File size: 19,704 Bytes
a9dc537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
"""
MemoryAgent for SPARKNET
Provides vector memory system using ChromaDB and LangChain
Supports episodic, semantic, and stakeholder memory
"""

from typing import Optional, Dict, Any, List, Literal
from datetime import datetime
from loguru import logger
import json

from langchain_chroma import Chroma
from langchain_core.documents import Document

from .base_agent import BaseAgent, Task, Message
from ..llm.langchain_ollama_client import LangChainOllamaClient
from ..workflow.langgraph_state import ScenarioType, TaskStatus


MemoryType = Literal["episodic", "semantic", "stakeholders", "all"]


class MemoryAgent(BaseAgent):
    """
    Vector memory system using ChromaDB and LangChain.
    Stores and retrieves context for agent decision-making.
    
    Three collections:
    - episodic_memory: Past workflow executions, outcomes, lessons learned
    - semantic_memory: Domain knowledge (patents, legal frameworks, market data)
    - stakeholder_profiles: Researcher and industry partner profiles
    """

    def __init__(
        self,
        llm_client: LangChainOllamaClient,
        persist_directory: str = "data/vector_store",
        memory_agent: Optional['MemoryAgent'] = None,
    ):
        """
        Initialize MemoryAgent with ChromaDB collections.

        Args:
            llm_client: LangChain Ollama client for embeddings
            persist_directory: Directory to persist ChromaDB data
            memory_agent: Not used (for interface compatibility)
        """
        self.llm_client = llm_client
        self.persist_directory = persist_directory

        # Get embeddings from LangChain client
        self.embeddings = llm_client.get_embeddings()

        # Initialize ChromaDB collections
        self._initialize_collections()

        # Store for backward compatibility
        self.name = "MemoryAgent"
        self.description = "Vector memory and context retrieval"

        logger.info(f"Initialized MemoryAgent with ChromaDB at {persist_directory}")

    def _initialize_collections(self):
        """Initialize three ChromaDB collections."""
        try:
            # Episodic memory: Past workflow executions
            self.episodic_memory = Chroma(
                collection_name="episodic_memory",
                embedding_function=self.embeddings,
                persist_directory=f"{self.persist_directory}/episodic"
            )
            logger.debug("Initialized episodic_memory collection")

            # Semantic memory: Domain knowledge
            self.semantic_memory = Chroma(
                collection_name="semantic_memory",
                embedding_function=self.embeddings,
                persist_directory=f"{self.persist_directory}/semantic"
            )
            logger.debug("Initialized semantic_memory collection")

            # Stakeholder profiles
            self.stakeholder_profiles = Chroma(
                collection_name="stakeholder_profiles",
                embedding_function=self.embeddings,
                persist_directory=f"{self.persist_directory}/stakeholders"
            )
            logger.debug("Initialized stakeholder_profiles collection")

        except Exception as e:
            logger.error(f"Failed to initialize ChromaDB collections: {e}")
            raise

    async def process_task(self, task: Task) -> Task:
        """
        Process memory-related task.

        Args:
            task: Task with memory operation

        Returns:
            Updated task with results
        """
        logger.info(f"MemoryAgent processing task: {task.id}")
        task.status = "in_progress"

        try:
            operation = task.metadata.get('operation') if task.metadata else None

            if operation == 'store_episode':
                # Store episode
                episode_data = task.metadata.get('episode_data', {})
                await self.store_episode(**episode_data)
                task.result = {"stored": True}

            elif operation == 'retrieve_context':
                # Retrieve context
                query = task.metadata.get('query', '')
                context_type = task.metadata.get('context_type', 'all')
                top_k = task.metadata.get('top_k', 3)
                
                results = await self.retrieve_relevant_context(
                    query=query,
                    context_type=context_type,
                    top_k=top_k
                )
                task.result = {"contexts": results}

            elif operation == 'store_knowledge':
                # Store knowledge
                documents = task.metadata.get('documents', [])
                metadatas = task.metadata.get('metadatas', [])
                category = task.metadata.get('category', 'general')
                
