File size: 6,497 Bytes
d520909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Example: DocumentAgent with ReAct-style Processing

Demonstrates:
1. Loading and processing documents
2. Field extraction with evidence
3. Document classification
4. Question answering with grounding
"""

import asyncio
from pathlib import Path
from loguru import logger

# Import DocumentAgent
from src.agents.document_agent import (
    DocumentAgent,
    AgentConfig,
)
from src.document.schemas.extraction import (
    ExtractionSchema,
    FieldDefinition,
)


async def example_basic_agent():
    """Basic agent usage."""
    print("=" * 50)
    print("Basic DocumentAgent Usage")
    print("=" * 50)

    # Create agent with custom config
    config = AgentConfig(
        default_model="llama3.2:3b",
        max_iterations=10,
        temperature=0.1,
    )
    agent = DocumentAgent(config)

    # Load document
    sample_doc = Path("./data/sample.pdf")
    if not sample_doc.exists():
        print(f"Sample document not found: {sample_doc}")
        print("Create a sample PDF at ./data/sample.pdf")
        return

    print(f"\nLoading document: {sample_doc}")
    await agent.load_document(str(sample_doc))

    print(f"Document loaded: {agent.document.metadata.filename}")
    print(f"Pages: {agent.document.metadata.num_pages}")
    print(f"Chunks: {len(agent.document.chunks)}")


async def example_field_extraction():
    """Extract structured fields with evidence."""
    print("\n" + "=" * 50)
    print("Field Extraction with Evidence")
    print("=" * 50)

    agent = DocumentAgent()

    sample_doc = Path("./data/sample.pdf")
    if not sample_doc.exists():
        print("Sample document not found")
        return

    await agent.load_document(str(sample_doc))

    # Define extraction schema
    schema = ExtractionSchema(
        name="document_info",
        description="Extract key document information",
        fields=[
            FieldDefinition(
                name="title",
                field_type="string",
                description="Document title",
                required=True,
            ),
            FieldDefinition(
                name="author",
                field_type="string",
                description="Document author or organization",
                required=False,
            ),
            FieldDefinition(
                name="date",
                field_type="string",
                description="Document date",
                required=False,
            ),
            FieldDefinition(
                name="summary",
                field_type="string",
                description="Brief summary of document content",
                required=True,
            ),
        ],
    )

    # Extract fields
    print("\nExtracting fields...")
    result = await agent.extract_fields(schema)

    print(f"\nExtracted Fields:")
    for field, value in result.fields.items():
        print(f"  {field}: {value}")

    print(f"\nConfidence: {result.confidence:.2f}")

    if result.evidence:
        print(f"\nEvidence ({len(result.evidence)} sources):")
        for ev in result.evidence[:3]:
            print(f"  - Page {ev.page + 1}: {ev.snippet[:80]}...")


async def example_classification():
    """Classify document type."""
    print("\n" + "=" * 50)
    print("Document Classification")
    print("=" * 50)

    agent = DocumentAgent()

    sample_doc = Path("./data/sample.pdf")
    if not sample_doc.exists():
        print("Sample document not found")
        return

    await agent.load_document(str(sample_doc))

    # Classify
    print("\nClassifying document...")
    classification = await agent.classify()

    print(f"\nDocument Type: {classification.document_type.value}")
    print(f"Confidence: {classification.confidence:.2f}")
    print(f"Reasoning: {classification.reasoning}")

    if classification.metadata:
        print(f"\nAdditional metadata:")
        for key, value in classification.metadata.items():
            print(f"  {key}: {value}")


async def example_question_answering():
    """Answer questions about document with evidence."""
    print("\n" + "=" * 50)
    print("Question Answering with Evidence")
    print("=" * 50)

    agent = DocumentAgent()

    sample_doc = Path("./data/sample.pdf")
    if not sample_doc.exists():
        print("Sample document not found")
        return

    await agent.load_document(str(sample_doc))

    # Questions to ask
    questions = [
        "What is this document about?",
        "What are the main findings or conclusions?",
        "Are there any tables or figures? What do they show?",
    ]

    for question in questions:
        print(f"\nQ: {question}")
        print("-" * 40)

        answer, evidence = await agent.answer_question(question)

        print(f"A: {answer}")

        if evidence:
            print(f"\nEvidence:")
            for ev in evidence[:2]:
                print(f"  - Page {ev.page + 1} ({ev.source_type}): {ev.snippet[:60]}...")


async def example_react_task():
    """Run a complex task with ReAct-style reasoning."""
    print("\n" + "=" * 50)
    print("ReAct-style Task Execution")
    print("=" * 50)

    agent = DocumentAgent()

    sample_doc = Path("./data/sample.pdf")
    if not sample_doc.exists():
        print("Sample document not found")
        return

    await agent.load_document(str(sample_doc))

    # Complex task
    task = """
    Analyze this document and provide:
    1. A brief summary of the content
    2. The document type and purpose
    3. Any key data points or figures mentioned
    4. Your confidence in the analysis
    """

    print(f"\nTask: {task}")
    print("-" * 40)

    # Run with trace
    result, trace = await agent.run(task)

    print(f"\nResult:\n{result}")

    print(f"\n--- Agent Trace ---")
    print(f"Steps: {len(trace.steps)}")
    print(f"Tools used: {trace.tools_used}")
    print(f"Total time: {trace.total_time:.2f}s")

    # Show thinking process
    print(f"\nReasoning trace:")
    for i, step in enumerate(trace.steps[:5], 1):
        print(f"\n[Step {i}] {step.action}")
        if step.thought:
            print(f"  Thought: {step.thought[:100]}...")
        if step.observation:
            print(f"  Observation: {step.observation[:100]}...")


async def main():
    """Run all examples."""
    await example_basic_agent()
    await example_field_extraction()
    await example_classification()
    await example_question_answering()
    await example_react_task()


if __name__ == "__main__":
    asyncio.run(main())