File size: 18,168 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
"""
Document Parser
Main orchestrator for document parsing pipeline.
Coordinates OCR, layout detection, and chunk generation.
"""
import logging
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
from ..chunks.models import (
BoundingBox,
ChunkType,
DocumentChunk,
PageResult,
ParseResult,
TableChunk,
ChartChunk,
)
from ..io import (
DocumentFormat,
DocumentInfo,
RenderOptions,
load_document,
get_document_cache,
)
from ..models import (
OCRModel,
OCRResult,
LayoutModel,
LayoutResult,
LayoutRegion,
LayoutRegionType,
TableModel,
TableStructure,
ChartModel,
ChartStructure,
)
logger = logging.getLogger(__name__)
@dataclass
class ParserConfig:
"""Configuration for document parser."""
# Rendering
render_dpi: int = 200
max_pages: Optional[int] = None
# OCR
ocr_enabled: bool = True
ocr_languages: List[str] = field(default_factory=lambda: ["en"])
ocr_min_confidence: float = 0.5
# Layout
layout_enabled: bool = True
reading_order_enabled: bool = True
# Specialized extraction
table_extraction_enabled: bool = True
chart_extraction_enabled: bool = True
# Chunking
merge_adjacent_text: bool = True
min_chunk_chars: int = 10
max_chunk_chars: int = 4000
# Caching
cache_enabled: bool = True
# Output
include_markdown: bool = True
include_raw_ocr: bool = False
class DocumentParser:
"""
Main document parsing orchestrator.
Coordinates the full pipeline:
1. Load document and render pages
2. Run OCR on each page
3. Detect layout regions
4. Extract tables and charts
5. Generate semantic chunks
6. Build reading order
7. Produce final ParseResult
"""
def __init__(
self,
config: Optional[ParserConfig] = None,
ocr_model: Optional[OCRModel] = None,
layout_model: Optional[LayoutModel] = None,
table_model: Optional[TableModel] = None,
chart_model: Optional[ChartModel] = None,
):
self.config = config or ParserConfig()
self.ocr_model = ocr_model
self.layout_model = layout_model
self.table_model = table_model
self.chart_model = chart_model
self._cache = get_document_cache() if self.config.cache_enabled else None
def parse(
self,
path: Union[str, Path],
page_range: Optional[Tuple[int, int]] = None,
) -> ParseResult:
"""
Parse a document and return structured results.
Args:
path: Path to document file
page_range: Optional (start, end) page range (1-indexed, inclusive)
Returns:
ParseResult with chunks and metadata
"""
path = Path(path)
start_time = time.time()
logger.info(f"Parsing document: {path}")
# Load document
loader, renderer = load_document(path)
doc_info = loader.info
# Generate doc_id
doc_id = doc_info.doc_id
# Determine pages to process
start_page = page_range[0] if page_range else 1
end_page = page_range[1] if page_range else doc_info.num_pages
if self.config.max_pages:
end_page = min(end_page, start_page + self.config.max_pages - 1)
page_numbers = list(range(start_page, end_page + 1))
logger.info(f"Processing pages {start_page}-{end_page} of {doc_info.num_pages}")
# Process each page
page_results: List[PageResult] = []
all_chunks: List[DocumentChunk] = []
markdown_by_page: Dict[int, str] = {}
sequence_index = 0
render_options = RenderOptions(dpi=self.config.render_dpi)
for page_num, page_image in renderer.render_pages(page_numbers, render_options):
logger.debug(f"Processing page {page_num}")
# Process single page
page_result, page_chunks = self._process_page(
page_image=page_image,
page_number=page_num,
doc_id=doc_id,
sequence_start=sequence_index,
)
page_results.append(page_result)
all_chunks.extend(page_chunks)
sequence_index += len(page_chunks)
# Generate page markdown
if self.config.include_markdown:
markdown_by_page[page_num] = self._generate_page_markdown(page_chunks)
# Close document
loader.close()
# Build full markdown
markdown_full = "\n\n---\n\n".join(
f"## Page {p}\n\n{md}"
for p, md in sorted(markdown_by_page.items())
)
processing_time = time.time() - start_time
logger.info(f"Parsed {len(all_chunks)} chunks in {processing_time:.2f}s")
return ParseResult(
doc_id=doc_id,
source_path=str(path.absolute()),
filename=path.name,
num_pages=doc_info.num_pages,
pages=page_results,
chunks=all_chunks,
markdown_full=markdown_full,
markdown_by_page=markdown_by_page,
processing_time_ms=processing_time * 1000,
metadata={
"format": doc_info.format.value,
"has_text_layer": doc_info.has_text_layer,
"is_scanned": doc_info.is_scanned,
"render_dpi": self.config.render_dpi,
}
)
def _process_page(
self,
page_image: np.ndarray,
page_number: int,
doc_id: str,
sequence_start: int,
) -> Tuple[PageResult, List[DocumentChunk]]:
"""Process a single page."""