                await self.store_knowledge(documents, metadatas, category)
                task.result = {"stored": len(documents)}

            else:
                raise ValueError(f"Unknown memory operation: {operation}")

            task.status = "completed"
            logger.info(f"Memory operation completed: {operation}")

        except Exception as e:
            logger.error(f"Memory operation failed: {e}")
            task.status = "failed"
            task.error = str(e)

        return task

    async def store_episode(
        self,
        task_id: str,
        task_description: str,
        scenario: ScenarioType,
        workflow_steps: List[Dict],
        outcome: Dict,
        quality_score: float,
        execution_time: Optional[float] = None,
        iterations_used: Optional[int] = None,
    ) -> None:
        """
        Store a completed workflow execution for learning.

        Args:
            task_id: Unique task identifier
            task_description: Natural language task description
            scenario: VISTA scenario type
            workflow_steps: List of subtasks executed
            outcome: Final output and results
            quality_score: Quality score from validation (0.0-1.0)
            execution_time: Total execution time in seconds
            iterations_used: Number of refinement iterations
        """
        try:
            # Create document content
            content = f"""
Task: {task_description}
Scenario: {scenario.value if hasattr(scenario, 'value') else scenario}
Quality Score: {quality_score:.2f}
Steps: {len(workflow_steps)}
Outcome: {json.dumps(outcome, indent=2)[:500]}
"""

            # Create metadata
            metadata = {
                "task_id": task_id,
                "scenario": scenario.value if hasattr(scenario, 'value') else str(scenario),
                "quality_score": float(quality_score),
                "timestamp": datetime.now().isoformat(),
                "num_steps": len(workflow_steps),
                "execution_time": execution_time or 0.0,
                "iterations": iterations_used or 0,
                "success": quality_score >= 0.85,
            }

            # Create document
            document = Document(
                page_content=content,
                metadata=metadata
            )

            # Add to episodic memory
            self.episodic_memory.add_documents([document])

            logger.info(f"Stored episode: {task_id} (score: {quality_score:.2f})")

        except Exception as e:
            logger.error(f"Failed to store episode: {e}")
            raise

    async def retrieve_relevant_context(
        self,
        query: str,
        context_type: MemoryType = "episodic",
        top_k: int = 3,
        scenario_filter: Optional[ScenarioType] = None,
        min_quality_score: Optional[float] = None,
    ) -> List[Document]:
        """
        Semantic search across specified memory type.

        Args:
            query: Natural language query
            context_type: Memory type to search
            top_k: Number of results to return
            scenario_filter: Filter by VISTA scenario
            min_quality_score: Minimum quality score for episodes

        Returns:
            List of Document objects with content and metadata
        """
        try:
            results = []

            # Build filter if needed
            # Note: ChromaDB requires compound filters with $and operator
            where_filter = None
            if scenario_filter and min_quality_score is not None:
                where_filter = {
                    "$and": [
                        {"scenario": scenario_filter.value if hasattr(scenario_filter, 'value') else str(scenario_filter)},
                        {"quality_score": {"$gte": min_quality_score}}
                    ]
                }
            elif scenario_filter:
                where_filter = {"scenario": scenario_filter.value if hasattr(scenario_filter, 'value') else str(scenario_filter)}
            elif min_quality_score is not None:
                where_filter = {"quality_score": {"$gte": min_quality_score}}

            # Search appropriate collection(s)
            if context_type == "episodic" or context_type == "all":
                episodic_results = self.episodic_memory.similarity_search(
                    query=query,
                    k=top_k,
                    filter=where_filter if where_filter else None
                )
                results.extend(episodic_results)
                logger.debug(f"Found {len(episodic_results)} episodic memories")

            if context_type == "semantic" or context_type == "all":
                semantic_results = self.semantic_memory.similarity_search(
                    query=query,
                    k=top_k
                )
                results.extend(semantic_results)
                logger.debug(f"Found {len(semantic_results)} semantic memories")

            if context_type == "stakeholders" or context_type == "all":
                stakeholder_results = self.stakeholder_profiles.similarity_search(
                    query=query,
                    k=top_k
                )
                results.extend(stakeholder_results)
                logger.debug(f"Found {len(stakeholder_results)} stakeholder profiles")

