AIHumanizer / text_humanizer.py
Jay-Rajput's picture
org humanizer
5ee5fa7
import re
import random
import nltk
from typing import List, Dict, Optional
from sentence_transformers import SentenceTransformer
import numpy as np
from transformers import pipeline
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
try:
nltk.data.find('corpora/omw-1.4')
except LookupError:
nltk.download('omw-1.4')
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import wordnet
class AITextHumanizer:
def __init__(self):
"""Initialize the text humanizer with necessary models and data"""
print("Loading models...")
# Load sentence transformer for semantic similarity
try:
self.similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
except Exception as e:
print(f"Warning: Could not load similarity model: {e}")
self.similarity_model = None
# Initialize paraphrasing pipeline
try:
self.paraphraser = pipeline("text2text-generation",
model="google/flan-t5-small",
max_length=512)
except Exception as e:
print(f"Warning: Could not load paraphrasing model: {e}")
self.paraphraser = None
# Formal to casual word mappings
self.formal_to_casual = {
"utilize": "use",
"demonstrate": "show",
"facilitate": "help",
"implement": "do",
"consequently": "so",
"therefore": "so",
"nevertheless": "but",
"furthermore": "also",
"moreover": "also",
"subsequently": "then",
"accordingly": "so",
"regarding": "about",
"concerning": "about",
"pertaining": "about",
"approximately": "about",
"endeavor": "try",
"commence": "start",
"terminate": "end",
"obtain": "get",
"purchase": "buy",
"examine": "look at",
"analyze": "study",
"construct": "build",
"establish": "set up",
"magnitude": "size",
"comprehensive": "complete",
"significant": "big",
"substantial": "large",
"optimal": "best",
"sufficient": "enough",
"prior to": "before",
"in order to": "to",
"due to the fact that": "because",
"at this point in time": "now",
"in the event that": "if",
}
# Contractions mapping
self.contractions = {
"do not": "don't",
"does not": "doesn't",
"did not": "didn't",
"will not": "won't",
"would not": "wouldn't",
"should not": "shouldn't",
"could not": "couldn't",
"cannot": "can't",
"is not": "isn't",
"are not": "aren't",
"was not": "wasn't",
"were not": "weren't",
"have not": "haven't",
"has not": "hasn't",
"had not": "hadn't",
"I am": "I'm",
"you are": "you're",
"he is": "he's",
"she is": "she's",
"it is": "it's",
"we are": "we're",
"they are": "they're",
"I have": "I've",
"you have": "you've",
"we have": "we've",
"they have": "they've",
"I will": "I'll",
"you will": "you'll",
"he will": "he'll",
"she will": "she'll",
"it will": "it'll",
"we will": "we'll",
"they will": "they'll",
}
# Transition words that make text sound more AI-like
self.ai_transition_words = [
"Furthermore,", "Moreover,", "Additionally,", "Subsequently,",
"Consequently,", "Therefore,", "Nevertheless,", "However,",
"In conclusion,", "To summarize,", "In summary,", "Overall,",
"It is important to note that", "It should be emphasized that",
"It is worth mentioning that", "It is crucial to understand that"
]
# Natural alternatives
self.natural_transitions = [
"Also,", "Plus,", "And,", "Then,", "So,", "But,", "Still,",
"Anyway,", "By the way,", "Actually,", "Basically,",
"Look,", "Listen,", "Here's the thing:", "The point is,",
"What's more,", "On top of that,", "Another thing,",
]
print("Humanizer initialized successfully!")
def add_contractions(self, text: str) -> str:
"""Add contractions to make text sound more natural"""
for formal, casual in self.contractions.items():
# Case insensitive replacement but preserve original case
pattern = re.compile(re.escape(formal), re.IGNORECASE)
text = pattern.sub(casual, text)
return text
def replace_formal_words(self, text: str, replacement_rate: float = 0.7) -> str:
"""Replace formal words with casual alternatives"""
words = word_tokenize(text)
for i, word in enumerate(words):
word_lower = word.lower()
if word_lower in self.formal_to_casual and random.random() < replacement_rate:
# Preserve original case
if word.isupper():
words[i] = self.formal_to_casual[word_lower].upper()
elif word.istitle():
words[i] = self.formal_to_casual[word_lower].title()
else:
words[i] = self.formal_to_casual[word_lower]
# Reconstruct text with proper spacing
result = ""
for i, word in enumerate(words):
if i > 0 and word not in ".,!?;:":
result += " "
result += word
return result
def vary_sentence_structure(self, text: str) -> str:
"""Vary sentence structure to sound more natural"""
sentences = sent_tokenize(text)
varied_sentences = []
for sentence in sentences:
# Sometimes start sentences with connecting words
if random.random() < 0.3:
connectors = ["Well,", "So,", "Now,", "Look,", "Actually,", "Basically,"]
if not any(sentence.startswith(word) for word in connectors):
sentence = random.choice(connectors) + " " + sentence.lower()
# Occasionally break long sentences
if len(sentence.split()) > 20 and random.random() < 0.4:
words = sentence.split()
mid_point = len(words) // 2
# Find a natural break point near the middle
for i in range(mid_point - 3, min(mid_point + 3, len(words))):
if words[i] in [',', 'and', 'but', 'or', 'so']:
sentence1 = ' '.join(words[:i+1])
sentence2 = ' '.join(words[i+1:])
if sentence2:
sentence2 = sentence2[0].upper() + sentence2[1:]
varied_sentences.append(sentence1)
sentence = sentence2
break
varied_sentences.append(sentence)
return ' '.join(varied_sentences)
def replace_ai_transitions(self, text: str) -> str:
"""Replace AI-like transition words with natural alternatives"""
for ai_word in self.ai_transition_words:
if ai_word in text:
natural_replacement = random.choice(self.natural_transitions)
text = text.replace(ai_word, natural_replacement)
return text
def add_natural_imperfections(self, text: str, imperfection_rate: float = 0.1) -> str:
"""Add subtle imperfections to make text more human-like"""
sentences = sent_tokenize(text)
modified_sentences = []
for sentence in sentences:
# Occasionally start with lowercase after punctuation (casual style)
if random.random() < imperfection_rate:
words = sentence.split()
if len(words) > 1 and words[0].lower() in ['and', 'but', 'or', 'so']:
sentence = words[0].lower() + ' ' + ' '.join(words[1:])
# Sometimes use informal punctuation
if random.random() < imperfection_rate:
if sentence.endswith('.'):
sentence = sentence[:-1] # Remove period occasionally
elif not sentence.endswith(('.', '!', '?')):
if random.random() < 0.5:
sentence += '.'
