Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
Synapse-Base Inference API
|
| 3 |
-
|
| 4 |
-
Optimized for HF Spaces CPU environment
|
| 5 |
"""
|
| 6 |
|
| 7 |
from fastapi import FastAPI, HTTPException
|
|
@@ -9,7 +8,7 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
| 9 |
from pydantic import BaseModel, Field
|
| 10 |
import time
|
| 11 |
import logging
|
| 12 |
-
from typing import Optional
|
| 13 |
|
| 14 |
from engine import SynapseEngine
|
| 15 |
|
|
@@ -20,30 +19,30 @@ logging.basicConfig(
|
|
| 20 |
)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
-
# Initialize FastAPI
|
| 24 |
app = FastAPI(
|
| 25 |
title="Synapse-Base Inference API",
|
| 26 |
-
description="
|
| 27 |
version="3.0.0"
|
| 28 |
)
|
| 29 |
|
| 30 |
-
# CORS
|
| 31 |
app.add_middleware(
|
| 32 |
CORSMiddleware,
|
| 33 |
-
allow_origins=["*"],
|
| 34 |
allow_credentials=True,
|
| 35 |
allow_methods=["*"],
|
| 36 |
allow_headers=["*"],
|
| 37 |
)
|
| 38 |
|
| 39 |
-
# Global engine
|
| 40 |
engine = None
|
| 41 |
|
| 42 |
|
| 43 |
-
#
|
| 44 |
class MoveRequest(BaseModel):
|
| 45 |
fen: str = Field(..., description="Board position in FEN notation")
|
| 46 |
-
depth: Optional[int] = Field(
|
| 47 |
time_limit: Optional[int] = Field(5000, ge=1000, le=30000, description="Time limit in ms")
|
| 48 |
|
| 49 |
|
|
@@ -51,131 +50,114 @@ class MoveResponse(BaseModel):
|
|
| 51 |
best_move: str
|
| 52 |
evaluation: float
|
| 53 |
depth_searched: int
|
|
|
|
| 54 |
nodes_evaluated: int
|
| 55 |
time_taken: int
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
class HealthResponse(BaseModel):
|
| 60 |
status: str
|
| 61 |
model_loaded: bool
|
| 62 |
version: str
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
-
# Startup
|
| 66 |
@app.on_event("startup")
|
| 67 |
async def startup_event():
|
| 68 |
-
"""Load model on startup"""
|
| 69 |
global engine
|
| 70 |
|
| 71 |
-
logger.info("🚀 Starting Synapse-Base Inference API...")
|
| 72 |
|
| 73 |
try:
|
| 74 |
engine = SynapseEngine(
|
| 75 |
model_path="/app/models/synapse_base.onnx",
|
| 76 |
-
num_threads=2
|
| 77 |
)
|
| 78 |
-
logger.info("✅
|
| 79 |
-
logger.info(f"📊 Model size: {engine.get_model_size():.2f} MB")
|
| 80 |
|
| 81 |
except Exception as e:
|
| 82 |
-
logger.error(f"❌ Failed to load
|
| 83 |
raise
|
| 84 |
|
| 85 |
|
| 86 |
-
# Health check
|
| 87 |
@app.get("/health", response_model=HealthResponse)
|
| 88 |
async def health_check():
|
| 89 |
-
"""Health check endpoint"""
|
| 90 |
return {
|
| 91 |
"status": "healthy" if engine is not None else "unhealthy",
|
| 92 |
"model_loaded": engine is not None,
|
| 93 |
-
"version": "3.0.0"
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
|
| 97 |
-
# Main
|
| 98 |
@app.post("/get-move", response_model=MoveResponse)
|
| 99 |
async def get_move(request: MoveRequest):
|
| 100 |
-
"""
|
| 101 |
-
Get best move for given position
|
| 102 |
-
|
| 103 |
-
Args:
|
| 104 |
-
request: MoveRequest with FEN, depth, and time_limit
|
| 105 |
-
|
| 106 |
-
Returns:
|
| 107 |
-
MoveResponse with best_move and evaluation
|
| 108 |
-
"""
|
| 109 |
-
|
| 110 |
if engine is None:
|
| 111 |
-
raise HTTPException(status_code=503, detail="
|
| 112 |
|
| 113 |
-
# Validate FEN
|
| 114 |
if not engine.validate_fen(request.fen):
|
| 115 |
raise HTTPException(status_code=400, detail="Invalid FEN string")
|
| 116 |
|
| 117 |
-
# Start timing
|
| 118 |
start_time = time.time()
|
| 119 |
|
| 120 |
try:
|
| 121 |
-
# Get best move from engine
|
| 122 |
result = engine.get_best_move(
|
| 123 |
fen=request.fen,
|
| 124 |
depth=request.depth,
|
| 125 |
time_limit=request.time_limit
|
| 126 |
)
|
| 127 |
|
| 128 |
-
