File size: 22,407 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
"""
DocumentAgent for SPARKNET

A ReAct-style agent for document intelligence tasks:
- Document parsing and extraction
- Field extraction with grounding
- Table and chart analysis
- Document classification
- Question answering over documents
"""

from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass
from enum import Enum
import json
import time
from loguru import logger

from .base_agent import BaseAgent, Task, Message
from ..llm.langchain_ollama_client import LangChainOllamaClient
from ..document.schemas.core import (
    ProcessedDocument,
    DocumentChunk,
    EvidenceRef,
    ExtractionResult,
)
from ..document.schemas.extraction import ExtractionSchema, ExtractedField
from ..document.schemas.classification import DocumentClassification, DocumentType


class AgentAction(str, Enum):
    """Actions the DocumentAgent can take."""
    THINK = "think"
    USE_TOOL = "use_tool"
    ANSWER = "answer"
    ABSTAIN = "abstain"


@dataclass
class ThoughtAction:
    """A thought-action pair in the ReAct loop."""
    thought: str
    action: AgentAction
    tool_name: Optional[str] = None
    tool_args: Optional[Dict[str, Any]] = None
    observation: Optional[str] = None
    evidence: Optional[List[EvidenceRef]] = None


@dataclass
class AgentTrace:
    """Full trace of agent execution for inspection."""
    task: str
    steps: List[ThoughtAction]
    final_answer: Optional[Any] = None
    confidence: float = 0.0
    total_time_ms: float = 0.0
    success: bool = True
    error: Optional[str] = None


class DocumentAgent:
    """
    ReAct-style agent for document intelligence tasks.

    Implements the Think -> Tool -> Observe -> Refine loop
    with inspectable traces and grounded outputs.
    """

    # System prompt for ReAct reasoning
    SYSTEM_PROMPT = """You are a document intelligence agent that analyzes documents
and extracts information with evidence.

You operate in a Think-Act-Observe loop:
1. THINK: Analyze what you need to do and what information you have
2. ACT: Choose a tool to use or provide an answer
3. OBSERVE: Review the tool output and update your understanding

Available tools:
{tool_descriptions}

CRITICAL RULES:
- Every extraction MUST include evidence (page, bbox, text snippet)
- If you cannot find evidence for a value, ABSTAIN rather than guess
- Always cite the source of information with page numbers
- For tables, analyze structure before extracting data
- For charts, describe what you see before extracting values

Output format for each step:
THOUGHT: <your reasoning>
ACTION: <tool_name or ANSWER or ABSTAIN>
ACTION_INPUT: <JSON arguments for tool, or final answer>
"""

    # Available tools
    TOOLS = {
        "extract_text": {
            "description": "Extract text from specific pages or regions",
            "args": ["page_numbers", "region_bbox"],
        },
        "analyze_table": {
            "description": "Analyze and extract structured data from a table region",
            "args": ["page", "bbox", "expected_columns"],
        },
        "analyze_chart": {
            "description": "Analyze a chart/graph and extract insights",
            "args": ["page", "bbox"],
        },
        "extract_fields": {
            "description": "Extract specific fields using a schema",
            "args": ["schema", "context_chunks"],
        },
        "classify_document": {
            "description": "Classify the document type",
            "args": ["first_page_chunks"],
        },
        "search_text": {
            "description": "Search for text patterns in the document",
            "args": ["query", "page_range"],
        },
    }

    def __init__(
        self,
        llm_client: LangChainOllamaClient,
        memory_agent: Optional[Any] = None,
        max_iterations: int = 10,
        temperature: float = 0.3,
    ):
        """
        Initialize DocumentAgent.

        Args:
            llm_client: LangChain Ollama client
            memory_agent: Optional memory agent for context retrieval
            max_iterations: Maximum ReAct iterations
            temperature: LLM temperature for reasoning
        """
        self.llm_client = llm_client
        self.memory_agent = memory_agent
        self.max_iterations = max_iterations
        self.temperature = temperature

        # Current document context
        self._current_document: Optional[ProcessedDocument] = None
        self._page_images: Dict[int, Any] = {}

        logger.info(f"Initialized DocumentAgent (max_iterations={max_iterations})")

    def set_document(
        self,
        document: ProcessedDocument,
        page_images: Optional[Dict[int, Any]] = None,
    ):
        """
        Set the current document context.

        Args:
            document: Processed document
            page_images: Optional dict of page number -> image array
        """
        self._current_document = document
        self._page_images = page_images or {}
        logger.info(f"Set document context: {document.metadata.document_id}")

    async def run(
        self,
        task_description: str,
        extraction_schema: Optional[ExtractionSchema] = None,
    ) -> Tuple[Any, AgentTrace]:
        """
        Run the agent on a task.

