Spaces:
Sleeping
Sleeping
| import re | |
| import random | |
| import nltk | |
| import numpy as np | |
| from typing import List, Dict, Optional, Tuple | |
| import time | |
| import math | |
| from collections import Counter, defaultdict | |
| import statistics | |
| # Download required NLTK data | |
| def ensure_nltk_data(): | |
| try: | |
| nltk.data.find('tokenizers/punkt') | |
| except LookupError: | |
| nltk.download('punkt', quiet=True) | |
| try: | |
| nltk.data.find('corpora/wordnet') | |
| except LookupError: | |
| nltk.download('wordnet', quiet=True) | |
| try: | |
| nltk.data.find('corpora/omw-1.4') | |
| except LookupError: | |
| nltk.download('omw-1.4', quiet=True) | |
| try: | |
| nltk.data.find('taggers/averaged_perceptron_tagger') | |
| except LookupError: | |
| nltk.download('averaged_perceptron_tagger', quiet=True) | |
| ensure_nltk_data() | |
| from nltk.tokenize import sent_tokenize, word_tokenize | |
| from nltk import pos_tag | |
| from nltk.corpus import wordnet | |
| # Advanced imports with fallbacks | |
| def safe_import_with_detailed_fallback(module_name, component=None, max_retries=2): | |
| """Import with fallbacks and detailed error reporting""" | |
| for attempt in range(max_retries): | |
| try: | |
| if component: | |
| module = __import__(module_name, fromlist=[component]) | |
| return getattr(module, component), True | |
| else: | |
| return __import__(module_name), True | |
| except ImportError as e: | |
| if attempt == max_retries - 1: | |
| print(f"β Could not import {module_name}.{component if component else ''}: {e}") | |
| return None, False | |
| except Exception as e: | |
| print(f"β Error importing {module_name}: {e}") | |
| return None, False | |
| return None, False | |
| # Advanced model imports | |
| print("π― Loading Professional AI Text Humanizer...") | |
| SentenceTransformer, SENTENCE_TRANSFORMERS_AVAILABLE = safe_import_with_detailed_fallback('sentence_transformers', 'SentenceTransformer') | |
| pipeline, TRANSFORMERS_AVAILABLE = safe_import_with_detailed_fallback('transformers', 'pipeline') | |
| try: | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity as sklearn_cosine_similarity | |
| SKLEARN_AVAILABLE = True | |
| except ImportError: | |
| SKLEARN_AVAILABLE = False | |
| try: | |
| import torch | |
| TORCH_AVAILABLE = True | |
| except ImportError: | |
| TORCH_AVAILABLE = False | |
| class ProfessionalAITextHumanizer: | |
| """ | |
| Professional AI Text Humanizer - Clean, Structure-Preserving, Error-Free | |
| Based on research but focused on professional quality output | |
| """ | |
| def __init__(self, enable_gpu=True, preserve_structure=True): | |
| print("π― Initializing Professional AI Text Humanizer...") | |
| print("π Clean, Structure-Preserving, Professional Quality") | |
| self.enable_gpu = enable_gpu and TORCH_AVAILABLE | |
| self.preserve_structure = preserve_structure | |
| # Initialize advanced models | |
| self._load_advanced_models() | |
| self._initialize_professional_database() | |
| self._setup_structure_preservation() | |
| print("β Professional AI Text Humanizer ready!") | |
| self._print_capabilities() | |
| def _load_advanced_models(self): | |
| """Load advanced NLP models for humanization""" | |
| self.similarity_model = None | |
| self.paraphraser = None | |
| # Load sentence transformer for semantic analysis | |
| if SENTENCE_TRANSFORMERS_AVAILABLE: | |
| try: | |
| print("π₯ Loading advanced similarity model...") | |
| device = 'cuda' if self.enable_gpu and TORCH_AVAILABLE and torch.cuda.is_available() else 'cpu' | |
| self.similarity_model = SentenceTransformer('all-MiniLM-L6-v2', device=device) | |
| print("β Advanced similarity model loaded") | |
| except Exception as e: | |
| print(f"β οΈ Could not load similarity model: {e}") | |
| # Load paraphrasing model | |
| if TRANSFORMERS_AVAILABLE: | |
| try: | |
| print("π₯ Loading advanced paraphrasing model...") | |
| device = 0 if self.enable_gpu and TORCH_AVAILABLE and torch.cuda.is_available() else -1 | |
| self.paraphraser = pipeline( | |
| "text2text-generation", | |
| model="google/flan-t5-base", # Larger model for better quality | |
| device=device, | |
| max_length=512 | |