# Calculate time taken
|
| 129 |
time_taken = int((time.time() - start_time) * 1000)
|
| 130 |
|
| 131 |
-
# Log request
|
| 132 |
logger.info(
|
| 133 |
f"Move: {result['best_move']} | "
|
| 134 |
-
f"Eval: {result['evaluation']
|
| 135 |
-
f"Depth: {result['depth_searched']} | "
|
| 136 |
f"Nodes: {result['nodes_evaluated']} | "
|
| 137 |
-
f"Time: {time_taken}ms"
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
return MoveResponse(
|
| 141 |
best_move=result['best_move'],
|
| 142 |
evaluation=result['evaluation'],
|
| 143 |
depth_searched=result['depth_searched'],
|
|
|
|
| 144 |
nodes_evaluated=result['nodes_evaluated'],
|
| 145 |
time_taken=time_taken,
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
except Exception as e:
|
| 150 |
-
logger.error(f"Error
|
| 151 |
raise HTTPException(status_code=500, detail=str(e))
|
| 152 |
|
| 153 |
|
| 154 |
-
# Root
|
| 155 |
@app.get("/")
|
| 156 |
async def root():
|
| 157 |
-
"""Root endpoint with API info"""
|
| 158 |
return {
|
| 159 |
"name": "Synapse-Base Inference API",
|
| 160 |
"version": "3.0.0",
|
| 161 |
"model": "38.1M parameters",
|
| 162 |
"architecture": "CNN-Transformer Hybrid",
|
|
|
|
| 163 |
"endpoints": {
|
| 164 |
-
"POST /get-move": "Get best move
|
| 165 |
"GET /health": "Health check",
|
| 166 |
"GET /docs": "API documentation"
|
| 167 |
}
|
| 168 |
}
|
| 169 |
|
| 170 |
|
| 171 |
-
# Run server
|
| 172 |
if __name__ == "__main__":
|
| 173 |
import uvicorn
|
| 174 |
-
|
| 175 |
-
uvicorn.run(
|
| 176 |
-
app,
|
| 177 |
-
host="0.0.0.0",
|
| 178 |
-
port=7860,
|
| 179 |
-
log_level="info",
|
| 180 |
-
access_log=True
|
| 181 |
-
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
Synapse-Base Inference API (Updated)
|
| 3 |
+
State-of-the-art search engine with modular architecture
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 8 |
from pydantic import BaseModel, Field
|
| 9 |
import time
|
| 10 |
import logging
|
| 11 |
+
from typing import Optional, List
|
| 12 |
|
| 13 |
from engine import SynapseEngine
|
| 14 |
|
|
|
|
| 19 |
)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
+
# Initialize FastAPI
|
| 23 |
app = FastAPI(
|
| 24 |
title="Synapse-Base Inference API",
|
| 25 |
+
description="State-of-the-art chess engine with neural evaluation",
|
| 26 |
version="3.0.0"
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# CORS
|
| 30 |
app.add_middleware(
|
| 31 |
CORSMiddleware,
|
| 32 |
+
allow_origins=["*"],
|
| 33 |
allow_credentials=True,
|
| 34 |
allow_methods=["*"],
|
| 35 |
allow_headers=["*"],
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Global engine
|
| 39 |
engine = None
|
| 40 |
|
| 41 |
|
| 42 |
+
# Models
|
| 43 |
class MoveRequest(BaseModel):
|
| 44 |
fen: str = Field(..., description="Board position in FEN notation")
|
| 45 |
+
depth: Optional[int] = Field(5, ge=1, le=10, description="Search depth (1-10)")
|
| 46 |
time_limit: Optional[int] = Field(5000, ge=1000, le=30000, description="Time limit in ms")
|
| 47 |
|
| 48 |
|
|
|
|
| 50 |
best_move: str
|
| 51 |
evaluation: float
|
| 52 |
depth_searched: int
|
| 53 |
+
seldepth: int
|
| 54 |
nodes_evaluated: int
|
| 55 |
time_taken: int
|
| 56 |
+
nps: int
|
| 57 |
+
pv: List[str]
|
| 58 |
+
tt_hit_rate: Optional[float] = None
|
| 59 |
|
| 60 |
|
| 61 |
class HealthResponse(BaseModel):
|
| 62 |
status: str
|
| 63 |
model_loaded: bool
|
| 64 |
version: str
|
| 65 |
+
model_size_mb: Optional[float] = None
|
| 66 |
|
| 67 |
|
| 68 |
+
# Startup
|
| 69 |
@app.on_event("startup")
|
| 70 |
async def startup_event():
|
|
|
|
| 71 |
global engine
|
| 72 |
|
| 73 |
+
logger.info("🚀 Starting Synapse-Base Inference API v3.0...")