height, width = page_image.shape[:2]
chunks: List[DocumentChunk] = []
sequence_index = sequence_start
# Run OCR
ocr_result: Optional[OCRResult] = None
if self.config.ocr_enabled and self.ocr_model:
ocr_result = self.ocr_model.recognize(page_image)
# Run layout detection
layout_result: Optional[LayoutResult] = None
if self.config.layout_enabled and self.layout_model:
layout_result = self.layout_model.detect(page_image)
# Process layout regions or fall back to OCR blocks
if layout_result and layout_result.regions:
for region in layout_result.get_ordered_regions():
region_chunks = self._process_region(
page_image=page_image,
region=region,
ocr_result=ocr_result,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
image_size=(width, height),
)
chunks.extend(region_chunks)
sequence_index += len(region_chunks)
elif ocr_result and ocr_result.blocks:
# Fall back to OCR blocks
for block in ocr_result.blocks:
chunk = self._create_text_chunk(
text=block.text,
bbox=block.bbox,
confidence=block.confidence,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
chunk_type=ChunkType.PARAGRAPH,
)
chunks.append(chunk)
sequence_index += 1
# Merge adjacent text chunks if enabled
if self.config.merge_adjacent_text:
chunks = self._merge_adjacent_chunks(chunks)
# Build page result
page_result = PageResult(
page_number=page_number,
width=width,
height=height,
chunks=[c.chunk_id for c in chunks],
ocr_confidence=ocr_result.confidence if ocr_result else None,
)
return page_result, chunks
def _process_region(
self,
page_image: np.ndarray,
region: LayoutRegion,
ocr_result: Optional[OCRResult],
page_number: int,
doc_id: str,
sequence_index: int,
image_size: Tuple[int, int],
) -> List[DocumentChunk]:
"""Process a single layout region."""
chunks: List[DocumentChunk] = []
width, height = image_size
# Normalize bbox if needed
bbox = region.bbox
if not bbox.normalized:
bbox = bbox.to_normalized(width, height)
# Handle different region types
if region.region_type == LayoutRegionType.TABLE:
table_chunk = self._extract_table(
page_image=page_image,
region=region,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
)
if table_chunk:
chunks.append(table_chunk)
elif region.region_type in {LayoutRegionType.CHART, LayoutRegionType.FIGURE}:
# Try chart extraction first
chart_chunk = self._extract_chart(
page_image=page_image,
region=region,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
)
if chart_chunk:
chunks.append(chart_chunk)
else:
# Fall back to figure chunk
text = self._get_region_text(region, ocr_result) or "[Figure]"
chunk = self._create_text_chunk(
text=text,
bbox=bbox,
confidence=region.confidence,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
chunk_type=ChunkType.FIGURE,
)
chunks.append(chunk)
else:
# Text-based region
text = self._get_region_text(region, ocr_result)
if text and len(text.strip()) >= self.config.min_chunk_chars:
chunk_type = region.region_type.to_chunk_type()
chunk = self._create_text_chunk(
text=text,
bbox=bbox,
confidence=region.confidence,
page_number=page_number,
doc_id=doc_id,
sequence_index=sequence_index,
chunk_type=chunk_type,
)
chunks.append(chunk)
return chunks
def _get_region_text(
self,
region: LayoutRegion,
ocr_result: Optional[OCRResult],
) -> str:
"""Get text for a region from OCR result."""
if not ocr_result:
return ""
return ocr_result.get_text_in_region(region.bbox, threshold=0.3)
def _extract_table(
self,
page_image: np.ndarray,
region: LayoutRegion,
page_number: int,
doc_id: str,
sequence_index: int,
) -> Optional[TableChunk]:
"""Extract table structure from a region."""
if not self.config.table_extraction_enabled or not self.table_model:
return None
try:
table_structure = self.table_model.extract_structure(
page_image,
region.bbox
)
if table_structure.num_rows > 0:
return table_structure.to_table_chunk(
doc_id=doc_id,
page=page_number,
sequence_index=sequence_index,
)
except Exception as e:
logger.warning(f"Table extraction failed: {e}")
return None
def _extract_chart(
self,
page_image: np.ndarray,
region: LayoutRegion,
page_number: int,
doc_id: str,
sequence_index: int,
) -> Optional[ChartChunk]:
"""Extract chart data from a region."""