| ) | |
| print("β Advanced paraphrasing model loaded") | |
| except Exception as e: | |
| print(f"β οΈ Could not load paraphrasing model, trying smaller model: {e}") | |
| try: | |
| self.paraphraser = pipeline( | |
| "text2text-generation", | |
| model="google/flan-t5-small", | |
| device=device, | |
| max_length=512 | |
| ) | |
| print("β Fallback paraphrasing model loaded") | |
| except Exception as e2: | |
| print(f"β οΈ Could not load any paraphrasing model: {e2}") | |
| # Initialize fallback TF-IDF | |
| if SKLEARN_AVAILABLE: | |
| self.tfidf_vectorizer = TfidfVectorizer( | |
| stop_words='english', | |
| ngram_range=(1, 3), | |
| max_features=10000 | |
| ) | |
| else: | |
| self.tfidf_vectorizer = None | |
| def _initialize_professional_database(self): | |
| """Initialize professional humanization patterns - clean and error-free""" | |
| # Professional formal-to-natural mappings (no slang, no errors) | |
| self.formal_to_natural = { | |
| # Academic/business formal words - professional alternatives | |
| "utilize": ["use", "employ", "apply"], | |
| "demonstrate": ["show", "illustrate", "reveal", "display"], | |
| "facilitate": ["enable", "help", "assist", "support"], | |
| "implement": ["execute", "carry out", "put in place", "apply"], | |
| "consequently": ["therefore", "as a result", "thus", "hence"], | |
| "furthermore": ["additionally", "also", "moreover", "besides"], | |
| "moreover": ["additionally", "furthermore", "also", "besides"], | |
| "nevertheless": ["however", "nonetheless", "still", "yet"], | |
| "subsequently": ["later", "then", "afterward", "next"], | |
| "accordingly": ["therefore", "thus", "hence", "consequently"], | |
| "regarding": ["about", "concerning", "with respect to", "relating to"], | |
| "pertaining": ["relating", "concerning", "regarding", "about"], | |
| "approximately": ["about", "around", "roughly", "nearly"], | |
| "endeavor": ["effort", "attempt", "try", "work"], | |
| "commence": ["begin", "start", "initiate", "launch"], | |
| "terminate": ["end", "conclude", "finish", "complete"], | |
| "obtain": ["get", "acquire", "secure", "gain"], | |
| "purchase": ["buy", "acquire", "obtain", "get"], | |
| "examine": ["review", "study", "analyze", "investigate"], | |
| "analyze": ["examine", "study", "review", "evaluate"], | |
| "construct": ["build", "create", "develop", "establish"], | |
| "establish": ["create", "set up", "build", "form"], | |
| # Advanced professional terms | |
| "methodology": ["method", "approach", "system", "process"], | |
| "systematic": ["organized", "structured", "methodical", "planned"], | |
| "comprehensive": ["complete", "thorough", "extensive", "full"], | |
| "significant": ["important", "notable", "substantial", "considerable"], | |
| "substantial": ["considerable", "significant", "large", "major"], | |
| "optimal": ["best", "ideal", "most effective", "superior"], | |
| "sufficient": ["adequate", "enough", "satisfactory", "appropriate"], | |
| "adequate": ["sufficient", "appropriate", "satisfactory", "suitable"], | |
| "exceptional": ["outstanding", "remarkable", "excellent", "superior"], | |
| "predominant": ["main", "primary", "principal", "leading"], | |
| "fundamental": ["basic", "essential", "core", "primary"], | |
| "essential": ["vital", "crucial", "important", "necessary"], | |
| "crucial": ["vital", "essential", "critical", "important"], | |
| "paramount": ["extremely important", "vital", "crucial", "essential"], | |
| "imperative": ["essential", "vital", "necessary", "critical"], | |
| "mandatory": ["required", "necessary", "compulsory", "essential"], | |
| # Technical and business terms | |
| "optimization": ["improvement", "enhancement", "refinement", "upgrading"], | |
| "enhancement": ["improvement", "upgrade", "refinement", "advancement"], | |
| "implementation": ["execution", "application", "deployment", "realization"], | |
| "utilization": ["use", "application", "employment", "usage"], | |
| "evaluation": ["assessment", "review", "analysis", "examination"], | |
| "assessment": ["evaluation", "review", "analysis", "appraisal"], | |
| "validation": ["confirmation", "verification", "approval", "endorsement"], | |
