(default_factory=dict, description="Revenue by license")
by_type: Dict[str, float] = Field(default_factory=dict, description="Revenue by type")
# Comparisons
vs_previous_period: Optional[float] = Field(None, description="% change vs previous period")
vs_forecast: Optional[float] = Field(None, description="% vs forecast")
# Analysis quality
confidence_score: float = Field(..., ge=0.0, le=1.0, description="Report confidence")
# ============================================================================
# Award Identification Models (Scenario 4)
# ============================================================================
class FundingOpportunity(BaseModel):
"""
Funding opportunity identified by the award scanning system.
Represents grants, awards, and other funding opportunities
matched to research capabilities.
"""
opportunity_id: str = Field(..., description="Opportunity identifier")
title: str = Field(..., description="Opportunity title")
description: str = Field(..., description="Full description")
# Funder information
funder: str = Field(..., description="Funding organization name")
funder_type: str = Field(..., description="Type: government, EU, foundation, corporate")
program_name: Optional[str] = Field(None, description="Funding program name")
# Funding details
amount_min: Optional[float] = Field(None, description="Minimum funding amount")
amount_max: Optional[float] = Field(None, description="Maximum funding amount")
currency: str = Field(default="EUR", description="Currency code")
funding_type: str = Field(..., description="Type: grant, award, prize, fellowship")
# Timing
deadline: Optional[str] = Field(None, description="Application deadline")
duration_months: Optional[int] = Field(None, description="Funding duration in months")
decision_date: Optional[str] = Field(None, description="Expected decision date")
# Matching
match_score: float = Field(..., ge=0.0, le=1.0, description="Match score with capabilities")
match_rationale: str = Field(..., description="Why this is a good match")
eligibility_status: str = Field(..., description="eligible, ineligible, partial, unknown")
eligibility_notes: List[str] = Field(default_factory=list, description="Eligibility details")
# Next steps
recommended_action: str = Field(..., description="Recommended next step")
application_effort: str = Field(..., description="Low, Medium, High effort required")
success_likelihood: str = Field(..., description="Low, Medium, High likelihood")
# Metadata
url: Optional[str] = Field(None, description="Opportunity URL")
keywords: List[str] = Field(default_factory=list, description="Relevant keywords")
research_areas: List[str] = Field(default_factory=list, description="Matching research areas")
discovered_date: str = Field(..., description="When opportunity was discovered")
# Quality
confidence_score: float = Field(..., ge=0.0, le=1.0, description="Analysis confidence")
class AwardApplicationStatus(BaseModel):
"""Status tracking for award/grant applications."""
application_id: str = Field(..., description="Application identifier")
opportunity_id: str = Field(..., description="Target opportunity")
# Status
status: str = Field(..., description="draft, internal_review, submitted, under_review, awarded, rejected")
submitted_date: Optional[str] = Field(None, description="Submission date")
decision_date: Optional[str] = Field(None, description="Decision received date")
# Documents
documents_completed: int = Field(default=0, description="Completed documents")
documents_required: int = Field(default=0, description="Total required documents")
documents_pending_review: int = Field(default=0, description="Documents pending review")
# Quality
overall_score: Optional[float] = Field(None, ge=0.0, le=1.0, description="Application quality score")
critic_validation: Optional[Dict[str, Any]] = Field(None, description="CriticAgent validation result")
human_approved: bool = Field(default=False, description="Human approval received")
# Notes
internal_notes: List[str] = Field(default_factory=list, description="Internal notes")
feedback: Optional[str] = Field(None, description="Feedback from funder if received")
# ============================================================================
# Human-in-the-Loop Decision Models
# ============================================================================
class HumanDecisionPoint(BaseModel):
"""
Human-in-the-loop decision point for workflow orchestration.
Captures when and why human input is required, and tracks
the decision made.
"""
decision_id: str = Field(..., description="Decision point identifier")
workflow_id: str = Field(..., description="Parent workflow ID")
scenario: ScenarioType = Field(..., description="Scenario requiring decision")
# Decision context
decision_type: str = Field(..., description="Type: approval, selection, verification, override")
question: str = Field(..., description="Decision question for human")
context: str = Field(..., description="Context and background for decision")
options: List[str] = Field(default_factory=list, description="Available options")
# AI recommendation
ai_recommendation: Optional[str] = Field(None, description="AI recommended option")
ai_confidence: Optional[float] = Field(None, ge=0.0, le=1.0, description="AI confidence in recommendation")
ai_rationale: Optional[str] = Field(None, description="Rationale for AI recommendation")
# Human decision
human_decision: Optional[str] = Field(None, description="Human selected option")
human_rationale: Optional[str] = Field(None, description="Human provided rationale")
decided_by: Optional[str] = Field(None, description="User who made decision")
decided_at: Optional[str] = Field(None, description="Timestamp of decision")
# Status
status: str = Field(default="pending", description="pending, decided, expired, skipped")
expires_at: Optional[str] = Field(None, description="When decision times out")
# Audit
created_at: str = Field(..., description="When decision point was created")
class SourceVerification(BaseModel):
"""
Source verification for hallucination mitigation.
Tracks sources used by AI agents and their verification status.
"""
verification_id: str = Field(..., description="Verification identifier")
claim: str = Field(..., description="AI-generated claim to verify")
# Sources
sources: List[Dict[str, Any]] = Field(default_factory=list, description="Supporting sources")
source_count: int = Field(default=0, description="Number of sources found")
# Verification
verified: bool = Field(..., description="Claim is verified by sources")
verification_score: float = Field(..., ge=0.0, le=1.0, description="Verification confidence")
verification_method: str = Field(..., description="How verification was performed")
# Issues
discrepancies: List[str] = Field(default_factory=list, description="Discrepancies found")
warnings: List[str] = Field(default_factory=list, description="Verification warnings")
# Metadata
verified_at: str = Field(..., description="When verification was performed")
|