if not self.config.chart_extraction_enabled or not self.chart_model:
return None
try:
chart_structure = self.chart_model.extract_chart(
page_image,
region.bbox
)
if chart_structure.chart_type.value != "unknown":
return chart_structure.to_chart_chunk(
doc_id=doc_id,
page=page_number,
sequence_index=sequence_index,
)
except Exception as e:
logger.warning(f"Chart extraction failed: {e}")
return None
def _create_text_chunk(
self,
text: str,
bbox: BoundingBox,
confidence: float,
page_number: int,
doc_id: str,
sequence_index: int,
chunk_type: ChunkType,
) -> DocumentChunk:
"""Create a text chunk."""
chunk_id = DocumentChunk.generate_chunk_id(
doc_id=doc_id,
page=page_number,
bbox=bbox,
chunk_type_str=chunk_type.value,
)
return DocumentChunk(
chunk_id=chunk_id,
doc_id=doc_id,
chunk_type=chunk_type,
text=text,
page=page_number,
bbox=bbox,
confidence=confidence,
sequence_index=sequence_index,
)
def _merge_adjacent_chunks(
self,
chunks: List[DocumentChunk],
) -> List[DocumentChunk]:
"""Merge adjacent text chunks of the same type."""
if len(chunks) <= 1:
return chunks
merged: List[DocumentChunk] = []
current: Optional[DocumentChunk] = None
mergeable_types = {
ChunkType.TEXT,
ChunkType.PARAGRAPH,
}
for chunk in chunks:
if current is None:
current = chunk
continue
# Check if can merge
can_merge = (
current.chunk_type in mergeable_types and
chunk.chunk_type in mergeable_types and
current.chunk_type == chunk.chunk_type and
current.page == chunk.page and
self._chunks_adjacent(current, chunk)
)
if can_merge:
# Merge chunks
merged_text = current.text + "\n" + chunk.text
if len(merged_text) <= self.config.max_chunk_chars:
current = DocumentChunk(
chunk_id=current.chunk_id, # Keep first ID
doc_id=current.doc_id,
chunk_type=current.chunk_type,
text=merged_text,
page=current.page,
bbox=self._merge_bboxes(current.bbox, chunk.bbox),
confidence=min(current.confidence, chunk.confidence),
sequence_index=current.sequence_index,
)
else:
merged.append(current)
current = chunk
else:
merged.append(current)
current = chunk
if current:
merged.append(current)
return merged
def _chunks_adjacent(
self,
chunk1: DocumentChunk,
chunk2: DocumentChunk,
gap_threshold: float = 0.05,
) -> bool:
"""Check if two chunks are vertically adjacent."""
# Check vertical gap
gap = chunk2.bbox.y_min - chunk1.bbox.y_max
return 0 <= gap <= gap_threshold
def _merge_bboxes(
self,
bbox1: BoundingBox,
bbox2: BoundingBox,
) -> BoundingBox:
"""Merge two bounding boxes."""
return BoundingBox(
x_min=min(bbox1.x_min, bbox2.x_min),
y_min=min(bbox1.y_min, bbox2.y_min),
x_max=max(bbox1.x_max, bbox2.x_max),
y_max=max(bbox1.y_max, bbox2.y_max),
normalized=bbox1.normalized,
)
def _generate_page_markdown(
self,
chunks: List[DocumentChunk],
) -> str:
"""Generate markdown for page chunks."""
lines: List[str] = []
for chunk in chunks:
# Add anchor comment
lines.append(f"<!-- chunk:{chunk.chunk_id} -->")
# Format based on chunk type
if chunk.chunk_type == ChunkType.TITLE:
lines.append(f"# {chunk.text}")
elif chunk.chunk_type == ChunkType.HEADING:
lines.append(f"## {chunk.text}")
elif chunk.chunk_type == ChunkType.TABLE:
if isinstance(chunk, TableChunk):
lines.append(chunk.to_markdown())
else:
lines.append(chunk.text)
elif chunk.chunk_type == ChunkType.LIST:
# Format as list items
for item in chunk.text.split("\n"):
if item.strip():
lines.append(f"- {item.strip()}")
elif chunk.chunk_type == ChunkType.CODE:
lines.append(f"```\n{chunk.text}\n```")
elif chunk.chunk_type == ChunkType.FIGURE:
lines.append(f"[Figure: {chunk.text}]")
elif chunk.chunk_type == ChunkType.CHART:
if isinstance(chunk, ChartChunk):
lines.append(f"[Chart: {chunk.title or chunk.chart_type}]")
lines.append(chunk.text)
else:
lines.append(f"[Chart: {chunk.text}]")
else:
lines.append(chunk.text)
lines.append("") # Blank line between chunks
return "\n".join(lines)
def parse_document(
path: Union[str, Path],
config: Optional[ParserConfig] = None,
) -> ParseResult:
"""
Convenience function to parse a document.
Args:
path: Path to document
config: Optional parser configuration
Returns:
ParseResult with extracted chunks
"""
parser = DocumentParser(config=config)
return parser.parse(path)
|