Spaces:
Sleeping
Sleeping
Commit
·
edc48fd
1
Parent(s):
7df5ef1
Fix HF Spaces cache permissions and set model cache
Browse files- Dockerfile +28 -0
- app/rag_system.py +131 -39
Dockerfile
CHANGED
|
@@ -2,6 +2,34 @@ FROM python:3.11-slim
|
|
| 2 |
WORKDIR /app
|
| 3 |
COPY requirements.txt .
|
| 4 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
COPY . .
|
| 6 |
RUN mkdir -p /app/data/uploads /app/data/index
|
| 7 |
ENV PORT=7860
|
|
|
|
| 2 |
WORKDIR /app
|
| 3 |
COPY requirements.txt .
|
| 4 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 5 |
+
FROM python:3.11-slim
|
| 6 |
+
|
| 7 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 8 |
+
PYTHONUNBUFFERED=1 \
|
| 9 |
+
HOME=/app \
|
| 10 |
+
HF_HOME=/app/.cache \
|
| 11 |
+
TRANSFORMERS_CACHE=/app/.cache \
|
| 12 |
+
HUGGINGFACE_HUB_CACHE=/app/.cache \
|
| 13 |
+
SENTENCE_TRANSFORMERS_HOME=/app/.cache
|
| 14 |
+
|
| 15 |
+
WORKDIR /app
|
| 16 |
+
|
| 17 |
+
RUN apt-get update && apt-get install -y --no-install-recommends build-essential \
|
| 18 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 19 |
+
|
| 20 |
+
COPY requirements.txt .
|
| 21 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 22 |
+
|
| 23 |
+
COPY . .
|
| 24 |
+
|
| 25 |
+
# Cache və data qovluqları
|
| 26 |
+
RUN mkdir -p /app/.cache /app/data/uploads /app/data/index && chmod -R 777 /app/.cache /app/data
|
| 27 |
+
|
| 28 |
+
ENV PORT=7860
|
| 29 |
+
EXPOSE 7860
|
| 30 |
+
|
| 31 |
+
CMD ["uvicorn", "app.api:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 32 |
+
|
| 33 |
COPY . .
|
| 34 |
RUN mkdir -p /app/data/uploads /app/data/index
|
| 35 |
ENV PORT=7860
|
app/rag_system.py
CHANGED
|
@@ -1,87 +1,167 @@
|
|
| 1 |
# app/rag_system.py
|
|
|
|
|
|
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
from typing import List, Tuple
|
| 4 |
-
|
| 5 |
import faiss
|
| 6 |
import numpy as np
|
| 7 |
-
from sentence_transformers import SentenceTransformer
|
| 8 |
from pypdf import PdfReader
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
UPLOAD_DIR = DATA_DIR / "uploads"
|
| 12 |
INDEX_DIR = DATA_DIR / "index"
|
| 13 |
-
INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
| 14 |
-
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 17 |
|
|
|
|
| 18 |
class SimpleRAG:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
self.chunks: List[str] = []
|
|
|
|
| 25 |
self._load()
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
if self.meta_path.exists():
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if self.index_path.exists():
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
else:
|
| 41 |
-
|
| 42 |
-
self.index = faiss.IndexFlatIP(dim)
|
| 43 |
|
| 44 |
-
def _persist(self):
|
| 45 |
faiss.write_index(self.index, str(self.index_path))
|
| 46 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
@staticmethod
|
| 49 |
-
def _pdf_to_texts(pdf_path: Path) -> List[str]:
|
| 50 |
reader = PdfReader(str(pdf_path))
|
| 51 |
-
|
| 52 |
for page in reader.pages:
|
| 53 |
t = page.extract_text() or ""
|
| 54 |
if t.strip():
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
chunks = []
|
| 58 |
-
for txt in
|
| 59 |
-
step = 800
|
| 60 |
for i in range(0, len(txt), step):
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
return chunks
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
def add_pdf(self, pdf_path: Path) -> int:
|
| 65 |
texts = self._pdf_to_texts(pdf_path)
|
| 66 |
if not texts:
|
| 67 |
return 0
|
| 68 |
-
|
| 69 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
self.chunks.extend(texts)
|
|
|
|
| 71 |
self._persist()
|
| 72 |
return len(texts)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
|
|
|
|
|
|
|
|
|
|
| 75 |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
for idx, score in zip(I[0], D[0]):
|
| 80 |
if 0 <= idx < len(self.chunks):
|
| 81 |
results.append((self.chunks[idx], float(score)))
|
| 82 |
return results
|
| 83 |
|
| 84 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
def synthesize_answer(question: str, contexts: List[str]) -> str:
|
| 86 |
if not contexts:
|
| 87 |
return "Kontekst tapılmadı. Sualı daha dəqiq verin və ya PDF yükləyin."