        Args:
            task_description: Natural language task description
            extraction_schema: Optional schema for structured extraction

        Returns:
            Tuple of (result, trace)
        """
        start_time = time.time()

        if not self._current_document:
            raise ValueError("No document set. Call set_document() first.")

        trace = AgentTrace(task=task_description, steps=[])

        try:
            # Build initial context
            context = self._build_context(extraction_schema)

            # ReAct loop
            result = None
            for iteration in range(self.max_iterations):
                logger.debug(f"ReAct iteration {iteration + 1}")

                # Generate thought and action
                step = await self._generate_step(task_description, context, trace.steps)
                trace.steps.append(step)

                # Check for terminal actions
                if step.action == AgentAction.ANSWER:
                    result = self._parse_answer(step.tool_args)
                    trace.final_answer = result
                    trace.confidence = self._calculate_confidence(trace.steps)
                    break

                elif step.action == AgentAction.ABSTAIN:
                    trace.final_answer = {
                        "abstained": True,
                        "reason": step.thought,
                    }
                    trace.confidence = 0.0
                    break

                elif step.action == AgentAction.USE_TOOL:
                    # Execute tool and get observation
                    observation, evidence = await self._execute_tool(
                        step.tool_name, step.tool_args
                    )
                    step.observation = observation
                    step.evidence = evidence

                    # Update context with observation
                    context += f"\n\nObservation from {step.tool_name}:\n{observation}"

            trace.success = True

        except Exception as e:
            logger.error(f"Agent execution failed: {e}")
            trace.success = False
            trace.error = str(e)

        trace.total_time_ms = (time.time() - start_time) * 1000
        return trace.final_answer, trace

    async def extract_fields(
        self,
        schema: ExtractionSchema,
    ) -> ExtractionResult:
        """
        Extract fields from the document using a schema.

        Args:
            schema: Extraction schema defining fields

        Returns:
            ExtractionResult with extracted data and evidence
        """
        task = f"Extract the following fields from this document: {', '.join(f.name for f in schema.fields)}"
        result, trace = await self.run(task, schema)

        # Build extraction result
        data = {}
        evidence = []
        warnings = []
        abstained = []

        if isinstance(result, dict):
            data = result.get("data", result)

            # Collect evidence from trace
            for step in trace.steps:
                if step.evidence:
                    evidence.extend(step.evidence)

            # Check for abstained fields
            for field in schema.fields:
                if field.name not in data and field.required:
                    abstained.append(field.name)
                    warnings.append(
                        f"Required field '{field.name}' not found with sufficient confidence"
                    )

        return ExtractionResult(
            data=data,
            evidence=evidence,
            warnings=warnings,
            confidence=trace.confidence,
            abstained_fields=abstained,
        )

    async def classify(self) -> DocumentClassification:
        """
        Classify the document type.

        Returns:
            DocumentClassification with type and confidence
        """
        task = "Classify this document into one of the standard document types (contract, invoice, patent, research_paper, report, letter, form, etc.)"
        result, trace = await self.run(task)

        # Parse classification result
        doc_type = DocumentType.UNKNOWN
        confidence = 0.0

        if isinstance(result, dict):
            type_str = result.get("document_type", "unknown")
            try:
                doc_type = DocumentType(type_str.lower())
            except ValueError:
                doc_type = DocumentType.OTHER

            confidence = result.get("confidence", trace.confidence)

        return DocumentClassification(
            document_id=self._current_document.metadata.document_id,
            primary_type=doc_type,
            primary_confidence=confidence,
            evidence=[e for step in trace.steps if step.evidence for e in step.evidence],
            method="llm",
            is_confident=confidence >= 0.7,
        )

    async def answer_question(self, question: str) -> Tuple[str, List[EvidenceRef]]:
        """
        Answer a question about the document.

        Args:
            question: Natural language question

        Returns:
            Tuple of (answer, evidence)
        """
        task = f"Answer this question about the document: {question}"
        result, trace = await self.run(task)

        answer = ""
        evidence = []

        if isinstance(result, dict):
            answer = result.get("answer", str(result))
        elif isinstance(result, str):
            answer = result

        # Collect evidence
        for step in trace.steps:
            if step.evidence:
                evidence.extend(step.evidence)

        return answer, evidence

    def _build_context(self, schema: Optional[ExtractionSchema] = None) -> str:
        """Build initial context from document."""
        doc = self._current_document
        context_parts = [
            f"Document: {doc.metadata.filename}",
            f"Type: {doc.metadata.file_type}",
            f"Pages: {doc.metadata.num_pages}",
            f"Chunks: {len(doc.chunks)}",
            "",
            "Document content summary:",
        ]

