{ "cells": [ { "cell_type": "markdown", "id": "c3bc2141-f3d9-4202-882b-df4b869318d7", "metadata": {}, "source": [ "# CNN" ] }, { "cell_type": "markdown", "id": "f78df1b2-3636-4464-a70c-ca0dcec1c964", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "d21a8e71-ab6d-452e-b7cf-8de90a4f3382", "metadata": {}, "source": [ "### Introduction\n", "\n", "Facial keypoint detection is an important computer vision task used in areas such as face recognition, emotion analysis, and human–computer interaction.\n", "The goal of this project is to predict 30 facial keypoint coordinates from 96×96 grayscale face images.\n", "\n", "To solve this task, a custom Convolutional Neural Network (CNN) was designed and trained from scratch.\n", "The project covers the full deep learning workflow, including data preprocessing, model design, training, evaluation, visualization, and deployment." ] }, { "cell_type": "markdown", "id": "e99ebf18-8f60-4a88-a415-ee99ab676a96", "metadata": {}, "source": [ "### Import Libraries" ] }, { "cell_type": "code", "execution_count": 55, "id": "25596821-25b8-453b-901a-d08aecd2f257", "metadata": {}, "outputs": [], "source": [ "from tensorflow import keras\n", "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Rescaling, RandomFlip, RandomRotation, RandomZoom, Flatten, Dense, Dropout, BatchNormalization\n", "from tensorflow.keras.optimizers import Adam\n", "from tensorflow.keras import regularizers\n", "from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau\n", "from tensorflow.keras.layers import GlobalAveragePooling2D\n", "from sklearn.model_selection import train_test_split\n", "from PIL import Image\n", "from pathlib import Path\n", "import zipfile\n", "import os\n", "from collections import Counter\n", "from tensorflow.keras.models import load_model\n", "import matplotlib.pyplot as plt\n", "from sklearn.metrics import confusion_matrix, classification_report\n", "from sklearn.metrics import ConfusionMatrixDisplay\n", "import seaborn as sns\n", "import numpy as np\n", "import tensorflow as tf\n", "import pickle\n", "import json\n", "import warnings\n", "warnings.filterwarnings(\"ignore\") " ] }, { "cell_type": "markdown", "id": "c7c1a342-23e2-451d-933e-b75ae51d7b4f", "metadata": {}, "source": [ "### Load Data" ] }, { "cell_type": "code", "execution_count": 21, "id": "bf8ffe86-db68-4e5c-8c55-14fc06911cab", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading from https://www.kaggle.com/api/v1/competitions/data/download-all/facial-keypoints-detection...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████████████████████████████████████████████████████████████████████████| 76.3M/76.3M [00:12<00:00, 6.32MB/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Extracting files...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "DATA PATH: /root/.cache/kagglehub/competitions/facial-keypoints-detection\n", "FILES: ['training.zip', 'IdLookupTable.csv', 'test.zip', 'SampleSubmission.csv']\n" ] } ], "source": [ "import kagglehub, os\n", "\n", "data_path = kagglehub.competition_download('facial-keypoints-detection')\n", "print('DATA PATH:', data_path)\n", "print('FILES:', os.listdir(data_path))\n" ] }, { "cell_type": "code", "execution_count": 27, "id": "2a8fd3ee-df2d-4866-a374-5a7331c88421", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['training.zip', 'IdLookupTable.csv', 'test.zip', 'training.csv', 'test.csv', 'SampleSubmission.csv']\n" ] } ], "source": [ "for z in ['training.zip', 'test.zip']:\n", " with zipfile.ZipFile(os.path.join(data_path, z), 'r') as zip_ref:\n", " zip_ref.extractall(data_path)\n", "\n", "print(os.listdir(data_path))" ] }, { "cell_type": "code", "execution_count": 28, "id": "6f940a28-1897-4052-8096-83802fde2f56", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train: (7049, 31)\n", "test : (1783, 2)\n", "lookup: (27124, 4)\n" ] } ], "source": [ "train_df=pd.read_csv(f'{data_path}/training.csv')\n", "test_df=pd.read_csv(f'{data_path}/test.csv')\n", "lookup_df=pd.read_csv(f'{data_path}/IdLookupTable.csv')\n", "\n", "print('train:', train_df.shape)\n", "print('test :', test_df.shape)\n", "print('lookup:', lookup_df.shape)" ] }, { "cell_type": "code", "execution_count": 38, "id": "81954a23-fad4-4b82-b97b-1f16b5429f15", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n_targets: 30\n" ] } ], "source": [ "target_cols=train_df.columns.drop('Image').tolist()\n", "print('n_targets:', len(target_cols))" ] }, { "cell_type": "code", "execution_count": 39, "id": "68e3ae90-726e-4366-b89f-ec1f0bed16a5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "set()\n" ] } ], "source": [ "print(set(lookup_df['FeatureName']) - set(target_cols))" ] }, { "cell_type": "markdown", "id": "e6df0edf-456e-48ed-bfea-5f672853cde9", "metadata": {}, "source": [ "### EDA" ] }, { "cell_type": "code", "execution_count": 40, "id": "4f8aefdd-7b6c-4e71-b786-919b3ff109d0", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzhlJREFUeJzs3XdYU+fDxvE77L0UUFFBnKAgjlr3qFSo1l3rat3WiVbcbV1oXVWrvlqtE6l7t3XyU0Fc1TpArAsQ997iYD7vH0hKDGLSQs5TuT/XleuSk4R8zYFw8uSc56iEEAJEREREREREREQGZKR0ABERERERERERFTwclCIiIiIiIiIiIoPjoBQRERERERERERkcB6WIiIiIiIiIiMjgOChFREREREREREQGx0EpIiIiIiIiIiIyOA5KERERERERERGRwXFQioiIiIiIiIiIDI6DUkREREREREREZHAclCIiIqJ/RKVSYfz48Xn+fT08PNCtW7c8/75KGz9+PFQqldIZeaphw4aoVKmS0hn/WsOGDdGwYUOlM4iIiAocDkoREREVYKGhoVCpVFCpVDh48KDW9UIIlChRAiqVCp9++qkChf8tL168wPjx4xEZGal0ChnI6tWrMXv2bKUziIiI/pNMlA4gIiIi5VlYWGD16tWoW7euxvL9+/fj+vXrMDc317rPy5cvYWKS95sSFy5cgJHRf/NzsxcvXmDChAkAoLXnzXfffYdRo0YpUEXvEh4e/o/vu3r1apw5cwZff/113gUREREVEP/NLT4iIiLKU02bNsWGDRuQlpamsXz16tWoVq0aihQponUfCwuLfBmUMjc3h6mpaZ5/338iLS0NKSkpefK9TExMYGFhkSffy1CEEHj58qXSGfnOzMwMZmZmSmcQEREVOByUIiIiInTs2BEPHjzA//73P/WylJQUbNy4EZ06dcrxPm/OKfXs2TN8/fXX8PDwgLm5OVxcXPDxxx/j5MmT6tvExcWhbdu2KFKkCCwsLFC8eHF06NABT548Ud/mzTmlsg4xPHToEIKDg+Hs7Axra2u0bt0a9+7d02jKyMjA+PHjUaxYMVhZWaFRo0Y4e/asTvNUXb58GSqVCjNmzMDs2bNRunRpmJub4+zZs0hJScHYsWNRrVo12Nvbw9raGvXq1UNERITG/Z2dnQEAEyZMUB8WmfUc5TSnVFpaGiZOnKh+LA8PD3zzzTdITk7OtRUAunXrBhsbG1y6dAkBAQGwtrZGsWLFEBISAiGE1vMye/ZsVKxYERYWFnB1dUWfPn3w6NEjjdt5eHjg008/xe7du1G9enVYWlri559/fmdLduHh4bCyskLHjh3Vg5znz5/HZ599BicnJ1hYWKB69er47bff1Pe5dOkSVCoVfvzxR63vd/jwYahUKqxZswbA38/j+fPn8fnnn8POzg6FChXC4MGD8erVK4376vr8vjmnVGRkJFQqFdavX4/vv/8exYsXh4WFBRo3boz4+HiN+23fvh1XrlxRr28PDw+9ni8iIqKCjIfvERERETw8PFCrVi2sWbMGn3zyCQBg586dePLkCTp06IC5c+e+83v07dsXGzduxMCBA+Ht7Y0HDx7g4MGDOHfuHKpWrYqUlBQEBAQgOTkZQUFBKFKkCG7cuIFt27bh8ePHsLe3z/X7BwUFwdHREePGjcPly5cxe/ZsDBw4EOvWrVPfZvTo0Zg+fTqaN2+OgIAAxMTEICAgQGuwIjfLly/Hq1ev8NVXX8Hc3BxOTk54+vQplixZgo4dO6J379549uwZli5dioCAABw7dgx+fn5wdnbGggUL0K9fP7Ru3Rpt2rQBAPj6+r71sXr16oUVK1bgs88+w9ChQ3H06FFMmTIF586dw5YtW97Zmp6ejsDAQNSsWRPTp0/Hrl27MG7cOKSlpSEkJER9uz59+iA0NBTdu3fHoEGDkJiYiHnz5uHUqVM4dOiQxp5pFy5cQMeOHdGnTx/07t0b5cuX1/m527ZtGz777DO0b98ey5Ytg7GxMf766y/UqVMHbm5uGDVqFKytrbF+/Xq0atUKmzZtQuvWreHp6Yk6depg1apVGDJkiMb3XLVqFWxtbdGyZUuN5Z9//jk8PDwwZcoU/PHHH5g7dy4ePXqEsLCwPHt+p06dCiMjIwwbNgxPnjzB9OnT0blzZxw9ehQA8O233+LJkye4fv26ekDNxsZG5+eLiIiowBNERERUYC1fvlwAEH/++aeYN2+esLW1FS9evBBCCNGuXTvRqFEjIYQQ7u7uolmzZhr3BSDGjRun/tre3l4MGDDgrY916tQpAUBs2LAh1yZ3d3fRtWtXrUZ/f3+RkZGhXj5kyBBhbGwsHj9+LIQQ4vbt28LExES0atVK4/uNHz9eAND4njlJTEwUAISdnZ24e/euxnVpaWkiOTlZY9mjR4+Eq6ur6NGjh3rZvXv3tJ6XLOPGjRPZN72io6MFANGrVy+N2w0bNkwAEPv27cu1t2vXrgKACAoKUi/LyMgQzZo1E2ZmZuLevXtCCCEOHDggAIhVq1Zp3H/Xrl1ay93d3QUAsWvXrlwfO0uDBg1ExYoVhRBCbNq0SZiamorevXuL9PR09W0aN24sfHx8xKtXrzQ6a9euLcqWLate9vPPPwsA4ty5c+plKSkponDhwhrrLut5bNGihUZL//79BQARExMjhNDv+W3QoIFo0KCB+uuIiAgBQHh5eWms9zlz5ggAIjY2Vr2sWbNmwt3dXZeni4iIiN7Aw/eIiIgIQOaeJy9fvsS2bdvw7NkzbNu27a2H7uXEwcEBR48exc2bN3O8PmtPqN27d+PFixd693311Vcah7/Vq1cP6enpuHLlCgBg7969SEtLQ//+/TXuFxQUpNfjtG3bVn0YXhZjY2P1nEMZGRl4+PAh0tLSUL16dY3DE/WxY8cOAEBwcLDG8qFDhwIAtm/frtP3GThwoPrfKpUKAwcOREpKCvbs2QMA2LBhA+zt7fHxxx/j/v376ku1atVgY2OjcQgiAJQqVQoBAQF6/V/WrFmD9u3bo0+fPvj555/VE9U/fPgQ+/btw+eff45nz56pH/vBgwcICAhAXFwcbty4ASDz58/CwgKrVq1Sf9/du3fj/v37+OKLL7Qec8CAARpfZ63nrOc1L57f7t27a8w1Va9ePQCZhxsSERHRv8dBKSIiIgIAODs7w9/fH6tXr8bmzZuRnp6Ozz77TOf7T58+HWfOnEGJEiVQo0YNjB8/XuPNe6lSpRAcHIwlS5agcOHCCAgIwPz58zXmk8pNyZIlNb52dHQEAPW8SFmDU2XKlNG4nZOTk/q2uihVqlSOy1esWAFfX19YWFigUKFCcHZ2xvbt23Xuf9OVK1dgZGSk1VukSBE4ODio/z+5MTIygqenp8aycuXKAcic4wrInMfryZMncHFxgbOzs8YlKSkJd+/e1bj/2/7/b5OYmIgvvvgCbdu2xf/93/9pDBzGx8dDCIExY8ZoPfa4ceMAQP34Dg4OaN68OVavXq2+/6pVq+Dm5oaPPvpI63HLli2r8XXp0qVhZGSk/n/nxfP7rp85IiIi+nc4pxQRERGpderUCb1798bt27fxySefwMHBQef7fv7556hXrx62bNmC8PBw/PDDD5g2bRo2b96snqdq5syZ6NatG3799VeEh4dj0KBB6jmBihcvnuv3NzY2znG5eGNS73/L0tJSa9nKlSvRrVs3tGrVCsOHD4eLiwuMjY0xZcoUJCQk/KvHe3Py87yWkZEBFxcXjT2Qsntzr7Cc/v+5KVq0KIoWLYodO3bg+PHjqF69usZjA8CwYcPeuvdV9kGjLl26YMOGDTh8+DB8fHzw22+/oX///uo9r3Lztufx3zy/hvqZIyIiKqg4KEVERERqrVu3Rp8+ffDHH39oTCCuq6JFi6J///7o378/7t69i6pVq+L7779XD0oBgI+PD3x8fPDdd9/h8OHDqFOnDhYuXIhJkyb9q3Z3d3cAmXvnZN/b58GDB/96z5aNGzfC09MTmzdv1hjkyNrbJ4s+AyDu7u7IyMhAXFwcvLy81Mvv3LmDx48fq/8/ucnIyMClS5fUe0cBwMWLFwFAfRa40qVLY8+ePahTp47eA066sLCwwLZt2/DRRx8hMDAQ+/fvR8WKFQFAvReXqakp/P393/m9AgMD4ezsjFWrVuHDDz/Eixcv8OWXX+Z427i4OI31HB8fj4yMDPX/Oy+eX13k96AiERHR+4yH7xEREZGajY0NFixYgPHjx6N58+Y63y89PV3rMDYXFxcUK1YMycnJAICnT58iLS1N4zY+Pj4wMjJS3+bfaNy4MUxMTLBgwQKN5fPmzfvX3ztrj5nse8gcPXoUR44c0bidlZUVAODx48fv/J5NmzYFAMyePVtj+axZswAAzZo106kt+/9PCIF58+bB1NQUjRs3BpC5B1t6ejomTpyodd+0tDSdWt/F3t4eu3fvhouLCz7++GP13mMuLi5o2LAhfv75Z9y6dUvrfvfu3dP42sTEBB07dsT69esRGhoKHx+ft569cP78+Rpf/9///R8AqAdA8+r5fRdra+t/fAgnERFRQcc9pYiIiEhD165d9b7Ps2fPULx4cXz22WeoXLkybGxssGfPHvz555+YOXMmAGDfvn0YOHAg2rVrh3LlyiEtLQ2//PILjI2N0bZt23/d7erqisGDB2PmzJlo0aIFAgMDERMTg507d6Jw4cL/ao+WTz/9FJs3b0br1q3RrFkzJCYmYuHChfD29kZSUpL6dpaWlvD29sa6detQrlw5ODk5oVKlSqhUqZLW96xcuTK6du2KRYsW4fHjx2jQoAGOHTuGFStWoFWrVmjUqNE7uywsLLBr1y507doVH374IXbu3Int27fjm2++UR+W16BBA/Tp0wdTpkxBdHQ0mjRpAlNTU8TFxWHDhg2YM2eOXnOHvU3hwoXxv//9D3Xr1oW/vz8OHjwINzc3zJ8/H3Xr1oWPjw969+4NT09P3LlzB0eOHMH169cRExOj8X26dOmCuXPnIiIiAtOmTXvr4yUmJqrX85EjR7By5Up06tQJlStXBpA3z68uqlWrhnXr1iE4OBgffPABbGxs9BrQJSIiKsg4KEVERET/mpWVFfr374/w8HBs3rwZGRkZKFOmDH766Sf069cPQOYgQUBAAH7//XfcuHEDVlZWqFy5Mnbu3ImaNWvmSce0adNgZWWFxYsXY8+ePahVqxbCw8NRt25dWFhY/OPv261bN9y+fRs///wzdu/eDW9vb6xcuRIbNmxAZGSkxm2XLFmCoKAgDBkyBCkpKRg3blyOg1JZt/X09ERoaCi2bNmCIkWKYPTo0VqHBb6NsbExdu3ahX79+mH48OGwtbXFuHHjMHbsWI3bLVy4ENWqVcPPP/+Mb775BiYmJvDw8MAXX3yBOnXq/KPnJCdubm7Ys2cP6tWrh48//hhRUVHw9vbG8ePHMWHCBISGhuLBgwdwcXFBlSpVtDqBzEGeihUr4ty5c+jcufNbH2vdunUYO3YsRo0aBRMTEwwcOBA//PCDxm3+7fOri/79+yM6OhrLly/Hjz/+CHd3dw5KERER6UglOFMjERERvcceP34MR0dHTJo0Cd9++63SOXmmW7du2Lhxo8aeWu+LKlWqwMnJCXv37tW6bvz48ZgwYQLu3buHwoULK1BHREREeYVzShEREdF74+XLl1rLsuYUatiwoWFj6B85fvw4oqOj0aVLF6VTiIiIKJ/x8D0iIiJ6b6xbtw6hoaFo2rQpbGxscPDgQaxZswZNmjTJ08PUKO+dOXMGJ06cwMyZM1G0aFG0b99e6SQiIiLKZxyUIiIioveGr68vTExMMH36dDx9+lQ9+fmkSZOUTqN32LhxI0JCQlC+fHmsWbPmX80BRkRERP8NnFOKiIiIiIiIiIgMjnNKERERERERERGRwXFQioiIiIiIiIiIDK7AzSmVkZGBmzdvwtbWFiqVSukcIiIiIiIiIqL3ihACz549Q7FixWBk9Pb9oQrcoNTNmzdRokQJpTOIiIiIiIiIiN5r165dQ/Hixd96fYEblLK1tQWQ+cTY2dkpXENERERERERE9H55+vQpSpQooR6DeZsCNyiVdcienZ0dB6WIiIiIiIiIiPLJu6ZN4kTnRERERERERERkcByUIiIiIiIiIiIig+OgFBERERERERERGRwHpYiIiIiIiIiIyOAK3ETn+vAYtT1Pvs/lqc3y5PsAedcE5G0XEREREREREZE+OChF/5qMA2UyNgEc6NSVjE0A15+uZGwiIiIiIiL5cFCKiIgKhPd5UFHGJuD9H+jk+tONjE3A+73+ZGwC+DOlK34gQ0QFCeeUIiIiIiIiIiIig+OgFBERERERERERGRwHpYiIiIiIiIiIyOA4KEVERERERERERAbHQSkiIiIiIiIiIjI4DkoREREREREREZHBcVCKiIiIiIiIiIgMjoNSRERERERERERkcCb63qFKlSpQqVRay1UqFSwsLFCmTBl069YNjRo1ypNAIiIiIiIiIiJ6/+i9p1RgYCAuXboEa2trNGrUCI0aNYKNjQ0SEhLwwQcf4NatW/D398evv/6aH71ERERERERERPQe0HtQ6v79+xg6dCgOHDiAmTNnYubMmYiKisKwYcPw/PlzhIeH47vvvsPEiRN1+n7z58+Hh4cHLCws8OGHH+LYsWO53v7x48cYMGAAihYtCnNzc5QrVw47duzQ979BREREREREREQK0ntQav369ejYsaPW8g4dOmD9+vUAgI4dO+LChQvv/F7r1q1DcHAwxo0bh5MnT6Jy5coICAjA3bt3c7x9SkoKPv74Y1y+fBkbN27EhQsXsHjxYri5uen73yAiIiIiIiIiIgXpPaeUhYUFDh8+jDJlymgsP3z4MCwsLAAAGRkZ6n/nZtasWejduze6d+8OAFi4cCG2b9+OZcuWYdSoUVq3X7ZsGR4+fIjDhw/D1NQUAODh4aHvf4GIiIiIiIiIiBSm96BUUFAQ+vbtixMnTuCDDz4AAPz5559YsmQJvvnmGwDA7t274efnl+v3SUlJwYkTJzB69Gj1MiMjI/j7++PIkSM53ue3335DrVq1MGDAAPz6669wdnZGp06dMHLkSBgbG+d4n+TkZCQnJ6u/fvr0qT7/XSIiIiIiIiIiygd6D0p99913KFWqFObNm4dffvkFAFC+fHksXrwYnTp1AgD07dsX/fr1y/X73L9/H+np6XB1ddVY7urqivPnz+d4n0uXLmHfvn3o3LkzduzYgfj4ePTv3x+pqakYN25cjveZMmUKJkyYoO9/k4iIiIiIiIiI8pHeg1IA0LlzZ3Tu3Pmt11taWv7joNxkZGTAxcUFixYtgrGxMapVq4YbN27ghx9+eOug1OjRoxEcHKz++unTpyhRokS+9BERERERERERkW7+0aAUkHn43d27d5GRkaGxvGTJkjrdv3DhwjA2NsadO3c0lt+5cwdFihTJ8T5FixaFqampxqF6Xl5euH37NlJSUmBmZqZ1H3Nzc5ibm+vUREREREREREREhqH32ffi4uJQr149WFpawt3dHaVKlUKpUqXg4eGBUqVK6fx9zMzMUK1aNezdu1e9LCMjA3v37kWtWrVyvE+dOnUQHx+vMRB28eJFFC1aNMcBKSIiIiIiIiIikpPee0p169YNJiYm2LZtG4oWLQqVSvWPHzw4OBhdu3ZF9erVUaNGDcyePRvPnz9Xn42vS5cucHNzw5QpUwAA/fr1w7x58zB48GAEBQUhLi4OkydPxqBBg/5xAxERERERERERGZ7eg1LR0dE4ceIEKlSo8K8fvH379rh37x7Gjh2L27dvw8/PD7t27VJPfn716lUYGf29M1eJEiWwe/duDBkyBL6+vnBzc8PgwYMxcuTIf91CRERERERERESGo/eglLe3N+7fv59nAQMHDsTAgQNzvC4yMlJrWa1atfDHH3/k2eMTEREREREREZHh6T2n1LRp0zBixAhERkbiwYMHePr0qcaFiIiIiIiIiIjoXfTeU8rf3x8A0LhxY43lQgioVCqkp6fnTRkREREREREREb239B6UioiIyI8OIiIiIiIiIiIqQPQelGrQoEF+dBARERERERERUQGi06DU6dOnUalSJRgZGeH06dO53tbX1zdPwoiIiIiIiIiI6P2l06CUn58fbt++DRcXF/j5+UGlUkEIoXU7zilFRERERERERES60GlQKjExEc7Ozup/ExERERERERER/Rs6DUq5u7vn+G8iIiIiIiIiIqJ/wkjfO6xYsQLbt29Xfz1ixAg4ODigdu3auHLlSp7GERERERERERHR+0nvQanJkyfD0tISAHDkyBHMmzcP06dPR+HChTFkyJA8DyQiIiIiIiIiovePTofvZXft2jWUKVMGALB161Z89tln+Oqrr1CnTh00bNgwr/uIiIiIiIiIiOg9pPeeUjY2Nnjw4AEAIDw8HB9//DEAwMLCAi9fvszbOiIiIiIiIiIiei/pvafUxx9/jF69eqFKlSq4ePEimjZtCgD466+/4OHhkdd9RERERERERET0HtJ7T6n58+ejVq1auHfvHjZt2oRChQoBAE6cOIGOHTvmeSAREREREREREb1/9N5TysHBAfPmzdNaPmHChDwJIiIiIiIiIiKi95/ee0rt2rULBw8eVH89f/58+Pn5oVOnTnj06FGexhERERERERER0ftJ70Gp4cOH4+nTpwCA2NhYDB06FE2bNkViYiKCg4PzPJCIiIiIiIiIiN4/eh++l5iYCG9vbwDApk2b8Omnn2Ly5Mk4efKketJzIiIiIiIiIiKi3Oi9p5SZmRlevHgBANizZw+aNGkCAHByclLvQUVERERERERERJQbvfeUqlu3LoKDg1GnTh0cO3YM69atAwBcvHgRxYsXz/NAIiIiIiIiIiJ6/+i9p9S8efNgYmKCjRs3YsGCBXBzcwMA7Ny5E4GBgXkeSERERERERERE7x+995QqWbIktm3bprX8xx9/zJMgIiIiIiIiIiJ6/+k0KPX06VPY2dmp/52brNsRERERERERERG9jU6DUo6Ojrh16xZcXFzg4OAAlUqldRshBFQqFdLT0/M8koiIiIiIiIiI3i86DUrt27cPTk5OAICIiIh8DSIiIiIiIiIiovefToNSDRo0yPHfRERERERERERE/4TeE50DwKtXr3D69GncvXsXGRkZGte1aNEiT8KIiIiIiIiIiOj9pfeg1K5du9ClSxfcv39f6zrOKUVERERERERERLow0vcOQUFBaNeuHW7duoWMjAyNCwekiIiIiIiIiIhIF3oPSt25cwfBwcFwdXXNs4j58+fDw8MDFhYW+PDDD3Hs2DGd7rd27VqoVCq0atUqz1qIiIiIiIiIiCj/6T0o9dlnnyEyMjLPAtatW4fg4GCMGzcOJ0+eROXKlREQEIC7d+/mer/Lly9j2LBhqFevXp61EBERERERERGRYeg9p9S8efPQrl07HDhwAD4+PjA1NdW4ftCgQXp9v1mzZqF3797o3r07AGDhwoXYvn07li1bhlGjRuV4n/T0dHTu3BkTJkzAgQMH8PjxY33/G0REREREREREpCC9B6XWrFmD8PBwWFhYIDIyEiqVSn2dSqXSa1AqJSUFJ06cwOjRo9XLjIyM4O/vjyNHjrz1fiEhIXBxcUHPnj1x4MABff8LRERERERERESkML0Hpb799ltMmDABo0aNgpGR3kf/abh//z7S09O15qdydXXF+fPnc7zPwYMHsXTpUkRHR+v0GMnJyUhOTlZ//fTp03/cS0REREREREREeUPvUaWUlBS0b9/+Xw9I/RPPnj3Dl19+icWLF6Nw4cI63WfKlCmwt7dXX0qUKJHPlURERERERERE9C56jyx17doV69aty5MHL1y4MIyNjXHnzh2N5Xfu3EGRIkW0bp+QkIDLly+jefPmMDExgYmJCcLCwvDbb7/BxMQECQkJWvcZPXo0njx5or5cu3YtT9qJiIiIiIiIiOif0/vwvfT0dEyfPh27d++Gr6+v1kTns2bN0vl7mZmZoVq1ati7dy9atWoFAMjIyMDevXsxcOBArdtXqFABsbGxGsu+++47PHv2DHPmzMlxLyhzc3OYm5vr3ERERERERERERPlP70Gp2NhYVKlSBQBw5swZjeuyT3quq+DgYHTt2hXVq1dHjRo1MHv2bDx//lx9Nr4uXbrAzc0NU6ZMgYWFBSpVqqRxfwcHBwDQWk5ERERERERERPLSe1AqIiIiTwPat2+Pe/fuYezYsbh9+zb8/Pywa9cu9eTnV69eVWT+KiIiIiIiIiIiyj96D0rlh4EDB+Z4uB4AREZG5nrf0NDQvA8iIiIiIiIiIqJ8xV2QiIiIiIiIiIjI4DgoRUREREREREREBsdBKSIiIiIiIiIiMjgOShERERERERERkcH9o4nO4+LiEBERgbt37yIjI0PjurFjx+ZJGBERERERERERvb/0HpRavHgx+vXrh8KFC6NIkSJQqVTq61QqFQeliIiIiIiIiIjonfQelJo0aRK+//57jBw5Mj96iIiIiIiIiIioANB7TqlHjx6hXbt2+dFCREREREREREQFhN6DUu3atUN4eHh+tBARERERERERUQGh9+F7ZcqUwZgxY/DHH3/Ax8cHpqamGtcPGjQoz+KIiIiIiIiIiOj9pPeg1KJFi2BjY4P9+/dj//79GtepVCoOShERERERERER0TvpPSiVmJiYHx1ERERERERERFSA6D2nVHZCCAgh8qqFiIiIiIiIiIgKiH80KBUWFgYfHx9YWlrC0tISvr6++OWXX/K6jYiIiIiIiIiI3lN6H743a9YsjBkzBgMHDkSdOnUAAAcPHkTfvn1x//59DBkyJM8jiYiIiIiIiIjo/aL3oNT//d//YcGCBejSpYt6WYsWLVCxYkWMHz+eg1JERERERERERPROeh++d+vWLdSuXVtree3atXHr1q08iSIiIiIiIiIioveb3oNSZcqUwfr167WWr1u3DmXLls2TKCIiIiIiIiIier/pffjehAkT0L59e0RFRannlDp06BD27t2b42AVERERERERERHRm/TeU6pt27Y4evQoChcujK1bt2Lr1q0oXLgwjh07htatW+dHIxERERERERERvWf03lMKAKpVq4aVK1fmdQsRERERERERERUQOg1KPX36FHZ2dup/5ybrdkRERERERERERG+j06CUo6Mjbt26BRcXFzg4OEClUmndRggBlUqF9PT0PI8kIiIiIiIiIqL3i06DUvv27YOTkxMAICIiIl+DiIiIiIiIiIjo/afToFSDBg3U/y5VqhRKlCihtbeUEALXrl3L2zoiIiIiIiIiInov6X32vVKlSuHevXtayx8+fIhSpUrlSRQREREREREREb3f9B6Uypo76k1JSUmwsLDIkygiIiIiIiIiInq/6XT4HgAEBwcDAFQqFcaMGQMrKyv1denp6Th69Cj8/PzyPJCIiIiIiIiIiN4/Og9KnTp1CkDmnlKxsbEwMzNTX2dmZobKlStj2LBheV9IRERERERERETvHZ0HpbLOute9e3fMmTMHdnZ2+RZFRERERERERETvN73nlJo9ezbS0tK0lj98+BBPnz79RxHz58+Hh4cHLCws8OGHH+LYsWNvve3ixYtRr149ODo6wtHREf7+/rnenoiIiIiIiIiI5KP3oFSHDh2wdu1areXr169Hhw4d9A5Yt24dgoODMW7cOJw8eRKVK1dGQEAA7t69m+PtIyMj0bFjR0RERODIkSMoUaIEmjRpghs3buj92EREREREREREpAy9B6WOHj2KRo0aaS1v2LAhjh49qnfArFmz0Lt3b3Tv3h3e3t5YuHAhrKyssGzZshxvv2rVKvTv3x9+fn6oUKEClixZgoyMDOzdu1fvxyYiIiIiIiIiImXoPSiVnJyc4+F7qampePnypV7fKyUlBSdOnIC/v//fQUZG8Pf3x5EjR3T6Hi9evEBqaiqcnJze2vv06VONCxERERERERERKUvvQakaNWpg0aJFWssXLlyIatWq6fW97t+/j/T0dLi6umosd3V1xe3bt3X6HiNHjkSxYsU0BraymzJlCuzt7dWXEiVK6NVIRERERERERER5T+ez72WZNGkS/P39ERMTg8aNGwMA9u7diz///BPh4eF5HpibqVOnYu3atYiMjISFhUWOtxk9ejSCg4PVXz99+pQDU0RERERERERECtN7T6k6deqoJxhfv349fv/9d5QpUwanT59GvXr19PpehQsXhrGxMe7cuaOx/M6dOyhSpEiu950xYwamTp2K8PBw+Pr6vvV25ubmsLOz07gQEREREREREZGy9N5TCgD8/PywatWqf/3gZmZmqFatGvbu3YtWrVoBgHrS8oEDB771ftOnT8f333+P3bt3o3r16v+6g4iIiIiIiIiIDOsfDUplefXqFVJSUjSW6bsnUnBwMLp27Yrq1aujRo0amD17Np4/f47u3bsDALp06QI3NzdMmTIFADBt2jSMHTsWq1evhoeHh3ruKRsbG9jY2Pyb/w4RERERERERERmI3oNSL168wIgRI7B+/Xo8ePBA6/r09HS9vl/79u1x7949jB07Frdv34afnx927dqlnvz86tWrMDL6+yjDBQsWICUlBZ999pnG9xk3bhzGjx+v73+HiIiIiIiIiIgUoPeg1PDhwxEREYEFCxbgyy+/xPz583Hjxg38/PPPmDp16j+KGDhw4FsP14uMjNT4+vLly//oMYiIiIiIiIiISB56D0r9/vvvCAsLQ8OGDdG9e3fUq1cPZcqUgbu7O1atWoXOnTvnRycREREREREREb1H9D773sOHD+Hp6Qkgc/6ohw8fAgDq1q2LqKiovK0jIiIiIiIiIqL3kt6DUp6enkhMTAQAVKhQAevXrweQuQeVg4NDnsYREREREREREdH7Se9Bqe7duyMmJgYAMGrUKMyfPx8WFhYYMmQIhg8fnueBRERERERERET0/tF7TqkhQ4ao/+3v74/z58/jxIkTKFOmDHx9ffM0joiIiIiIiIiI3k967SmVmpqKxo0bIy4uTr3M3d0dbdq04YAUERERERERERHpTK9BKVNTU5w+fTq/WoiIiIiIiIiIqIDQe06pL774AkuXLs2PFiIiIiIiIiIiKiD0nlMqLS0Ny5Ytw549e1CtWjVYW1trXD9r1qw8iyMiIiIiIiIioveT3oNSZ86cQdWqVQEAFy9e1LhOpVLlTRUREREREREREb3XdB6UunTpEkqVKoWIiIj87CEiIiIiIiIiogJA5zmlypYti3v37qm/bt++Pe7cuZMvUURERERERERE9H7TeVBKCKHx9Y4dO/D8+fM8DyIiIiIiIiIiovef3mffIyIiIiIiIiIi+rd0HpRSqVRaE5lzYnMiIiIiIiIiIvondJ7oXAiBbt26wdzcHADw6tUr9O3bF9bW1hq327x5c94WEhERERERERHRe0fnQamuXbtqfP3FF1/keQwRERERERERERUMOg9KLV++PD87iIiIiIiIiIioAOFE50REREREREREZHAclCIiIiIiIiIiIoPjoBQRERERERERERkcB6WIiIiIiIiIiMjgOChFREREREREREQGx0EpIiIiIiIiIiIyOA5KERERERERERGRwXFQioiIiIiIiIiIDI6DUkREREREREREZHAclCIiIiIiIiIiIoPjoBQRERERERERERmcFINS8+fPh4eHBywsLPDhhx/i2LFjud5+w4YNqFChAiwsLODj44MdO3YYqJSIiIiIiIiIiPKC4oNS69atQ3BwMMaNG4eTJ0+icuXKCAgIwN27d3O8/eHDh9GxY0f07NkTp06dQqtWrdCqVSucOXPGwOVERERERERERPRPKT4oNWvWLPTu3Rvdu3eHt7c3Fi5cCCsrKyxbtizH28+ZMweBgYEYPnw4vLy8MHHiRFStWhXz5s0zcDkREREREREREf1TJko+eEpKCk6cOIHRo0erlxkZGcHf3x9HjhzJ8T5HjhxBcHCwxrKAgABs3bo1x9snJycjOTlZ/fWTJ08AAE+fPn1nX0byi3feRhe6PJau8qoJyLsuNumOP1O6kbEJ4PrTlYxNwPu9/mRsAvgzpSsZmwCuP12xSXf8mdJNXjZVGrc7z77XmQkBefJ9ZGwioryX9VomhMj9hkJBN27cEADE4cOHNZYPHz5c1KhRI8f7mJqaitWrV2ssmz9/vnBxccnx9uPGjRMAeOGFF1544YUXXnjhhRdeeOGFF154MeDl2rVruY4LKbqnlCGMHj1aY8+qjIwMPHz4EIUKFYJKpfpX3/vp06coUaIErl27Bjs7u3+bmidkbALk7GKTbmRsAuTsYpPuZOxik25kbALk7GKT7mTsYpNuZGwC5Oxik+5k7GKTbmRsAuTset+bhBB49uwZihUrluvtFB2UKly4MIyNjXHnzh2N5Xfu3EGRIkVyvE+RIkX0ur25uTnMzc01ljk4OPzz6BzY2dlJ80OURcYmQM4uNulGxiZAzi426U7GLjbpRsYmQM4uNulOxi426UbGJkDOLjbpTsYuNulGxiZAzq73ucne3v6dt1F0onMzMzNUq1YNe/fuVS/LyMjA3r17UatWrRzvU6tWLY3bA8D//ve/t96eiIiIiIiIiIjko/jhe8HBwejatSuqV6+OGjVqYPbs2Xj+/Dm6d+8OAOjSpQvc3NwwZcoUAMDgwYPRoEEDzJw5E82aNcPatWtx/PhxLFq0SMn/BhERERERERER6UHxQan27dvj3r17GDt2LG7fvg0/Pz/s2rULrq6uAICrV6/CyOjvHbpq166N1atX47vvvsM333yDsmXLYuvWrahUqZLB283NzTFu3DitwwOVJGMTIGcXm3QjYxMgZxebdCdjF5t0I2MTIGcXm3QnYxebdCNjEyBnF5t0J2MXm3QjYxMgZxebMqmEeNf5+YiIiIiIiIiIiPKWonNKERERERERERFRwcRBKSIiIiIiIiIiMjgOShERERERERERkcFxUIqIiIiIiIiIiAyOg1JERERERERERGRwHJQiIiIiIiIiIiKD46AU5Zvnz58rnaAXIYTSCVpevHih2GNfunRJscf+L3n16tVbr7t165YBSzRFREQo9tj0fjp//vxbr9u9e7cBS/42btw4XLlyRZHHfpvcfvd+/vlnA5Zo6tq1K6KiohR7/JxwO4FIOTJuv8i47SJjEyDn+vuvvXdQ8n0WaeKglJ48PDwQEhKCq1evKp2iYfz48cjIyNBa/uTJE3Ts2FGBIsDV1RU9evTAwYMHFXn8nHTr1i3HjeDLly+jfv36ChQBjRs3xo0bN7SWHzt2DH5+foYPeq1MmTJo1KgRVq5cmesfPkOS8fevatWqiI6O1lq+adMm+Pr6Gj7otcDAQJQuXRqTJk3CtWvXFOvITsbXKRl/pmR8noDMn/X58+drLEtOTsbAgQPRsmVLRZp+/fVXlC5dGo0bN8bq1auRnJysSEd2gYGBGD58OFJTU9XL7t+/j+bNm2PUqFGKdT158gT+/v4oW7YsJk+enOPfHUPjdoJuGjRogLCwMLx8+VKRx3+b0NDQHJenpaVh9OjRho15TcYmWdefjNsvMm67yNgEyLn+ZHzvIOP7LFlfExR9/RSklx9//FFUrlxZGBsbC39/f7FmzRrx6tUrpbNE8eLFRa1atURCQoJ6WUREhChRooT44IMPFGnasmWLaNmypTA1NRVly5YVU6ZMETdu3FCkJYufn5/w9PQUhw8fVi8LDQ0VdnZ2olWrVoo0NW3aVDg5OYm1a9cKIYRIT08X48aNE6ampmLw4MGKNAkhxKlTp8SgQYOEs7OzsLe3F1999ZU4evSoYj1CyPn7169fP2Fubi6mTp0qhBAiKSlJdO3aVVhaWopZs2Yp1nXv3j0xa9YsUblyZWFiYiKaNGki1q1bJ5KTkxVrkvF1SsafKRmfJyGEWLdunXBychKffPKJuH37tjh16pTw8vIS5cuXF8eOHVOs6+TJkyIoKEgULlxYODg4iL59+yrac+jQIVG6dGlRuXJl8ddff4lt27YJV1dXUb9+fXH58mXFuoQQ4u7du2LmzJnC19dXmJiYiMDAQLFhwwaRkpKiSA+3E3QzePBg4ezsLOzs7ESvXr3EkSNHFOl4k62trfjss8/Ew4cP1cvOnz8vqlatKtzd3dn0mqzrT8btFxm3XWRsEkLO9SfjewcZ32fJ+pqg5OsnB6X+oRMnTqg3gh0dHcWAAQPEiRMnFOt5+PChaNeunbC1tRWLFi0Sw4YNE6ampuKbb74RqampinUJ8fdGsI+PjzAxMRHNmjUTmzZtUqQrJSVFDBs2TJiZmYnRo0eLdu3aCRsbG7Fo0SKDt2Q3b948YWVlJTp27Chq1aolihUrJnbv3q1oU5bU1FSxadMm0bx5c2FqaioqVqwoZs6cKe7evatYk2y/f9u2bRNFihQRdevWVb8ZjY2NVaznTSdOnBADBw4UhQoVEoUKFRJBQUEiOjra4B0yv07J9DMl8/N07do14e/vLwoVKiQsLCxE3759xfPnzxVtypKSkiI2bdokPv30U2Fqaip8fHzE7NmzxePHjw3e8uzZM9G5c2dhbm4uTE1NxdSpU0VGRobBO3KT9bpgYWEhChcuLL7++mtx8eJFRVq4nfBuWX+LW7RoIUxNTYWXl5f44YcfxO3btxVrio+PFzVr1hRubm4iPDxcvS3TqVMnRX7vZG0SQs71J4Tc2y+ybLvI3CTr+pPtvYOM77NkfE1Q8vWTg1L/UkpKipg9e7YwNzcXRkZGonLlymLp0qWKbXyOHj1aqFQqYWpqKvbs2aNIQ27mzp0rzM3NhUqlEs7OzmLMmDGKvKEZO3as+nnK/mmokkaNGqVuOnTokNI5Wl69eiVmzZqlXn/m5ubiyy+/FDdv3lSsSZbfv/T0dNG/f3/1+tu1a5dBH18XN27cEOPGjRPm5ubC2tpaGBsbi7p164ozZ84YvEXm1ylZfqaEkPN5unbtmqhfv75wcHAQpqamYsKECSI9PV3pLCGEEMnJyWLt2rWiSZMmwsTERNSvX1+UKVNG2Nraqj8hNZQTJ06I8uXLi9KlSwtLS0vRvXt3kZSUZNCG3Ny8eVNMnTpVlC9fXlhbW4suXbqIxo0bCxMTE0X38BSC2wm6uHPnjpg4caKwsLAQpqamomXLlmLv3r2KtKSnp4ugoCBhZGQkTE1NxerVqxXpkL0pO9nWn8zbLzJtu8jYJPv6k+m9g8zvs2R7TVDi9ZODUv9QSkqKWLdunQgMDBTGxsaiTp06YtmyZSIkJES4urqKjh07Grxp7ty56tHM8uXLC29vb8U/URBCiNu3b4tp06YJLy8vYWVlJTp37iz27dsnwsLCRMWKFcXHH39ssJaUlBQRHBwszM3NxTfffCPq168vihQpIrZv326whjc9fPhQtGnTRtjb24tFixaJzp07C2trazF//nzFmrL7888/Rb9+/YSjo6MoXry4+Pbbb8WlS5dEVFSUaNy4sSKHE8n0+xcfHy9q1KghSpYsKcLDw8W3334rzMzMxPDhwxU7JCZLSkqK2LBhg/jkk0+EiYmJqFmzpli8eLFISkoSiYmJonPnzsLLy8ugTbK+Tsn0MyWEnM/TmjVrhIODg2jevLm4e/euCA8PF25ubqJ27doahxoa2vHjx8WAAQOEk5OTKFq0qBg5cqSIi4tTXz937lzh4uJisJ4pU6YIMzMzMXDgQPHy5UsRGxub4yFhhpaSkiI2btwomjVrJkxNTUW1atXEggULxJMnT9S32bx5s3BwcDB4G7cTdHf06FHRt29f4eDgIEqWLCnGjh0revbsKSwtLcXQoUMN3vPbb78JZ2dnUadOHeHs7CwaN26s+CGYMjZlkWn9ybr9IuO2i4xNsq4/IeR67yD7+yyZXhOEUO71k4NSesq+26azs7MYOnSoOHfunMZtYmNjhYWFhUG7AgICRKFChcSGDRuEEEK8ePFC9O3bV1hYWIhp06YZtCVL9sMoKleuLP7v//5PPHr0SOM28fHxwtTU1GBNvr6+okyZMupjdzMyMsTUqVOFubm56Nevn8E6sitWrJioU6eOuHTpknrZ2rVrhZOTk2jatKkiTUIIMXPmTFGpUiX1iP3vv/+utUfEtWvXhLGxscGaZPz9s7GxEe3bt9f42c6aU8bPz89gHW/Kep6cnJzE4MGDc9yd+9atW0KlUhmsScbXKRl/pmR8noQQwsrKSvz0008ay7IfaqiESpUqCRMTE9G0aVOxZcsWkZaWpnWbe/fuGfTnvEiRImLHjh0ay7IfEqaUQoUKCUdHR9G/f39x6tSpHG/z6NEj4eHhYbAmbifo5s6dO2LGjBmiYsWKwszMTLRt21bs3LlTYw/OAwcOCGtra4N2ffXVV8Lc3FzMmDFDZGRkiFu3bolPPvlEODk5iXXr1hm0ReYmWdefjNsvMm67yNgkhJzrT8b3DjK+z5L1NUHJ108OSunJyMhIBAQEiPXr1791FDopKUl069bNoF3+/v45jmJmHWusBDs7O/HVV1/lOuHsixcvxPjx4w3W1KNHjxwPoTh58qSoWLGiwTqyCwkJyfHwl6y5W5RSpkwZMXny5Fx3sU1OThahoaEGa5Lx9y8sLCzH5U+fPhU9evQwWMebPvroI7F69epcJ+1OTU0VkZGRBmuS8XVKxp8pGZ8nITInu3ybt/0e5LeQkBBx/fp1RR77be7du/fW67L/vl27ds2ghz6GhYWJly9fvvN2huzidoJuTE1NRYUKFcT06dPfOifLkydPRMOGDQ3aVbFixRz34Jw3b57B30xlkbFJ1vUn4/aLjNsuMjYJIef6k/G9g4zvs2R9TVDy9ZODUnrS9cw5q1evlmb+iOwbyIbs0nUOiClTpmh9MqqE7H9sZGnKrl+/frm+2VGKIbv+i79/WZo2baro/FtvI0uXUq9T/7WfKaWeJ33Y2toqejhfTtikO0N2cTtBN1FRUTrd7uDBgwY9e2huj5V9ENuQXTI2ybr+dCXLdkJ2bNKdjF0yvqcxZJOsrwlKvn6qhBAClOfs7OwQHR0NT09PpVM0yNjFJt3I2ATI2SVjk62tLWJiYqRqAuTsknH9sUl3Mv5MsUl3MnbJ+LPOJt3J2MUm3cn4msAm3cnYJePPOpt0lx9dRnn2nUiDrGN9MnaxSTcyNgFydsnYRLqTcf2xiUg5Mv6ss0l3MnaxiUg5Mv6ss0l3+dHFQSkiIiIiIiIiIjI4DkoREREREREREZHBcVCKiIiI8oxKpVI6QQubdCdrFxEREb2fOChFREREeUbGORDYpDtZu+jdZB1QlLGLTUQkO1lfE/Kji4NS+cTd3R2mpqZKZ2iRsatevXqwtLRUOkODoZrS0tIQEhKC69evv/O2X3zxBezs7PK9CZCzKz09HVFRUXj8+PE7b2uon/PU1FT06NEDiYmJ77ztN998Aycnp3xvAuTsknH9sSl/7Ny5E25ubkpnaJCx6ezZs3B3d1c6Q4uhutLS0hAWFoY7d+6887aG/JssW5MQAlevXsWrV690uq2hyNqlKzbpzpDbL7oyVJOM21OAnF0yvneQsUkfsr4m5EeXSsj6v6X/pKdPn+p8W0P94svYlJ2trS1iY2Ph4eFh8MfOjYxdFhYWOHfuHEqVKqV0ipq9vT2io6OlagLk7JJx/bEpd8HBwTrfdtasWflY8jcZm9q0aaPzbTdv3pyPJZpk7cpiZWWFc+fOSTU4J1tTRkYGLCws8Ndff6Fs2bJK56jJ2pXl7t27uHDhAgCgfPnycHFxUbhIzqYLFy7g//7v/3Du3DkAgJeXF4KCglC+fHk2vSbj9hQgZ5eM7x1kbMoi42sCoEyXSb4/wnvA0dFR593UHj58mM81f5Oxy8HBQeem9PT0fK7JJGNTdh999BH2798v3YuljF2VKlXCpUuXpPoD3KpVK2zduhVDhgxROkWDjF0yrj825e7UqVMaX588eRJpaWnqNwcXL16EsbExqlWrVqCb7O3t1f8WQmDLli2wt7dH9erVAQAnTpzA48eP9Rokep+7stSoUQPR0dHSDAAB8jUZGRmhbNmyePDggVSDP7J2PXv2DP3798fatWvV23TGxsZo37495s+fr/E7UZCbAGDTpk3o0KEDqlevjlq1agEA/vjjD1SqVAlr165F27Zt2QQ5t6cAObtkfO8gY5OsrwlKdnFQSgezZ89W//vBgweYNGkSAgIC1C+WR44cwe7duzFmzJgC3xUREaH+9+XLlzFq1Ch069ZNo2nFihWYMmVKgW7K7pNPPsGoUaMQGxuLatWqwdraWuP6Fi1asOu1SZMmYdiwYZg4cWKOTUrs6Va2bFmEhITg0KFDOTYNGjTI4E2ydsm4/tiUu+yvn7NmzYKtrS1WrFgBR0dHAMCjR4/QvXt31KtXr0A3LV++XP3vkSNH4vPPP8fChQthbGwMIPMDj/79+xv850nWriz9+/dHcHAwrl27luPPuq+vL5sATJ06FcOHD8eCBQtQqVIlgz/+28jY1atXL5w6dQrbtm3T2M4bPHgw+vTpg7Vr17LptREjRmD06NEICQnRWD5u3DiMGDFCkQEgGZtk3J6StUvG9w4yNsn6mqBkFw/f01Pbtm3RqFEjDBw4UGP5vHnzsGfPHmzdupVdrzVu3Bi9evVCx44dNZavXr0aixYtQmRkJJuQ+Wnj26hUKkX23gLk7MrelH3vNyGEYk257c2iUqlw6dIlA9b8TcYuGdcfm3Tn5uaG8PBwVKxYUWP5mTNn0KRJE9y8eZNNAJydnXHw4EGtQ00uXLiA2rVr48GDBwZvkrUrp78zKpVKmt8/WZocHR3x4sULpKWlwczMTGsuK0PupS97l7W1NXbv3o26detqLD9w4AACAwPx/PlzNr1mZWWF06dPo0yZMhrL4+LiULlyZbx48YJNkHN7CpCzS/b3Dm9SqknW1wQlu7inlJ52796NadOmaS0PDAzEqFGjFCjKJGPXkSNHsHDhQq3l1atXR69evRQokrMpIyNDkcd9Fxm7su8hIQtdJplUgoxdMq4/Nunu6dOnuHfvntbye/fu4dmzZwoUydmUlpaG8+fPaw3+nD9/XtHXVRm7ZHydkrEp+57xMpGxq1ChQjkeYmJvb6/em9LQZGwCgIYNG+LAgQNaA0AHDx406J6msjfJ+JoAyNkl43sHGZtkfU1QtEuQXkqWLClmzJihtXzGjBmiZMmSChRlkrGrXLlyYvjw4VrLhw8fLsqVK6dAkZxN2b18+VLphBzJ2iWT5ORkcf78eZGamqp0igZZu+i/58svvxQeHh5i06ZN4tq1a+LatWti48aNolSpUqJLly5sem3IkCGiUKFCYubMmeLAgQPiwIEDYsaMGaJw4cJiyJAhijTJ3EWUl37++Wfh7+8vbt26pV5269Yt0aRJE7Fw4UI2ZbNgwQLh7OwsBgwYIH755Rfxyy+/iAEDBggXFxexYMEC8euvv6ovBbkpi6zbU7J2yfjeQZYmWV8TlOzioJSeli9fLoyNjcWnn34qJk6cKCZOnCg+/fRTYWJiIpYvX86ubLZv3y4sLCxEpUqVRM+ePUXPnj2Fj4+PsLCwENu3b2fTa2lpaSIkJEQUK1ZMGBsbi4SEBCGEEN99951YsmSJIk0yd0VFRYnOnTuLWrVqievXrwshhAgLCxMHDhxQpOf58+eiR48ewtjYWON5GjhwoJgyZYoiTTJ3ybb+2KS758+fi379+glzc3NhZGQkjIyMhJmZmejXr59ISkpi02vp6eli2rRpolixYkKlUgmVSiWKFSsmpk2bJtLS0hRpkrkrLCxM1K5dWxQtWlRcvnxZCCHEjz/+KLZu3cqmbOLj48W3334rOnToIO7cuSOEEGLHjh3izJkzijXJ2OXn5ydsbGyEqampKF26tChdurQwNTUVNjY2okqVKhqXgtwkhFC/DrzrYmRkVKCbZN2ekrFLxvcOMjbJ+pqgZBcP39NTt27d4OXlhblz56pPn+zl5YWDBw/iww8/ZFc2TZs2RVxcHH766SecP38eANC8eXP07dsXJUqUYNNr33//PVasWIHp06ejd+/e6uWVKlXC7Nmz0bNnT3a9tmnTJnz55Zfo3LkzTp48ieTkZADAkydPMHnyZOzYscPgTaNHj0ZMTAwiIyMRGBioXu7v74/x48crdvisjF0yrj826c7Kygo//fQTfvjhByQkJAAASpcurTVpaEFvMjIywogRIzBixAg8ffoUgDIT5r9Jxq4FCxZg7Nix+Prrr/H999+r5/ZwcHDA7Nmz0bJlSzYB2L9/Pz755BPUqVMHUVFR+P777+Hi4oKYmBgsXboUGzduNHiTrF2tWrUy+GO+i4xNgJyHNcnYJOP2lKxdMr53kLFJ1tcERbvyfJiLiPRSunRpsWfPHiGEEDY2NuoR/HPnzgkHBwd2ZePn5ydWrFih1XTy5Enh6uqqSFPJkiXFkSNHtJri4uKEra2tIk2ydsm4/thEpBwvLy+xZcsWIYTmz3psbKwoVKgQm16rWbOmmDlzplbT0aNHhZubmyJNMncR5SUZt6dk7ZLxvYOMTaSNe0r9AxkZGYiPj8fdu3e1RvTr16+vUJWcXY8fP8axY8dybOrSpQubANy4cUNrQkcgc32mpqYavCeLjF0XLlzI8WfZ3t4ejx8/NnwQMidUdnFx0Vr+/PlzjTOnGZqMXTKuPzbp7vnz55g6dSr27t2b4+unEmf6kbHpzp07GDZsmLpJvHGSY6XOnihjV2JiIqpUqaK13NzcXLGzD8nYFBsbi9WrV2std3Fxwf379xUoyiRrF73d3Llz8dVXX8HCwgJz587N9baDBg0qsE3Zybg9BcjZJeN7BxmbSBsHpfT0xx9/oFOnTrhy5YrWBp2Sp+qWsev3339H586dkZSUBDs7O40XSJVKpcgAkIxN3t7eOHDgANzd3TWWb9y4MccNY0ORsatIkSKIj4+Hh4eHxvKDBw/C09NTkabq1atj+/btCAoKAgD1z9SSJUtQq1YtRZpk7ZJx/bFJd7169cL+/fvx5ZdfomjRoopujMvc1K1bN1y9ehVjxoyRpgmQs6tUqVKIjo7W+