File size: 13,666 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""
Agent Adapter for Document Intelligence

Bridges the DocumentAgent with the new document_intelligence subsystem.
Provides enhanced tools and capabilities.
"""

import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union

from .chunks.models import (
    DocumentChunk,
    EvidenceRef,
    ParseResult,
    ExtractionResult,
    ClassificationResult,
    DocumentType,
)
from .parsing import DocumentParser, ParserConfig
from .extraction import (
    ExtractionSchema,
    FieldExtractor,
    ExtractionConfig,
    ExtractionValidator,
)
from .grounding import EvidenceBuilder, EvidenceTracker, CropManager
from .tools import get_tool, list_tools, ToolResult

logger = logging.getLogger(__name__)


@dataclass
class AgentConfig:
    """Configuration for the document agent adapter."""

    # Parser settings
    render_dpi: int = 200
    max_pages: Optional[int] = None
    ocr_languages: List[str] = None

    # Extraction settings
    min_confidence: float = 0.5
    abstain_on_low_confidence: bool = True

    # Grounding settings
    enable_crops: bool = True
    crop_output_dir: Optional[Path] = None

    # Agent settings
    max_iterations: int = 10
    verbose: bool = False

    def __post_init__(self):
        if self.ocr_languages is None:
            self.ocr_languages = ["en"]


class DocumentIntelligenceAdapter:
    """
    Adapter connecting DocumentAgent with document_intelligence subsystem.

    Provides:
    - Document loading and parsing
    - Schema-driven extraction
    - Evidence-grounded results
    - Tool execution
    """

    def __init__(
        self,
        config: Optional[AgentConfig] = None,
        llm_client: Optional[Any] = None,
    ):
        self.config = config or AgentConfig()
        self.llm_client = llm_client

        # Initialize components
        self.parser = DocumentParser(
            config=ParserConfig(
                render_dpi=self.config.render_dpi,
                max_pages=self.config.max_pages,
                ocr_languages=self.config.ocr_languages,
            )
        )

        self.extractor = FieldExtractor(
            config=ExtractionConfig(
                min_field_confidence=self.config.min_confidence,
                abstain_on_low_confidence=self.config.abstain_on_low_confidence,
            )
        )

        self.validator = ExtractionValidator(
            min_confidence=self.config.min_confidence,
        )

        self.evidence_builder = EvidenceBuilder()

        if self.config.enable_crops and self.config.crop_output_dir:
            self.crop_manager = CropManager(self.config.crop_output_dir)
        else:
            self.crop_manager = None

        # State
        self._current_parse_result: Optional[ParseResult] = None
        self._page_images: Dict[int, Any] = {}

        logger.info("Initialized DocumentIntelligenceAdapter")

    def load_document(
        self,
        path: Union[str, Path],
        render_pages: bool = True,
    ) -> ParseResult:
        """
        Load and parse a document.

        Args:
            path: Path to document file
            render_pages: Whether to keep rendered page images

        Returns:
            ParseResult with chunks and metadata
        """
        path = Path(path)
        logger.info(f"Loading document: {path}")

        # Parse document
        self._current_parse_result = self.parser.parse(path)

        # Optionally store page images
        if render_pages:
            from .io import load_document, RenderOptions
            loader, renderer = load_document(path)
            for page_num in range(1, self._current_parse_result.num_pages + 1):
                self._page_images[page_num] = renderer.render_page(
                    page_num,
                    RenderOptions(dpi=self.config.render_dpi)
                )
            loader.close()

        return self._current_parse_result

    def extract_fields(
        self,
        schema: Union[ExtractionSchema, Dict[str, Any]],
        validate: bool = True,
    ) -> ExtractionResult:
        """
        Extract fields from the loaded document.

        Args:
            schema: Extraction schema
            validate: Whether to validate results

        Returns:
            ExtractionResult with values and evidence
        """
        if not self._current_parse_result:
            raise RuntimeError("No document loaded. Call load_document() first.")

