File size: 13,407 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
Schema Definitions for Field Extraction

Pydantic-compatible schemas for defining extraction targets.
"""

from dataclasses import dataclass, field as dataclass_field
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Type, Union

from pydantic import BaseModel, Field, create_model


class FieldType(str, Enum):
    """Types of extractable fields."""

    STRING = "string"
    INTEGER = "integer"
    FLOAT = "float"
    BOOLEAN = "boolean"
    DATE = "date"
    DATETIME = "datetime"
    CURRENCY = "currency"
    PERCENTAGE = "percentage"
    EMAIL = "email"
    PHONE = "phone"
    ADDRESS = "address"
    LIST = "list"
    OBJECT = "object"


@dataclass
class FieldSpec:
    """Specification for a single extraction field."""

    name: str
    field_type: FieldType = FieldType.STRING
    description: str = ""
    required: bool = True
    default: Any = None

    # Validation
    pattern: Optional[str] = None  # Regex pattern for validation
    min_value: Optional[float] = None
    max_value: Optional[float] = None
    min_length: Optional[int] = None
    max_length: Optional[int] = None
    allowed_values: Optional[List[Any]] = None

    # Nested schema (for OBJECT and LIST types)
    nested_schema: Optional["ExtractionSchema"] = None
    list_item_type: Optional[FieldType] = None

    # Extraction hints
    aliases: List[str] = dataclass_field(default_factory=list)  # Alternative names
    examples: List[str] = dataclass_field(default_factory=list)  # Example values
    context_hints: List[str] = dataclass_field(default_factory=list)  # Where to look

    # Confidence threshold for this field
    min_confidence: float = 0.5

    def to_json_schema(self) -> Dict[str, Any]:
        """Convert to JSON Schema format."""
        type_mapping = {
            FieldType.STRING: "string",
            FieldType.INTEGER: "integer",
            FieldType.FLOAT: "number",
            FieldType.BOOLEAN: "boolean",
            FieldType.DATE: "string",
            FieldType.DATETIME: "string",
            FieldType.CURRENCY: "string",
            FieldType.PERCENTAGE: "string",
            FieldType.EMAIL: "string",
            FieldType.PHONE: "string",
            FieldType.ADDRESS: "string",
            FieldType.LIST: "array",
            FieldType.OBJECT: "object",
        }

        schema: Dict[str, Any] = {
            "type": type_mapping.get(self.field_type, "string"),
        }

        if self.description:
            schema["description"] = self.description

        if self.pattern:
            schema["pattern"] = self.pattern

        if self.field_type == FieldType.DATE:
            schema["format"] = "date"
        elif self.field_type == FieldType.DATETIME:
            schema["format"] = "date-time"
        elif self.field_type == FieldType.EMAIL:
            schema["format"] = "email"

        if self.min_value is not None:
            schema["minimum"] = self.min_value
        if self.max_value is not None:
            schema["maximum"] = self.max_value
        if self.min_length is not None:
            schema["minLength"] = self.min_length
        if self.max_length is not None:
            schema["maxLength"] = self.max_length
        if self.allowed_values:
            schema["enum"] = self.allowed_values

        if self.field_type == FieldType.LIST and self.nested_schema:
            schema["items"] = self.nested_schema.to_json_schema()
        elif self.field_type == FieldType.OBJECT and self.nested_schema:
            schema.update(self.nested_schema.to_json_schema())

        return schema


@dataclass
class ExtractionSchema:
    """
    Schema defining fields to extract from a document.