juza9cueHl5sek1BwcH3Lp1S+sU8KdOnYKbm5siTYA8XU5OTrh48SIKFy4MR0fHXH+2Hz58WGCbAODHH39E586dYWFhgR9//PGtt1OpVAYbAJKxKTsZt6dk7ZLxvYMsTbK+JsjSxUEpPfXt21f9IiDLRh0gZ9fQoUPRo0cPTJ48GVZWVkrnAJCzaezYsejatStu3LiBjIwMbN68GRcuXEBYWBi2bdvGrmx69+6NwYMHY9myZVCpVLh58yaOHDmCYcOGYcyYMYo0TZ48GZ988gnOnj2LtLQ0zJkzB2fPnsXhw4exf/9+RZpk7ZJx/bFJdzt37sT27dtRp04dxRreJGPTwYMHceDAAfj5+SmdokHGruDgYAwYMACvXr2CEALHjh3DmjVrMGXKFCxZsoRNr3Xo0AEjR47Ehg0boFKpkJGRgUOHDmHYsGGK7XUuU9ePP/4IW1tbAMDs2bMN9ri5kbEJyNwTMKd/K0nGpuxk3J6StUvG9w6yNGV/Tfjxxx+leK8OSNSl5LGD/0VWVlYiLi5O6QwtMnZZWVmpj9uVhYxNQmSeacvf3184OzsLS0tLUadOHbF7926ls6TrysjIEJMmTRLW1tbqM7BYWFiI7777TrEmITLPPtSrVy/xwQcfCC8vL9G5c2dx+vRpRZtk7JJx/bFJdx4eHuLs2bOKNrxJxiYvLy9x8uRJpTO0yNq1cuVKUaZMGfXPupubm6JneJWxKTk5WfTq1UuYmJgIlUolTE1NhZGRkfjiiy8UPXOirF1EeU227SmZu2R77yBrE2lSCfHGsV6Uq48++ggjRozQOMuBDGTsatOmDTp06IDPP/9c6RQ1GZtIfykpKYiPj0dSUhK8vb1hY2OjdBLpQcb1x6Z3W7lyJX799VesWLFCmj1NZWwKDw/HzJkz8fPPP2sdgqkkWbuyvHjxAklJSTnOkaIU2ZquXr2KM2fOICkpCVWqVEHZsmWVTgKgfFfW2SR1YagzTsrYBGTuCairWbNm5WPJ32RsIspPxsbGuHXrltbflgcPHsDFxUWx6YCU7OKglJ62bNmC7777DsOHD4ePjw9MTU01rvf19WXXa0uXLkVISAi6d++eY1OLFi3YlE1KSkqOE/WWLFlSoaJMsnbJRMaTDADydtF/U5UqVZCQkAAhBDw8PLReP0+ePMkmAI6Ojnjx4gXS0tJgZWWl1WTIuSL+C11E/5aRkdE7DzkRQhh0jlUZmwCgUaNGOt1OpVJh3759+VyTScam7DiAoDtPT0/8+eefKFSokMbyx48fo2rVqoqcfETGJiMjI9y+fVtr3d28eROlS5fGy5cvDd6kdBfnlNJT27ZtAQA9evRQL1OpVIr8YZG9q3fv3gCAkJAQrevY9Le4uDj06NEDhw8f1liu9M+UjF0ynmlLxpMMyNol4/pjk+5atWqlyOPmRsYmmeaPyU7GLhnPCChjU3p6OkJDQ9/6mqDEG3WZuiIiIgzyOPqQsQn4Z13Xr19HsWLFYGRklA9FcjZl97b9N5KTk2FmZpbvj/82MnZdvnw5x9fI5ORk3LhxQ4EiuZqyzi6pUqmwZMkSjT3g09PTERUVhQoVKhi0SZYuDkrpScYJ+AA5u97cOJGBjE3dunWDiYkJtm3bJs0k9YCcXTKeaUvGkwwAcnbJuP7YpLtx48YpnaBFxqauXbsqnZAjGbtkPCOgjE2DBw9GaGgomjVrhkqVKknRBMjT1aBBA73v079/f4SEhKBw4cL5UCRn0z/l7e2N6OhoRc/++iZDNMnwRv2/0vXbb7+p/717927Y29trNO3du9fgh43L2JR1dkkhBBYuXAhjY2P1dWZmZvDw8MDChQsN2iRNl2GnsKKC6uXLl0onaJGlycrKSpw7d07pDC0ydtnb24uDBw8qnaFBxpMMCCFnl4zrj036efTokVi8eLEYNWqUePDggRBCiBMnTojr16+zKZv4+Hjx7bffig4dOog7d+4IIYTYsWOHOHPmjGJNMnbZ2NiIU6dOKfLYbyNjU6FChcT27duVztAia5cubG1tpTvxjYxNQmT+TsjWZYgmDw8P4eHhIVQqlShRooT6aw8PD1GuXDnRpEkT8ccff+Rrw3+lK+ukEEZGRup/Z13MzMxEuXLlxO+//17gm7I0bNhQPHz4UJHHzo2SXfm/z+N76JdffkGdOnVQrFgxXLlyBUDmbvG//voru7JJT0/HxIkT4ebmBhsbG/UhJ2PGjMHSpUvZ9Jq3tzfu37+vyGPnRsYuR0dHODk5KZ2h4cMPP0R8fLzSGVpk7JJx/bFJd6dPn0a5cuUwbdo0zJgxA48fPwYAbN68GaNHj2bTa/v374ePjw+OHj2KzZs3IykpCQAQExOj6J5dMnaVKFHirYegKEXGJjMzM5QpU0bpDC2ydulCtnUMyNlUkCUmJiIxMRENGjRATEyM+uvExERcuHABu3fvxocffsguZB6JkpGRgZIlS6oP5c26JCcn48KFC/j0008LfFOWiIgIODo6vvN2dnZ2Bp2yQckuDkrpacGCBQgODkbTpk3x+PFj9TGqDg4Ois7XIGPX999/j9DQUEyfPl3j2OZKlSphyZIlbHpt2rRpGDFiBCIjI/HgwQM8ffpU46IUGbsmTpyIsWPH4sWLF4o8fk6CgoIwdOhQhIaG4sSJEzh9+rTGhV1/k3H9sUl3wcHB6NatG+Li4mBhYaFe3rRpU0RFRbHptVGjRmHSpEn43//+p/F35qOPPsIff/yhSJOsXbNnz8aoUaNw+fJlRR4/JzI2DR06FHPmzJFu0ELWLqK8pOsbdUOTsSsxMVG6w09lbNKVrK+t+dHFs+/pydvbG5MnT0arVq1ga2uLmJgYeHp64syZM2jYsKFie5bI2FWmTBn8/PPPaNy4sUbT+fPnUatWLTx69IhNgHqSxjfnYhAKT3QuY5eMZ9rKaZJNpU8yAMjZJeP6Y5Pu7O3tcfLkSZQuXVrj9fPKlSsoX748Xr16xSYANjY2iI2NRalSpTSaLl++jAoVKijSJGuXjGcElLGpdevWiIiIgJOTEypWrKjVtHnzZoM3ydyli+y/A7KQsQmQs8uQTbJM6P9f6dq7d+9bm5YtW8YmPcj4uwfkTxcnOtdTYmIiqlSporXc3Nwcz58/V6Aok4xdN27cyHG37oyMDKSmpipQJGfT+3SGlvwm45m2ZDzJACBnl4zrj026Mzc3z3EvyYsXL8LZ2VmBIjmbHBwccOvWLZQqVUpj+alTp+Dm5qZIEyBnl4xnBJSxycHBAa1bt1Y6Q4usXZS3ZJlYPztDNskyof+bZOyaMGECQkJCUL16dWlOFCFjE2njoJSeSpUqhejoaLi7u2ss37VrF7y8vBSqkrPL29sbBw4c0GrauHFjjgNoBbEpNTUVISEhWLhwIcqWLWvwx38bGbvS0tKgUqnQo0cPFC9eXOkcAJnP00cffYRt27Yp+vv/Jhm7ZFx/bNJPixYtEBISgvXr1wPIfFNw9epVjBw5Em3btmXTax06dMDIkSOxYcMGqFQqZGRk4NChQxg2bBi6dOmiSJOMXampqdi/fz/GjBmjNVCmFBmb0tLS0KhRIzRp0gRFihRROkdN1i7KezIeVGPIprVr12L9+vVo2rSpwR5TFzJ2LVy4EKGhofjyyy+VTlGTsYlyYNh51f/7Fi9eLNzc3MTatWuFtbW1WLNmjZg0aZL63+z629atW4W9vb2YOnWqsLKyEj/88IPo1auXMDMzE+Hh4Wx6rXDhwuLixYuKPHZuZOyysbERiYmJSmdoKFasmDh79qzSGVpk7JJx/bFJd48fPxb+/v7CwcFBGBsbixIlSghTU1NRv359kZSUxKbXkpOTRa9evYSJiYlQqVTC1NRUGBkZiS+++EKkpaUp0iRrl52dnbh06ZIij/02MjZZWlqKy5cvK52hRdYuXfTt21fcu3dP6QwNMjYJIcTVq1cVfe3KiSGbihYtKi5cuGCQx9KHjF1OTk4iPj5e6QwNMjbpStYzcuZHF+eU+gdWrVqF8ePHIyEhAQBQrFgxTJgwAT179mTXGw4cOICQkBDExMQgKSkJVatWxdixY9GkSRM2vTZkyBCYm5tj6tSpijz+28jY1bJlS7Rp0wZdu3ZVOkVt8uTJuHjxIpYsWQITE3l2PpWxS8b1xyb9HTp0SOP109/fX+kkKZuuXbuG2NhYJCUloUqVKtLsdSpTV9euXeHn54chQ4Yo1vAmGZsaNmyIr7/+WrpDe2XtevToEZYuXYpz584BALy8vNCjRw9Fz2oqY9OrV6/wf//3f4iIiMhxrh0l5i+UsWnmzJm4dOkS5s2bJ9WhXzJ2jRw5EjY2NhgzZozSKWoyNumqIM0pxUGpf+HFixdISkqCi4uL1nWHDh1C9erVYW5uzq53WLNmDVq0aAFra2ulU9QM2RQUFISwsDCULVsW1apV03rMWbNm5XvDf6Vr4cKFmDBhAjp37pxjU4sWLQze1Lp1a+zduxc2Njbw8fHRalJyAlrZumRcf2zKez4+PtixYwdKlCihdIqajE12dnaIjo6WbmPTkF2TJk3CzJkz0bhx4xx/1gcNGpTvDf+FpvXr12P06NEYMmRIjk2+vr4Gb5K1KyoqCi1atICdnR2qV68OADhx4gQeP36M33//HfXr12fTa507d0Z4eDg+++wzuLq6ag1sjBs3jk2Qd0J/GbsGDx6MsLAw+Pr6wtfXV6tJifcOMjZlSUlJQWJiIkqXLp3jB8gHDx7EBx98YPD37Up0cVAqn3BjU3cFvalRo0ZvvU6lUil29gwZu3I6o1wWpc4o171791yvX758uYFKNMnYJeP6Y1Pek/GTPTbpzpBduc3bpFKpcOnSpXxveJOMTTKeTRWQs8vHxwe1atXCggULYGxsDCDzLGX9+/fH4cOHERsby6bX7O3tsWPHDtSpU0eRx8+JjE0ybk8BcnbJ+N5BxqYXL14gKCgIK1asAJB5chZPT08EBQXBzc0No0aNMniT0l1yHNPxHpJ1rE/GroLeJONZ7gA5u97cjVsGSm2MvIuMXTKuPzYRKUfGs4SySXcydsXHx2Pjxo3qwR8AMDY2RnBwMMLCwtiUjZubG2xtbRV7/JzI2CTj9hQgZ5eM7x1kbBo9ejRiYmIQGRmJwMBA9XJ/f3+MHz9esUEpJbs4KEUkkevXrwOAdGfdkrVLJvfu3cOFCxcAAOXLl1fsdPRvkrWLiCi7rA+DZJkbBZCn6c0zBstCxq6qVavi3LlzKF++vMbyc+fOoXLlymzKZubMmRg5ciQWLlwozbqUsQnIPNtkZGQkEhIS0KlTJ9ja2uLmzZuws7ODjY0Nu94QHx+PhIQE1K9fH5aWluq9J5UkU9PWrVuxbt061KxZU6OhYsWK6rmhC1rX248RICKDyMjIQEhICOzt7eHu7g53d3c4ODhg4sSJiu4xIWvX/v370bx5c5QpUwZlypRBixYtcODAAcV6nj9/jh49eqBo0aKoX78+6tevj2LFiqFnz5548eIFu94g2/pjE5GywsLC4OPjA0tLS1haWsLX1xe//PILm96QkJCAoKAg+Pv7w9/fH4MGDVL0zYusXYMGDcLgwYMxY8YMHDx4EAcPHsSMGTMwZMgQDBkyBKdPn1ZfCnITAFSvXh2vXr2Cp6cnbG1t4eTkpHFRgoxNV65cgY+PD1q2bIkBAwbg3r17AIBp06Zh2LBhijTJ2vXgwQM0btwY5cqVQ9OmTXHr1i0AQM+ePTF06FA2vXbv3r0c535+/vy5ooN3SnZxTykihX377bdYunQppk6dqj6G/uDBgxg/fjxevXqF77//nl2vrVy5Et27d0ebNm3Uk80eOnQIjRs3RmhoKDp16mTwpuDgYOzfvx+///67xvM0aNAgDB06FAsWLDB4k6xdMq4/NpFSlP7U+G0M2TVr1iyMGTMGAwcO1Hid6tu3L+7fv6/IGfBkbNq9ezdatGgBPz8/ddOhQ4dQsWJF/P777/j4448N3iRrV8eOHQEAI0aMyPE6Jea8krEp67Fv3LiByZMn5zipuBJkbBo8eDCqV6+OmJgYFCpUSL28devW6N27N7uyGTJkCExNTXH16lV4eXmpl7dv3x7BwcGYOXMmm5A5+Lp9+3YEBQUB+Pvv7pIlS1CrVi2D90jRJShf2NraioSEBKUztMjYZWNjU6CbihYtKn799Vet5Vu3bhXFihUzSENOZOyqUKGCmDVrltbymTNnigoVKihQJEShQoVERESE1vJ9+/aJwoULGz7oNRm7ZFx/bMp7Bf01XVcyNglh2C4PDw+xYsUKreWhoaHCw8PDIA1vkrHJz89PjBw5Umv5yJEjRZUqVRQoyiRj1+XLl3W+FOQmIYSwtLQU0dHRBn3Md5GxycnJSZw/f14Iofn6mJiYKCwtLdmVjaurq3r9ZW9KSEgQ1tbWbHrtwIEDwsbGRvTt21dYWFiIwYMHi48//lhYW1uL48ePK9KkdBcP39ODEAJXr17Fq1evdLqtocjYlZ6ejqioKDx+/Pidt3V3d9c6PWdBaQKAhw8fokKFClrLK1SogIcPHxqkIScydl26dAnNmzfXWt6iRQvFJlx98eIFXF1dtZa7uLgoepicjF0yrj826SY1NRWNGzdGXFzcO2/7888/5/izV1CaSpcujXPnzr3ztjt37oSbm1u+NwHydt26dQu1a9fWWl67dm31IRaGJmPTuXPn0LNnT63lPXr0wNmzZxUoyiRjV9Z0A7pcCnITkLk99/LlS4M+5rvI2JSRkZHjHmzXr19XdFJ2GbueP38OKysrreUPHz6Eubm5AkVyNtWtWxfR0dFIS0uDj48PwsPD4eLigiNHjqBatWqKNCndxUEpPQghUKZMGVy7du2dt3327JnBTvMsY5exsTGaNGmCR48evfO2Z86cQYkSJQpkEwBUrlwZ8+bN01o+b948RSfAlLGrRIkS2Lt3r9byPXv2GGx9valWrVoYN26cxqDwy5cvMWHCBEV3wZWxS8b1xybdmJqa6jzfSadOnWBtbZ3PRfI26fIBEZC58WeoDWJZu8qUKYP169drLV+3bh3Kli1rkIY3ydjk7OyM6OhoreXR0dE5zv9hKLJ2yTbPlaxNU6dOxdChQxEZGYkHDx7g6dOnGhc2ZWrSpAlmz56t/lqlUiEpKQnjxo1D06ZNFWmStatevXoaZ5RUqVTIyMjA9OnT0ahRIzZlU7p0aSxevBjHjh3D2bNnsXLlSvj4+CjWo3hXvu6H9R7y9vYWR44cUTpDi4xd1apVE3v27FE6Q4OMTZGRkcLa2lp4eXmJHj16iB49eggvLy9hY2MjoqKi2JXNTz/9JMzMzETfvn1FWFiYCAsLE3369BHm5uZi4cKFijTFxsaKYsWKiUKFComPPvpIfPTRR6JQoULCzc1NnDlzRpEmWbtkXH9s0t3XX3+d46E6SpKx6fvvvxddu3YVqampSqdokLFr48aNwtjYWAQEBIiQkBAREhIiAgIChImJidi8eTObXpswYYJwcHAQU6dOFVFRUSIqKkpMmTJFODg4iJCQEEWaZO3atWuXMDMzEzVq1BBDhgwRQ4YMETVq1BDm5uYiPDycTdmoVCqhUqmEkZGRxiVrGZsyXbt2TXh7ewsvLy9hYmIiatasKQoVKiTKly8v7ty5o0iTrF2xsbHCxcVFBAYGCjMzM/HZZ58JLy8v4erqKuLj49n02okTJ8Tp06fVX2/dulW0bNlSjB49WiQnJyvSpHSXSggDHmf2Hvj9998xffp0LFiwAJUqVVI6R03Grl27dmH06NGYOHEiqlWrpvUptZ2dHZteu3HjBn766SecP38eAODl5YX+/fujWLFiivTI3LVlyxbMnDlTfRiKl5cXhg8fjpYtWyrW9OLFC6xatUrjeercuTMsLS0Va5K1S8b1xybdBAUFISwsDGXLls3x9XPWrFlsQuYks3v37oWNjQ18fHy0mjZv3mzwJpm7Tpw4gR9//FHjZ33o0KGoUqWKIj0yNgkhMHv2bMycORM3b94EABQrVgzDhw/HoEGDFJsMWsauKlWqICAgAFOnTtVYPmrUKISHh+PkyZNsem3//v25Xt+gQQMDlfxNxiYASEtLw7p16xATE4OkpCRUrVpV8e0pWbuePHmCefPmaTQNGDAARYsWZdNrH3zwAUaNGoW2bdvi0qVL8Pb2Rps2bfDnn3+iWbNmGnvAFZQuDkrpydHRES9evEBaWhrMzMy0fumVmmtHxi4jo7+PDs2+YSIUOMOIzE1ERP8Fue3mrlKpsG/fPgPWZJKxqXv37rlev3z5cgOVaJK1i/Tz7NkzAFB0LpucyNJlYWGB2NhYrUMtL168CF9fX50PY33fm4hIOfb29jh58iRKly6NadOmYd++fdi9ezcOHTqEDh066DQlz/vWZZJv3/k9pdTI5bvI2BUREaF0ghYZm5YvXw4bGxu0a9dOY/mGDRvw4sULdO3alV2v/fnnn8jIyMCHH36osfzo0aMwNjZG9erVDd40ZcoUuLq6okePHhrLly1bhnv37mHkyJEGb5K1S8b1xybdyfj6KWOTrIM7Mnbt2LEDxsbGCAgI0Fi+e/duZGRk4JNPPmETgMTERKSlpaFs2bIagz5xcXEwNTWFh4eHwZtk7cqa5+rNASAl57mSsSnL48ePsXTpUvVegRUrVkSPHj1gb2/Pptdk3J6StUvG9w4yNgkhkJGRASBzvtBPP/0UQOacovfv3zd4jxRd+XpwIBG9U9myZcW+ffu0lkdGRopy5copUJRJxq4PPvhAbNiwQWv5pk2bRI0aNRQoEsLd3V0cOnRIa/kff/yh2OnDhZCzS8b1xyb9xcXFiV27dokXL14IIYTIyMhQuEi+ptTUVPG///1PLFy4UDx9+lQIIcSNGzfEs2fP2JWNj4+P2L59u9bynTt3Cl9fXwWK5GyqX7++CA0N1Vr+yy+/iAYNGhg+6DUZu2Sc50rGJiGE+PPPP4WTk5Nwc3MTrVu3Fq1btxbFixcXhQoVEidOnGDTazJuTwkhZ5eM7x1kbGrUqJHo0qWLCAsLE6ampiIuLk7d5O7urkiT0l0clPoH4uPjxbfffis6dOignkhux44dik5qLGtXVFSU6Ny5s6hVq5a4fv26EEKIsLAwceDAATa9Zm5uLhITE7WWJyYmCgsLC8MHvSZjl7W1tUhISNBafunSJWFjY6NAUebzdOnSJa3lCQkJwtzcXIGiTDJ2ybj+2KS7+/fvi48++kg94WxWY/fu3UVwcDCbXrt8+bKoUKGCsLKyEsbGxuqmQYMGiT59+ijSJGuXhYXFW//OWFlZGT5IyNlka2urfnOQXVxcnLC3tzd80GsydmVkZIhZs2YJNzc39aTZbm5uYvbs2YoNVsvYJIQQdevWFd26ddM4+UFqaqro2rWrqFevHptek3F7Sgg5u2R87yBjU0xMjKhUqZKws7MT48ePVy8fOHCg6NixoyJNSncZvXtfKspu//798PHxwdGjR7F582YkJSUBAGJiYjBu3Dh2ZbNp0yYEBATA0tISJ0+eRHJyMoDMyeYmT57MptdcXFxyPK15TEwMChUqpEBRJhm7zM3NcefOHa3lt27dgomJMkcjlyhRAocOHdJafujQIUUnhJexS8b1xybdDRkyBKamprh69SqsrKzUy9u3b49du3ax6bXBgwejevXqePTokcb8jlkTjStFxi57e3tcunRJa3l8fLzWROyGImOTSqVSz9mU3ZMnTxSdC1PGLpVKhSFDhuD69et48uQJnjx5guvXr2Pw4MGKTQgvYxMAHD9+HCNHjtT4u2JiYoIRI0bg+PHjbHpNxu0pQM4uGd87yNjk6+uL2NhYPHnyRON9+g8//IAVK1Yo0qR4V74Oeb2HatasKWbOnCmEEMLGxkb9SePRo0eFm5sbu7Lx8/MTK1as0Go6efKkcHV1ZdNrI0aMEO7u7mLfvn0iLS1NpKWlib179wp3d3cxdOhQRZpk7erQoYNo0KCBePz4sXrZo0ePRIMGDUS7du0UaZo2bZooVKiQWLZsmbh8+bK4fPmyWLp0qShUqJCYPHmyIk2ydsm4/tikO1dXVxEdHS2E0Hz9TEhIENbW1mx6zcnJSZw/f16rKTExUVhaWirSJGvXV199JXx8fDROyx0XFyd8fX1Fz5492fTap59+Ktq1ayfS0tLUy9LS0kTbtm1FYGCgIk2ydjVq1Eg8evRIa/mTJ09Eo0aNDB8k5GwSQggXFxexe/dureW7du0SLi4uChTJ2STj9pSsXTK+d5CxKcvx48fFL7/8In755RfFDk/NiRJdHJTSk7W1tXpXyTc36pTchVPGLktLS/Xukm++WWDT35KTk8Xnn38uVCqVMDU1FaampsLY2Fh0795dJCcnK9Ika9f169eFp6ensLe3Fw0bNhQNGzYUDg4Oonz58uLq1auKNGVkZIgRI0YICwsLYWRkJIyMjISVlZWYMGGCIj0yd8m4/tikOxsbG3Hx4kX1v7NeP7PmAGFTJgcHB/HXX39pNR04cECxN1Wydj1+/FjUrFlTmJiYCA8PD+Hh4SFMTEze+ia+oDb99ddfolChQqJ06dKiW7duolu3bqJ06dLC2dlZxMbGKtIka5dKpVJPYZHdnTt3hImJiQJFcjYJIURQUJAoXry4WLt2rbh69aq4evWqWLNmjShevLgYPHgwm16TcXtK1i4Z3zvI2HTnzh3RsGFDoVKphKOjo3B0dBQqlUp89NFH4u7du4o0Kd2lEkKI/N0X6/1SvHhxrF+/HrVr14atrS1iYmLg6emJLVu2YNiwYUhISGDXa56enli0aBH8/f01msLCwjB16lScPXuWTdnExcUhOjoalpaW8PHxgbu7u2It2cnW9fz5c6xatQoxMTGwtLSEr68vOnbsCFNTU0W7kpKScO7cOVhaWqJs2bIwNzfXuP769esoVqwYjIwMe9S0bF0yrj826aZp06aoVq0aJk6cCFtbW5w+fRru7u7o0KEDMjIysHHjRjYh89BBe3t7LFq0SN3k7OyMli1bomTJkoqdBU/WLiEE/ve//2n8rNevX1+RFpmbbt68iXnz5mk0DRw4EE5OTuwC1Ifn+Pn5Yd++fRqPn56ejl27duHnn3/G5cuXC3RTdikpKRg+fDgWLlyItLQ0AICpqSn69euHqVOnam0vFNSmLLJtT8ncJdt7B9ma2rdvj0uXLiEsLAxeXl4AgLNnz6Jr164oU6YM1qxZU/C68nXI6z00dOhQUbduXXHr1i31BI8HDx4Unp6eGhOCsUuIyZMnC29vb/HHH38IW1tbceDAAbFy5Urh7Ows5s6dyyY92dra5jj5sdJk7GratKm4efOm0hkaZHyehJCzS8b1xyYhYmNjhYuLiwgMDBRmZmbis88+E15eXsLV1VXjUCdDkrHp2rVrwtvbW3h5eQkTExNRs2ZNUahQIVG+fPkc95Yo6F26qFSpkqJ7CeZExqZ+/fqJe/fuKZ2hxRBdWSc7MDIyUk8mnv1iZWUlli5dmq8N/4WmnDx//lycPn1anD59Wjx//lzpHCGEnE3vIuP2lBBydhX0Jjs7O3Hs2DGt5UePHlX05BVKdik3Y+p/1OTJkzFgwACUKFEC6enp8Pb2Rnp6Ojp16oTvvvuOXdmMGjUKGRkZaNy4MV68eIH69evD3Nwcw4YNQ1BQEJv0JCTdqVHGrqioKLx8+VLpDA0yPk+AnF0yrj82AZUqVcLFixcxb9482NraIikpCW3atMGAAQNQtGhRg3XI3lS8eHHExMRg7dq1OH36NJKSktCzZ0907txZY4Jxdunu8uXLSE1NVTpDg4xNK1euxLBhw1C4cGGlUzQYoisxMRFCCHh6euLYsWNwdnZWX2dmZgYXFxcYGxvn2+P/V5qy69GjB+bMmQNbW1v4+Piolz9//hxBQUFYtmwZm/Qg4/YUIGdXQW/KyMjIcc93U1NTZGRkGKzjTUp28fC9f+jatWuIjY1FUlISqlSpgrJlyyqdBEDOrpSUFMTHxyMpKQne3t6wsbFROknKpnfJfrihTGTsYpPuZOxik25kbCLKDzL+rLNJdzJ2NWvWDEuWLFFs8Donhm4yNjbGrVu34OLiorH8/v37KFKkiPrwOUOSsUlXMv6cA3J2FfSmli1b4vHjx1izZo36TIk3btxA586d4ejoiC1btuR7g2xd3FNKTyEhIRg2bBhKlCiBEiVKqJe/fPkSP/zwA8aOHcuu17J/2uHt7a1eLssnMLI0ERH9Vzx+/BjHjh3D3bt3tT4169KlC5tei4uLQ0RERI5NSm0nAPJ2ERlaQd779enTpxCZJ7vCs2fPYGFhob4uPT0dO3bs0BoUKohNRPll3rx5aNGiBTw8PNTv269evQofHx+sXLmyQHZxTyk9vW0E/8GDB3BxcUF6ejq73tHET2D+GRk/VQDk7GKT7mTsYpNuDN30+++/o3PnzkhKSoKdnR1UKpX6OpVKhYcPHxqkQ/amxYsXo1+/fihcuDCKFCmi1XTy5EmDN8ncpQv+/ulGxiZAzq6C3GRkZKTx+/8mlUqFCRMm4Ntvv83XDtmb9CXjzxQgZxebMg8X3Lt3L86dOwcA8PLygr+/v0EeOzdKdXFPKT0JIXJ80YyJiVH0DCgydcn4aYeMTfrK7Y+1kmTtko2sz5OsXSSfoUOHokePHpg8eTKsrKyUzgEgZ9OkSZPw/fffY+TIkUqnaJC1i4gMKyIiAkIIfPTRR9i0aZPG+wQzMzO4u7urD90pyE36knV7SsYuNgH79u3Dvn371Hsunzp1CqtXrwYARY/cUaqLg1I6cnR0hEqlgkqlQrly5TR+cNPT05GUlIS+ffuyC4CDg4NG05uyPu0o6E36knWnRlm7ZCPr8yRrF8nnxo0bGDRokDSDP4CcTY8ePUK7du2UztAiaxcRGVaDBg0AZE7EXrJkyRzfjF+9ehUlS5Ys0E36knV7Ssaugt40YcIEhISEoHr16ihatKg0g3RKdnFQSkezZ8+GEAI9evTAhAkTYG9vr77OzMwMHh4eqFWrFrsg56cdMjYBQGpqKipUqIBt27bBy8sr19vu3LkTbm5uBbYrNTUVffr0wZgxY1CqVKlcb/vNN98YZA/B1NRUWFpaIjo6GpUqVcr1tmfPnjXYz5iMXTKuPyBzDo/atWvDxETzz2FaWhoOHz6M+vXrs+m1gIAAHD9+XKrd7WVsateuHcLDwxX5oCo3MnaFhYWhffv2MDc311iekpKCtWvXqucE+/nnn+Hq6logm9LS0jB58mT06NEDxYsXz/W2X3zxBezs7PK9SeYu0p2np+dbp/4oVaqUIlN/yNiUJT4+HgkJCahfvz4sLS21jlIx5Hae7F0pKSlITExE6dKltbZlAMO+p5GxaeHChQgNDcWXX35pkMfTlZJdnFNKT/v370ft2rVzPF2ikmTsunLlyls/7VCKjE1ubm7Ys2fPOwd/DE3GLnt7e0RHR79zUMOQPD09sWXLFlSuXFnpFA0ydsm4/v5L8/EpPXfh0qVLERISgu7du8PHx0fr702LFi3YBGDKlCmYNWsWmjVrlmPToEGDDN4ka5eMP+syNtna2iI2NhYeHh4Gf+zcyNqlC85pkzmP0+3bt7V+1q9cuQJvb288f/7cIB2yNz148ADt27fHvn37oFKpEBcXB09PT/To0QOOjo6YOXOmwZtk7Xrx4gWCgoKwYsUKAMDFixfh6emJoKAguLm5YdSoUWwCUKhQIRw7dgylS5c2+GPnRskuDkrp6erVq7ler9RupTJ2RUVF5Xp91qf9hiRj0+TJk3Hx4kUsWbIkx5F7pcjY1bVrV/j5+WHIkCFKp6gtXboUmzdvxi+//KLovHJvkrFLxvVnZGSEO3fuwNnZWWP5xYsXUb16dTx9+pRN2breRqVSKfJmXcam3AZdVSoVLl26ZMCav8nY9baf9ZiYGDRq1EiRieplbGrZsiXatGmDrl27GvyxcyNblz575E6ZMgX9+vWDg4NDgWsKDg4GAMyZMwe9e/fWOPw5PT0dR48ehbGxMQ4dOpSvHbI3ZenSpQvu3r2LJUuWwMvLSz1wuHv3bgQHB+Ovv/4yeJOsXYMHD8ahQ4cwe/ZsBAYG4vTp0/D09MSvv/6K8ePH49SpU2wCMHLkSNjY2GDMmDEGf+zcKNklxzvN/xAPD49c97JR6hNsGbsaNmyotezNOa8MTcamP//8E3v37kV4eDh8fHxgbW2tcf3mzZsN3iRrV9myZRESEoJDhw6hWrVqWk1KfNI/b948xMfHo1ixYnB3d9dqUuqMVjJ2ybT+2rRpAyDz979bt24ah+qkp6fj9OnTqF27tsF6ZG3KLiMjQ7HHfhsZmxITE5VOyJFMXVWqVFHP89i4cWONDz7S09ORmJiIwMDAAt+U5ZNPPsGoUaMQGxub42unEnsEythlamqKTZs26fSGavTo0QYokrMp6024EAKxsbEwMzNTX2dmZobKlStj2LBhBmmRuSlLeHg4du/erXWYatmyZXHlyhVFmgA5u7Zu3Yp169ahZs2aGu+vKlasiISEBDa99urVKyxatAh79uyBr6+v1p7Ls2bNKnBdHJTS05ujqampqTh16hRmzZqF77//XqEqObsePXqUY9OYMWPYlI2DgwPatm2ryGPnRsaupUuXwsHBASdOnMCJEyc0rlOpVIoMSrVq1crgj6kLGbtkWn9Z8+8JIWBrawtLS0v1dWZmZqhZsyZ69+5tsB5Zm4jyQ9brU3R0NAICAmBjY6O+Lms+TEP//ZGxKUv//v0B5PyGQKk9AgE5u1q1aoWtW7dKtUeubE0REREAgO7du2POnDlSzPclY1OW58+f53gyjYcPH2rNPWdIMnbdu3cvx7OZP3/+XLGpU2RsOn36NPz8/AAAZ86c0bhOySlmlOzi4Xt5ZPv27fjhhx8QGRmpdIoGGbv279+P4OBgrTelSpKxiYjyR3BwMCZOnAhra2s0atQIv//+u8YbUDa93d69e7F37171qYKzU+oUxrI1paenIzQ09K1N+/btM3iTrF0rVqxA+/btYWFhYfDHfhsZm0h3kyZNwsyZM9G4cWPF98iVuelN169fB4B3TlpvSLI0NW3aFNWqVcPEiRNha2uL06dPw93dHR06dEBGRgY2btzIrtfq16+Pdu3aISgoSN1UqlQpBAUFIS4uDrt27WIT5YiDUnkkPj4elStXVmQCvtzI2HX+/HlUr14dSUlJSqeoKd2UlpaGyMhIJCQkoFOnTrC1tcXNmzdhZ2en6BtTWbvedQYNQ3v8+DE2btyIhIQEDB8+HE5OTjh58iRcXV0NfnaR/0KX0uvP1NQU169fh6ur61snNWaTtnedKnjLli1sAjBw4ECEhoaiWbNmOTb9+OOPBm+SuQvIfE3IaaBMydO/y9gEZB5eIeOAmSxdMs6dJmMTkHn4c9aAWdb2r62tLYYOHYpvv/021zn7ClLTmTNn0LhxY1StWhX79u1DixYt8Ndff+Hhw4c4dOiQYpNVy9h18OBBfPLJJ/jiiy8QGhqKPn364OzZszh8+DD279+PatWqsYlyxEEpPb05wawQArdu3cL48eNx/vx5REdHs+u106dP59g0depUpKWl4eDBg2xC5hlFAgMDcfXqVSQnJ6vPCjF48GAkJydj4cKFBm+StUvGM2icPn0a/v7+sLe3x+XLl3HhwgV4enriu+++w9WrVxEWFmbwJlm7ZFl/ZcuWxeeff44mTZqgUaNG2LJlCxwdHXO8raFOfiBj05uKFi2K6dOnS3UKYxmbChcujLCwMDRt2lTpFA0ydsXFxaFHjx44fPiwxvKsU5orcfiXjE3p6emYPHkyFi5ciDt37qhfO8eMGQMPDw/07NnT4E0yd5FuRo8ejaVLl2LChAmoU6cOgMw38OPHj0fv3r0VmdZCxiYAePLkCebNm4eYmBgkJSWhatWqGDBgAIoWLapIj8xdCQkJmDp1qkbTyJEj4ePjwyZ6O0F6UalUwsjISOOiUqlEyZIlxeHDh9mVQ5NKpdK41KpVS5w7d45Nr7Vs2VJ88cUXIjk5WdjY2IiEhAQhhBARERGiTJkyijTJ2jVo0CBRrVo1ceDAAWFtba1u2rp1q/Dz81OkqXHjxmL48OFCCKHxPB06dEi4u7sr0iRrlyzrb8uWLcLV1fWtrwdZFyMjowLd9CYnJycRHx+v2OPnRMamokWLigsXLiidoUXGrtq1a4v69euLHTt2iFOnTono6GiNC5syTZgwQXh6eoqVK1cKS0tL9Wvn2rVrRc2aNRVpkrlLCCGSk5PF+fPnRWpqqqId2cnWVLRoUfHrr79qLd+6dasoVqyYAkVyNhFR/uOglJ4iIyM1LlFRUeLcuXOK/4GRsevy5csal6tXr4qXL18q1iNrk5OTkzh//rwQQnPwIDExUVhaWrIrm5IlS4ojR45oNcXFxQlbW1tFmuzs7NRvirM3Xb58WZibmyvSJGuXbOvv2bNnQqVSiYsXL4rHjx/neGHT30aMGCFCQkIUe/ycyNg0Y8YM0b9/f5GRkaF0igYZu6ysrBT7QOhtZGwqXbq02LNnjxBC87Xz3LlzwsHBgV3ZPH/+XPTo0UMYGxsLY2NjddPAgQPFlClT2JSNubl5jgPV58+fFxYWFgoUydnk7u4uJkyYIK5evarI47+NjF3169cXK1asEC9evFA6RU3GJtKm/GQs/zENGjRQOiFHMna5u7srnaBFxqaMjIwcDwe4fv06bG1tFSjKJGOXjGfQMDc31zp8Fsg8NM3Z2VmBokwydsm2/mxsbBAREYFSpUpJMTcZIGdTFhlPYSxj08GDBxEREYGdO3eiYsWKWk2bN282eJOsXd7e3rh//77BHzc3MjbduHEDZcqU0VqekZGB1NRUBYoyydg1evRoxMTEIDIyEoGBgerl/v7+GD9+vCKH+cvYBACVK1fGvHnzMHfuXI3l8+bNQ+XKldn02tdff43Q0FCEhISgUaNG6NmzJ1q3bq3omfdk7apSpQqGDRuGoKAgfP755+jZsydq1qypWI+sTaTN8LPFvQcSEhIQFBQEf39/+Pv7Y9CgQUhISFA6S8qu/fv3o3nz5ihTpgzKlCmDFi1a4MCBA2zKpkmTJpg9e7b6a5VKhaSkJIwbN07RuT9k7KpevTq2b9+u0QQAS5YsQa1atRRpatGiBUJCQtQb4CqVClevXsXIkSMVO324rF0yrr8GDRrgypUr+O6779CxY0fcvXsXALBz50789ddfbMom61TBRkZGOHPmDE6dOqW+KDWfooxNDg4OaN26NRo0aIDChQvD3t5e46IUWbqePn2qvkybNg0jRoxAZGQkHjx4oHFdToPqBakpO29v7xy3UzZu3IgqVaooUJRJxq6tW7di3rx5qFu3rsaHHRUrVlRsm1jGJgCYPn06li1bBm9vb/Ts2RM9e/aEt7c3QkND8cMPP7Dpta+//hrR0dE4duwYvLy8EBQUhKJFi2LgwIE4efKkIk2yds2ePRs3b97E8uXLcffuXdSvXx/e3t6YMWMG7ty5wyZ6O6V31fqv2bVrlzAzMxM1atQQQ4YMEUOGDBE1atQQ5ubmIjw8nF3Z/PLLL8LExER8/vnnYs6cOWLOnDni888/F6ampmLVqlVseu3atWvC29tbeHl5CRMTE1GzZk1RqFAhUb58eXHnzh1FmmTtOnDggLCxsRF9+/YVFhYWYvDgweLjjz8W1tbW4vjx44o0PX78WPj7+wsHBwdhbGwsSpQoIUxNTUX9+vVFUlKSIk2ydsm4/iIjI4WlpaXw9/cXZmZm6sMqpkyZItq2bcsmojz25hyYb5sT05Dzp8nYlN3WrVuFvb29mDp1qrCyshI//PCD6NWrlzAzM1N021PGruxzW2U/pDA6OlrY2dmx6Q03btwQ33zzjWjTpo1o06aN+Pbbb8WNGzfYlIuUlBQxe/ZsYW5uLoyMjETlypXF0qVLFT80WsauO3fuiIkTJwoLCwthamoqWrZsKfbu3atYj6xNJATPvqenKlWqICAgAFOnTtVYPmrUKISHhys2Mi1jl5eXF7766isMGTJEY/msWbOwePFinDt3jk2vpaWlYd26dRpnhejcuTMsLS0V6ZG5S9YzaBw6dEijyd/fX9GeLLJ1ybb+atWqhXbt2iE4OBi2traIiYmBp6cnjh07hjZt2uD69etsIspD+/fv1/m2hpqaQMamNx04cAAhISEar51jx45FkyZNFOmRtat+/fpo164dgoKCYGtri9OnT6NUqVIICgpCXFwcdu3axSb6R1JTU7FlyxYsX74c//vf/1CzZk307NkT169fx/z58/HRRx9h9erV7Hrt2LFjWL58OdauXQs7Ozt069YNN27cwOrVq9G/f3/MmDGDTaTGQSk9WVhYIDY2FmXLltVYfvHiRfj6+uLVq1fses3c3Bx//fWX1nwD8fHxqFSpEptei4qKQu3atbXmj0lLS8Phw4cVO/27rF2yCQsLQ/v27bWO4U9JScHatWvRpUsXdknMxsYGsbGxKFWqlMYA0OXLl1GhQgVFXhNkamrTpg1CQ0NhZ2eHNm3a5HpbQ81JJGNT1apVsXfvXjg6OqJKlSq5zpFmyA+JZO0iyi8HDx7EJ598gi+++AKhoaHo06cPzp49i8OHD2P//v2oVq0am7J59OgRli5dqv5Q1tvbG927d4eTkxObXjt58iSWL1+ONWvWwMjICF26dEGvXr1QoUIF9W3OnDmDDz74AC9fvizQXXfv3sUvv/yC5cuXIy4uDs2bN0evXr0QEBCg/vtz8OBBBAYGIikpqcA2kTa5ZlH9D3B2dkZ0dLTW4E90dHSOE/gaioxdJUqUwN69e7UGgPbs2YMSJUqw6bVGjRrh1q1bWuvpyZMnaNSoUY6TjRfkroyMDMTHx+Pu3bvIyMjQuE6JgbLu3bsjMDBQ63l69uwZunfvrtjgj6xdsq0/BwcH3Lp1C6VKldJYfurUKbi5uRm8R7Yme3t79UabkvMhZSdjU8uWLdUDwK1atVI2JhtZu7KcPn06x+UqlQoWFhYoWbKkwSftlbEpS0pKSo6vnSVLllSkJ4tMXXXr1kV0dDSmTp0KHx8fhIeHo2rVqjhy5Ihie+TK2ARkfvjYvHlz2Nvbo3r16gCAuXPnIiQkBL///rsif5NlbPrggw/w8ccfY8GCBWjVqpXWSSIAoFSpUujQoUOB7ypevDhKly6NHj16oFu3bjmeWMfX1xcffPBBgW6iHCh79OB/z4QJE4SDg4OYOnWqiIqKElFRUWLKlCnCwcFB0dNSy9j1008/CTMzM9G3b18RFhYmwsLCRJ8+fYS5ublYuHAhm15TqVTi7t27WssvXLggbG1tFSjKJGPXkSNHRKlSpdTze2S/KDXXx9uep+joaOHo6KhAUSYZu2Rcf0OHDhV169YVt27dEra2tiIuLk4cPHhQeHp6ivHjx7PpHzh48KB49eqV0hkaZGxavXq1ovPOvY0hu3Kauyn7xdzcXHTp0kW8fPnSID2yNl28eFHUrVtXqnmuZO4i3VSqVEn07t1bpKWlqZelpaWJr776SlSqVIlNr12+fFmRx30XGbuioqKUTtAiYxNp4+F7ehJCYPbs2Zg5cyZu3rwJAChWrBiGDx+OQYMGKXZaelm7tmzZgpkzZ6p3wfXy8sLw4cPRsmVLRXpkaso67OTXX39FYGCgxiev6enpOH36NMqXL2/wuQZk7QIAPz8/lCtXDhMmTEDRokW1fq4NuddE1qEwMTExqFixosZhjunp6UhMTERgYCDWr19vsCaZuwC51l+WlJQUDBgwAKGhoUhPT4eJiQnS09PRqVMnhIaGwtjYmE16srOzQ3R0NDw9PZVOUWOT7gzZ9euvv2LkyJEYPnw4atSoASBzzo+ZM2di3LhxSEtLw6hRo9C+fXuDzfUhY1OdOnVgYmKCUaNG5fjaWblyZYN0/Be6jI2Nc9zL+8GDB3BxcVFkL28ZmwDA0tIS0dHRKF++vMbyCxcuwM/Pz6CHosncBACPHz/Gxo0bkZCQgOHDh8PJyQknT56Eq6urYntVy9qVlpaGyMhIJCQkoFOnTrC1tcXNmzdhZ2cHGxsbNlGOePienlQqFYYMGYIhQ4bg2bNnAABbW1ut2x06dAjVq1c32C7esna1bt0arVu3zvU2a9asQYsWLWBtbV2gmrLegAshYGtrqzF5uJmZGWrWrInevXvn2+P/17oAIC4uDhs3btQ6/FIJWYfCREdHIyAgQOOPmpmZGTw8PNC2bVt2ZSPT+stiZmaGxYsXY8yYMThz5gySkpJQpUoVrUOhC3qTPmT8rItNujNk1/fff485c+YgICBAvczHxwfFixfHmDFjcOzYMVhbW2Po0KEGGwCSsSk6OhonTpzQmCtGBjJ2ve3nNzk5GWZmZgauySRjE5A559y5c+e0BoDOnTun2ECnjE2nT59G48aN4eDggMuXL6N3795wcnLC5s2bcfXqVYSFhbHrtStXriAwMBBXr15FcnIyPv74Y9ja2mLatGlITk7GwoUL2UQ54qDUv5DToE+WTz75RLFPQGXteps+ffrgww8/LHBNy5cvBwB4eHhg2LBhBhuUexdZuwDgww8/RHx8vBSDGuPGjQOQ+Ty1b98eFhYWChdlkrULkGv9valkyZKKz8vyJhmbiPJSbGws3N3dtZa7u7sjNjYWQOYelrdu3SrQTd7e3rh//77BHk9XMnXNnTsXQOaHtEuWLNH4QCY9PR1RUVEGHzyTsSn7nGmDBg3C4MGDER8fj5o1awIA/vjjD8yfP1/rbN4FrSm7IUOGoHv37pg+fbrGe6ymTZuiU6dOijTJ2jV48GBUr14dMTExKFSokHp569atFftAW8Ym0sZBqXzCT0B1V9CbsgYRZCNjV1BQEIYOHYrbt2/Dx8dHa1JHX19fgzd17drV4I+pCxm7ZFl/wcHBOt921qxZ+VjyNxmbiPJbhQoVMHXqVCxatEi9x0hqaiqmTp2qfrN+48YNuLq6FuimadOmYcSIEZg8eXKOr512dnYGa5G168cffwSQuf22cOFCjcOcs/YSNvQeETI2+fn5QaVSaWznjhgxQut2nTp1Qvv27QtsU3bHjx/HokWLtJa7ubnh9u3bBu/JImPXgQMHcPjwYa09AD08PHDjxg020VtxUIpIYaVKlcp1zq9Lly4ZsOZvMnZlHXbWo0cP9bKsDRmVSqXIvAxGRka5Pk9KzRUhY5cs6+/UqVM63c6Qc/HJ2ESU3+bPn48WLVqgePHi6kHp2NhYpKenY9u2bQAy/9b079+/QDf5+/sDABo3bqyxXMm/fYBcXYmJiQAyzxy8efNmODo6Guyx30bmJpnI2JSdubk5nj59qrX84sWLOZ7JzVBk7MrIyMjx9/769eu5HsmTn2RsIm0clCJS2Ndff63xdWpqKk6dOoVdu3Zh+PDhykRBzi4ZN1w2b96sMVCQ9TytWLECEyZMYFc2sqy/iIgIve9z/fp1FCtWDEZGRvlQJGfTPyXjwJmMTQTUrl0biYmJWLVqFS5evAgAaNeunXoiWgD48ssvC3zTP3l9MAQZu9iUu5wOTX2XZs2aYcmSJShatGg+FMnZlF2LFi0QEhKiPkGMSqXC1atXMXLkSMXm6JS1q0mTJpg9e7Z6Dy6VSoWkpCSMGzcOTZs2ZRO9Fc++l09sbW0RExMj1TxJgJxdbMrZ/Pnzcfz4cfUcT7KQtUs2q1evxrp16/Drr78qnaJB1i7ZyXimNBmbADleP98kY1OlSpWwc+dOlChRQukUDbJ2EekiPT0doaGh2Lt3L+7evYuMjAyN6/ft28cmPcn4+mnIpidPnuCzzz7D8ePH8ezZMxQrVgy3b99GrVq1sGPHDsXmXpWx6/r16wgICIAQAnFxcahevTri4uJQuHBhREVFaZ2BsqA2kTYOSuUTWd8syNhV0P/Yvc2lS5fg5+eX4665SlK6Ky4uDhERETlu2I0dO1aRppxcunQJvr6+SEpKUjpFg9Jd/5X19yYZXhPeZOimZcuWoVGjRihVqpRBHk8XMjaNHTsWjRo1Qq1ataQ60YAsXb/99hs++eQTmJqa4rfffsv1ti1atCiwTW96/Pgxjh07luNrZ5cuXRRpAuTrGjhwIEJDQ9GsWTMULVpUay/JrHmeCnqTPvj3L9OhQ4cQExODpKQkVK1aVX34qtJk60pLS8O6des0mjp37qxxNm820Zs4KJVPZHwBB+TskvFTWRmapk+fjp9++gmXL19WrCEnSnYtXrwY/fr1Q+HChVGkSBGNDTuVSoWTJ08avCknL1++xOjRo7Fz505cuHBB6Rw1pbv+K+svJzK+dhq6qWzZsrh06RLc3NzQoEEDNGjQAA0bNlT0bIoyNn388cc4cuQI0tLS8MEHH6ib6tSpo+gGsCxdRkZGuH37NlxcXHI99NSQcxLJ2JTd77//js6dOyMpKQl2dnZar50PHz40eJOsXYULF0ZYWJhUh+XI2KQP/v3TjY+PD3bs2CHV+xlAzi5DHn6pKxmbChIOSulJxk9lATm7ZPlUNjsZm6pUqaKxISeEwO3bt3Hv3j389NNP+Oqrr9j1mru7O/r374+RI0ca/LHfxtHRUet5evbsGaysrLBy5UrFPlWXsUvG9acrGTeAlWi6ceMGIiMjERUVhf379yMuLg5FixZFw4YNsXLlSoN1yN6UlpaGo0ePqpsOHz6M5ORkfPDBBzh48KAiTTJ3Ue7KlSuHpk2bYvLkybCyslI6R03GrmLFiiEyMhLlypVTOkVNxiZ98O+fbmRsAuTsYhO9iYNSepLxU1lZu2T5VFb2pjcnnTYyMoKzszMaNmyoPv20EmTskvHw0xUrVmh8nfU8ffjhh4qeaUfGLhnXn65k3FhRsunFixc4cOAA1qxZg1WrVkEIgbS0NIN3yN508eJFREREYM+ePdi6dSvs7e1x//59RZtk6UpNTUVgYCAWLlyIsmXLGvSx30bGJgCwtrZGbGysVK8/gJxdM2fOxKVLlzBv3jxpTnAgY5M++PdPNzI2AXJ2sYnexEGpf0DGT2Vl7ZLxU1kZm0g3PXv2xAcffIC+ffsqnUL/wH95/ck4oGbopvDwcERGRiIyMhKnTp2Cl5eXemC/fv36igx2yti0aNEiREZGYv/+/UhOTka9evXQsGFDNGzYEL6+voq9KZWxy9nZGYcPH5ZqAEjGpjZt2qBDhw74/PPPlU7RIGNX69atERERAScnJ1SsWBGmpqYa12/evJlNepLxzTqbdCdjF5voTSZKB/wXubm5oXPnzmjdurXGp7Jr165VdFBKxi4TExPUqVMHzs7OcHJygq2tLbZu3Yrz588r0iNrU3p6OrZu3Ypz584BACpWrIgWLVrA2NhYsSYZu8qUKYMxY8bgjz/+gI+Pj9aG3aBBgxTpevz4MZYuXarxPPXo0QP29vaK9MjaJev604WMn98YuikwMBDOzs4YOnQoduzYAQcHB4M+/n+lqW/fvuqm/v37w8bGRukkAHJ2ffHFF1i6dCmmTp2qdIqajE3NmjXD8OHDcfbs2RxfO5U6TFzGLgcHB7Ru3drgj5sbGZtSU1PRp08fjBkz5p1Tf3zzzTdwcnIqkE1EZBjcU0pPMn4qK2uXjJ/KytgUHx+Ppk2b4saNGyhfvjwA4MKFCyhRogS2b9+O0qVLG7xJ1q7cNlJUKhUuXbpkwJpMx48fR0BAACwtLVGjRg0AwJ9//omXL18iPDwcVatWNXiTrF0yrj9dXbt2DcWKFVN8oDg7QzfNnj0bUVFRiIqKgrm5ufpvTMOGDRWbK0XGpq1btyIqKgqRkZE4d+4cqlSpom6qW7euYnPvyNgVFBSEsLAwlC1bFtWqVdM6hfmsWbPYBEg5+Togbxfpxt7eHtHR0VLNRytjk65k3dNGxi420Zs4KKWnrHlZhg4diq+++kqKT2UBObuyN8nyqayMTU2bNoUQAqtWrVJ/6vPgwQN88cUXMDIywvbt29klsXr16qFMmTJYvHgxTEwydz5NS0tDr169cOnSJURFRbFLYs+fP8fUqVOxd+/eHE9prsRAmYxNb4qNjcX+/fuxb98+bNu2DS4uLrh+/Tqb3vDkyRMcOHAAGzZswJo1a2BkZIRXr14p2iRTV6NGjd56nUqlwr59+wxYk0nGJtJPWloaIiMjkZCQgE6dOsHW1hY3b96EnZ2dYtt9MjZ17doVfn5+GDJkiCKPnxMZm3Ql66CGjF1sojdxUEpPMn4qK2uXjJ/KythkbW2tPpwpu5iYGNSpUwdJSUkGb5K5SzaWlpY4deqU1uTvZ8+eRfXq1fHixQt2Saxjx47Yv38/vvzySxQtWlRrb8nBgwezKRshBE6dOoXIyEhERETg4MGDePbsGXx8fHDq1Ck2vfbgwQPs379fvQfzX3/9BUdHR9SrVw9btmxRpEnmrne5fv06ihUrluueOYYmYxMBV65cQWBgIK5evYrk5GRcvHgRnp6eGDx4MJKTk7Fw4UI2vTZp0iTMnDkTjRs3znGvQCUOqZexKSwsDO3bt4e5ubnG8pSUFKxduxZdunQBAKxevRotW7bUai5IXVFRUahdu7b6w9AsaWlpOHz4MOrXrw8AmDJlCvr162eQnShkbCJtHJT6F2T8VFbWLlk+lZWxycnJCdu2bUPt2rU1lh86dAjNmzfHw4cPDd4kU1dwcDAmTpwIa2trBAcH53pbJQ6rcHV1xS+//IImTZpoLN+9eze6dOmCO3fuGLxJpi7Z15+DgwO2b9+OOnXqGPyx30bGJgBo3rw5Dh06hKdPn6Jy5cpo2LAhGjRogPr16yu2ESdjk4+PD86dOwdHR0fUr19f3eTr66tIj+xduiiIJxqYO3cuvvrqK1hYWGDu3Lm53taQb9Rl7crSqlUr2NraYunSpShUqJB6z4fIyEj07t0bcXFxbHpNxkPqZWwyNjbGrVu34OLiorH8wYMHcHFxUewwVRm72ET/FCc6/wdy+lQ2IyMDzs7O7HpDbp/KsinTp59+iq+++gpLly5Vz/1z9OhR9O3bV7HJS2XqOnXqFFJTU9X/fhulzmjVvn179OzZEzNmzFAP4B06dAjDhw9Hx44dFWmSqUv29efo6CjdZKkyNgFAhQoV0KdPH9SrV0/xSfyzyNjUt29fNGjQAJUqVVI6RYOsXbqQ8fPT/G768ccf0blzZ1hYWODHH3986+1UKpVBB39k7cpy4MABHD58GGZmZhrLPTw8cOPGDYP3yNoEAImJiYo99tvI2CSEyHEb5fr164r+3ZGx621NDx48MNgeZG+SsYm0cVBKTzl9Ktu7d29FP5WVtevNT2V79+6t+KeyMjbNnTsXXbt2Ra1atdRnrklLS0OLFi0wZ86cAt8VERGR479zY8jDKmbMmAGVSoUuXbogLS0NAGBqaop+/fopevYmWbpkX38TJ07E2LFjsWLFCsUmoH6TjE0A8MMPPyidoEXGpgEDBqj/nTVwodSga3aydlHOsr85l+mNuqxdWTIyMnLc8+H69euwtbVVoEjOpuxSUlKQmJiI0qVLax3ipBQZmqpUqQKVSgWVSoXGjRtrdKSnpyMxMRGBgYHsAtCmTRsAmX9TunXrpnFIYXp6Ok6fPq115EVBbKK3k+OV5z9Exk9lATm7ZPxUVsYmBwcH/Prrr4iPj8e5c+cAAF5eXihTpgy7/iFvb2+DHephZmaGOXPmYMqUKUhISAAAlC5dWmswwdDzj8japYv8Xn9ZG3RZ4uPj4erqCg8PD61Tmp88eTJfGv4LTTnZv38/ZsyYoX5N8Pb2xvDhwxXd+1XGprCwsP9v796joir3P45/ZmAAhUEEgeMl5KaBHkxQEzU1xEQzEW9hmKioKw+KF9BAzXsamXiLTuaBuNjxVsfbOWlWKqhAeQc8miKKiEckrTS8cBme3x/IxDBA4C/2/tp8X2uxVuyZtfZ7uWnYPM/ez8YHH3ygvS2nY8eOmDdvHsaPHy9bE+Uu9segeJsjIG3XoEGDsH79emzevBlA5R+kxcXFWLJkCV599dUm3/+z0gQADx8+RFhYGJKSkgBAu9ZVWFgY2rZti6ioKINuCggIAACcO3cOfn5+OgvSm5iYwNHREaNGjZKsh3JX1d+eQgio1Wo0a9ZMp8nb2xtTp041+CZWNx6UaiSKs7IAzS6Ks7IUm6q4urrWO+Aj18km1a76yHGrR/PmzfUWha9OyoGy6qh21aepj1/VCR0lFJtq+uyzzzBp0iSMHDlSe1tOWloafH19kZiYiKCgIG5C5dpoixYtwowZM7Trgh0/fhzTpk3DnTt3ZHuqFNUu9seheJsjIG1XTEwM/Pz80KlTJzx+/BhBQUHIyclBq1atsG3bNsk6qDcBwPz585GZmYmUlBSdK2sGDhyIpUuXyjIoRalpyZIlACpvswwMDISZmZlk+64Pta7w8HDExsbC3NwceXl5iIuLk/3p5hSb2O8QrNFSUlLEa6+9JlxcXISLi4sYNmyYOHr0qNxZJLuSkpLEX//6V2FqaipMTU2Fh4eHSE5O5qanYGFhIXJzc+XO0EOxi5sajmIXxSYmhJubm1i7dq3e9piYGOHm5iZDEc0mR0dHkZSUpLc9MTFRODo6ylBUiWpXQ6jVanKfCRSbqH52St1VVlYmPvvsMzFv3jzxt7/9TfzjH/8QDx8+lGz/z0qTg4ODyMjIEELoHqOcnByhVqu5qYaSkhJx48YNcf36dZ0vucndZWxsLAoLC4UQQiiVSnH79m3J9l0Xik2sfnylVCNRnJWl2kVxVpZiE2NMPs7Ozjh58iRsbGx0tv/yyy/w8vKS5Uk/FJsA4OrVqxg2bJjedn9/fyxYsECGIppNt27dqnWdit69e+PWrVsyFFWi2tUQguAVQBSbWCVjY2OMGzcO48aNkztFi2LTjz/+qPdEMgB48OCBbHcRUGzKyclBSEgI0tPTdbaLJwtoy/X0Nipdjo6O2LhxIwYNGgQhBDIyMtCyZcta39uvXz+DbWK/Q84RsWcRxVlZIWh2UZyVpdjUUDwD2nDc1HAUu6RsUigUtc6gFRYWCpVKJUlDTRSbhBDCxcVFbNq0SW/7xx9/LFxdXWUootnUuXNnsXLlSr3tK1asEH/9619lKKpEtash8vPzRXl5udwZOig2Ufw8F0LarlWrVon4+Hi97fHx8SI6OlqShpooNgkhRN++fcXGjRuFEJXH6OrVq0IIIWbMmCH8/Py46YnevXuLfv36if3794uzZ8+Kc+fO6XzJhUrX7t27hb29vVAoFEKpVAqFQlHrl1KpNOgmVj++UqqRKM7KAjS7KM7KUmxifzwq64SxpyPF8du3b5/2vw8ePKjzgAiNRoNDhw7BycmpyTuoN1UXERGBmTNn4ty5c9rP0bS0NCQmJsr2pFCKTcuWLUNgYCCOHj2qvSI3LS0Nhw4dws6dO2Vpotr14MEDREdH49ChQygqKkJFRYXO61VXBT733HMG3dRQVH/3Sdn1ySefYOvWrXrbO3fujLFjxyIyMlKyFspNALBq1SoMGTIEFy5cQHl5OTZs2IALFy4gPT0dqamp3PTEuXPncPr0abi5ucmy/7pQ6QoICEBAQACKi4thaWmJS5cu1Xq1m6E3sfrxoFQjPffcczh06JDews/ffvutrCcoFLtcXV2xc+dOvUGxHTt2oEOHDtzUSHyy2XCC4G0VFP+dAJpdUhy/qoXFFQoFJkyYoPOaSqWCo6MjYmJimryDelN1f/vb3/CXv/wFMTEx2kEMd3d37NixA8OHD+emJ0aNGoUTJ05g7dq12LNnj7bpxIkT8PT0lKWJateUKVOQmpqK8ePHo3Xr1iQ+jyg2NRTF332AtF2FhYVo3bq13nZbW1vZJh8pNgHASy+9hHPnziE6OhoeHh74+uuv4eXlhYyMjHofkGJoTZ06dcKdO3dk2Xd9qHVZWFjgyJEjcHJygrExjSEGik2sDvJeqPXs+fvf/y5MTEzEtGnTRHJyskhOThZvvfWWMDU1rfUWAkPu+uKLL4SRkZHw8/MTy5cvF8uXLxd+fn7C2NhY7Nq1i5saiS/L/01OTo746quvtIuEVlRU6LzOt1U0nKEfP0dHR/Hjjz9Ksq+GothUVlYmli1bJm7cuCF3ihbFptLSUjFp0iTtLSdUUO1q0aKFOH78uNwZOig2VSkpKRE//PCDKCsrq/X1Y8eOicePH0tcRavL1dVVbNmyRW97cnKycHJykqShJopNrH737t3Tfh06dEj06tVLHDlyRNy5c0fntXv37nFXDVeuXBELFy4UY8eO1S5FsH//fnH+/HluYnXiQamnsGvXLtGnTx9hbW0trK2tRZ8+fcSePXvkziLZdfr0aTFu3Djh5eUlvLy8xLhx48SZM2e4qRaUTuqqo9R1584d4evrq70PvGowZdKkSSI8PFyShrpQGmih2kX5+LHfZ25uLq5duyZ3hg6KTZaWluQGf4Sg2eXo6CguXLggd4YOik0PHjwQISEhwsjISBgZGWk/O2fMmCHee+897qrm/fffFzY2NuLTTz8VeXl5Ii8vT8THxwsbGxuxatUqbqqmrqeS3blzR7a1dqg0VZ2nVH3V/L76NilR7aqSkpIimjVrJgYOHChMTEy0nwnvvfeeGDVqFDexOvF1bI1QXl6OVatWISQkBMePH5c7R4tiV1lZGd566y0sWrQIn332mdw5AGg2AcDDhw8RFhaGpKQkAMDly5fh7OyMsLAwtG3bFlFRUQAqL2k29K45c+bA2NgY+fn5cHd3124PDAxEeHi4LLc23b17F4GBgTh8+DAUCgVycnLg7OyMyZMno2XLltomqW+jpdhF8fgtX7683tcXL14sUclvKDYBgK+vL1JTU+Ho6CjL/mtDsSkgIAB79uwh9zRXil0rVqzA4sWLkZSUhObNm8udA4Bm0/z585GZmYmUlBQMHjxYu33gwIFYunSp9vcxdwHz5s3D3bt3ERoaitLSUgCAmZkZIiMjMX/+fMl7qDYBdd9WWVJSAhMTE4lrKlFpOnLkiGT7agyqXVWioqLw7rvvIjw8HGq1Wrt9wIABiI2N5SZWJx6UagRjY2OsXr0awcHBcqfooNilUqnwr3/9C4sWLZI7RYtiE0DzpI5q19dff42DBw+iXbt2Ots7dOiA69evS94D0BxoodpF8fjt3r1b5/uysjJcu3YNxsbGcHFxkWUAiGITAAwZMgRRUVHIzs5Gt27dYG5urvO6v78/N6Hy53n58uVIS0urtWnmzJmSN1Hq8vT01Fmn6cqVK7C3t4ejoyNUKpXOe8+cOWOwTdXt2bMHO3bsgLe3t05n586dkZubK3kP5S6FQoH3338fixYtwsWLF9GsWTN06NABpqamOu8rKChAmzZtoFQqDa5p48aN2q64uDhYWFhoX9NoNDh69Kjki2dTa+rfv79k+2oMql1VsrOza13U387OTrb1ryg2MX08KNVIFGdlAZpdFGdlKTZRPKmj2vXgwYNaZ65/+uknvZM7qVAcaAFodlE8fmfPntXbdv/+fUycOBEjRoyQoYhmEwCEhoYCANauXav3mkKhgEajkTqJZFN8fDysrKxw+vRpnD59Wq9JrkEpKl1VC/pTQrGpuh9//LHWJ0c9ePBA1oXYqXYBlQsc9+jRo87XO3XqhHPnzsHZ2dngmtatWweg8qqkTZs2wcjISPuaiYkJHB0dsWnTpiZteBaaqmRlZdW6XaFQwMzMDA4ODrKcw1DssrKywq1bt/SeFHz27Fm0bdtW0hbKTUwfD0o1EsVZWapdVGZlqTdRPamj2NW3b18kJydjxYoVACp/8VZUVGD16tXw8fGRpYniQAtAs4vi8auNpaUlli1bhmHDhmH8+PFy5wCg0VRRUSHLfutDsenatWtyJ9SKSteSJUvkTtBDsam67t2748svv0RYWBiA356aGhcXh169enHXU6jrNjE5SdVU9Vng4+ODXbt2oWXLlpLstz4Um6p07dq13vNelUqFwMBAfPLJJzAzMzPorrFjxyIyMhKff/659hwvLS0Nc+fOle2OHopNrBZyLmj1LFIoFHV+ybWoHNUuR0fHOr/ketoIxaa+ffuKjRs3CiEqn4RWtRDtjBkzhJ+fnyxNVLuys7OFnZ2dGDx4sDAxMRGjR48W7u7uwt7eXly5ckWWpiFDhoh33nlHCPHbv5NGoxFjxoyRdQFFil0Uj19djh07JqysrOTO0EGxidWvoqJC7+ECFFDpcnJyEnfu3NHb/vPPP8v2O5li07Fjx4SFhYWYNm2aMDMzE7NmzRKvvPKKMDc3F6dOnZKliXJXQ1B8Ii7FJibEnj17xPPPPy/i4uJEVlaWyMrKEnFxccLd3V1s375dfPbZZ6Jdu3YiIiLC4LtKSkrElClThLGxsVAoFEKlUgmFQiHefPNN2Z6KTbGJ6VMIQXCqgDEDcvz4cQwZMgRvvvkmEhMT8dZbb+HChQtIT09HamoqunXrxl3V3Lt3D7GxscjMzERxcTG8vLwwffp0tG7dWpae8+fPw9fXF15eXjh8+DD8/f3x3//+Fz/99BPS0tLg4uLCXdVQO35V61hUEULg1q1b2LJlC/r371/rOgSG2FTl0KFDWLduHS5evAgAcHd3x+zZszFw4EBuqiY+Ph7r1q1DTk4OgMqrdGfPno0pU6bI1kSxS6lUorCwUO+q3Nu3b+O5557TLgpt6E0AkJubi+joaJ3PzsjISHh4eMjSQ73r96jVamRmZkp6+97vkbpJo9EgMTERhw4dQlFRkd6Vp4cPH5akg3rTiy++iBUrVsDPz09n+8GDB7Fo0SKcOHECe/bsQUREhKTLW1DtAoAbN24gOzsbxcXF8PT0RIcOHSTd/7PSxH7Dg1JMElU/ZnKvMVAdpSaqJ3VUu6ihNtBCvYuSmmsMKJVK2NraYsCAAZg/f77Ok1oMuQkA/v73v2PWrFkYPXq09tac7777Dl988QXWrVuH6dOncxMqn464du1ahIWFaZsyMjIQGxuLOXPm/O7TFQ2ha9++fQAq13JKSkpCixYttK9pNBocOnQI33zzDS5dumTQTazp8KAUMGPGDCQmJmLo0KFo3bq13vlw1TpPUqLY1KxZM5w9e1ZvofUffvgBnp6eePToEfLy8tCpUyc8fPjQ4LrCw8Mb/N7a1n9sChSb2O+Q7yKtZ9e3334rhg4dKpydnYWzs7MYOnSo+Oabb+TOItkVFxcnOnfuLExMTISJiYno3Lmz+Mc//sFN7Km0b99eLFu2TOTn58udwp4CH79nW9u2bcWHH36otz02Nla0adNGhiKaTa1atRJbt27V275161ZhY2MjQ1ElSl3VlxeoueSAiYmJ6Nixo/j3v/9t8E1V+vXrJ5KSksTDhw9l2X9dqHY1hFqtJnernNRNNjY24ssvv5Rsfw1Bsalr165iwoQJoqSkRLuttLRUTJgwQXTt2lUIIcTx48eFo6OjQXa9/PLLDfry8fFp0g7qTax+PCjVSB999JEwNjYWY8eOFRs2bBAbNmwQb7zxhlCpVCI2Npa7qlm0aJEwNzcXUVFRYu/evWLv3r0iKipKWFhYiEWLFnHTE1RP6ih2rVu3TrzwwgvCyMhIDBw4UGzbtk08fvxY1iaqAy0Uuygev+pu3Lghbty4IXeGDkpN5ubmIicnR2/75cuXhbm5uQxFNJtatGghLl++rLf90qVLokWLFtIHPUGxy9HRUfz444+y7LsuFJtmzZolbG1thaWlpZgyZYrIyMiQO0kIQberISiu3yR1U+vWrcWlS5ck219DUGxKS0sTNjY2wtbWVvj6+gpfX19hZ2cnbGxstD/zycnJYvXq1dzF2FPiQalGojgrKwTNLkqzslUoNlE9qaPaJYQQp0+fFmFhYaJVq1aiZcuWYvr06eL06dOytFAdaKHaJQSt46fRaMSyZcuEpaWlUCqVQqlUihYtWojly5cLjUbDTdW88cYbtZ7cfvDBByIwMFCGIppNM2bMEHPmzNHbHhERIUJDQ2UoqkS1izVMWVmZ+Ne//iX8/f2FSqUS7u7u4oMPPhCFhYXc9RTy8/PJLXIsddOaNWtEaGgoiYceVKHYJIQQ9+/fFx9//LGYM2eOmDNnjti0aZO4f/++3FlkuxhrLF5TqpEsLCxw7tw5uLq66mzPycmBp6cniouLuesJKysrnDx5Um8hucuXL+PFF1/EL7/8wk1PlJeXY9++fUhKSsKBAwfg6uqKkJAQjB8/Hvb29rI0Ue6qUlZWhr///e+IjIxEWVkZPDw8MHPmTEyaNEnytcLOnDmDxMREbNu2DRqNBkFBQQgJCYGXl5ekHc9KF0Dj+M2fPx/x8fFYtmwZ+vTpA6Bykf+lS5di6tSpWLlypSQdVJuqL7p+//59rFmzBn369NFZvyktLQ0RERF45513DLap+voV5eXlSExMhIODA7y9vQEA33//PfLz8xEcHIwPP/xQkibKXVV+bx2rxYsXS1TyG4pNNRUVFWHz5s1YuXIlNBoNXn31VcycORMDBgww+K4HDx4gOjq6zoWyr169KlkL5SYAGDFiBI4cOQJra2t07twZKpVK5/Vdu3ZxE2NMEjwo1UhBQUHw9PTEvHnzdLavWbMGp06dwvbt27nribCwMKhUKr0F5ObOnYtHjx7ho48+4qZaUDipo95VVlaG3bt3IyEhAd988w28vb0xefJkFBQU4KOPPsKAAQNke0IZhYEW6l2Ujl+bNm2wadMm+Pv762zfu3cvQkNDcfPmTUk6qDbVXHS9LgqFQrI/rCg2+fj4NOh9CoVC0qdHUe2q4unpqfN9WVkZrl27BmNjY7i4uODMmTPcVMOJEyeQkJCA7du3w9LSEhMnTsTNmzexdetWhIaGYs2aNQbd9cYbbyA1NRXjx4+vdaHsWbNmSdJBvQkAJk2aVO/rCQkJEpX8hkrTvn37MGTIEKhUKu1DEOpS83d1U6Laxdj/Fw9KNQDFWVmqXRRnZSk21YXKSR3VrjNnziAhIQHbtm2DUqlEcHAwpkyZovPkkfPnz6NHjx549OiRJE1VKA20UO2iePzMzMyQlZWFjh076my/dOkSunbtKvnPEdUmxqRy//59TJw4ESNGjMD48ePlzgEgf1NRURG2bNmChIQE5OTkYNiwYZgyZQr8/Py0AxzHjx/H4MGDJb0ynmKXlZUVvvzyS+1VphRQbGL1UyqVKCwshJ2dHZRKZZ3vUygU0Gg0Bt/F2P8XD0o1AMVZWYBmF8VZWYpN1VE8qaPaZWRkhFdeeQWTJ09GQECA3mXdQOVl8jNmzJBsNo3iQAvVLorHr2fPnujZs6fOID9QeVXlyZMn8d1330nSQb2putLSUly7dg0uLi4wNjaWtaUKxaYrV64gNzcX/fr1Q7NmzSCEkPVqSepd1WVnZ2PYsGHIy8uTO0VLziYTExO4uLggJCQEEydOhK2trd577t+/j+HDh+PIkSMG3eXk5IT9+/fD3d1dkv01BMWmKuXl5UhJSUFubi6CgoKgVqvxv//9D5aWlrCwsDD4prKyMvj5+WHTpk16E0VyotrF2FOTazErxlgllUol3NzcxOrVq0VRUVGt77l37554+eWXDb4rLy9Psn01lFKpFH5+fmLnzp2itLS01vcUFxeLiRMnGnwXxeOXkpIizM3Nhbu7uwgJCREhISHC3d1dmJubi6NHj3JTNQ8ePBAhISHCyMhIGBkZaZ8SNWPGDPHee+9x0xN37twRAwYMEAqFQiiVSm3TpEmTRHh4uCxNlLtqc+zYMWFlZSV3hg45m+T8/74+FLu2bNkiRo8eLR48eCB3ihbFJiEqfye7ubmJ5s2b63x+zpw5U7z11lvc9ESrVq1qfcqr3Kh2MfY0+Eqpp0RxVhag2UVxVpZS07Fjx9C3b19Z9l0fql2//PILvvjiC+Tm5mLevHmwtrbGmTNnYG9vj7Zt20rec/36dbRv317y/f4eql3Ujh8A3Lx5Ex9//DEuXrwIAHB3d0doaCjatGkjSw/VplmzZiEtLQ3r16/H4MGDkZWVBWdnZ+zduxdLly7F2bNnuQlAcHAwioqKEBcXB3d3d2RmZsLZ2RkHDx5EeHg4/vvf/0reRLWr5tWAQgjcunULW7ZsQf/+/WW55ZliE0Dr6hFqXZ6enjrncFeuXIEQAo6OjnpX5Eq1JhjFppoCAgKgVqsRHx8PGxsb7WdCSkoKpk6dipycHG4CMGfOHJiamiI6OlryfdeHahdjT4PGqMUz5OHDhwgLC0NSUhKAyqe2OTs7IywsDG3btkVUVBR3PXH37l28/vrrOHLkCBQKBXJycuDs7IzJkyejZcuWiImJ4SYAffv2JXFS9yx0ZWVlwdfXF1ZWVsjLy8PUqVNhbW2NXbt2IT8/H8nJyZI3tW/fnuRAC8UuiscPAGxsbODv7w9vb2/tU5FOnToFQL6FQik27dmzBzt27IC3t7fOH1udO3dGbm4uNz3x9ddf4+DBg2jXrp3O9g4dOuD69euyNAE0u9atW6fzvVKphK2tLSZMmID58+dz0xPXr1/H4MGDkZ+fj5KSErzyyitQq9V4//33UVJSgk2bNhl0V0BAgCT7aQyKTTUdO3YM6enpMDEx0dnu6Ogoy0M+qDaVl5fj008/xbfffotu3brB3Nxc5/WaD08y9C7GngYPSjXS/PnzkZmZiZSUFAwePFi7feDAgVi6dKlsg1IUu+bMmQOVSoX8/Hyd++gDAwMRHh4uywAQxSYqJ3XPQtecOXMwadIkrF69Gmq1Wrv91VdfRVBQkOQ9AN2BFopdFI/fV199heDgYNy9exc1LxyWa6FQik0A8OOPP8LOzk5v+4MHD2S70pRi04MHD9C8eXO97T/99BNMTU1lKKpEsevatWuy7Lc+FJtmzZqF7t27IzMzEzY2NtrtI0aMwNSpUw2+a8mSJZLtq6EoNtVUUVFR6++TgoICnd/RUqLYdP78eXh5eQGonPSvTs47P6h2MfZU5Lpv8Fnl4OAgMjIyhBBCWFhYaO91zsnJEWq1mruqsbe3F+fOndNrys3NFebm5tz0xPDhw8Wbb74pSkpKdJqOHDkiXF1dZWmi2mVpaSmuXLkihNA9fnl5ecLU1FSWpgEDBoh58+bpNaWlpYn27dvL0kS1i+Lxc3V1FaGhoaKwsFCW/deGYpMQQvTt21ds3LhRCFF5/K5evSqEqFy/yc/Pj5ueGDJkiHjnnXd0mjQajRgzZowYNWqULE2Uu6rcuHFD3LhxQ+4MHVSarK2txQ8//CCE0P3svHbtmmjWrBl3VePk5CTu3Lmjt/3nn38WTk5OMhTRbBJCiNdff11MnTpVCPHbZ8Kvv/4qBgwYIPk6mJSbGGNNj6+UaiSKs7IAzS6Ks7IUmyheqgzQ7DI1NcX9+/f1tl++fLnWp/5I4dSpU9i8ebPe9rZt26KwsFCGokoUuygev9u3byM8PBz29vay7L82FJsAYNWqVRgyZAguXLiA8vJybNiwARcuXEB6ejpSU1O56YnVq1fD19cXp06dQmlpKd5++23897//xU8//YS0tDRZmqh2VVRU4N1330VMTIz2Ka5qtRoRERFYuHBhvY88N7QmalePADS78vLyam0qKSlBQUGBDEU0mwAgJiYGfn5+6NSpEx4/foygoCDk5OSgVatW2LZtGzcxxiTDg1KN1L17d3z55ZcICwsD8NvlkXFxcejVqxd3VdO3b18kJydjxYoV2qaKigqsXr0aPj4+3PQExZM6gGaXv78/li9fjp07dwKoPH75+fmIjIzEqFGjZGmiONAC0OyiePxGjx6NlJQUuLi4yLL/2lBsAoCXXnoJ586dQ3R0NDw8PPD111/Dy8sLGRkZ8PDw4KYn/vrXv+Ly5cuIjY2FWq1GcXExRo4cienTp6N169ayNFHtWrhwIeLj4xEdHY0+ffoAAI4fP46lS5fi8ePHWLlyJTcBGDRoENavX6+daFAoFCguLsaSJUvw6quvSt5DsWvfvn3a/z548CBatGih/V6j0eDQoUNwcnIy+Kbq2rVrh8zMTOzYsQOZmZkoLi7G5MmTMW7cODRr1oybGGOS4afvNdLx48cxZMgQvPnmm0hMTMRbb72lMyvbrVs37nri/Pnz8PX1hZeXFw4fPgx/f3+dWVk5/uCi2BQYGIgWLVpg8+bNUKvVyMrKgq2tLYYPHw4HBwckJCRI3kS16969exg9ejROnTqFX3/9FW3atEFhYSF69eqF/fv36y3yKIUpU6bg7t272LlzJ6ytrZGVlQUjIyMEBASgX79+WL9+veRNVLsoHr+HDx9izJgxsLW1hYeHh95TkWbOnMlNjDWRNm3aYNOmTXqL9+/duxehoaGyXJVLsamgoAB+fn4QQiAnJwfdu3fXXj1y9OjRWq+UN7SuqivYFAqF3lp8KpUKjo6OiImJwWuvvWbQTYwxRhEPSj2F3NxcREdHa0fwvby8EBkZKdusLOWue/fuITY2VqdJ7tliak2UTuqehS4ASEtL0zl+AwcOlK2F4kAL5S6A1vGLj4/HtGnTYGZmBhsbG53bnRUKBa5evcpNT/Tv3x+TJ0/GmDFjyMxYU2xydHRESEgIJk2ahOeee07uHC2KXWZmZsjKykLHjh11tl+6dAldu3bFo0ePuOmJ8vJynatHvLy8SFw9Qq3LyckJJ0+eRKtWrWTZf20oNgHAe++9B3t7e4SEhOhs//TTT/Hjjz8iMjKSmxhjkuBBKcYIoHZSR73r93h4eGD//v2S/uFFaaClOqpd9ZHy+P3lL3/BzJkzERUVJctaMbWh2AQAs2fPxtatW1FSUoLXX38dkydPhre3NzfVsH79eiQmJuL8+fPw8fHB5MmTMWLECFmfvEe1q2fPnujZsyc2btyosz0sLAwnT57Ed999x02NMHToUMTFxck68Vcbql2GztHREVu3bkXv3r11tn///fcYO3asLE+ipNjEGGt6PCjVSBRnZQGaXRRnZSk2NRTVkzqKXWq1GpmZmXB2dpY7RUuOgbKGoNgl5fGztrbGyZMnSa3fRLGpSnl5Ofbt24ekpCQcOHAArq6uCAkJwfjx42VbmJ1iEwCcOXMGiYmJ2LZtGzQaDYKCghASEqJ9hDd3AampqRg6dCgcHBy0619mZGQgPz8fBw4cQN++fbmpESj+7gOk7Vq+fHm9ry9evLjJG2qi2ARUXhV48eJFvXWtrl69ql1onJsYY5KQ45F/z7JZs2YJW1tbYWlpKaZMmSIyMjLkThJC0Oxat26deOGFF4SRkZEYOHCg2LZtm3j8+DE3PaXqj1umhGIXNzUcxS4pm2bPni1Wrlwpyb4aimJTbW7fvi1WrFghzMzMhEqlEsOHDxeHDh3iphpKS0vF+vXrhampqVAqleKFF14Q8fHxoqKigruEEAUFBWLhwoVi5MiRYuTIkWLhwoXi5s2bkjY8C00NQfHzXAhpu7p27arz1blzZ9G8eXNhaWkpPD09JWl4FpqEEMLV1VVs2bJFb3tycrJwcnKSoYhmE2Os6fHT9xpp/fr1WLNmjXZWtl+/fiRmZSl2zZ49G7Nnz9bOyoaFhSE0NFTWWVmKTYwx+Wg0GqxevRoHDx5Ely5d9BYVX7t2LTfV4sSJE0hISMD27dthZ2eHiRMn4ubNm3jttdcQGhqKNWvWGHxTWVkZdu/ejYSEBHzzzTfw9vbG5MmTUVBQgAULFuDbb7/F1q1bJW2i2GVjYwN/f394e3ujoqICAHDq1CkA0Fts3JCbWMOcPXtWb9v9+/cxceJEjBgxQoYimk0AMHXqVMyePRtlZWUYMGAAAODQoUN4++23ERERwU2MMenIPSr2rKM4K0u1i8qsLPWmuvAMaMNxU8NR7JKy6eWXX67zy8fHR5KGZ6FJiMrfK2vWrBGdO3cWJiYmYtSoUeLAgQM6n5fHjh0T5ubmBt10+vRpMWPGDGFjYyNsbW1FRESEuHjxos57srOzhZmZmWRNVLsOHDggbG1thVKpFAqFQudLqVRK1kG9qaEofp4LQaMrKytLtG/fXtaGmuRuqqioEG+//bYwMzMTSqVSKJVK0bx5c7Fs2TJuYoxJigel/h++//57MW3aNGFlZSUcHBzE4sWLxeTJk0WzZs1EREQEdz1RWloqduzYIQYPHiyMjIxEnz59xKeffiqWL18u7O3txRtvvMFNDUDhpK42FLu4qeEodlFsYkKoVCrh5uYmVq9eLYqKimp9z71798TLL79s0E1KpVL4+fmJnTt3itLS0lrfU1xcLCZOnChZE9UuV1dXERoaKgoLCyXb5++h2NRQVD87KXQdO3ZMWFlZydpQE5WmX3/9VZw4cUJkZ2fXuqTFjRs3hEajMfgmxljT4YXOG6moqAhbtmxBQkICcnJyMGzYMEyZMgV+fn7ax3YfP34cgwcPRnFxsUF3nTlzBgkJCdi2bRuUSiWCg4MxZcoUuLm5ad9z/vx59OjRQ7JHLFNsaihewLThuKnhKHZRbGLAsWPHyC3yTLHp+vXraN++vdwZeih2WVpa4uzZs6QW9afY1FBUPzul7Kr51EQhBG7duoUtW7agf//+stwyS7GpMSwtLXHu3DlSP1cUmxhjT4/XlGqkdu3awcXFBSEhIZg4cSJsbW313tOlSxf06NHD4Lt69OiBV155BR9//DECAgL01kUBACcnJ4wdO9agm1jDJScnIzAwUO8R5qWlpdi+fTuCg4MBAJ988omsT91itePj92zr27cvysvLkZKSgtzcXAQFBUGtVuN///sfLC0tYWFhwU0A2rdvj19++QVffPEFcnNzMW/ePFhbW+PMmTOwt7dH27ZtJW+i2jV69GikpKSQGgCi2HT06FH07t0bxsa6p+3l5eVIT09Hv379AAALFiyAtbW1QXetW7dO53ulUglbW1tMmDAB8+fPl6ThWWhqDIrXL1BsYow9Pb5SqpEozsoCNLsozspSbGroSd17772Hv/3tb7CysjLYLiMjI9y6dQt2dnY62+/evQs7OztoNJomb6ipoQMtW7duxfDhw2Fubm6wXRSPH2u469evY/DgwcjPz0dJSQkuX74MZ2dnzJo1CyUlJdi0aRM3AcjKyoKvry+srKyQl5eHS5cuwdnZGe+88w7y8/ORnJwseRPVrocPH2LMmDGwtbWFh4eH3kTRzJkzuQl0PzupdrE/FsUr8Cg2McaeHg9KPQVqs7KUu6jNylJsonpSR7FLqVTi9u3belcCZmZmwsfHBz/99JPkTRT/nah2UTx+rOECAgKgVqsRHx8PGxsb7R8EKSkpmDp1KnJycrgJgK+vL7p164bVq1fr/OGUnp6OoKAg5OXlSd5EtSs+Ph7Tpk2DmZkZbGxstMsNAIBCocDVq1e5CXV/dl6+fBndu3fH/fv3JW+i3FWloKAAQOXdBFRQbPo9FAeAKDYxxp4e377XSDVnZV955RWo1Wq8//77ss3KUu2qOSs7depUWFtbY9euXbLNylJsEkLonPRWuXv3rmRX1dSGUpenpycUCgUUCgV8fX11rt7SaDS4du0aBg8eLGlTlbr+nQoKCtCiRQsZiipR6qJ8/FjDHTt2DOnp6TAxMdHZ7ujoiJs3b3LTE6dOncLmzZv1trdt2xaFhYUyFFWi2LVw4UIsW7YMUVFRUCqVsjTURKlp5MiRACoHwyZOnKhz5atGo0FWVhZ69+7NXdVUVFTg3XffRUxMjHYNVbVajYiICCxcuFCWY0qxiTHGKOFBqUaaNWsWunfvjszMTNjY2Gi3jxgxAlOnTuWuaubMmYNJkyZpZ2WrvPrqqwgKCjL4JqondRS7AgICAADnzp2Dn5+fzpV/JiYmcHR0xKhRoyRtojrQQrGL4vFjjVdRUVHrFXYFBQU6n6dSothkampa6xUily9frnW9R6lQ7CotLUVgYCCpP8opNVVNIAghoFar0axZM+1rJiYm8Pb2luUcj2oXUDmoGB8fj+joaPTp0wdA5YN+li5disePH2PlypXc1Ei1TXDJjWITY+zp8aBUI1GclQVodlGclaXURPWkjmLXkiVLAFT+PAcGBsLMzEzS/deG6kALxS6Kx4813qBBg7B+/XrtZ6hCoUBxcTGWLFmCV199lZue8Pf3x/Lly7Fz505tU35+PiIjI2UdfKXYNWHCBOzYsQMLFiyQZf+1odIUHh6O2NhYmJubIy8vD3FxcbIuEUG9q0pSUhLi4uLg7++v3dalSxe0bdsWoaGhsgwAUWxqDIorvVBsYow9PR6UaiSKs7IAzS6Ks7JUmqie1FHtqjJhwgQAlTPZRUVFqKio0HndwcFBshaqAy1UuwBax481XkxMDPz8/NCpUyc8fvwYQUFByMnJQatWrbBt2zZuqtY0evRo2NnZ4dGjR+jfvz8KCwvRq1cvWf/4pNil0WiwevVqHDx4EF26dNFbVHzt2rUG2/Thhx8iMjIS5ubmOHr0KB4+fEji9zHVrio//fQT3Nzc9La7ubnJtm4hxabGuHDhAtq0aSN3hg6KTYyxp8cLnTdSYGAgWrRogc2bN0OtViMrKwu2trYYPnw4HBwckJCQwF1PTJkyBXfv3sXOnTthbW2NrKwsGBkZISAgAP369cP69esNtkmlUqGgoAD29vZ1LkgtB6pdVXJychASEoL09HSd7VXrJ8n5pB+qAy2UuigfP9Yw5eXl2LFjBzIzM1FcXAwvLy+MGzdO54pKbqqUlpam0zRw4EBZe6pQ6vLx8anzNYVCgcOHD0tYU4lKU4cOHfD6669j0KBB8PHxwe7du9GyZcta31v1NFxD7qrSs2dP9OzZExs3btTZHhYWhpMnT+K7777jpicePHiA6OhoHDp0qNbzBDkW9afYxBhrejwo1UgFBQXw8/ODEAI5OTno3r27dlb26NGjsv0BT7Hr3r17GD16NE6dOoVff/0Vbdq00c7K7t+/X5ZFvKk0UT2po9pVpU+fPjA2NkZUVBRat26tt6bACy+8IHkT1YEWil0Ujx/74w0dOhRxcXFo3bq13ClaFJs8PDywf/9+PPfcc3Kn6KDaZWj27NmDadOmoaioCAqFos7blaT+PKfaVSU1NRVDhw6Fg4MDevXqBQDIyMhAfn4+Dhw4gL59+3LTE2+88QZSU1Mxfvz4Wn8nz5o1i5sYY5LgQamnQHVWlmoXpVlZKk1UT+qodlUxNzfH6dOna70MXi5UB1oodlE8fuyPR/FR3dzUcFS7DFVxcTEsLS1x6dKlOicY5XjSK9UuALh58yY+/vhjXLx4EQDg7u6O0NBQWW/3othkZWWFL7/8Urv4OgUUmxhjTY8HpZoIxVlZgGYXxVlZqZqontRR7erRowfWrVuHl156SfJ914XqQAvFLorHj/3xKA5qcFPDUe0yZKmpqdqJBkqodj1+/BhZWVm13v5VfbFxQ29ycnLC/v374e7uLsv+a0OxiTHW9Gj9FvkTOXr0KB49eiR3hh6KXXl5eSgrK5M7Q4dUTRYWFjhy5AicnJxIndRR6qq+MP3777+Pt99+G6tWrYKHh4feArSWlpZS56FTp064c+eO5Pv9PVS6qB8/xhijrn///sjNzUVCQgJyc3OxYcMG2NnZ4cCBA3BwcEDnzp2564mvvvoKwcHBuHv3rt7V3nJd5U2xCQBWrFiBxYsXIykpCc2bN5eloSaKTYyxpkfnr2DGDBTFkzpKXVZWVjq3ngkh4Ovrq/MeqddJojrQQrGL4vFjjLFnSWpqKoYMGYI+ffrg6NGjWLlyJezs7JCZmYn4+Hh88cUX3PVEWFgYxowZg8WLF8Pe3l7y/deGUpOnp6fO7+QrV67A3t4ejo6OeucJZ86cMdgmxpi0eFCKMZlRPKmj1HXkyBFJ9tMYVAdaKHZRPH6MMfYsiYqKwrvvvovw8HCo1Wrt9gEDBiA2Npa7qrl9+zbCw8NlH/ypjlJTQECA3Al6KDYxxqTFg1KMyYziSR2lrv79+0u2r4aiOtBCsYvi8WOMsWdJdnY2tm7dqrfdzs5O1tu0KXaNHj0aKSkpcHFxkWX/taHUtGTJErkT9FBsYoxJiwelGJMZxZM6gGZXVlZWrdsVCgXMzMzg4OAAU1PTJu+gOtBCtasKlePHns7Ro0fRu3dvvXXmysvLkZ6ejn79+gEAFixYAGtra4NtSk5ORmBgoN7PcmlpKbZv347g4GAAwCeffCLplRNUu9jvs7Kywq1bt+Dk5KSz/ezZs2jbtq1MVTS7YmNjMWbMGBw7dqzWW9dnzpzJTU84Ozvj5MmTsLGx0dn+yy+/wMvLC1evXuUmxpgk+Ol7TYTq02sodhl6U7t27bBz50707t1bZ7+7d+/G3LlzkZub2+QNz0qXUqnUuT2tJpVKhcDAQHzyyScwMzOTpInqQAvFLorHjzWckZERbt26pfdEzrt378LOzk6WNcG46dnvYr9v7ty5+P777/H555+jY8eOOHPmDG7fvo3g4GAEBwfLdqUJxa74+HhMmzYNZmZmsLGx0fmdo1AoZBnUoNgEVP5OLiws1PtMuH37Np577jmUlpZyE2NMGoI1SmpqqigrK9PbXlZWJlJTU7Xfr1q1Svz8888G3ZWUlCQeP36st72kpEQkJSVpv//nP/8piouLDbYpIiJCvPTSS+LWrVtCrVaLnJwccfz4ceHs7CyWLl0qScOz0rVnzx7x/PPPi7i4OJGVlSWysrJEXFyccHd3F9u3bxefffaZaNeunYiIiJCsSaFQCKVSWeeXqampCA4OFo8ePZKsiWoXxePHGk6hUIiioiK97ZcuXRJqtVqGomer6dy5c6Jly5YyFFWi2sV+X0lJiZgyZYowNjYWCoVCqFQqoVAoxJtvvinKy8u5qxp7e3uxcuVKodFoZNl/bag17d27V+zdu1coFAqRnJys/X7v3r1i165dYvr06aJjx44G38QYkw5fKdVIVGcaKXZxU8OUlpZi+vTpSExMhEajgbGxMcrLyzFu3DgkJibCyMhI8iaqXS+++CJWrFgBPz8/ne0HDx7EokWLcOLECezZswcRERGSXcm1d+9eREZGYt68eXjxxRcBACdOnEBMTAyWLFmC8vJyREVFITAwEGvWrJGkiWoXxePHft/IkSMBVP5MDR48WOcKO41Gg6ysLDz//PP46quvDLqp6glSmZmZ6Ny5s84thRqNBteuXcPgwYOxc+dOyZood7HGu3HjBrKzs1FcXAxPT0906NBB7iQAtLqsra1x8uRJEus3VaHWpFQqAVRepVXzz0CVSgVHR0fExMTgtddeM+gmxph0eE2pRhJPnlxV0927d2Fubi5DUSWKXXU1FRQUoEWLFjIU0WwyMTHBP/7xDyxevJjMSR3VruzsbLRv315ve/v27ZGdnQ0A6Nq1K27duiVZ08qVK7FhwwadgRYPDw+0a9dOO9Bibm6OiIgISQelKHZRPH7s91V9NgohoFar0axZM+1rJiYm8Pb2xtSpUw2+qeoJUufOnYOfnx8sLCx0mhwdHTFq1ChJmyh3sfqFh4fX+/p3332n/e+1a9c2dY4W1a4qEyZMwI4dO7BgwQLJ910Xak0VFRUAACcnJ5w8eRKtWrWSuYhmE2NMOjwo1UBVs7IKhQITJ06sdVa2d+/e3IXfZmUVCgV8fX3rnJU15CaqJ3VUu6q4ubkhOjoamzdvhomJCQCgrKwM0dHRcHNzAwDcvHlT0kV6qQ60UOyiePxY/cLDwxEbGwtzc3Pk5eUhLi5OZ1CDm35TtX6Oo6MjAgMDyayLRrWL1e/s2bMNel996/Q1BapdVTQaDVavXo2DBw+iS5cueouKy3HuQrEJAK5duybLfutDsYkx1vR4UKqBKM7KUu2iOCtLrYnqSR3VriofffQR/P390a5dO3Tp0gVA5eCLRqPBf/7zHwDA1atXERoaKlkT1YEWil0Ujx+r34cffojIyEiYm5vj6NGjePjwoewDQBSbqpswYQKAylugi4qKtFcAVHFwcJAji2wXq92RI0fkTqgV1a4q2dnZ8PT0BACcP39e5zW5zl0oNgHA8uXL63198eLFEpX8hmITY6zp8ZpSDRAeHo4VK1bA3NwcPj4++Pe//03iBJhqV5WkpCRys7IUm1jj/Prrr/jnP/+Jy5cvAwCef/55BAUFQa1Wy9KTnp4Of39/KJXKWgdavL29sWXLFhQWFmLevHkG30Xt+LH6dejQAa+//joGDRoEHx8f7N69Gy1btqz1vf369TPYpupycnIQEhKC9PR0ne1Vt4/LtfYk1S7GmDyqBsqqlJWV4dq1azA2NoaLiwvOnDnDTYwxSfCgVAOoVCoUFBTA3t6+zoWyuatuFGdlKTaxZxfVgRaqXezZsWfPHkybNg1FRUW1LkBbRcpBDYpN1fXp0wfGxsaIiopC69at9a6EeOGFFyRvotzFGKPj/v37mDhxIkaMGIHx48fLnQOAZhNj7I/Fg1INQHVWlmpXFYqzshSbWP327duHIUOGQKVSYd++ffW+19/fX6Iq1lB8/P4ciouLYWlpiUuXLtU5+SH1wyIoNgGAubk5Tp8+rb1NlgqqXYwxWrKzszFs2DDk5eXJnaJFsYkx9sfhQakGoDorS7WrCsVZWYpNrH5KpRKFhYWws7PTPjK4NlL+nFMdaKHYRfH4saeTmpqq/QylgmJTjx49sG7dOrz00ktyp+ig2sUYo+X48eMYNmwYfv75Z7lTtCg2Mcb+ODwo1QhUZ2WpdlGclaXYxBqmrKwMfn5+2LRpEzp27ChrC9WBFqpdAK3jx55ebm4uEhISkJubiw0bNsDOzg4HDhyAg4MDOnfubLBN9+/f1/73qVOn8M4772DVqlXw8PDQe9KWpaWlJE2Uuxhj8tu4caPO90II3Lp1C1u2bEH//v2xdetWbmKMSYLO1OIzwMLCAkeOHIGTkxOpWVmqXZ06dcKdO3fkztBBsYk1jEqlQnZ2dr2DLVKpWousrKwML7/8MpmBFqpdAK3jx55OamoqhgwZgj59+uDo0aNYuXIl7OzskJmZifj4eHzxxRcG22RlZaVz5a0QAr6+vjrvkeM2capdjDH5rVu3Tud7pVIJW1tbTJgwAfPnz+cmxphk+Eqpp0BhVpZqF8VZWYpN7OnMmTMHpqamiI6OljtFy9bWFhkZGXB1dZU7RQfFLorHjzVcr169MGbMGISHh0OtViMzMxPOzs44ceIERo4ciYKCAoNtSk1NbfB7+/fv34Qluqh2McYYY4xV4UGpRqo5K3vx4kU4OzsjOjoap06dkmWmmFKXUqnUm5WtuW6T1LOyFJvY0wkLC0NycjI6dOiAbt26wdzcXOf1tWvXSt5EdaCFYhfF48cazsLCAtnZ2XByctIZAMrLy4ObmxseP37MTYwx9gyqGsBv166dzCW/odjEGGsadO71ekZERUXh3Xff1c7KVhkwYABiY2MNvuvIkSOS7auhKDaxp3P+/Hl4eXkBAC5fvqzzWs2BRqmUl5fj008/xbfffktqoIViF8XjxxrOysoKt27dgpOTk872s2fPom3bttz0RFZWVq3bFQoFzMzM4ODgAFNTU4mr6HYxxuRRUVGBd999FzExMSguLgYAqNVqREREYOHChbLcbk+xiTHW9HhQqpGys7NrXWTPzs5O1rWKqHRRvPyfYhN7OhQHGKkOtFDsonj8WMONHTsWkZGR+Pzzz6FQKFBRUYG0tDTMnTsXwcHB3PRE165d6/1/TKVSITAwEJ988gnMzMwMvosxJo+FCxciPj4e0dHR6NOnD4DKp9wtXboUjx8/xsqVK7mJMSYJvn2vkdq1a4edO3eid+/eOrcK7N69G3PnzkVubi53PUFxVpZiE2OMPQtKS0sxffp0JCYmQqPRwNjYGOXl5Rg3bhwSExNhZGTETQD27t2LyMhIzJs3Dy+++CIA4MSJE4iJicGSJUtQXl6OqKgoBAYGYs2aNQbfxRiTR5s2bbBp0yb4+/vrbN+7dy9CQ0Nx8+ZNbmKMSYIHpRpp7ty5+P777/H555+jY8eOOHPmDG7fvo3g4GAEBwdjyZIl3PVEzbWcapJjVpZiE2OMPUtu3LiB7OxsFBcXw9PTEx06dJA7iVTTiy++iBUrVsDPz09n+8GDB7Fo0SKcOHECe/bsQUREhKQTRlS7GGPyMDMzQ1ZWlt5Tei9duoSuXbvi0aNH3MQYkwQPSjUSxVlZql0UZ2UpNjHGGFXh4eENfq9U65RRbKquWbNmOHv2LNzc3HS2//DDD/D09MSjR4+Ql5eHTp064eHDhwbfxRiTR8+ePdGzZ09s3LhRZ3tYWBhOnjyJ7777jpsYY5LgQamnRGlWtjpKXRRnZSk2McYYVT4+Pg16n0KhwOHDh5u4phLFpuo8PT3xwgsvYPPmzTAxMQEAlJWVYerUqcjMzMTZs2eRlpaGN998E9euXTP4LsaYPFJTUzF06FA4ODigV69eAICMjAzk5+fjwIED6Nu3LzcxxiTBg1INQHVWlmpXFYqzshSbGGOM/Xmkp6fD398fSqUSXbp0AVD5MBKNRoP//Oc/8Pb2xpYtW1BYWIh58+YZfBdjTD43b97Exx9/jIsXLwIA3N3dERoaijZt2nATY0wyPCjVAFRnZal2VaE4K0uxiTHG2J/Lr7/+in/+85/aJ18+//zzCAoKglqt5i7GGBmPHz9GVlYWioqKUFFRofNazcXGDbmJMda0eFCKNRmKs7IUmxhjjDHGGJPSV199heDgYNy9exc1/xxUKBTQaDTcxBiTBA9KsSZFcVaWYhNjjLFn1759+zBkyBCoVCrs27ev3vdKOdNPtYsxJr8OHTpg0KBBWLx4Mezt7eXOAUCziTHW9HhQijHGGGPs/0GpVKKwsBB2dnZQKpV1vk/qmX6qXYwx+VlaWuLs2bNwcXGRO0WLYhNjrOkZyx3A/lwozspSbGKMMfbnUbXuSVlZGV5++WVs2rQJHTt2lLmKbhdjTH6jR49GSkoKqQEgik2MsabHV0qxPxTFWVmKTYwxxv6cbG1tkZGRAVdXV7lTdFDtYozJ4+HDhxgzZgxsbW3h4eEBlUql8/rMmTO5iTEmCR6UYk2irKwMfn5+pGZlKTYxxhj7c5kzZw5MTU0RHR0td4oOql2MMXnEx8dj2rRpMDMzg42NDRQKhfY1hUKBq1evchNjTBJ8+x5rEiqVCtnZ2fVemSQ1ik2MMcb+XMrLy/Hpp5/i22+/Rbdu3WBubq7z+tq1a7mLMSa7hQsXYtmyZYiKiiJzbkyxiTHW9PhKKdZkKM7KUmxijDH25+Hj41PnawqFAocPH5aw5jdUuxhj8rC2tsbJkydJrd9EsYkx1vR4UIo1mbCwMCQnJ6NDhw5kZmUpNjHGGGOMMSalOXPmwNbWFgsWLJA7RYtiE2Os6fHte6zJnD9/Hl5eXgCAy5cv67xW/R5xKVFsYowxxhhjTEoajQarV6/GwYMH0aVLF71FxeWYqKXYxBhrenylFGOMMcYYY4wZEIq39FJsYow1PR6UYowxxhhjjDHGGGOS48caMMYYY4wxxhhjjDHJ8aAUY4wxxhhjjDHGGJMcD0oxxhhjjDHGGGOMMcnxoBRjjDHGGGOMMcYYkxwPSjHGGGOMMcYYY4wxyfGgFGOMMcYYY4wxxhiTHA9KMcYYY4wxxhhjjDHJ8aAUY4wxxhhjjDHGGJPc/wE/in1yyHWOFAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "missing=train_df[target_cols].isna().mean().sort_values(ascending=False)\n", "\n", "plt.figure(figsize=(12,4))\n", "missing.plot(kind='bar')\n", "plt.title('Missing ratio per keypoint')\n", "plt.ylabel('Fraction missing')\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "817dcf06-786b-454c-94ab-69fd724f2b09", "metadata": {}, "source": [ "Most facial keypoints have a high amount of missing values, while only a few keypoints are almost always labeled." ] }, { "cell_type": "code", "execution_count": 41, "id": "d8c11fff-a9f6-4e18-abda-6d8cff7b75d5", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAIjCAYAAAAgIUA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxB9JREFUeJzs3XmcXHWZ6P/PWapO7dV7d7oTkpCEJSQYQAkoCEhkEQcZlwF1BuE6w72OwkXQueL8FAWVUXEddZjxuqJXcUUHHQQRXEYEBNkhQMjaSe9de9VZv78/TnfRne4k3Ul3ujt53q9Xv6CrTlV9q6pT56nv93mer6aUUgghhBBCzGP6XA9ACCGEEGJfJGARQgghxLwnAYsQQggh5j0JWIQQQggx70nAIoQQQoh5TwIWIYQQQsx7ErAIIYQQYt6TgEUIIYQQ854ELEIIIYSY9yRgEYeNj3zkI2iadlAe68wzz+TMM8+s/37fffehaRo/+tGPDsrjX3bZZSxbtuygPNb+KpVK/P3f/z0dHR1omsbVV1+9x2M9z+Of/umfWLJkCbquc9FFFwGgaRof+chHDsp4d7dlyxY0TePmm2+ek8efKaPP45vf/OZBe8wf/OAHNDU1USqVDtpj7smdd95JKpWiv79/roci9kECFrEgffOb30TTtPpPLBajs7OTc889ly9+8YsUi8UZeZydO3fykY98hEcffXRG7m8mzeexTcUnPvEJvvnNb/Kud72LW2+9lb/7u7/b47Ff//rX+fSnP82b3/xmvvWtb/He9753Vsb0la985aCeuBe6SqXCRz7yEe67774p38b3fa6//nquvPJKUqnU7A1uis477zxWrlzJTTfdNNdDEfuihFiAvvGNbyhA3XDDDerWW29VX//619UnPvEJdc455yhN09TSpUvVY489Nu42ruuqarU6rcd56KGHFKC+8Y1vTOt2tm0r27brv997770KUD/84Q+ndT/7OzbHcVStVpuxx5oN69evV6961aumdOzFF1+surq6JlxerVaV67ozNqbjjjtOnXHGGVM6dvPmzQpQn/70p2fs8edCEASqWq0qz/Omfdv+/n4FqOuvv37Kt/npT3+qNE1TO3bsmPbjzZavfOUrKpFIqEKhMNdDEXshMyxiQTv//PP527/9Wy6//HKuu+46fvWrX/HrX/+avr4+LrzwQqrVav1Y0zSJxWKzOp5KpQJANBolGo3O6mPtTSQSwbKsOXv8qejr66OhoeGAjo3FYpimudfblsvl/Rjd4WN0htIwjIPyeN/4xjd41ateRVdX116PC4KAWq12UMb0pje9Cdu2+eEPf3hQHk/sHwlYxCHnNa95DR/60IfYunUr3/nOd+qXT5bDcvfdd3PaaafR0NBAKpXi6KOP5oMf/CAQ5p284hWvAODyyy+vLz+NLhmceeaZrFmzhocffphXv/rVJBKJ+m13z2EZ5fs+H/zgB+no6CCZTHLhhReyffv2cccsW7aMyy67bMJtx97nvsY2WQ5LuVzm2muvZcmSJViWxdFHH83NN9+M2m3Ddk3TeM973sPtt9/OmjVrsCyL4447jjvvvHPyF3w3fX19vPOd76S9vZ1YLMbLXvYyvvWtb9WvH83n2bx5M7/4xS/qY9+yZcuE+xrNr7j33nt56qmn6seOLkHsnsMy+h4//fTTvO1tb6OxsZHTTjsNgJ6eHi6//HIWL16MZVksWrSIN7zhDfXHXbZsGU899RS//e1v648z2Xu4N0oprrjiCqLRKD/5yU/ql3/nO9/hpJNOIh6P09TUxCWXXDLufb/++uuJRCKT5lFcccUVNDQ01E/ey5Yt4/Wvfz133XUX69atIxaLsXr16nGPN+rFF1/kLW95C01NTSQSCU455RR+8YtfTPoaj10Ku+yyy0ilUnR3d3PRRReRSqVobW3lfe97H77v12/X2toKwEc/+tH6a7a3nKJarcadd97Jhg0bJlw3+nf33e9+l+OOOw7Lsup/czfffDOvfOUraW5uJh6Pc9JJJ03IB3vjG9/IiSeeOO6yv/qrv0LTNH7+85/XL3vggQfQNI3/+q//ql/W1tbG8ccfz89+9rM9jl3MPQlYxCFpNB/irrvu2uMxTz31FK9//euxbZsbbriBz3zmM1x44YX893//NwDHHnssN9xwAxCeNG699VZuvfVWXv3qV9fvY3BwkPPPP59169bx+c9/nrPOOmuv4/r4xz/OL37xC/7P//k/XHXVVdx9991s2LBh3EzQVExlbGMppbjwwgv53Oc+x3nnncdnP/tZjj76aN7//vdzzTXXTDj+D3/4A//4j//IJZdcwqc+9SlqtRpvetObGBwc3Ou4qtUqZ555Jrfeeitvf/vb+fSnP002m+Wyyy7jC1/4Qn3st956Ky0tLaxbt64+9tGT31itra3ceuutHHPMMSxevLh+7LHHHrvXcbzlLW+hUqnwiU98gn/4h38Awm/RP/3pT7n88sv5yle+wlVXXUWxWGTbtm0AfP7zn2fx4sUcc8wx9cf553/+570+zli+73PZZZfx7W9/m5/+9Ke88Y1vBML3/NJLL2XVqlV89rOf5eqrr+aee+7h1a9+NblcDgj/Xj3P47bbbht3n47j8KMf/Yg3velN42YHn3/+eS6++GLOP/98brrpJkzT5C1veQt33313/Zje3l5e+cpX8qtf/Yp//Md/5OMf/zi1Wo0LL7yQn/70p1N6Pueeey7Nzc3cfPPNnHHGGXzmM5/hP/7jP4Dwvfm3f/s3AP76r/+6/pqNPu/JPPzwwziOMyGwGPWb3/yG9773vVx88cV84QtfqAfdX/jCFzjhhBO44YYb+MQnPlF/vmODr9NPP53HHnuMQqEAhH/z//3f/42u6/z+97+vH/f73/8eXdd51ateNe6xTzrpJP74xz/u83URc2huV6SE2D+jOSwPPfTQHo/JZrPqhBNOqP9+/fXXq7F/8p/73OcUoPr7+/d4H3vLEznjjDMUoG655ZZJrxubCzGaw9LV1TVunfwHP/iBAtQXvvCF+mVLly5V73jHO/Z5n3sb2zve8Q61dOnS+u+33367AtTHPvaxcce9+c1vVpqmqRdeeKF+GaCi0ei4yx577DEFqH/913+d8Fhjff7zn1eA+s53vlO/zHEcdeqpp6pUKjXuuS9dulRdcMEFe72/UWeccYY67rjjJlzObvkTo+/xW9/61nHHDQ8PTynfZH9zWFzXVRdffLGKx+PqV7/6Vf2YLVu2KMMw1Mc//vFxt33iiSeUaZrjLj/11FPV+vXrxx33k5/8RAHq3nvvrV+2dOlSBagf//jH9cvy+bxatGjRuL/3q6++WgHq97//ff2yYrGoli9frpYtW6Z83x/3PMb+Hb3jHe+o54iNdcIJJ6iTTjqp/vt0c1j+7//9vwpQTzzxxITrAKXrunrqqacmXFepVMb97jiOWrNmjXrNa15Tv2z038Mvf/lLpZRSjz/+uALUW97ylnGv64UXXjjudRr1iU98QgGqt7d3Ss9FHHwywyIOWalUaq/VQqM5ET/72c8IgmC/HsOyLC6//PIpH3/ppZeSTqfrv7/5zW9m0aJF/PKXv9yvx5+qX/7ylxiGwVVXXTXu8muvvRal1LjpcYANGzawYsWK+u/HH388mUyGF198cZ+P09HRwVvf+tb6ZZFIhKuuuopSqcRvf/vbGXg2+/a//tf/Gvd7PB4nGo1y3333MTw8PKOP5TgOb3nLW7jjjjv45S9/yTnnnFO/7ic/+QlBEPA3f/M3DAwM1H86OjpYtWoV9957b/3YSy+9lAceeIBNmzbVL/vud7/LkiVLOOOMM8Y9ZmdnJ3/9139d/z2TyXDppZfyl7/8hZ6eHiB8L04++eT6khiE/yauuOIKtmzZwtNPP73P57b763j66afv829gb0Zn6BobGye9/owzzmD16tUTLo/H4/X/Hx4eJp/Pc/rpp/PII4/ULz/hhBNIpVL87ne/A8KZlMWLF3PppZfyyCOPUKlUUErxhz/8gdNPP33CY4yOaWBgYL+fn5hdErCIQ1apVBoXHOzu4osv5lWvehV///d/T3t7O5dccgk/+MEPphW8dHV1TSu5dtWqVeN+1zSNlStXTpq/MZO2bt1KZ2fnhNdjdGll69at4y4/4ogjJtxHY2PjPk/2W7duZdWqVej6+I+WPT3ObFm+fPm43y3L4pOf/CT/9V//RXt7O69+9av51Kc+VT+5H4ibbrqJ22+/nR/96EcTcl6ef/55lFKsWrWK1tbWcT/PPPMMfX199WMvvvhiLMviu9/9LgD5fJ477riDt7/97RNyr1auXDnhsqOOOgqg/re0detWjj766Anjnep7EYvFJizTTeVvYCrUbnlTo3Z/30bdcccdnHLKKcRiMZqamurLUfl8vn6MYRiceuqp9eWf3//+95x++umcdtpp+L7Pn/70J55++mmGhoYmDVhGx3SwejWJ6ZOARRySduzYQT6fZ+XKlXs8Jh6P87vf/Y5f//rX/N3f/R2PP/44F198Ma997WvriYX7Mvab30zZ0wfmVMc0E/ZUMbKnE818M9n7cvXVV/Pcc89x0003EYvF+NCHPsSxxx7LX/7ylwN6rHPPPZdkMlnP9RkrCAI0TePOO+/k7rvvnvDz7//+7/VjGxsbef3rX18PWH70ox9h2zZ/+7d/e0Dj21+zUTXU3NwMsMegZ7L37fe//z0XXnghsViMr3zlK/zyl7/k7rvv5m1ve9uEv8fTTjuNhx56iFqtVg9YGhoaWLNmDb///e/rwcxkAcvomFpaWg7oOYrZIwGLOCTdeuutQHgy2Rtd1zn77LP57Gc/y9NPP83HP/5xfvOb39Sn6mf629bzzz8/7nelFC+88MK4ip7GxsZ6MuZYu38jns7Yli5dys6dOycskT377LP162fC0qVLef755yfMUs304+yvFStWcO2113LXXXfx5JNP4jgOn/nMZ+rX78/7fcopp3D77bfzxz/+kbe85S14njfu8ZRSLF++nA0bNkz4OeWUU8bd16WXXspzzz3HQw89xHe/+11OOOEEjjvuuAmP+cILL0w4WT/33HMA9b+lpUuXsnHjxgm3ncn3Yrqv1zHHHAPA5s2bp3ybH//4x8RiMX71q1/xP/7H/+D888+ftMoIwkDEcRy+973v0d3dXQ9MXv3qV9cDlqOOOor29vYJt928eTMtLS2TJn+L+UECFnHI+c1vfsONN97I8uXLefvb377H44aGhiZctm7dOgBs2wYgmUwCTBpA7I9vf/vb44KGH/3oR+zatYvzzz+/ftmKFSv405/+hOM49cvuuOOOCeXP0xnb6173Onzf50tf+tK4yz/3uc+hadq4xz8Qr3vd6+jp6RlX7eJ5Hv/6r/9KKpWakItxsFQqlQmzHytWrCCdTtffawhf0/15rzds2MD3v/997rzzTv7u7/6uHrC98Y1vxDAMPvrRj04IMJRSE6quzj//fFpaWvjkJz/Jb3/72z3OruzcuXNcpU+hUODb3/4269ato6OjAwjfiwcffJD777+/fly5XOY//uM/WLZs2aS5ItOVSCSAqf/7OOmkk4hGo/z5z3+e8mMYhoGmaeNmGLds2cLtt98+4dj169cTiUT45Cc/SVNTUz3YO/300/nTn/7Eb3/720lnVyCsYDr11FOnPC5x8O2945IQ89x//dd/8eyzz+J5Hr29vfzmN7/h7rvvZunSpfz85z/fa6O4G264gd/97ndccMEFLF26lL6+Pr7yla+wePHieqLiihUraGho4JZbbiGdTpNMJlm/fv0e19r3pampidNOO43LL7+c3t5ePv/5z7Ny5cp66S3A3//93/OjH/2I8847j7/5m79h06ZNfOc73xmXBDvdsf3VX/0VZ511Fv/8z//Mli1beNnLXsZdd93Fz372M66++uoJ972/rrjiCv793/+dyy67jIcffphly5bxox/9iP/+7//m85///F5zimbTc889x9lnn83f/M3fsHr1akzT5Kc//Sm9vb1ccskl9eNOOukk/u3f/o2PfexjrFy5kra2Nl7zmtdM6TEuuugivvGNb3DppZeSyWT493//d1asWMHHPvYxrrvuOrZs2cJFF11EOp1m8+bN/PSnP+WKK67gfe97X/0+IpEIl1xyCV/60pcwDGNc8vJYRx11FO985zt56KGHaG9v5+tf/zq9vb184xvfqB/zgQ98gO9973ucf/75XHXVVTQ1NfGtb32LzZs38+Mf/3hCntH+iMfjrF69mttuu42jjjqKpqYm1qxZw5o1ayY9PhaLcc455/DrX/+6Xpa/LxdccAGf/exnOe+883jb295GX18fX/7yl1m5ciWPP/74uGMTiQQnnXQSf/rTn+o9WCCcYSmXy5TL5UkDlr6+Ph5//HHe/e53T/MVEAfV3BQnCXFgRsuaR3+i0ajq6OhQr33ta9UXvvCFSVts717WfM8996g3vOENqrOzU0WjUdXZ2ane+ta3queee27c7X72s5+p1atXK9M0x5V/7qnUdvS6ycqav/e976nrrrtOtbW1qXg8ri644AK1devWCbf/zGc+o7q6upRlWepVr3qV+vOf/zzhPvc2tt3LmpUKS1rf+973qs7OThWJRNSqVavUpz/9aRUEwbjjAPXud797wpj2VG69u97eXnX55ZerlpYWFY1G1dq1ayctvZ7NsubdS9UHBgbUu9/9bnXMMceoZDKpstmsWr9+vfrBD34w7rienh51wQUXqHQ6rYC9ljjvqTX/V77yFQWo973vffXLfvzjH6vTTjtNJZNJlUwm1THHHKPe/e53q40bN0643wcffFAB6pxzzpn0cUdft1/96lfq+OOPV5ZlqWOOOWbSbR82bdqk3vzmN6uGhgYVi8XUySefrO64445Jn8fuZc3JZHLC/e3+b0gppf74xz+qk046SUWj0SmVOP/kJz9Rmqapbdu2jbt8T393Sin1ta99Ta1atar+XL/xjW9MOhallHr/+9+vAPXJT35y3OUrV65UgNq0adOE2/zbv/2btOZfADSlFkgWnRBCHAYee+wx1q1bx7e//e1JN4RctmwZa9as4Y477piD0R043/dZvXo1f/M3f8ONN94418MBwpLoM888k8997nNzPRSxF5LDIoQQ88hXv/pVUqnUXjvGLmSGYXDDDTfw5S9/mVKpNNfD4c477+T555/nuuuum+uhiH2QHBYhhJgH/vM//5Onn36a//iP/+A973lPPan6UHTxxRdz8cUXz/UwADjvvPPmReAk9k0CFiGEmAeuvPJKent7ed3rXsdHP/rRuR6OEPOO5LAIIYQQYt6THBYhhBBCzHsLLmD58pe/zLJly4jFYqxfv54HH3xwj8eeeeaZaJo24eeCCy6oH3PZZZdNuP688847GE9FCCGEEFO0oHJYbrvtNq655hpuueUW1q9fz+c//3nOPfdcNm7cSFtb24Tjf/KTn4zrFjo4OMjLXvYy3vKWt4w77rzzzhvXcMmyrGmNKwgCdu7cSTqdlo2zhBBCiGlQSlEsFuns7Nx7Q8M57QIzTSeffPK4xkK+76vOzk510003Ten2n/vc51Q6nValUql+2Tve8Q71hje84YDGtX379nFNzORHfuRHfuRHfuRnej/bt2/f67l2wcywOI7Dww8/PK5WXtd1NmzYMG6vjL352te+xiWXXDKhXPC+++6jra2NxsZGXvOa1/