File size: 7,403 Bytes
a9dc537 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
"""
Base Tool for SPARKNET
Defines the interface for all tools that agents can use
"""
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from loguru import logger
import json
class ToolParameter(BaseModel):
"""Definition of a tool parameter."""
name: str = Field(..., description="Parameter name")
type: str = Field(..., description="Parameter type (str, int, float, bool, list, dict)")
description: str = Field(..., description="Parameter description")
required: bool = Field(default=True, description="Whether parameter is required")
default: Optional[Any] = Field(default=None, description="Default value if not required")
class ToolResult(BaseModel):
"""Result from tool execution."""
success: bool = Field(..., description="Whether execution was successful")
output: Any = Field(..., description="Tool output")
error: Optional[str] = Field(default=None, description="Error message if failed")
metadata: Dict[str, Any] = Field(default_factory=dict, description="Additional metadata")
class BaseTool(ABC):
"""Base class for all tools."""
def __init__(self, name: str, description: str):
"""
Initialize tool.
Args:
name: Tool name
description: Tool description
"""
self.name = name
self.description = description
self.parameters: list[ToolParameter] = []
@abstractmethod
async def execute(self, **kwargs) -> ToolResult:
"""
Execute the tool with given parameters.
Args:
**kwargs: Tool parameters
Returns:
ToolResult with execution results
"""
pass
def add_parameter(
self,
name: str,
param_type: str,
description: str,
required: bool = True,
default: Optional[Any] = None,
):
"""
Add a parameter definition to the tool.
Args:
name: Parameter name
param_type: Parameter type
description: Parameter description
required: Whether parameter is required
default: Default value
"""
param = ToolParameter(
name=name,
type=param_type,
description=description,
required=required,
default=default,
)
self.parameters.append(param)
def validate_parameters(self, **kwargs) -> tuple[bool, Optional[str]]:
"""
Validate provided parameters against tool definition.
Args:
**kwargs: Provided parameters
Returns:
Tuple of (is_valid, error_message)
"""
# Check required parameters
for param in self.parameters:
if param.required and param.name not in kwargs:
return False, f"Missing required parameter: {param.name}"
# Check parameter types (basic validation)
for param in self.parameters:
if param.name in kwargs:
value = kwargs[param.name]
expected_type = param.type
# Basic type checking
type_map = {
"str": str,
"int": int,
"float": float,
"bool": bool,
"list": list,
"dict": dict,
}
if expected_type in type_map:
if not isinstance(value, type_map[expected_type]):
return False, f"Parameter {param.name} must be of type {expected_type}"
return True, None
def get_schema(self) -> Dict[str, Any]:
"""
Get tool schema for LLM function calling.
Returns:
Tool schema dictionary
"""
return {
"name": self.name,
"description": self.description,
"parameters": {
"type": "object",
"properties": {
param.name: {
"type": param.type,
"description": param.description,
}
for param in self.parameters
},
"required": [param.name for param in self.parameters if param.required],
},
}
async def safe_execute(self, **kwargs) -> ToolResult:
"""
Execute tool with parameter validation and error handling.
Args:
**kwargs: Tool parameters
Returns:
ToolResult with execution results
"""
# Validate parameters
is_valid, error_msg = self.validate_parameters(**kwargs)
if not is_valid:
logger.error(f"Tool {self.name} parameter validation failed: {error_msg}")
return ToolResult(success=False, output=None, error=error_msg)
# Add default values for missing optional parameters
for param in self.parameters:
if not param.required and param.name not in kwargs:
kwargs[param.name] = param.default
# Execute tool
try:
logger.info(f"Executing tool: {self.name}")
result = await self.execute(**kwargs)
logger.info(f"Tool {self.name} executed successfully")
return result
except Exception as e:
logger.error(f"Tool {self.name} execution failed: {e}")
return ToolResult(
success=False,
output=None,
error=str(e),
)
def __repr__(self) -> str:
return f"<Tool: {self.name}>"
class ToolRegistry:
"""Registry for managing available tools."""
def __init__(self):
"""Initialize tool registry."""
self.tools: Dict[str, BaseTool] = {}
logger.info("Tool registry initialized")
def register(self, tool: BaseTool):
"""
Register a tool.
Args:
tool: Tool instance to register
"""
self.tools[tool.name] = tool
logger.info(f"Registered tool: {tool.name}")
def unregister(self, tool_name: str):
"""
Unregister a tool.
Args:
tool_name: Name of tool to unregister
"""
if tool_name in self.tools:
del self.tools[tool_name]
logger.info(f"Unregistered tool: {tool_name}")
def get_tool(self, tool_name: str) -> Optional[BaseTool]:
"""
Get a tool by name.
Args:
tool_name: Name of tool
Returns:
Tool instance or None
"""
return self.tools.get(tool_name)
def list_tools(self) -> list[str]:
"""
List all registered tools.
Returns:
List of tool names
"""
return list(self.tools.keys())
def get_schemas(self) -> list[Dict[str, Any]]:
"""
Get schemas for all tools.
Returns:
List of tool schemas
"""
return [tool.get_schema() for tool in self.tools.values()]
# Global tool registry
_tool_registry: Optional[ToolRegistry] = None
def get_tool_registry() -> ToolRegistry:
"""Get or create the global tool registry."""
global _tool_registry
if _tool_registry is None:
_tool_registry = ToolRegistry()
return _tool_registry
|