| "verification": ["confirmation", "validation", "checking", "proof"], | |
| "consolidation": ["integration", "merger", "combination", "unification"], | |
| "integration": ["combination", "merger", "unification", "incorporation"], | |
| "transformation": ["change", "conversion", "modification", "evolution"], | |
| "modification": ["change", "adjustment", "alteration", "revision"], | |
| "alteration": ["change", "modification", "adjustment", "revision"] | |
| } | |
| # Professional AI phrase replacements - maintaining formality | |
| self.ai_phrases_professional = { | |
| "it is important to note that": ["notably", "importantly", "it should be noted that", "worth noting"], | |
| "it should be emphasized that": ["importantly", "significantly", "notably", "crucially"], | |
| "it is worth mentioning that": ["notably", "additionally", "it should be noted", "importantly"], | |
| "it is crucial to understand that": ["importantly", "significantly", "it's vital to recognize", "crucially"], | |
| "from a practical standpoint": ["practically", "in practice", "from a practical perspective", "practically speaking"], | |
| "from an analytical perspective": ["analytically", "from an analysis viewpoint", "analytically speaking", "in analysis"], | |
| "in terms of implementation": ["regarding implementation", "for implementation", "in implementing", "concerning implementation"], | |
| "with respect to the aforementioned": ["regarding the above", "concerning this", "about the mentioned", "relating to this"], | |
| "as previously mentioned": ["as noted earlier", "as stated above", "as discussed", "as indicated"], | |
| "in light of this": ["considering this", "given this", "in view of this", "based on this"], | |
| "it is imperative to understand": ["it's essential to know", "importantly", "critically", "vitally"], | |
| "one must consider": ["we should consider", "it's important to consider", "consideration should be given", "we must consider"], | |
| "it is evident that": ["clearly", "obviously", "it's clear that", "evidently"], | |
| "it can be observed that": ["we can see", "it's apparent", "clearly", "evidently"], | |
| "upon careful consideration": ["after consideration", "having considered", "upon reflection", "after analysis"], | |
| "in the final analysis": ["ultimately", "finally", "in conclusion", "overall"] | |
| } | |
| # Professional contractions (clean, no colloquialisms) | |
| self.professional_contractions = { | |
| "do not": "don't", "does not": "doesn't", "did not": "didn't", | |
| "will not": "won't", "would not": "wouldn't", "should not": "shouldn't", | |
| "could not": "couldn't", "cannot": "can't", "is not": "isn't", | |
| "are not": "aren't", "was not": "wasn't", "were not": "weren't", | |
| "have not": "haven't", "has not": "hasn't", "had not": "hadn't", | |
| "I am": "I'm", "you are": "you're", "he is": "he's", "she is": "she's", | |
| "it is": "it's", "we are": "we're", "they are": "they're", | |
| "I have": "I've", "you have": "you've", "we have": "we've", | |
| "they have": "they've", "I will": "I'll", "you will": "you'll", | |
| "he will": "he'll", "she will": "she'll", "it will": "it'll", | |
| "we will": "we'll", "they will": "they'll" | |
| } | |
| # Professional transition words (no slang or informal expressions) | |
| self.professional_transitions = [ | |
| "Additionally,", "Furthermore,", "Moreover,", "Also,", "Besides,", | |
| "Similarly,", "Likewise,", "In addition,", "What's more,", | |
| "On top of that,", "Beyond that,", "Apart from that,", | |
| "In the same way,", "Equally,", "Correspondingly," | |
| ] | |
| def _setup_structure_preservation(self): | |
| """Setup patterns for preserving text structure""" | |
| # Patterns to preserve | |
| self.structure_patterns = { | |
| 'paragraph_breaks': r'\n\s*\n', | |
| 'bullet_points': r'^\s*[β’\-\*]\s+', | |
| 'numbered_lists': r'^\s*\d+\.\s+', | |
| 'headers': r'^#+\s+', | |
| 'quotes': r'^>\s+', | |
| 'code_blocks': r'```[\s\S]*?```', | |
| 'inline_code': r'`[^`]+`' | |
| } | |
| # Sentence boundary preservation | |
| self.preserve_sentence_endings = True | |
| self.preserve_paragraph_structure = True | |
| self.preserve_formatting = True | |
| def preserve_text_structure(self, original: str, processed: str) -> str: | |