modified_sentences.append(sentence)
return ' '.join(modified_sentences)
def paraphrase_segments(self, text: str, paraphrase_rate: float = 0.3) -> str:
"""Paraphrase some segments using the transformer model"""
if not self.paraphraser:
return text
sentences = sent_tokenize(text)
paraphrased_sentences = []
for sentence in sentences:
if random.random() < paraphrase_rate and len(sentence.split()) > 5:
try:
# Create paraphrase prompt
prompt = f"Rewrite this sentence in a more natural, conversational way: {sentence}"
result = self.paraphraser(prompt, max_length=100, num_return_sequences=1)
paraphrased = result[0]['generated_text']
# Clean up the result
paraphrased = paraphrased.replace(prompt, '').strip()
if paraphrased and len(paraphrased) > 10:
paraphrased_sentences.append(paraphrased)
else:
paraphrased_sentences.append(sentence)
except Exception as e:
print(f"Paraphrasing failed: {e}")
paraphrased_sentences.append(sentence)
else:
paraphrased_sentences.append(sentence)
return ' '.join(paraphrased_sentences)
def calculate_similarity(self, text1: str, text2: str) -> float:
"""Calculate semantic similarity between original and humanized text"""
if not self.similarity_model:
return 0.85 # Return reasonable default if model not available
try:
embeddings1 = self.similarity_model.encode([text1])
embeddings2 = self.similarity_model.encode([text2])
similarity = np.dot(embeddings1[0], embeddings2[0]) / (
np.linalg.norm(embeddings1[0]) * np.linalg.norm(embeddings2[0])
)
return float(similarity)
except Exception as e:
print(f"Similarity calculation failed: {e}")
return 0.85
def humanize_text(self,
text: str,
style: str = "natural",
intensity: float = 0.7) -> Dict:
"""
Main humanization function
Args:
text: Input text to humanize
style: Style of humanization ('natural', 'casual', 'conversational')
intensity: Intensity of humanization (0.0 to 1.0)
Returns:
Dictionary with humanized text and metadata
"""
if not text.strip():
return {
"original_text": text,
"humanized_text": text,
"similarity_score": 1.0,
"changes_made": []
}
changes_made = []
humanized_text = text
# Apply transformations based on intensity
if intensity > 0.2:
# Replace formal words
before_formal = humanized_text
humanized_text = self.replace_formal_words(humanized_text, intensity * 0.7)
if humanized_text != before_formal:
changes_made.append("Replaced formal words with casual alternatives")
if intensity > 0.3:
# Add contractions
before_contractions = humanized_text
humanized_text = self.add_contractions(humanized_text)
if humanized_text != before_contractions:
changes_made.append("Added contractions")
if intensity > 0.4:
# Replace AI-like transitions
before_transitions = humanized_text
humanized_text = self.replace_ai_transitions(humanized_text)
if humanized_text != before_transitions:
changes_made.append("Replaced AI-like transition words")
if intensity > 0.5:
# Vary sentence structure
before_structure = humanized_text
humanized_text = self.vary_sentence_structure(humanized_text)
if humanized_text != before_structure:
changes_made.append("Varied sentence structure")
if intensity > 0.6 and style in ["casual", "conversational"]:
# Add natural imperfections
before_imperfections = humanized_text
humanized_text = self.add_natural_imperfections(humanized_text, intensity * 0.2)
if humanized_text != before_imperfections:
changes_made.append("Added natural imperfections")
if intensity > 0.7:
# Paraphrase some segments
before_paraphrase = humanized_text
humanized_text = self.paraphrase_segments(humanized_text, intensity * 0.4)
if humanized_text != before_paraphrase:
changes_made.append("Paraphrased some segments")
# Calculate similarity
similarity_score = self.calculate_similarity(text, humanized_text)
return {
"original_text": text,
"humanized_text": humanized_text,
"similarity_score": similarity_score,
"changes_made": changes_made,
"style": style,
"intensity": intensity
}
# Test the humanizer
if __name__ == "__main__":
humanizer = AITextHumanizer()
# Test text
test_text = """
Furthermore, it is important to note that artificial intelligence systems demonstrate
significant capabilities in natural language processing tasks. Subsequently, these
systems can analyze and generate text with remarkable accuracy. Nevertheless, it is
crucial to understand that human oversight remains essential for optimal performance.
Therefore, organizations should implement comprehensive strategies to utilize these
technologies effectively while maintaining quality standards.
"""
print("Original Text:")
print(test_text)
print("\n" + "="*50 + "\n")
result = humanizer.humanize_text(test_text, style="conversational", intensity=0.8)
print("Humanized Text:")
print(result["humanized_text"])
print(f"\nSimilarity Score: {result['similarity_score']:.3f}")
print(f"Changes Made: {', '.join(result['changes_made'])}")