File size: 21,378 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
"""
Document Intelligence Tools for Agents

Tool implementations for DocumentAgent integration.
Each tool is designed for ReAct-style agent execution.
"""

import json
import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

logger = logging.getLogger(__name__)


@dataclass
class ToolResult:
    """Result from a tool execution."""

    success: bool
    data: Any = None
    error: Optional[str] = None
    evidence: List[Dict[str, Any]] = None

    def __post_init__(self):
        if self.evidence is None:
            self.evidence = []

    def to_dict(self) -> Dict[str, Any]:
        return {
            "success": self.success,
            "data": self.data,
            "error": self.error,
            "evidence": self.evidence,
        }


class DocumentTool:
    """Base class for document tools."""

    name: str = "base_tool"
    description: str = "Base document tool"

    def execute(self, **kwargs) -> ToolResult:
        """Execute the tool."""
        raise NotImplementedError


class ParseDocumentTool(DocumentTool):
    """
    Parse a document into semantic chunks.

    Input:
        path: Path to document file
        max_pages: Optional maximum pages to process

    Output:
        ParseResult with chunks and metadata
    """

    name = "parse_document"
    description = "Parse a document into semantic chunks with OCR and layout detection"

    def __init__(self, parser=None):
        from ..parsing import DocumentParser
        self.parser = parser or DocumentParser()

    def execute(
        self,
        path: str,
        max_pages: Optional[int] = None,
        **kwargs
    ) -> ToolResult:
        try:
            # Update config if max_pages specified
            if max_pages:
                self.parser.config.max_pages = max_pages

            result = self.parser.parse(path)

            return ToolResult(
                success=True,
                data={
                    "doc_id": result.doc_id,
                    "filename": result.filename,
                    "num_pages": result.num_pages,
                    "num_chunks": len(result.chunks),
                    "chunks": [
                        {
                            "chunk_id": c.chunk_id,
                            "type": c.chunk_type.value,
                            "text": c.text[:500],  # Truncate for display
                            "page": c.page,
                            "confidence": c.confidence,
                        }
                        for c in result.chunks[:20]  # Limit for display
                    ],
                    "markdown_preview": result.markdown_full[:2000],
                },
            )
        except Exception as e:
            logger.error(f"Parse document failed: {e}")
            return ToolResult(success=False, error=str(e))


class ExtractFieldsTool(DocumentTool):
    """
    Extract fields from a parsed document using a schema.

    Input:
        parse_result: Previously parsed document
        schema: Extraction schema (dict or ExtractionSchema)
        fields: Optional list of specific fields to extract

    Output:
        ExtractionResult with values and evidence
    """

    name = "extract_fields"
    description = "Extract structured fields from document using a schema"

    def __init__(self, extractor=None):
        from ..extraction import FieldExtractor
        self.extractor = extractor or FieldExtractor()

    def execute(
        self,
        parse_result: Any,
        schema: Union[Dict, Any],
        fields: Optional[List[str]] = None,
        **kwargs
    ) -> ToolResult:
        try:
            from ..extraction import ExtractionSchema

            # Convert dict schema to ExtractionSchema
            if isinstance(schema, dict):
                schema = ExtractionSchema.from_json_schema(schema)

            # Filter fields if specified
            if fields:
                schema.fields = [f for f in schema.fields if f.name in fields]

            result = self.extractor.extract(parse_result, schema)

            return ToolResult(
                success=True,
                data={
                    "extracted_data": result.data,
                    "confidence": result.overall_confidence,
                    "abstained_fields": result.abstained_fields,
                },
                evidence=[
                    {
                        "chunk_id": e.chunk_id,
                        "page": e.page,
                        "bbox": e.bbox.xyxy,
                        "snippet": e.snippet,
                        "confidence": e.confidence,
                    }
                    for e in result.evidence
                ],
            )
        except Exception as e:
            logger.error(f"Extract fields failed: {e}")
            return ToolResult(success=False, error=str(e))


class SearchChunksTool(DocumentTool):
    """
    Search for chunks containing specific text or matching criteria.