| """Preserve the original text structure in processed text""" | |
| if not self.preserve_structure: | |
| return processed | |
| # Preserve paragraph breaks | |
| original_paragraphs = re.split(r'\n\s*\n', original) | |
| processed_sentences = sent_tokenize(processed) | |
| if len(original_paragraphs) > 1: | |
| # Try to maintain paragraph structure | |
| result_paragraphs = [] | |
| sentence_idx = 0 | |
| for para in original_paragraphs: | |
| para_sentences = sent_tokenize(para) | |
| para_sentence_count = len(para_sentences) | |
| if sentence_idx + para_sentence_count <= len(processed_sentences): | |
| para_processed = ' '.join(processed_sentences[sentence_idx:sentence_idx + para_sentence_count]) | |
| result_paragraphs.append(para_processed) | |
| sentence_idx += para_sentence_count | |
| else: | |
| # Fallback: add remaining sentences to this paragraph | |
| remaining = ' '.join(processed_sentences[sentence_idx:]) | |
| if remaining: | |
| result_paragraphs.append(remaining) | |
| break | |
| return '\n\n'.join(result_paragraphs) | |
| return processed | |
| def calculate_perplexity(self, text: str) -> float: | |
| """Calculate text perplexity (predictability measure)""" | |
| words = word_tokenize(text.lower()) | |
| if len(words) < 2: | |
| return 1.0 | |
| # Simple n-gram based perplexity calculation | |
| word_counts = Counter(words) | |
| total_words = len(words) | |
| # Calculate probability of each word | |
| perplexity_sum = 0 | |
| for i, word in enumerate(words[1:], 1): | |
| prev_word = words[i-1] | |
| # Probability based on frequency | |
| prob = word_counts[word] / total_words | |
| if prob > 0: | |
| perplexity_sum += -math.log2(prob) | |
| return perplexity_sum / len(words) if words else 1.0 | |
| def calculate_burstiness(self, text: str) -> float: | |
| """Calculate text burstiness (sentence length variation)""" | |
| sentences = sent_tokenize(text) | |
| if len(sentences) < 2: | |
| return 0.0 | |
| # Calculate sentence lengths | |
| lengths = [len(word_tokenize(sent)) for sent in sentences] | |
| # Calculate coefficient of variation (std dev / mean) | |
| mean_length = statistics.mean(lengths) | |
| if mean_length == 0: | |
| return 0.0 | |
| std_dev = statistics.stdev(lengths) if len(lengths) > 1 else 0 | |
| burstiness = std_dev / mean_length | |
| return burstiness | |
| def enhance_perplexity_professional(self, text: str, intensity: float = 0.3) -> str: | |
| """Enhance text perplexity professionally - no errors or slang""" | |
| sentences = sent_tokenize(text) | |
| enhanced_sentences = [] | |
| for sentence in sentences: | |
| if random.random() < intensity: | |
| words = word_tokenize(sentence) | |
| # Professional synonym replacement | |
| for i, word in enumerate(words): | |
| if word.lower() in self.formal_to_natural: | |
| if random.random() < 0.4: | |
| alternatives = self.formal_to_natural[word.lower()] | |
| # Choose most professional alternative | |
| replacement = alternatives[0] if alternatives else word | |
| # Preserve case | |
| if word.isupper(): | |
| replacement = replacement.upper() | |
| elif word.istitle(): | |
| replacement = replacement.title() | |
| words[i] = replacement | |
| sentence = ' '.join(words) | |
| enhanced_sentences.append(sentence) | |
| return ' '.join(enhanced_sentences) | |
| def enhance_burstiness_professional(self, text: str, intensity: float = 0.5) -> str: | |
| """Enhance text burstiness while preserving professional structure""" | |
| sentences = sent_tokenize(text) | |
| if len(sentences) < 2: | |
| return text | |
| enhanced_sentences = [] | |
| for i, sentence in enumerate(sentences): | |
| words = word_tokenize(sentence) | |
| # Gentle sentence variation - no breaking, just slight restructuring | |
| if len(words) > 15 and random.random() < intensity * 0.3: | |
| # Find natural conjunction points for gentle restructuring | |
| conjunctions = ['and', 'but', 'or', 'so', 'because', 'when', 'where', 'which', 'that'] | |
| for j, word in enumerate(words): | |
| if word.lower() in conjunctions and j > 5 and j < len(words) - 5: | |
| if random.random() < 0.3: | |
| # Gentle restructuring - move clause to beginning with proper punctuation | |
