File size: 9,348 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
#!/usr/bin/env python3
"""
Document Intelligence Demo
Demonstrates the capabilities of the SPARKNET document_intelligence subsystem:
- Document parsing with OCR and layout detection
- Schema-driven field extraction
- Visual grounding with evidence
- Question answering
- Document classification
"""
import asyncio
import json
from pathlib import Path
# Add project root to path
import sys
sys.path.insert(0, str(Path(__file__).parent.parent))
def demo_parse_document(doc_path: str):
"""Demo: Parse a document into semantic chunks."""
print("\n" + "=" * 60)
print("1. DOCUMENT PARSING")
print("=" * 60)
from src.document_intelligence import (
DocumentParser,
ParserConfig,
)
# Configure parser
config = ParserConfig(
render_dpi=200,
max_pages=5, # Limit for demo
include_markdown=True,
)
parser = DocumentParser(config=config)
print(f"\nParsing: {doc_path}")
result = parser.parse(doc_path)
print(f"\nDocument ID: {result.doc_id}")
print(f"Filename: {result.filename}")
print(f"Pages: {result.num_pages}")
print(f"Chunks: {len(result.chunks)}")
print(f"Processing time: {result.processing_time_ms:.0f}ms")
# Show chunk summary by type
print("\nChunk types:")
by_type = {}
for chunk in result.chunks:
t = chunk.chunk_type.value
by_type[t] = by_type.get(t, 0) + 1
for t, count in sorted(by_type.items()):
print(f" - {t}: {count}")
# Show first few chunks
print("\nFirst 3 chunks:")
for i, chunk in enumerate(result.chunks[:3]):
print(f"\n [{i+1}] Type: {chunk.chunk_type.value}, Page: {chunk.page}")
print(f" ID: {chunk.chunk_id}")
print(f" Text: {chunk.text[:100]}...")
print(f" BBox: {chunk.bbox.xyxy}")
print(f" Confidence: {chunk.confidence:.2f}")
return result
def demo_extract_fields(parse_result):
"""Demo: Extract fields using a schema."""
print("\n" + "=" * 60)
print("2. SCHEMA-DRIVEN EXTRACTION")
print("=" * 60)
from src.document_intelligence import (
FieldExtractor,
ExtractionSchema,
FieldType,
ExtractionValidator,
)
# Create a custom schema
schema = ExtractionSchema(
name="DocumentInfo",
description="Basic document information",
)
schema.add_string_field("title", "Document title or heading", required=True)
schema.add_string_field("date", "Document date", required=False)
schema.add_string_field("author", "Author or organization name", required=False)
schema.add_string_field("reference_number", "Reference or ID number", required=False)
print(f"\nExtraction schema: {schema.name}")
print("Fields:")
for field in schema.fields:
req = "required" if field.required else "optional"
print(f" - {field.name} ({field.field_type.value}, {req})")
# Extract fields
extractor = FieldExtractor()
result = extractor.extract(parse_result, schema)
print("\nExtracted data:")
for key, value in result.data.items():
status = " [ABSTAINED]" if key in result.abstained_fields else ""
print(f" {key}: {value}{status}")
print(f"\nOverall confidence: {result.overall_confidence:.2f}")
# Show evidence
if result.evidence:
print("\nEvidence:")
for ev in result.evidence[:3]:
print(f" - Page {ev.page}, Chunk {ev.chunk_id[:12]}...")
print(f" Snippet: {ev.snippet[:80]}...")
# Validate
validator = ExtractionValidator()
validation = validator.validate(result, schema)
print(f"\nValidation: {'PASSED' if validation.is_valid else 'FAILED'}")
if validation.issues:
print("Issues:")
for issue in validation.issues[:3]:
print(f" - [{issue.severity}] {issue.field_name}: {issue.message}")
return result
def demo_search_and_qa(parse_result):
"""Demo: Search and question answering."""
print("\n" + "=" * 60)
print("3. SEARCH AND Q&A")
print("=" * 60)
from src.document_intelligence.tools import get_tool
# Search demo
print("\nSearching for 'document'...")
search_tool = get_tool("search_chunks")
search_result = search_tool.execute(
parse_result=parse_result,
query="document",
top_k=5,
)
if search_result.success:
matches = search_result.data.get("results", [])
print(f"Found {len(matches)} matches:")
for i, match in enumerate(matches[:3], 1):
print(f" {i}. Page {match['page']}, Type: {match['type']}")
print(f" Score: {match['score']:.2f}")
print(f" Text: {match['text'][:80]}...")
