File size: 23,432 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
"""
Document Intelligence CLI Commands
CLI interface for the document_intelligence subsystem.
"""
import json
import sys
from pathlib import Path
from typing import List, Optional
import click
@click.group(name="docint")
def docint_cli():
"""Document Intelligence commands."""
pass
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.option("--output", "-o", type=click.Path(), help="Output JSON file")
@click.option("--max-pages", type=int, help="Maximum pages to process")
@click.option("--dpi", type=int, default=200, help="Render DPI (default: 200)")
@click.option("--format", "output_format", type=click.Choice(["json", "markdown", "text"]),
default="json", help="Output format")
def parse(path: str, output: Optional[str], max_pages: Optional[int],
dpi: int, output_format: str):
"""
Parse a document into semantic chunks.
Example:
sparknet docint parse invoice.pdf -o result.json
sparknet docint parse document.pdf --format markdown
"""
from src.document_intelligence import (
DocumentParser,
ParserConfig,
)
config = ParserConfig(
render_dpi=dpi,
max_pages=max_pages,
)
parser = DocumentParser(config=config)
click.echo(f"Parsing: {path}")
try:
result = parser.parse(path)
if output_format == "json":
output_data = {
"doc_id": result.doc_id,
"filename": result.filename,
"num_pages": result.num_pages,
"chunks": [
{
"chunk_id": c.chunk_id,
"type": c.chunk_type.value,
"text": c.text,
"page": c.page,
"bbox": c.bbox.xyxy,
"confidence": c.confidence,
}
for c in result.chunks
],
"processing_time_ms": result.processing_time_ms,
}
if output:
with open(output, "w") as f:
json.dump(output_data, f, indent=2)
click.echo(f"Output written to: {output}")
else:
click.echo(json.dumps(output_data, indent=2))
elif output_format == "markdown":
if output:
with open(output, "w") as f:
f.write(result.markdown_full)
click.echo(f"Markdown written to: {output}")
else:
click.echo(result.markdown_full)
else: # text
for chunk in result.chunks:
click.echo(f"[Page {chunk.page}, {chunk.chunk_type.value}]")
click.echo(chunk.text)
click.echo()
click.echo(f"\nParsed {len(result.chunks)} chunks in {result.processing_time_ms:.0f}ms")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.option("--field", "-f", multiple=True, help="Field to extract (can specify multiple)")
@click.option("--schema", "-s", type=click.Path(exists=True), help="JSON schema file")
@click.option("--preset", type=click.Choice(["invoice", "receipt", "contract"]),
help="Use preset schema")
@click.option("--output", "-o", type=click.Path(), help="Output JSON file")
def extract(path: str, field: tuple, schema: Optional[str], preset: Optional[str],
output: Optional[str]):
"""
Extract fields from a document.
Example:
sparknet docint extract invoice.pdf --preset invoice
sparknet docint extract doc.pdf -f vendor_name -f total_amount
sparknet docint extract doc.pdf --schema my_schema.json
"""
from src.document_intelligence import (
DocumentParser,
FieldExtractor,
ExtractionSchema,
FieldSpec,
FieldType,
create_invoice_schema,
create_receipt_schema,
create_contract_schema,
)
# Build schema
if preset:
if preset == "invoice":
extraction_schema = create_invoice_schema()
elif preset == "receipt":
extraction_schema = create_receipt_schema()
elif preset == "contract":
extraction_schema = create_contract_schema()
elif schema:
with open(schema) as f:
schema_dict = json.load(f)
extraction_schema = ExtractionSchema.from_json_schema(schema_dict)
elif field:
extraction_schema = ExtractionSchema(name="custom")
for f in field:
extraction_schema.add_string_field(f, required=True)
else:
click.echo("Error: Specify --field, --schema, or --preset", err=True)
sys.exit(1)
click.echo(f"Extracting from: {path}")
click.echo(f"Fields: {', '.join(f.name for f in extraction_schema.fields)}")
try:
# Parse document
parser = DocumentParser()
parse_result = parser.parse(path)
# Extract fields
extractor = FieldExtractor()
result = extractor.extract(parse_result, extraction_schema)
output_data = {
"doc_id": parse_result.doc_id,
"filename": parse_result.filename,
"extracted_data": result.data,
"confidence": result.overall_confidence,
"abstained_fields": result.abstained_fields,
"evidence": [
{
"chunk_id": e.chunk_id,
"page": e.page,
"bbox": e.bbox.xyxy,
"snippet": e.snippet,
}
for e in result.evidence
],
}
if output:
with open(output, "w") as f:
json.dump(output_data, f, indent=2)
click.echo(f"Output written to: {output}")
else:
click.echo("\nExtracted Data:")
for key, value in result.data.items():
status = "" if key not in result.abstained_fields else " [ABSTAINED]"
click.echo(f" {key}: {value}{status}")
click.echo(f"\nConfidence: {result.overall_confidence:.2f}")
if result.abstained_fields:
click.echo(f"Abstained: {', '.join(result.abstained_fields)}")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.argument("question")
@click.option("--verbose", "-v", is_flag=True, help="Show evidence details")
@click.option("--use-rag", is_flag=True, help="Use RAG for retrieval (requires indexed document)")
@click.option("--document-id", "-d", help="Document ID for RAG retrieval")
@click.option("--top-k", "-k", type=int, default=5, help="Number of chunks to consider")
@click.option("--chunk-type", "-t", multiple=True, help="Filter by chunk type (can specify multiple)")
@click.option("--page-start", type=int, help="Filter by page range start")
@click.option("--page-end", type=int, help="Filter by page range end")
def ask(path: str, question: str, verbose: bool, use_rag: bool,
document_id: Optional[str], top_k: int, chunk_type: tuple,
page_start: Optional[int], page_end: Optional[int]):
"""
Ask a question about a document.