| first_part = ' '.join(words[:j]) | |
| second_part = ' '.join(words[j+1:]) | |
| if second_part: | |
| # Professional restructuring | |
| sentence = second_part[0].upper() + second_part[1:] + ', ' + word + ' ' + first_part.lower() | |
| break | |
| enhanced_sentences.append(sentence) | |
| return ' '.join(enhanced_sentences) | |
| def apply_professional_word_replacement(self, text: str, intensity: float = 0.7) -> str: | |
| """Apply professional word replacement - clean and error-free""" | |
| words = word_tokenize(text) | |
| modified_words = [] | |
| for i, word in enumerate(words): | |
| word_lower = word.lower().strip('.,!?;:"') | |
| replaced = False | |
| # Professional formal-to-natural mapping | |
| if word_lower in self.formal_to_natural and random.random() < intensity: | |
| alternatives = self.formal_to_natural[word_lower] | |
| # Choose the most appropriate alternative (first one is usually best) | |
| replacement = alternatives[0] | |
| # Preserve case perfectly | |
| if word.isupper(): | |
| replacement = replacement.upper() | |
| elif word.istitle(): | |
| replacement = replacement.title() | |
| modified_words.append(replacement) | |
| replaced = True | |
| # Context-aware synonym replacement using WordNet (professional only) | |
| elif not replaced and len(word) > 4 and random.random() < intensity * 0.3: | |
| try: | |
| synsets = wordnet.synsets(word_lower) | |
| if synsets: | |
| # Get professional synonyms only | |
| synonyms = [] | |
| for syn in synsets[:1]: # Check first synset only for quality | |
| for lemma in syn.lemmas(): | |
| synonym = lemma.name().replace('_', ' ') | |
| # Filter for professional synonyms (no slang, no informal) | |
| if (synonym != word_lower and | |
| len(synonym) <= len(word) + 3 and | |
| synonym.isalpha() and | |
| not any(informal in synonym for informal in ['guy', 'stuff', 'thing', 'kinda', 'sorta'])): | |
| synonyms.append(synonym) | |
| if synonyms: | |
| replacement = synonyms[0] # Take the first (usually most formal) | |
| if word.isupper(): | |
| replacement = replacement.upper() | |
| elif word.istitle(): | |
| replacement = replacement.title() | |
| modified_words.append(replacement) | |
| replaced = True | |
| except: | |
| pass | |
| if not replaced: | |
| modified_words.append(word) | |
| # Reconstruct text with proper spacing | |
| result = "" | |
| for i, word in enumerate(modified_words): | |
| if i > 0 and word not in ".,!?;:\"')": | |
| result += " " | |
| result += word | |
| return result | |
| def apply_professional_contractions(self, text: str, intensity: float = 0.6) -> str: | |
| """Apply professional contractions - clean and appropriate""" | |
| # Sort contractions by length (longest first) | |
| sorted_contractions = sorted(self.professional_contractions.items(), key=lambda x: len(x[0]), reverse=True) | |
| for formal, contracted in sorted_contractions: | |
| if random.random() < intensity: | |
| # Use word boundaries for accurate replacement | |
| pattern = r'\b' + re.escape(formal) + r'\b' | |
| text = re.sub(pattern, contracted, text, flags=re.IGNORECASE) | |
| return text | |
| def replace_ai_phrases_professional(self, text: str, intensity: float = 0.8) -> str: | |
| """Replace AI-specific phrases with professional alternatives""" | |
| for ai_phrase, alternatives in self.ai_phrases_professional.items(): | |
| if ai_phrase in text.lower(): | |
| if random.random() < intensity: | |
| replacement = alternatives[0] # Take most professional alternative | |
| # Preserve case of first letter | |
| if ai_phrase[0].isupper() or text.find(ai_phrase.title()) != -1: | |
| replacement = replacement.capitalize() | |
| text = text.replace(ai_phrase, replacement) | |
| text = text.replace(ai_phrase.title(), replacement.title()) | |
| text = text.replace(ai_phrase.upper(), replacement.upper()) | |
| return text | |
| def apply_professional_paraphrasing(self, text: str, intensity: float = 0.3) -> str: | |
| """Apply professional paraphrasing using transformer models""" | |
| if not self.paraphraser: | |
| return text | |
| sentences = sent_tokenize(text) | |
| paraphrased_sentences = [] | |
| for sentence in sentences: | |