# Q&A demo
print("\nAsking: 'What is this document about?'")
qa_tool = get_tool("answer_question")
qa_result = qa_tool.execute(
parse_result=parse_result,
question="What is this document about?",
)
if qa_result.success:
print(f"Answer: {qa_result.data.get('answer', 'No answer')}")
print(f"Confidence: {qa_result.data.get('confidence', 0):.2f}")
def demo_grounding(parse_result, doc_path: str):
"""Demo: Visual grounding with crops."""
print("\n" + "=" * 60)
print("4. VISUAL GROUNDING")
print("=" * 60)
from src.document_intelligence import (
load_document,
RenderOptions,
)
from src.document_intelligence.grounding import (
EvidenceBuilder,
crop_region,
create_annotated_image,
)
# Load page image
loader, renderer = load_document(doc_path)
page_image = renderer.render_page(1, RenderOptions(dpi=200))
loader.close()
print(f"\nPage 1 image size: {page_image.shape}")
# Get chunks from page 1
page_chunks = [c for c in parse_result.chunks if c.page == 1]
print(f"Page 1 chunks: {len(page_chunks)}")
# Create evidence for first chunk
if page_chunks:
chunk = page_chunks[0]
evidence_builder = EvidenceBuilder()
evidence = evidence_builder.create_evidence(
chunk=chunk,
value=chunk.text[:50],
field_name="example_field",
)
print(f"\nEvidence created:")
print(f" Chunk ID: {evidence.chunk_id}")
print(f" Page: {evidence.page}")
print(f" BBox: {evidence.bbox.xyxy}")
print(f" Snippet: {evidence.snippet[:80]}...")
# Crop region
crop = crop_region(page_image, chunk.bbox)
print(f" Crop size: {crop.shape}")
# Create annotated image (preview)
print("\nAnnotated image would include bounding boxes for all chunks.")
print("Use the CLI 'sparknet docint visualize' command to generate.")
def demo_classification(parse_result):
"""Demo: Document classification."""
print("\n" + "=" * 60)
print("5. DOCUMENT CLASSIFICATION")
print("=" * 60)
from src.document_intelligence.chunks import DocumentType
# Simple keyword-based classification
first_page = [c for c in parse_result.chunks if c.page == 1][:5]
content = " ".join(c.text for c in first_page).lower()
type_keywords = {
"invoice": ["invoice", "bill", "payment due", "amount due"],
"contract": ["agreement", "contract", "party", "whereas"],
"receipt": ["receipt", "paid", "transaction"],
"patent": ["patent", "claims", "invention"],
"report": ["report", "findings", "summary"],
}
detected_type = "other"
confidence = 0.3
for doc_type, keywords in type_keywords.items():
matches = sum(1 for k in keywords if k in content)
if matches >= 2:
detected_type = doc_type
confidence = min(0.95, 0.5 + matches * 0.15)
break
print(f"\nDetected type: {detected_type}")
print(f"Confidence: {confidence:.2f}")
def main():
"""Run all demos."""
print("=" * 60)
print("SPARKNET Document Intelligence Demo")
print("=" * 60)
# Check for sample document
sample_paths = [
Path("Dataset/Patent_1.pdf"),
Path("data/sample.pdf"),
Path("tests/fixtures/sample.pdf"),
]
doc_path = None
for path in sample_paths:
if path.exists():
doc_path = str(path)
break
if not doc_path:
print("\nNo sample document found.")
print("Please provide a PDF file path as argument.")
print("\nUsage: python document_intelligence_demo.py [path/to/document.pdf]")
if len(sys.argv) > 1:
doc_path = sys.argv[1]
else:
return
print(f"\nUsing document: {doc_path}")
try:
# Run demos
parse_result = demo_parse_document(doc_path)
demo_extract_fields(parse_result)
demo_search_and_qa(parse_result)
demo_grounding(parse_result, doc_path)
demo_classification(parse_result)
print("\n" + "=" * 60)
print("Demo complete!")
print("=" * 60)
except ImportError as e:
print(f"\nImport error: {e}")
print("Make sure all dependencies are installed:")
print(" pip install pymupdf pillow numpy pydantic")
except Exception as e:
print(f"\nError: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|