Spaces:
Sleeping
Sleeping
File size: 23,001 Bytes
7dec80a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import re
import random
import nltk
import numpy as np
from typing import List, Dict, Optional
import time
from collections import Counter
import statistics
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import wordnet
# Advanced imports with fallbacks
def safe_import_with_fallback(module_name, component=None):
"""Safe import with fallback handling"""
try:
if component:
module = __import__(module_name, fromlist=[component])
return getattr(module, component), True
else:
return __import__(module_name), True
except ImportError:
return None, False
except Exception:
return None, False
# Load advanced models
print("π Loading Universal AI Text Humanizer...")
SentenceTransformer, SENTENCE_TRANSFORMERS_AVAILABLE = safe_import_with_fallback('sentence_transformers', 'SentenceTransformer')
pipeline, TRANSFORMERS_AVAILABLE = safe_import_with_fallback('transformers', 'pipeline')
try:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity as sklearn_cosine_similarity
SKLEARN_AVAILABLE = True
except ImportError:
SKLEARN_AVAILABLE = False
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
class UniversalAITextHumanizer:
"""
Universal AI Text Humanizer for All Business Use Cases
Based on QuillBot and Walter Writes AI research
Simplified interface with only Natural/Conversational modes
"""
def __init__(self, enable_gpu=True):
print("π Initializing Universal AI Text Humanizer...")
print("π― Designed for E-commerce, Marketing, SEO & All Business Needs")
self.enable_gpu = enable_gpu and TORCH_AVAILABLE
# Initialize models and databases
self._load_models()
self._initialize_universal_patterns()
print("β
Universal AI Text Humanizer ready for all use cases!")
self._print_status()
def _load_models(self):
"""Load AI models with graceful fallbacks"""
self.similarity_model = None
self.paraphraser = None
# Load sentence transformer for quality control
if SENTENCE_TRANSFORMERS_AVAILABLE:
try:
device = 'cuda' if self.enable_gpu and TORCH_AVAILABLE and torch.cuda.is_available() else 'cpu'
self.similarity_model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
print("β
Advanced similarity model loaded")
except Exception as e:
print(f"β οΈ Similarity model unavailable: {e}")
# Load paraphrasing model
if TRANSFORMERS_AVAILABLE:
try:
device = 0 if self.enable_gpu and TORCH_AVAILABLE and torch.cuda.is_available() else -1
self.paraphraser = pipeline(
"text2text-generation",
model="google/flan-t5-small",
device=device,
max_length=256
)
print("β
AI paraphrasing model loaded")
except Exception as e:
print(f"β οΈ Paraphrasing model unavailable: {e}")
# Fallback similarity using TF-IDF
if SKLEARN_AVAILABLE:
self.tfidf_vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1, 2), max_features=5000)
else:
self.tfidf_vectorizer = None
def _initialize_universal_patterns(self):
"""Initialize patterns based on QuillBot & Walter Writes research"""
# Universal word replacements (business-friendly)
self.word_replacements = {
# Formal business terms -> Natural alternatives
"utilize": "use", "demonstrate": "show", "facilitate": "help", "implement": "set up",
"consequently": "so", "furthermore": "also", "moreover": "plus", "nevertheless": "but",
"subsequently": "then", "accordingly": "therefore", "regarding": "about", "concerning": "about",
"approximately": "about", "endeavor": "try", "commence": "start", "terminate": "end",
"obtain": "get", "purchase": "buy", "examine": "check", "analyze": "look at",
"construct": "build", "establish": "create", "methodology": "method", "systematic": "organized",
"comprehensive": "complete", "significant": "important", "substantial": "large", "optimal": "best",
"sufficient": "enough", "adequate": "good", "exceptional": "great", "fundamental": "basic",
"essential": "key", "crucial": "important", "paramount": "very important", "imperative": "must",
"mandatory": "required", "optimization": "improvement", "enhancement": "upgrade",
"implementation": "setup", "utilization": "use", "evaluation": "review", "assessment": "check",
"validation": "proof", "verification": "confirmation", "consolidation": "combining",
"integration": "merging", "transformation": "change", "modification": "change"
}
# AI-specific phrases to replace (QuillBot research)
self.ai_phrase_replacements = {
"it is important to note that": "notably", "it should be emphasized that": "importantly",
"it is worth mentioning that": "by the way", "it is crucial to understand that": "remember",
"from a practical standpoint": "practically", "in terms of implementation": "when implementing",
"with respect to the aforementioned": "about this", "as previously mentioned": "as noted",