Cxj32svqvoZGzbHrf/iBrJW96+fTuZTGY6T0sIIYQ4rBUKBZYsWbLPrTsWTMAyMDCA7/sTdtlsb2+v7z66Nw8++CBPPvkkX/va18Zdft555/HGN76R5cuXs2nTJj74wQ9y/vnnc//99+9xe/Wbbrpp0rLDTCYjAYsQQgixH/aVUrFgApYD9bWvfY21a9dy8sknj7t87MZna9eu5fjjj2fFihXcd999nH322ZPe13XXXcc111xT/300OhRCCCHE7FgwVUItLS0YhkFvb++4y3t7e+vbqe9JuVzm+9//Pu985zv3+ThHHnkkLS0tvPDCC3s8xrKs+myKzKoIIYQQs2/BBCzRaJSTTjqJe+65p35ZEATcc889nHrqqXu97Q9/+ENs2+Zv//Zv9/k4O3bsYHBwkEWLFh3wmIUQQggxMxZMwAJwzTXX8NWvfpVvfetbPPPMM7zrXe+iXC5z+eWXA3DppZdOuoHV1772NS666KIJibSlUon3v//9/OlPf2LLli3cc889vOENb2DlypWce+65B+U5CSGEEGLfFlQOy8UXX0x/fz8f/vCH6enpYd26ddx55531RNxt27ZNqOHeuHEjf/jDH7jrrrsm3J9hGDz++ON861vfIpfL0dnZyTnnnMONN9447V4sQgghhJg9spfQDCgUCmSzWfL5vOSzCCGEENMw1XPogloSEkIIIcThSQIWIYQQQsx7ErAIIYQQYt6TgEUIIYQQ854ELEIIIYSY9yRgEUIIIcS8JwGLEEIIIea9BdU4TgghhDjUKKXIVVxsL8AydRoSkX3uXHw4koBFCCGEmCN9hRpPdhfozlVw/ICoodPVkGBNV4a2TGyuhzevSMAihBBCzIG+Qo37NvaTrzq0pWPEIgY112dTf5GBks2ZR7dK0DKG5LAIIYQQB5lSiie7C+SrDsuakyQtE0PXSFomy5qT5KsOT3YXkN1zXiIBixBCCHGQ5Sou3bkKbenYhHwVTdNoS8fozlXIVdw5GuH8IwGLEEIIcZDZXoDjB8QixqTXxyIGjh9ge8FBHtn8JQGLEEIIcZBZpk7U0Km5/qTX11yfqKFjmXKaHiWvhBBCCHGQNSQidDUk6CvWJuSpKKXoK9boakjQkIjM0QjnHwlYhBBCiINM0zTWdGXIxqNsGSxTtj38QFG2PbYMlskmoqzpykg/ljGkrFkIIYSYA22ZGGce3VrvwzJQtokaOita09KHZRISsAghhBBzpC0T46y0JZ1up0ACFiGEEGIOaZpGYzI618OY9ySHRQghhBDzngQsQgghhJj3JGARQgghxLwnAYsQQggh5j0JWIQQQggx70nAIoQQQoh5TwIWIYQQQsx7ErAIIYQQYt6TgEUIIYQQ854ELEIIIYSY9yRgEUIIIcS8JwGLEEIIIeY9CViEEEIIMe9JwCKEEEKIeU8CFiGEEELMexKwCCGEEGLek4BFCCGEEPOeBCxCCCGEmPckYBFCCCHEvCcBixBCCCHmPQlYhBBCCDHvmXM9ACGEEAdOKUWu4mJ7AZap05CIoGnaXA9LiBkjAYsQQixwfYUaT3YX6M5VcPyAqKHT1ZBgTVeGtkxsrocnxIyQgEUIIRawvkKN+zb2k686tKVjxCIGNddnU3+RgZLNmUe3StAiDgmSwyKEEAuUUoonuwvkqw7LmpMkLRND10haJsuak+SrDk92F1BKzfVQhThgErAIIcQClau4dOcqtKVjE/JVNE2jLR2jO1chV3HnaIRCzBwJWIQQYoGyvQDHD4hFjEmvj0UMHD/A9oJZG4NSiuGyQ0++xnDZkdkcMWskh0UIIRYoy9SJGjo11ydpTfw4r7k+UUPHMmfnu6kk+4qDSWZYhBBigWpIROhqSNBXrE2Y2VBK0Ves0dWQoCERmfHHHk323dRfJBOLsLghQSYWYVN/kfs29tNXqM34Y4rDmwQsQgixQGmaxpquDNl4lC2DZcq2hx8oyrbHlsEy2USUNV2ZGe/HIsm+Yi5IwCKEEAtYWybGmUe3sqI1TaHmsiNXoVBzWdGa5syjZqekWZJ9xVyQHBYhhFjg2jIxzkpbB63T7VSSfQfK9qwm+4rDjwQsQghxCNA0jcZk9KA81lwn+4rDk/w1CSGEmJa5TPYVh68FF7B8+ctfZtmyZcRiMdavX8+DDz64x2O/+c1vomnauJ9YbPx6rlKKD3/4wyxatIh4PM6GDRt4/vnnZ/tpCCHEgjVXyb7i8LagApbbbruNa665huuvv55HHnmEl73sZZx77rn09fXt8TaZTIZdu3bVf7Zu3Tru+k996lN88Ytf5JZbbuGBBx4gmUxy7rnnUqtJSZ4QQuzJXCT7isObphZQ3dn69et5xStewZe+9CUAgiBgyZIlXHnllXzgAx+YcPw3v/lNrr76anK53KT3p5Sis7OTa6+9lve9730A5PN52tvb+eY3v8kll1wypXEVCgWy2Sz5fJ5MJrN/T04IIRYgpdRBS/YVh6apnkMXzAyL4zg8/PDDbNiwoX6Zruts2LCB+++/f4+3K5VKLF26lCVLlvCGN7yBp556qn7d5s2b6enpGXef2WyW9evX7/U+bdumUCiM+xFCiMPRaLJvRzZGYzIqwYqYNQsmYBkYGMD3fdrb28dd3t7eTk9Pz6S3Ofroo/n617/Oz372M77zne8QBAGvfOUr2bFjB0D9dtO5T4CbbrqJbDZb/1myZMmBPDUhhBBC7MOCCVj2x6mnnsqll17KunXrOOOMM/jJT35Ca2sr//7v/35A93vdddeRz+frP9u3b5+hEQshhBBiMgsmYGlpacEwDHp7e8dd3tvbS0dHx5TuIxKJcMIJJ/DCCy8A1G833fu0LItMJjPuRwghhBCzZ8EELNFolJNOOol77rmnflkQBNxzzz2ceuqpU7oP3/d54oknWLRoEQDLly+no6Nj3H0WCgUeeOCBKd+nEEIIIWbfgup0e8011/COd7yDl7/85Zx88sl8/vOfp1wuc/nllwNw6aWX0tXVxU033QTADTfcwCmnnMLKlSvJ5XJ8+tOfZuvWrfz93/89ECaLXX311XzsYx9j1apVLF++nA996EN0dnZy0UUXzdXTFEIIIcRuFlTAcvHFF9Pf38+HP/xhenp6WLduHXfeeWc9aXbbtm3o+kuTRsPDw/zDP/wDPT09NDY2ctJJJ/HHP/6R1atX14/5p3/6J8rlMldccQW5XI7TTjuNO++8c0KDOSGEEELMnQXVh2W+kj4sQgghxP455PqwCCGEEOLwJQGLEEIIIeY9CViEEEIIMe9JwCKEEEKIeU8CFiGEEELMexKwCCGEEGLek4BFCCGEEPPegmocJ4QQYvqUUuQqLrYXYJk6DYkImqbN9bD2aKGNVxwcErAIIcQhrK9Q48nuAt25Co4fEDV0uhoSrOnK0JaZfx29F9p4DydzHUhKwCKEEIeovkKN+zb2k686tKVjxCIGNddnU3+RgZLNmUe3zqsgYKGN93AyHwJJyWERQohDkFKKJ7sL5KsOy5qTJC0TQ9dIWibLmpPkqw5PdheYL7uzLLTxHk5GA8lN/UUysQiLGxJkYhE29Re5b2M/fYXaQRmHBCxCCHEIylVcunMV2tKxCdP2mqbRlo7RnauQq7hzNMLxFtp4DxfzKZCUgEUIIQ5Bthfg+AGxiDHp9bGIgeMH2F5wkEc2uYU23sPFfAokJWARQohDkGXqRA2dmutPen3N9YkaOpY5P04DC228h4v5FEjKOy+EEIeghkSEroYEfcXahOl6pRR9xRpdDQkaEpE5GuF4C228h4v5FEhKwCKEEIcgTdNY05UhG4+yZbBM2fbwA0XZ9tgyWCabiLKmKzNv+psstPEeLuZTICllzUIIcYhqy8Q48+jWejnqQNkmauisaE3Py74mC228h4PRQHKgZLNlsDyu3LyvWDuogaSmpEbsgBUKBbLZLPl8nkwmM9fDEUKIcea64dd0LbTxHg5msw/LVM+hMsMihJg35EQ1OzRNozEZnethTNlCG+/hoC0T46y0JZ1uhRBiPnTSFELs2VwHkhKwCCHmnLRkF0Lsi1QJCSHm1HzqpCmEmL8kYBFCzKn51ElTCDF/ScAihJhT86mTphBi/pIcFiHEnBrbSTNpTfxIkpbsC4NUeInZJgGLEGJOjXbS3NRfZFk0Oe4kN9pJc0VrWlqyz2NS4SUOBglYhBBzaj510hTTJxVe4mCROVYhxJwbbcm+ojVNoeayI1ehUHNZ0ZrmzKPkhDdfSYWXOJhkhkUIMS/Mh06aYnqmU+ElnWvFgZKARQgxb8x1J00xPVOp8Boo21LhJWaELAkJIYTYL2MrvCYjFV5iJslfkRBCiP0yWuHVV6xNyFMZrfDqakhIhZeYERKwCCGE2C+jFV7ZeJQtg2XKtocfKMq2x5bBslR4iRklOSxCCCH222iF12gfloGyTdTQWdGalj4s89hCbPQnAYsQQogDIhVeC8tCbfQnAYsQQogDJhVeC8NCbvQnOSxCCCHEYWChN/qTgEUIIYQ4DEyn0d98JAGLEEIIcRiYSqM/xw/mbaM/CViEEEKIw8BCb/Q3P0clhBBCiBm10Bv9ScAihBBCHAYWeqM/KWsWQgghDhMLudGfBCxCCCHEYWShNvqTgEUIIYQ4zCzERn+SwyKEEEKIeU8CFiGEEELMexKwCCGEEGLek4BFCCGEEPOeBCxCCCGEmPckYBFCCCHEvCcBixBCCCHmPenDIsQhRCm14JpBCSHEVCy4GZYvf/nLLFu2jFgsxvr163nwwQf3eOxXv/pVTj/9dBobG2lsbGTDhg0Tjr/sssvQNG3cz3nnnTfbT0OIGddXqHHvs/3c8fhOfvHETu54fCf3PttPX6E210MTQogDtqAClttuu41rrrmG66+/nkceeYSXvexlnHvuufT19U16/H333cdb3/pW7r33Xu6//36WLFnCOeecQ3d397jjzjvvPHbt2lX/+d73vncwno4QM6avUOO+jf1s6i+SiUVY3JAgE4uwqb/IfRslaBFCLHya2n2P6Xls/fr1vOIVr+BLX/oSAEEQsGTJEq688ko+8IEP7PP2vu/T2NjIl770JS699FIgnGHJ5XLcfvvt+z2uQqFANpsln8+TyWT2+36E2B9KKe59NgxWljUnxy0BKaXYMlhmRWuas45pleUhIcS8M9Vz6IKZYXEch4cffpgNGzbUL9N1nQ0bNnD//fdP6T4qlQqu69LU1DTu8vvuu4+2tjaOPvpo3vWudzE4OLjX+7Ftm0KhMO5HiLmSq7h05yq0pWMTAhJN02hNWTzfV+C5niLDZYcF9B1FCCHqFkzS7cDAAL7v097ePu7y9vZ2nn322Sndx//5P/+Hzs7OcUHPeeedxxvf+EaWL1/Opk2b+OAHP8j555/P/fffj2EYk97PTTfdxEc/+tH9fzJCzCDbC3D8gFhk4t9rruKwZaDCpoEiFSegJRWlqyEx77eRF0KI3S2YgOVA/cu//Avf//73ue+++4jFXvqgvuSSS+r/v3btWo4//nhWrFjBfffdx9lnnz3pfV133XVcc8019d8LhQJLliyZvcELsReWqRM1dGquT9J66Z90ruLwZHeB4apD0opwRFMCU9fY1F9koGRz5tGtErQIIRaMBbMk1NLSgmEY9Pb2jru8t7eXjo6Ovd725ptv5l/+5V+46667OP744/d67JFHHklLSwsvvPDCHo+xLItMJjPuR4i50pCI0NWQoK9Yqy/3KKXYOlSh7LhEdOjMxsnETZKWybLmJPlqGMzI8pAQYqFYMAFLNBrlpJNO4p577qlfFgQB99xzD6eeeuoeb/epT32KG2+8kTvvvJOXv/zl+3ycHTt2MDg4yKJFi2Zk3ELMNk3TWNOVIRuPsmWwTNn2KNQ8enJVHC8gFYuytDmOhlY/vi0doztXIVdx53j0QggxNQsmYAG45ppr+OpXv8q3vvUtnnnmGd71rndRLpe5/PLLAbj00ku57rrr6sd/8pOf5EMf+hBf//rXWbZsGT09PfT09FAqlQAolUq8//3v509/+hNbtmzhnnvu4Q1veAMrV67k3HPPnZPnKMT+aMvEOPPoVla0pinUXLYNlSnZHksak6wdCWbGikUMHD/A9oI5GrEQQkzPgsphufjii+nv7+fDH/4wPT09rFu3jjvvvLOeiLtt2zZ0/aUY7N/+7d9wHIc3v/nN4+7n+uuv5yMf+QiGYfD444/zrW99i1wuR2dnJ+eccw433ngjlmUd1OcmxIFqy8Q4K22Rq7j0FWwS0T7aMxYpKzLh2JrrEzV0LHNBfWcRQhzGFlQflvlK+rCI+UZ6swghFopDrg+LEGLqJstr8QNF2fbYMlgmm4iypisjwYoQYsFYUEtCQoipG81rebK7QHeuwkDZJmrorGhNSx8WIcSCIwGLEIewsXktsoOzEGIhk4BFiEOcpmk0JqP7PlAIIeYxyWERQgghxLwnAYsQQggh5j0JWIQQQggx70nAIoQQQoh5TwIWIYQQQsx7ErAIIYQQYt6TgEUIIYQQ8570YZmHlFLS6EsIIYQYQwKWeaavUKu3Unf8gKih09WQkFbqQgghDmsSsMwjfYUa923sJ191aEvHiEUMaq7Ppv4iAyWbM49ulaBFCCHEYUlyWOYJpRRPdhfIVx2WNSdJWiaGrpG0TJY1J8lXHZ7sLqCUmuuhCiGEEAedBCzzRK7i0p2r0JaOTchX0TSNtnSM7lyFXMWdoxEKIYQQc0cClnnC9gIcPyAWMSa9PhYxcPwA2wsO8siEEEKIuScByzxhmTpRQ6fm+pNeX3N9ooaOZcpbJoQQ4vAjZ795oiERoashQV+xNiFPRSlFX7FGV0OChkRkjkYohBBCzB0JWOYJTdNY05UhG4+yZbBM2fbwA0XZ9tgyWCabiLKmKyP9WIQQQhyWpKx5HmnLxDjz6NZ6H5aBsk3U0FnRmpY+LEIIIQ5rErDMM22ZGGelLel0K4QQQowhAcs8pGkajcnoXA9DCCGEmDckh0UIIYQQ854ELEIIIYSY9yRgEUIIIcS8JwGLEEIIIeY9CViEEEIIMe9JwCKEEEKIeU8CFiGEEELMexKwCCGEEGLek4BFCCGEEPOeBCxCCCGEmPckYBFCCCHEvCd7CQkhhBAHQCklG9YeBBKwCCHEAiUnyrnXV6jxZHeB7lwFxw+IGjpdDQnWdGVoy8TmeniHFAlYhBBiAZIT5dzrK9S4b2M/+apDWzpGLGJQc3029RcZKNmceXSrvBczSHJYhBBigRk9UW7qL5KJRVjckCATi7Cpv8h9G/vpK9TmeoiHPKUUT3YXyFcdljUnSVomhq6RtEyWNSfJVx2e7C6glJrroR4yJGARQogFRE6U80Ou4tKdq9CWjk1YhtM0jbZ0jO5chVzFnaMRHnokYBFCiAVETpTzg+0FOH5ALGJMen0sYuD4AbYXHOSRHbokYBFCiAVETpTzg2XqRA2dmutPen3N9YkaOpYpp9mZIq+kELNMKcVw2aEnX2O47MhUvTggcqKcHxoSEboaEvQVaxP+TSul6CvW6GpI0JCIzNEIDz1SJSTELJJKDjHTRk+Um/qLLIsmxy0LjZ4oV7Sm5UQ5yzRNY01XhoGSzZbB8rgqob5ijWwiypqujJSZzyAJWISYJVLyKGaDnCjnj7ZMjDOPbq1/KRko20QNnRWtaflSMgskYBFiFuxeyTF68khaJsuiSbYMlnmyu8BZaUtOLPPEQmnCppQiYuis7kzzYl+FXNVmoKzkRDlH2jIxzkpbC+JvZ6GTgEWIWTCdSo7GZHSORilGLZSluwnj1HUaElGObE3R1RCXE+Uc0TRN/h0fBBKwCDELplLJMVC2pZJjFk11xmShLN3taZy9hRo1N6BtzGzdQpktEmI6JGARYhaMreRIWhP/mUklx+ya6ozJQlm6m844+4s2T3YX2DFcJl9z0dFY0phk/ZGNtGfjc/YchDhQErAIMQukkmPuTGfGZKEs3U11nM/3lnh0e44dwxVqrk+p5lN1PR7vzvOX7cO85eWLWd2ZnaNnIcSBka93QsyC0UqObDzKlsEyZdvDDxRl22PLYFkqOWbJdNvWz5cmbPvq1TOlcXoBT+zIs2O4Qr7qMlx1SVgGi7JxljTE2TZU4Yd/3kFvvjqrz0WI2SIzLELMEil5PPimO2MyH5buprJ8NZVxeoGiv1Sl5vpUXJ+21EvLWLGoyfLmBDtyVf704iCnr2rF8dWE/BbJfRHzmQQsQswiKXk8uKab7DxTS3f7e6Kf6vLVVMbZkrLozlUo1XyysYmPHx15TX773AA9hRqmoY8LjoAFUSklDl/7HbA4jsPmzZtZsWIFpilxjxB7IiWPB890Z0xmognbdEqixwY2UUPjiR35KSf87muca7uy9OSrVF1v0gArV3EZLjtUHZ+YmaUjG68HR5sHSigFCjWvK6XE4W3a85yVSoV3vvOdJBIJjjvuOLZt2wbAlVdeyb/8y7/M+AB39+Uvf5lly5YRi8VYv349Dz744F6P/+EPf8gxxxxDLBZj7dq1/PKXvxx3vVKKD3/4wyxatIh4PM6GDRt4/vnnZ/MpCCFmyf7s7zK6dLeiNU2h5rIjV6FQc1nRmubMo/Z+oh6dIdnUXyQTi7C4IUEmFmFTf5H7NvbTV6jV81Oe7M7xn4/u4j8f6+YXT+zkhw/v4N6NfVimMaVdlycdZ9WlPRNj9aIMLakoixsSVFwfxxu/z5BSAduGymiaRldjnGw8Ws/tWdqcYGNvief7iixtSuwz70eIuTLtgOW6667jscce47777iMWe+kf8oYNG7jttttmdHC7u+2227jmmmu4/vrreeSRR3jZy17GueeeS19f36TH//GPf+Stb30r73znO/nLX/7CRRddxEUXXcSTTz5ZP+ZTn/oUX/ziF7nlllt44IEHSCaTnHvuudRqtVl9LkKImbe/yc5tmRhnHdPK64/v5IK1nbz++E7OOmbvwcpUEnz/8PwAv3m2j+89uI1bfvsiv3hyJzuGq6SjEWIRnZ5CjRf6SuQqzoT7j0UMbM+nr2DXk3Fb01Z9nOuXN5GNR8lVHB7YPMgvntiFrwIa4hE2D1aoOR6BUtiuz/bhKq4X0JAwaU5ZJK2XlswqTkCgFEGgqDjjk4snC5zmkmwkenjT1DTf8aVLl3LbbbdxyimnkE6neeyxxzjyyCN54YUXOPHEEykUCrM1VtavX88rXvEKvvSlLwEQBAFLlizhyiuv5AMf+MCE4y+++GLK5TJ33HFH/bJTTjmFdevWccstt6CUorOzk2uvvZb3ve99AOTzedrb2/nmN7/JJZdcMqVxFQoFstks+XyeTCYzA89UCHEgDkbn2uGywx2P7yQTi0y6/LQzV+Uv24ZZ1pKkbPsMlms0xqPkbY9kxGR5a5KNPQXKjs8RTQmO78qOC6R25qo811tkSVMC09Am5JtMlvvSV6xRtj125Wvkqy7xqEEsYqAD24crLGtOcfziLA2Jl5YohysOD24ZhEDj5CObaEyMX770A8WOXIUL1nbSkZ27ZaGF0o1YTN9Uz6HTTj7p7++nra1twuXlcnlWEwkdx+Hhhx/muuuuq1+m6zobNmzg/vvvn/Q2999/P9dcc824y84991xuv/12ADZv3kxPTw8bNmyoX5/NZlm/fj3333//HgMW27axbbv++2wGaUIcbKPfYvuLDqBoTVs0JqMLKlH4YCQ77y3BVylFX8GmaHtkYxH6ijZNCQsrYmBFDPpKNgMlm+akRdkuM1hyKNs+qVj4kTxcdnhw8yAJK0J7xiIeMes5Jf3FGlFT32vuy8nLmzB1jR25GkGgiBgamqaxsi01LlgBiBg6SmloKCL6xEn3+dDkcKF0Ixaza9oBy8tf/nJ+8YtfcOWVVwLU/7H83//7fzn11FNndnRjDAwM4Ps+7e3t4y5vb2/n2WefnfQ2PT09kx7f09NTv370sj0dM5mbbrqJj370o9N+DkLMd32FGn94foBHtg0zWLZBQXPK4qSljbxqZUv9pLAQyl9nO9l5bwm+Zdunt1ClIRFF08ALAiJmpD6ubCzCUNnh6PYUuYrDlsEyDTGTlkyMqA6Pd+dRaJy8rIGUFd5uNCB5aleB7uEKx3VmKTs+SctAQ6vfd1s6RqHmcsHaRWiaVk/w/cu2HC8OlFBKjXuvElEdXdPQtPD/xzrQJocz8XeyULoRi9k37YDlE5/4BOeffz5PP/00nufxhS98gaeffpo//vGP/Pa3v52NMc4711133biZm0KhwJIlS+ZwREIcuL5CjZ8/upNHtw9jGDqLsnE0YKBk8+tn+hgqO/zVyzoBKX+FvZdEO77PUMVhWXOKQIHvKxzXJxYNP3Kjhk6x5uL6irLjsatQo69YQ9M04hGDeMTgtFXNNCSscY9ZqLn0F2ye2lnA9nzSsSjNSYulzWEirVIKL1AMlGz6iw5HdaTq41q7OMtg2Zm0yujo9hRKwdahyn5VSk1mppZwFko3YjH7ph2wnHbaaTz66KP8y7/8C2vXruWuu+7ixBNP5P7772ft2rWzMUYAWlpaMAyD3t7ecZf39vbS0dEx6W06Ojr2evzof3t7e1m0aNG4Y9atW7fHsViWhWVZe7xeiIVGKcUTO/I831ckHjXGnRyWNBr0FKps7C3R+Hw/rq8o1NzDfmp+b6XGz/eVKNsevYUKA+UafQWbbcNlVrdnSMWjOH6A6wU8tj3H830lmpMWK1qTBErRm7fpKdbY3F+hLR2vL+Hkqw5P7CiQrzlEdI141CQRMdiVD6uFljbHGaq49OSqlGyPRLSP7ly1HiDsq5EhMGNNDmdyCUc2EhWj9quByooVK/jqV78602PZq2g0ykknncQ999zDRRddBIRJt/fccw/vec97Jr3Nqaeeyj333MPVV19dv+zuu++uL10tX76cjo4O7rnnnnqAUigUeOCBB3jXu941m09HiHklV3F5ob9IECiyid3yVTSNxoTFcMXh/hcHWdyYYPWijEzNM3k3Y9v18TxFJh5hoOQQMXRs16e/7DBUGmBtZxZd1ynbLrsKNknLYPWiNMkxSz/DVYdtw1U6hipk4xHQYOtglbLj0p6yKNU8qk5AKqpIRk125itsHyrTlAqDoRWtadoz1oQAYV+5PTOR9zPTSzjzoRuxmB+mHbAYhsGuXbsmJN4ODg7S1taG7/t7uOWBu+aaa3jHO97By1/+ck4++WQ+//nPUy6XufzyywG49NJL6erq4qabbgLgf//v/80ZZ5zBZz7zGS644AK+//3v8+c//5n/+I//AMJvSFdffTUf+9jHWLVqFcuXL+dDH/oQnZ2d9aBIiIVqOvkDthdQcXwgrEbZXcTUcXyfYs1nTWdWpubHGBsE1Fyfh7YMYbsBZSfCUNlFqaBeSrxlqMrD24ZZ3pJAoRGPmHQ2xjB0HZQCTSNuGrSnY+wqVNmZq7KiJQUaDJZtMpZJf8UhE4swVLHZPlQmamjkKy41L8DQ03Q2JljemiBlRUhGzQkBwt5ye2Yi72eml3BkI1ExatoBy56qoG3bJhqd3Q+piy++mP7+fj784Q/T09PDunXruPPOO+tJs9u2bUMfk+X+yle+kv/3//4f/9//9//xwQ9+kFWrVnH77bezZs2a+jH/9E//RLlc5oorriCXy3Haaadx5513jusxI8RCM938AcvUSUQNQIXT7/r46XfXC/B90DWNVGzyE8PhPDU/eqIfLjvkKy5VN0ABa7sy9JccClUHJ1C0pixqjseSpiT9BZtizaGvUGOo7JCORWgdCWwak1F25at0D1fJVR1iEYOhsk2h6lJ1fYIAPKWI6BquD1UvwPECKq7P0qY4mXiEku3heAEa8PSuPMtbEixrSe51VmMmkmRneglnJroRi0PDlPuwfPGLXwTgve99LzfeeCOpVKp+ne/7/O53v2PLli385S9/mZ2RzmPSh2XhWQhVLvtrT/kDfcUa2Xh00vwBpRS/eaaPu57uIVBq/LdjpegpVPECSEYNVndmiJoGph5e7wUKU9eoOB65qsfr1nTs88R4qOrJ1/jhn7ezM18lFTWxIgZl26U7V6VQDRu5FW0vzEEZOaFnYhHQNCquh4YiHolQdjyGy+F+P0sbkySiBs/0FElYJrGIjusHJKMmZdvDCwKqTrhc0paO0ZqxSERMunNV+ks2VcfDCxSnHtnEK5a17DFonakk2X31pynbHoWay+uP75zWbI70YTl0zXgfls997nNA+MF2yy23YBgvRc/RaJRly5Zxyy23HMCQhTg4DuUPvgPJH1jSlKA9E+OZXQUcT9GcitarhLwAVrUlKdkev39+gIihUax5gIZlatTcgKLtsaQxTtoy2DxQOSRez+myTB1d16i5Po2JKGXbY+tgBdsLyMRNap7PYDmg4gekLBM3CKg4HtlElJjS2TpYIWLYRA0DlE7aijBYsdky6KNrEDPAdn1iUYOoqRMxogwUa5Qdn0UNCVIxk6e6C2QTEaqOj+cHxCI6Jdunt2Dz6PbhSZNep5okO5VAf7aWcGQjUTHlgGXz5s0AnHXWWfzkJz+hsbFx1gYlxGw51BtQ7U/+wNgAztA10rFIuPxQc4iZBs0pi5VtKTxfESiImQbbhytoEJ5wax6aoZOI6igVlt4+2Z2jv1TjrKPbFvTruS+7n8CzcZMljXGe2JHDdjz6ig62FwYNQ2WH/qJN1fWJRw2qro9p6NQ8H69sY7sBQRBQcBU6Aem4ScQME3b7SjX8QLEzDwpoTkZJRExiUR3X9zE0DVDkyuGSUdI38YOAxniEfM2jKxtH1zWUglzFHhe0TjXIPU4pntpZ3GegP5tLOLKR6OFt2jks995772yMQ4hZdzg0oJpu/sDuAVxbOsbS5gRbB8qgabxiWRNHd6R4dFueFwdKrOnMULI9+ss2OlAu+1S8gFbLpDlpsX24ynDFYXFjnB25GlFD56ITuhbs67k3e5qpW9GaZFE2zvP9JTw/wDQ0dubDJSEDDR1oiJlEdA0vUCxrTtBbsNlZdtAJ+6g0pyI0xiJ4QZiIO/rq6ZpGzfUYKNVQSsMwNJqT0bBDroItuTK6ppGv2qSsMFiJmQZtmRiGrjFUcViUzYwLWqcS5D7bk2frYBkvCKYU6O+rhPpQDmLF7NmvsuYdO3bw85//nG3btuE44zft+uxnPzsjAxNiph0ODaimUwK6pwAuZUVY3Zlly2CZmhugEZ5w29IxKk6A7QUc256m5gW4gSJlmeQrDlbNoyEewVcKU9ep1Fx+91w/x3VmOaojfbBfilm195m6KGcf20bZ9nhsR46a45GveSggUGE7BqOssSgTw3YDMvEox3Vk+M3GflzfZ6Ds0mAZKC0MbHbmw21AdC1sn1/zFKYfkIpHMHQNDY2q49Odq9JbqBEzdQKlaEoGLMrGWTKyA3MQKIo1F10Pjx8NWvcV5FqmzrahsCfM2q6pl7PLEo6YadMOWO655x4uvPBCjjzySJ599lnWrFnDli1bUEpx4oknzsYYhZgRC7kB1VSThKeTPzDVAK6rIV5/3Qo1F88PiMYi+ApMTcMJAhw/DFyiEYNizcUwdLqycZ7rL/HEjjyr2lOHzIlqKjN1zakobz6xi21DFZ7OVUHTSEZ1IoZByfEYKrkUqh5py+CPLwyggL5CFddXKDQGR/YZcr2AQtXG8QPKto8eDgClayil4XmKHcMVdI2RJTtFJB4BXafmhvkxo2zPxw/CfaI0TVGxXXryUHXCJOA9BblDZYeS7XP8Ygs0KNkerh/Uk66jps7zfUXWLcnSlBrfUFOWcMRMmnbAct111/G+972Pj370o6TTaX784x/T1tbG29/+ds4777zZGKMQM2K+NqDaVzAynSTh6eQPTDWAA1V/3SK6jmnoOH6AoWsESlGquuGOwLqOHygMTcPQNZxA0RiPMFCu1WetDoXqrH0FerGIzr3P9tGZjTJQtvEDRVMyQsIyqLnh81Z+QMnxqTk+OwsOGtR/dE3heFC2K3Tnq2GAooCRxzL0cFnJdn0cP6DmKXTANEAFULA9IoZOEChAkYiadDXEeGGgjKlp9BaqGLrOjuEarWmLpkSUwbLDQMlh7W47Riul2FWokrJMDE3jiR0FBss2xZpLoeoCkIqZ+L6iJWlx+lEtstwjZs20A5ZnnnmG733ve+GNTZNqtUoqleKGG27gDW94g3SIFfPWXDSgOtBgZH+ShKeaPzDVAK41bdVft6VNCZqSUXoKNdqSUeJRg6Lj0ZmNEzEgX/VoSESxDI3+skN7Jo6hh8HRQq7OGvs+5isOjjc+0FNKUbZ9hio2z+4qMliqEY8Y6IAVCfcNKtRcTF0nHtXxFPgBjM7lKcDQwiUjd0yjCc8Lf9GBqAl+oNAU+Bo4nl+/va6HJee2F+AFCsfzqbo+lZpLqeaxY8gkYho0JqJheboVjknXNJqSEUBjV64CStExkqAbBIqS7dKUtPADxaPbc+EmjoZBseZRdQMY2buoIRFhR67CfRv795m4figErWJuTDtgSSaT9byVRYsWsWnTJo477jgg3FFZiPnqYDegOtBg5IyjWnhqZ3HSpYelkQTP9BT5/XMDnHVMK43J6LTzB6YawDUmo/XXbetQhdaURb7isiNfq1cNuUHAYNklETXIxk36yw7JiElbxkLToFB1eXR7bl5XZ01W8ZOvenTnqrzYXyJfcXGCAM8P2D4ULt80p6JUHJ+Bks1g2WH7UIWBoo2hadhenqGyQ9XxcLwwKNE1n2I4acXYvzKdMFgZKfYZRycMbNyRKi0diBhgq5cODQKoOgG6HpaZl50AzwcHRankkK85LG5MEPMCGmImXQ0J/EAxVLHpLZgc2ZKkr1Djud4im/rLOEGAZRqsaE3y2hXN3P1MH31Fm6Pbk2wbruH4Ac3JKCjFjlyVhniUxVmLZ3uL1FyPC9Yuoin1UhXS6OtaqLpsH66wM1ddcEGrmHvTDlhOOeUU/vCHP3Dsscfyute9jmuvvZYnnniCn/zkJ5xyyimzMUYh9tvuJ6HWtHVQqhcOJBgZzYN44MXh+u3HBhO5isPWoQo9uSrP7iowULZZ1TZx/PvKH9g9gGtNW/gBlGyXfMWlIxurB3C7z9o0pSIESpG2TKKGTn/JJmbqpCwDxwtIxyMsbUxQcz1WtKbZPlyZVnXWwf4WvntwabthUqrrK7YNVfD8gCOakqxsS1JzPbYMlnl0e45FWYtCzSdiaLSnY5RHlkp0A2zPI191CQIY3bAkUIAfBiujwcbo/yuYEKzAS7Mw/sh1PhD44w8NgJqvMH310n2NvW8F5VoYNZVrHkMVF10Hzw/Y1Ffm2UyMnlK4D9JxnRnWLWoiGTMp2R4Pbcnh+gFtaYvunM1Q2SYeMfECRdn2iEcMtg+V+d6fq1RcH7UJntiR55UrWzi6I01P3qY7V2GwbLN1oELENFjblWZxQ2LeBa1ifptyp9tRL774IqVSieOPP55yucy1117LH//4R1atWsVnP/tZli5dOltjnbek0+38tLcZjtZZrF5QSnHvs/3hzEXzxJmLLYNl2jMxchWHbDy6x26gO4YrBAqOak9jjCQ45ioOT3YXKLseacukaLus6czieMEeu9juS1+hxn+/MMDDW4cZLNmgQXPS4sQjGjlt1fichLGBRNQIx7QzX+XBF4fYma9SsX1qXkCgAqpuQGdDnHNXt/N8X2nKnU8P9tLRaHCZq4SlwGXb55mePMNlBz9QpOMRFmVi5KpOfZaj5nr0FmxcT5GwdBSQq3gMlsLZlUxMp6doU/PCoMHUwQsmjUdm1WhejGno6AQYRrgFg2UaRA2dQs3D8T3ikbDni65pZGIR2jMxTlvZzOLGBE90F+grVjlhSSMbe4s8uj1H3DQwjTCHaVe+Sn/RJh41iUfC++hsiGOZBrGITmdDnM6GGNuHagyUbSI6pKwoaxdnyMaj9X8TK1rTnHVMqywPHYZmvNPtqCOPPLL+/8lkUrrbinlpLhvETaX6ZvtwlUAFtGfik95HLGIQoND1l3JMlFJsHapQdj3aUhaOFxA1jDDoiRrT6iOz+zS97fm0pi1WtaVIxSLommL7UIWfPbqTM45qrVf5TDZr05Sy0DWNH/55B0MVh3jUIB41aUtHiEcNnuguUHE82tKTv95jq7MO9vs2WvGzY7iCUrBlsMq24TJl26c1EaG/bBOLmvhKUXV8nukpoRQsaYqRjOp0V218dPIVl7Lt4wUByYjBYMWtBys64ZLNJKs9s04RBks64RJRzQ/QNA3XD6MnN1C4vqLmujTEI7SkojQno/QXbf7wwiDnr4nQkbV4caCEHyjWdmYpVF0ihg4Kntw5zFDJHVnuCpel3EBhRcJS7KoT/n31FqvszNk0JqI0NcQo2S5bB6usXRw5ZFoKiNm3X31YABzHoa+vjyAYXwJ6xBFHHPCghDgQc90gbirVN0GgRpqA7TnhNRuL0JCI0luosSyaDJM6yw7ZWAQNyFUdFmUTJC0Djal/6I+dwbA9ny0DFRxfcfKyBhoSFvmqw+aBKgOlGn1Fm62DZc46uo21i7OTBgtKKXryNosaYhy/OIsXKCKGTtIyQMHTuwr0F22WNnukrIkJzaPJvVFD49Ht+YP2viml2DJQ5qEtA/QWbPSR/X10IBuLMFT1qNg+/cUaVdfH8QJMDTRDw/UVfUWH4bKNqWsoNNKWQcEGx1fU/PBzUSNMiFXqpSWdg0knTOZ1xyT4lmwfQwsDGUZ6uygV5hk1JMLeLo2JCINlm409JU5amiVlmewqVFnbmWVRQ5yefJVc2WWo4oWzYJEwgdtBkYkY5MphAJewDGpegGWaGJpDqeawbVDR0WAxWLYp2z4py5zXLQXE/DHtgOW5557jne98J3/84x/HXa6UQtM0fN/fwy2FODgOdoO43fMtooa2z+qbhniEbDxKb7G614TX4zrT/Pa5AbYMlsMTghsQM3V6izWSVoSlzXFG+6BO5UN/9xkMLzDZ6BZx/IAnu4ssbfbYOlil7Lg0xKMc0WRQrLo8uTPPYNmZdIZj9PVuT8cmPl8NljYl6C/abBuscOyizB6fK3BQ3jelFM/3hv1hXhwo8cdNg2iaRlc2jqFpBApS0XBzx4GiTV+xhqGHSyUFXcdVPrmKW28E5waKpkQUx/XxfB9d18ZPpaj6S7H7RbMuzG2ZeLmvIPyoVvXqJA3FYMnB0HV0Ldyh+8X+Io1Jk+RIWfMzPUVakmEQvW2oTNkOp5ESEQM3gKihk46beJUAJ/BJEDax0zUNywxbBpQdj1zZIBUzwpke5q6lgFhYph2wXH755ZimyR133MGiRYtkvVHMOwezQdxk+Rad2Tgpy6SvWJtCMOLvtWJpbLLr830Fina4fNOSsljakiQTf2nGYl8f+pPNPA1XHHRdoysVp79k88g2m1hEpz0dAy0sbS3rHouyMfJVZ9IZjn293vGoSUs6Sjxq7vW5Or6a9fdtNF/nd8/1U7Q9TF2jbPs0JSPkqi4F28P1FRXXQ9c0oqZGrhi+roauEwQ+ZdsnFglDjogezrY4vo8TKHwFKngpHAkAVNgjxR9Jtp1vcwijMz8KqLouGhZeALmaR3FXnh3DVTKJCIuyMUxNY4c+sqSkaegaI7lMGomITjxqomthbouh6di+QiMsuU7FIuQqDomIyXDVIR6NETH0abcUkLLow9e0A5ZHH32Uhx9+mGOOOWY2xiPEATtYDeL2lG/x4kAJDQ1d06YcjOytYmm0RLmrIUZfwWHzYJmY7fJcb5HBksPS5jiZWGSfH/qTzTzVG8EFiljEYMtQhWM60vUmZY4fYBo6UcOgLW1MOsMxlde7OWmxfnkzO4are3yuw2VnVt+3vkKNezf28fDWHIFSHNWaYrjq4gcwUHJY1pSgaPsMVx18XxEzdYq2hx9AseZh6lBwfIo1D9fXwxllwi6/w2UXpcIGbrqmoTTQgpcqdvw5SLjdH44LA+WwkR1KUXYDLNNnaWOWqhuQsx2CIEDXdRriJp4fxQuCkZmVCLqm4XgBSoUN8IJAkYmFSz5taYuq41FyPAo1j6PaU0CYcDvVlgILuZePOHDTDlhWr14t/VbEvHYwGsQFQcCfXhxkx3CV5S0JEiN5JGPzLZoSFtlEhJ256j6DkVzFpeb61FyfWMSof/McHXt/0eaxHXmSlkF72sL1A3RNsXmgyNbBMu2ZcEflyT70R7+Rbh+ukKs6tI5pn560jHojuJip444kZY7eLl9zaU9bKBQ1NyBXdai549cYpvp6r2pPsao9tcdvx7P5vo3OLvXma5g6ZNMxdEMnaZm0Z6L0Fhy25aoYgOMGRE2diusTMw28SECu4ozsmAyGAYYWzqa4riIIQGmKqKHhqTBfJWqGMy9qpFfK2FmM+cwHhssOyaiBoeukYxE6sjGiZrjbdK7q0JGOkbIMhisaChed8O+mZHskIgZ+EFB1fExTJxWNYBhhQ7t4xKAjG2NTfwlTC/v3FGvelFsKHOo7rYt9m3bA8slPfpJ/+qd/4hOf+ARr164lEhn/4SFlvWKuzXaDuL5CjT9tGuKuZ3qJGBqD5XDfl6XNcbLxaD3folBzOfPoVk48onGv09ejVRvP7CrusQT7ie48PfkqixvjNKcstg6WebG/TKHmUrY98tUYR7dP3GBw7DfSXMVlY2+JYtXjqPY0DYlwrEubEhSrHn3FKhrgBwE11ydfc9EUVByfP28dpmJ7uIHioS1DnHJkc/3ksKfXu+p4bB2qkLBMFjfG68fuKf9kNt+30dmlbCJCd75KZGSWJhbRaUnHsL2AwbIDCgwdMvEI+kjDO8vUyddcooZOW9qiUPOo2B6274dLQISJrZapYypF2QnwnZF2+guMIkzQdbyAhGXQ1RDD1HV6SzZ2ENA+8lq1pS1qXkBzKkpPoUomaqI0rV76HY8apCyTE49opCVtMVxxwz2mdJ2lTQnWdjWwYXU7sYgxpSWduU6kF/PDtPuw6Hr4D32yb3GHa9Kt9GGZn2Zj+nj0W9724TI7hqq0Z2L4gSJXdUhGI/XeEn6g2JGrcMHaTjqy+/fNsa9YIxuPckRTnDse30XNCzD0MBkyVwlLS5uTUdDAcX2WNCdZlI3Xv2nufr9WROeRrTk29ZdY3BhnbVeWhkQYPAyXHR7aMkhfycbU9ZFx6JRqLkrTyFph3kFzMkZLOkrDJD1f+go1ntiR54X+Iv1Fm3zFJWrqtGViNCWjU37tZ+N968nX+MUTO2mIR3lk2zCJiIE1kitTcTye6y2yeaBMe9oiYhosbYpTcX36Cja6prFjqELN84mP5NHUXDWy789Lsyc6LzWIW+jCrQA0mhIWrZkoyahJ0opgGhoDJZu0ZZKruqQsg125GjXXZ2lzgvRIiX0sEm6+2NkQ58iWJL6CUs0lVw0bEp51dNu03svhssMdj++cci8fsbDMWh+We++994AGJsTBMtPb24/9lndkS4qhsos3kvvRbsboLdbqvSWmmm+xr2+OT+4s8OctQwyVbZY2J7FMnU39ZQZKDi2pKLGoQcw0GAzscYmxZ6aik97v0R0pbNdnx3AVy9Trsz+5qsNJy5pY2hQ2CivbYVlqoKAhZpKvuaRjUY7uSJGJRfb8jVaDYs1ny2AFFSiObEuxKBPHiuhTnrqf6fcNXsqzMfSwKd6ufIV2M0wsTkRNWtMWO3Nhu/2kFSaTOl4QniCjOt25KoFSlF0P1wtzU0ZHM/qN71AJViBMDHY8xVDFQdchmtWJ6Bol2yNfCRvqxSI6K9vSdDbEeHJHEcMIZ0+6GuJ0NSboyFr1Lrejgefarob9CjwX8k7rYuZMO2A544wzZmMcQsyKmdzefmzSaiL6Uu6HZYYJmA3xKINlm1LNY6BkTynfYvQ+W1MWZdvHDQIi+kgPExTDZZvuXJWmZBRNC3t8VF2fpkSEYs1lx3CVJY2xCYmxWwcrk5YIZ+NRjl+SxYoY7MxXSfcXaYhHx+URHNmaGlny6iFiaFS9gEXZRH3JC5hQYlzvFlt1RrrumjTGo+SqLk/vKrCmK8Oy5qlP3c/k+wbj82OOaIqNNDOr0RCPYhoa9kip+bLmJEc0JxgsOQyVK/hBwDM9NvmKg6nr2F6AroMRhKXA3gJc9pmqcP+igKrjkat6WKZNb9HFACwDmpIWiWjYt+ao9iRJK0JnNs7rju+gKRm+v8cumpmKnvm607o4uKYUsDz++OOsWbMGXdd5/PHH93rs8ccfPyMDE2K+Gfstb1zuR8kmG4tg6hoVx2PzQIXFTfEp5VuEuRM2vXmb4aqDN1KVEzPDD+cndxbCzfPcsGlcUyJCb6GKQsMPFMNlh3zV5bjODEnLIFAwULYp2t64b6SjuwmPBkQnHJEl3WdyxlGtLGlMjDuRtGVivGJ5I1uHwv2FYhGj3pxu1NhvtGNniVpTFlsHKzQlLKyRZZe+kU0Tj+/KzllH07H5McMVhxVtCXrzDj3FGrmKQ9oyOXFpI0rBcMVluOoSqDA4tF0fNA03CPCCgIAwWDmEY5U6X0Gh5qGokSs7KCATMzCMsOqnXPN4rr9IRDcIgAe3DtGQjNRznGYq8JyLndbF/DOlgGXdunX09PTQ1tbGunXr6jtw7u5wzWERh6Z9NYRrGEkC3TpUYajs1JNSV7YlxyWl7k2h6rJ1oEIAtKYsorEI+ZrDn7cMka+5OG6AFQkbbO0q2DzT4xH4AVYknNVxfIVhaBRrLvmRlulRQ69vSlhzfVw/qI9xNCBKRsNkxyWNiUlPKKPJkPGIsc9vtGNnnhw/PKlHzPDEoWla2DW27FC2feLRvU/dz2aPjd3LyBuTEVIxg0Q0w8q2NE2JCN9/aDs7hqt0ZKJsdn1KNQ8/UER0baTt/Ny02J9LbhDmTSUSJo7nYxg6Kghn/zYPVFBKsao9QXMqwvahCo9uzzFYcnjd2g7as5NvPTFdB3undTE/TSlg2bx5M62trfX/F+JQN9WGcA2JKNl4hJLt8eJAiVWtGV5/fEc9OX1vlFJsH64QMXVqjofnh7MV24eq5CpOuM9LENASs0jFTHbma1RqLqah4zkBoFBKUXVMtg5WSFvhvi8r2zIsbU6weSDBo9uHyVddKiOt/qOxCI7ns6m/zBFNCRxv8i8Y0/lG21uw67M54d41Oq4X1JNao4ZOsebiBgGayx6n7mcy2XZPgc/Y/JjuXIUX+yrkqjZP78zTX3LYMlTGMgx2DlfpL9aoeQGOFxAxdCKGRm1kN+TDjaFrrO3MMFB2MXWN4arD9uEqhq7RkoqGr2V/QKDCbRl25qrkqg5vO/mIGQtaptq3SBy6phSwjN2B+XDcjVkcXvanIdxAyWZJU5JTVjRNKViBMH9lY0+RqKGxrejwQn8Z1wvoL9kjO+xqIy3Uwx4XgVJEzbB7qDnS/T1smQ6DZYcHNg9y7poO1nRl0HWd4zrT/O65PjYPlOjKxglU2JE1X3NZ3BgnE4/w1M5ifeoexp/oFzfG6S/W9vmNdnx+gTEhqXW0+Zypa3ucup/JHhv7CnxGy8if3lkkX3VwvYCndhV4vrfAznwNDYWhh31wdE3HGNlvx1uIdcoHSCMs89ZGtizIxMKNIC1PZzhwWdKUxDINego1hisOTYkoDYkogQp4ckee72vbOX/NovrmmQdqNhKyxcIxpYDl5z//+ZTv8MILL9zvwQgx16bS72EqDeGmojtX4eldBSxTY1E2RsXxGHY8bDdc8omZBl4AFdenMvIBHahwjLGoMTI2LWxwBmgRnbQVoTUdNobLV72RTq2KjX0lIDzhrGhNsbozg6nrExJndz/RpyyT5qRFoebu8blm4ybZWJTn+wsc2ZIal9SajYUt75uSUfqLNRqS1oSp+5nssTGVwKc1bdUfz9DgvhcG6C3alG0PpcD1FUHggwLdGNnrxpubzQvnmiIscVYqoOyOlHUXbWzXD7sk6xpDFYeK49GSjBKLmuzMhX1uhqsuD20Zor9o73XzzOma6YRssXBMKWC56KKLxv2+ew7L2A8RyWERC9lUNk6cakO4vVFK8WJfBdcPm3H1FhxiEYNFmVi4K7CuYRo6mbgBSpGrugQKfD/81p+0IuFjolFyPDSlWNKYwPHDjflcP+C3z/WTr7oc3ZEGwp2hy7aHN7LXzdjE2b31gsnEI6xf3kwmHpnwXEeDnB25CpsHKjzXW2JpU4LFjTH6ijrbhspEjPA2K9sy9UBn7ExO1fHYMVw+4E0Ppxr4rFuSHanMinLPs/0MjuT2eAHETYOiF6C0sErG88MTNoDBoVW6PFWJqIFp6BSqLp4f4PqKhniEimuTqziUnYBULEI2HsEPFFsHy6Qtk3jE4IimBLbr73XzTCGmakpz10EQ1H/uuusu1q1bx3/913+Ry+XI5XL88pe/5MQTT+TOO++c7fEKMaum0u/B8QL6i/YBTUnnKi65qs3SpgTbh6u8OFCkUHMpOeHST831KdkeEcMgm4hiaBqpkVmVRFSnKRklahpETJ24aVDzFE1JC0MPA5MnuwtUHI+2dAxd00lETZqSFksaE1SccEfmqusRNcJk4rEn+qRlYugj2ww0JylUw/Lp9oxFYzI6Lli5b2M/m/qLdDXEefWqFpY2Jdk2VOHRHXka4ibnr+ngrScfwdnHtLNuSZbWtBXu6fNsP3c8vpNfPLGTXz7Zw9O7Ctju5Im4sYiB4weTJuoqFVZK9eRrbBkoTynw6S+GOTeFmseufBVdh6obvpcKhafCvX+0kUqgAMJeJOYUPzAPMRXHBzS8IKCnYDNUtknGTI5tT5Ma6QgcBOFOz93DVYYrDl6gaEhaZGMRdF0b1yNomr1Khaibdh+Wq6++mltuuYXTTjutftm5555LIpHgiiuu4JlnnpnRAQpxMO2r30NfscrmgTJeMLop4P4lhtpegBso2lIxHtk6TK7s0pC0iEc0KtGwhNkLPPSRPWpGZzUNHSJGGEwFKtxcrlhziEcNOrIWlhnOjHTnKixtSuAFalyvGEb6xQyUwj111nQ1AOxzVmn3GY7JZjOSlskrlkc5dlGaFwfKGHq4Ed4T3XlMXSNqhktMgyUHharP5AyWbZ7Y4fKX7cOctLSx3n131J56bOy+hFVzA7YPlTlxSRNJiwlGZ5QgrPbKVd2RKioFmsJ2FW4QBidaEG5i6I9uYKhAKY3DMeU2UJCM6lRsn1zNpWqHjQeP6cjQW3AoOT7ZWJiU7Hj+yG7XPinLwA3UPjfPFGKqpv2FYdOmTTQ0NEy4PJvNsmXLlhkYkhBzZ7Q6pq9Ym/BNMFex+dOLw/VlnMUNCTKxCJv6i9y3sZ++Qm3Kj2OZYefQ3mKVVMwgHjWo2h4l28MyDVIxE1PXKNY88jUXUw9PuI1Ji6Rl4vhBvR15MhZlVWuKQEFnQxzb9RkoOfgKjmhKkIyY9JVsaq5PECh8pegr2iSiJmu6Mji+2uuskhXR65snDped+nLOZEGOhkagwpLXXz6xi/98fBfP95Xquxnf/+IQj24fpiEerc/ktKYtVrWl6SvabB2sjHvdRyuSuhoS4xJ1x87uZGIRFjckaExEyFXCwCdXcSY8j9HApzUdbhNQsT30kQRcz1d4wUhwiIahhz8a4T5Bmg5oisMxtdPUoeIGVBwfU9OIRcLclZ25KmXXJRU1qDjh/kpOoGhJWjQkwsq5fNWhKRklaRl7nSkTYiqmPcPyile8gmuuuYZbb72V9vZ2AHp7e3n/+9/PySefPOMDFOJg2uNGfq7Hg1tyaChevrSJVCw8eY7Nj3hiR54Tjgh7o+xrqaghEQGl8YcXBrDdgILtYLsBpm5gmRqGppGORfCCAJTJkW1pmuMREpbJ5oEyJdsjHYvQEI9g6JCOR0hGDfIVlxf6ijzXW6A7V6UzG2dpc5yhistQ2aFYcwkCRUcmxquPCvMJhsvOHmeV8lWHjT0lduaroCka4uHJvi0TnTTIyVcdHt+RD2ehlGJpc4KYadBbDBOUXc/DMHS2DVfqr4+GxrKWBAMlm+f6iizKxmhOWXvssbGnXJXRwOfpXQW2DlbIxiPjbtNXrHFkSwqAtkx0ZGsDnV15n0CFcydeABFDB8JyZo2RpNMAHA6v/iujXB80FMmogW7omJpGoeqxM1cbmfXT0FGghTOOLekIlmmyM1fjmI40S5sSaJpGzfGkG604INMOWL72ta/xxje+kSOOOIIlS5YAsH37dlatWsXtt98+0+MTYlpmovHYZP0ePD/89r1mefOE6eywtNfg3o19vNBfwhxpMLe3paJndhX4w6Z+unNVdDRMQyMIFFXPxfENUpbBonSM4YpHU8riTSd1hbMtVZdlLSl6ClWGSg4VxycRNTl2UQbPVwyWbdrTMVa0pNmeq7AzV6ZQjbKmK82KlhSO77MrX2NNZ5ZV7eHJe089V/JVh8e359mRq7KiNcmq1jS2F7Cpv8jWQR3bDcYFOQrF1sEwhyFQhH1fzLDbbbsZY8tQhXzVYVVrqt5ILhULb5uNRznhiAYe2ZZjuOJQ9fw9Vl/tbXZnb4GPpmkUai6/eHwXuapLxfFY3BBn+2CFUs0nYmgYIzk9FeelVraj7fdHg5fDLfHWB/JVF02FQYmvFLYfoCuIWwaur3ADjcAPMALFlsEKzUmLlGWysi1FQyIq3WjFjJh2wLJq1Soef/xx7r77bp599lkAjj32WDZs2CC18GJOzWTjsd37PeQrLr9/oY/2Se4nV3F4oa9ET6HGqvYUHZn4XnuI9Oar/PChHezMVcnEIhi6RtH2AB3DUOhauDxRqrl0ZCzaMxaeB2esauHpXSW6cxWWNCZYlI3TkrJY05lhx3CVFwdK9RmHZS0JSrZH2XEZrthsGTBZ2Z4kX3VZ1BBn7eJs/d/rZLNKVkRnY0+JHbkqixvjHNWeDnupGDrLokk2D5SwPZ/eYo3lI0FO2fYZLNskIwbbHI/OhgSx0W/TmkZjIkJvoYbtBXgjTfHGskyD4xZlOG1VC/GouceAc2+J0XsKfJqTFsMVhy0DZYYrDvlauN1BzfVZ3JhAUcXzAzQtXDoKVJhsa+hhp1c4PGdXRjk+DFU9Rt9OpTSipkbEGOnPYpmYBniBIqLr+EH4N6xrGmXbk260YkZMK2BxXZd4PM6jjz7KOeecwznnnDNb4xJiWmay8diosf0eLFOvJ7SOXTZRSrF1qEK+5tKWtsjGoy9V2EzSQ0QpxQObh9g6HJZ+moZB2XaJBwbJiIEfKEwj/ECveAHNWrg/0V3P9ICmWL+8iROOaBg3g5SruDy4ZWjcjMPYbQN6clU29RdJx01WtU3eL2b3WaXckMvOfDizclR7elwirKZptGfidOcqRHS9HuTUXJ+K4+H7EIuYE4KNdMwkFjHoL9m0pGJExjTYG/sNfFlLcq8ntX0lRkcNneXNCdYtaUDXdFKWznN9JXblqrw4UCZXdQGw3bDyseYFJKIGVsTERGdnvooXKAw0dF0jsP3DblZld4qwcioIwkAuaiiqrqKWt0laJplMBE3XsB2PeDTseGy7AY91D3PC4oZ51412NreAELNnWgFLJBLhiCOOkF4rYl6ZycZje7KnZZOy7TNYckApWlKxkV2WQ7tX2DQkImwZKPP0rgIqCL+NJi2dsj2yV4tlYuhQdT1szycRMenIxGjPxOgt1nihr0zNDTjz6FY6si998O9pxmF024BlzUm2DZU586g2jurYc8fRsbNK24croClWtYYzK7uLjWxs+IrlTfQV7PpzdH3FokyMlnSUou2hlKo/nuspWpJRyraHH4RbC/iBmvZ+MHvbNmC47PDnrUO4vmLzYJmSHS71DJRqDJU8AhStySjDI71qIOwaXHA8Bos+tufX9wvCCHNXIib43l6HdFgYLfGGMK9FB1xAdz0czyNiGpRcn4Lt0pYO/25LNZ+IaXBcZ3pcsLKngOFgBBIzORMrDq5pLwn98z//Mx/84Ae59dZbaWpqmo0xCTEtU2n2dqDllHtKxs1XHfqKNTobwuRWbbc6ktFS2u5clb9sy/FMT4HHtufoyVUpewHpqI6u6QSA7floQM0NMHW9noPhB4p4xKAtHWHHcJU/vTjI649fVN8CYG8zDpqmYeoaLSmLtsy+A7axs0oN8Si2F0wasIxW3HQ1xDmuM0OuEpYIP7R5mJ5ChcaExVM7C/WdrKMjbfmtiMnJnRmakhZF22Ow4ky7U/Ce3oveQo0HNw9SdQMyMQPP12lKRBgo2WwbrFJ1PBoSEQbKDq6vSFsGthewq1yj6vjoKAK0kSAL3JFND30pagEmWRIb2QXSC2BXIdxOwvYCYtGw6q2rMUbR9ujJ2/z2uYH6LOeeAoaOrEVP3p7VQGI2ZmLFwTPtgOVLX/oSL7zwAp2dnSxdupRkMjnu+kceeWTGBifEVEyl2dvedgieqsmTcQM6MjFWtSXJxicGQzXXp+Z4/G5jHzVPoaPw/QBD1wiCgJKtaE4axEwd11ekrPADtCERZVFDAsvU2DpURQOe2VWi4oabLKI0TlnRRFsmRkMiQmc2zpM78yzKxogaBknLqH9j3Z9kx+lsfjg2yDllhcZ9G31yVYcjW5P0FWx6C1WGqy5py+TUI5t41coWWg9wP5jd34v+Uo0tAxXiUZO2jEHR9mlLhQGaP9KIz/EVwxUXx3ewDJ18BVw/oOx4eP5I+fLIHk26BoahoxOekMV4ijC/RwUjFVSeTyJqEIsadKQtvJEZrtZUjOUjidBPdhc4Til++9zAhIDh0e3D7HqiSmdjgiNbklgRnaGyw6Pbc2wdLM/Izs8HYyZWzK5pByy7t+kXYq7tK6dhT43H9sfuybhRQ+Mv23O82F8at/wB4QfkC31Ftg5VcNyATNykt2BTcnySVgRT1+gvO+RqHtmYyWCxRl/RwzQ12lIRMvEIW4eqDJdtmpIWiahBOmbSW6jxfH+Bmudz5tHhLuqFmsuWgTJPdOdpjEdoz8Rpy1jYnr9fyY57msXY1/LN7oFEQ9IkHU/RkoyxdnF23CZ4B9o8bOx70Vew8YM+UpbB07uKZGMjAZBSlKoebqCwPR9DCzsVO16YWOsFiiAYWe5Q1KcRnAD0IEDXD+9k27FMPWygN3ZPJV0Lf3d9RdnxiUdMap4C26O/6BEzTVKWga7F6B6uUKp5EwKGRNRAKRiquHRkFa4fsKm/zGDZxvV9nuv1ZmTn54MxEytm17QDluuvv342xiHEfpvObMBM2H3ztTWdGbYNVni8O8eiTJymZHSk/LfE1qEyhZrPEY1xTENnR66GFTGo2T6xiElrWiNfcSjWfNANLDOgOWmRTVpA2KisKWmxtCkBWth2P2GZHNmSYqBk84fnB3CDgELV5cSlDfTmHXqKNZ7tLdCdMzl9VSunrWqZsH/PVGY1JptRmsryzcHcUXf0vQiXrjQMXcfzA6KxSL06ZVNfCT8I8ANFsebhK4jo4WzK3pZ7AsIkUxEKRnN7oN6zJlDhZd5Ih2BTD5c2a66HaegMlm125m06MjG2DVUo1FwWNybG/S2UbZ+hikNXw8jWCSUbPwhoiEeJxCPETJdne4r88okeLjh+0X4v2RysmVgxe6YdsIx6+OGH6234jzvuOE444YQZG5QQ07G/swEzoa9Q46mdRaquT3/RYfNAhZRlsKQxjqZBaypOzHRJWRGqro+uQ0faYkAPO7Gm4yaGptE+klybsnQWNyYZLLu0pSM8s6tEImrAyPJOvubSkYmRskw04M9bh2lLWxy7KHx+Hdk4K+0UjufTk6+RTURoSUV5rqfIEzvyDJRrGHrYN2Yq+QH7G3wcyI66+5N4OTrLFoy0gs9Vw/2FclUXL1CkoiauF+B6ikC9VKospm7sS6YDEUPD88OGexEd0paJoRtohFtJxEf+DW4dLJONm2HFlZoYMLhBgOcHpBMRNg+WycajLBsJ0AFSVoSaGzBUsQ9oyeZgzsSK2THtgKWvr49LLrmE++67r96iP5fLcdZZZ/