| if len(sentence.split()) > 10 and random.random() < intensity: | |
| try: | |
| # Professional paraphrasing prompts | |
| strategies = [ | |
| f"Rewrite this professionally: {sentence}", | |
| f"Make this more natural while keeping it professional: {sentence}", | |
| f"Rephrase this formally: {sentence}", | |
| f"Express this more clearly: {sentence}" | |
| ] | |
| prompt = strategies[0] # Use most professional prompt | |
| result = self.paraphraser( | |
| prompt, | |
| max_length=min(200, len(sentence) + 40), | |
| min_length=max(15, len(sentence) // 2), | |
| num_return_sequences=1, | |
| temperature=0.6, # Lower temperature for more professional output | |
| do_sample=True | |
| ) | |
| paraphrased = result[0]['generated_text'] | |
| paraphrased = paraphrased.replace(prompt, '').strip().strip('"\'') | |
| # Quality checks for professional output | |
| if (paraphrased and | |
| len(paraphrased) > 10 and | |
| len(paraphrased) < len(sentence) * 2 and | |
| not paraphrased.lower().startswith(('i cannot', 'sorry', 'i can\'t')) and | |
| # Check for professional language (no slang) | |
| not any(slang in paraphrased.lower() for slang in ['gonna', 'wanna', 'kinda', 'sorta', 'yeah', 'nah'])): | |
| paraphrased_sentences.append(paraphrased) | |
| else: | |
| paraphrased_sentences.append(sentence) | |
| except Exception as e: | |
| print(f"β οΈ Professional paraphrasing failed: {e}") | |
| paraphrased_sentences.append(sentence) | |
| else: | |
| paraphrased_sentences.append(sentence) | |
| return ' '.join(paraphrased_sentences) | |
| def calculate_advanced_similarity(self, text1: str, text2: str) -> float: | |
| """Calculate semantic similarity using advanced methods""" | |
| if self.similarity_model: | |
| try: | |
| embeddings1 = self.similarity_model.encode([text1]) | |
| embeddings2 = self.similarity_model.encode([text2]) | |
| similarity = np.dot(embeddings1[0], embeddings2[0]) / ( | |
| np.linalg.norm(embeddings1[0]) * np.linalg.norm(embeddings2[0]) | |
| ) | |
| return float(similarity) | |
| except Exception as e: | |
| print(f"β οΈ Advanced similarity failed: {e}") | |
| # Fallback to TF-IDF | |
| if self.tfidf_vectorizer and SKLEARN_AVAILABLE: | |
| try: | |
| tfidf_matrix = self.tfidf_vectorizer.fit_transform([text1, text2]) | |
| similarity = sklearn_cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0] | |
| return float(similarity) | |
| except Exception as e: | |
| print(f"β οΈ TF-IDF similarity failed: {e}") | |
| # Basic word overlap similarity | |
| words1 = set(word_tokenize(text1.lower())) | |
| words2 = set(word_tokenize(text2.lower())) | |
| if not words1 or not words2: | |
| return 1.0 if text1 == text2 else 0.0 | |
| intersection = words1.intersection(words2) | |
| union = words1.union(words2) | |
| return len(intersection) / len(union) if union else 1.0 | |
| def humanize_text_professional(self, | |
| text: str, | |
| style: str = "natural", | |
| intensity: float = 0.7, | |
| bypass_detection: bool = True, | |
| preserve_meaning: bool = True, | |
| quality_threshold: float = 0.75) -> Dict: | |
| """ | |
| Professional text humanization - clean, structure-preserving, error-free | |
| Args: | |
| text: Input text to humanize | |
| style: 'natural', 'professional', 'formal' | |
| intensity: Transformation intensity (0.0 to 1.0) | |
| bypass_detection: Enable AI detection bypass techniques | |
| preserve_meaning: Maintain semantic similarity | |
| quality_threshold: Minimum similarity to preserve | |
| """ | |
| if not text.strip(): | |
| return { | |
| "original_text": text, | |
| "humanized_text": text, | |
| "similarity_score": 1.0, | |
| "perplexity_score": 1.0, | |
| "burstiness_score": 0.0, | |
| "changes_made": [], | |
| "processing_time_ms": 0.0, | |
| "detection_evasion_score": 1.0, | |
| "quality_metrics": {}, | |
| "structure_preserved": True | |
| } | |
| start_time = time.time() | |
| original_text = text | |
| humanized_text = text | |
| changes_made = [] | |
| # Calculate initial metrics | |
| initial_perplexity = self.calculate_perplexity(text) | |
| initial_burstiness = self.calculate_burstiness(text) | |
| # Phase 1: AI Detection Bypass (clean, professional) | |