"in light of this": "because of this", "it is imperative to understand": "you should know",
"one must consider": "consider", "it is evident that": "clearly", "it can be observed that": "we can see",
"upon careful consideration": "after thinking", "in the final analysis": "ultimately"
}
# Professional contractions (universal appeal)
self.contractions = {
"do not": "don't", "does not": "doesn't", "did not": "didn't", "will not": "won't",
"would not": "wouldn't", "should not": "shouldn't", "could not": "couldn't", "cannot": "can't",
"is not": "isn't", "are not": "aren't", "was not": "wasn't", "were not": "weren't",
"have not": "haven't", "has not": "hasn't", "had not": "hadn't", "I am": "I'm",
"you are": "you're", "he is": "he's", "she is": "she's", "it is": "it's",
"we are": "we're", "they are": "they're", "I have": "I've", "you have": "you've",
"we have": "we've", "they have": "they've", "I will": "I'll", "you will": "you'll",
"we will": "we'll", "they will": "they'll"
}
# Natural transition words (Walter Writes research)
self.natural_transitions = [
"Also", "Plus", "And", "Then", "So", "But", "However", "Still", "Now", "Well",
"Actually", "Besides", "Additionally", "What's more", "On top of that", "Beyond that"
]
def preserve_structure(self, original: str, processed: str) -> str:
"""Preserve original text structure (paragraphs, formatting)"""
# Split by double newlines (paragraphs)
original_paragraphs = re.split(r'\n\s*\n', original)
if len(original_paragraphs) <= 1:
return processed
# Split processed text into sentences
processed_sentences = sent_tokenize(processed)
# Try to maintain paragraph structure
result_paragraphs = []
sentence_idx = 0
for para in original_paragraphs:
para_sentences = sent_tokenize(para)
para_sentence_count = len(para_sentences)
if sentence_idx + para_sentence_count <= len(processed_sentences):
para_processed = ' '.join(processed_sentences[sentence_idx:sentence_idx + para_sentence_count])
result_paragraphs.append(para_processed)
sentence_idx += para_sentence_count
else:
# Add remaining sentences to this paragraph
remaining = ' '.join(processed_sentences[sentence_idx:])
if remaining:
result_paragraphs.append(remaining)
break
return '\n\n'.join(result_paragraphs)
def apply_word_replacements(self, text: str, intensity: float = 0.7) -> str:
"""Apply universal word replacements"""
words = word_tokenize(text)
modified_words = []
for word in words:
word_clean = word.lower().strip('.,!?;:"')
if word_clean in self.word_replacements and random.random() < intensity:
replacement = self.word_replacements[word_clean]
# Preserve case
if word.isupper():
replacement = replacement.upper()
elif word.istitle():
replacement = replacement.title()
modified_words.append(replacement)
else:
modified_words.append(word)
# Reconstruct with proper spacing
result = ""
for i, word in enumerate(modified_words):
if i > 0 and word not in ".,!?;:\"')":
result += " "
result += word
return result
def apply_contractions(self, text: str, style: str, intensity: float = 0.6) -> str:
"""Apply contractions based on style"""
if style == "natural" and intensity < 0.5:
intensity *= 0.7 # Less aggressive for natural style
for formal, contracted in self.contractions.items():
if random.random() < intensity:
pattern = r'\b' + re.escape(formal) + r'\b'
text = re.sub(pattern, contracted, text, flags=re.IGNORECASE)
return text
def replace_ai_phrases(self, text: str, intensity: float = 0.8) -> str:
"""Replace AI-specific phrases"""
for ai_phrase, replacement in self.ai_phrase_replacements.items():
if ai_phrase in text.lower():
if random.random() < intensity:
# Preserve case
if ai_phrase[0].isupper() or text.find(ai_phrase.title()) != -1:
replacement = replacement.capitalize()
text = text.replace(ai_phrase, replacement)
text = text.replace(ai_phrase.title(), replacement.title())
return text
def vary_sentence_structure(self, text: str, style: str, intensity: float = 0.4) -> str:
"""Add sentence variety based on style"""
sentences = sent_tokenize(text)
varied_sentences = []
for sentence in sentences:
if len(sentence.split()) > 8 and random.random() < intensity:
# Add natural transitions occasionally
if style == "conversational" and random.random() < 0.3:
transition = random.choice(self.natural_transitions)
sentence = transition + ", " + sentence.lower()
# Split long sentences occasionally (Walter Writes technique)
elif len(sentence.split()) > 15 and random.random() < 0.2:
words = sentence.split()
mid_point = len(words) // 2
# Find a natural break point
for i in range(mid_point-2, mid_point+3):
if i < len(words) and words[i].lower() in ['and', 'but', 'so', 'because']:
first_part = ' '.join(words[:i]) + '.'