    Input:
        parse_result: Parsed document
        query: Search query
        chunk_types: Optional list of chunk types to filter
        top_k: Maximum results to return

    Output:
        List of matching chunks with scores
    """

    name = "search_chunks"
    description = "Search document chunks for specific content"

    def execute(
        self,
        parse_result: Any,
        query: str,
        chunk_types: Optional[List[str]] = None,
        top_k: int = 10,
        **kwargs
    ) -> ToolResult:
        try:
            from ..chunks import ChunkType

            query_lower = query.lower()
            results = []

            for chunk in parse_result.chunks:
                # Filter by type
                if chunk_types:
                    if chunk.chunk_type.value not in chunk_types:
                        continue

                # Simple text matching with scoring
                text_lower = chunk.text.lower()
                if query_lower in text_lower:
                    # Calculate relevance score
                    count = text_lower.count(query_lower)
                    position = text_lower.find(query_lower)
                    score = count * 10 + (1 / (position + 1)) * 5

                    results.append({
                        "chunk_id": chunk.chunk_id,
                        "type": chunk.chunk_type.value,
                        "text": chunk.text[:300],
                        "page": chunk.page,
                        "score": score,
                        "bbox": chunk.bbox.xyxy,
                    })

            # Sort by score and limit
            results.sort(key=lambda x: x["score"], reverse=True)
            results = results[:top_k]

            return ToolResult(
                success=True,
                data={
                    "query": query,
                    "total_matches": len(results),
                    "results": results,
                },
            )
        except Exception as e:
            logger.error(f"Search chunks failed: {e}")
            return ToolResult(success=False, error=str(e))


class GetChunkDetailsTool(DocumentTool):
    """
    Get detailed information about a specific chunk.

    Input:
        parse_result: Parsed document
        chunk_id: ID of chunk to retrieve

    Output:
        Full chunk details including content and metadata
    """

    name = "get_chunk_details"
    description = "Get detailed information about a specific chunk"

    def execute(
        self,
        parse_result: Any,
        chunk_id: str,
        **kwargs
    ) -> ToolResult:
        try:
            from ..chunks import TableChunk, ChartChunk

            # Find chunk
            chunk = None
            for c in parse_result.chunks:
                if c.chunk_id == chunk_id:
                    chunk = c
                    break

            if chunk is None:
                return ToolResult(
                    success=False,
                    error=f"Chunk not found: {chunk_id}"
                )

            data = {
                "chunk_id": chunk.chunk_id,
                "doc_id": chunk.doc_id,
                "type": chunk.chunk_type.value,
                "text": chunk.text,
                "page": chunk.page,
                "bbox": {
                    "x_min": chunk.bbox.x_min,
                    "y_min": chunk.bbox.y_min,
                    "x_max": chunk.bbox.x_max,
                    "y_max": chunk.bbox.y_max,
                    "normalized": chunk.bbox.normalized,
                },
                "confidence": chunk.confidence,
                "sequence_index": chunk.sequence_index,
            }

            # Add type-specific data
            if isinstance(chunk, TableChunk):
                data["table"] = {
                    "num_rows": chunk.num_rows,
                    "num_cols": chunk.num_cols,
                    "markdown": chunk.to_markdown(),
                    "csv": chunk.to_csv(),
                }
            elif isinstance(chunk, ChartChunk):
                data["chart"] = {
                    "chart_type": chunk.chart_type,
                    "title": chunk.title,
                    "data_points": len(chunk.data_points),
                    "trends": chunk.trends,
                }

            return ToolResult(success=True, data=data)

        except Exception as e:
            logger.error(f"Get chunk details failed: {e}")
            return ToolResult(success=False, error=str(e))


class GetTableDataTool(DocumentTool):
    """
    Get structured data from a table chunk.

    Input:
        parse_result: Parsed document
        chunk_id: ID of table chunk
        format: Output format (json, csv, markdown)

    Output:
        Table data in requested format
    """

    name = "get_table_data"
    description = "Extract structured data from a table"

    def execute(
        self,
        parse_result: Any,
        chunk_id: str,
        format: str = "json",
        **kwargs
    ) -> ToolResult:
        try:
            from ..chunks import TableChunk

