Spaces:
Sleeping
Sleeping
Commit
·
a6ffef9
1
Parent(s):
a037cf8
RAG: robust EN summarization (pre-translate, filters, fallback)
Browse files- app/rag_system.py +17 -22
app/rag_system.py
CHANGED
|
@@ -25,7 +25,7 @@ AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
|
| 25 |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 26 |
|
| 27 |
def _split_sentences(text: str) -> List[str]:
|
| 28 |
-
return [s.strip() for s in re.split(r'(?<=[
|
| 29 |
|
| 30 |
def _mostly_numeric(s: str) -> bool:
|
| 31 |
alnum = [c for c in s if c.isalnum()]
|
|
@@ -36,7 +36,7 @@ def _mostly_numeric(s: str) -> bool:
|
|
| 36 |
|
| 37 |
def _tabular_like(s: str) -> bool:
|
| 38 |
hits = len(NUM_TOK_RE.findall(s))
|
| 39 |
-
return hits >=
|
| 40 |
|
| 41 |
def _clean_for_summary(text: str) -> str:
|
| 42 |
out = []
|
|
@@ -47,11 +47,6 @@ def _clean_for_summary(text: str) -> str:
|
|
| 47 |
out.append(t)
|
| 48 |
return " ".join(out)
|
| 49 |
|
| 50 |
-
def _norm_fingerprint(s: str) -> str:
|
| 51 |
-
s = s.lower()
|
| 52 |
-
s = "".join(ch for ch in s if ch.isalpha() or ch.isspace())
|
| 53 |
-
return " ".join(s.split())
|
| 54 |
-
|
| 55 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 56 |
aw = set(a.lower().split())
|
| 57 |
bw = set(b.lower().split())
|
|
@@ -68,7 +63,6 @@ def _non_ascii_ratio(s: str) -> float:
|
|
| 68 |
return sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 69 |
|
| 70 |
def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
| 71 |
-
"""English fallback: infer main items from keywords."""
|
| 72 |
text = " ".join(contexts).lower()
|
| 73 |
bullets: List[str] = []
|
| 74 |
def add(b: str):
|
|
@@ -78,13 +72,13 @@ def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
|
| 78 |
if ("şüşə" in text) or ("ara kəsm" in text) or ("s/q" in text):
|
| 79 |
add("Removal and re-installation of glass partitions in sanitary areas.")
|
| 80 |
if "divar kağız" in text:
|
| 81 |
-
add("Wallpaper repair or replacement;
|
| 82 |
if ("alçı boya" in text) or ("boya işi" in text) or ("plaster" in text) or ("boya" in text):
|
| 83 |
add("Wall plastering and painting works.")
|
| 84 |
if "seramik" in text:
|
| 85 |
add("Ceramic tiling works (including grouting).")
|
| 86 |
if ("dilatasyon" in text) or ("ar 153" in text) or ("ar153" in text):
|
| 87 |
-
add("Installation of AR 153–050 floor expansion joint profile with
|
| 88 |
if "daş yunu" in text:
|
| 89 |
add("Rock wool insulation installed where required.")
|
| 90 |
if ("sütunlarda" in text) or ("üzlüyün" in text):
|
|
@@ -139,7 +133,7 @@ class SimpleRAG:
|
|
| 139 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
| 140 |
|
| 141 |
@staticmethod
|
| 142 |
-
def _pdf_to_texts(pdf_path: Path, step: int =
|
| 143 |
reader = PdfReader(str(pdf_path))
|
| 144 |
pages: List[str] = []
|
| 145 |
for p in reader.pages:
|
|
@@ -203,35 +197,36 @@ class SimpleRAG:
|
|
| 203 |
if not cleaned_contexts:
|
| 204 |
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
|
| 205 |
|
| 206 |
-
# 2)
|
| 207 |
-
if OUTPUT_LANG == "en"
|
| 208 |
-
translated = self._translate_to_en(cleaned_contexts)
|
| 209 |
-
else:
|
| 210 |
-
translated = cleaned_contexts
|
| 211 |
|
| 212 |
-
# 3) Split
|
| 213 |
candidates: List[str] = []
|
| 214 |
for para in translated:
|
| 215 |
for s in _split_sentences(para):
|
| 216 |
w = s.split()
|
| 217 |
-
if not (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
continue
|
| 219 |
if _tabular_like(s) or _mostly_numeric(s):
|
| 220 |
continue
|
| 221 |
candidates.append(" ".join(w))
|
| 222 |
|
| 223 |
-
# 4)
|
| 224 |
if not candidates:
|
| 225 |
bullets = _keyword_summary_en(cleaned_contexts)
|
| 226 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
| 227 |
|
| 228 |
-
# 5) Rank by similarity
|
| 229 |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
| 230 |
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
| 231 |
scores = (cand_emb @ q_emb.T).ravel()
|
| 232 |
order = np.argsort(-scores)
|
| 233 |
|
| 234 |
-
# 6)
|
| 235 |
selected: List[str] = []
|
| 236 |
for i in order:
|
| 237 |
s = candidates[i].strip()
|
|
@@ -241,7 +236,7 @@ class SimpleRAG:
|
|
| 241 |
if len(selected) >= max_sentences:
|
| 242 |
break
|
| 243 |
|
| 244 |
-
# 7) If
|
| 245 |
