File size: 1,143 Bytes
337042d
da90641
9617a8d
da90641
9617a8d
 
 
da90641
 
 
 
 
 
 
 
9617a8d
 
 
337042d
9617a8d
 
da90641
 
9617a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da90641
337042d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

BASE = "openlm-research/open_llama_3b"
LORA = "GilbertAkham/openlm-llama-lora-codetrans"

# ---- FIX HERE ----
tokenizer = AutoTokenizer.from_pretrained(
    BASE,
    use_fast=False    # MUST be here, not on model
)

model = AutoModelForCausalLM.from_pretrained(
    BASE,
    load_in_8bit=True,
    device_map="auto"
)
# ------------------

model = PeftModel.from_pretrained(model, LORA)
model.eval()

def chat_fn(prompt, max_new_tokens=256):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        out = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=0.3,
            top_p=0.9
        )
    return tokenizer.decode(out[0], skip_special_tokens=True)

demo = gr.Interface(
    fn=chat_fn,
    inputs=[gr.Textbox(lines=6, label="Prompt"), gr.Slider(16,1024,256,label="Max new tokens")],
    outputs="text",
    title="openlm-llama-LoRA codetrans",
)

demo.launch(share=True)