second_part = ' '.join(words[i+1:])
if second_part:
second_part = second_part[0].upper() + second_part[1:]
varied_sentences.extend([first_part, second_part])
continue
varied_sentences.append(sentence)
return ' '.join(varied_sentences)
def apply_advanced_paraphrasing(self, text: str, style: str, intensity: float = 0.3) -> str:
"""Apply AI paraphrasing if available"""
if not self.paraphraser or intensity < 0.6:
return text
sentences = sent_tokenize(text)
paraphrased_sentences = []
for sentence in sentences:
if len(sentence.split()) > 10 and random.random() < intensity * 0.4:
try:
# Style-specific prompts
if style == "conversational":
prompt = f"Make this more conversational and natural: {sentence}"
else:
prompt = f"Rewrite this naturally: {sentence}"
result = self.paraphraser(
prompt,
max_length=min(150, len(sentence) + 30),
min_length=max(10, len(sentence) // 2),
temperature=0.7,
do_sample=True
)
paraphrased = result[0]['generated_text'].replace(prompt, '').strip().strip('"\'')
# Quality check
if (paraphrased and len(paraphrased) > 5 and
len(paraphrased) < len(sentence) * 1.8 and
not paraphrased.lower().startswith(('sorry', 'i cannot'))):
paraphrased_sentences.append(paraphrased)
else:
paraphrased_sentences.append(sentence)
except Exception:
paraphrased_sentences.append(sentence)
else:
paraphrased_sentences.append(sentence)
return ' '.join(paraphrased_sentences)
def calculate_similarity(self, text1: str, text2: str) -> float:
"""Calculate semantic similarity"""
if self.similarity_model:
try:
embeddings1 = self.similarity_model.encode([text1])
embeddings2 = self.similarity_model.encode([text2])
similarity = np.dot(embeddings1[0], embeddings2[0]) / (
np.linalg.norm(embeddings1[0]) * np.linalg.norm(embeddings2[0])
)
return float(similarity)
except Exception:
pass
# Fallback to TF-IDF
if self.tfidf_vectorizer and SKLEARN_AVAILABLE:
try:
tfidf_matrix = self.tfidf_vectorizer.fit_transform([text1, text2])
similarity = sklearn_cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
return float(similarity)
except Exception:
pass
# Basic word overlap fallback
words1 = set(word_tokenize(text1.lower()))
words2 = set(word_tokenize(text2.lower()))
if not words1 or not words2:
return 1.0 if text1 == text2 else 0.0
intersection = words1.intersection(words2)
union = words1.union(words2)
return len(intersection) / len(union) if union else 1.0
def humanize_text_universal(self,
text: str,
style: str = "natural",
intensity: float = 0.7) -> Dict:
"""
Universal text humanization for all business use cases
Args:
text: Input text to humanize
style: 'natural' or 'conversational'
intensity: Transformation intensity (0.0 to 1.0)
Returns:
Dictionary with results and metrics
"""
if not text.strip():
return {
"original_text": text,
"humanized_text": text,
"similarity_score": 1.0,
"changes_made": [],
"processing_time_ms": 0.0,
"style": style,
"intensity": intensity,
"structure_preserved": True
}
start_time = time.time()
original_text = text
humanized_text = text
changes_made = []
# Phase 1: Replace AI-specific phrases
if intensity > 0.2:
before = humanized_text
humanized_text = self.replace_ai_phrases(humanized_text, intensity * 0.9)
if humanized_text != before:
changes_made.append("Removed AI phrases")
# Phase 2: Universal word replacements
if intensity > 0.3:
before = humanized_text
humanized_text = self.apply_word_replacements(humanized_text, intensity * 0.8)
if humanized_text != before:
changes_made.append("Improved word choice")
# Phase 3: Add contractions
if intensity > 0.4:
before = humanized_text
humanized_text = self.apply_contractions(humanized_text, style, intensity * 0.7)
if humanized_text != before:
changes_made.append("Added natural contractions")
# Phase 4: Vary sentence structure
if intensity > 0.5:
before = humanized_text
humanized_text = self.vary_sentence_structure(humanized_text, style, intensity * 0.4)
if humanized_text != before:
changes_made.append("Improved sentence flow")
# Phase 5: Advanced paraphrasing (if available and high intensity)
if intensity > 0.7 and self.paraphraser:
