File size: 5,749 Bytes
6039e0a
 
e78a19b
 
6039e0a
e78a19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
import streamlit as st
import joblib
from pathlib import Path

st.set_page_config(page_title='Star System Classification (LightGBM)', page_icon='🪐', layout='centered')

BASE_DIR = Path(__file__).resolve().parent

MODEL_PATH = BASE_DIR / 'lightgbm_model.pkl'
FEATURES_PATH = BASE_DIR / 'featurer.pkl'  # you saved it with this name
PLANET_ENCODER_PATH = BASE_DIR / 'planet_encoder.pkl'
STAR_ENCODER_PATH = BASE_DIR / 'star_encoder.pkl'

# --- Fixed mapping you used in training ---
ACTIVITY_MAP = {'Low': 0, 'Medium': 1, 'High': 2}

# Optional: label names (edit if your competition uses different names)
LABEL_NAMES = {
    0: 'Habitable',
    1: 'Young',
    2: 'Old',
    3: 'Exotic'
}

@st.cache_resource
def load_artifacts():
    missing = [p.name for p in [MODEL_PATH, FEATURES_PATH, PLANET_ENCODER_PATH, STAR_ENCODER_PATH] if not p.exists()]
    if missing:
        raise FileNotFoundError(
            'Missing files in repo root: ' + ', '.join(missing) +
            '\n\nMake sure these files are in the same folder as app.py:\n'
            '- lightgbm_model.pkl\n- featurer.pkl\n- planet_encoder.pkl\n- star_encoder.pkl'
        )

    model = joblib.load(MODEL_PATH)
    features = joblib.load(FEATURES_PATH)
    le_planet = joblib.load(PLANET_ENCODER_PATH)
    le_star = joblib.load(STAR_ENCODER_PATH)
    return model, features, le_planet, le_star

def safe_transform(le, value: str, col_name: str) -> int:
    """Transform a single category value with a saved LabelEncoder.
    If unseen value appears, show a helpful error."""
    try:
        return int(le.transform([value])[0])
    except Exception:
        known = list(getattr(le, 'classes_', []))
        st.error(f'Unknown category for {col_name}: {value}. Known values: {known}')
        st.stop()

model, FEATURES, le_planet, le_star = load_artifacts()

st.title('🪐 Star System Classification (LightGBM)')
st.write('Predict the star system type using 10 astrophysical measurements (multiclass).')

with st.expander('ℹ️ Required files in this folder', expanded=False):
    st.code(
        'app.py\n'
        'lightgbm_model.pkl\n'
        'featurer.pkl\n'
        'planet_encoder.pkl\n'
        'star_encoder.pkl\n'
        'requirements.txt'
    )

st.subheader('Enter feature values')

# --- Inputs ---
# Numeric
star_size = st.number_input('star_size', min_value=0.0, value=1.0, step=0.01)
star_brightness = st.number_input('star_brightness', min_value=0.0, value=1.2, step=0.01)
distance_from_earth = st.number_input('distance_from_earth', min_value=0.0, value=90.0, step=1.0)
star_mass = st.number_input('star_mass', min_value=0.0, value=1.3, step=0.01)
metallicity = st.number_input('metallicity', value=0.02, step=0.001, format='%.4f')

# Discrete numeric / encoded-like
galaxy_region = st.selectbox('galaxy_region', options=[0, 1, 2], index=1)
galaxy_type = st.selectbox('galaxy_type', options=[0, 1, 2], index=0)

# Categorical (original strings)
star_spectral_class = st.selectbox(
    'star_spectral_class',
    options=list(le_star.classes_),
    index=0
)

planet_configuration = st.selectbox(
    'planet_configuration',
    options=list(le_planet.classes_),
    index=0
)

stellar_activity_class = st.selectbox(
    'stellar_activity_class',
    options=['Low', 'Medium', 'High'],
    index=0
)

# --- Build row in the ORIGINAL feature space ---
row = {
    'star_size': float(star_size),
    'star_brightness': float(star_brightness),
    'galaxy_region': int(galaxy_region),
    'distance_from_earth': float(distance_from_earth),
    'galaxy_type': int(galaxy_type),
    'star_spectral_class': star_spectral_class,
    'planet_configuration': planet_configuration,
    'stellar_activity_class': stellar_activity_class,
    'star_mass': float(star_mass),
    'metallicity': float(metallicity),
}

# --- Apply same preprocessing as training ---
# Mapping for activity (ordinal)
row['stellar_activity_class'] = ACTIVITY_MAP[row['stellar_activity_class']]

# LabelEncoders for the other two categorical columns
row['planet_configuration'] = safe_transform(le_planet, planet_configuration, 'planet_configuration')
row['star_spectral_class'] = safe_transform(le_star, star_spectral_class, 'star_spectral_class')

# Make DataFrame and enforce correct column order
X_input = pd.DataFrame([row])

# Ensure all expected feature columns exist
missing_cols = [c for c in FEATURES if c not in X_input.columns]
extra_cols = [c for c in X_input.columns if c not in FEATURES]
if missing_cols:
    st.error(f'Missing columns for model: {missing_cols}')
    st.stop()
if extra_cols:
    # Not an error, but we will drop extras to be safe
    X_input = X_input.drop(columns=extra_cols)

X_input = X_input[FEATURES]

st.divider()

col1, col2 = st.columns(2)

with col1:
    if st.button('🔮 Predict', use_container_width=True):
        pred = model.predict(X_input)[0]
        pred_int = int(pred)
        label = LABEL_NAMES.get(pred_int, str(pred_int))
        st.success(f'Prediction: **{label}** (class {pred_int})')

with col2:
    if st.button('📊 Predict probabilities', use_container_width=True):
        if hasattr(model, 'predict_proba'):
            proba = model.predict_proba(X_input)[0]
            proba_df = pd.DataFrame({'class': list(range(len(proba))), 'probability': proba}).sort_values('probability', ascending=False)
            proba_df['label'] = proba_df['class'].map(LABEL_NAMES).fillna(proba_df['class'].astype(str))
            st.dataframe(proba_df[['label', 'class', 'probability']], use_container_width=True)
        else:
            st.warning('This model does not support predict_proba().')

st.caption('Tip: If predictions look wrong, ensure the same encoders and feature order are used as during training.')