if not selected or (sum(_non_ascii_ratio(s) for s in selected) / len(selected) > 0.10):
|
| 246 |
bullets = _keyword_summary_en(cleaned_contexts)
|
| 247 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
|
|
|
| 25 |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 26 |
|
| 27 |
def _split_sentences(text: str) -> List[str]:
|
| 28 |
+
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()]
|
| 29 |
|
| 30 |
def _mostly_numeric(s: str) -> bool:
|
| 31 |
alnum = [c for c in s if c.isalnum()]
|
|
|
|
| 36 |
|
| 37 |
def _tabular_like(s: str) -> bool:
|
| 38 |
hits = len(NUM_TOK_RE.findall(s))
|
| 39 |
+
return hits >= 3 or len(s) < 15
|
| 40 |
|
| 41 |
def _clean_for_summary(text: str) -> str:
|
| 42 |
out = []
|
|
|
|
| 47 |
out.append(t)
|
| 48 |
return " ".join(out)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 51 |
aw = set(a.lower().split())
|
| 52 |
bw = set(b.lower().split())
|
|
|
|
| 63 |
return sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 64 |
|
| 65 |
def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
|
|
|
| 66 |
text = " ".join(contexts).lower()
|
| 67 |
bullets: List[str] = []
|
| 68 |
def add(b: str):
|
|
|
|
| 72 |
if ("şüşə" in text) or ("ara kəsm" in text) or ("s/q" in text):
|
| 73 |
add("Removal and re-installation of glass partitions in sanitary areas.")
|
| 74 |
if "divar kağız" in text:
|
| 75 |
+
add("Wallpaper repair or replacement; some areas replaced with plaster and paint.")
|
| 76 |
if ("alçı boya" in text) or ("boya işi" in text) or ("plaster" in text) or ("boya" in text):
|
| 77 |
add("Wall plastering and painting works.")
|
| 78 |
if "seramik" in text:
|
| 79 |
add("Ceramic tiling works (including grouting).")
|
| 80 |
if ("dilatasyon" in text) or ("ar 153" in text) or ("ar153" in text):
|
| 81 |
+
add("Installation of AR 153–050 floor expansion joint profile with accessories and insulation.")
|
| 82 |
if "daş yunu" in text:
|
| 83 |
add("Rock wool insulation installed where required.")
|
| 84 |
if ("sütunlarda" in text) or ("üzlüyün" in text):
|
|
|
|
| 133 |
np.save(self.meta_path, np.array(self.chunks, dtype=object))
|
| 134 |
|
| 135 |
@staticmethod
|
| 136 |
+
def _pdf_to_texts(pdf_path: Path, step: int = 1400) -> List[str]:
|
| 137 |
reader = PdfReader(str(pdf_path))
|
| 138 |
pages: List[str] = []
|
| 139 |
for p in reader.pages:
|
|
|
|
| 197 |
if not cleaned_contexts:
|
| 198 |
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
|
| 199 |
|
| 200 |
+
# 2) Pre-translate paragraphs to EN when target is EN
|
| 201 |
+
translated = self._translate_to_en(cleaned_contexts) if OUTPUT_LANG == "en" else cleaned_contexts
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
# 3) Split into candidate sentences and filter strictly for completeness
|
| 204 |
candidates: List[str] = []
|
| 205 |
for para in translated:
|
| 206 |
for s in _split_sentences(para):
|
| 207 |
w = s.split()
|
| 208 |
+
if not (6 <= len(w) <= 60):
|
| 209 |
+
continue
|
| 210 |
+
if s.strip().lower().endswith("e.g."):
|
| 211 |
+
continue
|
| 212 |
+
if not re.search(r"[.!?](?:[\"'])?$", s): # must end with punctuation
|
| 213 |
continue
|
| 214 |
if _tabular_like(s) or _mostly_numeric(s):
|
| 215 |
continue
|
| 216 |
candidates.append(" ".join(w))
|
| 217 |
|
| 218 |
+
# 4) Fallback if no good sentences
|
| 219 |
if not candidates:
|
| 220 |
bullets = _keyword_summary_en(cleaned_contexts)
|
| 221 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|
| 222 |
|
| 223 |
+
# 5) Rank by similarity to the question
|
| 224 |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
| 225 |
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
|
| 226 |
scores = (cand_emb @ q_emb.T).ravel()
|
| 227 |
order = np.argsort(-scores)
|
| 228 |
|
| 229 |
+
# 6) Aggressive near-duplicate removal
|
| 230 |
selected: List[str] = []
|
| 231 |
for i in order:
|
| 232 |
s = candidates[i].strip()
|
|
|
|
| 236 |
if len(selected) >= max_sentences:
|
| 237 |
break
|
| 238 |
|
| 239 |
+
# 7) If still looks non-English, use keyword fallback
|
| 240 |
if not selected or (sum(_non_ascii_ratio(s) for s in selected) / len(selected) > 0.10):
|
| 241 |
bullets = _keyword_summary_en(cleaned_contexts)
|
| 242 |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets)
|