|
|
@@ -89,5 +169,17 @@ def synthesize_answer(question: str, contexts: List[str]) -> str:
|
|
| 89 |
return (
|
| 90 |
f"Sual: {question}\n\n"
|
| 91 |
f"Cavab (kontekstdən çıxarış):\n{joined}\n\n"
|
| 92 |
-
f"(Qeyd: Demo rejimi — LLM inteqrasiyası üçün
|
| 93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# app/rag_system.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List, Tuple
|
| 7 |
+
|
| 8 |
import faiss
|
| 9 |
import numpy as np
|
|
|
|
| 10 |
from pypdf import PdfReader
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
| 12 |
|
| 13 |
+
|
| 14 |
+
# -----------------------------
|
| 15 |
+
# Konfiqurasiya & qovluqlar
|
| 16 |
+
# -----------------------------
|
| 17 |
+
ROOT_DIR = Path(__file__).resolve().parent.parent
|
| 18 |
+
DATA_DIR = ROOT_DIR / "data"
|
| 19 |
UPLOAD_DIR = DATA_DIR / "uploads"
|
| 20 |
INDEX_DIR = DATA_DIR / "index"
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# HF Spaces-də yazma icazəsi olan cache qovluğu
|
| 23 |
+
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
| 24 |
+
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
| 25 |
+
d.mkdir(parents=True, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# Model adı ENV-dən dəyişdirilə bilər
|
| 28 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 29 |
|
| 30 |
+
|
| 31 |
class SimpleRAG:
|
| 32 |
+
"""
|
| 33 |
+
Sadə RAG nüvəsi:
|
| 34 |
+
- PDF -> mətn parçalama
|
| 35 |
+
- Sentence-Transformers embeddings
|
| 36 |
+
- FAISS Index (IP / cosine bərabərləşdirilmiş)
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
index_path: Path = INDEX_DIR / "faiss.index",
|
| 42 |
+
meta_path: Path = INDEX_DIR / "meta.npy",
|
| 43 |
+
model_name: str = MODEL_NAME,
|
| 44 |
+
cache_dir: Path = CACHE_DIR,
|
| 45 |
+
):
|
| 46 |
+
self.index_path = Path(index_path)
|
| 47 |
+
self.meta_path = Path(meta_path)
|
| 48 |
+
self.model_name = model_name
|
| 49 |
+
self.cache_dir = Path(cache_dir)
|
| 50 |
+
|
| 51 |
+
# Model
|
| 52 |
+
# cache_folder Spaces-də /.cache icazə xətasının qarşısını alır
|
| 53 |
+
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
|
| 54 |
+
self.embed_dim = self.model.get_sentence_embedding_dimension()
|
| 55 |
+
|
| 56 |
+
# FAISS index və meta (chunks)
|
| 57 |
+
self.index: faiss.Index = None # type: ignore
|
| 58 |
self.chunks: List[str] = []
|
| 59 |
+
|
| 60 |
self._load()
|
| 61 |
|
| 62 |
+
# -----------------------------
|
| 63 |
+
# Yükləmə / Saxlama
|
| 64 |
+
# -----------------------------
|
| 65 |
+
def _load(self) -> None:
|
| 66 |
+
# Chunks (meta) yüklə
|
| 67 |
if self.meta_path.exists():
|
| 68 |
+
try:
|
| 69 |
+
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
|
| 70 |
+
except Exception:
|
| 71 |
+
# zədələnmişsə sıfırla
|
| 72 |
+
self.chunks = []
|
| 73 |
+
|
| 74 |
+
# FAISS index yüklə
|
| 75 |
if self.index_path.exists():
|
| 76 |
+
try:
|
| 77 |
+
idx = faiss.read_index(str(self.index_path))
|
| 78 |
+
# ölçü uyğunluğunu yoxla
|
| 79 |
+
if hasattr(idx, "d") and idx.d == self.embed_dim:
|
| 80 |
+
self.index = idx
|
| 81 |
+
else:
|
| 82 |
+
# uyğunsuzluqda sıfırdan qur
|
| 83 |
+
self.index = faiss.IndexFlatIP(self.embed_dim)
|
| 84 |
+
except Exception:
|
| 85 |
+
self.index = faiss.IndexFlatIP(self.embed_dim)
|
| 86 |
else:
|
| 87 |
+
self.index = faiss.IndexFlatIP(self.embed_dim)
|
|
|
|
| 88 |
|
| 89 |
+
def _persist(self) -> None:
|
| 90 |
faiss.write_index(self.index, str(self.index_path))
|
| 91 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
| 92 |
|
| 93 |
+