H973+f1tbWmR6jEPu0v7MBB1KVMDaBr6shzpGtSYbKDj35cL8ay9Rob43x1K4CzkjeiqGFSZxhQqtPeyZGS8ri5UubSFoGRdtj/fJmHt2eY8dwlYrrkY6Z1FyffM0lGTHrnUN9BYNle9wyi4ZGyjLBMrFMg427CrzQW+SR7Tlqjk9r2qIjE6ctY+w10XCuyj7HJmTano8fqEmXk3Y3Osv2Ql+BxniEB7cMURjp6luohRVBmqZjmQGBGybVyh58+y8A1Mg+S76ClphJR2M8bGQYMTEMjZLtoQj7FG0brLCsJUmu4kwIGCJ62N9nqOxScwOWNUfqwQqA4wdETJ1FI6X0+7tkc7BnYsXMm3bAcuWVV1IsFnnqqac49thjAXj66ad5xzvewVVXXcX3vve9GR+kEFMx3dmAAylv3FMCX1s6RmvK4vHuHP1Fh+VHJWlKRukp1GhLRUnHIgyXw8qZShBQdXyWtyZpTUfZOlRhRWuaVe0pGhIR/vTiIC8OlOgt1EhYYYnz0qZEvSdKqeaCCr+BTqa/WOPe5/qoOgEKaEpEKNQ8HC9s7X9cZ4bcyA66Y7+1zlXZ59gA0DINcmWP3kKVh6rD/OGFfl59VCuvWtky6RjGzrJtG6rSV6iF1VWWASo8KXp6gI5ONNzOENeTiOVA2GOmXGw/wDINggAqrk8k0HA9D900GSzZrF6UZf3yJp7aWZwQMCQtg6ZElEe2D2GZOunY+D5Ho7OKTcko3fnqfi/ZzOVMrJgZ0w5Y7rzzTn7961/XgxWA1atX8+Uvf1kayYk5N9WliAMtbxxN4GtNW5QdH9cPiBh6vTpnUSbO5oEKwxWXpU0JilWPvpJDNm5Srnn0Fmq4gWJxY4LWlMXWocq4D8y2TIzXH78IlMbz/QWObEmFy0Bj9sbJVV2aUxaTVB2Tq9j87rl+hssujQmTbMJCR6Nsu3heOCW/bbjCipbkuG+tc1X2OTYAbIhHeWpngbLrkU1EaU1ZdOer3P/iEI4fcNbRbZOOoS0T44yjWtjYU8DQwyUJNwiwIjqBgpipo4Cy44WdWD3pJ3UgtDE/JTuge7hKNm5SdTwGXQ8dDT+qkbBMXn1UK+3ZOJqmTRowaBo0Jy0KVY9SzSNlRXD8YNysYpjkfmBLNvs7Eyvmh2kHLEEQEIlM/EYXiUQIJENNLAAzUd5oewFDZYfevM1w1cELwt4pzUmLpc1h4m3KMujJ26ztytS7zg6VHdIxk3zNpSkZoSMbQ9OY9ANT13VOWdFEzfMZKNnomjbuG2FHNsYRTQn6izbJ6JhgBsWzPSV6izadDTGCQBHVdTRdo8GIkqs6mJ7OYDl8/qM76M5l2Wc9AExZbBooU3a9elkyhDNXZcejN1/b6xiipkFrOspxnVkSUR0/YCS/yKZQdal6PkopHDdAJlgOjBrzX03BYLmG60dpHMmb0nWNfNWjIRYlGw9PNXsKGNYtaeTc49q56+lenu0pUnPDZaDRWcVsPMKWwfKMLNkczKRwMbOmHbC85jWv4X//7//N9773PTo7OwHo7u7mve99L2efffaMD1CImTYT5Y2FalhGHChFWzpGxIzgegG78hUKVZcVbQmOaEoQj5j1b5PHLcowVHbYVahywhENvHJFC9lEdK8fmPv6Rghw38b+cd9YB8s2L/QVSUZNOrMJdhWquIEiqoeNRpLRCDXXo2IblGpu/VvrwS77HJsnk684OF6AH4WhsvNSWfKIiKnj24psIkL3cIUtA+VJ9xsabXTXnLR4rr+IoY1Usuga0YhBxfWoOD6+qvc9Ewdg9PXTCPuxGFr4NxuL6PQWHJY2J2jLWDy1s0hbJlafPTwzFWXrYIWi7ZG2TJY2J9B1nZaUxS+f6GGoYo+ruNsyWJ7RJZsDSQoXc2e/GsddeOGFLFu2bNxuzWvWrOE73/nOjA9QiJl2oOWNSim2D1WImjqBUkRNPdyxeWRX4p5ClSe6fc49rp01nRme2lkclw9ywpKmaU0/7+sb4e4BTc0NaExGaExESUbDPZCGKjYNsShRU8c0NBw7QCNcVlrb1UBDIkJvwT5oZZ+758l4fsD2oSqLsl69LHks1wtnsPwAnuktUKi5xKLGhPway9RxvIDhijPSd0UnY5kEQM3xqDnh2JUaX/UiDkxAmHxbsD12DFdJxUza0jFOW9lMU9KasOy4e47U5oHwPWzPxrng+EX167vz1XqAflxnmoih05OvyazIYWraAcuSJUt45JFH+PWvfz1ht2YhFoIDLW/MVcKNAY/rzPJif/ml9vOGjuMHuAHogc+SxgTt2ThtmdgBTz/v7Rvh7gFN1fH43XM6z/eVeLavhOcr8mWXoZJLJhYhHdMp2z5KQUc2Vv/WerDKPifLk6k6Hpv6Sjy0eTgMREydbDwChOU8uapDJhbhud4CwxWX47uyNKesCfk1LanwG3nR9ljTkaG/7FKquVRdn7Lj4/jB6F2KGTIa3upa+GPqGo2JKK9a0cySpiR+oOqB7lRzpHYP0B3PnxD4y/4/h5/96sOiaRqvfe1ree1rXzvT4xFi1h1oeePoDM3ihgSJqFHPTSnWXExDZ0lDAtOETDy8/cGYfh77GEop/rItyq58Ddv1MXSNjmyMQs1luGKzM++zuCHB6Ue1cvqql5JoD0bZ52ieTK7q0JqycPywgskNFCkrwpOlPFUnoDtXZUlDgsZUBMcLSERNFIr+osPqRRlaR3JYds+vWbcki2UatKUtyq7PooyFn46yqbcYLjkFPrZsZDijDD1swKeAqGHQkbXIxiIMV12WjGyLEDV0oobGo9vzU86RGv177ivUJm3nL/v/HH72K2D57W9/y80331xvHLd69Wre//73c/rpp8/o4ISYDQda3jh2JmJ0R+Sy7eMGARFdBxRF25vTBlSaBrGISSxi4PmKqusTixhkYoqGhMmrVjZz6pHNRAy9vqXAwSj7zFVcnu0pkKu4bB2s4AVhM7d81SUZNVi9KMv2oTIlx+eZngKZuMmJRzTSnonz6PZh2tMWS5vHd0odm1/T1RDHiuiccEQDO4ZrDJZtBss1tg1XGa44VByZWplp7kiwogPxaLihZL7q0j1c4ciWJAMlmxWtaYBp50jJ/j9irGl/on7nO99hw4YNJBIJrrrqKq666ipisRhnn302/+///b/ZGKMQM240mXVFa5pCzWVHLmwbvqI1zZlH7f0b2+hMRF+xVj/Zp2JmmDNiGfSXbLoaErPWgEopxXA57OQ6XHZQu61v5CouJdvjlCMbWdGapjkVpSkZbpB4/OJGjlvUwHO9Jb51/1Z+8Oft/ObZPvoKtQN+XaaiO1fh6V0FBss1EpGw/0bZdukv1ijVPHQtTLBtT8doSVtUHZ8X+kvkqg4NiQjrljTW+9CMFYsY4XIPamTZymDt4gxHtacxtXCpDqXQ5Zw24wwNzJFNI23PJxbRcXyfXfkaLw6U6oGu46t95kiNVqyNmk4iuDj0TXuG5eMf/zif+tSneO9731u/7KqrruKzn/0sN954I29729tmdIBCzJYDaTs/l1sB7Kup29glq45snLKdxPUDKo7PU905uodrFB0X09AYLDts6i+zZaDMX72sk7ZMbNbKPpVSvNhXwfUDOtJxrIhB1fWpueGO18MVh95ijahpsLwrRSpqMli26SvaRDSNJQ1xPBUwVLbJVV00NBJRnba0Rc0NX4uWdJRsLMrz/QWWNycZKNr4gQpLmf3xG/eJA2dAuIeTpmPoCkPTGCy7xEwd21N0ZuP1QHe47Ew7R0r2/xFjTTtgefHFF/mrv/qrCZdfeOGFfPCDH5yRQQlxsOxvfslcNKCaasJidGSPl55ClWw8nPVBGTy7q8CLAxV0FOmoSXsmhqFpDFdsHtmWoykZ5aITuurLQzOdd5OruOSqNkubEgxXXayIgR8ofKXQdQ3XD6uWVi+K1xNuW9Ix0KDs+mwdrtD/wgC5qkvZCXNzsrEIixvjdGTjHNeZ4dFteXbkKmweqPBkdwHXCzeLtD2FFwRoQEQDVwKXGeED+AplBMQME8PQMbVww85UzOCMkWBFqTBoTIyU+R/bkUbXXwpM9pQjJfv/iLH2q0ronnvuYeXKleMu//Wvf10vcxZiIdqf3YwPVgOqqa7lHzdy3PahSrgdQNqiJRWjORlhU38ZHUXE1GlMWiQi4aaKHZk424crPLx1mDOOaqUpZc34+CH8tuwGipWtaZ7eVaCvZGMZOrqmUax55KsulqnTlIoyui+w6wV4fvi+7MxV6S3YuH5AygqDnULV5amqy7ahKhqKtkyMroY4Lakoj23P8+etQzi5GpqmiBg6rhdIA5YZpBEm3Zo6eL5PsepTc31iUZOlzUksUx83KzhUdtgyUGZnLqyya8/E9jozKfv/iLGmHbBce+21XHXVVTz66KO88pWvBOC///u/+eY3v8kXvvCFGR+gEAfD/u6fc7AaUE1lLf/ZnjxbB8t4QcBR7Wl0TSNfcykPlnhxAPqKNVKWScw0aU1ZL20wp2m0pCx25qr0F+1ZC1hGvy1bEb3e+XewZNcDxagRvpbp0b2RlCJXcXB9RcSAiuNj6mAZJmXbxVdhdUpjzKTqujzTU+TlyxoxdIOkZfLyZY0Uag7P95ZoTVkMlh2GR8rOxczRNQ3Xh+pIxZfhBjyzq4Dt+HxFKdIxk6QV9mVpS8doSkZ4orvIX7YNs7QlQXPS2uPMpOz/I8aa9jzau971Lr7//e/zxBNPcPXVV3P11Vfz5JNPctttt/E//+f/nI0xAjA0NMTb3/52MpkMDQ0NvPOd76RUKu31+CuvvJKjjz6aeDzOEUccwVVXXUU+nx933Oj099if73//+7P2PMTM2Vfy6VSNLrVs6i+SiUVY3JAgE4uwqb/IfRv76wmpc2lfa/mWqbNtKNy7aFlzks6GOMcvznJEU4KkFaG/FCa1ZuMRjmhOTJheVzAyqTF7H/xjk5Wz8QjHd2U5eVkzZx7dxqqOJGiQiJpETQ3b9ekt1jAMnYihEwRhJZGp65gGNCdjtKdjtKWjOEGA7QTkyi4DpZeSL1OWSWs6hkJRqHn4vsLUZvMZHp58X6EpNbKlJER0iOgagQb3vzjIb57tx9DC2cCwxD7OKcsbaUlZNCWivG5NB2cds+eE7tlOBBcLx36VNf/1X/81f/3Xfz3TY9mrt7/97ezatYu7774b13W5/PLLueKKK/ZYmbRz50527tzJzTffzOrVq9m6dSv/63/9L3bu3MmPfvSjccd+4xvf4Lzzzqv/3tDQMJtPRcyAmdpReKGUTe5rLX+o7FCyfY5f/NI4x5ZcL26IcfczfZiGRiI6PuhRSjFYdmhOWrSmZ2+2aLJvy/GoQYtmsaQhQanm4/mKgZJNxDBYlE2QTZhs7CkwUAnLxgOlETcj6FoYuESUjucrKo5L2Qnb7o99vMZEJMydqbhYkZEuv76SFaEZ5KmXGvFpgK6FQabvh1d4gc9ftudZ3JSgWPPYOlhlsGxTcTx2FWo0xC1OWdG013+3sv+PgP0IWB566CGCIGD9+vXjLn/ggQcwDIOXv/zlMza4Uc888wx33nknDz30UP3+//Vf/5XXve513HzzzfU9jcZas2YNP/7xj+u/r1ixgo9//OP87d/+LZ7nYZovPfWGhgY6OjpmfNxidszkjsIHe/+c/bWvtfxdhSopy6RptzGOllwf2ZriiN4iJXtkKj0erXfmzVcdfD/gxCMaZ/057ilZ+YQjmjhvTQcPbh5muOLSkbVoSkYZKjsUqh5+EOB5ihI+th92VLVMnaipo+sapmHg+gFK+ZRqHm4QULF9tg9V8HyFoUMqalB1NQzNQ6nwPqRq6MCMffkMIGrq4b5PKtx00g8UXQ1xego1NvWX6c3blB2XhniUtGXSW6jxfH+Bmufv89+t7P8jpr0k9O53v5vt27dPuLy7u5t3v/vdMzKo3d1///00NDSMC4Y2bNiArus88MADU76ffD5PJpMZF6xA+JxaWlo4+eST+frXv77PpQXbtikUCuN+xMGx+4zI6DRz0jJZ1pwkX3V4srsw5eWhqZRN7t4bYi6Mzk5k41G2DJYp2x5+oCjbHlsGyzQlLY5oSmDvIUHD9gKO7kjzssXZMLel4tBftMlXHHRNY90RjZy2quWgfGNty8Q465hWXn98Jxes7eT1x3dy1jGtHNfVwAXHL2Ldkgb8QNGdq+L7iiWNCbwgwNDB8xURPSyjrTgeQyWHcMIo7LHSPVzjoa1DPLR5kHs39vJ8XxlNg6ZElFjEJGLoxKI6GuGmiGL/jf1LCdslhv8+/UCRjBroGtTccM8q1/PZMlCm7Li0p2NYEQMvUCQskyNbUtP+dysOT9OeYXn66ac58cQTJ1x+wgkn8PTTT8/IoHbX09NDW1vbuMtM06SpqYmenp4p3cfAwAA33ngjV1xxxbjLb7jhBl7zmteQSCS46667+Md//EdKpRJXXXXVHu/rpptu4qMf/ej0n4g4YDM9I7KQyib3Vkp9XGeap3YW91pNcUxHluM60zzZXeCF/iIVxycRNVjZmmbt4uxBzQXY07fl3af+o4bGvc/21YOyXMWhbHtETR2lwAsCclWPbCyCE4S7+i5tThKJmlSdMNchUNCatrB9RX/JxvMDNE0Clpky+pemaeArhakUSctE06Ds+OSqHhFDo+J4YVWQF252OVxxOaIpQcoy0TVtXsxkivlt2gGLZVn09vZy5JFHjrt8165dE2Yu9uUDH/gAn/zkJ/d6zGj7/wNRKBS44IILWL16NR/5yEfGXfehD32o/v8nnHAC5XKZT3/603sNWK677jquueaacfcvJd0Hx0w3klpoZZN7W8vXNG2f1RSjjeFOXNo4b3MBxgYzw2WHiutz2soWHto6zPO9Rcq2h+0G6DrEIybpmEFLKkombnFEc5zhistw1cENFEub4tRcj50FG00pbDeo73sjDszoa6hrL1WKKwWmoWPoGo4XkBxp1Z+IRinZHsW+EhXbw/YC4lGT5lSUfNUlHYtIAzixT9MOWM455xyuu+46fvazn5HNZgHI5XJ88IMfnPZmiNdeey2XXXbZXo858sgj6ejooK+vb9zlnucxNDS0z9yTYrHIeeedRzqd5qc//SmRyN5PPOvXr+fGG2/Etm0sa/LyTsuy9nidmF0zPSOyEMsm9zY7MZVmdgspF2Bs194zVhmkoiaFmoOpa0SM8D3uK9aIRU1esbxhpLOvT67iYBk6UQO2DpbZmbMxDcJGdXP8nA4VOmFbfiui4SuF64WzVq7nM1RxMLVwoeiI5gQpy+DR7XmCQBG3DJqTURZlYxRtjye7CxzZmpw3M5li/pp2wHLzzTfz6le/mqVLl3LCCScA8Oijj9Le3s6tt946rftqbW2ltbV1n8edeuqp5HI5Hn74YU466SQAfvOb30ya/DtWoVDg3HPPxbIsfv7znxOL7XvK+9FHH6WxsVECknlqNmZE5qJr7Ww5VKopRnuz5CvuyOaNHo1Ji5cva6zvju35AUGgaB3p79GWjqOhkbJMklGDgZLNX7YPo41UFLm+BCszydDDZSCFhmUamHqA7QbYvmKw5BCP6LSmY2TiBpoKdwxHKdKxCG4QUKh6LGmKU3ZcntqZ55zVHfv8dzvd5o7i0DLtgKWrq4vHH3+c7373uzz22GPE43Euv/xy3vrWt+5z9mJ/HXvssZx33nn8wz/8A7fccguu6/Ke97yHSy65pF4h1N3dzdlnn823v/1tTj75ZAqFAueccw6VSoXvfOc745JjW1tbMQyD//zP/6S3t5dTTjmFWCzG3XffzSc+8Qne9773zcrzEAdutmZEZuJEP18+TBfSDMpkxpas215Y6bOpv8zJyxpoSFj1Uu3RDfaWNSUp1Nxxs26aptGasqg5AWXbAzQ0AmlyOwM0IKpDQNi4LxHV0bWw7MqKaCQjJvGoQVs2xpEtSbpzNrYbsKw5Qb7iUfM8klGTsu2xK18jNlLptaQpsdd/LzPVykAsXPvVhyWZTE5IXp1t3/3ud3nPe97D2Wefja7rvOlNb+KLX/xi/XrXddm4cSOVSgWARx55pF5BtPs2Aps3b2bZsmVEIhG+/OUv8973vhelFCtXruSzn/0s//AP/3DwnpiYttmaETmQE718mM6MiSXrMaKGwYObB7l34wCnHNkYzqRokK+6LGqIc8qKpkkTjhOWSWMiwpaBEkqBFTEJVIBSAUrJfkL7Y7QayB2TBxQZKSsv1sLAMBo1WdQYpyEexfWhKxvj6Z4CNS/giOYE/SWbYs0l+P/bu/P4qqs7f/yvz3q33CUJudkIIDtIKCgjBbVi4TcijqNTplqluFTFVhnHrVVHWx2tS62jVn+OtrVq29HR2krrtNaKKHWjaBEUBFF2CNmTu+Sun+V8/7jJlUASspDkJnk9H4/70Hzu5/PJObnh3nfOeZ/3AdAUT2NmeQA+lwqfq/M/eI9lKQMauiTBdWR9FolE4Pf7s8umaWDkyohGZ2+mbfVO+GbaPUIIvPlppuLwoUX8gEzy7d/3NkFTZBw3ygNdlVHmd6GiwA2fS0MkYWDj/mZEEkb2NWhsSeHPW6qxoy4KAQnCFjBtAcu2kTIFUqYNpnj2jQwgrzUnJWna0FUZNgS8Dg0eXUXAo6Ei4Mb2mgiEBEwv9cOpyUgamdykSMLArIoAUqaNBZODCPocR/w77ur3QgiBPY0xTCjy4vSpRZweGqK6+xnaqxEWolyQC1MfQ6VSbq7oKsjsasl6vkfHvPGFqI0mccrETL2Y/c1xrN/dmB3R8ugqRuU5EEkaaIiloMkSRue7sKuhBdGEAVtIrZv0ZXZu5l9qfafKmZEsn0uDSBgIuHUICMTTFlpSBiwh4HNocGgK6qIpGGZmhZ9TUyABkCDw/u5GOHUVKcNCvltHeX77kcmhUtyR+h8DFqI+4Jtp9x1t2uxoS9ZdugpVkWHYAlsPhjsc0fI5Ncw9rjA76tIcS8OhyogASJsWTCkzndFZhVvmuHRf2297PGUi7dZa84ckKFImwTmY50BTPI2N+0PwO1W0pEx8WhvFxKAHfoeGz+taUBWKQ1dkjCl0ozqSREvKQkMs3W6a51iXMqChiwELUR/wzbR7upOD0J0l65osYVd9S5cjWgeaE1gQ9GDrwQgsW6DM70YybSNtppDsYpkQg5XukwBoCqBKme0dLFvA7VIRTRqAndnB2bQFnJqKlJlGyhIoDzghhMD26igUWUJ9SxpOTcaXRvsR8DhgmDaa4ymkjMxr3zYyOZSKO1L/6vErfPHFF+Ott97qj7YQDTmHvpl2hG+m3d9Owe9Ss7s5H55a17ZkPeByIBw3jjqitbcxjgPNMSRNG/luHWUBJ1RZhozMNEZHk3MSMm+InLjrXNvPR1cAVZahqRJcWmYfJ7t1E8S0bcOtKZBloNCjwaXLyPeoKPY6UR5ww+vS4NJkFHg0zCzzweXQIAFwaAqKvU7EDROJtIWq5szI5KG7fHf2e1EecOdMcUfqPz1+Fw2Hw1i0aBEmTZqEe+65B1VVVf3RLqIhgW+mR9fdabNwwuxyvyS/W8f4oBtp++h7P0VTJsJJAy1JC0FfJiFUkiX4nAocmgJd7Tgs4ShLx9qKxMlSpv6Kx6FCV2WoiozCPB35bh1jC9w4bpQHY/LdUBQJtpCQSFsoynPi/5tWgq9MDuKk8YWYOdqPpriBRNrC/uYkdtRGsacxnll+LkkIuHREUwZCiUyu09H20crF4o7UP3ocsPz+979HVVUVvvOd7+CFF17AuHHjcOaZZ+K3v/0tDMPojzYS5Sy+mR5dTzaYbFuyPqHIi0jSwIFQZj+gCUVeLJhchPKAu1sjWl6HChkSEoaJhGGjJWXBoyvwuXQEXBq8DgWqlBltcSqZ/yoygxXgyBEmCYDc+kmhKDL8ThV+l4Y8h4JyvxP5bh2xtAVFljClxIevTC7CcaPcmBLMQ6FXR2V5AOX5LuQ5VUgADjQn0JK24FQVOPVMABmKp7G39d+PpmZeX1mWsiOTR/u94Cq8kaFXOSxFRUW4/vrrcf311+PDDz/E008/jeXLlyMvLw/f/OY3cdVVV2HSpEnHuq1EOWk4VcrtDz3NQeiqiJ8QoluVjscWulGR78HHVWHYQsBozbOIpU0ICCRb9yLKTEXIkCxAtK4cGtnZRu0pyOSqABIsCDgUCZqqwBLAuMI8LJhchNqWFMJxA2X5LowrcMMSgCbLCCcNFHicGDfKDQmZ125vUxyJtIkClwqvS0XStOB3avC7NIQTBuqiKZR4dSTSFiryXe1GJtt+L5pjadRH0wAEiryOEZ/MPpL0Kem2uroaq1evxurVq6EoCpYsWYLNmzdj+vTpuP/++3Hdddcdq3YS5bThUhK/P/RmO4XOlqx3t9KxLMuYOz4fG/c3Y/OBEJJpM7sySMp8Y2iyAkDAFgLCBmRZhgIb5giv33/oKJMsAZAk6IoMTZHh1hWU+JyYWOzF1BIv0paNScVezCjzoSacylYndmgKJFnGjDIv/K7M6xhLWWhsSUNTZJQG3BBCQEpbCCcNuDUVbk1BcyxTVG5CUR7mHleQ/V1pWw5fFUpkkq7jBtI2CzSOND0OWAzDwMsvv4ynn34ar732GmbOnIlrr70WF154Ybbgy6pVq/Ctb32LAQuNKLlQFyYXHevtFLo7olXsd+FfTyzHvsYYhCTBtm3IyIygyLIMpypDCIGEYUHXJMiQYEkSDEtwlKWVKTJl+M+eWYIvTxiF5piJuGFAVTLl9CcUfPEzn1b6RY2dtkJ+zXEDmpKpuxJOpFEXTaIs4MJxhW7sbUxk6uWYNhKGhZRhIZQw8KWKAL4+ZzSK/S4AXyyH/7QmjK3VUZiWjTEFHkwMeuBQFVa7HUF6HLCUlpbCtm1ccMEFeP/99zFr1qwjzjn99NMRCASOQfOIaDg41tNm3R3RKgu4ccLYAJyags1VYSTSFmQZSBkWAAFLZBJIR3mcqGtJwrAFVEUgPcJHWYDWBEcpswPzjvo4xgfT+KeZpdBVpcOf+aEBe4nfiYBba/d6m5aNEp8Tk4IelPozFYr3NibQ0JJEPG3CMFWMKfDg8pOPw+TSzB+/bcvhQ/EUQnEDTlVGwOtAczyFrQdtVI72YVwhCzSOFD0OWB566CF8/etf73Ln40AggN27d/epYUQ0vBzrabPujGilTBtOXcXZXyrDtFIvNh4IozGaRFMsDcMSKM93wqlKqI2mYNmZPYYgOl8tJCGzWsYcIdm5CjI1VeqiSWw9GMa4UR58dWqwW6/Z4a+3rkjYuD+EXfUtEELA79JROVpDLOVB2rRQE07i+HI/JpV4AbRfDl/kdWJvUwIBt56tlFsbTWJvYwKVozUWaBwhehywLF++vD/aQUQjwEBPm7Ul/KZMG1NL/Zhc7EV9NI26liT2NcVhmjb2NLQgkjAgSxLSlgXLBiQpM8JwaEVcCZmVRA5FgjkCdk60AcgiEzg0xwzsamjBpn0hnDAmv9PXsKOtFw49t7Lcj8aWdLupQQmZjSxLAi5Ulvs73KohbdkwLRu6szXPqXX5c2MshVjKgosFGkcEVrolomHr8IRfWZZR7Hei2O/E6IAbaz6tRVPcgG0LyEqmrDxkwG7djbhtHEFBJogRAkhbol09iOH8EWkCUG2BlLBwMJTExn1NqAqVdBiwHL71giZLCLgcGB90Z2sR9WRq8NDl8EIAqpKpquuUM8vjNVWGmTJgWHZrMbuRXaBxJGDAQkTD1uEJv0VeBywbaEkZCMUNeHUVJQEnbAtojqeRStvQIJAGYNgCcmuxNFWV4dbk1jo7maW+tgCs4RytIBOw2a1TZIm0hT2Ncbz1WR2OL2ufJH341gspw8aO+ije3dkITZExvdSHqSW+bFDSnanB9svhFRR4dNREknCoMiRJgmHaUGUZqix1uNKMhh+Go0Q0rLX9VT8qz4G/72nG61tr8LddjTjQnEDctFDidaHI54DHqUJVJKiqAlWRICEzJWTZgCwEbMuGYbVOa7k06IoMWc6MvgxXSmvSbaa6rQJJlvDW9gZ8VhPNnnP41guGZWNrdQTNCQMVARccqoRQ3MCO+ijWbq9HXSSZnRos8TuR79E7zIk5tIo0AIwtcMOjqahrSSGZNtEUT8Gjq6hvSbFA4wjBgIWIRoS0aaPI68CXxxdi0bQSHF/mRdKwkDAsCBvId2uZsv2KBJ9Dye45pCsSVFlC0hQQArBtgWjagmVn6rcMh2wWVTqywm02EJMAh6oi4HFgXIELoUQa63c3ZbeiODTXBAD2NsURM0wE8xxw6ioK3A7E0iaK8hzZfaMO38aiI4dXkW4bqcl3adgfSiBlCgTcGiay2u2IwSkhIhrW2kYAIkkD00u/+CtckSUU+5xojKVhWjb8Tg0FHh114WQmeVPKbPLn1GVYNiAkAU0B0hYQS38xFzRU/6Yf5cm8/YcTJlyaAssWsGwbSeuLVVJKa3n8snwnSv2uTACnmaiLJLC7vgWGBTS0pNAcT6Moz4FYykJTLA2/84spnrZcE9MWPV7Nc3jOS9qyMTrfhRllgXa5MRxZGRkYsBDRsNbZ5oseh4JReU7EUibSkGDaNhyylNm4z8xMhwASkqYNWWT2G5I1BbawYBySuzIUR1g8uoSpJT60JE04tTRcugKnJmdGjxImYoYFv1OFLQTyHDqCXr11NU8abk3BjvoY/v83dyBhWEibApGkgdpwCuOLPO1X8wDZXBNNkeHsxWoeVpGmNgxYiGhYSxoWQolMSXghWnMxJAkSJIwtdOFgKI7P6iKoCLgwoyKAYCSFbQfDSBk2WtImYAOSIsESgG3ZQzJAOZQmA25NRTSZ2WjwlImFEEJCNJXZvFaVJWzYF0LCsKEpMtK2japQEmnLghAS8pwqosk4xhR6UOp3ARDYetDEh/uaEE0ZUOVDVvMIgVAijVK/Gx6HgnjK6tVqHlaRJoA5LEQ0jNVFkvhgTxO217Rg/a5GfLC3CR9XhRGKpwEAPqcGpybDpSrwOlWYtoDfpWF0gQejfDoURUbArcKrK9BlKZOA2kG+R66Q0TYy1J4iAQ5Vgq4AmiIhZdmoiabg1GRMKfHhpPEFGJ2fWfZd0roDc9qyYdk22saQNFkGhI2maApuh4LjCt1w6yrcuoZppV64dRV7G2KIpQw0xzKJsbXRJDwODWMLXYAA6qLJ7DQOUU9xhIWIhqVsWfdEGmV+FxpjSbhUGTWRJKIJE8eX+ZAyLexvTmBGuQ+zKwIwWwOSN7bXoymWgkuVAUhICwFJkaAJGSnLgiJnljtb1hd1WFQ589E+0LXL2vJN2v76lFsDlra8Vp9LhdehQpElxFImZFmC16lBU6RMkNGYwIxyFaO8Oo4v82JysReKJGPd7gaYlshM5agynJqK6nAChm3CrSmHTa9pmFrqxZ6GGJKGDQELsXQiu+ePKsvY0xjjah7qEwYsRDTsHLrU9rhCDwo9OjYfsBFOGvA7NVSHU1izrQZxw0JDSxr5bh27GxMYW+iCLMnQFQkFHh3hhIGkYcOGgCxJsISAIkuwrczXkppZNWTZrSMvsgxZ2EgPwLxRW6AiIROk2K3f0xaZIneqDKiKhGKfAxX5brh0FR5dwf6mBNK2BRkSSrxONMdTeH+PhclBD2wBvPV5A/Y0xlAecMO0bMiSlNl9GUBL2oRLVSBac3tc2heLuv0uHWUBGwUeB+ZNKEQkYSAcNxBNmUiZdq/3jSJqw4CFiIadwxNtM/vW+LC3MYEDzTEcDMeRNG1UlvlR6NHhdaqoDscRSRgYU+iCpmSmSlqSJvY1x2FZAkIGFEmCLEswLQsCgEfPbASYMmzIsgQhBFRVzhRvEYCF9uX9j6W22yoyIMsSbFvAFoCuStAUCRASXLoCl6bCqako8Tnh0BS4dBVVoQSa42lEUgZ0RYZp2YgbFkRLZpooz6XC69AQSRpQJRmTivPg1BTIe5tQHUogZdqw7PYdM0wbAplA70ujAwi4NSbK0jHFgIWIhp1Dy7q38bt0VJarSBgmkqYNTZFw4rgADjQnURNJIpjnQF1LCtVhGYoiQ5MlHFeUB4emoCacRNK0YFqZD2pFlqDIEiRJQp5DhSQMCEmGS5fg0VXYABqjKagQsAHYFpAWmWmbYzVjlJmsytRQGZ3vQsLIJAS7NRkCQFM8DV2RMSpPhyRllhcDgFtX4HepGFvgxqTiPEgA3t3ZgFDcQEW5GwCgKwoUSUKx14m6lhRCCQOVBS6UBdyoCiWQtqz2uTJCoDmegiwrmBjMywYnTJSlY4kBCxENO+3Lun/xNhdL24inLYzy6LAE4FAyH9zRhIm6WBouTUE0mfmg390Yx+h8F2aPCeDDfc3YUdeCZNpCKGHAoUlwqQpMYSNlCsiKDMsWSJuAxyHBpyuIp0xoigxFliEBaI6lkDpG2zxLyIykSBAQkNAQM1Dmd6IozwHDshFNW/DoKoQQSFk23ABShgVJkhBOGvDoGqa07or80f4QttdEURowEUkYKPU74VRlhBJpFHud8Ds1NMXSiKdsjC10YVu1BiuRRn1LCqPyMm1paEnBtIETxuS128CQ6FhiwEJEw87hmx62fYAalg3DspCygdKAq3WJs4oZ5T7sbYqjMZpGYyyNiUEvxhTI8Lk0FHocOHViEXRFQW0kgYnBPOR7dNRFkthZH4NQbBQFPAjmOSBgoyVloSVlYky+G2lbwKEqCMVSUFUFlm1mN1bsLVXKFHSTJUBAhkORIGwBWRKoa0nBsGyoigyfQ0VL2sDogAuKLGNvU2aKrMTnxNiCzEjK+l2N+KQ6jIRhIZk2cdCwURNJocCtwakpqI0m4XWqiCYN7G+OQQjgy+MLoMoydtS3oDqcAARQmOfAiWPzcfLEUZ3mqHS0k/PRApveXEPDFwMWIhp2Dt/0MOh1wqkpMCwbkYSJAreOsQXu7IdfwK3D79JQH02hOe7EkspSuHUFnxyMZiusTgzmoaLAlR29gQC8Tg3TS30Y5XVAVxS4dRlVoQTWfFqHigIXVElCOGmi1OfE53VR1LcIiHRmWkkSmd2QO3Lo1NGhq4BUNVNDJeDSIMsSmuNp5Okq0paNtJWZDhrl1eGQZTTHDUiQUOJzYu74QmyuiiCeNjG2wA2npuDtzxuw5WAYuiKjyKvC49AgQUJLysDBcBKTgnlw6yo+rYmgOW4gljJR6nfhhDH5OHliITRFRn00DUCgyOvodE8g4MidnHVFRnnA3WUSbm+uoeGNAQsRDUuHl3VviKWgyzKmlHghBOB3HVkLJJY2Ma3Uj3GjMqMyQZ+z3V/4fpeKcMJEXSQJSwgUe53Ic7a/T77bgVKfE4YFTC33obEljYaWJAJuDdGUiTxHpghdgVvFnsYYYoctKZKQWeEDAQgps5dR0hRwqhJGeZ3Ic6hwqDLihoVCjwPxlAFLAG5NgdelwbYF0kLAocuYOToAl0NFPG3jn79Umg3A9jXH8VldFH6XjqkleahvMRCKp+F3ach369lAryLghCJLmDU6gBPG5kOVJdS3pPDXzxqwYEoRppR6j/o6HL6Ts1NTkDQs7KyPoqElhQVTjtwHqDfX0PDHgIWIhq2OyrqnTQt//ayh3chL0rBQF00eUSeko8TRgFtDXSSFeNqCJTLTFoeX/C/2ufBpbQQuTUblaB9iKQ/K/C68sb0OLSkTqixBVSQ4VQVpw8zcB5lgRZEAXZVR6NEhS5kKtKZtwetSUejRYQsgbtjQFQWj8hTsbrBgGiYq8l0Y5XMimbbQkjaQ73bg+HIfVFlGVSiO2WMCOH1qEUJxA1sPRvDR/jDGFrrg1jVIkoxE2kQ4YcDjUOFxKthZF4ctgKklXlSW+xFw6639ywRaW6oiON3r6HKK5vCdnNvO9ThUjNM9Hd6nN9fQyMCAhYiGtY6CjiNGXhS5W3VC2qYpPq+L4rOaKA42J1AScGFsgTv7gZ4ZmXGgKqSiJpyEQ1Xg0hSMLnChPOBGTTiOQo8D+5rjsJGpPOtRJZg2Wpcgy0iZFhKmjVEeB1RVglvPJL40xdNwqiryHJl7Jk0LLk0GoAKSQCxtQpVljCv0YmyhC36XDssW2f172n4Wo/Ic0FUJbTV7PQ4VYws9qIum0JJsq51ioiLf2S5Yyfavm5sYdraPU1f36c01NDIwYCGiEac3G+q1n6bQURZwY39zDKlGC5G4gcrRmQ92IQRSpoVTJxXB79ZwMJTIBkVfnVqEhmgKjbE0FAkoC7jweXUEKVtAgoDHocGhykikM9NGhV4NeboLJT4XaqMp1LUkMzkttkB9LIW0mUnqVWUZLl3D5KAXhXmOTDJxazCSNI7cv6fIq6PQ40Bj68ooSZJaRzAyo02f10VR7HVi7nGF7YKVNt3dxLCj5eVHu09vrqGRgQELEY1IPakTcug0RcClY1dDHM3xFJpjBgzbQq2agixJ+FKFH/UtKfjdOk6ZNAqj8nTsbYwjmjLhdagYW+hGQ0sab3/WgL2NMeS7NZQVuBFKGHCpmRGTlGlDUWQoApAh48vjCzE6342PDoQxfpQHuxtjONCUgKbIGJPvhKpIsGygoSUNpxaH36VBan1rF0KgLprEhCJvu/178j06ThiTjzc+rc1Mhbl06Epm08JI0oBTVTAq6ISmdLzdXEdBUEc6W17e1X16cw2NDAxYiIiOom2awqEq+ORgBDHDRIHHAZ9Lw8FQEtXhBD7Y24g8p4LZYwowo9wHAFi7vaHdKpfdDZlVLqdPLUJDLFNVdkZ5ADvrowjHDUgAaiJJ1EaSiKZMKLKEjw6EEEtZkKRMVdsCtw4hgAK3hpRpw+PUMLbAhT0NcRxoTsChyjhhTD5Spt1hXg6QCdZOmTQKTbE0Pq+LIhxPo209kixLOOm4AhR4HKhvScHjUNtd21kQ1JHOlpd3dZ/eXEMjAwMWIqKjSJk2UqaFUMxEzDARzGtL+FQwuVhFecCJz+tbUOR1YMGUUaiPpvDK5ho0xVMo9blQ7nchZdrZVS6nTR6FSUFv5kO50IM8h4KtB6PYuL8ZdZEkTFugIuDCmAIPqkIpbK9tQaFbh8+toTaSQqFHh5AklAbc2VwVn0uDQ1NwMJyAtz6KgEvvMi8n6HPin2eVYfOBMHbURxFPW3DrCiYWeVE52g8AWLu9vlvJyZ3pbHl5V/fpzTU0MjBgISI6CoeaqWRbG0nA7z683ogEVZZR4suUx99R24I/banGpzXR1iqxBgo8mbov4wozq1w+ORjF8WXe7IdyUZ4DTk2CDCDPqaDI60SZz4WGljQUGcjTVZjChldXEdFMeBwqJhd7URZwZnNV/C4dJ4wNwFur4rTJRajIdx81Lyfoc+Kr0xw4YWx+h7k8XSUnF3kdaI6lj5oD1OHy8qMkOffmGhr+JCFEP23NNXJEIhH4/X6Ew2H4fL7Bbg4RHWNCCLy0oQp//qQak4vyIB+a2yEEaqNJFHtdUJVM+LCtJoKiPB2aoiBhWIgZJvKdOipH+6EpMiJJA/80swyGZbeuOorg/d3NaIqlEPQ6UeZ3oj6WRnM8Db9Tg2kLxJIGCvJ06KoC07IxtjAPlaN92YAFAGIpM3vvQ/Nz+lIxtqNr66OpHhd1Y6Vb6kx3P0M5wkJEdBSSJKFytB/v7KhHVTiBoNcJTZVhmDZCiTQ8Dg1Bn47Palvg0lVoioTGmIFYKgFLCMiShMaWNBRFwknjCpC2bKRMGyX+zGql8oATddEUPA4ZowNupC2BaNKAW8vkjygyAEmCQKbgXWMsU4wulvIgz9F1gm1fK8Yenpzc26JuvdkMkRso0qGYZk1E1A2TivPwlclFcGgqYmkTjbEU4oaFUr8bM8q8CMUNAECBR0Vd655EDk2B15nZl8e0BD45GMGexli7VS5tFXWDXid0VYVhCVh25qHJmdEEyxaAEHCqCsYWeuB3aqiLphBOpGHZArGUiT2NsSPyO9qCi531UficGkYH3PA5Neysj2Lt9nrURZI9+hkcXtTN41ChyK1Logs9CCfS2FIVAQfuqT9whIWIqBskScLJE0chbdmoDSfhd2vIc2hQZKA+moJbV1GYZ6MlmdkhyLJtiNbRFVmRUeDScDCcwJaDYfzLrNFHrIyZGMzDzvoYmuOZZdGKLMGwBTQJiCUNQAZK/a7WvBXAFgJJw8aBULzD/I7+qBjLom40mBiwEBF1U9DnxOlTgtkpllAinQ0WRue78H8fHcRH+0OwbRvhhIGmmAG/S0OBW4MNAVsCUoYNl64gFDeyORmSJKGy3I89DTF8uC8EI5JJMg3HU5AkCZYQGF+Qh3Gj3IAAUqaF06cEMXtMAGlLdJjf0R/BBYu60WBiwEJE1AOdVcmta62fUhtNYkyBGz6njqZ4GuGEgWjSgCpL8DpVmLaN9bsbsbO+pV0uSdDnxNlfKkOBR8eGvc2IpIzMnkGqjOmlPswc7Ycqy9mpn8rRfhTkOTptZ38EFyzqRoOJAQsRUQ8dngwqhMAnB6PwuzUUeBxoSZnwOXWU+hzwu1VUNSdhC4F8twa/S8eYAg9UWToiUTXoc+Lc2eU4bXIR6ltL+NdHk4gkzNb9fexuL+3tj+CCRd1oMDFgISLqo7bpl+NLfbBsge21UaRMEwkByLIEr0NFyjTh1DWUBFzwOTOrfzrKJZEkCQV5juzoSW+X9vZHcMGibjSYGLAQEfVR2/SLS1cxvTVoCcUNeByZ6ZhdZgvSlgyHKmFsgTv7gd5RLklHAUpvElj7K7hgUTcaLAxYiIj66NDpl4BbR2W5H3ub4miKpRFJGEikLRS6dcwoCxyx+/GhuSR9rZlyuP4KLnqz2zVRXzFgISLqo8OnXwJuHX6XhljKQnM8jVjKxIQiD8oCRwYIbbkkkYSBTftDPS7IdjT9FVywqBsNNKZyExH1Udv0i9+lY09jDLGUCVsAkgQYto2xhR649CP/PmzLJSnzu7C/Od5vBdnagosSvxP5nsP3QiIaGhiwEBEdA23TLxOKvIgkDRwIxRFJGphY5MXX54zG6Hx3Npg5vDptRYEbB0OJbtVMIRqpOCVERHSMdDX9MirP0WkuiS3AgmxER8GAhYjoGOost6OrYKY5lmZBNqKj4G8/EdEA6SyXpC1pty6aPCJPpS3PpTzgZkE2GtEYsBARDbKOkna72oWZaCRiwEJElAM6S9odX5SHWaMDsAXQHEv3eqUQ0VA3ZAKWpqYmLFu2DD6fD4FAAJdddhlaWlq6vGbBggXZUtdtj29/+9vtztm3bx/OOussuN1uBINBfPe734Vpmv3ZFSKiDgV9Tpw+tQj/NLMMZ1WWYe5xhYAA1u9uxJ82H8QfPz6INz+tR10kOdhNJRpwQybpdtmyZaiursbq1athGAYuvfRSrFixAs8991yX111xxRW48847s1+73e7s/1uWhbPOOgslJSV47733UF1djYsuugiapuGee+7pt74QEXWmLc+lLpLsl0JyREPVkBhh2bZtG1599VU8+eSTmDt3Lk455RQ8+uijeP7553Hw4MEur3W73SgpKck+fD5f9rnXXnsNW7duxf/8z/9g1qxZOPPMM3HXXXfhscceQzqd7u9uERF1SAiBLVWRfiskRzQUDYmAZd26dQgEApgzZ0722KJFiyDLMtavX9/ltc8++yxGjRqFGTNm4JZbbkE8Hm9338rKShQXF2ePnXHGGYhEIvjkk086vWcqlUIkEmn3ICI6Vtp2f2YhOaIvDIkpoZqaGgSDwXbHVFVFQUEBampqOr3uwgsvxNixY1FWVoaPP/4YN910E7Zv346XXnope99DgxUA2a+7uu+9996L//zP/+xtd4iIutS2+zMLyRF9YVADlptvvhk/+tGPujxn27Ztvb7/ihUrsv9fWVmJ0tJSLFy4EDt37sSECRN6fd9bbrkF119/ffbrSCSCioqKXt+PiOhQh+7+zEJyRBmDGrDccMMNuOSSS7o8Z/z48SgpKUFdXV2746ZpoqmpCSUlJd3+fnPnzgUA7NixAxMmTEBJSQnef//9dufU1tYCQJf3dTgccDgc3f6+REQ9cfjuz4dOC7UVkptQ5GUhORpRBjVgKSoqQlFR0VHPmzdvHkKhEDZs2IATTzwRAPDGG2/Atu1sENIdmzZtAgCUlpZm73v33Xejrq4uO+W0evVq+Hw+TJ8+vYe9ISI6NtoKyTW0pLCnMdZulVBdNMlCcjQiSWKIpJmfeeaZqK2txRNPPJFd1jxnzpzssuaqqiosXLgQv/rVr3DSSSdh586deO6557BkyRIUFhbi448/xnXXXYfRo0fjr3/9K4DMsuZZs2ahrKwM999/P2pqarB8+XJcfvnlPVrWHIlE4Pf7EQ6H261CIiLqi7pIMrthYtqyoSsyygNuzCj3cUkzDRvd/QwdEkm3QGa1z8qVK7Fw4ULIsoylS5fikUceyT5vGAa2b9+eXQWk6zpef/11PPzww4jFYqioqMDSpUtx2223Za9RFAV//OMf8Z3vfAfz5s2Dx+PBxRdf3K5uCxHRYOlqw0SikWbIjLDkMo6wEBER9U53P0OZYk5EREQ5jwELERER5TwGLERERJTzGLAQERFRzmPAQkRERDmPAQsRERHlPAYsRERElPMYsBAREVHOY8BCREREOY8BCxEREeU8BixERESU8xiwEBERUc5jwEJEREQ5jwELERER5TwGLERERJTzGLAQERFRzmPAQkRERDmPAQsRERHlPAYsRERElPMYsBAREVHOY8BCREREOY8BCxEREeU8BixERESU8xiwEBERUc5jwEJEREQ5jwELERER5TwGLERERJTz1MFuABENDUIIhOIGUqYNhyoj4NYgSdJgN4uIRggGLER0VHWRJLZURVAViiNt2dAVGeUBN2aU+xD0OQe7eUQ0AjBgIaIu1UWSWLu9HuFEGkGvE05NQdKwsLM+ioaWFBZMKWLQQkT9jjksRNQpIQS2VEUQTqQxrtADj0OFIkvwOFSMK/QgnEhjS1UEQojBbioRDXMMWIioU6G4gapQHEGv84h8FUmSEPQ6URWKIxQ3BqmFRDRSMGAhok6lTBtpy4ZTUzp83qkpSFs2UqY9wC3rf0IINMfSqAkn0RxLcxSJaJAxh4WIOuVQZeiKjKRhweM48u0iaVjQFRkOdXj97cMkY6LcM7zeZYjomAq4NZQH3KiLJo8YYRBCoC6aRHnAjYBbG6QWHnttScY766PwOTWMDrjhc2rYWR/F2u31qIskB7uJRCMSAxYi6pQkSZhR7oPfpWNPYwyxlAnLFoilTOxpjMHv1jGj3Dds6rEwyZgodzFgIaIuBX1OLJhShAlFXkSSBg6E4ogkDUwo8mLB5OG1pJlJxkS5izksRHRUQZ8Tp3sdw77SbXeSjBtiqWGZZEyU6xiwEFG3SJKEfI8+2M3oVyM1yZhoKOC/OiKiViMxyZhoqGDAQkTUaqQlGRMNJZwSIiI6RFuScVsdloZYCroiY0KRl3VYiAYRAxYiosOMlCRjoqGEAQsRUQdGQpIx0VDCHBYiIiLKeQxYiIiIKOcxYCEiIqKcx4CFiIiIch4DFiIiIsp5XCVElOOEEFxeS0QjHgMWohxWF0lmC5ilLRu6IqM84GYBMyIacRiwEOWoukgSa7fXI5xII+h1wqkpSBoWdtZH0dCSwoIpRQxaiGjEYA4LUQ4SQmBLVQThRBrjCj3wOFQosgSPQ8W4Qg/CiTS2VEWO2KCPiGi4GjIBS1NTE5YtWwafz4dAIIDLLrsMLS0tnZ6/Z88eSJLU4ePFF1/MntfR888///xAdImoU6G4gapQHEGv84h8FUmSEPQ6URWKIxQ3BqmFREQDa8hMCS1btgzV1dVYvXo1DMPApZdeihUrVuC5557r8PyKigpUV1e3O/azn/0MP/7xj3HmmWe2O/70009j8eLF2a8DgcAxbz9RT6RMG2nLhlNTOnzeqSloiKWQMu0BbhkR0eAYEgHLtm3b8Oqrr+KDDz7AnDlzAACPPvoolixZggceeABlZWVHXKMoCkpKStodW7VqFc477zzk5eW1Ox4IBI44tyupVAqpVCr7dSQS6Ul3iI7KocrQFRlJw4LHceQ/06RhQVdkONQhM0hKRNQnQ+Ldbt26dQgEAtlgBQAWLVoEWZaxfv36bt1jw4YN2LRpEy677LIjnrv66qsxatQonHTSSXjqqaeOmhdw7733wu/3Zx8VFRU96xDRUQTcGsoDbtRFk0f8PgohUBdNojzgRsCtDVILiYgG1pAIWGpqahAMBtsdU1UVBQUFqKmp6dY9fvGLX2DatGmYP39+u+N33nknfvOb32D16tVYunQprrrqKjz66KNd3uuWW25BOBzOPvbv39+zDhEdhSRJmFHug9+lY09jDLGUCcsWiKVM7GmMwe/WMaPcx3osRDRiDOqU0M0334wf/ehHXZ6zbdu2Pn+fRCKB5557Dt///vePeO7QY7Nnz0YsFsOPf/xjXHPNNZ3ez+FwwOFw9LldRF0J+pxYMKUoW4elIZaCrsiYUORlHRYiGnEGNWC54YYbcMkll3R5zvjx41FSUoK6urp2x03TRFNTU7dyT377298iHo/joosuOuq5c+fOxV133YVUKsWghAZd0OfE6V4HK90S0Yg3qAFLUVERioqKjnrevHnzEAqFsGHDBpx44okAgDfeeAO2bWPu3LlHvf4Xv/gF/vmf/7lb32vTpk3Iz89nsEI5Q5Ik5Hv0wW4GEdGgGhKrhKZNm4bFixfjiiuuwBNPPAHDMLBy5Up84xvfyK4QqqqqwsKFC/GrX/0KJ510UvbaHTt24K233sIrr7xyxH3/7//+D7W1tfjyl78Mp9OJ1atX45577sGNN944YH0jIiKioxsSAQsAPPvss1i5ciUWLlwIWZaxdOlSPPLII9nnDcPA9u3bEY/H21331FNPYfTo0fjHf/zHI+6paRoee+wxXHfddRBCYOLEiXjwwQdxxRVX9Ht/iIiIqPskwdrefRaJROD3+xEOh+Hz+Qa7OURERENGdz9Dh8SyZiIiIhrZGLAQERFRzmPAQkRERDmPAQsRERHlPAYsRERElPMYsBAREVHOY8BCREREOY8BCxEREeU8BixERESU8xiwEBERUc5jwEJEREQ5jwELERER5TwGLERERJTzGLAQERFRzmPAQkRERDmPAQsRERHlPAYsRERElPMYsBAREVHOUwe7AUREuUAIgVDcQMq04VBlBNwaJEka7GYRUSsGLEQ04tVFkthSFUFVKI60ZUNXZJQH3JhR7kPQ5xzs5hERGLAQ0QhXF0li7fZ6hBNpBL1OODUFScPCzvooGlpSWDCliEELUQ5gDgsRjVhCCGypiiCcSGNcoQcehwpFluBxqBhX6EE4kcaWqgiEEIPdVKIRjwELEY1YobiBqlAcQa/ziHwVSZIQ9DpRFYojFDcGqYVE1IYBCxGNWCnTRtqy4dSUDp93agrSlo2UaQ9wy4jocAxYiGjEcqgydEVG0rA6fD5pWNAVGQ6Vb5VEg43/ColoxAq4NZQH3KiLJo/IUxFCoC6aRHnAjYBbG6QWElEbBixENGJJkoQZ5T74XTr2NMYQS5mwbIFYysSexhj8bh0zyn2sx0KUA7ismYhGtKDPiQVTirJ1WBpiKeiKjAlFXtZhIcohDFiIaMQL+pw43evoU6VbVsol6l8MWIiIkJkeyvfovbqWlXKJ+h8DFiKiPmClXKKBwaRbIqJeYqVcooHDgIWIqJdYKZdo4DBgISLqJVbKJRo4DFiIiHqJlXKJBg7/FRER9RIr5RINHAYsRES9xEq5RAOHy5qJiPqAlXKJBgYDFiKiPjoWlXKJqGsMWIiIjoG+VMoloqNjDgsRERHlPAYsRERElPMYsBAREVHOYw4LEfU7IQQTUomoTxiwEFG/qosks0t+05YNXZFRHnBzyS8R9QgDFiLqN3WRJNZur0c4kUbQ64RTU5A0LOysj6KhJYUFU4oYtBBRtzCHhYj6hRACW6oiCCfSGFfogcehQpEleBwqxhV6EE6ksaUqckRJeyKijjBgIaJ+EYobqArFEfQ6j8hXkSQJQa8TVaE4QnFjkFpIREMJAxYi6hcp00basuHUlA6fd2oK0paNlGkPcMuIaChiwEJE/cKhytAVGUnD6vD5pGFBV2Q4VL4NEdHR8Z2CiPpFwK2hPOBGXTR5RJ6KEAJ10STKA24E3NogtZCIhhIGLETULyRJwoxyH/wuHXsaY4ilTFi2QCxlYk9jDH63jhnlPtZjIaJuGTIBy91334358+fD7XYjEAh06xohBH7wgx+gtLQULpcLixYtwueff97unKamJixbtgw+nw+BQACXXXYZWlpa+qEHRCNP0OfEgilFmFDkRSRp4EAojkjSwIQiLxZM5pJmIuq+IROwpNNpfP3rX8d3vvOdbl9z//3345FHHsETTzyB9evXw+Px4IwzzkAymcyes2zZMnzyySdYvXo1/vjHP+Ktt97CihUr+qMLRCNS0OfE6VOL8E8zy3BWZRn+aWYZTp/KYIWIekYSQ6wIwjPPPINrr70WoVCoy/OEECgrK8MNN9yAG2+8EQAQDodRXFyMZ555Bt/4xjewbds2TJ8+HR988AHmzJkDAHj11VexZMkSHDhwAGVlZd1qUyQSgd/vRzgchs/n61P/iIiIRpLufoYOmRGWntq9ezdqamqwaNGi7DG/34+5c+di3bp1AIB169YhEAhkgxUAWLRoEWRZxvr16zu9dyqVQiQSafcgIiKi/jNsA5aamhoAQHFxcbvjxcXF2edqamoQDAbbPa+qKgoKCrLndOTee++F3+/PPioqKo5x64mIiOhQgxqw3HzzzZAkqcvHp59+OphN7NAtt9yCcDicfezfv3+wm0RERDSsDermhzfccAMuueSSLs8ZP358r+5dUlICAKitrUVpaWn2eG1tLWbNmpU9p66urt11pmmiqakpe31HHA4HHA5Hr9pFREREPTeoAUtRURGKior65d7HHXccSkpKsGbNmmyAEolEsH79+uxKo3nz5iEUCmHDhg048cQTAQBvvPEGbNvG3Llz+6VdRERE1HNDJodl37592LRpE/bt2wfLsrBp0yZs2rSpXc2UqVOnYtWqVQAyRauuvfZa/PCHP8TLL7+MzZs346KLLkJZWRnOPfdcAMC0adOwePFiXHHFFXj//ffx7rvvYuXKlfjGN77R7RVCRERE1P8GdYSlJ37wgx/gl7/8Zfbr2bNnAwDefPNNLFiwAACwfft2hMPh7Dnf+973EIvFsGLFCoRCIZxyyil49dVX4XR+Uf/h2WefxcqVK7Fw4ULIsoylS5fikUceGZhOERERUbcMuTosuYh1WIiIiHpnxNdhISIiouGDAQsRERHlPAYsRERElPMYsBAREVHOY8BCREREOW/ILGvOZW0LrbgJIhERUc+0fXYebdEyA5ZjoLGxEQC4CSIREVEvRaNR+P3+Tp9nwHIMFBQUAMhU4+3qhz1URSIRVFRUYP/+/cO2zsxw7+Nw7x8w/PvI/g19w72Pve2fEALRaPSoFeYZsBwDspxJBfL7/cPyl7CNz+cb1v0Dhn8fh3v/gOHfR/Zv6BvufexN/7rzxz6TbomIiCjnMWAhIiKinMeA5RhwOBy4/fbb4XA4Brsp/WK49w8Y/n0c7v0Dhn8f2b+hb7j3sb/7x80PiYiIKOdxhIWIiIhyHgMWIiIiynkMWIiIiCjnMWAhIiKinMeApZeampqwbNky+Hw+BAIBXHbZZWhpaTnqdevWrcNXv/pVeDwe+Hw+fOUrX0EikRiAFvdMb/sHZKoWnnnmmZAkCb///e/7t6G91NP+NTU14d/+7d8wZcoUuFwujBkzBtdccw3C4fAAtrprjz32GMaNGwen04m5c+fi/fff7/L8F198EVOnToXT6URlZSVeeeWVAWpp7/Skfz//+c9x6qmnIj8/H/n5+Vi0aNFRfx65oKevYZvnn38ekiTh3HPP7d8G9lFP+xcKhXD11VejtLQUDocDkydPHla/pwDw8MMPZ99XKioqcN111yGZTA5Qa3vmrbfewtlnn42ysrJuv7+vXbsWJ5xwAhwOByZOnIhnnnmm9w0Q1CuLFy8WX/rSl8Tf/vY38fbbb4uJEyeKCy64oMtr3nvvPeHz+cS9994rtmzZIj799FPxwgsviGQyOUCt7r7e9K/Ngw8+KM4880wBQKxatap/G9pLPe3f5s2bxde+9jXx8ssvix07dog1a9aISZMmiaVLlw5gqzv3/PPPC13XxVNPPSU++eQTccUVV4hAICBqa2s7PP/dd98ViqKI+++/X2zdulXcdtttQtM0sXnz5gFueff0tH8XXniheOyxx8TGjRvFtm3bxCWXXCL8fr84cODAALe8+3raxza7d+8W5eXl4tRTTxXnnHPOwDS2F3rav1QqJebMmSOWLFki3nnnHbF7926xdu1asWnTpgFueff1tI/PPvuscDgc4tlnnxW7d+8Wf/nLX0Rpaam47rrrBrjl3fPKK6+IW2+9Vbz00kvden/ftWuXcLvd4vrrrxdbt24Vjz76qFAURbz66qu9+v4MWHph69atAoD44IMPssf+/Oc/C0mSRFVVVafXzZ07V9x2220D0cQ+6W3/hBBi48aNory8XFRXV+dswNKX/h3qN7/5jdB1XRiG0R/N7JGTTjpJXH311dmvLcsSZWVl4t577+3w/PPOO0+cddZZ7Y7NnTtXXHnllf3azt7qaf8OZ5qm8Hq94pe//GV/NbHPetNH0zTF/PnzxZNPPikuvvjinA5Yetq/xx9/XIwfP16k0+mBamKf9bSPV199tfjqV7/a7tj1118vTj755H5t57HQnff3733ve+L4449vd+z8888XZ5xxRq++J6eEemHdunUIBAKYM2dO9tiiRYsgyzLWr1/f4TV1dXVYv349gsEg5s+fj+LiYpx22ml45513BqrZ3dab/gFAPB7HhRdeiMceewwlJSUD0dRe6W3/DhcOh+Hz+aCqg7slVzqdxoYNG7Bo0aLsMVmWsWjRIqxbt67Da9atW9fufAA444wzOj1/MPWmf4eLx+MwDCO7UWmu6W0f77zzTgSDQVx22WUD0cxe603/Xn75ZcybNw9XX301iouLMWPGDNxzzz2wLGugmt0jvenj/PnzsWHDhuy00a5du/DKK69gyZIlA9Lm/nas32e4+WEv1NTUIBgMtjumqioKCgpQU1PT4TW7du0CANxxxx144IEHMGvWLPzqV7/CwoULsWXLFkyaNKnf291dvekfAFx33XWYP38+zjnnnP5uYp/0tn+HamhowF133YUVK1b0RxN7pKGhAZZlobi4uN3x4uJifPrppx1eU1NT0+H53e3/QOpN/w530003oays7Ig3z1zRmz6+8847+MUvfoFNmzYNQAv7pjf927VrF9544w0sW7YMr7zyCnbs2IGrrroKhmHg9ttvH4hm90hv+njhhReioaEBp5xyCoQQME0T3/72t/Ef//EfA9HkftfZ+0wkEkEikYDL5erR/TjCcoibb74ZkiR1+ejuG+ThbNsGAFx55ZW49NJLMXv2bDz00EOYMmUKnnrqqWPZjU71Z/9efvllvPHGG3j44YePbaN7oD/7d6hIJIKzzjoL06dPxx133NH3hlO/uu+++/D8889j1apVcDqdg92cYyIajWL58uX4+c9/jlGjRg12c/qFbdsIBoP42c9+hhNPPBHnn38+br31VjzxxBOD3bRjZu3atbjnnnvw3//93/jwww/x0ksv4U9/+hPuuuuuwW5aTuIIyyFuuOEGXHLJJV2eM378eJSUlKCurq7dcdM00dTU1OlUSGlpKQBg+vTp7Y5PmzYN+/bt632je6A/+/fGG29g586dCAQC7Y4vXboUp556KtauXduHlndPf/avTTQaxeLFi+H1erFq1SpomtbXZvfZqFGjoCgKamtr2x2vra3ttD8lJSU9On8w9aZ/bR544AHcd999eP311zFz5sz+bGaf9LSPO3fuxJ49e3D22Wdnj7X9UaSqKrZv344JEyb0b6N7oDevYWlpKTRNg6Io2WPTpk1DTU0N0uk0dF3v1zb3VG/6+P3vfx/Lly/H5ZdfDgCorKxELBbDihUrcOutt0KWh/aYQmfvMz6fr8ejKwADlnaKiopQVFR01PPmzZuHUCiEDRs24MQTTwSQ+cC2bRtz587t8Jpx48ahrKwM27dvb3f8s88+w5lnntn3xndDf/bv5ptvzv6ja1NZWYmHHnqo3Ztqf+rP/gGZkZUzzjgDDocDL7/8cs78ta7rOk488USsWbMmu6zVtm2sWbMGK1eu7PCaefPmYc2aNbj22muzx1avXo158+YNQIt7pjf9A4D7778fd999N/7yl7+0y1fKRT3t49SpU7F58+Z2x2677TZEo1H85Cc/QUVFxUA0u9t68xqefPLJeO6552DbdvaD+7PPPkNpaWnOBStA7/oYj8ePCEraAjQxDLb5mzdv3hHL0Pv0PtOrVF0SixcvFrNnzxbr168X77zzjpg0aVK7ZbEHDhwQU6ZMEevXr88ee+ihh4TP5xMvvvii+Pzzz8Vtt90mnE6n2LFjx2B0oUu96d/hkKOrhIToef/C4bCYO3euqKysFDt27BDV1dXZh2mag9WNrOeff144HA7xzDPPiK1bt4oVK1aIQCAgampqhBBCLF++XNx8883Z8999912hqqp44IEHxLZt28Ttt9+e88uae9K/++67T+i6Ln7729+2e62i0ehgdeGoetrHw+X6KqGe9m/fvn3C6/WKlStXiu3bt4s//vGPIhgMih/+8IeD1YWj6mkfb7/9duH1esX//u//il27donXXntNTJgwQZx33nmD1YUuRaNRsXHjRrFx40YBQDz44INi48aNYu/evUIIIW6++WaxfPny7Plty5q/+93vim3btonHHnuMy5oHQ2Njo7jgggtEXl6e8Pl84tJLL233Zrh7924BQLz55pvtrrv33nvF6NGjhdvtFvPmzRNvv/32ALe8e3rbv0PlcsDS0/69+eabAkCHj927dw9OJw7z6KOPijFjxghd18VJJ50k/va3v2WfO+2008TFF1/c7vzf/OY3YvLkyULXdXH88ceLP/3pTwPc4p7pSf/Gjh3b4Wt1++23D3zDe6Cnr+Ghcj1gEaLn/XvvvffE3LlzhcPhEOPHjxd33313TvyB0JWe9NEwDHHHHXeICRMmCKfTKSoqKsRVV10lmpubB77h3dDZ+2Bbny6++GJx2mmnHXHNrFmzhK7rYvz48eLpp5/u9feXhBgG405EREQ0rA3tjB4iIiIaERiwEBERUc5jwEJEREQ5jwELERER5TwGLERERJTzGLAQERFRzmPAQkRERDmPAQsRERHlPAYsRDRiSZKE3//+9wCAPXv2QJIkbNq0aVDbREQdY8BCRASgoqIC1dXVmDFjxjG977hx4/Dwww8f03sSjUQMWIhoWEun0906T1EUlJSUQFW5iT1RLmLAQkS9Ul9fj5KSEtxzzz3ZY++99x50XceaNWs6ve7AgQO44IILUFBQAI/Hgzlz5mD9+vXZ5x9//HFMmDABuq5jypQp+PWvf93u+n379uGcc85BXl4efD4fzjvvPNTW1mafv+OOOzBr1iw8+eSTOO644+B0OgEAn3/+Ob7yla/A6XRi+vTpWL16dbv7Hj4ltHbtWkiShDVr1mDOnDlwu92YP38+tm/fnr1m586dOOecc1BcXIy8vDz8wz/8A15//fXs8wsWLMDevXtx3XXXQZIkSJKUfe6dd97BqaeeCpfLhYqKClxzzTWIxWLd+dETjUgMWIioV4qKivDUU0/hjjvuwN///ndEo1EsX74cK1euxMKFCzu8pqWlBaeddhqqqqrw8ssv46OPPsL3vvc92LYNAFi1ahX+/d//HTfccAO2bNmCK6+8EpdeeinefPNNAIBt2zjnnHPQ1NSEv/71r1i9ejV27dqF888/v9332bFjB373u9/hpZdewqZNm2DbNr72ta9B13WsX78eTzzxBG666aZu9fPWW2/Ff/3Xf+Hvf/87VFXFt771rXb9WbJkCdasWYONGzdi8eLFOPvss7Fv3z4AwEsvvYTRo0fjzjvvRHV1NaqrqwFkAp3Fixdj6dKl+Pjjj/HCCy/gnXfewcqVK3v2IhCNJL3e55mISAhx1VVXicmTJ4sLL7xQVFZWimQy2em5P/3pT4XX6xWNjY0dPj9//nxxxRVXtDv29a9/XSxZskQIIcRrr70mFEUR+/btyz7/ySefCADi/fffF0IIcfvttwtN00RdXV32nL/85S9CVVVRVVWVPfbnP/9ZABCrVq0SQgixe/duAUBs3LhRCCHEm2++KQCI119/PXvNn/70JwFAJBKJTvt4/PHHi0cffTT79dixY8VDDz3U7pzLLrtMrFixot2xt99+W8iy3OW9iUYyjrAQUZ888MADME0TL774Ip599lk4HI5Oz920aRNmz56NgoKCDp/ftm0bTj755HbHTj75ZGzbti37fEVFBSoqKrLPT58+HYFAIHsOAIwdOxZFRUXt7ltRUYGysrLssXnz5nWrfzNnzsz+f2lpKQCgrq4OQGaE5cYbb8S0adMQCASQl5eHbdu2ZUdYOvPRRx/hmWeeQV5eXvZxxhlnwLZt7N69u1vtIhppmF1GRH2yc+dOHDx4ELZtY8+ePaisrOz0XJfLNSBt8ng8x+xemqZl/78tB6VtCuvGG2/E6tWr8cADD2DixIlwuVz413/916Mm+ra0tODKK6/ENddcc8RzY8aMOWZtJxpOGLAQUa+l02l885vfxPnnn48pU6bg8ssvx+bNmxEMBjs8f+bMmXjyySfR1NTU4SjLtGnT8O677+Liiy/OHnv33Xcxffr07PP79+/H/v37s6MsW7duRSgUyp7Tkbbrqqurs6Mkf/vb33rd70Pbdskll+Bf/uVfAGQCkT179rQ7R9d1WJbV7tgJJ5yArVu3YuLEiX1uA9FIwSkhIuq1W2+9FeFwGI888ghuuukmTJ48uV1S6uEuuOAClJSU4Nxzz8W7776LXbt24Xe/+x3WrVsHAPjud7+LZ555Bo8//jg+//xzPPjgg3jppZdw4403AgAWLVqEyspKLFu2DB9++CHef/99XHTRRTjttNMwZ86cTr/vokWLMHnyZFx88cX46KOP8Pbbb+PWW2/tc/8nTZqUTez96KOPcOGFF2ZHX9qMGzcOb731FqqqqtDQ0AAAuOmmm/Dee+9h5cqV2LRpEz7//HP84Q9/YNItURcYsBBRr6xduxYPP/wwfv3rX8Pn80GWZfz617/G22+/jccff7zDa3Rdx2uvvYZgMIglS5agsrIS9913HxRFAQCce+65+MlPfoIHHngAxx9/PH7605/i6aefxoIFCwBkpmT+8Ic/ID8/H1/5ylewaNEijB8/Hi+88EKXbZVlGatWrUIikcBJJ52Eyy+/HHfffXeffwYPPvgg8vPzMX/+fJx99tk444wzcMIJJ7Q7584778SePXswYcKEbF7NzJkz8de//hWfffYZTj31VMyePRs/+MEP2uXYEFF7khBCDHYjiIiIiLrCERYiIiLKeQxYiIiIKOcxYCEiIqKcx4CFiIiIch4DFiIiIsp5DFiIiIgo5zFgISIiopzHgIWIiIhyHgMWIiIiynkMWIiIiCjnMWAhIiKinPf/AAA0563SV9KYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(6,6))\n", "plt.scatter(y[:,0], y[:,1], alpha=0.3)\n", "plt.xlabel('x