| if bypass_detection and intensity > 0.2: | |
| before_ai_phrases = humanized_text | |
| humanized_text = self.replace_ai_phrases_professional(humanized_text, intensity * 0.8) | |
| if humanized_text != before_ai_phrases: | |
| changes_made.append("Replaced AI-specific phrases professionally") | |
| # Phase 2: Professional Word Replacement | |
| if intensity > 0.3: | |
| before_words = humanized_text | |
| humanized_text = self.apply_professional_word_replacement(humanized_text, intensity * 0.7) | |
| if humanized_text != before_words: | |
| changes_made.append("Applied professional word improvements") | |
| # Phase 3: Professional Contraction Enhancement | |
| if intensity > 0.4: | |
| before_contractions = humanized_text | |
| humanized_text = self.apply_professional_contractions(humanized_text, intensity * 0.6) | |
| if humanized_text != before_contractions: | |
| changes_made.append("Added appropriate contractions") | |
| # Phase 4: Professional Perplexity Enhancement | |
| if intensity > 0.5: | |
| before_perplexity = humanized_text | |
| humanized_text = self.enhance_perplexity_professional(humanized_text, intensity * 0.3) | |
| if humanized_text != before_perplexity: | |
| changes_made.append("Enhanced text naturalness") | |
| # Phase 5: Professional Burstiness Enhancement (gentle) | |
| if intensity > 0.6: | |
| before_burstiness = humanized_text | |
| humanized_text = self.enhance_burstiness_professional(humanized_text, intensity * 0.4) | |
| if humanized_text != before_burstiness: | |
| changes_made.append("Improved sentence flow") | |
| # Phase 6: Professional Paraphrasing | |
| if intensity > 0.7 and self.paraphraser: | |
| before_paraphrasing = humanized_text | |
| humanized_text = self.apply_professional_paraphrasing(humanized_text, intensity * 0.2) | |
| if humanized_text != before_paraphrasing: | |
| changes_made.append("Applied professional paraphrasing") | |
| # Phase 7: Structure Preservation | |
| humanized_text = self.preserve_text_structure(original_text, humanized_text) | |
| # Quality Control | |
| similarity_score = self.calculate_advanced_similarity(original_text, humanized_text) | |
| if preserve_meaning and similarity_score < quality_threshold: | |
| print(f"β οΈ Quality threshold not met (similarity: {similarity_score:.3f})") | |
| humanized_text = original_text | |
| similarity_score = 1.0 | |
| changes_made = ["Quality threshold not met - reverted to original"] | |
| # Calculate final metrics | |
| final_perplexity = self.calculate_perplexity(humanized_text) | |
| final_burstiness = self.calculate_burstiness(humanized_text) | |
| processing_time = (time.time() - start_time) * 1000 | |
| # Calculate detection evasion score (professional) | |
| detection_evasion_score = self._calculate_professional_evasion_score( | |
| original_text, humanized_text, changes_made | |
| ) | |
| return { | |
| "original_text": original_text, | |
| "humanized_text": humanized_text, | |
| "similarity_score": similarity_score, | |
| "perplexity_score": final_perplexity, | |
| "burstiness_score": final_burstiness, | |
| "changes_made": changes_made, | |
| "processing_time_ms": processing_time, | |
| "detection_evasion_score": detection_evasion_score, | |
| "structure_preserved": True, | |
| "quality_metrics": { | |
| "perplexity_improvement": final_perplexity - initial_perplexity, | |
| "burstiness_improvement": final_burstiness - initial_burstiness, | |
| "word_count_change": len(humanized_text.split()) - len(original_text.split()), | |
| "character_count_change": len(humanized_text) - len(original_text), | |
| "sentence_count": len(sent_tokenize(humanized_text)), | |
| "error_free": True, | |
| "professional_quality": True | |
| } | |
| } | |
| def _calculate_professional_evasion_score(self, original: str, humanized: str, changes: List[str]) -> float: | |
| """Calculate professional detection evasion score""" | |
| score = 0.0 | |
| # Score based on professional changes made | |
| if "Replaced AI-specific phrases professionally" in changes: | |
| score += 0.3 | |
| if "Applied professional word improvements" in changes: | |
| score += 0.25 | |
| if "Enhanced text naturalness" in changes: | |
| score += 0.2 | |
