File size: 14,132 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
"""
Vision-Language Model Interface
Abstract interface for multimodal models that understand both
images and text. Used for document understanding, VQA, and
complex reasoning over visual content.
"""
from abc import abstractmethod
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from ..chunks.models import BoundingBox
from .base import (
BaseModel,
BatchableModel,
ImageInput,
ModelCapability,
ModelConfig,
)
class VLMTask(str, Enum):
"""Tasks that VLM models can perform."""
# Document understanding
DOCUMENT_QA = "document_qa"
DOCUMENT_SUMMARY = "document_summary"
DOCUMENT_CLASSIFICATION = "document_classification"
# Visual understanding
IMAGE_CAPTION = "image_caption"
IMAGE_QA = "image_qa"
VISUAL_GROUNDING = "visual_grounding"
# Extraction
FIELD_EXTRACTION = "field_extraction"
TABLE_UNDERSTANDING = "table_understanding"
CHART_UNDERSTANDING = "chart_understanding"
# Generation
OCR_CORRECTION = "ocr_correction"
TEXT_GENERATION = "text_generation"
# Other
GENERAL = "general"
@dataclass
class VLMConfig(ModelConfig):
"""Configuration for vision-language models."""
max_tokens: int = 2048
temperature: float = 0.1
top_p: float = 0.9
max_image_size: int = 1024 # Max dimension in pixels
image_detail: str = "high" # "low", "high", "auto"
system_prompt: Optional[str] = None
def __post_init__(self):
super().__post_init__()
if not self.name:
self.name = "vlm"
@dataclass
class VLMMessage:
"""A message in a VLM conversation."""
role: str # "system", "user", "assistant"
content: str
images: List[ImageInput] = field(default_factory=list)
image_regions: List[Optional[BoundingBox]] = field(default_factory=list)
@dataclass
class VLMResponse:
"""Response from a VLM model."""
text: str
confidence: float = 0.0
tokens_used: int = 0
finish_reason: str = "stop" # "stop", "length", "content_filter"
# Grounding information (if applicable)
grounded_regions: List[BoundingBox] = field(default_factory=list)
region_labels: List[str] = field(default_factory=list)
# Structured output (if requested)
structured_data: Optional[Dict[str, Any]] = None
# Processing info
processing_time_ms: float = 0.0
model_metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class DocumentQAResult:
"""Result of document question answering."""
question: str
answer: str
confidence: float = 0.0
# Evidence grounding
evidence_regions: List[BoundingBox] = field(default_factory=list)
evidence_text: List[str] = field(default_factory=list)
page_references: List[int] = field(default_factory=list)
# Abstention
abstained: bool = False
abstention_reason: Optional[str] = None
@dataclass
class FieldExtractionVLMResult:
"""Result of field extraction using VLM."""
fields: Dict[str, Any] = field(default_factory=dict)
confidence_scores: Dict[str, float] = field(default_factory=dict)
# Grounding for each field
field_regions: Dict[str, BoundingBox] = field(default_factory=dict)
field_evidence: Dict[str, str] = field(default_factory=dict)
# Abstention tracking
abstained_fields: List[str] = field(default_factory=list)
abstention_reasons: Dict[str, str] = field(default_factory=dict)
overall_confidence: float = 0.0
class VisionLanguageModel(BatchableModel):
"""
Abstract base class for Vision-Language Models.
These models combine visual understanding with language
capabilities for tasks like document QA, field extraction,
and visual reasoning.
"""
def __init__(self, config: Optional[VLMConfig] = None):
super().__init__(config or VLMConfig(name="vlm"))
self.config: VLMConfig = self.config
def get_capabilities(self) -> List[ModelCapability]:
return [ModelCapability.VISION_LANGUAGE]
@abstractmethod
def generate(
self,
prompt: str,
images: List[ImageInput],
**kwargs
) -> VLMResponse:
"""
Generate a response given text prompt and images.
Args:
prompt: Text prompt/question
images: List of images for context
**kwargs: Additional generation parameters
Returns:
VLMResponse with generated text
"""
pass
def process_batch(
self,
inputs: List[Tuple[str, List[ImageInput]]],
**kwargs
) -> List[VLMResponse]:
"""
Process multiple prompt-image pairs.
Args:
inputs: List of (prompt, images) tuples
**kwargs: Additional parameters
Returns:
List of VLMResponses
"""
return [
self.generate(prompt, images, **kwargs)
for prompt, images in inputs
]
@abstractmethod
def chat(
self,
messages: List[VLMMessage],
**kwargs
) -> VLMResponse:
"""
Multi-turn conversation with images.
Args:
messages: Conversation history
**kwargs: Additional parameters
Returns:
VLMResponse for the conversation
"""
pass
def answer_question(
self,
question: str,
document_images: List[ImageInput],
context: Optional[str] = None,
**kwargs
) -> DocumentQAResult:
"""
Answer a question about document images.
Args:
question: Question to answer
document_images: Document page images
context: Optional additional context
**kwargs: Additional parameters
Returns:
DocumentQAResult with answer and evidence
"""
prompt = self._build_qa_prompt(question, context)
response = self.generate(prompt, document_images, **kwargs)
# Parse response for answer and confidence
answer, confidence, abstained, reason = self._parse_qa_response(response.text)
return DocumentQAResult(
question=question,
answer=answer,
confidence=confidence,
evidence_regions=response.grounded_regions,
abstained=abstained,
abstention_reason=reason
)
def extract_fields(
self,
images: List[ImageInput],
schema: Dict[str, Any],
**kwargs
) -> FieldExtractionVLMResult:
"""
Extract fields from document images according to a schema.
