File size: 12,556 Bytes
d520909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# SPARKNET Cloud Architecture
This document outlines the cloud-ready architecture for deploying SPARKNET on AWS.
## Overview
SPARKNET is designed with a modular architecture that supports both local development and cloud deployment. The system can scale from a single developer machine to enterprise-grade cloud infrastructure.
## Local Development Stack
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Local Machine β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Ollama β β ChromaDB β β File I/O β β
β β (LLM) β β (Vector) β β (Storage) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β β β β
β βββββββββββββββββΌββββββββββββββββ β
β β β
β ββββββββββ΄βββββββββ β
β β SPARKNET β β
β β Application β β
β βββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
## AWS Cloud Architecture
### Target Architecture
```
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β AWS Cloud β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β API GW ββββββββ Lambda ββββββββ Step Functions β β
β β (REST) β β (Compute) β β (Orchestration) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β β β β
β β β β β
β βΌ βΌ βΌ β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β S3 β β Bedrock β β OpenSearch β β
β β (Storage) β β (LLM) β β (Vector Store) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β Textract β β Titan β β DynamoDB β β
β β (OCR) β β (Embeddings)β β (Metadata) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
### Component Mapping
| Local Component | AWS Service | Purpose |
|----------------|-------------|---------|
| File I/O | S3 | Document storage |
| PaddleOCR/Tesseract | Textract | OCR extraction |
| Ollama LLM | Bedrock (Claude/Titan) | Text generation |
| Ollama Embeddings | Titan Embeddings | Vector embeddings |
| ChromaDB | OpenSearch Serverless | Vector search |
| SQLite (optional) | DynamoDB | Metadata storage |
| Python Process | Lambda | Compute |
| CLI | API Gateway | HTTP interface |
## Migration Strategy
### Phase 1: Storage Migration
```python
# Abstract storage interface
class StorageAdapter:
def put(self, key: str, data: bytes) -> str: ...
def get(self, key: str) -> bytes: ...
def delete(self, key: str) -> bool: ...
# Local implementation
class LocalStorageAdapter(StorageAdapter):
def __init__(self, base_path: str):
self.base_path = Path(base_path)
# S3 implementation
class S3StorageAdapter(StorageAdapter):
def __init__(self, bucket: str):
self.client = boto3.client('s3')
self.bucket = bucket
```
### Phase 2: OCR Migration
```python
# Abstract OCR interface
class OCREngine:
def recognize(self, image: np.ndarray) -> OCRResult: ...
# Local: PaddleOCR
class PaddleOCREngine(OCREngine): ...
# Cloud: Textract
class TextractEngine(OCREngine):
def __init__(self):
self.client = boto3.client('textract')
def recognize(self, image: np.ndarray) -> OCRResult:
response = self.client.detect_document_text(
Document={'Bytes': image_bytes}
)
return self._convert_response(response)
```
### Phase 3: LLM Migration
```python
# Abstract LLM interface
class LLMAdapter:
def generate(self, prompt: str) -> str: ...
# Local: Ollama
class OllamaAdapter(LLMAdapter): ...
# Cloud: Bedrock
class BedrockAdapter(LLMAdapter):
def __init__(self, model_id: str = "anthropic.claude-3-sonnet"):
self.client = boto3.client('bedrock-runtime')
self.model_id = model_id
def generate(self, prompt: str) -> str:
response = self.client.invoke_model(
modelId=self.model_id,
body=json.dumps({"prompt": prompt})
)
return response['body']
```
### Phase 4: Vector Store Migration
```python
# Abstract vector store interface (already implemented)
class VectorStore:
def add_chunks(self, chunks, embeddings): ...
def search(self, query_embedding, top_k): ...
# Local: ChromaDB (already implemented)
class ChromaVectorStore(VectorStore): ...