# -----------------------------
|
| 94 |
+
# PDF -> Mətn -> Parçalama
|
| 95 |
+
# -----------------------------
|
| 96 |
@staticmethod
|
| 97 |
+
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
|
| 98 |
reader = PdfReader(str(pdf_path))
|
| 99 |
+
pages_text: List[str] = []
|
| 100 |
for page in reader.pages:
|
| 101 |
t = page.extract_text() or ""
|
| 102 |
if t.strip():
|
| 103 |
+
pages_text.append(t)
|
| 104 |
+
|
| 105 |
+
chunks: List[str] = []
|
| 106 |
+
for txt in pages_text:
|
|
|
|
| 107 |
for i in range(0, len(txt), step):
|
| 108 |
+
chunk = txt[i : i + step].strip()
|
| 109 |
+
if chunk:
|
| 110 |
+
chunks.append(chunk)
|
| 111 |
return chunks
|
| 112 |
|
| 113 |
+
# -----------------------------
|
| 114 |
+
# Index-ə əlavə
|
| 115 |
+
# -----------------------------
|
| 116 |
def add_pdf(self, pdf_path: Path) -> int:
|
| 117 |
texts = self._pdf_to_texts(pdf_path)
|
| 118 |
if not texts:
|
| 119 |
return 0
|
| 120 |
+
|
| 121 |
+
emb = self.model.encode(
|
| 122 |
+
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
|
| 123 |
+
)
|
| 124 |
+
# FAISS-ə əlavə
|
| 125 |
+
self.index.add(emb.astype(np.float32))
|
| 126 |
+
# Meta-ya əlavə
|
| 127 |
self.chunks.extend(texts)
|
| 128 |
+
# Diskə yaz
|
| 129 |
self._persist()
|
| 130 |
return len(texts)
|
| 131 |
|
| 132 |
+
# -----------------------------
|
| 133 |
+
# Axtarış
|
| 134 |
+
# -----------------------------
|
| 135 |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
|
| 136 |
+
if self.index is None:
|
| 137 |
+
return []
|
| 138 |
+
|
| 139 |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
|
| 140 |
+
# FAISS float32 gözləyir
|
| 141 |
+
D, I = self.index.search(q.astype(np.float32), min(k, max(1, self.index.ntotal)))
|
| 142 |
+
results: List[Tuple[str, float]] = []
|
| 143 |
+
|
| 144 |
+
if I.size > 0 and self.chunks:
|
| 145 |
for idx, score in zip(I[0], D[0]):
|
| 146 |
if 0 <= idx < len(self.chunks):
|
| 147 |
results.append((self.chunks[idx], float(score)))
|
| 148 |
return results
|
| 149 |
|
| 150 |
+
# -----------------------------
|
| 151 |
+
# Cavab Sinttezi (LLM-siz demo)
|
| 152 |
+
# -----------------------------
|
| 153 |
+
def synthesize_answer(self, question: str, contexts: List[str]) -> str:
|
| 154 |
+
if not contexts:
|
| 155 |
+
return "Kontekst tapılmadı. Sualı daha dəqiq verin və ya PDF yükləyin."
|
| 156 |
+
joined = "\n---\n".join(contexts[:3])
|
| 157 |
+
return (
|
| 158 |
+
f"Sual: {question}\n\n"
|
| 159 |
+
f"Cavab (kontekstdən çıxarış):\n{joined}\n\n"
|
| 160 |
+
f"(Qeyd: Demo rejimi — LLM inteqrasiyası üçün sonradan OpenAI/Groq və s. əlavə edilə bilər.)"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# Köhnə import yolunu dəstəkləmək üçün eyni funksiyanı modul səviyyəsində də saxlayırıq
|
| 165 |
def synthesize_answer(question: str, contexts: List[str]) -> str:
|
| 166 |
if not contexts:
|
| 167 |
return "Kontekst tapılmadı. Sualı daha dəqiq verin və ya PDF yükləyin."
|
|
|
|
| 169 |
return (
|
| 170 |
f"Sual: {question}\n\n"
|
| 171 |
f"Cavab (kontekstdən çıxarış):\n{joined}\n\n"
|
| 172 |
+
f"(Qeyd: Demo rejimi — LLM inteqrasiyası üçün sonradan OpenAI/Groq və s. əlavə edilə bilər.)"
|
| 173 |
)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# Faylı import edən tərəfin rahatlığı üçün bu qovluqları export edirik
|
| 177 |
+
__all__ = [
|
| 178 |
+
"SimpleRAG",
|
| 179 |
+
"synthesize_answer",
|
| 180 |
+
"DATA_DIR",
|
| 181 |
+
"UPLOAD_DIR",
|
| 182 |
+
"INDEX_DIR",
|
| 183 |
+
"CACHE_DIR",
|
| 184 |
+
"MODEL_NAME",
|
| 185 |
+
]
|