Example:
sparknet docint ask invoice.pdf "What is the total amount?"
sparknet docint ask doc.pdf "Find claims" --use-rag --top-k 10
sparknet docint ask doc.pdf "What tables show?" -t table --use-rag
"""
from src.document_intelligence import DocumentParser
click.echo(f"Document: {path}")
click.echo(f"Question: {question}")
if use_rag:
click.echo("Mode: RAG (semantic retrieval)")
else:
click.echo("Mode: Keyword search")
click.echo()
try:
if use_rag:
# Use RAG-based answering
from src.document_intelligence.tools import get_rag_tool
tool = get_rag_tool("rag_answer")
# Build page range if specified
page_range = None
if page_start is not None and page_end is not None:
page_range = (page_start, page_end)
result = tool.execute(
question=question,
document_id=document_id,
top_k=top_k,
chunk_types=list(chunk_type) if chunk_type else None,
page_range=page_range,
)
else:
# Parse document and use keyword-based search
from src.document_intelligence.tools import get_tool
parser = DocumentParser()
parse_result = parser.parse(path)
tool = get_tool("answer_question")
result = tool.execute(
parse_result=parse_result,
question=question,
top_k=top_k,
)
if result.success:
data = result.data
click.echo(f"Answer: {data.get('answer', 'No answer found')}")
click.echo(f"Confidence: {data.get('confidence', 0):.2f}")
if data.get('abstained'):
click.echo("Note: The system abstained due to low confidence.")
if verbose and result.evidence:
click.echo("\nEvidence:")
for ev in result.evidence:
click.echo(f" - Page {ev.get('page', '?')}: {ev.get('snippet', '')[:100]}...")
if data.get('citations'):
click.echo("\nCitations:")
for cit in data['citations']:
click.echo(f" [{cit['index']}] {cit.get('text', '')[:80]}...")
else:
click.echo(f"Error: {result.error}", err=True)
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.option("--output", "-o", type=click.Path(), help="Output JSON file")
def classify(path: str, output: Optional[str]):
"""
Classify a document's type.
Example:
sparknet docint classify document.pdf
"""
from src.document_intelligence import DocumentParser
from src.document_intelligence.chunks import DocumentType
click.echo(f"Classifying: {path}")
try:
# Parse document
parser = DocumentParser()
parse_result = parser.parse(path)
# Simple classification based on keywords
first_page_chunks = [c for c in parse_result.chunks if c.page == 1][:5]
content = " ".join(c.text[:200] for c in first_page_chunks).lower()
doc_type = "other"
confidence = 0.5
type_keywords = {
"invoice": ["invoice", "bill", "payment due", "amount due", "invoice number"],
"contract": ["agreement", "contract", "party", "whereas", "terms and conditions"],
"receipt": ["receipt", "paid", "transaction", "thank you for your purchase"],
"form": ["form", "fill in", "checkbox", "signature line"],
"letter": ["dear", "sincerely", "regards", "to whom it may concern"],
"report": ["report", "findings", "conclusion", "summary", "analysis"],
"patent": ["patent", "claims", "invention", "embodiment", "disclosed"],
}
for dtype, keywords in type_keywords.items():
matches = sum(1 for k in keywords if k in content)
if matches >= 2:
doc_type = dtype
confidence = min(0.95, 0.5 + matches * 0.15)
break
output_data = {
"doc_id": parse_result.doc_id,
"filename": parse_result.filename,
"document_type": doc_type,
"confidence": confidence,
}
if output:
with open(output, "w") as f:
json.dump(output_data, f, indent=2)
click.echo(f"Output written to: {output}")
else:
click.echo(f"Type: {doc_type}")
click.echo(f"Confidence: {confidence:.2f}")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.option("--query", "-q", help="Search query")
@click.option("--type", "chunk_type", help="Filter by chunk type")
@click.option("--top", "-k", type=int, default=10, help="Number of results")
def search(path: str, query: Optional[str], chunk_type: Optional[str], top: int):
"""
Search document content.