    Can be nested for complex document structures.
    """

    name: str
    description: str = ""
    fields: List[FieldSpec] = dataclass_field(default_factory=list)

    # Schema-level settings
    allow_partial: bool = True  # Allow partial extraction
    abstain_on_low_confidence: bool = True
    min_overall_confidence: float = 0.5

    def add_field(self, field: FieldSpec) -> "ExtractionSchema":
        """Add a field to the schema."""
        self.fields.append(field)
        return self

    def add_string_field(
        self,
        name: str,
        description: str = "",
        required: bool = True,
        **kwargs
    ) -> "ExtractionSchema":
        """Add a string field."""
        field = FieldSpec(
            name=name,
            field_type=FieldType.STRING,
            description=description,
            required=required,
            **kwargs
        )
        return self.add_field(field)

    def add_number_field(
        self,
        name: str,
        description: str = "",
        required: bool = True,
        is_integer: bool = False,
        **kwargs
    ) -> "ExtractionSchema":
        """Add a number field."""
        field = FieldSpec(
            name=name,
            field_type=FieldType.INTEGER if is_integer else FieldType.FLOAT,
            description=description,
            required=required,
            **kwargs
        )
        return self.add_field(field)

    def add_date_field(
        self,
        name: str,
        description: str = "",
        required: bool = True,
        **kwargs
    ) -> "ExtractionSchema":
        """Add a date field."""
        field = FieldSpec(
            name=name,
            field_type=FieldType.DATE,
            description=description,
            required=required,
            **kwargs
        )
        return self.add_field(field)

    def add_currency_field(
        self,
        name: str,
        description: str = "",
        required: bool = True,
        **kwargs
    ) -> "ExtractionSchema":
        """Add a currency field."""
        field = FieldSpec(
            name=name,
            field_type=FieldType.CURRENCY,
            description=description,
            required=required,
            **kwargs
        )
        return self.add_field(field)

    def get_field(self, name: str) -> Optional[FieldSpec]:
        """Get a field by name."""
        for field in self.fields:
            if field.name == name:
                return field
        return None

    def get_required_fields(self) -> List[FieldSpec]:
        """Get all required fields."""
        return [f for f in self.fields if f.required]

    def get_optional_fields(self) -> List[FieldSpec]:
        """Get all optional fields."""
        return [f for f in self.fields if not f.required]

    def to_json_schema(self) -> Dict[str, Any]:
        """Convert to JSON Schema format."""
        properties = {}
        required = []

        for field in self.fields:
            properties[field.name] = field.to_json_schema()
            if field.required:
                required.append(field.name)

        schema = {
            "type": "object",
            "properties": properties,
        }

        if required:
            schema["required"] = required

        if self.description:
            schema["description"] = self.description

        return schema

    def to_pydantic_model(self) -> Type[BaseModel]:
        """Generate a Pydantic model from this schema."""
        field_definitions = {}

        for field in self.fields:
            python_type = self._get_python_type(field.field_type)
            default = ... if field.required else field.default

            field_definitions[field.name] = (
                python_type,
                Field(default=default, description=field.description)
            )

        return create_model(
            self.name,
            **field_definitions
        )

    def _get_python_type(self, field_type: FieldType) -> type:
        """Get Python type for field type."""
        type_mapping = {
            FieldType.STRING: str,
            FieldType.INTEGER: int,
            FieldType.FLOAT: float,
            FieldType.BOOLEAN: bool,
            FieldType.DATE: str,
            FieldType.DATETIME: str,
            FieldType.CURRENCY: str,
            FieldType.PERCENTAGE: str,
            FieldType.EMAIL: str,
            FieldType.PHONE: str,
            FieldType.ADDRESS: str,
            FieldType.LIST: list,
            FieldType.OBJECT: dict,
        }
        return type_mapping.get(field_type, str)