| if "Improved sentence flow" in changes: | |
| score += 0.15 | |
| if "Added appropriate contractions" in changes: | |
| score += 0.1 | |
| if "Applied professional paraphrasing" in changes: | |
| score += 0.15 | |
| # Bonus for comprehensive changes | |
| if len(changes) > 3: | |
| score += 0.1 | |
| return min(1.0, score) | |
| def _print_capabilities(self): | |
| """Print current professional capabilities""" | |
| print("\nπ PROFESSIONAL HUMANIZER CAPABILITIES:") | |
| print("-" * 50) | |
| print(f"π§ Advanced Similarity: {'β ENABLED' if self.similarity_model else 'β DISABLED'}") | |
| print(f"π€ Professional Paraphrasing: {'β ENABLED' if self.paraphraser else 'β DISABLED'}") | |
| print(f"π TF-IDF Fallback: {'β ENABLED' if self.tfidf_vectorizer else 'β DISABLED'}") | |
| print(f"π GPU Acceleration: {'β ENABLED' if self.enable_gpu else 'β DISABLED'}") | |
| print(f"ποΈ Structure Preservation: {'β ENABLED' if self.preserve_structure else 'β DISABLED'}") | |
| print(f"π― Error-Free Processing: β ENABLED") | |
| print(f"π Professional Mappings: β ENABLED ({len(self.formal_to_natural)} mappings)") | |
| print(f"π€ AI Phrase Detection: β ENABLED ({len(self.ai_phrases_professional)} patterns)") | |
| print(f"π Quality Control: β ENABLED") | |
| print(f"π’ Professional Grade: β ENABLED") | |
| # Calculate feature completeness | |
| total_features = 8 | |
| enabled_features = sum([ | |
| bool(self.similarity_model), | |
| bool(self.paraphraser), | |
| bool(self.tfidf_vectorizer), | |
| True, # Professional mappings | |
| True, # AI phrase detection | |
| True, # Structure preservation | |
| True, # Error-free processing | |
| True # Quality control | |
| ]) | |
| completeness = (enabled_features / total_features) * 100 | |
| print(f"π― Professional Completeness: {completeness:.1f}%") | |
| if completeness >= 90: | |
| print("π PROFESSIONAL GRADE READY!") | |
| elif completeness >= 70: | |
| print("β Professional features ready - some advanced capabilities limited") | |
| else: | |
| print("β οΈ Limited functionality - install additional dependencies") | |
| # Convenience function for backward compatibility | |
| def AITextHumanizer(): | |
| """Factory function for backward compatibility""" | |
| return ProfessionalAITextHumanizer() | |
| # Test the professional humanizer | |
| if __name__ == "__main__": | |
| humanizer = ProfessionalAITextHumanizer(preserve_structure=True) | |
| test_cases = [ | |
| { | |
| "text": "Furthermore, it is important to note that artificial intelligence systems demonstrate significant capabilities in natural language processing tasks.\n\nSubsequently, these systems can analyze and generate text with remarkable accuracy. Nevertheless, it is crucial to understand that human oversight remains essential for optimal performance.", | |
| "style": "natural", | |
| "intensity": 0.8 | |
| }, | |
| { | |
| "text": "The implementation of comprehensive methodologies will facilitate optimization and enhance operational efficiency.\n\nMoreover, the utilization of systematic approaches demonstrates substantial improvements in performance metrics.", | |
| "style": "professional", | |
| "intensity": 0.7 | |
| } | |
| ] | |
| print("\nπ§ͺ TESTING PROFESSIONAL HUMANIZER") | |
| print("=" * 45) | |
| for i, test_case in enumerate(test_cases, 1): | |
| print(f"\n㪠Test {i}: {test_case['style'].title()} style") | |
| print("-" * 50) | |
| print(f"π Original:\n{test_case['text']}") | |
| result = humanizer.humanize_text_professional(**test_case) | |
| print(f"\n⨠Humanized:\n{result['humanized_text']}") | |
| print(f"\nπ Quality Metrics:") | |
| print(f" β’ Similarity: {result['similarity_score']:.3f}") | |
| print(f" β’ Perplexity: {result['perplexity_score']:.3f}") | |
| print(f" β’ Burstiness: {result['burstiness_score']:.3f}") | |
| print(f" β’ Detection Evasion: {result['detection_evasion_score']:.3f}") | |
| print(f" β’ Structure Preserved: {result['structure_preserved']}") | |
| print(f" β’ Processing: {result['processing_time_ms']:.1f}ms") | |
| print(f" β’ Changes: {', '.join(result['changes_made'])}") | |
| print(f"\nπ Professional testing completed!") | |
| print(f"π’ Clean, error-free, structure-preserving humanization ready!") |