        # Convert dict schema if needed
        if isinstance(schema, dict):
            schema = ExtractionSchema.from_json_schema(schema)

        # Extract
        result = self.extractor.extract(self._current_parse_result, schema)

        # Validate if requested
        if validate:
            validation = self.validator.validate(result, schema)
            if not validation.is_valid:
                logger.warning(f"Extraction validation failed: {validation.error_count} errors")
                # Add validation issues to result
                result.metadata = result.metadata or {}
                result.metadata["validation_issues"] = [
                    {"field": i.field_name, "type": i.issue_type, "message": i.message}
                    for i in validation.issues
                ]

        return result

    def answer_question(
        self,
        question: str,
        use_llm: bool = True,
    ) -> Tuple[str, List[EvidenceRef], float]:
        """
        Answer a question about the document.

        Args:
            question: Question to answer
            use_llm: Whether to use LLM for generation

        Returns:
            Tuple of (answer, evidence, confidence)
        """
        if not self._current_parse_result:
            raise RuntimeError("No document loaded")

        tool = get_tool("answer_question", llm_client=self.llm_client)
        result = tool.execute(
            parse_result=self._current_parse_result,
            question=question,
            use_rag=False,
        )

        if not result.success:
            return f"Error: {result.error}", [], 0.0

        data = result.data
        answer = data.get("answer", "")
        confidence = data.get("confidence", 0.5)

        # Convert evidence
        evidence = []
        for ev_dict in result.evidence:
            from .chunks.models import BoundingBox
            evidence.append(EvidenceRef(
                chunk_id=ev_dict["chunk_id"],
                doc_id=self._current_parse_result.doc_id,
                page=ev_dict["page"],
                bbox=BoundingBox(
                    x_min=ev_dict["bbox"][0],
                    y_min=ev_dict["bbox"][1],
                    x_max=ev_dict["bbox"][2],
                    y_max=ev_dict["bbox"][3],
                    normalized=True,
                ),
                source_type="text",
                snippet=ev_dict.get("snippet", ""),
                confidence=confidence,
            ))

        return answer, evidence, confidence

    def search_chunks(
        self,
        query: str,
        chunk_types: Optional[List[str]] = None,
        top_k: int = 10,
    ) -> List[Dict[str, Any]]:
        """
        Search for chunks matching a query.

        Args:
            query: Search query
            chunk_types: Optional chunk type filter
            top_k: Maximum results

        Returns:
            List of matching chunks with scores
        """
        if not self._current_parse_result:
            raise RuntimeError("No document loaded")

        tool = get_tool("search_chunks")
        result = tool.execute(
            parse_result=self._current_parse_result,
            query=query,
            chunk_types=chunk_types,
            top_k=top_k,
        )

        if not result.success:
            return []

        return result.data.get("results", [])

    def get_chunk(self, chunk_id: str) -> Optional[DocumentChunk]:
        """Get a chunk by ID."""
        if not self._current_parse_result:
            return None

        for chunk in self._current_parse_result.chunks:
            if chunk.chunk_id == chunk_id:
                return chunk
        return None

    def get_page_image(self, page: int) -> Optional[Any]:
        """Get rendered page image."""
        return self._page_images.get(page)

    def crop_chunk(
        self,
        chunk: DocumentChunk,
        padding_percent: float = 0.02,
    ) -> Optional[Any]:
        """Crop the region of a chunk from its page."""
        page_image = self.get_page_image(chunk.page)
        if page_image is None:
            return None

        from .grounding import crop_region
        return crop_region(page_image, chunk.bbox, padding_percent)

    def get_tools_description(self) -> str:
        """Get description of available tools for agent prompts."""
        tools = list_tools()
        lines = []
        for tool in tools:
            lines.append(f"- {tool['name']}: {tool['description']}")
        return "\n".join(lines)

    def execute_tool(
        self,
        tool_name: str,
        **kwargs
    ) -> ToolResult:
        """
        Execute a document tool.