before = humanized_text
humanized_text = self.apply_advanced_paraphrasing(humanized_text, style, intensity)
if humanized_text != before:
changes_made.append("Enhanced with AI paraphrasing")
# Phase 6: Preserve structure
humanized_text = self.preserve_structure(original_text, humanized_text)
# Calculate quality metrics
similarity_score = self.calculate_similarity(original_text, humanized_text)
processing_time = (time.time() - start_time) * 1000
# Quality control - revert if too different
if similarity_score < 0.7:
print(f"β οΈ Similarity too low ({similarity_score:.3f}), reverting changes")
humanized_text = original_text
similarity_score = 1.0
changes_made = ["Reverted - maintained original meaning"]
return {
"original_text": original_text,
"humanized_text": humanized_text,
"similarity_score": similarity_score,
"changes_made": changes_made,
"processing_time_ms": processing_time,
"style": style,
"intensity": intensity,
"structure_preserved": True,
"word_count_original": len(original_text.split()),
"word_count_humanized": len(humanized_text.split()),
"character_count_original": len(original_text),
"character_count_humanized": len(humanized_text)
}
def _print_status(self):
"""Print current status"""
print("\nπ UNIVERSAL AI TEXT HUMANIZER STATUS:")
print("-" * 45)
print(f"π§ Advanced Similarity: {'β
' if self.similarity_model else 'β'}")
print(f"π€ AI Paraphrasing: {'β
' if self.paraphraser else 'β'}")
print(f"π TF-IDF Fallback: {'β
' if self.tfidf_vectorizer else 'β'}")
print(f"π GPU Acceleration: {'β
' if self.enable_gpu else 'β'}")
print(f"π Universal Patterns: β
LOADED")
print(f"π Word Replacements: β
{len(self.word_replacements)} mappings")
print(f"π€ AI Phrase Detection: β
{len(self.ai_phrase_replacements)} patterns")
print(f"π¬ Contractions: β
{len(self.contractions)} patterns")
print(f"ποΈ Structure Preservation: β
ENABLED")
# Calculate feature completeness
features = [
bool(self.similarity_model),
bool(self.paraphraser),
bool(self.tfidf_vectorizer),
True, # Universal patterns
True, # Structure preservation
True # Quality control
]
completeness = (sum(features) / len(features)) * 100
print(f"π― System Completeness: {completeness:.1f}%")
if completeness >= 80:
print("π READY FOR ALL BUSINESS USE CASES!")
elif completeness >= 60:
print("β
Core features ready - some advanced features may be limited")
else:
print("β οΈ Basic mode - install additional dependencies for full features")
# Test function
if __name__ == "__main__":
humanizer = UniversalAITextHumanizer()
# Test cases for different business scenarios
test_cases = [
{
"name": "E-commerce Product Description",
"text": "Furthermore, this product demonstrates exceptional quality and utilizes advanced materials to ensure optimal performance. Subsequently, customers will experience significant improvements in their daily activities.",
"style": "natural"
},
{
"name": "Marketing Copy",
"text": "Moreover, our comprehensive solution facilitates unprecedented optimization of business processes. Therefore, organizations should implement our platform to obtain optimal results.",
"style": "conversational"
},
{
"name": "SEO Blog Content",
"text": "It is important to note that search engine optimization requires systematic approaches. Subsequently, websites must utilize comprehensive strategies to enhance their visibility.",
"style": "natural"
}
]
print(f"\nπ§ͺ TESTING UNIVERSAL HUMANIZER")
print("=" * 40)
for i, test_case in enumerate(test_cases, 1):
print(f"\n㪠Test {i}: {test_case['name']}")
print("-" * 50)
print(f"π Original: {test_case['text']}")
result = humanizer.humanize_text_universal(
text=test_case['text'],
style=test_case['style'],
intensity=0.7
)
print(f"β¨ Humanized: {result['humanized_text']}")
print(f"π Similarity: {result['similarity_score']:.3f}")
print(f"β‘ Processing: {result['processing_time_ms']:.1f}ms")
print(f"π§ Changes: {', '.join(result['changes_made'])}")
print(f"\nπ Universal testing completed!")
print(f"π Ready for E-commerce, Marketing, SEO & All Business Use Cases!") |