# Cloud: OpenSearch
class OpenSearchVectorStore(VectorStore):
def __init__(self, endpoint: str, index: str):
self.client = OpenSearch(hosts=[endpoint])
self.index = index
def search(self, query_embedding, top_k):
response = self.client.search(
index=self.index,
body={
"knn": {
"embedding": {
"vector": query_embedding,
"k": top_k
}
}
}
)
return self._convert_results(response)
```
## AWS Services Deep Dive
### Amazon S3
- **Purpose**: Document storage and processed results
- **Structure**:
```
s3://sparknet-documents/
βββ raw/ # Original documents
β βββ {doc_id}/
β βββ document.pdf
βββ processed/ # Processed results
β βββ {doc_id}/
β βββ metadata.json
β βββ chunks.json
β βββ pages/
β βββ page_0.png
β βββ page_1.png
βββ cache/ # Processing cache
```
### Amazon Textract
- **Purpose**: OCR extraction with layout analysis
- **Features**:
- Document text detection
- Table extraction
- Form extraction
- Handwriting recognition
### Amazon Bedrock
- **Purpose**: LLM inference
- **Models**:
- Claude 3.5 Sonnet (primary)
- Titan Text (cost-effective)
- Titan Embeddings (vectors)
### Amazon OpenSearch Serverless
- **Purpose**: Vector search and retrieval
- **Configuration**:
```json
{
"index": "sparknet-vectors",
"settings": {
"index.knn": true,
"index.knn.space_type": "cosinesimil"
},
"mappings": {
"properties": {
"embedding": {
"type": "knn_vector",
"dimension": 1024
}
}
}
}
```
### AWS Lambda
- **Purpose**: Serverless compute
- **Functions**:
- `process-document`: Document processing pipeline
- `extract-fields`: Field extraction
- `rag-query`: RAG query handling
- `index-document`: Vector indexing
### AWS Step Functions
- **Purpose**: Workflow orchestration
- **Workflow**:
```json
{
"StartAt": "ProcessDocument",
"States": {
"ProcessDocument": {
"Type": "Task",
"Resource": "arn:aws:lambda:process-document",
"Next": "IndexChunks"
},
"IndexChunks": {
"Type": "Task",
"Resource": "arn:aws:lambda:index-document",
"End": true
}
}
}
```
## Cost Optimization
### Tiered Processing
| Tier | Use Case | Services | Cost |
|------|----------|----------|------|
| Basic | Simple OCR | Textract + Titan | $ |
| Standard | Full pipeline | + Claude Haiku | $$ |
| Premium | Complex analysis | + Claude Sonnet | $$$ |
### Caching Strategy
1. **Document Cache**: S3 with lifecycle policies
2. **Embedding Cache**: ElastiCache (Redis)
3. **Query Cache**: Lambda@Edge
## Security
### IAM Policies
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject"
],
"Resource": "arn:aws:s3:::sparknet-documents/*"
},
{
"Effect": "Allow",
"Action": [
"textract:DetectDocumentText",
"textract:AnalyzeDocument"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"bedrock:InvokeModel"
],
"Resource": "arn:aws:bedrock:*::foundation-model/*"
}
]
}
```
### Data Encryption
- S3: Server-side encryption (SSE-S3 or SSE-KMS)
- OpenSearch: Encryption at rest
- Lambda: Environment variable encryption
## Deployment
### Infrastructure as Code (Terraform)
```hcl
# S3 Bucket
resource "aws_s3_bucket" "documents" {
bucket = "sparknet-documents"
}
# Lambda Function
resource "aws_lambda_function" "processor" {
function_name = "sparknet-processor"
runtime = "python3.11"
handler = "handler.process"
memory_size = 1024
timeout = 300
}
# OpenSearch Serverless
resource "aws_opensearchserverless_collection" "vectors" {
name = "sparknet-vectors"
type = "VECTORSEARCH"
}
```
### CI/CD Pipeline
```yaml
# GitHub Actions
name: Deploy SPARKNET
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Deploy Lambda
run: |
aws lambda update-function-code \
--function-name sparknet-processor \
--zip-file fileb://package.zip
```
## Monitoring
### CloudWatch Metrics
- Lambda invocations and duration
- S3 request counts
- OpenSearch query latency
- Bedrock token usage
### Dashboards
- Processing throughput
- Error rates
- Cost tracking
- Vector store statistics
## Next Steps
1. **Implement Storage Abstraction**: Create S3 adapter
2. **Add Textract Engine**: Implement AWS OCR
3. **Create Bedrock Adapter**: LLM migration
4. **Deploy OpenSearch**: Vector store setup
5. **Build Lambda Functions**: Serverless compute
6. **Setup Step Functions**: Workflow orchestration
7. **Configure CI/CD**: Automated deployment
|