            # Find table chunk
            table = None
            for c in parse_result.chunks:
                if c.chunk_id == chunk_id and isinstance(c, TableChunk):
                    table = c
                    break

            if table is None:
                return ToolResult(
                    success=False,
                    error=f"Table chunk not found: {chunk_id}"
                )

            if format == "csv":
                data = table.to_csv()
            elif format == "markdown":
                data = table.to_markdown()
            else:  # json
                data = table.to_structured_json()

            return ToolResult(
                success=True,
                data={
                    "chunk_id": chunk_id,
                    "format": format,
                    "num_rows": table.num_rows,
                    "num_cols": table.num_cols,
                    "content": data,
                },
                evidence=[{
                    "chunk_id": chunk_id,
                    "page": table.page,
                    "bbox": table.bbox.xyxy,
                    "source_type": "table",
                }],
            )
        except Exception as e:
            logger.error(f"Get table data failed: {e}")
            return ToolResult(success=False, error=str(e))


class AnswerQuestionTool(DocumentTool):
    """
    Answer a question about the document using available chunks.

    Input:
        parse_result: Parsed document
        question: Question to answer
        use_rag: Whether to use RAG for retrieval (requires indexed document)
        document_id: Document ID for RAG retrieval (defaults to parse_result.doc_id)
        top_k: Number of chunks to consider

    Output:
        Answer with supporting evidence
    """

    name = "answer_question"
    description = "Answer a question about the document content"

    def __init__(self, llm_client=None):
        self.llm_client = llm_client

    def execute(
        self,
        parse_result: Any,
        question: str,
        use_rag: bool = False,
        document_id: Optional[str] = None,
        top_k: int = 5,
        **kwargs
    ) -> ToolResult:
        try:
            # Use RAG if requested and available
            if use_rag:
                return self._answer_with_rag(
                    question=question,
                    document_id=document_id or (parse_result.doc_id if parse_result else None),
                    top_k=top_k,
                )

            # Fall back to keyword-based search on parse_result
            return self._answer_with_keywords(
                parse_result=parse_result,
                question=question,
                top_k=top_k,
            )

        except Exception as e:
            logger.error(f"Answer question failed: {e}")
            return ToolResult(success=False, error=str(e))

    def _answer_with_rag(
        self,
        question: str,
        document_id: Optional[str],
        top_k: int,
    ) -> ToolResult:
        """Answer using RAG retrieval."""
        try:
            from .rag_tools import RAGAnswerTool
            rag_tool = RAGAnswerTool(llm_client=self.llm_client)
            return rag_tool.execute(
                question=question,
                document_id=document_id,
                top_k=top_k,
            )
        except ImportError:
            return ToolResult(
                success=False,
                error="RAG module not available. Use use_rag=False or install chromadb."
            )

    def _answer_with_keywords(
        self,
        parse_result: Any,
        question: str,
        top_k: int,
    ) -> ToolResult:
        """Answer using keyword-based search on parse_result."""
        if parse_result is None:
            return ToolResult(
                success=False,
                error="parse_result is required when use_rag=False"
            )

        # Find relevant chunks using keyword matching
        question_lower = question.lower()
        relevant_chunks = []

        for chunk in parse_result.chunks:
            text_lower = chunk.text.lower()
            # Check for keyword overlap
            keywords = [w for w in question_lower.split() if len(w) > 3]
            matches = sum(1 for k in keywords if k in text_lower)
            if matches > 0:
                relevant_chunks.append((chunk, matches))

        # Sort by relevance
        relevant_chunks.sort(key=lambda x: x[1], reverse=True)
        top_chunks = relevant_chunks[:top_k]

        if not top_chunks:
            return ToolResult(
                success=True,
                data={
                    "question": question,
                    "answer": "I could not find relevant information in the document to answer this question.",
                    "confidence": 0.0,
                    "abstained": True,
                },
            )

        # Build context
        context = "\n\n".join(
            f"[Page {c.page}] {c.text}"
            for c, _ in top_chunks
        )

        # If no LLM, return context-based answer
        if self.llm_client is None:
            return ToolResult(
                success=True,
                data={
                    "question": question,
                    "answer": f"Based on the document: {top_chunks[0][0].text[:500]}",
                    "confidence": 0.6,
                    "context_chunks": len(top_chunks),
                },
                evidence=[
                    {
                        "chunk_id": c.chunk_id,
                        "page": c.page,
                        "bbox": c.bbox.xyxy,
                        "snippet": c.text[:200],
                    }
                    for c, _ in top_chunks
                ],
            )

        # Use LLM to generate answer if available
        try:
            from ...rag import get_grounded_generator

            generator = get_grounded_generator(llm_client=self.llm_client)