            # Deduplicate and limit
            unique_results = list({doc.page_content: doc for doc in results}.values())
            return unique_results[:top_k]

        except Exception as e:
            logger.error(f"Failed to retrieve context: {e}")
            return []

    async def store_knowledge(
        self,
        documents: List[str],
        metadatas: List[Dict],
        category: str,
    ) -> None:
        """
        Store domain knowledge in semantic memory.

        Args:
            documents: List of knowledge documents (text)
            metadatas: List of metadata dicts
            category: Knowledge category

        Categories:
        - "patent_templates": Common patent structures
        - "legal_frameworks": GDPR, Law 25 regulations
        - "market_data": Industry sectors, trends
        - "best_practices": Successful valorization strategies
        """
        try:
            # Create documents with metadata
            docs = []
            for i, (text, metadata) in enumerate(zip(documents, metadatas)):
                # Add category to metadata
                metadata['category'] = category
                metadata['timestamp'] = datetime.now().isoformat()
                metadata['doc_id'] = f"{category}_{i}"

                doc = Document(
                    page_content=text,
                    metadata=metadata
                )
                docs.append(doc)

            # Add to semantic memory
            self.semantic_memory.add_documents(docs)

            logger.info(f"Stored {len(docs)} knowledge documents in category: {category}")

        except Exception as e:
            logger.error(f"Failed to store knowledge: {e}")
            raise

    async def store_stakeholder_profile(
        self,
        name: str,
        profile: Dict,
        categories: List[str],
    ) -> None:
        """
        Store researcher or industry partner profile.

        Args:
            name: Stakeholder name
            profile: Profile data
            categories: List of categories (expertise areas)

        Profile includes:
        - expertise: List of expertise areas
        - interests: Research interests
        - collaborations: Past collaborations
        - technologies: Technology domains
        - location: Geographic location
        - contact: Contact information
        """
        try:
            # Create profile text
            content = f"""
Name: {name}
Expertise: {', '.join(profile.get('expertise', []))}
Interests: {', '.join(profile.get('interests', []))}
Technologies: {', '.join(profile.get('technologies', []))}
Location: {profile.get('location', 'Unknown')}
Past Collaborations: {profile.get('collaborations', 'None listed')}
"""

            # Create metadata (ChromaDB only accepts str, int, float, bool, None)
            metadata = {
                "name": name,
                "categories": ", ".join(categories),  # Convert list to string
                "timestamp": datetime.now().isoformat(),
                "location": profile.get('location', 'Unknown'),
                "num_expertise": len(profile.get('expertise', [])),
            }

            # Add full profile to metadata as JSON string (for retrieval)
            metadata['profile'] = json.dumps(profile)

            # Create document
            document = Document(
                page_content=content,
                metadata=metadata
            )

            # Add to stakeholder collection
            self.stakeholder_profiles.add_documents([document])

            logger.info(f"Stored stakeholder profile: {name}")

        except Exception as e:
            logger.error(f"Failed to store stakeholder profile: {e}")
            raise

    async def learn_from_feedback(
        self,
        task_id: str,
        feedback: str,
        updated_score: Optional[float] = None,
    ) -> None:
        """
        Update episodic memory with user feedback.
        Mark successful strategies for reuse.