        # Add first few chunks as context
        for chunk in doc.chunks[:10]:
            context_parts.append(
                f"[Page {chunk.page + 1}, {chunk.chunk_type.value}]: {chunk.text[:200]}..."
            )

        if schema:
            context_parts.append("")
            context_parts.append("Extraction schema:")
            for field in schema.fields:
                req = "required" if field.required else "optional"
                context_parts.append(f"- {field.name} ({field.type.value}, {req}): {field.description}")

        return "\n".join(context_parts)

    async def _generate_step(
        self,
        task: str,
        context: str,
        previous_steps: List[ThoughtAction],
    ) -> ThoughtAction:
        """Generate the next thought-action step."""
        # Build prompt
        tool_descriptions = "\n".join(
            f"- {name}: {info['description']}"
            for name, info in self.TOOLS.items()
        )

        system_prompt = self.SYSTEM_PROMPT.format(tool_descriptions=tool_descriptions)

        messages = [{"role": "system", "content": system_prompt}]

        # Add task and context
        user_content = f"TASK: {task}\n\nCONTEXT:\n{context}"

        # Add previous steps
        if previous_steps:
            user_content += "\n\nPREVIOUS STEPS:"
            for i, step in enumerate(previous_steps, 1):
                user_content += f"\n\nStep {i}:"
                user_content += f"\nTHOUGHT: {step.thought}"
                user_content += f"\nACTION: {step.action.value}"
                if step.tool_name:
                    user_content += f"\nTOOL: {step.tool_name}"
                if step.observation:
                    user_content += f"\nOBSERVATION: {step.observation[:500]}..."

        user_content += "\n\nNow generate your next step:"
        messages.append({"role": "user", "content": user_content})

        # Generate response
        llm = self.llm_client.get_llm(complexity="complex", temperature=self.temperature)

        from langchain_core.messages import HumanMessage, SystemMessage
        lc_messages = [
            SystemMessage(content=system_prompt),
            HumanMessage(content=user_content),
        ]

        response = await llm.ainvoke(lc_messages)
        response_text = response.content

        # Parse response
        return self._parse_step(response_text)

    def _parse_step(self, response: str) -> ThoughtAction:
        """Parse LLM response into ThoughtAction."""
        thought = ""
        action = AgentAction.THINK
        tool_name = None
        tool_args = None

        lines = response.strip().split("\n")
        current_section = None

        for line in lines:
            line = line.strip()

            if line.startswith("THOUGHT:"):
                current_section = "thought"
                thought = line[8:].strip()
            elif line.startswith("ACTION:"):
                current_section = "action"
                action_str = line[7:].strip().lower()
                if action_str == "answer":
                    action = AgentAction.ANSWER
                elif action_str == "abstain":
                    action = AgentAction.ABSTAIN
                elif action_str in self.TOOLS:
                    action = AgentAction.USE_TOOL
                    tool_name = action_str
                else:
                    action = AgentAction.USE_TOOL
                    tool_name = action_str
            elif line.startswith("ACTION_INPUT:"):
                current_section = "input"
                input_str = line[13:].strip()
                try:
                    tool_args = json.loads(input_str)
                except json.JSONDecodeError:
                    tool_args = {"raw": input_str}
            elif current_section == "thought":
                thought += " " + line
            elif current_section == "input":
                try:
                    tool_args = json.loads(line)
                except:
                    pass

        return ThoughtAction(
            thought=thought,
            action=action,
            tool_name=tool_name,
            tool_args=tool_args,
        )

    async def _execute_tool(
        self,
        tool_name: str,
        tool_args: Optional[Dict[str, Any]],
    ) -> Tuple[str, List[EvidenceRef]]:
        """Execute a tool and return observation."""
        if not tool_args:
            tool_args = {}

        doc = self._current_document
        evidence = []

        try:
            if tool_name == "extract_text":
                return self._tool_extract_text(tool_args)

            elif tool_name == "analyze_table":
                return await self._tool_analyze_table(tool_args)

            elif tool_name == "analyze_chart":
                return await self._tool_analyze_chart(tool_args)

            elif tool_name == "extract_fields":
                return await self._tool_extract_fields(tool_args)

            elif tool_name == "classify_document":
                return self._tool_classify_document(tool_args)

            elif tool_name == "search_text":
                return self._tool_search_text(tool_args)

            else:
                return f"Unknown tool: {tool_name}", []

        except Exception as e:
            logger.error(f"Tool {tool_name} failed: {e}")
            return f"Error executing {tool_name}: {e}", []

    def _tool_extract_text(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Extract text from pages or regions."""
        doc = self._current_document
        page_numbers = args.get("page_numbers", list(range(doc.metadata.num_pages)))

        if isinstance(page_numbers, int):
            page_numbers = [page_numbers]

        texts = []
        evidence = []

        for page in page_numbers:
            page_chunks = doc.get_page_chunks(page)
            for chunk in page_chunks:
                texts.append(f"[Page {page + 1}]: {chunk.text}")
                evidence.append(EvidenceRef(
                    chunk_id=chunk.chunk_id,
                    page=chunk.page,
                    bbox=chunk.bbox,
                    source_type="text",
                    snippet=chunk.text[:100],
                    confidence=chunk.confidence,
                ))

        return "\n".join(texts[:20]), evidence[:10]

    async def _tool_analyze_table(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Analyze a table region."""
        page = args.get("page", 0)
        doc = self._current_document

        # Find table chunks
        table_chunks = [c for c in doc.chunks if c.chunk_type.value == "table" and c.page == page]

        if not table_chunks:
            return "No table found on this page", []

        # Use LLM to analyze table
        table_text = table_chunks[0].text
        llm = self.llm_client.get_llm(complexity="standard")

        from langchain_core.messages import HumanMessage
        prompt = f"Analyze this table and extract structured data as JSON:\n\n{table_text}"
        response = await llm.ainvoke([HumanMessage(content=prompt)])

        evidence = [EvidenceRef(
            chunk_id=table_chunks[0].chunk_id,
            page=page,
            bbox=table_chunks[0].bbox,
            source_type="table",
            snippet=table_text[:200],
            confidence=table_chunks[0].confidence,
        )]

        return response.content, evidence

    async def _tool_analyze_chart(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Analyze a chart region."""
        page = args.get("page", 0)
        doc = self._current_document

        # Find chart/figure chunks
        chart_chunks = [
            c for c in doc.chunks
            if c.chunk_type.value in ("chart", "figure") and c.page == page
        ]

        if not chart_chunks:
            return "No chart/figure found on this page", []

        # If we have the image, use vision model
        if page in self._page_images:
            # TODO: Use vision model for chart analysis
            pass

        return f"Chart found on page {page + 1}: {chart_chunks[0].caption or 'No caption'}", []

    async def _tool_extract_fields(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Extract specific fields."""
        schema_dict = args.get("schema", {})
        doc = self._current_document

        # Build context from chunks
        context = "\n".join(c.text for c in doc.chunks[:20])

        # Use LLM to extract
        llm = self.llm_client.get_llm(complexity="complex")

        from langchain_core.messages import HumanMessage, SystemMessage
        system = "Extract the requested fields from the document. Output JSON with field names as keys."
        user = f"Fields to extract: {json.dumps(schema_dict)}\n\nDocument content:\n{context}"

        response = await llm.ainvoke([
            SystemMessage(content=system),
            HumanMessage(content=user),
        ])

        return response.content, []

    def _tool_classify_document(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Classify document type based on first page."""
        doc = self._current_document
        first_page_chunks = doc.get_page_chunks(0)
        text = " ".join(c.text for c in first_page_chunks[:5])

        return f"First page content for classification:\n{text[:500]}", []

    def _tool_search_text(self, args: Dict[str, Any]) -> Tuple[str, List[EvidenceRef]]:
        """Search for text in document."""
        query = args.get("query", "").lower()
        doc = self._current_document

        matches = []
        evidence = []

        for chunk in doc.chunks:
            if query in chunk.text.lower():
                matches.append(f"[Page {chunk.page + 1}]: ...{chunk.text}...")
                evidence.append(EvidenceRef(
                    chunk_id=chunk.chunk_id,
                    page=chunk.page,
                    bbox=chunk.bbox,
                    source_type="text",
                    snippet=chunk.text[:100],
                    confidence=chunk.confidence,
                ))

        if not matches:
            return f"No matches found for '{query}'", []

        return f"Found {len(matches)} matches:\n" + "\n".join(matches[:10]), evidence[:10]

    def _parse_answer(self, answer_input: Optional[Dict[str, Any]]) -> Any:
        """Parse the final answer from tool args."""
        if not answer_input:
            return None

        if isinstance(answer_input, dict):
            return answer_input

        return {"answer": answer_input}

    def _calculate_confidence(self, steps: List[ThoughtAction]) -> float:
        """Calculate overall confidence from trace."""
        if not steps:
            return 0.0

        # Average evidence confidence
        all_evidence = [e for s in steps if s.evidence for e in s.evidence]
        if all_evidence:
            return sum(e.confidence for e in all_evidence) / len(all_evidence)

        return 0.5  # Default moderate confidence