Example:
sparknet docint search document.pdf -q "payment terms"
sparknet docint search document.pdf --type table
"""
from src.document_intelligence import DocumentParser
from src.document_intelligence.tools import get_tool
click.echo(f"Searching: {path}")
try:
# Parse document
parser = DocumentParser()
parse_result = parser.parse(path)
if query:
# Search by query
tool = get_tool("search_chunks")
result = tool.execute(
parse_result=parse_result,
query=query,
chunk_types=[chunk_type] if chunk_type else None,
top_k=top,
)
if result.success:
results = result.data.get("results", [])
click.echo(f"Found {len(results)} results:\n")
for i, r in enumerate(results, 1):
click.echo(f"{i}. [Page {r['page']}, {r['type']}] (score: {r['score']:.2f})")
click.echo(f" {r['text'][:200]}...")
click.echo()
else:
click.echo(f"Error: {result.error}", err=True)
elif chunk_type:
# Filter by type
matching = [c for c in parse_result.chunks if c.chunk_type.value == chunk_type]
click.echo(f"Found {len(matching)} {chunk_type} chunks:\n")
for i, chunk in enumerate(matching[:top], 1):
click.echo(f"{i}. [Page {chunk.page}] {chunk.chunk_id}")
click.echo(f" {chunk.text[:200]}...")
click.echo()
else:
# List all chunks
click.echo(f"Total chunks: {len(parse_result.chunks)}\n")
# Group by type
by_type = {}
for chunk in parse_result.chunks:
t = chunk.chunk_type.value
by_type[t] = by_type.get(t, 0) + 1
click.echo("Chunk types:")
for t, count in sorted(by_type.items()):
click.echo(f" {t}: {count}")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("path", type=click.Path(exists=True))
@click.option("--page", "-p", type=int, default=1, help="Page number")
@click.option("--output-dir", "-d", type=click.Path(), default="./crops",
help="Output directory for crops")
@click.option("--annotate", "-a", is_flag=True, help="Create annotated page image")
def visualize(path: str, page: int, output_dir: str, annotate: bool):
"""
Visualize document regions.
Example:
sparknet docint visualize document.pdf --page 1 --annotate
"""
from src.document_intelligence import (
DocumentParser,
load_document,
RenderOptions,
)
from src.document_intelligence.grounding import create_annotated_image, CropManager
from PIL import Image
import numpy as np
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
click.echo(f"Processing: {path}, page {page}")
try:
# Parse document
parser = DocumentParser()
parse_result = parser.parse(path)
# Load and render page
loader, renderer = load_document(path)
page_image = renderer.render_page(page, RenderOptions(dpi=200))
loader.close()
# Get page chunks
page_chunks = [c for c in parse_result.chunks if c.page == page]
if annotate:
# Create annotated image
bboxes = [c.bbox for c in page_chunks]
labels = [f"{c.chunk_type.value[:10]}" for c in page_chunks]
annotated = create_annotated_image(page_image, bboxes, labels)
output_file = output_path / f"annotated_page_{page}.png"
Image.fromarray(annotated).save(output_file)
click.echo(f"Saved annotated image: {output_file}")
else:
# Save individual crops
crop_manager = CropManager(output_path)
for chunk in page_chunks:
crop_path = crop_manager.save_crop(
page_image,
parse_result.doc_id,
page,
chunk.bbox,
)
click.echo(f"Saved crop: {crop_path}")
click.echo(f"\nProcessed {len(page_chunks)} chunks from page {page}")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command()
@click.argument("paths", nargs=-1, type=click.Path(exists=True), required=True)
@click.option("--max-pages", type=int, help="Maximum pages to process per document")
@click.option("--batch-size", type=int, default=32, help="Embedding batch size")
@click.option("--min-length", type=int, default=10, help="Minimum chunk text length")
def index(paths: tuple, max_pages: Optional[int], batch_size: int, min_length: int):
"""
Index documents into the vector store for RAG.