|
| 74 |
|
| 75 |
try:
|
| 76 |
engine = SynapseEngine(
|
| 77 |
model_path="/app/models/synapse_base.onnx",
|
| 78 |
+
num_threads=2
|
| 79 |
)
|
| 80 |
+
logger.info("✅ Engine loaded successfully")
|
|
|
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
+
logger.error(f"❌ Failed to load engine: {e}")
|
| 84 |
raise
|
| 85 |
|
| 86 |
|
| 87 |
+
# Health check
|
| 88 |
@app.get("/health", response_model=HealthResponse)
|
| 89 |
async def health_check():
|
|
|
|
| 90 |
return {
|
| 91 |
"status": "healthy" if engine is not None else "unhealthy",
|
| 92 |
"model_loaded": engine is not None,
|
| 93 |
+
"version": "3.0.0",
|
| 94 |
+
"model_size_mb": engine.get_model_size() if engine else None
|
| 95 |
}
|
| 96 |
|
| 97 |
|
| 98 |
+
# Main endpoint
|
| 99 |
@app.post("/get-move", response_model=MoveResponse)
|
| 100 |
async def get_move(request: MoveRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
if engine is None:
|
| 102 |
+
raise HTTPException(status_code=503, detail="Engine not loaded")
|
| 103 |
|
|
|
|
| 104 |
if not engine.validate_fen(request.fen):
|
| 105 |
raise HTTPException(status_code=400, detail="Invalid FEN string")
|
| 106 |
|
|
|
|
| 107 |
start_time = time.time()
|
| 108 |
|
| 109 |
try:
|
|
|
|
| 110 |
result = engine.get_best_move(
|
| 111 |
fen=request.fen,
|
| 112 |
depth=request.depth,
|
| 113 |
time_limit=request.time_limit
|
| 114 |
)
|
| 115 |
|
|
|
|
| 116 |
time_taken = int((time.time() - start_time) * 1000)
|
| 117 |
|
|
|
|
| 118 |
logger.info(
|
| 119 |
f"Move: {result['best_move']} | "
|
| 120 |
+
f"Eval: {result['evaluation']:+.2f} | "
|
| 121 |
+
f"Depth: {result['depth_searched']}/{result['seldepth']} | "
|
| 122 |
f"Nodes: {result['nodes_evaluated']} | "
|
| 123 |
+
f"Time: {time_taken}ms | "
|
| 124 |
+
f"NPS: {result['nps']}"
|
| 125 |
)
|
| 126 |
|
| 127 |
return MoveResponse(
|
| 128 |
best_move=result['best_move'],
|
| 129 |
evaluation=result['evaluation'],
|
| 130 |
depth_searched=result['depth_searched'],
|
| 131 |
+
seldepth=result['seldepth'],
|
| 132 |
nodes_evaluated=result['nodes_evaluated'],
|
| 133 |
time_taken=time_taken,
|
| 134 |
+
nps=result['nps'],
|
| 135 |
+
pv=result['pv'],
|
| 136 |
+
tt_hit_rate=result['tt_stats']['hit_rate']
|
| 137 |
)
|
| 138 |
|
| 139 |
except Exception as e:
|
| 140 |
+
logger.error(f"Error: {e}")
|
| 141 |
raise HTTPException(status_code=500, detail=str(e))
|
| 142 |
|
| 143 |
|
| 144 |
+
# Root
|
| 145 |
@app.get("/")
|
| 146 |
async def root():
|
|
|
|
| 147 |
return {
|
| 148 |
"name": "Synapse-Base Inference API",
|
| 149 |
"version": "3.0.0",
|
| 150 |
"model": "38.1M parameters",
|
| 151 |
"architecture": "CNN-Transformer Hybrid",
|
| 152 |
+
"search": "PVS + NMP + LMR + TT",
|
| 153 |
"endpoints": {
|
| 154 |
+
"POST /get-move": "Get best move",
|
| 155 |
"GET /health": "Health check",
|
| 156 |
"GET /docs": "API documentation"
|
| 157 |
}
|
| 158 |
}
|
| 159 |
|
| 160 |
|
|
|
|
| 161 |
if __name__ == "__main__":
|
| 162 |
import uvicorn
|
| 163 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|