        Args:
            task_id: Task identifier
            feedback: User feedback text
            updated_score: Updated quality score after feedback
        """
        try:
            # Search for existing episode
            results = self.episodic_memory.similarity_search(
                query=task_id,
                k=1,
                filter={"task_id": task_id}
            )

            if results:
                logger.info(f"Found episode {task_id} for feedback update")
                
                # Store feedback as new episode variant
                original = results[0]
                content = f"{original.page_content}\n\nUser Feedback: {feedback}"
                
                metadata = original.metadata.copy()
                if updated_score is not None:
                    metadata['quality_score'] = updated_score
                metadata['has_feedback'] = True
                metadata['feedback_timestamp'] = datetime.now().isoformat()

                # Add updated version
                doc = Document(page_content=content, metadata=metadata)
                self.episodic_memory.add_documents([doc])

                logger.info(f"Updated episode {task_id} with feedback")
            else:
                logger.warning(f"Episode {task_id} not found for feedback")

        except Exception as e:
            logger.error(f"Failed to learn from feedback: {e}")

    async def get_similar_episodes(
        self,
        task_description: str,
        scenario: Optional[ScenarioType] = None,
        min_quality_score: float = 0.8,
        top_k: int = 3,
    ) -> List[Dict]:
        """
        Find similar past episodes for learning.

        Args:
            task_description: Current task description
            scenario: Optional scenario filter
            min_quality_score: Minimum quality threshold
            top_k: Number of results

        Returns:
            List of episode dictionaries with metadata
        """
        results = await self.retrieve_relevant_context(
            query=task_description,
            context_type="episodic",
            top_k=top_k,
            scenario_filter=scenario,
            min_quality_score=min_quality_score
        )

        episodes = []
        for doc in results:
            episodes.append({
                "content": doc.page_content,
                "metadata": doc.metadata
            })

        return episodes

    async def get_domain_knowledge(
        self,
        query: str,
        category: Optional[str] = None,
        top_k: int = 3,
    ) -> List[Document]:
        """
        Retrieve domain knowledge from semantic memory.

        Args:
            query: Knowledge query
            category: Optional category filter
            top_k: Number of results

        Returns:
            List of knowledge documents
        """
        where_filter = {"category": category} if category else None

        results = self.semantic_memory.similarity_search(
            query=query,
            k=top_k,
            filter=where_filter
        )

        return results

    async def find_matching_stakeholders(
        self,
        requirements: str,
        categories: Optional[List[str]] = None,
        location: Optional[str] = None,
        top_k: int = 5,
    ) -> List[Dict]:
        """
        Find stakeholders matching requirements.

        Args:
            requirements: Description of needed expertise/capabilities
            categories: Optional category filters
            location: Optional location filter
            top_k: Number of matches

        Returns:
            List of matching stakeholder profiles
        """
        # Build filter
        where_filter = {}
        if location:
            where_filter["location"] = location

        results = self.stakeholder_profiles.similarity_search(
            query=requirements,
            k=top_k,
            filter=where_filter if where_filter else None
        )

        stakeholders = []
        for doc in results:
            profile_data = json.loads(doc.metadata.get('profile', '{}'))
            stakeholders.append({
                "name": doc.metadata.get('name'),
                "profile": profile_data,
                "match_text": doc.page_content,
                "metadata": doc.metadata
            })

        return stakeholders

    def get_collection_stats(self) -> Dict[str, int]:
        """
        Get statistics about memory collections.

        Returns:
            Dictionary with collection counts
        """
        try:
            stats = {
                "episodic_count": self.episodic_memory._collection.count(),
                "semantic_count": self.semantic_memory._collection.count(),
                "stakeholders_count": self.stakeholder_profiles._collection.count(),
            }
            return stats
        except Exception as e:
            logger.error(f"Failed to get collection stats: {e}")
            return {"episodic_count": 0, "semantic_count": 0, "stakeholders_count": 0}


# Convenience function
def create_memory_agent(
    llm_client: LangChainOllamaClient,
    persist_directory: str = "data/vector_store",
) -> MemoryAgent:
    """
    Create a MemoryAgent instance.

    Args:
        llm_client: LangChain Ollama client
        persist_directory: Directory for ChromaDB persistence

    Returns:
        MemoryAgent instance
    """
    return MemoryAgent(
        llm_client=llm_client,
        persist_directory=persist_directory
    )