    @classmethod
    def from_json_schema(cls, schema: Dict[str, Any], name: str = "Schema") -> "ExtractionSchema":
        """Create from JSON Schema."""
        extraction_schema = cls(
            name=name,
            description=schema.get("description", ""),
        )

        properties = schema.get("properties", {})
        required = set(schema.get("required", []))

        for field_name, field_schema in properties.items():
            field_type = cls._json_type_to_field_type(field_schema)

            field = FieldSpec(
                name=field_name,
                field_type=field_type,
                description=field_schema.get("description", ""),
                required=field_name in required,
                pattern=field_schema.get("pattern"),
                min_value=field_schema.get("minimum"),
                max_value=field_schema.get("maximum"),
                min_length=field_schema.get("minLength"),
                max_length=field_schema.get("maxLength"),
                allowed_values=field_schema.get("enum"),
            )

            extraction_schema.add_field(field)

        return extraction_schema

    @staticmethod
    def _json_type_to_field_type(field_schema: Dict[str, Any]) -> FieldType:
        """Convert JSON Schema type to FieldType."""
        json_type = field_schema.get("type", "string")
        format_ = field_schema.get("format", "")

        if json_type == "integer":
            return FieldType.INTEGER
        elif json_type == "number":
            return FieldType.FLOAT
        elif json_type == "boolean":
            return FieldType.BOOLEAN
        elif json_type == "array":
            return FieldType.LIST
        elif json_type == "object":
            return FieldType.OBJECT
        elif format_ == "date":
            return FieldType.DATE
        elif format_ == "date-time":
            return FieldType.DATETIME
        elif format_ == "email":
            return FieldType.EMAIL
        else:
            return FieldType.STRING


# Pre-built schemas for common document types

def create_invoice_schema() -> ExtractionSchema:
    """Create schema for invoice extraction."""
    schema = ExtractionSchema(
        name="Invoice",
        description="Invoice document extraction schema"
    )

    schema.add_string_field("invoice_number", "Invoice number or ID", required=True)
    schema.add_date_field("invoice_date", "Date of invoice")
    schema.add_date_field("due_date", "Payment due date", required=False)
    schema.add_string_field("vendor_name", "Name of vendor/seller")
    schema.add_string_field("vendor_address", "Address of vendor", required=False)
    schema.add_string_field("customer_name", "Name of customer/buyer", required=False)
    schema.add_string_field("customer_address", "Address of customer", required=False)
    schema.add_currency_field("subtotal", "Subtotal before tax", required=False)
    schema.add_currency_field("tax_amount", "Tax amount", required=False)
    schema.add_currency_field("total_amount", "Total amount due", required=True)
    schema.add_string_field("currency", "Currency code (USD, EUR, etc.)", required=False)
    schema.add_string_field("payment_terms", "Payment terms", required=False)

    return schema


def create_receipt_schema() -> ExtractionSchema:
    """Create schema for receipt extraction."""
    schema = ExtractionSchema(
        name="Receipt",
        description="Receipt document extraction schema"
    )

    schema.add_string_field("merchant_name", "Name of merchant/store")
    schema.add_string_field("merchant_address", "Address of merchant", required=False)
    schema.add_date_field("transaction_date", "Date of transaction")
    schema.add_string_field("transaction_time", "Time of transaction", required=False)
    schema.add_currency_field("subtotal", "Subtotal before tax", required=False)
    schema.add_currency_field("tax_amount", "Tax amount", required=False)
    schema.add_currency_field("total_amount", "Total amount paid")
    schema.add_string_field("payment_method", "Method of payment", required=False)
    schema.add_string_field("last_four_digits", "Last 4 digits of card", required=False)

    return schema


def create_contract_schema() -> ExtractionSchema:
    """Create schema for contract extraction."""
    schema = ExtractionSchema(
        name="Contract",
        description="Contract document extraction schema"
    )

    schema.add_string_field("contract_title", "Title of the contract", required=False)
    schema.add_date_field("effective_date", "Date contract becomes effective")
    schema.add_date_field("expiration_date", "Date contract expires", required=False)
    schema.add_string_field("party_a_name", "Name of first party")
    schema.add_string_field("party_b_name", "Name of second party")
    schema.add_currency_field("contract_value", "Total contract value", required=False)
    schema.add_string_field("governing_law", "Governing law/jurisdiction", required=False)
    schema.add_string_field("termination_clause", "Summary of termination terms", required=False)

    return schema