            # Convert chunks to format expected by generator
            chunk_dicts = [
                {
                    "chunk_id": c.chunk_id,
                    "document_id": c.doc_id,
                    "text": c.text,
                    "similarity": score / 10.0,  # Normalize score
                    "page": c.page,
                    "chunk_type": c.chunk_type.value,
                }
                for c, score in top_chunks
            ]

            answer = generator.generate_answer(
                question=question,
                context=context,
                chunks=chunk_dicts,
            )

            return ToolResult(
                success=True,
                data={
                    "question": question,
                    "answer": answer.text,
                    "confidence": answer.confidence,
                    "abstained": answer.abstained,
                },
                evidence=[
                    {
                        "chunk_id": c.chunk_id,
                        "page": c.page,
                        "bbox": c.bbox.xyxy,
                        "snippet": c.text[:200],
                    }
                    for c, _ in top_chunks
                ],
            )

        except ImportError:
            # Fall back to simple answer without LLM generation
            return ToolResult(
                success=True,
                data={
                    "question": question,
                    "answer": f"Based on the document: {top_chunks[0][0].text[:500]}",
                    "confidence": 0.6,
                    "context_chunks": len(top_chunks),
                },
                evidence=[
                    {
                        "chunk_id": c.chunk_id,
                        "page": c.page,
                        "bbox": c.bbox.xyxy,
                        "snippet": c.text[:200],
                    }
                    for c, _ in top_chunks
                ],
            )


class CropRegionTool(DocumentTool):
    """
    Crop a region from a document page image.

    Input:
        doc_path: Path to document
        page: Page number (1-indexed)
        bbox: Bounding box (x_min, y_min, x_max, y_max)
        output_path: Optional path to save crop

    Output:
        Crop image path or base64 data
    """

    name = "crop_region"
    description = "Crop a specific region from a document page"

    def execute(
        self,
        doc_path: str,
        page: int,
        bbox: List[float],
        output_path: Optional[str] = None,
        **kwargs
    ) -> ToolResult:
        try:
            from ..io import load_document, RenderOptions
            from ..grounding import crop_region
            from ..chunks import BoundingBox
            from PIL import Image

            # Load and render page
            loader, renderer = load_document(doc_path)
            page_image = renderer.render_page(page, RenderOptions(dpi=200))
            loader.close()

            # Create bbox
            bbox_obj = BoundingBox(
                x_min=bbox[0],
                y_min=bbox[1],
                x_max=bbox[2],
                y_max=bbox[3],
                normalized=True,  # Assume normalized
            )

            # Crop
            crop = crop_region(page_image, bbox_obj)

            # Save or return
            if output_path:
                Image.fromarray(crop).save(output_path)
                return ToolResult(
                    success=True,
                    data={
                        "output_path": output_path,
                        "width": crop.shape[1],
                        "height": crop.shape[0],
                    },
                )
            else:
                import base64
                import io

                pil_img = Image.fromarray(crop)
                buffer = io.BytesIO()
                pil_img.save(buffer, format="PNG")
                b64 = base64.b64encode(buffer.getvalue()).decode()

                return ToolResult(
                    success=True,
                    data={
                        "width": crop.shape[1],
                        "height": crop.shape[0],
                        "base64": b64[:100] + "...",  # Truncated for display
                    },
                )

        except Exception as e:
            logger.error(f"Crop region failed: {e}")
            return ToolResult(success=False, error=str(e))


# Tool registry for agent use
DOCUMENT_TOOLS = {
    "parse_document": ParseDocumentTool,
    "extract_fields": ExtractFieldsTool,
    "search_chunks": SearchChunksTool,
    "get_chunk_details": GetChunkDetailsTool,
    "get_table_data": GetTableDataTool,
    "answer_question": AnswerQuestionTool,
    "crop_region": CropRegionTool,
}


def get_tool(name: str, **kwargs) -> DocumentTool:
    """Get a tool instance by name."""
    if name not in DOCUMENT_TOOLS:
        raise ValueError(f"Unknown tool: {name}")
    return DOCUMENT_TOOLS[name](**kwargs)


def list_tools() -> List[Dict[str, str]]:
    """List all available tools."""
    return [
        {"name": name, "description": cls.description}
        for name, cls in DOCUMENT_TOOLS.items()
    ]