Args:
images: Document page images
schema: Field schema (JSON Schema or Pydantic-like)
**kwargs: Additional parameters
Returns:
FieldExtractionVLMResult with extracted values
"""
prompt = self._build_extraction_prompt(schema)
response = self.generate(prompt, images, **kwargs)
# Parse structured response
result = self._parse_extraction_response(response, schema)
return result
def summarize_document(
self,
images: List[ImageInput],
max_length: int = 500,
**kwargs
) -> str:
"""
Generate a summary of document images.
Args:
images: Document page images
max_length: Maximum summary length
**kwargs: Additional parameters
Returns:
Document summary text
"""
prompt = f"""Summarize this document in at most {max_length} characters.
Focus on the main points and key information.
Be concise and factual."""
response = self.generate(prompt, images, **kwargs)
return response.text
def classify_document(
self,
images: List[ImageInput],
categories: List[str],
**kwargs
) -> Tuple[str, float]:
"""
Classify document into predefined categories.
Args:
images: Document page images
categories: List of possible categories
**kwargs: Additional parameters
Returns:
Tuple of (category, confidence)
"""
categories_str = ", ".join(categories)
prompt = f"""Classify this document into one of these categories: {categories_str}
Respond with just the category name and confidence (0-1).
Format: CATEGORY: confidence
If you cannot confidently classify, respond with: UNKNOWN: 0.0"""
response = self.generate(prompt, images, **kwargs)
# Parse response
try:
parts = response.text.strip().split(":")
category = parts[0].strip().upper()
confidence = float(parts[1].strip()) if len(parts) > 1 else 0.5
# Validate category
category_upper = {c.upper(): c for c in categories}
if category in category_upper:
return category_upper[category], confidence
return "UNKNOWN", 0.0
except Exception:
return "UNKNOWN", 0.0
def _build_qa_prompt(
self,
question: str,
context: Optional[str] = None
) -> str:
"""Build prompt for document QA."""
prompt_parts = [
"You are analyzing a document image. Answer the following question based only on what you can see in the document.",
"",
"IMPORTANT RULES:",
"- Only use information visible in the document",
"- If the answer is not found, say 'NOT FOUND' and explain why",
"- Be precise and quote exact values when possible",
"- Indicate your confidence level (HIGH, MEDIUM, LOW)",
""
]
if context:
prompt_parts.extend([
"Additional context:",
context,
""
])
prompt_parts.extend([
f"Question: {question}",
"",
"Provide your answer in this format:",
"ANSWER: [your answer]",
"CONFIDENCE: [HIGH/MEDIUM/LOW]",
"EVIDENCE: [quote or describe where you found this information]"
])
return "\n".join(prompt_parts)
def _parse_qa_response(
self,
response_text: str
) -> Tuple[str, float, bool, Optional[str]]:
"""Parse QA response for answer, confidence, and abstention."""
lines = response_text.strip().split("\n")
answer = ""
confidence = 0.5
abstained = False
reason = None
for line in lines:
line_lower = line.lower()
if line_lower.startswith("answer:"):
answer = line.split(":", 1)[1].strip()
elif line_lower.startswith("confidence:"):
conf_str = line.split(":", 1)[1].strip().upper()
confidence = {"HIGH": 0.9, "MEDIUM": 0.6, "LOW": 0.3}.get(conf_str, 0.5)
# Check for abstention
if "not found" in answer.lower() or "cannot find" in answer.lower():
abstained = True
reason = answer
return answer, confidence, abstained, reason
def _build_extraction_prompt(self, schema: Dict[str, Any]) -> str:
"""Build prompt for field extraction."""
import json
schema_str = json.dumps(schema, indent=2)
prompt = f"""Extract the following fields from this document image.
SCHEMA:
{schema_str}
RULES:
- Only extract values that are clearly visible in the document
- For each field, provide the exact value and its location
- If a field is not found, mark it as null with confidence 0
- Be precise with numbers, dates, and proper nouns
Respond in valid JSON format matching the schema.
Include a "_confidence" object with confidence scores (0-1) for each field.
Include a "_evidence" object with the text snippet where each value was found.
"""
return prompt
def _parse_extraction_response(
self,
response: VLMResponse,
schema: Dict[str, Any]
) -> FieldExtractionVLMResult:
"""Parse extraction response into structured result."""
import json
result = FieldExtractionVLMResult()
try:
# Try to parse JSON from response
text = response.text.strip()
# Find JSON block if wrapped in markdown
if "```json" in text:
start = text.find("```json") + 7
end = text.find("```", start)
text = text[start:end].strip()
elif "```" in text:
start = text.find("```") + 3
end = text.find("```", start)
text = text[start:end].strip()
data = json.loads(text)
# Extract fields
for key, value in data.items():
if key.startswith("_"):
continue
result.fields[key] = value
# Extract confidence scores
if "_confidence" in data:
result.confidence_scores = data["_confidence"]
# Extract evidence
if "_evidence" in data:
result.field_evidence = data["_evidence"]
# Track abstentions
for field_name in schema.get("properties", {}).keys():
if field_name not in result.fields or result.fields[field_name] is None:
result.abstained_fields.append(field_name)
result.abstention_reasons[field_name] = "Field not found in document"
# Calculate overall confidence
if result.confidence_scores:
result.overall_confidence = sum(result.confidence_scores.values()) / len(result.confidence_scores)
except json.JSONDecodeError:
# Failed to parse - mark all fields as abstained
for field_name in schema.get("properties", {}).keys():
result.abstained_fields.append(field_name)
result.abstention_reasons[field_name] = "Failed to parse extraction response"
return result
|