Example:
sparknet docint index document.pdf
sparknet docint index *.pdf --max-pages 50
sparknet docint index doc1.pdf doc2.pdf doc3.pdf
"""
from src.document_intelligence.tools import get_rag_tool
click.echo(f"Indexing {len(paths)} document(s)...")
click.echo()
try:
tool = get_rag_tool("index_document")
total_indexed = 0
total_skipped = 0
errors = []
for path in paths:
click.echo(f"Processing: {path}")
result = tool.execute(
path=path,
max_pages=max_pages,
)
if result.success:
data = result.data
indexed = data.get("chunks_indexed", 0)
skipped = data.get("chunks_skipped", 0)
total_indexed += indexed
total_skipped += skipped
click.echo(f" Indexed: {indexed} chunks, Skipped: {skipped}")
click.echo(f" Document ID: {data.get('document_id', 'unknown')}")
else:
errors.append((path, result.error))
click.echo(f" Error: {result.error}", err=True)
click.echo()
click.echo("=" * 40)
click.echo(f"Total documents: {len(paths)}")
click.echo(f"Total chunks indexed: {total_indexed}")
click.echo(f"Total chunks skipped: {total_skipped}")
if errors:
click.echo(f"Errors: {len(errors)}")
for path, err in errors:
click.echo(f" - {path}: {err}")
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command(name="index-stats")
def index_stats():
"""
Show statistics about the vector store index.
Example:
sparknet docint index-stats
"""
from src.document_intelligence.tools import get_rag_tool
try:
tool = get_rag_tool("get_index_stats")
result = tool.execute()
if result.success:
data = result.data
click.echo("Vector Store Statistics:")
click.echo(f" Total chunks: {data.get('total_chunks', 0)}")
click.echo(f" Embedding model: {data.get('embedding_model', 'unknown')}")
click.echo(f" Embedding dimension: {data.get('embedding_dimension', 'unknown')}")
else:
click.echo(f"Error: {result.error}", err=True)
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command(name="delete-index")
@click.argument("document_id")
@click.option("--yes", "-y", is_flag=True, help="Skip confirmation prompt")
def delete_index(document_id: str, yes: bool):
"""
Delete a document from the vector store index.
Example:
sparknet docint delete-index doc_abc123
"""
from src.document_intelligence.tools import get_rag_tool
if not yes:
click.confirm(f"Delete document '{document_id}' from index?", abort=True)
try:
tool = get_rag_tool("delete_document")
result = tool.execute(document_id=document_id)
if result.success:
data = result.data
click.echo(f"Deleted {data.get('chunks_deleted', 0)} chunks for document: {document_id}")
else:
click.echo(f"Error: {result.error}", err=True)
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
@docint_cli.command(name="retrieve")
@click.argument("query")
@click.option("--top-k", "-k", type=int, default=5, help="Number of results")
@click.option("--document-id", "-d", help="Filter by document ID")
@click.option("--chunk-type", "-t", multiple=True, help="Filter by chunk type")
@click.option("--page-start", type=int, help="Filter by page range start")
@click.option("--page-end", type=int, help="Filter by page range end")
@click.option("--verbose", "-v", is_flag=True, help="Show full chunk text")
def retrieve(query: str, top_k: int, document_id: Optional[str],
chunk_type: tuple, page_start: Optional[int],
page_end: Optional[int], verbose: bool):
"""
Retrieve relevant chunks from the vector store.
Example:
sparknet docint retrieve "payment terms"
sparknet docint retrieve "claims" -d doc_abc123 -t paragraph -k 10
"""
from src.document_intelligence.tools import get_rag_tool
click.echo(f"Query: {query}")
click.echo()
try:
tool = get_rag_tool("retrieve_chunks")
page_range = None
if page_start is not None and page_end is not None:
page_range = (page_start, page_end)
result = tool.execute(
query=query,
top_k=top_k,
document_id=document_id,
chunk_types=list(chunk_type) if chunk_type else None,
page_range=page_range,
)
if result.success:
data = result.data
chunks = data.get("chunks", [])
click.echo(f"Found {len(chunks)} results:\n")
for i, chunk in enumerate(chunks, 1):
click.echo(f"{i}. [sim={chunk['similarity']:.3f}] Page {chunk.get('page', '?')}, {chunk.get('chunk_type', 'text')}")
click.echo(f" Document: {chunk['document_id']}")
text = chunk['text']
if verbose:
click.echo(f" Text: {text}")
else:
click.echo(f" Text: {text[:150]}...")
click.echo()
else:
click.echo(f"Error: {result.error}", err=True)
except Exception as e:
click.echo(f"Error: {e}", err=True)
sys.exit(1)
# Register with main CLI
def register_commands(cli):
"""Register docint commands with main CLI."""
cli.add_command(docint_cli)
|