        Args:
            tool_name: Name of tool to execute
            **kwargs: Tool arguments

        Returns:
            ToolResult
        """
        # Add current parse result if not provided
        if "parse_result" not in kwargs and self._current_parse_result:
            kwargs["parse_result"] = self._current_parse_result

        tool = get_tool(tool_name, llm_client=self.llm_client)
        return tool.execute(**kwargs)

    @property
    def parse_result(self) -> Optional[ParseResult]:
        """Get current parse result."""
        return self._current_parse_result

    @property
    def document_id(self) -> Optional[str]:
        """Get current document ID."""
        if self._current_parse_result:
            return self._current_parse_result.doc_id
        return None


def create_enhanced_document_agent(
    llm_client: Any,
    config: Optional[AgentConfig] = None,
) -> "EnhancedDocumentAgent":
    """
    Create an enhanced DocumentAgent with document_intelligence integration.

    Args:
        llm_client: LLM client for reasoning
        config: Agent configuration

    Returns:
        EnhancedDocumentAgent instance
    """
    return EnhancedDocumentAgent(llm_client=llm_client, config=config)


class EnhancedDocumentAgent:
    """
    Enhanced DocumentAgent using document_intelligence subsystem.

    Extends the ReAct-style agent with:
    - Better parsing and chunking
    - Schema-driven extraction
    - Visual grounding
    - Evidence tracking
    """

    def __init__(
        self,
        llm_client: Any,
        config: Optional[AgentConfig] = None,
    ):
        self.adapter = DocumentIntelligenceAdapter(
            config=config,
            llm_client=llm_client,
        )
        self.llm_client = llm_client
        self.config = config or AgentConfig()

    async def load_document(self, path: Union[str, Path]) -> ParseResult:
        """Load a document for processing."""
        return self.adapter.load_document(path, render_pages=True)

    async def extract_fields(
        self,
        schema: Union[ExtractionSchema, Dict],
    ) -> ExtractionResult:
        """Extract fields using schema."""
        return self.adapter.extract_fields(schema, validate=True)

    async def answer_question(
        self,
        question: str,
    ) -> Tuple[str, List[EvidenceRef]]:
        """Answer a question about the document."""
        answer, evidence, confidence = self.adapter.answer_question(question)
        return answer, evidence

    async def classify(self) -> ClassificationResult:
        """Classify the document type."""
        if not self.adapter.parse_result:
            raise RuntimeError("No document loaded")

        # Get first page content
        first_page_chunks = [
            c for c in self.adapter.parse_result.chunks
            if c.page == 1
        ][:5]

        content = " ".join(c.text[:200] for c in first_page_chunks)

        # Simple keyword-based classification
        doc_type = DocumentType.OTHER
        confidence = 0.5

        type_keywords = {
            DocumentType.INVOICE: ["invoice", "bill", "payment due", "amount due"],
            DocumentType.CONTRACT: ["agreement", "contract", "party", "whereas"],
            DocumentType.RECEIPT: ["receipt", "paid", "transaction", "thank you"],
            DocumentType.FORM: ["form", "fill in", "checkbox", "signature line"],
            DocumentType.LETTER: ["dear", "sincerely", "regards"],
            DocumentType.REPORT: ["report", "findings", "conclusion", "summary"],
            DocumentType.PATENT: ["patent", "claims", "invention", "embodiment"],
        }

        content_lower = content.lower()
        for dtype, keywords in type_keywords.items():
            matches = sum(1 for k in keywords if k in content_lower)
            if matches > 0:
                doc_type = dtype
                confidence = min(0.9, 0.5 + matches * 0.15)
                break

        return ClassificationResult(
            doc_id=self.adapter.document_id,
            document_type=doc_type,
            confidence=confidence,
            secondary_types=[],
        )

    def search(
        self,
        query: str,
        top_k: int = 10,
    ) -> List[Dict[str, Any]]:
        """Search document content."""
        return self.adapter.search_chunks(query, top_k=top_k)

    @property
    def current_document(self) -> Optional[ParseResult]:
        """Get current document."""
        return self.adapter.parse_result