coordinate')\n", "plt.ylabel('y coordinate')\n", "plt.title('Distribution of first keypoint (raw)')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "dc6c82ed-b1e6-4104-988a-e5760751c9a8", "metadata": {}, "source": [ "The first facial keypoint shows a clear cluster in the center of the image, with some outliers at the edges." ] }, { "cell_type": "code", "execution_count": 42, "id": "e83cb297-4272-46f2-8f56-f46818b7da35", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAG/CAYAAABsakt5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXmQZNlV33+ysrasrL2ql+np0WhGjJAlZEEICQH+YfaRw0iBkZCBICyxG4yMsQEbQligYLEVIHAgzBqAWe0QyBhsbRaI8CIU2IGwQSPESDPSzPQy3V1rVlXWmvn7o+N76/O+dV929Uiaqsb3RFRUVeZ799177rnnfM9y72v0+/1+FCpUqFChQoUKFSpUqFChQncoDZ10BwoVKlSoUKFChQoVKlSoUKGPh4pjW6hQoUKFChUqVKhQoUKF7mgqjm2hQoUKFSpUqFChQoUKFbqjqTi2hQoVKlSoUKFChQoVKlTojqbi2BYqVKhQoUKFChUqVKhQoTuaimNbqFChQoUKFSpUqFChQoXuaCqObaFChQoVKlSoUKFChQoVuqOpOLaFChUqVKhQoUKFChUqVOiOpuLYFipUqFChQoUKFSpUqFChO5qKY1uoUKFChT6p1Gg04gd+4AdOuhvHol/5lV+JRqMRH/3oR2/73j/6oz+KRqMRf/RHf/QJ79et6OPpd6FChQoVKvTXgYpjW6hQoUJ3AP35n/95vPKVr4x77703xsfH4+67744v+ZIviZ/6qZ866a497fQjP/Ij8bu/+7sn3Y1ChQoVKlSo0CmiRr/f7590JwoVKlSoUD29973vjS/4gi+IZzzjGfHqV786zp8/H48//ni8733vi4985CPx4Q9/+KS7OJAajUa8/vWv/4RlbScnJ+OVr3xl/Mqv/MonpD3SwcFB7O3txdjYWDQajdu6t9frxe7uboyOjsbQ0NMbN/54+l2oUKFChQr9daDhk+5AoUKFChUaTD/8wz8cMzMz8b/+1/+K2dnZynfXrl07mU7dIbS5uRntdvvY1zebzWg2m0/pWUNDQzE+Pv6U7v146ePpd6FChQoVKvTXgUopcqFChQqdcvrIRz4Sz3ve8444tRERZ8+erfz/y7/8y/GFX/iFcfbs2RgbG4vnPve58TM/8zNH7nvmM58ZX/ZlXxZ/9Ed/FJ/5mZ8ZrVYrnv/856f9oW9961vj+c9/foyPj8cLX/jCeP/731+5/zWveU1MTk7GI488Eg8++GC02+24cOFCvOENb4jjFAJdunQpvv7rvz7OnTsXY2Nj8bznPS9+6Zd+6Zb3NRqN2NzcjH/37/5dNBqNaDQa8ZrXvCYiIn7gB34gGo1GPPTQQ/E1X/M1MTc3F3/rb/2tiIj4v//3/8ZrXvOauP/++2N8fDzOnz8fX//1Xx9LS0uV9nN7VcWr//E//ke8+MUvjvHx8bj//vvjV3/1Vyv35vbYfv7nf3582qd9Wjz00EPxBV/wBTExMRF33313vPGNbzwyto997GPx8pe/PNrtdpw9eza+8zu/M975zncea9/uoH4/1Tk+Ls809s/8zM+M8fHxeNaznhU/93M/l+bD6dd//dfjhS98YbRarZifn4+v+qqviscff7xyzcMPPxyveMUr4vz58zE+Ph4XL16Mr/qqr4q1tbWBfChUqFChQv/vUsnYFipUqNApp3vvvTf++I//OP7iL/4iPu3TPm3gtT/zMz8Tz3ve8+LlL395DA8Px+///u/Ht33bt0Wv14t/9I/+UeXaD3/4w/E1X/M18S3f8i3xtV/7tfFjP/Zj8bKXvSx+9md/Nr7v+74vvu3bvi0iIn70R380XvWqV8WHPvShSontwcFBvPSlL42XvOQl8cY3vjHe8Y53xOtf//rY39+PN7zhDbV9fPLJJ+MlL3lJNBqN+PZv//Y4c+ZMvP3tb49v+IZviPX19fgn/+Sf1N77a7/2a/GN3/iN8eIXvzi++Zu/OSIinvWsZ1Wu+cqv/Mp44IEH4kd+5EeSk/1f/+t/jUceeSS+7uu+Ls6fPx8f+MAH4ud//ufjAx/4QLzvfe+7Zfnuhz/84XjlK18Z3/AN3xCvfvWr45d+6ZfiNa95TbzwhS+M5z3veQPvXVlZiZe+9KXxFV/xFfGqV70qfvu3fzv++T//5/H85z8//s7f+TsRcTOz/IVf+IVx5cqV+I7v+I44f/58/OZv/ma85z3vGdj2rejjmePj8uz9739/vPSlL4277rorfvAHfzAODg7iDW94Q5w5c+ZIf374h384vv/7vz9e9apXxTd+4zfG9evX46d+6qfi8z7v8+L9739/zM7Oxu7ubjz44IOxs7MTr33ta+P8+fNx6dKl+M//+T/H6upqzMzMfFw8KVSoUKFCf02pX6hQoUKFTjW9613v6jebzX6z2ex/9md/dv97vud7+u985zv7u7u7R67d2to68tmDDz7Yv//++yuf3Xvvvf2I6L/3ve9Nn73zne/sR0S/1Wr1P/axj6XPf+7nfq4fEf33vOc96bNXv/rV/Yjov/a1r02f9Xq9/t/9u3+3Pzo62r9+/Xr6PCL6r3/969P/3/AN39C/6667+jdu3Kj06au+6qv6MzMz2TGQ2u12/9WvfvWRz1//+tf3I6L/1V/91Ue+y7X5W7/1W/2I6P+3//bf0me//Mu/3I+I/qOPPpo+E6943bVr1/pjY2P9f/bP/ln67D3vec8RPv3tv/23+xHR/9Vf/dX02c7OTv/8+fP9V7ziFemzH//xH+9HRP93f/d302fdbrf/nOc850ibORrU76c6x8fl2cte9rL+xMRE/9KlS+mzhx9+uD88PNwnzPjoRz/abzab/R/+4R+utPnnf/7n/eHh4fT5+9///n5E9N/ylrcMHHOhQoUKFSpEKqXIhQoVKnTK6Uu+5Evij//4j+PlL395/J//83/ijW98Yzz44INx9913x+/93u9Vrm21WunvtbW1uHHjRvztv/2345FHHjlSxvnc5z43PvuzPzv9/1mf9VkREfGFX/iF8YxnPOPI54888siRvn37t397+lsZ2N3d3Xj3u9+dHUu/34/f+Z3fiZe97GXR7/fjxo0b6efBBx+MtbW1+NM//dPjsiZL//Af/sMjn5Ev29vbcePGjXjJS14SEXGs5z33uc+N/+//+//S/2fOnIlP/dRPzfLEaXJyMr72a782/T86OhovfvGLK/e+4x3viLvvvjte/vKXp8/Gx8fjm77pm27Z/q36/VTn+Dg8Ozg4iHe/+93x5V/+5XHhwoV0/ad8yqekbLTorW99a/R6vXjVq15Vmffz58/HAw88kLLTysi+853vjK2trY9r/IUKFSpU6P8dKo5toUKFCt0B9KIXvSje+ta3xsrKSvzJn/xJfO/3fm90Op145StfGQ899FC67n/+z/8ZX/zFXxztdjtmZ2fjzJkz8X3f930REUccWzo2EYcOxT333JP9fGVlpfL50NBQ3H///ZXPnv3sZ0dE1L5P9fr167G6uho///M/H2fOnKn8fN3XfV1EfPwHYt13331HPlteXo7v+I7viHPnzkWr1YozZ86k646zb9N5FRExNzd3hCc5unjx4pFSZ7/3Yx/7WDzrWc86ct2nfMqn3LL9QfTxzPFxeHbt2rXodrvZfvpnDz/8cPT7/XjggQeOzP0HP/jBNO/33Xdf/NN/+k/jF3/xF2NxcTEefPDB+Omf/umyv7ZQoUKFCg2ksse2UKFChe4gGh0djRe96EXxohe9KJ797GfH133d18Vb3vKWeP3rXx8f+chH4ou+6IviOc95TrzpTW+Ke+65J0ZHR+Ntb3tb/MRP/ET0er1KW3Wn6NZ93v8EvB1Offjar/3aePWrX5295m/+zb/5cT2DmUbRq171qnjve98b3/3d3x2f/umfHpOTk9Hr9eKlL33pEb7k6OPhySeTn0/12cfp08fLM6derxeNRiPe/va3Z58/OTmZ/v7xH//xeM1rXhP/6T/9p3jXu94V//gf/+P40R/90Xjf+94XFy9evO1nFypUqFChv/5UHNtChQoVukPpMz/zMyMi4sqVKxER8fu///uxs7MTv/d7v1fJ1H28BxDVUa/Xi0ceeSRlaSMi/uqv/ioibp7Im6MzZ87E1NRUHBwcxBd/8Rc/pefe7ntaV1ZW4g/+4A/iB3/wB+Nf/st/mT5/+OGHn9LzPxl07733xkMPPRT9fr8yvpN6R/FxeXb27NkYHx/P9tM/e9aznhX9fj/uu+++iszU0fOf//x4/vOfH6973evive99b3zu535u/OzP/mz80A/90FMcVaFChQoV+utMpRS5UKFChU45vec978lm9972trdFRMSnfuqnRsRhFo7Xrq2txS//8i9/0vr25je/Of3d7/fjzW9+c4yMjMQXfdEXZa9vNpvxile8In7nd34n/uIv/uLI99evX7/lM9vtdqyurh67jzm+RET85E/+5LHb+GTTgw8+GJcuXarsmd7e3o5f+IVfOJH+HJdnzWYzvviLvzh+93d/Ny5fvpw+//CHPxxvf/vbK9d+xVd8RTSbzfjBH/zBI+32+/30GqH19fXY39+vfP/85z8/hoaGYmdn5+MaV6FChQoV+utLJWNbqFChQqecXvva18bW1lb8vb/39+I5z3lO7O7uxnvf+974D//hP8Qzn/nMtDf1S7/0S2N0dDRe9rKXxbd8y7fExsZG/MIv/EKcPXs2ZXU/kTQ+Ph7veMc74tWvfnV81md9Vrz97W+P//Jf/kt83/d9X/ZVL6J/9a/+VbznPe+Jz/qsz4pv+qZviuc+97mxvLwcf/qnfxrvfve7Y3l5eeBzX/jCF8a73/3ueNOb3hQXLlyI++67Lx1+lKPp6en4vM/7vHjjG98Ye3t7cffdd8e73vWuePTRR5/y2D/R9C3f8i3x5je/Ob76q786vuM7viPuuuuu+I3f+I0YHx+PiNvPUn+8dDs8+4Ef+IF417veFZ/7uZ8b3/qt3xoHBwfx5je/OT7t0z4t/uzP/ixd96xnPSt+6Id+KL73e783PvrRj8aXf/mXx9TUVDz66KPxH//jf4xv/uZvju/6ru+KP/zDP4xv//Zvj6/8yq+MZz/72bG/vx+/9mu/loIihQoVKlSoUI6KY1uoUKFCp5x+7Md+LN7ylrfE2972tvj5n//52N3djWc84xnxbd/2bfG6170uZmdnI+Jm5va3f/u343Wve11813d9V5w/fz6+9Vu/Nc6cORNf//Vf/wnvV7PZjHe84x3xrd/6rfHd3/3dMTU1Fa9//esrpas5OnfuXPzJn/xJvOENb4i3vvWt8W//7b+NhYWFeN7znhf/+l//61s+901velN88zd/c7zuda+LbrebHOtB9Ju/+Zvx2te+Nn76p386+v1+fOmXfmm8/e1vr5zke5I0OTkZf/iHfxivfe1r49/8m38Tk5OT8Q/+wT+Iz/mcz4lXvOIVycF9Oum4PHvhC18Yb3/72+O7vuu74vu///vjnnvuiTe84Q3xwQ9+MP7yL/+ycu2/+Bf/Ip797GfHT/zET8QP/uAPRsTNg6y+9Eu/NJ0I/YIXvCAefPDB+P3f//24dOlSTExMxAte8IJ4+9vfnk5lLlSoUKFChZwa/afj9IpChQoVKvTXil7zmtfEb//2b8fGxsZJd+WvNf3kT/5kfOd3fmc88cQTcffdd590d26LvvzLvzw+8IEPnKq9zIUKFSpU6K8vlT22hQoVKlSo0Cmgbrdb+X97ezt+7ud+Lh544IFT79R63x9++OF429veFp//+Z9/Mh0qVKhQoUL/z1EpRS5UqFChQoVOAX3FV3xFPOMZz4hP//RPj7W1tfj1X//1+Mu//Mv4jd/4jZPu2i3p/vvvj9e85jVx//33x8c+9rH4mZ/5mRgdHY3v+Z7vOemuFSpUqFCh/0eoOLaFChUqVKjQKaAHH3wwfvEXfzF+4zd+Iw4ODuK5z31u/Pt//+/j7//9v3/SXbslvfSlL43f+q3fiqtXr8bY2Fh89md/dvzIj/xIPPDAAyfdtUKFChUq9P8IlT22hQoVKlSoUKFChQoVKlTojqayx7ZQoUKFChUqVKhQoUKFCt3RVBzbQoUKFSpUqFChQoUKFSp0R1NxbAsVKlSoUKFChQoVKlSo0B1NxbEtVKhQoUKFChUqVKhQoUJ3NBXHtlChQoUKFSpUqFChQoUK3dFUHNtChQoVKlSoUKFChQoVKnRHU3FsCxUqVKhQoUKFChUqVKjQHU3FsS1UqFChQoUKFSpUqFChQnc0Fce2UKFChQoVKlSoUKFChQrd0VQc20KFChUqVKhQoUKFChUqdEdTcWwLFSpUqFChQoUKFSpUqNAdTcWxLVSoUKFChQoVKlSoUKFCdzQVx7ZQoUKFChUqVKhQoUKFCt3RVBzbQoUKFSpUqFChQoUKFSp0R1NxbAsVKlSoUKFChQoVKlSo0B1NxbEtVKhQoUKFChUqVKhQoUJ3NBXHtlChQoUKFSpUqFChQoUK3dFUHNtChQoVKlSoUKFChQoVKnRHU3FsCxUqVKhQoUKFChUqVKjQHU3FsS1UqFChQoUKFSpUqFChQnc0Fce2UKFChQoVKlSoUKFChQrd0VQc20KFChUqVKhQoUKFChUqdEdTcWwLFSpUqFChQoUKFSpUqNAdTcWxLVSoUKFChQoVKlSoUKFCdzQVx7ZQoUKFChUqVKhQoUKFCt3RVBzbQoUKFSpUqFChQoUKFSp0R1NxbAsVKlSoUKFChQoVKlSo0B1NxbEtVKhQoUKFChUqVKhQoUJ3NBXHtlChQoUKFSpUqFChQoUK3dFUHNtChQoVKlSoUKFChQoVKnRHU3FsCxUqVKhQoUKFChUqVKjQHU3FsS1UqFChQoUKFSpUqFChQnc0Fce2UKFChQoVKlSoUKFChQrd0VQc20KFChUqVKhQoUKFChUqdEdTcWwLFSpUqFChQoUKFSpUqNAdTcWxLVSoUKFChQoVKlSoUKFCdzQVx7ZQoUKFChUqVKhQoUKFCt3RVBzbQoUKFSpUqFChQoUKFSp0R9PwcS9cWVk58lmj0Ug/ERH9fj99PjRU9Zn7/X70er3o9/vR7/ej2+3Gzs5OrK+vx9bWVnS73VhZWYnNzc148sknY2NjIzY3N2NjYyN2d3djc3Mzdnd3Y3d3N3q9XnqO2tazh4aG0vN3d3fj4OAgdnd3Y2hoKIaHh2N8fDxGRkZibGwshoeHY2RkJEZGRlJ/h4aG0v/8e3h4OJrNZvpcz9D4+bf3Sb/Js2azeYSHzs+IqIzV22O7bF90cHAQBwcHsbe3F/v7+9Hr9Srf7+7uxt7eXmxubsb+/n7s7e2la8W7/f39GBoaSmNXP3q9Xmo/ImJkZCQmJiZiYmIixsbG0j0jIyMxOjoaQ0NDMT4+Hs985jPj7rvvjvvvvz/m5uZibGwstdnv99P4KUsi8ewk6CMf+Uj0er3o9Xqxt7eX5Er9Uj/Fs52dnSTje3t7MTQ0FO12O8bGxmJkZKQyVvFqePjmchTvDw4OYnh4OMlcs9mMZrMZo6Oj0e/3Y2NjI/b29tI8qn9qV7Lb7/djf38/tre3j8jlwcFBdLvdyjwPDw/HxsZGbG9vR6fTSddTnvQ32xo0h8PDw2m9sS3xy++VrtDviDjyN/8fHR2NsbGxaLfblTXO8UjHSNb12c7OTgwNDUWr1Ur3S9dsbGxU5P7g4CDxsdfrpXV1cHCQZL3dbleerznQ/ZrznI4gH9WuxvmWt7zlkyjht6Y3velNqY/tdjtarVbMz88nHSoST/b29mJrayu2trbi0UcfjeXl5Xj00UcT36U7qD9pI/S55Ozg4CDN89TUVHqu1l7db/XZn5XT36K66yiXbufYZ2+P/eFcU4Yj4ojd9P5LHrjOud7Upo+/rj85XukZu7u7SZfJRq+ursb+/n5ERIyNjcXY2FgsLi7G2NhYjI+Pp/FLb42MjMTCwkKcO3cu5ufnk92dmppK/zcajYoOqKN+vx8veMELar//ZNPly5eP2PI6kvxfv349lpaW4n//7/8dly5dive///1x9erVWFpaim63m52rW5HkS/yljdWzpVs17+L76OhowjLj4+PJpmiuu91uREQMDw9XxiobQtskWZMMaw75mY+Ln3Gt53jKtebf59a284fPUX8Hydft0tzcXCwuLsaXfdmXxQMPPBCf93mfF1NTUzExMVG5jrYu1z8fj/7n+tQ9MzMzn7D+PxX6qZ/6qfT3+Ph4jI2Nxb333hsTExMxOTmZvvO+RxzK0ObmZvq5fPlyLC0txYc+9KGElYTxZV9d7tSW5EL4SzY14hAfUA4l+7LLzWYzWq1WBd8SZwmzCHPps5xd4LhzMp2zC3WY33Wx+u8YwfmscRNrSI/Tpuo68VW8Zd82Nzej2+3GxsZGmoORkZHED/VDc8L50VjHx8crbfb7/cRHycLe3l5MTEzEyMhIjI+PH8FxZ8+ejdnZ2bjrrrtiZmYmxsbG4jM+4zNuKafHdmxzgJXf1SknAjUyu9vtxvb2dgLn+qzT6cTS0lJsb2+na/b29qLb7SbHS0LI5/H5YrQWiAD12NhYtFqtNEEScjFfk6bvZDjofAjcRERFsAnsciCVJMPP/zkWCoIDJ45X3zcajQpI9GuHh4fTAuGijLipFPb29o4sLDotWiwaPxWWjNnOzk6aXzm0VEIRETs7O/Hwww9Ht9tN/JydnY3R0dGBhuo0EBWZFrb4KhCzv79fUQSSaynGdrt9RLHpNxU1n0Oe638phmazmRTJ8PDwEUUuRUqDyuBGTtnRYdN9zgcqagcwLkcEuiMjI5UggJ7FoJI+1zrjZ+70eNDDgdvw8PCRgIPmRDwbGxtLTr3PjRs68ZIOp+Zgc3Mztre3Y3t7O3q9XgpgOIARYJTM+Lry9es8PWlyB5E60ef14OAgtra2Ym1tLa5fvx6rq6uxtbWVHCMGqghkBMSlp7e2tpIeHx0djVarFePj42l+b8Uzl1nqQDe8/tvHxs9zc8Z1Sqec/XBeOiDIOQPikdrJBfmol/1Z/Dw3Vl6vOZWNkl6PuKnDZVsJbPr9fiVQLAAj3ba+vp5ApJww/pBPPh728aTpuH0Qnrl+/Xpcvnw5rl27FsvLy9HtdpMT+VTsnHSp9JzWyOjoaLqGAUNdMzU1lfCP1tbk5GSaL+EsyToxltZlt9uNra2t2NnZiYijOGdnZ6fihNAh5XWSCdkY6QOXf/WnjlfEo/rekxDih3iuPn0inNzl5eVYWVmJ//7f/3tcu3YtPuVTPiXOnz+fAjw5B4YYrE6WBq3b00TkucaW05Mi2V8F/be2tuLxxx+PlZWV2NjYSPZddlH3+NzJVjiWkHOm+9Se5IG4n04u8dbQ0FD6zB1bka5nQoxY3/VwRFU3k3JYsI5/Gvsgfei4P+KmPmdig5iMWEb3jYyMJD0gPS986/KrOWDiTHOxv79fSdio/41GI/FTa7PX68XIyEjSIa1WKyIiut1ujIyMxPr6evI3jkPHdmxz4CH3P5WhX6Ms6s7OTnQ6nRShUVT/xo0b0el0Ynt7OxlQGlJGqXPPjogK8JTgSXkrqizBJmhlVEYAnACIiyhHDrYd/Dgf+Td5lYvYe+Q05+DK2XHAojFobBIMOs1ayHSsxGtGOukQ6Nly7hhpU9RlYmIier1eyogNDQ3Fzs5OLC0txYc//OEYGRmJbrcbFy5cqPC7bm5PkkZHR5NcaZEr60QDLaO+t7cXETfnSJEoLnB9xx9GHl2BUZno8+Hh4SMLXdeyfW9Dc18HPjza6eBXbUnudB+dc/ZHyo0ZZLYjkgxTDr1fNGC8lkZI61385jj4fCl2ARGuewWqPJIrw6c5p6IWoNza2ort7e3Y3d2NVqsVrVYrrT+NUePz4BcDJaK6LN5JEfnpusl1HqPudN6azWZFzvQjPo2Pj6c2FVxkRJdOU0Q+++hA2dcTP+MY2EbOmeSzPCjJ33Vt+z3UvQQe+t/1fY5ywR6uj9za5TNp6whQaM8bjUZMT0/H7u5uCjaogiHiZgZnfHw8ZfMVhZfc69qxsbGIOAxGDQ0NpeBqDswNGvdpIzl4Gxsbcfny5Xj88cfjypUrKUurCrTbaS/iEKgqaKAMrPgnvceslXTayMhIzM/Px/j4eLRarZQh0T3j4+MVXaZ5ZR+kk4THcvKvNS67yOCdsAR1wdbWViUwojXuzxW49goW2hx3bNU/Bo2oe+VYe+XPU6GrV6/G6OhoPPTQQ3FwcBDtdjsmJiYqgTfKtAK2t+OsfiIc8U8Euc6NiCP8y+lBzt/+/n6srq7GtWvX0pqIOAw+0x5IXjxrz8AFecMgCG25nFj5AZR/Bt7pG+hzBkBzuoi4xZMTvh75mWN0jsXnm8F/r/JwOXIHWzQyMpJ4yeCl1r3WqnCd9AWxooJlHpgUz2QLhNPYd82xflMvcF2qirTX68XExETs7u5Gp9PJ4t06OrZj65SLLDigyd0jD13Oq7KxGxsbsb6+nkqO5TywPDbiKMhzIaOiEtCVINPBEFgioM05tjLujJDTofS+5EAoFaoLG6PVtwIunHx3gDQWLi4KvgTZs6gE8TK4EniNh22SB75IJfw7OzvRaDSi1WpVDI+MiRTZ4uJiDA0NxcLCQgKrbJ/9PGmlzuivFrjkUobafwg4JG91gaCIqhPoBtczNASjvD8H8Pksd/DYHuW6ztjXPcPXhDuv/PG1QKXtz2S7uXWnNrRevYTIHXTKLOdHbTDAIgDCiK70ij8/l4mVXJAXulftsm/MlAs8cu2eVhrk3HqQhHIgncLgGbN+zDo1m80EyDVf7vTlftMBpuy7/fJ7uVbd2eS1Tjmn1kELP2OgpW698e/cc3P9Z/WFO6m5sbN9lzvpo36/nxxVyagCmrJjsqcqU1R5Yg4X1OmFO520der69etx48aNuHHjRqyursb6+npsb28fyUDWyZJfw2w4K1PEPwZ8BMp17cLCQgKq2iqhLIkCexGHVVjKyrIvzHxSt+tvBvbkxOzs7CQ9Klsp3Mc1LvlUGS/XDMscBcx1Dx1d2hriDWEe2QPiIMlsrmLgVqQ+qiLl8ccfj4WFhbh48WLFQXfimjzNer2OpF/0962cbgbQJBcbGxuxvLyctjzpOjq2XsKt59Xpb7VBWWB2dnR0NK0fVnXpt/wEVRC6A027wLlzu+HrItd3v9+Dm9TddZguh73caY44xI7U48SVwjXCLcQ92vY2PDycKijosOZwDTPregZ5RzxAWaKMyIfQmt/Z2Ulychx6yo5tzkj75yINSJna9fX12NjYSP9fu3YtKX8pTpX1af9fDpCwbYIjTYiimsqY6H9mX+T4MqPEEsIcUPFMUsShgiQAcsNUB8JcKHJBAV4vYEdhYfteMt3r9RLwbjQaRwwXHQKRIu4SMo/gUqDZ716vl7LuMrajo6PJwGg/T7fbjY985CNx/fr1aDQasbi4GOfPnz8SdT4ttLGxUQFzNKhyct04ag+aFKVKXl0WXNlImdCA55RbrsyR0WpX8gS3aptlY1KA7mhImalPIj5b45LMUEHKqefnMliMXlN+mVXyNc/qBMmL+CzwpzWiiL/0CoGgl4AKBI6Ojqb5JFAU77hHx4EVQZ62Uqyursbs7GyMj4/HzMxM6p/Az87OTmVPNrObblxPmtQfN/j87Z81Go1UBrm3t1cJaqq6QTxRhFhGtN+/uZ93dHQ0JiYm0rNZapZ7fp1TWqdXHJBwvn2NudNLki2irs45yXweK2DcAXQb5DIxCJTTlnDNUJdTH7hNp9PJUj7qOjoaClh3u920H2p6ejrdJ/2jcliOQ/1jIMjn8jTQIIdUdnBlZSUuX74cDz30UDzxxBPJudW5IZL9XBs5kk6amZmp6FkF44VddLaAAvitViumpqZifHw86R/u/yTvJQcCt9TPzJ5NTk4ekUl+f3BwkDLy+t7thsqxO51OcnbVpvS5B6QUQNFn3DfIZ8i28BwIfkZbrf9ZdaUtVbcjczqH4r3vfW8MDQ3F3NxcCsLldOKt2j/NDq/zPCIqOsKdzIio2Plerxerq6tx9erV+NjHPpa2pnA+dC8TXL5dxx0i3aPns+RYDquy6JQxVXCymjPnqFIfck1ofJTfnM+g9kQM5vv3TGK47fHrfG3l5EYYSjqcASfxSvhUgXnh+larlTC7+kObwrZl532ftHCpggiNRiNV6HAut7a2UkZduHRtbS0F4FRKfRy67T22T4WkKFlerBr7tbW16HQ6FYXPkhcvQ8i1rd8ynIz6s8SApU9etsjvmKXJgRh3NPx/kRvnnGDnwFLuPip5XkPwRWCmaxz4aTEQ6OiaXDmzgIz3if0SPxltk/OsdkX8Xnttr127Fo1GIyYnJ2NycjLV3w8CEU83DTKinll18EHitXTePNPOBS+jwO9yTmXEYebQ513XeekwS8E4tuMokJyzpee4w5rjX+4ZuTWUWzt0erkWyAvNDzPqfEbdms39UN7pbEtRy+Gioido0kExY2NjSU8REGhMrAAQnRbHNrcGyaMcScdqW4JKtDn34h1BhXgkY6mghcv7rfqmthwU8PnuMObGd1y+5MCMg1vPwEvPui0TMQrPzDfXtdtIB06+NpwXdbaNfY441F+0qXQc9EPwox+1o2yu2sjZLf0+TTagjpyPDoK5pSq3/aOOxBPxiw4j+To6OppKwOXQ6vfs7GxycPUZwb/6nZNHVpwo8EmZ09hlozTvOhyRetLBtwKPAsHScQLAfniV5EqfKTBAm8JqKs/8KfAibCl7IIxJJ+p2srfsz40bN+LatWtx5cqVuOeee9K81LV1XExdhy9Pkm7lmIto58XvtbW1lKnlnFHWGEyve4brS+pFVm4x4E1bk8vmMrmTsxsix//+mV+b+37Qtf78W7XpOKnODsnHYdCHGJ54lgkxbrXyxIX7F6pW9Pl0mxtxdCsDsV1ExPb2dkqM6RDW49BtZWxzjK6beJI6xdPQlpeXo9PpxJNPPpk+0wFRiujJEIgBVLA5ECCFKa+fGdtcWYJvHs9Fa/SMXKaKTmUui1vHHwIFOpncC+JtNRpHa9FlgJThoMFRnwiG9CyNTcpfkVBF0dlP7Sf0zfsO9rkZXP3sdDppvlSDLyPTbDZTNv7hhx+Ora2tGBsbiwsXLlQcsNNKmg/njeTJDT8j4hq/jLl4xv0OBASeGdPfmm+WzuseKQFXulLcygTT6fNo5CDjpbZ4rTvbEUf3+al/+owAPQe0dZ8bd29TxOcqUMYgmY/BgzlufOg0eBWHeCA++vObzWZsbW3F5uZmdDqd6Ha7lX0ikoGxsbG09jV3zJacFseW8kVHUPLuelKZ9Ha7HQsLCzE6OprOU6BRVUZKgJjAW4eu6XsBnoiqnIk4N66TczaKUWVmaykPbCMnm3VghXLNH+lstanKAA+aMVimvmrd0n7knFvqIPLDgY+DDckbx8LMnj7nNgwB1G63mzIkst0ct2yzTo5V5jYikrNxK+f2NJPmT07mwsJCXLlypVK9cdygYcRhUGhmZiaVEUtXa04UNJqZmUlZcpUaj46OxuLiYnpbAauytO4ODqqnvNPWaH41NoJaJgg0Vwre9fv95Ijqe9oI7fUbHx9P1So8pIdbEdQXZmFz/Ov3+5UskTtUSqaoWkxrRZ/p1G8F5I8bfBDt7u7G5cuX48Mf/nDMzMzEvffem5IqopzzMch54jW5YN5JUU7/aY5JtPMRkbL0jz/+eDpITXLFvZnEJDm9TTvjOpnBHgZ8PLnF6gZPcIkkf9SVqi6IqG4jOY5TO+gzxzd1Ms776Ifk7JT+ZmCUjjuTS8T6mpODg4PkO7Xb7cR3VTVwvy11vCd8iC3rbKfWr/Cw2uh0OjE0NJQSXsfVnbft2Lqg6X9/IBmrqJz2nqytraXSHEVuuJfWs2DOACpbN76so1dpgUdu9HeuvCEnXD5mKX+v/edv/9sVlDusarcO4JMfvNcj+DlARoDD0gC2K9Ckz+Uoy/mPiEqETf1g9kGGVv0W6JFQc0/Q/v5+cgJ3dnbixo0b8aEPfSgajZtlyXNzc6cCzItUMsMSSikBGnr12b8jTwjgchFizl0uiOOOofgaUS0/VlvudEiJsKyaSpyA4jjrIyfnlE2Nw8fg97GtQTpG/3vpk+4TICOQ8dJiPoPzRlCksbqDwCyV2pDcs6xO2VkZg4ODm/vPuKZVftto3MzMbGxspPmRjOUy/ydB4ndOR+UcPukDZS10UKAiszqQLeJo9l86WmWVuYPH2Ac6ZHTAcjLmUWb1Vc6b5phOO5/j42S7/Jzt556Rs6c5XrBNjY1AQe1zjXlQxAFbzsa5fcmBaT1PwRjJvAIysvUKJjGzyPsFJuvmivrhNAJ6/c8+SidorWtvq4Jra2tryfkidsjR0NBQKh3Wq600RwcHh68Wm52djampqZidnU37aLnVYXp6Om0DUJ9dB8rRjKjqaa1fZUpZlcXKJP1WNlg4wssyqTMlO3qG2pmYmEiywCCsrvOqm4hDmyd9q+fR1mgOuP1G+EQHWjYajYqTP8gu+2f9fj+2t7fjsccei4iI++67L3Z2dmJqaiphgzqH0OXLnzPI2Xm6yTPvub5S/3A+lNFeWVlJukFzwqBzroqMznMOP3imdmJiolK94IdD+eFrjp85FvI/N946eyR+UffmeKbPnXLz7c/JPZu2hW3zOvVpbGwszRUD1PTFdB23/2iONE8McEm3cw3pb7en1Ee6hutOic61tbXk9B6HbqsUmb/dgct9LiYoY6vIWKfTibW1tcrpoX4AjwN0EgE6jTojLzxgQULNTeM8PIoTLgWrheOZIU2EOwD6XWeMB4EqPaMOvDpo5LjpPA0iPos8c0WksUnRiHcC2x4RzZUiMAupPXVqV7yVgdO1eu3TmTNnUlSfmY2TJilgHf7h0UgHrM4jLm5Grz2I40SDSKVOufRsrYiyLZnR89yppTLJOXZuYCKqusD1A5U7/88FaHhNTlH7Nd4PjpXP4XvxNO5cqalnsnxeXQew3Eaf+4l9AowKGGntKCqpfggE9vuH+4X1ufSmG9yTIud3RD6LyWuklwUkBZLFA3dWeR9PsOQZATlyuaiTDf1P4xpR3Sem71lCK8pljPRsgiO3Lbn2ckBX8uf9o0Poc0B97mCQgE/tuI5w25Lrv18re6pgUUT1BGwBI4JNX1cE/Lk1T5B2GmgQyOXnwgXa23pwcBDLy8vR6/Xixo0btaciu3yqWkHvg1TGV3psdHQ0JicnY2pqKqanp9M+2kajkfYMCuALwKqSR3zXPDAT646Dr28GCF2+Kadst9FoVORB2IAgWM68rwEH3eS3vvdECPssuVTGW7K5u7ubssY68Gp8fDx9T5x5HNrf34+lpaXY29uLj370ozExMRF/42/8jYq+IQ3CNo5HTxvV6Vn9djuv/ZKrq6sJ6wmPeHm+O7VsO4c9KYPcb04HVvIovSWbQqc2N8ZcYMPlwXGSKHev/113za2c2jq9SPtT56vpt3SMb33SetSP8I14J5yTq+LUDw+b0jw6bnU7xUytrtF67Xa7KQFwHLptxzYHaiPyZWpykPS+2ieffDIuXboUV65cibW1tXTQhAA2I2kRh+8JJQP4LCpUCXC73U5Knacc08ElsCRjqay9HMvHKAEQ5YAUecXnqS19z/IggiTnt+71fQA5BVA3Z1x8jLqy7EPXaE7EMwEWRjU5Zi/L5IEMCiQw0q/XAkxNTUWv14u1tbV45JFHYm1tLcbHx5PR9nGdFLEiIOIwK8sADisHxGeWLEcclQ9mieRI0Zg5yGUkjHLkBp4RdX2nOdX7CFn2ymADASejbSIqPcq3+klgxEAQS3bp3Isv/mwqRVFOKaqfPChKQYjcGHPAjI6JK+GcE8GDgVyBR0TKSLXb7coeLq0LVaq4QdZ3Mvpyhk+auK+N86HPIo6WkHY6nVhdXU2vdVBWhXIVcfjqF/FWr0kSMJeOIv9dJ+ScMa+C4fd0qDT/0nWD7ouIisz686m72V/PnIpvlB8GVMkn9cl1AfvgTi31BF8flaMcUHUd1GgcvjaO8j49PZ3WlwCKDgJZX1+PhYWFmJ6erhxYSNBbB3pOg84fRO7sNRo3g1l33313OkBI+2OXl5cj4ua7T4l1ctRsNlMGdn5+Pjlhylro+5mZmbj77ruTnZybm0uvXGLFGoNLmjsRZcrth4ivutOWI5cV9dsdGup7Hooofnmwi+8LVVtMQpD3tG3UP5J9D0gykKvrVV3QbDZjfX09yfjm5mZsbW2lTK8793UkPPtnf/ZnsbW1FQ888EAsLi7GwsLCkftzDtJpJ8fA7mDmElKqzLx8+XJ6n7n0BXERMYq+k3xqrfDQIepUXacKhenp6QoWUyCIlSLOb3fOIuIIbicucRvB67UWPJHkPKMedd3ruJ5YJ0e0ax6E029v0wOM6pvsoIJp4p8wvvjniRn6UeI3S5fpa3k/vb+abznJ2s51HLqtUmQybhC5Yd3e3o6tra1YX1/PHhTFrBEdLHcO2Y+Iw6gvT0LlHg1mZwWcBkVocuRRGOcFx+tgKfeM3Pfejj/HiSWYdC78mX6vCzuVEYVNz9D4xQMKNY1g3aLUczSvUmIyRtrbSydN7wDUC5knJiZua74+WURFmFPeEfUZezpwHmXMOVa6JydD7kTRuOt79sV55wdl5MCM/50zwFLUnt3NBVjq2uHn7hz7dznZ9ecoI6HxcU9WzjBxPP488tjJ587b0ZpkGQ4NtGRB7WtPV85g5hyZk6Qc3/T5IIdE2VdmTRh5p0Fk5Y2c3UE8z/2fsx2UGf+eQaA6G+E6Tp/RqHPOcv3z9eny63Pu9mKQzqHsEoA6oGH/BvXHn8P7VL66v79fifpzW4TkvNFoVEppczxhP3ytnxbZr6OczmXJo37qALXIcY3kiRlwrSFlaKenp5NjOzExkd4fz/XjiQCtPe8HbfKt1pXrX7c3zCz7nOt/JS40ZvVTusCDoOyLrwtfwwLcvmZpr5rNZmxvb8fIyEi02+1KVldtqh+5So3c/AnALy8vx7Vr1+L69esxNjYWMzMzA9fXceikMZCozgb499JFOzs7sbm5GRsbG2krinwDzhOxott+bpXS3BGHcOuK1prkyA+OpW7P9b9OFzruuJWNoM6ss1luo/iZeFJnA7gucjgkRzm8TrundeQOOvvHbTo5fMY2iUslD/ze79Nc+0GSwnYeUK+jp+TY6mHOLH6ujmhvyfLycjzxxBMpYqNsHbMp3nEqLbUZUc1wqY5ewtxut1N2VllcHYrEBZEbj4Nfz+BwEhXVcCenTonrbypvEcsS1S/yQL85fvFDwuHRST3L54UKhAtFkS2PjlHJaKO95oqlCHpur9dLQqlIjdpS3/WjiKgyNHoZ8/r6ely6dCn29vbS6wpOmmTweKKi+EhAmgNtVOIR1fc3RlQVRc6Isy0v3XEgrM/9GZIfnUau0uq64IRIWWm1r7ao2Lhmc0CUz/Csr8ZTZyh0nUAS9YEDG/Fla2urclgU7/E+cr7YF2YTdY8bKs9o6YcBA0WexTONhyeB9vuHp48zEyj9dhrBPTOsIsoJwevY2FgsLCzE5ORktFqt6PV6lfd5+omUuofVERFH35En/ZczqJpXAlLPmNaVpcuxcIdQ1+Tu1WduH93J4z4jgjP1j0E+ZkH1bAdXuo9819++PhhI4Jz1+/VZMY5b8+3PUNCy1+uleeOJyY1GozK/zLI4+Vo9bZTjP7+TY6N5liyLL8QUJJeDRuOmQ7u1tRUbGxtJn83MzMSZM2fi4sWLsbCwEIuLi8mx1f5avTs4IhLA5+GSWnvU3yoblp0eJP/unOe2DHGPtWTfnd7h4eE0Lu6nlXOiPmjd+6movu41Vsmk1o50sGRcsjg2NpacLb2yp9PppBLvsbGx2NzcTDj2uKC61+vFpUuXot/vx4c+9KEYGhpK+59zWwlcDnLt5dbKSZDbzhzG1N9Kagn/Ly0txerqaqVqSdl64srctih9Jqwku6A1pr3oCurwbB3pGlYviHI2nXo5h60d57nzqc9yDqz+dueVVOeXEM/p/5xjy+tF7pzqGVwjXNfkg6o0Zb/Ef773Vr9z/pXWI6vlhHnctkkmaD+0fiPqt2s6Hdux1YMHeegkCqRK0ZaWlqLT6RwB1TKMHhXzEhN3BBShVPkNTztWJleMdqchV2rM7zhh/r36wRPScqUZvuD5HUEZ23VDws88e0MglFtEubnyOaQDTGHjeBS11GmCKmtyEMdnDw0NpbJjRZwJcmTkIyI2NzdTu9qkfu3atYiImJqaivn5+Wi1WrfcR/zJpPX19eSQUHa1UFmaQcfTAaUfqsEAg64XuWLIrTu1z2fkHD5FTXX6o1dIRFT356o9HoLFfrGv1A1eisZ71Hc6oXXrhf2n86JnaE0z2is+sBqEa991lL7jvjI5lhy/iGWzubZcz6h/5DXL1dUGn0GHWArdjfFJEQ28z7XrLq3zycnJpFN0+r3WvcAJgYgChsw2Ue7dKco5F/o8py8dIDLLI+eNayi3Hvlc19W8LiezlJEcSKezwTFwfK7Xmc3wvnJ8kiE6qF5x4fxy51nXKagbEem1bpRVzaHu6/V6lRNI9XfdgZHOl+M6FZ9Mop7LrX99Ljs1MzOTSvkU8JKTWue8S7dsbW1FxOG4h4eH0yFR8/PzqRR5bm4uBYVZeuyyprXW7/cTLuJBd+r7xMRE0lPqo9sojtlleZDs6n6tbWWgNc5Go5FwAXksuXDQ7DyjM67nq4zaxyg51d5jZVS3t7ej0+kkO6nA++06lqqMYgDPyXGZ2/VBuuakKGej3TeIOBy/Aul664lkn5hQMsP32PJ5xAkK3tBJ5QFpXnbs6yE3jtx6JiaiTcnpdp9HUW691H1OzM32KbvePttyW+fEfvNarotc4oBrSbhK8qx7IiLNJQNYsjlyUImLI6IS5HU+ur/Gdo9Dt30qcu43O6DPNZD9/f1YX1+P1dXVWFtbq+ypJRjmBmYXGj1DEyOBlSAzwielTWBEgdLz6CS5cqkDbrwm4jCS1mjkD5ny32yfi5WCxHsG9c0XqoMudzY4fgqLFg7bkRHWcyVkEl4aM1cKFEwZU0b0aYQkAzpynK8HWFtbi9HR0VhdXU0vidbJjidBOlyCmWo/VU9j8FP+RFzomgtmKyMO58ijghF5R7HOsaWyUMRZr5xQ1pmZ1Ijq8fZ0rlxZ5pQo78n114mG0BWq30/Fz/XEigUaR+1f4/5V8oRta044XrZPnTQocu4BBd3jY9V6k6LO8YlGVWU5pyFiT+fMgYzPn/jdarUqlS3kEzO0Ao/u5LI9/c4BjIh6x84/c2J02oNndXrWdanaEWk8vo9SfXJwRL1JPvv4XFZcf+f67v3XGN3G5caTk2nasIioBIbES2ZLIiLJMctyGfip0zXs92kA9oP6Qd2tAPvk5GRy/BVgrHN0Ig5laGdnJ/GfQfvJycmYnp6OqampmJqaSplFBfh5yBodTh5kx/lycCvb73owp4Nzsqx79L3a5jYn6gPtn1emmOcWqA1mesgnXePVTrSpykTrp9G4ec6H2lJFzOTkZPT7/ZiZmUnXjo6Opv23Hny9Fcn+KBDuayvnqDiWcofpuKD+k0l1DpZ/J8wn3CGnlueS0LElRnTHjpiT1SCq6NHr4PSd5t0d24j66q2cPs6N0R1D/66ON7wmN491n3m/czau7v5bPbsO1/mWROl0+hK83jGZ22cmwur0iWMKfh9RPbDuOPSUUmCueMgopqeVpf3IRz4SS0tL6eAERgSlAFzZu0NLp0BlNzoG399RxdJOKl+2R0XhxpvMzkUJNKECLmI6qW5RaKIGKUr2h89SP7y8JwdGSHVlRVIWVC4u0A7CtVfK+09eurAycKHyZPVbY9EBYxGRom1ra2vx+OOPpzLNmZmZI7x6uogRdCrOfr9fcRQVoY+ISmBFSll81Sm5fK0Sy7QjDg2EiDJBcEknlaBVe01XV1dTxpbVEiLNEU/r5HqhsvF7XNkN+t4Vv5SeR/vdAXKFqf5wLwZ1ifgh8FznGNY51OpLv9+v6CWto4jDYA3L33IASFkB8Y8KnvMp3SkeySHMvV/vpIgOd87J4jxy3pm1o+wpO6N35dGxZVtcQxE3ec/D2VzGcj+3GpfWoNaPlzDT+WV7ns3yYIj0JWWDBtqdOT7TA0XkAXUsiQA+4ujhJ/4314U7upRPZmLpwDWbNw9H29vbq5xzocO/dJJlt9tNWdrZ2dlKGT557faEcnbSwP5WTkiun91uN1ZWVmJ9fT263e4RHeHjpH3hYZfDw8OxuLgYd999d9x///1x4cKFdGCUg/6Iw3J+OlVyLAhgNafSmbL1HthU33Ll8zkZVN9Z5cKMnGyX9KNsD6u8fN2TcjpXz9Z6IyaRDtXzZG+VoW40bgYQZDdarVZyttfW1io8PE71gA5ovHLlStx9992pxJkHhYqcfznn46Rln8S1Kj2gOZJ+39nZSZiu0+nE+vr6EfvBOVMwmriReoH2UEGc2dnZ5NDSfnD9+HaZiKMOoQfwPMGWk+9B80H7745oHT+JB8gXxwjO/5x949okv/md+z8irhsmH4eGhlJVyNDQUCpNVlt8lveXPM7hTp8Dzb3jpRzmqKPbPhXZmeedVKf29/djc3MzVldXY319PTY3N4/sPSPQcW/dnTsJ6ejoaCpB5vupGFmQkOfAjSvinBLxCdHfdUz1fucoJ1C3QxTC3N+55+c+4zjqFoQEVUZWv5WB1WseWD5+nMyBrpMBpZGUU8LIrd57vLm5WdlrdxKkF4hHHC5+Rh/1o/67zBEcMDrpskMjQXKZ5Hrx+dQztM9Jv73czw1UTr5zc+rP9vu8XecH28617+s250C5vPmzCHwGOYW3cnxcqdZlsr2/dLbYB+4zZD8pB7pO3zHzddroVvoup4M5VukVl3/q6UHGm//nAAj1d+56fyb7lxuTO4J1clqnp3mvfjM7xme7TfR7XTbrgFidvs/xx22F84jBIP1IN8tRIT8ltypN1LUuFy4juf6eNhoEsjSvfip77jqOndkobpcaGRmJmZmZmJ2djbm5uUq2lnqCQQjPWCrwr35znel6Zt317EHBhZzuzzmklKEcL6jf1B/aTz7rVrpC99RhSDr0/X4/BQH29vai1Wol53V8fDy63W7FSeIJvnXUaDSSc3fjxo1YWlqKlZWVtC0jlwShbvS2ThvldF1ENTgjPLezs5Pwh+N83eP2lO1Qjwjr+7k6rJqjH1CHjW+lm31cOQxyHAdr0LrxZ/B/PS/Xz1s9N+cg3+r5OZkTxnQHtdFopKAy55VB51w/1GYu2cG/HWeprbpgeh095df9kHHMyMmx3d7ejuvXr8cTTzwRN27ciM3NzfQdnSJlePWdniMnVkpI72Rrt9spU+vKysFibm+Ep7NzQHSQwXXm5pzhnJIir+qEj9fmBDwH3vUcL+HIPTsiX0aay6gRcDNby9MtNc8s+/Q+iecUTF3P8ekzvSZC7+NrNpsp03+StLKyUjGmEYel3IxCSy61uV7ZpYhIEeucssiBQTd4mmNliulYMyKmaKn2s6uM2g1LTqHpmTnntO6zOmXjuoJKzANGdHQiqkCnLouUU5IOiMTPujET5LESQiQww2fxfx8n54rtKhjEuXf9xPZ04J2uOw0Ax3VrLoMZcfT9jP1+v1KeKtlVe61W68g8+HvGI+KIDHu/+DzPdCpy77pfz9K69cwVgyg5J5PPGwT+fc3oGn+HoMbp9tD5SlnjwSrUA7mMr/NS7eaAE/kvPvHVS7pGzhWdJ65T9VFnKSwuLlZsNyue6gJGGutJ0nH6Qf5ub2/H9vZ25aTh3F5irg+VVU5OTqZAr7bh3HvvvXHvvffGPffcE2fOnEn7DSWnkivZG7aroEKz2Uw2m9UJWm/cviF9SIeXWMltj0gYISJSX2T3eGCU+KQMb8TNEmw5MJJPtefBTOoiygnv1ZxIz3Crg16tdnBwEO12OyJuBrCFN1dWVmJ3d7fyikLp/7p3EYu0n/oDH/hAtNvtOHPmTExNTaUtdDk7RNnR+E4b5fA/dY7kQwcOdTqd9Lofvl7Q/QDHhyIFHTRnrVYrHZZG/4A/komIKmZxG0B7pmscX9fZ3UE6IIexaPPJyzr9ltP1OT8gty6cXK+zzTrKJfS0BhRQ6/f7sbGxkc5WcBxEuyxMLNvKSg73uzzQoYTR7WzJuu1S5BzwZWf1/silpaW4evVqXL58ObrdbmXPJj1yj3zRIJI5cmwnJycrTq1HaNy59XYdfOQAB+/P7e9QO7m0u4+Fk0Pw7vtC+Hze73yPqH+HIp/D+8hjOpsSVPWBCpXC5otMJU4sKaeT5YuPgu7OlQzF0NBQenWE2pNy3NraOnEl7wdtROSdOpZvEGiKB9w/6AqAUUm1r9++0Z6yp7k8ODiIbrebHFuVSKsNRtb0XO5HygHyQf+znbr5pjObc0h4HWWcf7sMMprItnVdLlpPueSz3ZjkqkdYNql2fJ3lDKT6ODR09BATjk9jo+Elr05TxrZORw2aV41PQRcFeLQn0Off565O31Jnubw4OWiMyJ+wyHFojmmLCCI4x1zjIs9M6XuWh9IGumGnY+tt58CK+kz5JM+YMXP+qj3yVs/h2uP4JZfSTXJQCUBUwaLx6DNumdD3dVmwQfP6dNNxnWs5Uu12OyYmJirjl04hgBee0TtoWdkxNTUVMzMzMTMzE5OTk5UDdJitqsNSep7+Ju99vfE67nnUvEomWX3HNUl9S6xIParxOQakzEqmOPcOnh0febaZepa4ULzj+3nlvLZarYQ9tD+63W6nwLuwp2zyoMxtv99PpwJfu3YtOp1OtNvtFLR0e8x5y312WuS/bk5o95St1btH9X557asV371yjXLDwK+SHTMzM5VScsfS/FEf6+wRx8Sx1V0ncp3N397mrT7P6RN9xjE41el/tptzeOuwh/t1bufYvoJfesNBv9+vvMbJ73fspO/VnnQSz7dQP91OHJdu+1RkMsEVER3blZWVuHHjRly/fj2lqwnYHDzyOa7AFEEbHx9PBwhRoOsArfefz+cBCnXjlXL3Nh186zr/jCQeedkdDZwLqwsWgZH4wu/rHAd3GMQ/9atukZAPdA743kKdsOtg3Pvtzr8rMmZLxCspx62trRNX6gTQdGo8I6hr6Xzl5pGLnqCCUUc+jwBC7ROEymhsbm6m0xhz8k25YV/5O+ewH5dy8uef87ucjA5au/69/0094Pfn+uQKVp/nZJef+/+55/L5lJFcJk3AVu0xQJLjyWminPHMAdCDg4PKqeIEIBFHX6Pg3/N5kgeuxToZqpszrgO3SfxMz5KeyxEBdUT1VVZ6FvlA2+mAijLCMQ0C0W6fc+s4Z8f8/xwPB9lTBSQjorKPUfPGszT6/cMT9n3ecrxnH04D3Y5OVIZbuIW6RrLidkTOljJR4q+q1PQ6Ex6go7bEV+ebg3TNAeXZq1wcKzHwRjstcgdUv93e6Ts6lJJzHrYoXlGOcv3zOcklGnL6WXMjfStnVweR7uzspC1v29vb0Wq10gGXwm8MGNfJRa93c+/oxsZGrKysxMbGRjqDo84m5f73cZ4kuV3M6Wdl2ITdVLXAs3ToN1AX0vlxx3ZsbCwmJycrOqbuhzKX03m5PtetARHXRO7zQbqq7rnO09x9fl3uO//sOLo016fcehKJL0pEKRgkOaeep02j76DnSn8o25sLGLuuuh16yu+x1cAlxBLO7e3tWF1djUcffTSWl5dTaQmj9YzauCA3GtW9IopQzs7OVt5dRYXuQs4JomKm8JFRPvFU+vpMk0mlSUdA9+WUliaI0dAcWMo5BX6tK4Xj3Ku5osAQXNOxrltIGoOey9MMdepj7hAwtSljJsXO99pSYehavbt2eHg41tbWKntcT4JUGsb3eUVUAyA8/EBGUOCGpfXM2OZkmPubCD5yi1/zoYio5knlTlI6yqZ4KRzlgMEeXePjdLCjvtDQ6/ocYNV3bJPXixiwcllnG3Q6fe2zbQZy+v3qoVB1/RPY1HzrOm2fiIhUhhkRKQDH6xl8I8/1XW4+yf+Iw/dJnwaSfvYAjBN1reyCqgi0xgmUJft1bTtAoZNAGaYeqQMolBOCaoJ2rRdGm31MTgxa0pEhUa41bvKMB4jlApdereNAkzpBa8LH4OCDa8gBHqtIWLLtATtl3nU9939qvujsuy5zO1rH4zuBNP97e3uxtrYW169fj83NzTg4OEjlqAL94h3fc6s2tA5mZ2djYWEhZmdn07ugmbGlw0inUNsoCDIjqkEWOXm6b2RkJJ3qT9vE+SF5YFaktaOSXfWFuEryr343Go1KX6Qf/H3kBLzEW3y9lL6nTGrM3HagezUHs7OzaVydTid2d3fT2zeEYzVngwJNIgWbb9y4ETdu3IiJiYmYmZlJWMAdIv4/yFE6KcoFJGk/hZFWV1fT+Tp6V7CCmnyPLfWt2vHXdA4PD6dqBeHOiKNvmSDpXuJ1tx36jN9znVA/D3IAqQ/r5o/9Ie9ymMr9EF+/OZyeexZ1Ovvq/Xce5MYkfcB+9Xq9NB+y8czCE8fmbJoHNGgTtDb5StXbodvaY5t7gHdse3s7Njc3Y319PSk1gg+Cvjpl6c6BlD6FnQrV/89NtIObHOVAi2drcqBZz8t9z/HU8U/kC+5WJCXDPvgCqHsWx1O3EPXbnQcZlohDY8r3WLmjoHYc9NEwKUPLF8TL+NCROEnSgiYwU7+oqOlIRRwaUvKAcuuOrSswn1eCV496ql0afvbVnTn2Nfe9U84Q3A7lxpZbM7l2Bz2r7juX7VvpgboxkffOJ1YdNJuH+2n1mY/L72dZn5dmRVQP+TlpquNzTue6DAlACmhGHGY2Hay4PvcMJ+VXP3RuvZ+5ygVdS73FjILPNdtmpt+fUbdGvP9uI9ge78nJjPfHeZSbH+mB4wDynJ7i3DAgqbmk80twqh8P7vpYfNzOm9NCdViI34nfCvyySkFOkfapKVtIOxFxuG1F5czEQXVZqZx+q7PFxA51ul6/5WDm1kTdPY4d/DrXjbl22NagMUYczeZGVF8FJF5oHrjmhDX7/X6Mj4/H3t5eOn1Xc8Oqm0E8EAkvbG1txcrKSqysrMTMzEzs7u4eKbvM4cW6/0+ScpiSfBBeU6C9LlObS7SofcqQAi8K5Lg+yfkCt4OD64i6tk5PD8JHOdzh/fK+DfIT+P1x1l8d3Qr/sA3hF8cfWjvEmto/K91Gh9zbztlE/eQCsbczPtFTeo+t/haTCLCXlpbi+vXrce3atdjb24vR0dGUSZKQe+ZRDCIAlxGcmJhI5Tc0rq503SHQBBC4E/g4o3KGlIq5DjRpgTkYHbSwRJ4FYBbCQYy3p2tzgG3Q5HuW2QEMBcyFivMmx1PHfzMTxr1hvgjFK88qUBbUtp6jkwlPkvT+Zb7OR33kYQieWev3+9mgDJ0gN6C5zKMD6IODw3ciyvGXcdY9aqPROIx8aa702iVG1dQ2FWxODtjucRRNTrnRAOX2EroDkSsbdR4dh3KAi8qewCmXmeez1Hd+r3ck5jJQfK4Az87OTqyvr1cO0WAwwnXbSZMDOwck7oBTX6jyhid1c3zS+coQqk1tZVHEn/Li+2RzOt6BKOdY9/sL5rnP3bd++Pgox8z2cr98LmDhMt1oVDNWg5wNjnGQrXDeUOZzWXHf3sM54RsI3AYfHFTfU0tdI2Dabrej3W5X9imq3x489Xk7Dhh9OmmQs8G1oYOG+P5zzbMy2nxdIXmi7N65c+dicXGxsr/Wy3RzdlxBYrUXcXi2huys1pVIDgjttJxaf6sF5yriKH7R3OsZjrt0VgdPjVZmSJUyakO81ppRn33cpEajUcnwaS1vb2+nV/pID4yNjSVgHnEzSKOM7fT0dHQ6nfT6IjlutwoQ9fs3T469du1a7O7uxsWLF6PX68W9996bDkLy+fH/T4veF+WqjPi3tkFJx/NH19DOsQ06NVpf2lerqjfpGcmInCp3bEXOv9wz3Qdg5pBOHTGqby1iW3VYgeT/1/kOLtPkG9se9MycM+s4q+4aYhAedMgAndby0NBQ0jleneHj5TzL9konqbqTc3K76+ApHx7lgFQvYl5ZWYlOp5MEWBFLOrXuWOlaGvdms5mMpMCiR/NZsuyTQ4bSkOei6u5I8Bm6lg5AHXhzMHUrsEel4IuSC4tEvueEMScI/MyBKI2T84bj9gWsNvmeRgqlR+TYf/bJx6rFoJMkZZiOk2X4ZJIOYnKFot/qO8sayQdXqLqP4NHlTtdQ0ddF6m+l0FnWpXEwu8x9Uw6wXM58Dl0R+7rztrx/dUo/p8DVDnmSe0ZOzvg9y8rIBxkyOpYijyhSb7k+yylzASsZfZVnKUAhkMd1JuN9GgBOnYOY0zX6WzpkYmIi9vf3Uxml9gSKX4Ocea4T/V+3BzkHVHLyRZ2n9qhjcu1yXbAt5wXXgMtRLqjoz6tz4m4FjjyL7DaGJNl1fjjPqX/IH36vTIrsgAfv3C5zfyj7fhodWNLt9E380VYUBS3FKzlRukb8ki7SHs/p6emYmJiIVqt1JOjAOSOGof4U/xlY8SALz8hg2a/I10ZEVIC9np/DGa4ztO4lK3qOtsFIX/C8Acdy/KzOHg7CRQo8aWy+RoQ9dXjU9PR0rKysHClHVhAsV1HGPqgceWlpKebn52N7ezudwpyjnC05LZSbE/WPB4rKmWUiSySsRAdXRP3DoL/wEf/mwWnel5xNyuGFXJaf99Vhnxy+Ifn6qOuT83TQZ46p/fmux2+lr6TTfUz+XI1Hn2vO/AA4rRvN987OTmVuPbPuiSCtp1xiTX3lXvxB9JTSYDmAubOzExsbG7G6uhqdTid1QkJOpzbnpOj6RqORDMD4+Hhl7wn3Sug6MkrtkInqp/rtQERMlPJ3YJVT3JpkB97kjfPLhbZu30hdO26w6r7z5zpYqOOFOwq5tnLAXwZIkTMFM/QsN3C6t46k9JTN0Z6zk95jSIcjosoPgnPuCfDotitIylrOqc1RToHnQI33k0aY0XG2SaXBiLwrSDp2fI7/vpVhdsWf+27QNXye7hn0nQMxKmlf5xq773OU/EsemaVz3eH8UBZF2zV0kqCyOXJy9QytLfXlNFEO2JDc2MqxFcgnMHfHiTLNZ3kAsy7wwYyR61StV+o8zV/d+uG8ujPt80K7QT548NRtRm6dDeJ7Ha/1LPGS482tBz7b1y7H4jqM19Cx9WxvLuCWA6N8hpPz8qTodp0MOa10auXE9nq9tA64/zPiENS3Wq10YJSC+16GzHs8sMG/6cQyucB1F3G4t80zUq7rlSRgVsZ5xXmTbLgDzLUtnkl2cvsLczo8V3mQG7/bZfHDgbSwTLvdTo4tD+3S9cQmOdnV8+TYat+pzrxwuR4kWyct+yTOCfUa98+yDJmBEckTnds6naiqBr7uR46tnuu6hPfreTn84tfl7Kvr8dwzcvg6tx5chp2f3qbbNH8G+zXIdtyu3HDMJDrMPCxQc6kziJht5VlK5IHzwgNF7myrT7fjA9y2Y0sFKuHUIQlLS0vJsd3c3EyHhWjvJBUAHVB9LsdVpx8zus8SKBmHXKaWCtkjznLA/HqRvzsxJ8hSZE7aa0oATH55W97PiLwQ5sCIR4N8ceUiYASB4j8degdruYwro7/qs4RRZT16FvfL0pDoGbnDHzhWHSku45ErA3w6KQfYdCDG9vZ2+q33DrLky19vQeWusbG8zJWaz7Hmy9+N6s6BSJ+Pjo6m9choPsGmIq6SFX9Nl/4WMVrncuhOIeWJ8qW+Eiy5Q+Bj8nXv3/MzXuPtMUjlh/mQJ5TfXGaP49DfLOdTVnZjYyOVsmn8Kt3SOxRlIFQBoTKs00AEkuR3zoHhXAuoCKi3Wq2U6eD6l/xRx3LduXPlOiqi+pJ4GkmR66KIasbIHTvKMX8cUPl42QbHoWtzn+XsgesL3pNzOEmUS7eHzHr7fPq64nqTfmfG1veHMojtrzDjM1lSqPH42E8THQdAqopJDg3PG9H72d2xF8hX2fbs7GxMTU1VsJDK/agfqRfIfzkCmgMdCkUdt7OzExHVdaR14FtXXC4p/9KdOV7osDi2KxnSd6ykYym+ZCJ30B/vYcm12iPO4zjU393d3VhbW0v6VllcOVGNRiO9M3V2djbm5+fTCb96pZ6AfbPZTAHLOtngOuU8UT+5zcvpudNE7nQQ43e73dja2kpvaWAAmNtuJMvcvqN2uQWR27XqsrTUdfpf/eRv9t11G6/L6U62lcNGXI+ui6k/c33zseTayfkkHC8xZW48ufZIdfaAPNB86X5hXf3Pd2Jvb2/HxsZG1hbqR30W1ud2PNq8QQkxp6dUikwGMAuhBc93FXoZgu5lJ2kAuZ+HpQYs1/SoZQ7Qinn8TSXHPtUBFQcddYKna3PMr1NGuT57n24l6Lwm5zwPej77fFxyg8y/fS9WRByZeweObjA5Lio+Hi5zUpRTCvyMn3sk2w2bA9HcT659ZsyZTdQzqYjZhjubbINRdP9cc5ObQ5Gvl5yc+uc5utUazn12K4NWd5/PJZWoX0tAVKdvqD/8WpZmyXn1UyFp6JnZUcS61WqdCsfWZfc4c+pZ2FwZKtvKOao5XU3Qmrsm1xd/ns/noCyAnvfxAMw6Z7EOeOXGQl1QZyPq2nTKybLrsVwQg7bfA0Hsh4O4XHaGAUPHBbmxnyTVAUUn6nxVZMhGyrGt04kKcirTq4yVAP0gYJurcvAAkd/j687/ruP5IJzDv+m4uQMsZ5K8yPGF8pZ7PvtLLEFbx7ERWyigTNsn3vEVQBMTE9Fut9Op93yrAwPBdTKh/nsgqo5OWtbryG2tPhNfuaWGCa06DJSzJ5oHJrOOg/3rMIDLfZ0tdzswqI1B5LbpdsnliDbP+3Cc8de1e5x7dI2vUVGuMkefCcf4/OZ4n5MHv+d2bO/HhZYU+VpfX49OpxOdTic2NjZic3MzNjc3KxuImf1gCYILT7PZTNFJZS34qhQH9Lw3x3gXBhpSjsOvr4vWu0LPASB3KnifvmdkOidsuYWRM4gEOn6t2vc+8/qcU8CMh/Ow0WhUXoGitmSQe71etNvtlBXMld3434oiiy/6XvuzPRt0EkRHVYaMBpOHUezv78fW1lYCMTJoytyKVxGHSjwHWiIOea8IHB2EiGrVhANNz36oPRkItqfx6Fl8NsGA90vf14HynKy6AqsDZ64I657virKuLCwHTLl+mPkm0HaDR/kX8X+uLZUX8/AxXassrmRc5Yejo6MxNTWVnNqJiYkkLydJ4oeXMw4i6g5WJhD860CQiOoBInymZ/LZtv72SLhX9Qzqn+/XYl84fvXBXxzvMig5YuaLY8mBLHdUHRByXOSp1rJXOvT7/SPBL19rPkaOVXpOGaw6XaXsLZ8l+WBWbnJysqLr1YccAOI85/p3ElQneyTOpXT+zs5OjI2NRcShI6RyTc2tHFfxe2RkJCYmJmJubi7m5uZicnKyEtDM2QvPyPu6cXvAbKyu1ff8m+OhLdN4HIjSgWFW1Z/hVQcR+dcw0v4QJ4joWOaCZiLxQYEGjb/ZbCZ8yWyRnLLp6elYWFiIvb29WF5ejl6vF5ubm5VD7oaHhxPW8Yo+9V/JH12Xs3uDHI/TQDknRXzd3d2Nbrcbm5ub0e12U9ZWxAPIck6M2tU8KEvrB2sOkv26zLjbfg8CRRzaAF1fZ9vqHM06LE997p/lrh3UXkR1zXkfBvWX/4uIeera4neO27TmhIn43cTERDSbzeh0Okf8Ba9a0DM8+MP98N73QXRbr/shyWnhfjFlbP09teys/8+29VsKg5kLvt+QfeKkuFdPAXcDTofVs1J1DqUrLCpaOgmcMBqFnFLwxcnv6sC52qWAUEDrHAYaGn7HEr+cwnGDyWdJ2TAqrXHxtSd8ts8dv3fHTMrwpBU893ZLvqWkWb7Lw0G0MGnscrwd5Lg7eM9lUx0cu/yLt7c6rMEVqz6nbOdkMve5nl9HdQZHPMkp2pzDXWcgOH4fS27sfK6v01w2ieT6TCW20oXK1grMEthyHxmj0soWKMh3GjK2EYPlZRBv9TflPTc/dVmp4wC/un7wfr9WjkLOAc4BEH/lhOt83ed6lHbKbVguQJDL/rtD6OPN2Y5B68zvyxFtNtvIzZPrGj8gZn19PUZGRmJvby85sqxYyPXRx3OSVKdvRLT7Iq1lAT/KWW6eVLk2MTGRTkD2Q+Vcpl3fOf6Qfdb9nljIna1AhzhnQ/Q8P1NC49Gcq4+Dzm+gk0fw61VIPn6OWdepn7LN4rufJ0GsEhEJX8rRHRoaStnZ6enptLVuZmYmer1edDqdpMu075MnAeeSCaxoy+kAH1PO+TotVIcVFajVNkSWvlOX5Lb36O+JiYmUzNIPfYCIo/aFOCji6Gn5rv9zmIv353S4E5/l+OtWuKSOn7yu7lrvJ8eXwzvU87kx+/NzVNc/riXJNoO/vd7N15opiJ9rr+5v/78Of+XoKZUi60eZCL2AWY6t9o/lhFiKLOfoiVH+Pjx3bHMK1IFfDgAx0pHLWFJxchLrDG1OGHzBUOH689gW++cTmBNWKma/151XVyz6Tn9r/0uubJxGlAaIRpXXsFyEr3ry+fY5FBHM0bE9aRodHY2IaiaDh/5o/NxfEBFZJa52BgFEfae/PZjhgMMVFMEHjX2uWsKdFScHYjlnxNdynfJ2eeJ64O9cAGZQP9R+bg07SKgzFq5bqCtc8eb+19qTzGp/kZxZZTro4MoARByexi4jwQzuSe8xj6jqE8/eReQrPEjMNuUCcWyb9wrkivw+ykWuz4OcZa3ZHDDI9cMzymzLx0w9R71Gyska9Z+vGcq3+qLrJCPsH4Myrn98vGrXr8vpi1w2O6dnVE2yu7sbnU4nRkdHK6X3PHAmF3DL8eo0Eu0yeaV17I4tM9y8Z39/P0ZHR1PZqxxbvi7H7YA7gjmcw6C8Z3Fz22YYcCA+0ncRh/ItmaXzqLlXplpZfcqw9uapJDgi0ut+1GfqbpfBHK7gZ+SLeO+YiX9z3ahyMCJieno6vZptdnY2Dg4O4saNG+laOV4av2Re/cmBf3e0fFz+XZ1+e7rJ8av3VY6tfAHNteYhFziJqL5KcmjosIrDHduczok4xAzUxSTnX53dctvl1Ytsj7/1d64/jlv8mTle1smBvuMYqYtdz1O35DAV28316VbP5nrhNkR9rlPhVbGg79zGOI7KffdJcWzZEUUQ19fXY3V1Nb18emVlJTY3N9OhBCIpL4I5L0egY8DTkPXDkwN1j5QuQV8OwOSi7Hom782l5fkZyx38OTRYBO40HOw7AYzvM8k5CnwWnXiWJdGw5jJzjUYjHXLF8j9XwK68GH3lteKdDl3QvRov9wkxq8k+6X8uSMmB+uYnEp8EyemhMmbkmbKh6yMOjVyz2UzvzxsbG6sEbPyVLi5bznPJs1cQ6Fo9U/zVXhdFUAk+6WTleEwl5GCJgIcK1BVXbkziEduifHmJm57rBkWymct6cQx09HPf58jng4eZ5J4vgK6y483NzQTq6cTnovnqB5U4M1+ngVy/Dao0yNHQ0FA6CEcHA7KMlcE5BrNcFzFrlNNX1IkCQzkHla+L472557qDzHnKgRz1iSXk7hjQpvk6IIBwwEanV+3wOsoTM6a0m7n++ri9LY7ZnTJdkwtmS5/r2bu7u+m9oXzd1SAg5/09KarDAvpO/0sHK3ulgJbkjs7f7u5u0uuTk5MxNjaWth9Qlw7aY8j5YdaTcih9rz5o7Y2NjVVsALEDHeZc4FvPjqjKAp1d8SvisMrNcYLGIrlwvco2/JmsktJ61rj5+j09n+9RVj/VF71eUH2R861M7NzcXPR6vVhYWIhutxvb29vJhs/NzaWtFno3eb/fT+93PnPmTJw7dy5tM6mjnMN10viHJN56kLzX68XW1lasr69Ht9uN/f39ClZ1HEFdRDlTQFfBHb6LOKfjRHWf5WxVnUNKmYg4TPpwjO4457AN16Lay+lM1//OK0/A0dY59ue4ySfqAe8f+5Frh9/Tgeb65Q99CvWBB6PKLrje8j6pbeq+47w7WvSUHFsCYhmm7e3tigJ3kEtjRyPLQXLDMQF/LuJOolD4dQQE+p/XkXkkN6Y5x4/fubGpAw3ez1w/vE8+bhd2fx6VuD+TCkSfOdBxBeG/c3zMgVwZYg9K+Bh9Ibnc0DE5KfJ+uULQNQQFuibnfLnCzc0jn02qAzR6Fkuv+v1+OnZfEVSuRWZMqPw88JTrw+3wrm5sdbLu/RjUNvng39X13xW9j8nXOX+YdcjpOL7CR0EFAkX95lhdx6k9ZTBOA6h3quPfoL5KH9SV/kbcOjM36Hufpzr9KABMw6/+5cbldmTQmqBs+fN5Ty5rwD67Y8vPcsGOnAzV6dYcPwfN23H0QO6aQcCIa0b/H0f/nQbyMboeU3WG8BEDW/qhTRB/crhHnw06OT/Hc8/cewWAiO1R73sbfKbbY85dHbbwOc7hqJxdI0b0sfo6Z6CK/fAEhuMtt80Rh0Eu7vVUUG58fLyyV1fPkM7vdruVvnNuPRGRoxwvTzP1+/1KGTKz/TnsNAjzsXzfg/45OXPyteiBwrprfU3VyVydfuf1nnXk75zNczw8aN4p6wyw1eGfQTaoDsc6+Zrz9ez9IUbid44zczyqm9fb8QNuqxRZDUt45dju7u6mY+03NzeTQBM050qOXPHooBQqD9+PoOsjqgrZ967oujpAzes9s8rJyQlFboGwXzQSbihy/VO7uWfVCRuFhZF8Glk6MZ4hViTSoyf+vNyCZmalbmGLxzpVUO/sZOkSHT61K9kg2Bl0IMTTRd1uN/3tAEGRKEV29b36Tbl3OVOZ6aCFHnH4WqwcGGBkm06sDr9QRoQnFFLm9blXG+QMUU626ygns7zfQYzKxVhyxH16HoBxZVhnMDlnfg0NnoNwrSP2hXLKdcbTIPW3+E6dJ5kQSNXceoma2tze3o5+v1+JfJ8UUdZyBuhWa1S8k84aNF9qT9e5kdT1uWe4nIl/dGg9ik/d6HqfQJl9dEMreaCc5oKufKaDLn4vvcByOAZGqPsjjh68w764rlbfXZ94dphz7mtecuufs03Kig5Dk85zxy43l3XzfBI0qB8OZPf396PT6cTKykosLy+nrSk6YPHg4CAdqsKtVnT0VQk1PT0dk5OTKZurDGfE0SozyQv/pv50R9OxFLOyHvjhWRx6fRHnka/08YC08ODe3l7KwOl72hu2p36R9wLGzF7rh6+CUd9VXUMMqX5yzmR71Fe2oYO8ZmZmYnZ2Nvb29qLVaiUcrGt5AFWvd/OVN+vr64knOkxpe3s7lTlznOLtSWOd4xJ5v7u7G6urq7G2thZra2sJU1An8X8PaFEuVaXpe5JpC1xv5xIrDDjwO2IzyqHI9aT6TqzqTtygOaPd8D7yWbktHzm/gAEv9tNti9Zh7r3xjr0pd3V+i8sn9QP3tOs6VuHIVqhEX22qX47PqHdExIC3omOjJQdxLG/UKchbW1tHAHHEYYaX+w7EYJXESiF4TT0jXO44Mu2dc7ByxtLBsBjmQusk5rux5TPqHNWc8aFQuBJ3YFH3LF7jAErt5b7L8Uhz4c6GK5EcLzxi6uBUCiq3X5bKg8rF/z7pjC374af7cexUeA4iXWFwXgfJqqjuGjlRe3t7sbW1VXmtjPY2aA3SwVa//L22dU6HG4ecc5NzOuvG45RT+q709Dnlk33J9ckdMn9WzjkhION3bkSZpeW+NQeoDppyTpWvM7VxWuTfjb1TDnDwWuk9AhY5nZ6J8jY414P6FnF0Wwh5zmfxtF+XC+roQU6XA293IN1h9X66kz1IntUntslns++SGQZPRAQHlDWn3Bqu4wXtmGyJ1oXGpICObHqu3dzaPY00SA71m/vkx8fHE394GJR4JR0ueVeGlq/78bNGuL4oO5xTyYwcSDldvd7NQ10kX15V5frRgTkBLB0O15tcH41GtTSfDgedZvZZfVP7fnq6B6Lc/rLM2XmmtcF1QlCt+7TneW9vL6ampmJ7ezva7XY65Vg6WmNVML/fv3kOjca1tbUVnU4ntra2ot1u19rGnI3K/X8SlOuDMJGcdpWMut1i6XKujUE4SnPNLUpca+4j5HwCXy9uq0TUle7M8fq6+anTDVw/uUDmoL7XjZfPZh/ppDo2Fx9ygWO2lXP2fax+Ty7A4PPijq0+p54ZFEA/Dt2WYxtRdVIFoDc2NtJrfmjc9COBZumGSJmiiEj7MfmaHypxZ5QrzVx/I46+5oD9IwPZF13D5xFk8bkucDQwDlg8yuOLjc9T3yOOlgs5H503HC8zoexnxOFphR4NcVCjftYpCyojd2zp3CpynXOU3Jn1OTpJUl+YlYuoLuiIQ2PtWR53Uhws5OTOgV9OmcqoaA9Qp9M54tiqFC7n2GpMAg2aKz2bcufBFlc6bjz8e1+HuTXt93EN1Tmsuc8d4Ll8e185Pq1Xl0/vp9qmY0u+KlCUKz+re7aP4TQ5tjmHnOR8z4EgOrXu2N6qPDln6HI6mjqH37EMWiBf1zko97G6nBNIUUflgpP8n9fQyef+bWbZIqr63t8DzH5zvNxq4MAs59jWOa++FgcBOvKLe/jpZGveaRP92S7rp8m59b44GNVnki9VoU1MTCTbJ52stoSNlF2RzuB7bJWp9WA/ZZbrz53OiKjY4F6vl/bdaq+tnzpLOXQdpP2/xHsqvyUoZhaaFUz6znmrDCv7LWdc+4O5/nyN6zP/W+0MDQ2lwx7FC2a4fS0NDd3cgyxHdHp6Ora3t2NycjJlYDudTiWIIMc2IlLAWWcudDqd2NzcjJmZmSP2zteiY8vTQLk+9vs3z/HY2NioOLaOEXKBfb+GeMgDH5LfOp1Ul5Bi32mDjzNGrqOcTq/DM+RR7rOcHvV2c/Ofcx45Hl8P1A+O16WT6ffwO67jQX1y/J/DNsRifr0o54s9Vd1/W3tspaBksDqdTqytrcXy8nIqNWUUjKCPe/5osCMO3wEqp1ZC7LX1FDLdT8AQkc8Y0ZCzREX9E/CnYqeDkgPVukbjyR1Qxe9zkUsfD40SeVWnAPUdBYGRT562KqCh+/Q3jYsMnZ5BQ8bFHXG4wHg4gxt2tc+MbY6XOSDl4zxuCcIni8Q/lfpSnsV/dwbp7MgwuwOUA9FOdI5lRHZ3d2NtbS3W19djZWUlVldXo9vtxtraWtoeoOcyY5srMVa7BPr60Wf67cCBc0WlJ6XkRovAgUqev3PEZ5FvdRUidAzcuDrPeZ07LC6v7mBxTvW3ZITP0SshuN7UR11L/hEMspLiJIngzbd+kFeuC/Sd7pmbm4u9vb1YWVmJbrdbsQfSlXURe/E+F/DT/5RjfS/dTqeAY+Cz+D+f4f1RnyOOBuZE1As+ttyeSWbUcs60+pzLjrlzxTF6Rkz6iHOU++E4FdSLiEp5GysTdHo8D6qTvVPfBPRVTcIqntPkxN6KHGB736WrVdXW6/Uqr+/iIXN0PkdHR2NycjKmp6djZmYmlW/nnFn2I4cndB0PY+Rvxzc8/V96VPOYO0iHr3YkEPV1z/66THqAg0EpfjY2NpYNrnE9Dw8Pp2yp88hxJcft+sq3vehwTL3PVnNIIK/DIZVpHxoaSlih1+vF/Px8zM3NRbvdTny+HVk7DTZAOJMBlp2dnXRolIIGnp3VPFOv5XAf9Rx/crZfbbjN1ufu3Lk8RhweBEld6dc6hvF5oJ3P4UEfK+08sRPvJ19ydsn9HH7m7TGZJPJ2OC+Uae8L7TvXqa9hjtf9QG2/oF0mz2jjqX9uxzYc27Glo8rSGb6viuCGys87RSGhAOVKs5ypbIfK1BU273OniMqLew99Ifjk++IZRC7I/p0LtgsFFyP77GMjaHJg40Bd7ZLvbiA0Z7mFxvFTseR++F2Ojzke5gy1j/OkiJkUd6a4+MgjyVVEpNc9uML3+XFyw6B9l9vb27G2tharq6uxtLQUy8vLaU8PDyzq9XpH9nrmAKz6KGUl0C0DrhMiZdQYbcvJg/7W924Y3EDUrXXKinig6ymv1DEMWlGeJf9cb96XnJzldE9ufJ699WvFO/WFzrevFWZJToP8i3JAos5o5+6VTE1OTsb4+HgKBETUG95B64N88x9+nrMt3ibH5pF5OsqUfTqzlMGcTSK/ZNTd1jF7XCcbepavmTq+cK7qwEddW3U6mHygvaTuIC+Zada69CBfXV/q5OnpphzGyOmNHE7Rj9aAgsKue+icKVPrWfpcf+rkTUSn0+08K7pygFm/pbP4HXEfA0+UPY2LPHPckTtUhviD69jXLr9TVjvHH13P713f5uYv4vB9xMrAq6pQekVOvvoiPc/95Mrc8/VtdXqdffBAxWkgzoGy/szUut26FUbn/LgOzz2ba4HYg9fwWTlszDXJNqjTOUb+n+MFx+P9yPHtVtfWPY/PqcMkjtWdx7xGY2cAPWfb+Uxfv7fCsNSBzncPkPI5t+vQio7t2PJQmq2trdjY2Ii1tbXY2NhIEQEpX6aTCaZzDKJiVOkNj2MnIzkJ+jyXOSMzfRJIchToqLDv3DvBw1sIjhmpccoBCip7gRuCYAdHHBvHwH7SkBBkiFe5RetOidqikHp2JCe4MjTKLuUirS74ucVYB7q8XOmkSFH1HGhhcISBH103MTERzWYzOZzcQE8QSLDs8iiHttvtxuXLl2N1dTUeeeSRWF1djeXl5RQtVQaMoFGBJzq7OSAmcMBSUUWX5YiozIrgnJldkgP0iKMZNipG8kxrgnqAET+fCy+91PX6zGWQoFtOO41NnRFWn1nZIWAm465XZ7CfmgMBL77ugXzSPVTy3P92kuROnetY6iaSO3QTExPR7/djZmYm+v1qRFm61vmjdrwPdDqV1WLfmKnNgQwCfMmzAx3JxtDQUAXQuhxLBlktwcyM6zbag1wWS7zN6WRmz7xcnTLO/Yn6kS3zwz3UFufL+SwbnatAGBo6fK3P/v7+kT2hk5OT0Wq1KrKeoxyYOg3yH3E4h+I17R0/oz5VFo+8Vxt0MiNu2orJycmYmZlJOpeVbJR9tiMdF3EzW+5lm8IZylBFRFp3lEfymftZVdnmWIr6udVqpSy8gjZ6nl7tpVffOTCW/SQ/iS3cqfVXZVGPk0deldDr9VJGV5UyzWYzut1uCiiIl45lms1mTE1Nxc7OTpw5cya63W7KxG9vb8fW1lbixdzcXOKN7NbCwkIsLi5Gu91O1XHqG3GR5kHj9vk+LaR+d7vdVJYtncIqTcfhvD/icO1ofrW/nHiItpvz7piUvKKO4TXU0cxAu7OZc0AdQ7tPkvN1XGYH6bIcvhY5RtdnfF4Obyuw4vqWY3J/S5/n9JvsjbZN0CZ7ZSZ/iGtZIUsbxTmnDXT/5lZ026XIzNTqJcx+0rEPxBmpjtOoaoBemsV7cyDWn5GLmlOJekSJYGB7ezuV7UootMB8fGI0S6x8/AQILjQUHvWDTnlu/P4Mn3gCY3e8c/xwYcuRA1Yugjonpc5x4tgdQNXNXc45OgliX5h5cAUjh4aggUCOmV0vjfKxy/jqndEKJl25ciXW19djaWkpNjc3K/tpcyeQ6z2qAg8+P5IZKif16+DgIDkZbIORahohN8I5Y5ZT7DlFps/FN+1X0ngI6BnoYTDAjUGu/FRgS8DInRZfsxwXA1XM1srR1bO4TWN0dDQpdvFbPKdjS6ftNAH7OsOd62MdWBjkoGp9uZHVby9jz82Z6y3yk/eJCAi8X5QVjYVj5n2cP1YBsf90jurWR+46XuvBHd7jAILPzdkI56UD7FzAizLL+WV/dI8OhdS1XJd1QRBvkzJwUkQMwM84t7Rp3Cer8UonRByeFDo6Opra9kOjFEzkVpCcHLB/+pvfMdCZG0Pd5y5jWpfER77GcxiOWI/rRuRVQBxnTmezfccP/M4xlfS97IPGzgQFbTmf1Wg0Ynx8PCYnJ2NhYSE2NzfTvuJmsxk7OzupHfVZrwXyLQSOj1x3keqw2UkQ16RkjFufaH9zGJDEtc7PXF+6bfB7qccoC673iU2FIYTnRHVONMeeoxwO9jY5Hm/vVs/h2iY25vWuFxz381nu//A7tydsQ/fUOZk5Z79OFpwvdT5Sro1b0W07tnt7e7G9vZ1OQtY+EX9oHfP5OZWlv7PKBcsXEn8TNIocNOhvlpSqTzIa3Bcn5cxjxzkO9o1KUc+mcPi4eR+BuTv7dfOgZ7hBorKOiMqiZrSIUREqfhc+jZORRx+7AzyPFjnQ4nN9jJQX8elW0f2ni6gI+GqGiKpsy6FkWZLPMSPQBCxqgzxThcTVq1djeXk5bty4EVevXo3Nzc1YXV2tvDda92ttMGPJk8y937rOZWVo6OZBGwJm+/v7MTY2Fnt7ewmQEcxEHD2swRWqK3AqWTqqak9gUHpHrxbjXlYPiLAdKmIBMZHWeLfbTVlpOfGUYzcAmlPKueZVfeUp8Bzr/v5+jI6Oxu7ubrRarQT69SoUPWt7e7vSz9NQueCyGXG0nEnX6Tu/V0Rdof99OwodM7Wn6xiQzPHH505ZGPWD+tp1vtsfGmsaWYJYyUQOmLOPLu/kS06vkgd0PFlmzz57wJdBNK2JXAks+aDPXCfwh9lY19PkjZy0Vqt1xLFldUVOzm712dNN1JvkncuJ+qnKA2UIVXVDbOEBHL0VQvdNTEyk1x5GVAM8en4dGNR+R35OzKC+0q5TzxEjRRx9p22/f1hi3O8fVl7464gkc41GozKO4eHDV0XJlrB99SUXgMolPxg0cN1Du72zs1Phhdt0/fihWkNDQ6na5K677kr2R44rbY76p7kTj1nF6LLl9tG/Ow3kzpPssl5zyICzrve+13026Jm0CyLibLfR3I6kuaEsKkgecVgRRb1FPBuRd0KpB7z/HiCso7p2+T2dPn6f29JG7MR7+Qz3qdy5zOE0/jiOZZ9oD32M3kadbhqk/49rA25rj60Us/b16ehybpCn8NC4uiEnI8bGxmJiYiKVZTrzBAhZ6qeSF3fw6pQDDb+Ao/opIihRlHRiYqKyUZ4AbGxsLDkRucOjyDsKIwGL80fkTiQFVDwiiHcnRspaDsigTLie4wvCn5tTICKV1ijjrXGTrxq/g66coy9ecKwnSX6itzuqcroUwXUD7cEUZjKoWEU62fjy5cuxsbER165dS3sRFxcXY25uLhYWFpKh3NzcTO+SU1mQsqs81IhBIRp8B+rusHAvZKPRqMyjZJqgJZdxyylOrnW+DkwyrJMW9Tqx3d3dtP2Bjro7mR4okm7xciD1dWRkJKampmJycjLa7XZMTk5WMukufwSy7hAwYyuis6axio/6XK8GUVmt5CZX5n0ayOeRn/vfDmhZgq8xsmzTAyXUT+Kb/haoJqj0Hw/sieeSdwU8mUXns9mWxsugIPuivuacXBJlX9cwGKIxyUFRyeT+/s1Xa9DpdD3DZ7itIK/0w7bcYZcTq7mR48VSMuoU5zedX5a01gGY00rkmcsC+Sh9Sj0gHUxnX6V8kvdmsxlnz56N+fn5OHv2bExPT6ey1Vz2hRgi4tC2qq8sO5aMyZmUU+pZZOp+yo0/W2tRQLrfP3y1DXWxvnOHKKIaSNF6ZEBYzyAuYfCAPI+oHgTka9J5pr/FCwVv9d7wXq9XmRfxdmjo5kGAZ8+ejc3NzdjY2Ignn3yyEqSW/Ks9BTH0HlwFNBzc0zkRTxhcOi3OrYg6iwkj2nHqOF/vg3Qi+c0gmq4hRuBziKl1rfQYnV0dqCl+MzDpgco655CBHsc1jj/q+Oc2QJ8Tw/h15BP5xnaJ42iHcnwmjlHfKW9cz77+PLBKW+nr1GWBY2P/6ctxa8HtVK7dVsZWxovAOXdQChUGP3MFw0lgVIxMUFSXTi0dW5/wHNhyJ63f76eMFo087+WL0N05ZPaWz/dsFcfu/OG9/nfEYTTGDQ3HJkXi2WuNSY4t28lFoCKioowjDqNYnlWhMc0tpjoQR7lw2ciBdvLzNIAdgj9+JuXAfba6NjfHGgsDJM4vgdmtra1UGSFQND4+nuZhYmIiPXdkZCQpa4FTyoT2vI2MjKQKB3e2c46tzwOVrdpuNBrpNyOkufWX4ysDBFR6AvDa07+xsVHJ2DJbzShrLlAkACZjpn7pd+4UY/aRv31MOYORM1aum9QXZcD39vbS/mXtyctFQE+KcuPX307+mTu77ijqc8/YeoYmB/ApP34Pn+FzJr3INSg9T9nn/ZpTAk46O7figxt6yQsDurrOS9pZji/ATJn2YLB44zqIJZhc+1xHBEf+m4EJAg+tX81jRFSAk8bFdTFIvk6D3ifl5o7fOcZgoIGZLGEK2lhlanUSsvbXEtAP6gfnNSIqujniUP+xf5IZjsXXB+Wkbp37Pfqca8fLPXk/A1a0QW5zHf9wHBqzr0mON4df6ORLTomV3AZq7trtdpqr8fHxlIlnyb7suO7THKstd5wcAw7CkCdFuX4QR7gTO2itRBzNUuZsDPUqbau/L5c2gM+grtY13FIlG6z5oB6kbVC7dRnJHK9yc+nXuP/iPpDrTgavaAM5bups6nRf+9TPblvdYY2oHm6YGyfnLscL+kouEzmesV+3g4Fuy7Hd3d2N9fX16HQ6sbGxUXFqJQS5QeY+o7BRmUmQBMa1h1eH4qgfijyrXQqglLqEnAbEF4GAgjtrytj2er10YA4ztf1+Px0BL0eXvMgtyDrFLIPH33SQvD2WWpJPXmrqB/tQ2OqEhMBeDj33XIo/Ug7MFgiQK8PAZ+YUkC86X8S3UgpPN2l8bjRZkqTrtHBze197vV46XZHZKYHXbrcbKysrcePGjeh2u9FsNuO+++5LkUsFZXQ6crfbjbGxsdje3o6xsbHY2dlJ+981T1ToWk8CyIz0UyFqHapvBGOaEzmWKvHNHZYzCJhFRGUtipf6vb6+Xnn/3+7ubip76vUO9/c6GMmBZM0F15P01v7+zdeXKfvd6908ZKTdbic5dUXsTlREtSKBOolryJ1bZbo0P9rHlcswnwZy56fOyLPPlC9dJ6DH7Kjuc8DDZ9ORUgaT2Rq2xSAN9Yz4rTa1nnVYmuZda57BTX7mTq+Mt/rEYKgDPo/AiyRDGpv20CvQc3BwkF4nwnbpsNYFlqiPaUcom5JdzQ3nSGXFMzMzR/qrMk/xRP0h2PfKIQIklyMH9icN7qlXCNB8LMIZEdVyzd3d3UoZMg+smZ+fj/n5+XjggQdidnY25ufn05zo2frdaDQSBhIol+7koT2yJxGRDnaik8aKEuEN2W6CYFZPMZulsaqPOjtAQVjJZqPRSM+nA7S/v5+CJGqP21v4fD3HwTwDs3QOWA2idrgfljiy3+9Hp9OJ4eHhmJ6eTtiSekHrXfdrfmZnZ2NzczOuXr0a3W439VMlyxqnnCi1qWdwPXAs4j+DV6eFyG/ZSyW6WL3pdp5j1/+SHW6PoL4Q3zXXsv/6cSdLRPvhtpl7p4VXfX+05JdzpvZYraLPcsEfriHvm+5h0Iv2yfntmFPrTJ8L62ntyU/xYBb7KZuhPrkfRt+B2wv4XmnaPPpd7vi6veEcsQ2Nv25ej0vHdmzVaR4WRUeMVOetu8JiZIETwFIGGXeWeFI5si0KjDtFzlxNAA/U4X3MpgjUqw0pIhqqHBBjZldtEwjlnH0ZJgeIMiY5Z0lOgcpFCawlnOwnwag7kATxAvxy8uW0MKLkC8blIAekHHDlAIvLykmDGio59UsOSc4Bz8mfgISAjZeYio98t+Pk5GQMDw+nF7p71E3zxSCM2pJjSmUhI6l9PzoFkgrPg0RqjwovB5Y5XncwOEbObcShbPheWgE2ZiI0VrXjipeZI96T6yvXA3krJ1fzy+oNUs7ZzLXPefJIKqP3LPfWuuX7K08b+Zp0xz+iPijlel/3kGe6jnPnYJGG1GWSa4UyR0Pq/e33+wmgM5ApcEVgrzVKOXI74227znQnmwFLlvZRt3McrJoi0HGd6cDF54b9pjPR6/XS2HWPeMLglvjvoIvly3wVC/tVJ1c5e3LSlLPzdetAeikHMPW9wPv09HTMzs7G1NRUOkU/t+4dRPJNFazQUV8JtrUmHKxHVANyBNjuCNQF6CKiEujJVZkQ72lsrCqrc6h9rfj/zh9WbnBN0LHX2lE72k4mfa/Ag9a+P2doaCharVZERFy8eDGGh4djbW0trUc9Qzyjk0aHgk47+eROh9uukyLqdfGUZ11QhwzCbLSLdQ6MnH1mZhn4zjm2lHWus4io6FNdRyxDhza3hY82KSLSPOeelZNL6m63E/w+5yNQ9t13Ef6nYysc5HpHP1r/9N2YHNC4Jf9aq+wbx1Znd3htzhYfB98T7x53DRzbsZUwKdOTK6/hoDnBrpTYWQmSALmAvZjOzFIOLBEYuOHwTBEjAblSZC4QKXMdNOCgXkCfCjoif1olPycIEmnCGDygUSNg4uLWPmE5TTJyjPwp8s49huK5GxAt7mazGbu7u0nAW61WKoGlUSRIdAGlg+TG2J0yBwkuI5KvkyQ5GIzScfx0qvS5O0xylAQMlXVRexE3ZbTb7SalND8/H2NjY9FutxO43d7erii9RuMwk6x9W/pczjQdW++/R9lySqvO+GgOc06FAx/yi207SOt2uxXHVoEu9V1rTXLsji2rNdypZJ9yfRQ/VldXU9m29t3qGeQv+eSf0Uj4jwdK9GwFNfr9fqoSOY2ObR2wzxl055P44o4OvyO45vxpbl1/c735upOMCQzUgQ6t0eHh4dja2kr9U3BJGaZms1k5MIbZyIij1SkaRw4AuH2kk6q2COQIpDQm8iLi6J5ePUNrpdVqHblG65s80jMIyCMOQT0DvNJXGgP7or3jOuHX14gDH//7tBDXOGUr53xG3NRTOgBKr7vhnMs2T01NxdzcXJw5cyZmZ2fTPvucfvEgILdqEJeJuG7UHg/EpPy5LXNZ1FwqWEEcoHaJcSKqZ2RwbUYcHtqZ04MMtkZUy10ll5RH6gvxQfaP9xDrUXdsbW3F0NDNgwTb7Xa0Wq2Ko+tzH3Hz1UytViue9axnxfT0dHQ6nVhbW0uVP8S3kgW+5ocBA2EBrgUGKljCfBpIeLXf76dAtGQzl8AY1I47jlz3ChQI1zKhwySOP4t6RI4Z8XUuKMKqFM4XKxUYjPZkkZ6R60NEdQ+8yzEThGwvZyeo9+UHMEGnNnZ2do7YV58P8oD+EiseuHc8p5cc+w8ix5PkUR125PXHXQPHdmz1rio6tg4g1RF3ZKXcZOzIBDFLB1AIPPjAOVhFiynoVFjOHN9T5EqcSpj9Y8mmslzqW693swxSToj2xjHbykVAgyNQJ9IYVGbGEraIw7Jt8Vt90mKnMtdvjYeCIfClBcVIlXhBMKZnypmWYdP+Q0ZESeKjsm3MLEuZcxHRaeLcnCZFrjHLWHqWM+IwWqzPNUZl4cRDnnYpoqEYHh6OiYmJGBsbi6mpqUqkjBkUgW0CB88s8SATZoUINKSsqDx8TdCRZp9pmEdGRrJ7U/U3eeXZKg+UqS9Sqn7oiWc/GbDhM+nYurLkOqeDzQjo6upqCuhNT08nkC5+MfhEvcM1xlI0za/GpqAe+6byU/FCTvVJk0evNcY6x9tBf84BkKH2w6MEmqlDpfPIG+p2yYA7bNJfBAYOvCRv/F46v9/vV06wpSPNtebzSMqB8pyDy/WcqyrSvbQVHtx1oOXOVC6rwAi+9LPsit7hHRHpjIu9vb1otVrpFHHxX2tHn7kT4QAoJzd1PDxpkoNHYpDLQeLIyEhMTk7G7Oxsmou9vb0KcB4eHo6zZ8/GuXPn4ty5c+mzHF/E2263G6urq7Gzs5OcKOoM2WXKhubd7a7mQ7pIukkBCzposv367dlX9pnnfKjvchDoeHP9uw2SfPPVLLpeYyWmJL7SOF3+mTjR+tVajoh0tsXw8HCsr6/H5ORk9Hq9mJqaSvPKNdxoNFI11f333x/Xrl2LJ598MlZWVhLW0eGomlvtj+f6VL819/1+P20nUpBtaGgonv/85x9fYD9JpHkW77kVy4MHjrd5v/72H+qdiJsywm1VxAoR1YoZ8ZNZWTq20rH0YYhNhM+0HUVrlbZaWVEmq4i/6JAS27quJ2880CK7RyysfvN1h3LUtVbJEwb9WVbMtcL5EJ5hskk2UP3ja9voRHOMbmPJJ5E7+PqMz3af0nXMILqtjK2ffsYIAQeW8+AJhnSdPmd0wiPbvJ/X0zhTyNi2K7TcAiOz2D/9LWPG6JCibnJAKdBcUC7U+swnmRkr8VXPdwddit7nw8vRIqp7fdiGlLOXlJJn5IU7t8oO6noJXZ3zwqhUDqzQQfDvc7JwEqSorRY4+5Rb2FyIBKBSNFI2uXEzK86TwslfXwM5JcrfOadC5IaFziz3p/scMIJJA+D9YcCERsD7keuTO+gRh5FVVlCw7N7XtPhEGY04lE8ZFK1B6jhlyPv9wz31cmxzGUJ3qpznupbl1V76Lb0jcOlZrpMijpXkDiyvrzNG/hmDLO48iwRsck4qdSb1ka6jA+zBE8qFHDoHIJp/X98EIRyHj5OGfJBjy+9YScH7pYsJ7PWd81YAhutRNs3nTdd4pQ1P9fXSbzlDclwEACnPbp+d6j73+T9pG0AwGFENtjt2kExwC4/mV/yTs8jT2OucWsmNgmx61eLGxkaSF8mEcAi3cXB9MWCie5Wdko6jjtJ9DP7oMzqs5IvWXC7zpPGIp7SV5CEdW65jBfd5kKicH9kKBmt9janiiTZFdkvyKpk9ODiIqampNF6vMtEcTkxMxPz8fGxvb0en04n19fU0j+6wqhou4hBbCZfJtvX7h47txsZGtrT7JEm81Rx58sgxeB2e5/+UAdplBjL0HOoT4iV9LxxOmaL+5/YO75uucQeO9oE2IIeZ63BrTueTj/o759iycodOuj7T2tBaZ0m8B4vdL3Bdy7VOmxARFfn3cdWNlXPsPPJ7cuT8vRUd27Hd2NiIra2tI4cUeBaIk+WOpJQcmeqnxNEQ6xopFBENPRWZSH1TyUEuCsAIpkfwmeHR9Q4gpEj1PxWV7tceXBp7Ca+Ua6PRSKUE2k98cHCQfX+uHNrNzc1kuLgwtGDpbDDbIZCuvSMyZgLOcqRySqbX68X6+no6vIhOjcbti5aOAg2s79Gh4dVcuSydtFJfXFxMpV8aDykHVJWp3d+/uZd1ZmYmWq1WTE1NpZIud7aazWa02+2KspSi9milG2tFdyUbLN9hhM+DQAT1Wkc5B4ZKUOXUytpI1qQ0JYuuF6iUqQcEAhW9pxyI6NCK3LElqCFwZ3CFbfT7/YrRlJyq9HtrayuBlX6/nzLp3Dsoxc/DtTT/GgN1FANQ0n/KgjhI3dnZqRyucpJEmeQP9YCoTnZoWDln4iXLvkQ8RIkHjNWBgdxhebRZDsLUr4jqgXvqiw5m29vbq7z6hoBVAQ/q7Ihq0IJA1x1K9oN609dJLliQAwcsPZW86z7abPGA5aaS74mJicr6cQdX/OIZDuprp9NJ64bvsK0LdHj/KTc5h/0kKBc811wyIBJRde54OGWjcTMjNDU1FefOnYuFhYU4f/58TE9PZ+U24hAXbW5uxtraWiwvL8f6+noFk/Da9fX1BHaZxZVjvLy8nPSa1qNkXWXTExMT6WRmVYwQY9Be1GVt5SjqM+4RJ9aLuLnGxU+tB+EcjUH6cG9vr/IaODmAq6uraTzUJZIh6Qftnx0fH69kUV0HSA93u92Ym5uLmZmZuPfee9Pr4GRPhoeHo9VqxeLiYsJYyqjLFo+MjESn06k4r5oT2UXJB4O5mjvZzZMm4hQFFqST3a5HVPfi8n59x78VWJHuZ2BD2+4oT5ITbQth8IWyqLXHDCfXZB1u5TM0z5Ij9ZcYjXo3Zw85XuoKD0JJjxIbau0S17FKU/yPOKwIlY7WvXt7e0m260rbadMVIGPgX7Ks69SexsMAmvjnGMH5Tdkin1zXiifHoWM7tixBkmHLGVQHDA6AqOCpUAmIGenTQvfn0IP3bBKfSWXgDpN+6x46yx6FZxsUXvVd2UyOneQTHlFdcHTu6gC5AwsCnxwA0ljpMOb6Q/DFa8kjtk3n3SOylINcoENEA+4C7IrrNJCc//39/ZS5YYTc+0wlLzliuZdHn9xpdFkV6X8pNJWmbWxspEg+P5eS9mxBjrfqn4AtS6A5RxovszbcF0b9QCec/MnJB9smwPG15gaRvGf03/vNdcXPqeClpFXm7QEXGVoBD66D464JzrfWNSOsEUff/XzSoJ7kDpYb7ZzT5UbL5d1BsubBDbcHaGiHvD/uVMrY57IKOflj0C7i0MEWwGE1g+R+kLHOyZ7rbw888XoP0EoGKdtub1m27/Oj59HZ0G/xVs/VmibQ0Xdcl3xHK4MDnAv2o85W5uikbUEOnBOHuEyphI8AkDqFlTu56ik+g0BWfPaggxwAnR6vslrdJyet0+kkZ4QgvNFoRKfTibGxsVSCe3BwUNk6QeeW8lKnE5g5owxJ9rw8mdhDDojWHTNTCpzoXbJyJtUn6hHXOxMTEynLqnJT7gln0JIAf2trKzqdTkREKsXWjwLSU1NTMTs7GxMTE2mbGvUU7bmvZdc9alcOlOPgkyDqDscoOd2VI7eBIl8Tjh9yupS85HX+Hduqwz/eR2ZEmTml/Zf8cl41DvInt67VR2KznE8l3MGKTSYWGTxjkpA4LSJS8KTf76cqEg845vC/nl+ny10WnHzO6CfVzUEO+94OHduxVYRPysZr0x3Q1xlaluEwmynhkOHkd3QI3XGOqJ4ipmsYzWd2jY6i/1C5etaAE8PII5+pv5mJ8/vdsWWZDbNPVKguvOIR99NGHIJ0RgMj4oggUmnS0ZIB1uL1BafxMPDA3xyXZxTdecmBfzr3ORBxkuQHPTWbzWSg6cyQZ1JAkgdlN736wJ0CHuqRC8xIFmTY19bWYmlpKba2tlIknwBH0c5clkoy02jczCTooCpF6xl587miw64DdiIigSaNjQbG+yGdQYfDFaGD55xCZBAmF2wQb3W/R5U9uq8+as6UfVLUklk7X0uUB587PY+yxGg9D1TRtccBC08HuXHKGaw64y2i407ni/uYeECTytCUMaVxZ0CQRpdZV58Lzj1timej3C5oPfM1LQSbcv5YwqZraP9yvKHs55xj8p98zpUnkp/KNuvZOadbjgJtc8Thfk7pHz2z2+1Gq9VKNlXRf+qUiJvAf29vL+1Xy5XY5kCc60Lii5MmjdmDZ07KjIjnmgcFVnKObW49UZ+xbFJOlGRGr1vR79XV1eTobm5uJt2lACgPUNP6oFMyNjYWs7OzKejGgwklKzs7OxXbEFFd/xqXHEZl+FRVpHU8OjoaY2NjR3QcA/kag5z0/f39FMjd2NiI9fX16Ha7sb6+nmyjZJ2BHcn29PR0ypqrioo6QX2anp5Ogd6Dg4PY2NiIlZWVODg4iMnJyTR/um9mZibprEuXLlXety4+UO8rgDo0NJTOaHFHQ7LBc2dOkhjEc5vrBxhFHK1G8XVMm6wsumyuBwX0fOpzOknuLKlf7oDTbyFRV0sXSwcyA6p1LedW+k9YRvqXjjT77jLgVR05zEW7R1uoMcoeMujqAXmXn1xQUs/1CkzqIbVNrOVBF9dl+swxnPtIImJE97WOQ7dViqxsEAFGnSDTOckNUp87mGQmpNJRlAFQiCiIIk2YBE6T5MxyB5gMZATNx8CJYeSREQ8qVFeuGiMdaTpGjN7zGG86wOJ1brLVFktaOBaBPj2P0UpmnqkY2E8JN0s/aNzccYk4FFR3NtzJ8CCFlMNpIPFShn5iYqJiMPv9fgIOnU6nAoCU1RTAoUyQd07iodacsrGbm5vx5JNPxtLSUly7dq3yjlc6vN1ut1LK5cEFKjb9PzY2FjMzM9Fut2NhYSEZcFc8en/u8PBwLC4upsOjJBtybr1UxcEbS4S8zJt6QHzmaZGsAOH6yylVBm54SAodIPVJ34k/Y2NjtQEad5BygF2/udao5GWcIiIZy7qxnCaigfJ+utESr5h18r3m+q3SYwL2jY2NJONqmyWHcqDo2PKVDeqT1gEj3m4bNB53OvS/gFzEYeki55RjEUkfeACG19K+eZaHa4Rl7gQmHriqc371TF6TA3/9fvW98apcWVlZSeWqrtM5B3oedZ7Lj37nHFj246SdWwbFcziATlfETT4oo+jOsOuYXNZW8ilHUA4t35Gqd5e3Wq1ot9uxu7sbd911VwLAa2trsbW1lWzE2tpaWkdqn7IkHSX7tba2Ftvb2+ndxZOTkzExMZFKpyPypfXK1Ap7yC5tb2/HyspKCgpLByiIyjnmPkjZNMm/tsVpD6qyqQzMUCdJp3qVjdYV9xjroCfZajou6o9Kp2k/tQZ1YrhoaGgovbNbPy4DdEBc3k+D7IsYSGTAxQ+OIkbPOS8cU6NxeHJ6u91OQTU6Yy4bEYe6UvyMODy0TDKt9rVWiXnc8eUcav40Nl0zMjKS2ta8Uncy08w+kmiDtCbkrEYcHo4rOyPdwlcdMVgi+WYGWc/2jDK3wEVU97jnkn7ii/wvVZe5vuI8Oz7i+nC9mSOXF8dxx6FjO7Y60pvObC764cJURz5QUi6CmRucO3YOnAkaCCR4HZ1lRh0IdHOT4gvUlZT/OIDJgR8uAs8W0LlTP7knx/nOfhBQEGASVJOHJHca2Lec06G/jwNGHER5/3nNaQD27gwKSKr0TopGCsuzeTLiudNbXbbINwJhKX2djKkfZv51L6P2LAGTrAv8E9g2Gjf3fEfcVHoCUbnMl/rCvezj4+MV+ciBORLHJt2ikhpf27qWe3sEBOhUePlZxCH48hMCfS3k9A4js26oOcacPDs4odFwZ0pjZ19OQ/nZrWiQU0I9539LBn2uI6rllZIxboXR3Mmgc68nDbwbe/VJgJZzknOiXA4ICPx73us6mb8pC7Qzfo1kglF9vtpH7bitYTvildssjke6TP31IBh5tb29Hd1uNzkWCnKyXTpqORBE+fDfOTkiz06SmM3XOMgj6aX19fUkH/rM9XlEtXKqzulnJsyvk81ltYOcATmS4+Pjsbm5Gb3ezeoTAVuC6W63W8EdjcZNp1olwKOjoynopn7J2eNc83uXfQVltre3U/A3IirBLdou8ZsVatwOl/tbAVGXMfFZ54qo/Jj80N9yrlRpIL56wmF3d7cSSHIHmnqNuogBH8mN+uy6iJm+00Ju22i3cgmunE1wEt8kC3T89D3XG+/L6RThh0E6QzYgp+9ZXcIx0pmPOHxdEyvw1B8Gsqj/9SxWCDHAynsjooL/6Xe580ib6thfPO31epUgrPtu4i/9AX1HnUOn3fUg5zhn83Pzlfvcyft5K7rt1/3wACkOxhe4BlOXPYmoHkkdERXFTcCpgTkxkkYGMxpPZeHGmlFWfc4MJ8dAYE/hcaOtiBxLrH0i5fh4dI4lxh6tcmXoi5Z/u5BzLCztdmEkWOP1er6XF7PsjiCRDhT75o6hn+zpoMzvP0lSaZ1nj+XM9fs3o3krKytprehQpcnJyZiamkp7elS2mzNYvlaoyARCrly5EktLS/HhD384ZQRkGC5cuJAMxCOPPBLXrl2Lhx56KO2/FUnhKUKt/1X6qQNK+v1+ytwqgi3lKxC3s7MT58+fT/uWlD1T2RnL2im7knWecKmx0lmQjOi61dXVBLAp6+KfO6pcv4zYK0qvsjJlo3iPDofq9XoxOTlZKb1xg9jvH5aJcw+ayJ0EAUMZHK0vGU5lGFyHnBRxD7B4pL/5W+TBkIjqybIE5H6IHbM0KkWUIzg2NlbJpAswiljdoCANechoueY2orpPi+CBDprGo7IvzR+j/7lx067pWSyxo/2U7lcwmYfQiM+KoIufrr/VHh0SEgM2zj9+T16It1rXWo/iA/XZ1NRUGovKC3PlyCQ6+06nAdw/8cQTEXH4Kho5kBHVyg/xaH19vXLgmXSr5GR6ejpmZ2crr/MiHpDzKRmcmJioAOtG4+Z+Ud2nbBdthnDGc5/73OQE6vAobV9RVld7cuWEivQ3D8CUbpSdk10gbms0GinoqQCrssYHBwfRarWSU0u8Qx3KUmStB2WZVX4sHDI7O5vWnWSy1WpFq9WK6enpOHPmTExPT8fMzEylKka4jTaRWTv1iXZINle6iDIwPT0dc3NzsbGxkfAg951TB+i3V49IjxBfngbiWpct49zlgoPEjMSF1DH6n7qUenTQVgb6HXr9GPW4/qZ+5PplgJD4y4MzWr90EFkZQLzAuVOfpI+Z4abNYDk6A5leKcLXrBH7aH6IiTxw7NVL1BWcK9oF8oOy2usdHgDJIERENeDvQR061STiLvI8l62/FR3bseXmZQ2M5ALNgTJizIETLOSytGpXjND/fCYjRv58OrHeL2emmCgHQu0zrU/Q633MOW8uWBqHT576x8gMnXXe68rCifxjRF6Uy444H/yzXFCCC83n3+dnkKJjlorzzGedBuK8ygnh/EVUTx/V+mg2mwnYMQrsxi33POetDrBQllZl6kNDQzE1NRVTU1PxnOc8p5JB7vdv7pna2dmp9EuAQlFq9VGgRWt8c3MzGo1GtNvt1CeBarUnkCEj4Q6keMSoo/72LQ2+VrUuVOKnMmzuxY+ISjCFskQALyMjAMN9wCpnEl9EXNfUUb6u6/SBSNcTGPi6ZlBI1+Sy1ydJOeAy6FqBHg9AuJ52XcMspeaVzhd1m2SExtkzoXIGqGfl9NFBp33S9aLcHBAYuD6kXNCxdfvoAJdZKL7eIQe+CAzZT7Wf4y37nquS8DE74JAu8nI48pvOssuL81h9cb6Qj7cLbD4ZJN1JPSW+qJxWjpH2Y6uMXrqVeo36IAfaqW/1HM0nv3ee0UniO5/lmEkeBY6Hhoai1WrF7u5uTExMJMfcQS5LdKnXNS7aBQaA6Kwwm+Y6QXzhnkMGRCn34oucY2E12WAFBZWdnZycjOnp6TQG4jPKN3UzSzali/UczQHXPZ1RAnntHfUAkHjgzh4DahzzaSCO2+fJ7XYOD/K3j53YnHPidnZQe9Tlro9J+l9OU06+XKfRNkkuqdt9vI4NiOl5rfRADh/Xjc0/z/kmjjP0rBw+chzCfrgvos+4x5fPdP3Ee/m7bl78+5ztuBU9pffY5hxb75xPXET1oBwqAD+BzoWxzoFTJFAlLlTwOWPoTJFyVFss+1KkQBkBjsWF1Z+rsfn+sYjDMmKWDdHoOBDkMz0LSkVABUAQo774ovPAg4TShSgHdvR8d8Cdz2qL5Zvu0Eo55sqZHFCdJIk/isg1Go3Y2tqKiOprIBjNVARPpyUqa6sTFR3UighWqWy0Z+ratWuxvLycQMrY2FjcddddceHChfiiL/qi9MoGyfBDDz0Ue3s3XxOlvgqITU5OxtzcXLTb7ZiZmYnd3d1YWVlJ+3M7nU4cHBxUXkWj97gqYqnshMqQ9R2NuBwJZjIFoJjh1LjVT4F8RecVuXc+6WAROSuUY82b3hkpXaNna59aziAQ8HOdsPLB5dPXmgyX752VXEkOpH9oTH2P6EkSgTSjvH5NRLUyhfvtlGFypyri6PsIJR+SKc4RnyXZoj5yfaL+eiBFsuEgimOgkXYbpUCQAwPKAwOdChqpfVK/30/ZPe0vlnNLufQ+uP2hQ6Hnu6yKFwru0EFzeaP8iqcqD1c2z3nHTJzu5yFTWkOcH2YjOb85OTsp4vwODQ2lIKJ0/Pj4eCVwIl2qQ4ciqu/JzAW/RZwPB9zqi37zpFTtRVXFg/bFcVuKeKrSXFYxUC5ch8p5ZyZH+rvVaqXxSX6YgRTvdF6BxkjcQYdJbTlWYUBgYmKi4vgLT+q1bKoUUOCS+lay1mweHgQpXBYRlfcKE6NRt9Dppp1gxovlz16KrN+cX41XmTDx4rSQbJUfZERH3x1cx4TU3QzCeXDA10TOuc05f7xWPBUuo+/CbCOfTxxP3a5nal40Fs01/YScU87gJp8lLJWzizlfgMR+8vo63Fx3HX0RjVPl0RGHr1skNlM7fD2pz0nOZjs/xX+XM8dSx6WntMeWwstOMHrnnRPDOPHMYuQOqOEip3Apgs1DDyRcfCYjfmxD16iURFkcRjml6PSbQimi0DI6R8XnQFX3yVFg+QkBXk4QmNFl9ouLxDeRazGrrbrosD+LUUVf8HSy6/a15KIsGoM+8yyL9mvlQPxJO7YekdNiFjhWSbBKc9vtdip7UpZWe3co53XOrQcV5NgtLy/HwcFBjI2NxTOf+czUp3vuuSfOnTuXntdoNCplnnwfYb/frwRsRkdHY3JyMs6ePZuOso+IBEwjbm5FYMkVFX5EVIJdBGqUW+qNnAwTyOo7lTtyH6/6zpMTtY+MoE3zRkOpyLnkj+W1yk5rDDkD4uNzA0K9I6pzcmnUPIgj3mkvF520kyYa7YijDtrBwc0Db5588sm4du1arK2tRUREq9WKu+66K+bn52NycrJSAUSdozZyNoYk/SzASXAr3slmSX68akBypHuVzZGzy72nEUe3eUhvSTa9UsHBnoAB9XbEYfm0HFvuH6cD5IBBoFxrQOPT/Zov6SCBfmYYG41GcmQobxojHV3xXLpudXU1vXebATuXZ8rNwcHNE2b1mpZe72aZv97xTedc9z0VcPOJphe/+MVpLj0QwK1HEYd6fWNjIzqdTnoVzV/91V8dCQjkwLraIAaivBCHMWijQJ3OYWAZu4Il2jsrGWFFgOabB7FJTnj4odaJqpeUtfE1oGDn/v5+OmyRpzJLJjXHrKIQviNY5sGNHsRh6X63203zw8CSKqg4Ln2usfCAHW6v0dqhfvCsGoNqlAXOr1eouePH66QzTktwxzOsDPo5DcKEIs0717r2QvNeYgPqFcf5fA59D7XBz/jjVZ/E9K4L+T/nnBl5ypS2GXDeOf/qQ87n8GSPBw5EHvRk4Jw6uC4wkMPr+l6fuR6ijtfY2Q59EMcKLvuOE6n76oLog+i2S5FpkF1QKUSk3PUeFfHSpRypfR4mQMcyN2FygF2R6Id7K3ikd7/frwhYDmhFHM3SEvRRAbijOmjC66IbXr7J+WBESv+78LjAk1f6LAce6Tizfx408D47jzgWF9hBsnMayAMEMpr7+/spKKII5v7+flLOMqIC0MdxUjzK1ev1KsCk0bj5ap5z584luZidnY3JycmKQ0Zly/1AAgj6W9/J8dVJtIwUM7OuzIsAB51+KlL2n2s/JwM0XlJoclgE+jUPMn4TExPJeVG73h7lXmBGPPLXE+zs7CRAp/XEdaK1kzMULt85ufU1QaebOoS6isHA00Q+Zv6tg2du3LgRly9fjuvXr0dEpIPI3CFzm0AeOghwvUVdSBsgOyFgv7W1dWReqLv0bB7Ixwyy2uS8iRjkk+zmwJWPjfezeoUZkIiogCSXbQaf5MTnDlZT1orbIJTNUtaCQdZcoIVAjFnlnZ2d2j3q7tz2er108N2NGzdic3Mz+v1+zM/Pp8oRORXMrORs09NN99xzT+ITg/KU24iqbZ+eno7Nzc1YWFiI69evV3SayHUIPxsaGqrIgmMBgnHOvc4gkLOnbRxbW1upEoCnCksHqrJlcnIy6XkFLJiFlJ7UK4Bc1qjbuG45Ho7b94wTc0k+qZMJfrmHWTIsnlC3yuZpS5B0Bvf6M1um53BPv3jBxAVJa4sl5v7DceTsosgdiZOWf+9L3Q+vy91HIk/0nbB4zoEb5Hf4evDr6xImbsukx/1e122OAVzneQA455zRPnBNq139dltC7K123A9Sn4jv6+aUfXEMz98cg/s9g2y383jQ8+vmz+3/ILrtUmQpZBlU7yyNn/53Z41GS68MmJqaSsrCAacifnrlg5Td/Px8+l6vO9nb20uKSkZEh+Co31pIERErKyvpRDy9t6zVaiXgpciqlC4Bj/ohYWo2mxXnIReZY2SSCl73+kQKaMhoCTRS0TebzXTEvDvMDASwv9pfI56oX1Q0ojoQq+/0W8LNgAABmCKiEdWTN+tIcuRVACdBrVYrjUv9VsZWADHiMKI4NTWVosss+5Wj606TE9cJD2lqNpvxzGc+M1qtVtx3330pO3Pjxo24du1a/Nmf/VnaTzQ0NJScXUXcdXCVAGVEpHI6AhRdT1CgPkuuIw5BN3+0BtSuQJHKwQQ+GKTp9XoJuHP8jH7qmdIZs7Ozsbq6GhsbG7G0tJQy2Syv1DhmZmZiamoq7r333hTMWlpaSmWCzHAJzEREJdh2q/miY0rSete60loQOBTQUiZauoVgMGeUT5K0NskX6blOpxNra2uxtraW9KcOL7t+/XpcuXIlzpw5kzLuqprRvDQajfQZX9mjZzCbI2Mu2Tk4OIiVlZWkP8Vn7Xlst9tx8eLFmJqaSmun0+nExsZG7O/vx+LiYiq5lEx46RoDOfxO8uN7IkV1jmK/f1hyrz2REVHR6c57VspIbnZ3d9P7N9vtdlrTGqOy1nJMV1dXE9+npqYiIipOMQM5rqeVlV9dXY3FxcW0n1HEg+lkj9fX12NjYyP+/M//PFZWVmJ5eTnN3+LiYpw/fz76/X6cO3cu6R6CudNA0qWSfYJpJ8nq6OhonDt3LpaWlpLzpAoTB8lsR/frcz9gSHOgOVWg4MqVK7G5uRnr6+sJM+j95nyzhXCWArHSddvb27G+vh4RN+d+YWEh2u12zM3NJXk5ODhIulW/Nc88jyHi8NAdEbejkH/SebQJdY5gv99PeJCvAdN6oR0j/hgaGor19fUUoNU8yi7Lqdd4lRnWuGWnaKscFzabzWSDiQ245j0wQazLIBDXK3XNSZPkka+fyQX0NFZPZBAvyj6qHZ1Mza2Puo9BOFUeqMqMlQYMsuXWZ+4zrQe+Uk17zXu9Xgp+6H+3SQq4M6iRc8z5bGJc8cltve7h2QuSHT2XJ4t7lpeJvRyGIc5wZ9j7wXuIS/QMZacZrGBg9lbOdc5pfyrB/WM7tp6xpCKue2iOERyYRwElCCQNUuU1e3t7KfIcEUkAtbB4wimVtkhCwRM45fxJUOSAMkKeGxOJSs0NVV30wSMbejaVACM5En4COh4CRP55UMBPac1l1XLRFc6XnkseMAOcu9/bcD7QQffnnCZSsELGLeJQ4cgpUZbWlemg1/yQnNf6TIprYmIinaKpkx7VB504efXq1Wi1WrG6upqc13a7XTEAMsL8fXBwEJ1OJ+3DYuCFQRl3YtU/luEwWu9rwkGyr61brTX1mVUWXm7G09LVRx2SxT22KnNmxoLrTbLpQbnj/niwL6JaQqjnMTAmo0TAy3Km00S5da2MnIA1HbWISHIWERXnxUE8eSee1OkFOoeaOwYMZNyVLdre3q7sF9IcN5vNtLba7XalDF79ocPKIB1lmmXR3n8HNF6FQzvr5a1ci/qc2U0CQGXeGEzRWpAzIvumAK731+2A63ZmH6nvPJgpnqss/dq1a5VMr9bi+vp6XLt2LVqtVlq7GvdpopxNz/0dcRgYU/UOT5XP2dicg+tVA3RwmTm/evVqxaGVQ8RKIjq3PBVcwJ36R5/r9TwHBwdpO40yn7RPcv6UGFAlk3AVA2GSfdkOOnsRh9UUxAh0knQolxx2Xa926aRIx7g+ZUBNpa+7u7uxtraW3iAgvMk1GREV25cLWKlN7SdWsK/fv3katvrEIEUO++o732JzUsSAJoP8nCP/IVH2c85vRFRkh86TnsktJv1+P529wMAyMRoxfA7vE5eob6w24LikS4nZOe/EIY6xJetKujGRIN44DhZfcjbCy51zmWLH4jn8yTnQNbR3EXn/gLZb/XddxjWS+45jz8l3TraOQ7dViuylQWKKT3wdOGX5BiMsclS5wLlwdAiDFN/s7GxyXHV8vKIlFy5cSApLjvDi4mLqw5UrV2J3dzcWFxfTpOmIez5PoEFZRj8kJKJaOseIoDu2jFKRPwRHAgI5p5ZRMRoDjZMgTY67ninjJ74y26CFQUVFxeyLg/dyPt0ho7PkfKDC4cKmwaMhUvsn7ei608ao3P7+foowLiwspAyixiuH18uTBhHBoTIq4+PjMTc3lyoMZmZmkmOn/XUf/OAHE/BVqfSZM2cSeKQsK4M1NHTzICWdtKzsFedZ/Vb22feTecaRwDZXluVjjci//7hOl2ge9Fw6u8p0bW9vJ1kaHx+P6enpmJ+fT5l0lTDzNRJS8Cox12/Nv89PzqjVBS8k87pfbWutaFwRkfZ9qoJEB7OcJHH95gynQPfKykrKzIqnzHx3Op1YWVlJOuzs2bMRUbUPBKuMRjsIlM7Qq0qUSZqYmIhz584lUCpwv7GxEY899ljKLEUcZlxGRkZibm4uva5DrxnRK0UODg7SfCmbIMedPxonI9ZcF7RxukfllFx3XFNqU/dqjHp1iXSpSlB1PYNSCqAoWz48PBw3btyITqcT29vbSacoEKxDv+pkm04xT9GlfIyOjsba2lo8+eST8cEPfjAdpqTAg5wgVZ1ob+SZM2fizJkzWefvJMnxDclLhnXt0NBQqjJRBlv2Lhc48PalE9S+5ll7nZeWluLKlSvx+OOPR7fbrbxihifIy7HV3ls5WpJ93ad9pdKDy8vLaQ3Pzc3F1NRU9Hq9dI1slA5GnJiYSPtxlf1qtVpJxjUWrVVmwTRW7fvlHmBioWvXrqVzLRSoUbWOXrfHQBfX1szMTKqgunjxYszNzcWZM2diZ2cnLl26lF6DtLu7m4LHc3NzMTMzk/SQbA5fyUbSYWLT09Op7L7RaMT8/Hw88MADyWkSRuXeYs6/dOppcGojqieC09GiA+YYlrrag0CcV3cq3UlTgkvzrgPCZmdnU9/UH+lldxyFh3WIGqunGIjXD/0ejc+dSBLbq8MBXP98HZs+F38Y9BT+Z6US5T6HO4ifaVN8y6fmUdt1dI8CVhHVbTs5LKTPfC17tR3vqSN+R6devs9x6LZKkWm0PavhAJQMYif14wJFBS8h7vf7SSFzD66i6CrDGRq6WS4zNTWVypl4GEfEITgX0CE4Ul/OnTuXIkU6WVCgSqDAoyEC0zIIBHs6JEGCmIugaMwCaIOCBO5UMWstxcCSZTrrHjmKONwHItDFrND29nYCJnouXxXgzjt/i7gY9L3K1xmxczkheeTopMgXOp38vb29FJFXGZYiiYra1inDXHSTQQABIx62o+t4Eri+P3fuXCrRYvlyu92Os2fPVkqGJEtSmjKyzCryACqtQe5TlfKamppKp0hqnuv0A8ct3nqEkzxhtD4i0mnUEYelbDwxV2tVPNc2g9nZ2ZSl2tjYSOBHBmJvb6+y95gBqbqopBtCd/g4bo2T/0dEMm7ip7K4cr6URTxpov6jjDLA1+v1kvzpRO1+v59K4FmaztJdBWjo6PlJ2d4XD6gpGMD3RusUZpXzLy0tVc5okHM9Pz8f09PTsbCwkMoH+U5EHcpDGavrh2RVe9IjqvpCa5hZLM/WRhxmfgm6ZEvkFKpC6eDgIObm5mJtbS02NjZidXW1krlSmTIdD/FmfHw8HfDV7XYrNs/lm6V+6o8cW/W33++nfbQPP/xwXLlyJS5duhQrKytJV8pm8mCj4eHh2NjYiLm5uWg0GslpP2ndL+I+bc272ziRwLUqzR577LG4ceNGCigouOa4yQNlEYe4ieWa6+vr0el04pFHHonr16/Hk08+GZOTk8l51in4s7Ozcdddd8V9992XwOtf/MVfxNWrV5OcykllGaX0vPrB/bn9fj/ZOQV0WSrL6iWtcwbeZcdkT7UFS+teY5YuID+63W5sbW1Fp9OJXq+X5FhrQNiS9lbrVW3dfffdqY/b29vx5JNPRsRNPbSwsJBw45UrV1LZMgO1wmo5Uj9V9UHbr9L8+fn51M7HPvaxtEVD8692ZIdkj+sCKk8nMbjoPgB5IltAn8FtIa+TnlOgy20lt+EpUK0gEQ9Lky0V72dmZqLdbkez2UyVRCsrK8lB1JgODg5S4F84RzbXk1bss2yZ1rTbAo2V2JsJJOlX9YO+ldsD6V8GDXUvKzLFO82JKvcUEM3p8+Hh4RSwkvxrTWud1vkt/rf4xdcp+rWSf8q24z138l3GBtFTytjWdSKnpEke0RVD3eEjKFT7YoSiHPv7N99rqQzS1NRUiqqxvFAKVEBCSs+B68jISMzMzMTQ0FCK+knIqdC8jxqHBIZGmLxhH+qAmjs5OfDfaBxmU5lt9YwzD9URvzU2AlFmVLQHMuIwWs+Fx3F7hNkFkT+uxHKOrdquk52TJgYxtA6kTFhqzH3SLHXKZWudX/qbxiPi8KRAgQRlR3iypt7VNzc3FxFReeWDvp+ZmUklaeS7lIZHhqWAJP8sfdFYJPsCyyw/q5ODHG8jqllxX0vkk8rLuAYkuwI27DvfIyxlKqdW99Ixpbzn5NP1gGezCEr9Ho/si/8EetIRzWYzZT64Nk+K3Gjn9Fuv10uODsuQeYqq+CCgycw+zxRwMDdIJ0gvDg8PJ3CvcsChoaGYnZ2NRqORXmHFoCf3bMsBV5vqm8bIuZcu07VuiHUNK2Kkq3mP21IRgb3sTMThepdcqNx6eno66Xetf55AK+dFr0GRAyS+yMZ7oIbrkluHNOesCpLN1Pumr169GpcvX45Lly4lHk5NTSW9ITCqTK0CEBMTE2lN1NnMp5tkT5lZpI5msFfytba2lgIqwivu2Obk2u0rMxdyWldXV+Oxxx6L5eXlWFpaqpSYay5nZ2fjzJkz8aIXvSj29vZiZWUlnSkggK9gA++Xk0GHUNnfRuPmgU0qs6UeEJbSj9aPsmPimfS0vueYI47u4ZcMSFZ2dnaS861AiYA0bbTGolcaNRqNuHDhQrrv8ccfT1UEcjrVb5U561CziYmJtHd90NzJ6XDbL30kHSMHudvtxtraWqUaRvaLc38a1gD741nZ3I87u67POWaepyC947ZF8setXSrFV8n80NBQxbFVQFtvlJAek52JODygU8FInvmg6+vWqfrKa3ycHrTwHwaxcrzTNZILPZM4nhnviMOALF/zyHuJ2ySzakPYiIGiOkdWz9RzGQylzeQP5zYXEMnJnMvPILptx7Yuo8jP6jI0UixS7Cpf8fcIStgiohIhlgEVY+bn55ORnpmZScfJewmkXlWie7n3SEpdilwl0YroqGRB/aTw9nq9dJqsH/xC0EO+UIAJ8CT4XDwuxHRIVY4kYHPx4sW0PyTiUFGoHc2H9lJNTk6mPqv0dGdnJxkJZe7W1tZS1tGjLMzoknh4j8aqPkmhOOAjr06jY8vXf0iGGEBQNFsyMTMzk0pIFxYWYnp6uiI/BC2cn4ijhwX4whfA0amXKj0UgKcy0Ss1tIZUwi/Ay8ignHKuPxplGXQZF+3znZycjMXFxcreIfWRh4CwX1yjLJ0Xic8KVMlZYulTt9tN/FTGutVqJcdd61rZha2trbhy5UrFOeb7eb2Kw9cj1x/nT9czs51zyjVuGQrKf0RU9KNA1OTkZMp2nDaiHEdUD6qTUxJxeIBFRFROBtf64Gm4LH8loHU9oeerPR50xldxyFG76667YnFxMS5cuBDLy8spcKny/sXFxVRa2e1207rhgYla/5INgnPKMOdVc8pAD6sdcmDPg6UMWuoZW1tbqbxTh/o84xnPSMHdK1eupHdRK7ij14HNzMxEv99PpdvNZjPuvvvuNH96juTds7YsL5M+0Bpl8E8BZlVUSP/lqg+YEZE+VVBOTuBJk9awHLGIqOhzAkqu6f39m4c3dbvdVNUiXcqM760y05Kj7e3tuHTpUly/fj1u3LgRo6Ojcd9990Wn04mlpaXodDpx3333xWd8xmfES17ykrjrrrui1WrF1atX47HHHkt6T6fK37hxIx04poO7dIDS8PBw/OVf/mU0Go3KFi3+6B3oqpLgXl3xR2MeHx+PTqeT1kFENVDA/dpaBywxZhBQB6XpFXfcR/zoo4+mA7BmZmbi3LlzqcKp2WzGhQsX4nM+53PiiSeeiCtXrsS73/3uuHTpUvR6vTQWOk4bGxsxNjYWCwsLFX1HW0ldqITL9PR0GtPZs2fjzJkzqVJhY2Mj1tbWEj8YPJJuUHunxbEV0b57KbJnHGkr6S+QxC8FEFqtVppv4umpqamkk5eXl2Nvby86nU7K/J85cyYmJibSgWc6EHZnZyceffTRpFempqZiZmYmlpeX0zho87lGRXJ4yQPpSD1fcqzKxIhqtSGD/lrztBseJGDwx/knLK9g7vj4eJKvsbGxuHz5cqysrMTGxkZEVJ3j1dXVJHMKnk9PT6eqAgWHV1dXY39/PzqdTrLXdHIZ9CQ+5vgcGykZkfOP6Dt64Pd26NiOrcid2lwnjnOPlzfK4SFoZBSUDBQopADqOXS6FJWW8iGzCZ54eIBnyvwzGiBGsD3D5A6/fy5ycKjPtMj0fPJOC6PZbKb3/2m/mByU4eHhBFzkmAsgSGlKiMU3349LnlJIvc/uhMpgcXG745r7yV13Wojj1/8Ct3K6ZPiHh4crCloOFqsTcu2T53WRUK4zVlCoL5IdKTeV2mp+FZgg8CcQI+DguN3BiDg0RpJBKnZGEfU/+UZlSMOXu56OIO/n3ywHokFlSSmdLbbhPCeoZ59d5t3h5LgI/NkG51h9obOrTAL3Vp4WUFMHSkTSNQ5oSNTxNHh0lnI/EXGE9/zO1wed7IjDQ3x06qnkibpfa0TlsX6uAe2BriWwU99y6zi3LSNnQ/Xbx+46QY6GSkTlpMsmzM3NxcjISHIOVdWk94oyuKVggPjkWx7cFjvPOUYGMZntUGBM65Rr3cesOcgFvE6SPCARUT1JVKT/FfQ+ODiIycnJFDjWWqeN1338O6dvJF/S8Zrn8fHxJOujo6Nx9uzZuHDhQjpsMOLwJGu9y9b1s+t2ycvU1FTl1HitW62lqampdK2fs+BgnBgsZ/9F1BHMJAmjRESyswyKUe9QllimqnunpqZiYWEh+v1+TE1NpWQBS+21NmQTXZ/nbLnkQv1TJlAZcO7dZxLA15n4Qvt7Goj4w7Ei9dqg+zk+2nAFKh1T8xpvh+9Wlp5hAE591dYA6fV+//DtJJJ76m/KqLCT1h7nf5BuZD8d44hy9o4YIiIqDr7aZRWAEnuqTCIuUXCp3+9XnFJ/tgJDBwcHFZus54uPaiOH4XJtO/m1g3wkytrt2ILbdmwjjr7T1jucU1I0fjLCOgRHYE7Rejm5iiZLmGgoI6JyYIUEd2NjI4Gl+fn5aDQa6fCBiMPIMPsrxUxQIyOhiVFml04tTwKUIqRAESjTEXJQ7ZFLOp/6/ODgcN+ZMrXtdjue8YxnpBI0RboXFxdjbGwsLl26lN5Jevbs2Zifn0+Z693d3ZicnIwzZ85Eu91OrwmQwdPrYprNw9ceMRBBofb5Vzklsy8iL1HNRWl0r5d3nDRJkQjAK7Ov11hsbm6myNnMzEwl6CBZl8LOkStDyg8NiPih7ySrAtyaA50u2u/30xyOjY2l7Lyur6vEkEJX25Jt/VZmenFxMaampir7Ywj+HTQJsLCsmd8z4iujoDXPTKf+F/jIyRr5pTIlRV7phEqH0MgxiOHlctJFnnWVXvCyJOpG9Ytlf6oY0eFgKlejk3jSlAOp/Fugk3tzCF4iqofviPcEMiR3aPW35FvzQEdW/OUheipTdDDO/mvPntriuQV8rtacDpdRtYtKcAl+IqoHChFocU0oq+vym+Md9+eqzEy6Wa8Ykw6iwz00NJT6qb3PCvTQ0VK7qgihXOcyilw3zLbJrmsP5t7eXrIbCj45dhAxsMBT6E+amK3x9UiA1u/fDNzPzs6m8ta9vb2YmJiIpaWlpE94kIu3686zcI/maHZ2NsbHx+Ps2bNpf6Hauv/+++PixYvx7Gc/O8m5MoQ61O3y5ctJdmUn5Gw1Go2YnZ2Nubm5mJ+fjxs3bqRXRqn8WAcanj9/Ps6cOVOpuuB2CtoY6QfiHQexuk/yEnH4/mtl23TGwvj4eDpbpdlspjXM7TfChZcvX46IQ/shXiuz98ADD8TS0lKsr68njMMgBBMD6ifLqN1Jl01aWFhIbWlP+xNPPJH2wW9vb1eCeuSN9D7tx0kT8ZrWfES1RJl4QpTzCUiyyTqATDhFNls+QUQkB1i8UsVaRCQc4Jlj7cPVFhnhJMlMr3f42kbH7BGHB8xKNhQI9IylYzOR5IWYLod7NT46oXLAWR7caDRSRdf8/HwsLi6mE8s7nU5a3zs7Oym5t7u7m/Yla6+yqsNGRkbSGQgHBwdpWw7fKqDfWt/0A47j2HLOPcHjWCKHGW/Hub2tUmSfrFxWKWew/LtG4/DwCwJ+RsZpbCkYBKJcSDxVkiWOimrqWmZJ9CwpZJWqMIqmfXlU2LpfpzlzY7UvZj6Xji0jVQI24heVpYwCT/WTQz0xMZH4w6yhTrkUQFEpAZ18Rv6np6eTYdC+Eu15YhBAxol7TPRdDpjRgaesSIZcfihfddGvkyJWDqgvm5ubiWcRkcpHuadTmUx/v1lEdRHrfwKBXFmPMi36YfCj1+sdyTRFVOeHa4vfM3LP6CDnX9sH5BgsLi6m0kft3xsZGUl7F3OBLlduXNPkgesarQuXBd3PfefMGvM6jVvzmFPCBJp0YOsUNiOXOfnnOnfHQP2Znp5OwEfgaXNzMxnp0yD/Efl1qPHV9Y+BAGaxGeBjJtSzAO4cqw05kQTQCjRIp2it0Hn0LADHwc/4PwNLap9lytRrXkngAQ2uKeo+jVX6RYE9lx83+gw4bWxsHHGe2X8eDMcxqi98jhxQAinKAH8Y6PY5V+DXMwWekXAdmAPHJ03OfyeNRZk4OeYjIyPpJGod4CSQ6W8f8PYEIGV/W61WssMC6+KTyskbjUYqVxaw1XYpAWA9V0E16R2V/G5ubsZjjz0W165di8ceeyyuX7+egkMRUcFvwkVetRZRTYKon1yzXDfCW8psK7BCeZBToeDH9evXU5aVW4ME2PUsJVP0ftpmsxmPPPJIdDqd2NraSg7CuXPnIuLmetCeTe3n9T2grst87prNZtoGMzo6mvadaz+t46M6e0n8eNKk8fKUXmFTx/45fEO9RBsqTKvkEXWI7KCu5U+/30/bNRhY03ui9SwlcjzwqPcUu62n7qMOZnDJA1S0ZdS9EdWklf53p1b3EIMomaWqHK0BOfc8sFayorMN9O5yJcP0CkitdflNCiYsLCzEzs5OLC8vJx2lg7c4bmFUOrf6njjO+ZpzgHMy7U4/bYICKbeip/QeWzeuOeHNeeucSJVKsnRFA2d0g5+5MaTQaGFJycmQqv6c4CSiundQz5dDy5IWnbbKvXNSzixDPk70gSDVnUIRQZcADvukRSklq/5I0cjg6W+NudvtRqPRyO4J4emYOvVQkVWeNutZNBLBnMZOZUQg5nyp4xVBz0lH7SmXWgvKhm9ubiZZkUPrh7tQTnKOgK8pOrIE/FLgng3VdVJkdSfKchx6rj6nIhYxsKQ1qz0YMzMzaY8t99DRoePYvB+UGY7D7yEY9j57NoNlcL6udB374H2i8+WOV04RcwyuuL3vrtCZDZBjq3lW2ZwqWVgJctLENavfuWyeOzG8xoMW+iwXyRZR9wpMU7dEHJZD+7rwIA//dln0Oeaa5JaNOjDHcbmtiqiWhhE46fnqs8YhWWHVgOwTA6UEx5QxBry4l8wzDJRzt7W+lqnHGXhzvvJgPdcBdWCdzzhNpEAi+0U5VUBhfX09ndyrzMfU1FTKdi4vL6fsJ/foqh3KA3WS8IrKm2WvWRrc6/XiySefjIODg5QdVpal0WikyhplvAjMZeOFIa5duxYREdevX6+8Goi2gCXVXI8E8Lmgdg4vCReq7e3t7RQ4URvCPVofa2trqTySa53OtiqUZLva7Xb0+/24fPlyerXPhQsX4ty5c/EZn/EZycZevnw5OaIRR/fYs+85YmJkePjmq7W2trZiZWUlnS9DPECMqPv1jNMU4BHvfSvGoH463uPndBBVSUXZZ/UTKzcpT6xA49bDfr+fsrCtVitdI2IVqK5n+3qGO7XEE6x2ycmF20v97QERjdkdWzmgul/PoyxSF8uJ1fYBVd8o4KZ1oABtRKQKG70bWmtAOoeJA8fyEVFxbD0YcByn1p1YrgfJHCuQbkXHdmxp2HPlBi60XJwUah44MDk5mTZ3iwlUtMwM5pxlf3+TFLL6SGDlgqmDldRX7t2gQ+slIlxsUrLcgyGw4VlR54uuVWaZC9Cjd+58SLj4Pi61xcUrQ6FSHQm4rlPJo3hDcK1oqbLe4peidcxSU+loj5b4TmeJ46WAEjhqfHQCTwPAUTZNpR6rq6tx9erVuHHjRqyurqbX3ShzKSWtMnt/9yvJ5SOXsYyIpOB0oq8qDChvUmb6nnvVKHtUNNzz1uv1Ksop4rA6QU7sxYsXY3p6Oi5cuJAODFFkT+3lykrpxFKWaaTUhta+Gym2R0dJa0UVG54FcVkk32W4aDQ9q5fTP+50uPNG5a7vBfLl0CoarVd4KDKrMqDh4eF08MxpIp9LfeZGy8uWIiIFXsQPOojkF4McIs0Ro/iUHQ8Ged98jnVvriLJHW46tNyKQwNO+WBmlPqO1/o6ofyITwzWSo8woEldmXPQCfjEZwaKGXSj3ZZeUJSeOkLj8nXh69Qxgn4z48H981xD5LOvvZOgP/iDP0hyJTlQAHF/fz85qjqUaWlpKTm1L3jBC6LVasXFixej1WrF2tpaAvEce8TRYJh4zEO0ZmZmKk4cbfTi4mKsrq7G9evX47HHHkvZFWU82u123HPPPekQMc0D1zP3I+7u7sb4+Hg885nPTK/QUjZUB2J5IIoZyYhDgK57/PwNybV+j4zcfDf71tZWrK6uJjk6c+ZMzM7OVg6KEiYRrlHfxFOtW/FoeXk5HZ5zcHBzu5vKrnUIneR8e3s75ubmKqdHM0t2HKLDpvcOS/fxlX20vxGHhwlq7k6Lc9vvH25t4pksOR1wKx5J9nSonaoHKfMeEKVT2Gw2U9XA6OhobG1tVfq2ubmZZFsB5JmZmdQeK7jUtnSO1g0DGixHpzPOYCUDqtR14g2TbDm9xvFqTbM6T+NR4Ee0tbWVAkLDw4d7uYW3WQHLA0fl6Gof+F133ZXaJCb3bYj0f3IZa46H1XLiT843kp0U78lvP0h1EN2WY8sIhnvs7Jx72xR0GUxltjyTxeg+28oNyAGphI2UExoXMv7QoXRQRGMs5UsHgf11Z9SJ9/hn/M6jsQQlyuTyWpXyqD2CKPVraGgolcwKWEZUD4WQgBEAOWDi3B4nIpPji/M6d+1pIC1clXqsra2lPT9ccAQZLPPKZfYph3VEGWUmh0bdM7qD9sDnoorktxSTA8+JiYm0b3hubi458n5gCNdvnRywP+qT1jLlQ3LhUTy1zetzGcOccXVec434z62Mco63Hrn1sZIfAsjUO1LoCpZpjWtNnyR5/wfpfvKeskA9zjnNBS4I8HVfLuigz3kfM7S8z4Nm1D05G8M14uuQssd+kRfMhPI7d9a4Fnxdkk+5DJ9+U0frM4Infi45zfFj0Fz4PNfNO6/1QLhsFX9ktwmMTpsNuHz5cpoPBjjkMErnnz9/Pn2mLT0CiMQOrifryOdYMkBHSDYmIirVQloLClQr8KeMjetUYiHNGwNzcuxy2E7/u34YNDZiRcnC+Ph4clQbjcYR+yq+6S0XlHFW7ajfyvSK9+oPK9/4zl3nt5wL6WW2wTEMWjMRkfa9CzeyysF5UqcHTpqoK+kDuAyQBq1l8VhyxYST44GIw/M3/DmcezpOuq7X61XKZtWeV3iRx7qWWJ+2iLqLGLuOL4P46c8Wya/heSnucwhH6Pv9/f1KZQOxlfrKwAArgZrNZiUwJIeauotYxwPF1N9u23K4Mycn/jfn8JOWsRUjpdAjqsaI5VP6TVCi2vCFhYX0omqC6YhIG7P1XBp3RosZFfSIil/nv1lWpD4TNOh+lhszWyCwL/Ap4fADR/hb/ZGQ1J0+KWo0GslIqc8eAVf2Tgp3bm4u1tfXK0C43++nEtVG4+ZrWu6+++50AMX6+noyYCqd4TPFW5566wCEYJ7lqxRmCiYXZ84JYrblNJBKnTY2NuLy5cvxxBNPxNraWuV9kb3e4QvjdSKmsrgKIrhzK3IZEH+ZIeDeWh2CUOf0ch1KYfFZVIS+PqjQp6en0wEocmzPnj0brVYrldexVEW8orLX5yxXcieSGSOta46fIIBAnLzT37lADtukrEl38H/1R+3lHOPcmpb+4eFR1EVunAU2/RVmU1NTMT8/n8Db5uZmOrL/NBB56waWh5G5sx8RWcPE+z1j6qVWmh86jS4LeiadR5Ym6jrJO+0GiVkb/c+yu4ijDrPGqP56ZL7RaCTw7H3XeN128fAdAWKBDzodLC/1gK3adUBDh4hjdpDlQF0OkoNHJ+or8aLXOzyNmnbFg+f+/JOmj3zkIxERyVmk7tXer5GRkZibm0s4JyLSq8UiogIUGUC71fh0vYNo6nFmdVRhI17rYJitra0YHr55IrAfhKixsOJNgW7hHiYRtNYiDgMYOQzDdSweiYd0MHTgofBXq9VK9lXyoDNZ9AogynXEYXWRr0/iOAVjeZq/9sKurq6mPinb1e/3k6PAypw6557PjThcU3p90vT0dKq8ylVTOW4k9j4NROeN6yDi6IFg+sy3KtB+SB51eBNxpGTBg3Wuh9V2rtqT+pNyIRlUYkfVbXoXOLc30W7ofgaQ9B11HP0e3uvrnbrAnTutC1VFeIBQ/NB+e1V86XVVTH5wnStwpG1kfHsAt5XpnoODg0pVh/pI30h2kHZa/aPs8HeOH3UydzvbsW57j62foqqHktHqbK5z2iOSK+nIKXkykpEaZ4wDCfalzhnzaIZHG+TgUblLcWqSGbUhIOHztDgHCTY/k5F3gKGFLmCkdpn5GRsbS0pC96vsb39/P5WORkR0Op10krIWtRS/XgvBZ1HpOKDjoQpUYLkfn2s6VlRiNJYnrdT1ioTV1dW4ceNGrK+vJx440JWiIuDJzTnJo5N0CNyASqnzx51TBhJyazWnRAXEFOBQAKrdbqfTJycmJirvO6Ni49xS2flz2E+OV/PMMUsems3D9z1T9nK6gPfzc/+OjnUuyMJ5cgfX21Z/ZBhkOGQYtL78FEnNp4Ie2h7QbDbTSaaqCjgt5IbKeeMgXo4VAxhu+BxgM/rO6gMPgnHOPEpOPU59Tb3q65L3yN7QoY041M9slzYoRx5Y8oCHrx0CRck5g5t0YrnWXLZ1n/jjAQd97v3X+H1MtKX+ozZou/QsZWK4fsWXRqNRKenVHLgOOWmi40ZgJx7KDnIbkA7FkfPurxshuRy6g085cZ1PO6kyTNokvtFBZzTwIBaerK/23JnY3d2tOJbMsAkXam1o7oQpRkdHKwE8rWv1T8/hFi86DeyT+M+99OSfAkDqN5MR0rEMyjQajRS8Ut/0TOkmyaGeKfuuAA/5JPkdGhpK46a+mJ2dTckHOmi5oADbuxX4fzpI8sZtDY69STlH10mYk6dpi7jeKM/ubDIgk8MX1CP0I3KYXdsQPTBBPSedxlJpyQX1HvUgcSwDeTnHVp9TNlwu+bnzWLLHrY7Eg0pgecIuF8ASv/2sBOpyx73qA5MQdQ6941vaD86h68NBdFsZW4/QcICcJFfQ/K2oHEtlCGhzi4CT7c/h8/w6Mj3XHwm5M8sNMksRFN1nVpLRepID5Bx/+D37qewqF4UDb7XJfUgsM6KxEVjSgQ8RkQ4+cgCq8dF4qH2Oyx17/a3+5BwMH3NujgmU6+bo6aatra3Y2NhITu3W1lYaf8TRklbNXQ7AOFH+I6pBg5z8cuHTMPInIn8YT50jwv4rktdqtWJ+fj6dGKnXiOg9oFKO7KPGwb7nHCH+z+fnvtPnbhg8mJRbH/pO43QHnOvO/1cbdbLHNc05k8HTmpNDyzXrSlr80mmjjcbNAJYyFjzw4iTpuA6GAwg6K3WOENc511ZujiOOZt5zRl7fe0RZ3+lZJM4T7Z3bHhpu9TMHMnI20QF5bu3zf8kQI+gC7bkAmPcrIpItYP85p953Anu27+vM178Dr1xAQfd7pYbknHPGPp4kEReI1H8Fp1TZI4DI085lG3nAzSBnhTrCr3PHVs5cr3d4zgLvFViXfvZ1xAAp5ZzZ//39/fQGCd9b6A4F9bZwFOfc5YPrVIkEOaN0MBQ0cDnTOCSvjiu5JUjvraZM6XAeySnXEDEY15LmOTdvxI9KPETclPupqank5HMtk2fEA64/TpLUXz+TwJ1Jfea6jt9Rf3A7k+tnPZe239vSNc4n8tHbyWFO18V+D+1IbnuZ+k2sQvnhNXSC+b/zm2tKn6kNPUMyr/ZYhcR1kivRlg1RsNQr2DRunp5O/nE8nDfaZ/9xXnFNS594UI9jvxUd27F1QM3JdlBC8kGqrFFZW4IXCTWdUjGPpznq2SylYT0523DATGMtsOD3MLqvPlKQucdE5HvlRB6xYY26lysyAqXJJZChIDs4VumF3vtFp5ygQkZVJTdDQ0OVEhAtXGZnmRl0kMp3vem5MtoMAFBGyCMuZhpo7rXIKaynmy5fvpyy23JANOZerxeLi4sxMzOT3iXZ6/Wi2+2mwzUajUY6rCOnuMkPKRbJrSLfETfnXe+L7fV66XAPz3iwTcq8iGtV49CYtJ9WmVr9ryoLZmoJpqkj9Hw6MRofZZ7Oga9TtaEfGlMH1LzeT8x1o5XrlwP9HKhgv3WdiEENrZ/cAVicb7WrA94kQ+Pj42kPt16/dRqAfcTRQBwNp4Nan3ca237/8OAjvXeSwEXVPCylygGniOq+Kz4r5xjxMDVdS72n9ayD9lTi1e/3k8z7nBL0up1hUMaDLlyDDIZRF4tUSqntB3qXJ/f8aV14AIDt0364o0s+aY6pk902suxeWSvJgV4FsrW1lRwtvr6KQQZdq0Csgt+0H963kyBuVeIbCfg/+6nPpa91tki3202yTx3Ge0nUq8IELK+UrHG/r9aDbEmv18vuX9SJwRoHz9vQM/VO2bGxsThz5kwsLi7GhQsXku0nXvDAP+VePJAMM0MnZ1kAu9FoxJkzZ9L1sqWSn06nUwn2uV3V81hdFxHJ8ee5JRq/SjlzGSyWJKsdzgXXlstMr3dzO4P4Mj09XdEv4rfbKFGuMumkaHd3N5VRa8168IXOYq7qIyIq+ldl8woAqQ3JsHCzZJGBoYjDahjJjvCXE/vlfgDL4nktA86Ubf6dc6a5Zh2Hadxac3wW51rr0/mYC0y5zLhzrX7Rp9J1qsLg2LhmOQf8jn2nXdH1/h3tMvvk/dd4fTud2/9BdFuOrXe+TgmzMyRlefjuWhpiXU+gexxnmRPt0WJer89yEWUKMbOPuZLj3ALgYqkj9jf3Of+msDv/CQJzz3AhJ1/4t66lMOunroSAi4v3OjDK3Uue5Yi8dIB10uTlY+KxTtmbnJxM0WwpJwIDN8KU+4g4Ml9qQ6UfLBmRc6Ayk5xz6TzMGRfNv4Cpqih48iX3B3OfUi5q6s/guqQscL27jNARcidJcscx+9om/3ysfE7Osc397XPjBiPHVwaWtDclp8e0bnRCuTK1BweHL5RnoOK0UU6eXB87v5kR0Xfah8lgCdeQ67vc32zP9YgbWbVPmaDjpwwLQavGxz5xzHxuxNH3FrpN8j7nbAP7re8lU+onz0AgDbJF1BOam0G23Nc21yTXEfkjYKK5ZTknHXCOk217Fvo0EO2cj4W4gsFmlSHregUD+FYBUR2+oj53fePBFP+JqPJX7RIgU/aYQWfpryrBZmdnY3Z2Np3ozhJFB9x6NtsXz6gPHTPwefv7+7GwsFB5r7d4LkdUnzEh4gEbnycG0yMO98WTZ1zDblcH/XBMDCCo3Nvl2ueiLlN8GuyAytz5ztg6ysmrfy+Z85OFRa4b/P6IW78mLkcMyhJrePu5ikRiIGKT3LjrbBU/o430uZYddBtG/uTkXZ/n7BB/M1jpOCfnR9Th+pyO4W/XAc4ntsPvvP1PeMaWNOgB3DehHwFRvftS73ZTSYgziJFFBwsEFXyWlAABke7nbzGXkUkRDRCjfGqXNesi/a3n+p5G3a82qLQEAHQNy4Zp2P3wDe47ITkgcOEjH0gO7jQH6id5IN56tJmC523l+pIT2pxy0LhOGuDkeKn31mr/qU76liFTtoN7nijLdfxxkDs0NHTksKdms5kcbT8ITXLlSt6BtKLWyo7o0Cu9hmtiYiIdMuKlYXVOBEGDjAAjmwTAIio6KmSXCe0B1vi4DhlZZFRQa5l95XN9Tj17QqfCgSL7QR4QmOkZdEY0NmUpFhcX0+vP9GoKZWpvBR6eTmKmMweOCXK5B0p6ieBANDR08/Uf+rzVah2ZMx7I53Moh4kBQMmgV/lQ5gmiNK6Dg4O0VnUIR79/c+8511dENfjqgNYzpzlQkgMnPgZWYYgnCmrp4JmNjY2kiwn8GYTTmsg5QTliNsOv87nMBTh7vV4ls6OMG6uOaE/FT/WVh6+JBgHkp4t0MqmCVQSMjUYjvYJGe1FnZ2crVTwaU7vdjoij+3Mj8sFJgvYceJeMsaJF/eB9CtSoyoeZX60Nvi5Q98oOXLx4sbIlRXOv6jvKguMt6QThJ60jOiXEUkNDQ5XKPr1iT3za3t6OlZWVuHr1anp9EEvAKSvKmKqP7ghJ5thnyh/XtHSK4x46SSTxYnt7O5rNZjqxVq/x8sw6n63qO1VsHRfUfzJpeXk5ut1u0o8RR7NzubXqtpQ4RufC8BCmiOr5Opor2g4/v4IyJKpzlDwI5YFB13PCPayClBywukFEO5/DSzkfgfpAfWRVoD6jfWE/6SBTnxBbut3WZ7QzuQAVsaM7phyDrnE9xaAes9JeBUp5Yrm/eODzW0e3nbHNAU4NJAfC9H+z2Yx2ux3T09MxNzdXeferyEECmeIRcgo5wYKDBzKXQkNApvb5EmJGZ/0zd+J8f0ndGChIOdDAtnUtnUn13x0+joE8paD4fLhzwTkgv/UML7lwZ8xLKPhcB1j+PdvLLTj256So3W6nDJrAt5ScnL5Go5HKmgiAfTFzfnNEPgj4yamLODx5WwqNB5b4wQjOe86r+kZHRH+zzNADLSS1L3lmlsaDIn6QgfrBQ0Bo3Cn3dRFJ6iW15/2UDOVkVG05/3OyyzHr+bn9zWxfckJApTnwswYEOrW39jSAeSdf327wtIdNh4/pOoIfX9+yHTSuIt7n5cbUe9TDvn+ROoxrwGX24OAgtra2EuDn3PH57lBwXL6+2E/Xx84H9lVAW04AHQQ6qnLGNRZWGXl0XERgz+8ISvg9X7GiH9cXzlfpgJysaLzad65xU1+Qf6dlDfgcRRwCYvadAWidkh9xM9u1tLQUGxsbsbOzk7Z26P6cbnUArGeLlwq6EFNwz6aIQQ+We4oIxNW+srI6qf3s2bPRbrcrh+sQULMk3Yl4QbJNx3tnZ6eScFA/VEkkkCsZUxB2fHw8lpaWYmtrKzY3N9M9zifaP31P0EznXnMoe0HAT8eAPKyz6fv7+7G9vZ1Oo464uZ70OXWK2xTHmXW8fTqp2+1WDr3yfdmkQf+Lj8IvdXtsmQAQSTfoe9lU8TKn2/i3+xOiHJamnqO8057UBaXcd3FHj8/V98Q1jh0k/3XrnQ449SptNoOW7IfWJddHHd6nbB6XiDf5KkN/hssHk31MNt6KnpJj60Ksz3MKlY6tIn8zMzOVPSk+MAe5dKw4URRsB6L+t9rXhFB4KLyMfhCA1JUO5RxOB6S5iA0NCRec91fKVUrN96lyEWos7Af5OmhedR2VBvvvkZy6Z3DR5MgVF/nszgvbP2lw0263o9lsxu7ubtpjKseP4EKOLeVe13G+c/Kac9oki3IS+v1+5YASti/lJvJMiwdCPIvGUhuNLxfUcaXG9c9XEuXkivdwzDk5FMDwz7iGcxkl560Av9qQM+NrXL/d8BDMuOzWObVc0zTCPERKDiAj9FtbW7G7u5vef+m66CSpbg3SICtjwhNN2f+c3NC5dVDnzh91Hu2CiFFdziO3lKhtnrOg8rqtra0KkCTQJeUCcNRjuTXjMubOpvNROp/385wHZX2UHZVuUFCB9qDu0B1mFZyH6o9stfPddYfakJzz1F2XIWYgOFcMZNI5OQ2kOaYeYyZccyTeyTYo07u9vR1Xr15NAdLFxcUjWCEH7kjUT64DmTnSd8wIRkQqXY+ISsCE1SG6R9tr7rrrrpicnIyFhYWKU0hHUOMVXnHdSN2tPZCS2V6vl16xwsCn+qa9sLSdwpM6v2Jtba0yD+onx0iMFHFY7UEcyUQCsZp4fyu75fZEwcput5v2aapNvcbI71cmUvPECoGTJr7akI6t271Ba5bXehDdbR31gv7X/GsNSGdwfuocbTqaEVU8qjb8HAGvTOG93g9/luMxtwd1dl2fs33Jq6oT+KYEjd330XMuqPMl03Ri3UZ6f2hPB2EBPsvvZdZWOiTHC649yQV9m1vRsR1bvubHB+IAhQZOikbvd9N+RDekVH7+jIioAJLcQsoBp7qJjageBMH6fgJotUtDwrb8pFJfcFRizErpM+8/I3IcDxWyQLlPMJ0S5z//zoEp8YpOjTtZdY6t2qDiYYST9+n63GeuzMgrz+KcBN1zzz2xu7sb8/Pz6aRaRS55+AnnWcBgamoqvcOOYzsOSab4bmdFeiUTeuWAjCGVPNcsHQGfA33PQI8DasqVPteaFw900vbW1lZsb29XyqQdxEYcyndEZDO3VNS5e7me6FjIUSS5syrS8xm9zIHNnO6jvtA8iVc6JIVOEU8eVLBMDoocK5Wgce/aScs/yeWHMqJTYFVazWiy+EinSePXYToRhyXsrlfc0Yuo6jVdq+wUjbR0Fk8WZjBG60QOIdcRgxE5h1YAL6crRbQfvn1F5OBI/aBDRQeS7xoU0OGpu4qOk+9yIui0qg2CRM0Fx63+qELFQZeAVq9383ArBWl8XXOdcbyaY2Xi3H7XgcCni8gHOmQi6U1tP9H+z7GxsVhdXY2rV6/G+973vhR8uHjxYno/ZQ7c8X9ihohDXUnQrXbGx8eP4LXd3d2KgyZdxTk/ODhI8jA+Ph5zc3PJoeWpwpJb2Qr95OwJ+0Dbov5yH7vWmb9GRdlZ7bnVmpMsDg0NxeLiYqyurka3242NjY2svcnhQfFEzpNOK5ZsNpuH71mm3hY/PNvoMupb0/r9firP98NxdK/0nPrkdvwkydcx9Rp/XEfW4R3XJ+KDO0XMilLn6Hm8VzjIk16D9A6dVFZucl6ouyKigpNoC+Sw63oPXkiPcyy0Ye5sR0R6/aZsmORfvoW2F8iOMjOaGwfn0m0a7R3toOOiQeTrQLaD759mu+I35UX8lI7IOdx1dNvvsXWnkqDVHUh32qSgmP2sY5R778f5OwdGSVQiBDy56LracGOTexYXskeW6GDwdy57l+t3bqHrOXxWjn+MFuVKJmkMHThx3IxWubHN/c7xjzyrmyfnRd09J0ECWiyzFUDk2uC+OO2x5Pv+SLkx1S1cB805x4LKgUaHCt3nln1x8O6KMNd/z9RSwTIDx2fkxpZb7zQk/hn/dyPIdl0n1T3XZfZW8uay6f1z55trieVLkiPto1ewhFUAblBPK2lsfMelQITzgwbcbUhOPzp4d947iHWe6Xo6ornSTQYRqbdysuP95nO5LnMyWWdb2F9G0sXfOqDVaByeaMuKBPaJwWc+x3mu9vSbesH1Dp0TlhYzyMf26v7n+Li1g/w6aco5LgSgBNxaz+L1zs5ObG5uxvLycrRarQTYHC+IOLcMJFLW9XxfEwyoEy/knAW1RYdzdHQ0JicnU0CWb4bwADdL0Skzvq5z+FC6QfIacbPUVeP1DJJ+9L2cUp06rexOv99PARXOkYjbdbT2VR7NPbTMBGqOOV6vVsjZMX82HZNbrY1B7ZwmyunIOqznPHJs6VS3/rkWHA/k9K/bA9dvnEu+4SP3XB+Lr9tcP3ztcc5zOrmuPWJ38Y/teNKLvo3zhfPmtiSHLUm30sl1+szXS44nOd6wuuI4dFuOrX4UDRykuJilaDZvvhbm7Nmz6SAFV1IUTpbU+CClrKWE3Fnj9R5NUQROTGWGk1FqCg6Jfcg5DP8/e3+2I1mSXffD28Nj8CnGnGqeuptsUSQFSoIgSNBD6AGk99ADSYCudC/xSjcCBJEQJYJNCuzuqsrKyiEmn91jcv8u8lsWv7PCjkdkdVdFJP+2AUd4HD/Hjg3b9l57MLPFYpE2CZDwU3t87SGBm+6TYKYnn+2hopOHnIxN7yM9jXqG4+PRZnlUNC4CU1SqBOzsDypJrm8jEGK/uYLLCX8KrIcA7MVLSiHSUSwaV/WvvLGj0SjtMKydMdnWXJQ6Iu8s4HdGVLQJhfjaQY4Dooj8GXAE5jnBUzdGEdfr6bT9/3Q6TUczKE3SQbPa78Le3+V8yL6qU4IU2AROLkj119vpgt/LzxlUcmjIUNKa562treSZ93dRPp6fn8d8Po/JZHJjoy3Kx/umOoVMJdtoNGJnZyfOz8+T/KHBxQiXnsmRxrtOjpN/9F33UY7TcNCYyaA4OztL72O/ax4wWkKdp/IirjcwWS6XleU1bgS67lH9HDiwTbqfjmAHW2o35Sx1jYC61re7Q5RHw6jvfEzqQInepSwDeeQ3NzeTY4ugkePBPub/OvpjZ2enErV7CJTLqFLmjNZNun6YzWZxcXER4/E4RqNRjEajNGeU1pkzWtjnek9E1ZCWkaT7ZUgru4cbDjJzQu/kvNKRf9oJf29vLwUhuPZO/Mr0dEVySYy0aN7L2JQjjzqLGwFpA6ter5cMSddlcjIvFosUMW02m2njQ0VvNQ90rM5y+TYlXHwp2cSj2dQX5HW1VScE+P4TnINra2s3AkGsu8adfERsSQyo+fGQdsd33Ma2UmZShkfk9bb6lju7e5/pPv4V0WHH/ylfiPdVN18ry6VXfI/LW/Kh4whmIuhZL4P3cnyJK1h2Tt5zDoj/Jeu1kZqnKWv+uoOY9ZIDi1kY5GvRqqWG7BvOG7VVkWSup+a9lHOaD5IjP/oaW7/GCUfjUgyq3WJ5Xio7Qs+xDH8H73djlkai7nGPC6OX+p/CmuU7yNB3BwUceA2A6kfjlxNIKRJkPDfecm1mORLG3ASCDO/j5RMx4uYRD86QvI/C3cfW3+nluWLw38ioHnV5KII8IpLBNh6PYzAYxGg0itPT01gulxUeGo/HMZ1O4+TkJPb392Nvby+V4Yo5Im70ocj5m+BaZVGp1o2/rw1k+XV/OQ66xvUQ+s3rJuGai966Ic8+0d+cE0aUM8hz5fC6e/p9HrmXve57ro/Yv0z7o1KT40GAKaKavqRnlIasOjP9R+XkIv4/NeXkMvtBY8QjTTzdjnKY8599qfkh/mLqsEcd62RMru7+HNcAE+QTmOUiarmy+JuDERHbTz5xw53tWlWW/nJuqS7UiXxXbp7wN84JB518ns6aiKozmvPAo1mOIQg6aRjLcKqr731QzhnJKAL1bUQkGShDRg4stZVHyDl+cR3s7yUP1kV8WDfhDqUbU78yw6LX61XOtHS+ovPI289+0keyUWCbG53RGcjlF9pYSY4xGtHibckbNyRkYGvpj/qYjh0a1CpT+s2dU8SJPOdT4NzBP/sr4vqYQBoD1Is5ueJpxzl9eF/kcjEiH3XUddoDIraXEcWcLZHT8yzP3+sY04NEOb2v+Vjn1PO5mGuL/lJveX9QP/lvde/LtZ/8q3cRJzCIpHfV4R06Y7RMyrMScvonp1v8em7c+U6Vnwta+LyQHPlRDNu6RuUM3IjrCbm5uZk2SnEvrLwO/i4OCmltba2SwuMKgR3twobv4pqInPCmMKkD/YqKrq+vpxQavSOX/0/vK9ugslUf72tXKnqO6whygo/XckKX5Xsd2B/0HLPP+WxuojrgdKHjzMu2O3C+b8E+mUwqhm2/34/j4+NoNpspCyEikqf++Pg4nj17FvP5PLVt1aSsM2wdvNBQoICIqJ79KnDuzgafN7mP8xMNF7aB93NtnwxbpdZyfZfq4eOu9uR42Xmlzlive8aBuhtYul/953Oibt5onvsmGm4QRETFQ0/lJhBHucRUKIEqrrG+L6pTWD4/1YbNzc20QQz7X+SKnqnrksEuKx00CIzQiZGrN5+NuDZsc8DS553uZ9m+dtAND/5lWzU3+ddlaw6A5eQf9Zr+qs65NXne1pxuYd2ZmsexWy6v12Gp711OuTHNcml0U0dofa0iheyv+5b/EVWAGPG2H2RI5TCRG7aSiepTRu4IUJ08G0eOdMkrHtlDvuKadK7VVpmM5qvPt7e3b+yzIeJ4uyPEsYDqy4gLjy3kvBa/qs6SidqkMaK6G7Tq4vwvnl1be3sEkeSPsgkUMZahyb1ANFe41pMGK40f3/DIHaii5XJZMWxVR+rFXD/n9FtOrt0HUc/lsBp5kHPcidiYxhPLrjOM6uS8y7KI6jplYibnH18jneMz1l2/5e51meXOwlwZOXK55/yu/iL/6xrtj9wmfsRB+vC4U+pUlck65XCifuf1nC3hdkVuryIvL+dQWUXvvH943eDlmFv3d7vdtE18DlBK2eUAAQfTjd1VhpsDKDK93+9COkc5IyHnvZFgZh2lhAiec5M2Vzb7xY1q9Zveo4HX/fKqR1QNeTdaqKj5fgoCGvve714ONwy6zTh1BUxS33ma032QzmScTqfx+vXrePPmTRweHqY1SOKv2WwWk8kk+v1+DAaDGAwGlRRx9zK7so6ojqUmNDcLId8qhYrKMyLS5gJyBKn/BVKZ8kEgo7KUrqXfmFbodaSgY/TWly8wnYp9kOMnXc/xpPhevJ6TRyyPyiwnZ/hOF6qkHE+rzdrpVEKaikF96mOqv+pnGsMU/to45SFRHUiIiASUe71eOsPUI9eNxrVh6bwj4L7KSKNi9jFzecPxJijXejyCTm7QR0DuxrHSPFkXfhwcyDjh+jpGCFzPMSqlXWFpvKwCS3Uy1/VXDiSyXK5xFFEH+bxRvyg9eTabpbbLsPDMJgdWu7u7FZnK9tw3cRmU63DVT1FCbSClea9+0FFx3D3e9UNEXi9w3FUHpuEyOqr3cWNMRU3lhNUYKzIqXuOY53hE7aUsVtsdBzr/qQ8ZAKAsl7Eno7DZbFb6J4fTZCxHxI15IznT6XTSeKgvtLmXPhsbb89y1zs6nU5sbGxEu92+kXXIDaXcAeUGnuS65jZT0OkwJtB3g/Ah8H/E9SayEflAT87oyeFdjZMcBXVzvU4+6XtEJJntEb06/V6XNcRrLkNzdgHrmnPCuhFHzJOzJ3hvHVZmf3i2nuNHYj4a73q/6uhr2XN6nbxdZ9Dm3s/+VDmcN+R71305XHlX+kERW7+eUzz8n1s8U9jVlckOcoMvZzjXDYT+1n3q3st2ReR3FOa9/ruDlVXkhqW3wdvj192bmytfdbxLffwddUotd79fdxCWe54M723U7w8B2KgOXEM1m83SphOqn4Dw+fl5iu7K6CFY87L9b+4TkU/n4DbouiZAIPDohiBTdGS8RlQFNDdAyY2vz4ecUeptWtW/uf7O8TXflZsffm/dfK97rk5G5cZH/cW0Oo5RRDU1j8aJezZdAXN83SF4H3SbvBZJWfKscvaTnlE/e+aJfxhFpdyrk0t8NuesZF/73HLDwmW7R3J5v4MTV9w0zp0vHThwztWBCOcZL1v19b6jbPUyc2XxXkY/cvXWPczUIO+7YcvsBJ376ms2c7LnPoh9IKJj2eUM2y7jRk4KOU8I4HJynn3tzsC6PpGhIOcmjVS2g/PUHdk5XVzXJ6vwnAzYVfgrh7X0nfzLe3Ogl7xIPUfATKcWx1HjQ35UZJap2nWpx7l+Ud1p2EZUjcNcm3KY5yFgoIioldER9fOUv/N/XcvJ5xwW5l+V47I8R6vedxc7gO+qK79u3HJ1d2xTNzdW1Y33eV/pf75DPOjvIF5cNUfvIoNv41f+n3MGi1xXin60iK1b6hLKruS9IX5OFZ+JqEZt9b/+Ojjk+yWouBCcA0rB438pbPVeASyumatbtK9r8iJQiUn4yavPKJfviMd20ovCNrgAlbJYLK7P52QbchGO5fJ6xz+CImcorxM9xE5SnuxXemS5Hb6XQ29tHbgnyMsBuJ+SBBA0hr4Jjtqh1LPz8/N4/vx5jMfj+Kf/9J+mlOUcINT/BIZsuwMRedxza6zpuY643txJ/S2id44GyNXVVYrWKmK1tbVVKVvvEx83Gtfn7FKBewSijo/Ir+7pJQAhf0gguwCtM1pyBgpBD+vIZ11ZaR4RrF9cXMRkMqmMEQ06rqPjZia5aCdliI7deJdNE35sygEun586u7Pb7SZlSkeJ5CvXUkbcXPcv0tygxzY3Vk7UDbnxZyaDe9c1hlwbp7HX+HvEhoCXaYucB85TDrw9TZIZRm4kUKZyHBgFofFEPmLU2fuG+sgBnfrj8vIy6XWtj+QmYdosaTweVzYO0nvdU99qtaLX68WTJ08S3/hYPgRgH1EFjlonSf6XDGQastq3t7cXw+Gw4hz1KCbH1+WniFEqRm009ooYb21tJb5SOeRfjbsf66G6rJKNlMvUD+wnzW8Z2e12Oy1PUBt8Hmj+RFR1ISNivuyFbWLkWCBZm8/oN0Vx5XzROfX8SNcqckujl5STzdxbYmtrK/b399OmajoGi6T2iZ8iqstX7grof2ziuDOy5vfknss5MyjHaGzliPzn9oMvpaCcv2u7WB/hmxxm8fdwKVKOfK75MhbyveNy9q/PRdoyrmNY91xgKWcDsHz+7zprle6V3PCsNF+u5euZiXG9jIhrY/cuy9AifuDmUbScHeQ4NRqNyk5Y9LQ7IOV7nKh8CcjrvAteB7+HpMHlOzQQXAOjMtwAVP3YJ/SQ8946IO2G9ioPKssig7KeUiZ+X25yuECpGwsH+PzLvvRx4mJ09o+X68CKv9+3YJcSJP9yonpKlXbGHY/H8ebNm2i32/HBBx8kpSlaBdZyAsZ/J49QkQuU0+jIPa/rjMQI8EsxR9xcNyXyXbwJDHLzLqeU6kB/zqlBBblqzvu9OaJR48/Q2GBdXMAzuu3zlKnYt73fed/XcD0Uw1aUkx+6HhE30iAlS2XY0giTkeRg2eWCvyPi5tygLMutG83d67/pdy6RkKEgHlC7aMy6g5UfzhGmY/OdzgOaa0rPpLFHHuR4eL846KMO0BIDlkNA6ADPf1fqH+eG5sN8Pk+7orthq8186JiSA5ROUI7NKjn5U1GdLPGxUJ/KsJ3P57G7uxvb29txcHCQjNrxeByTySTJjtveQ92q+3jNnSCad5Q/BI7EKzmwzDGlnOR3GdbCLdRHujfimtdkYEpHiadVX8o76kq1kYasvqv+kh+cXzk5pfvpfNR7uUGUbxiV40ufc/rI8GYb3ahh/2gu0JBRX3IZ2H0TdfNd5WgOv+T4LSejcu+vc7gwy0P35PRmnY2Rc1p4+3IGKo2wOjlM7ECcSH3HZ1xv5Mr0AAL7jvrTbQQ94/iR7V2FPR0H8Z6c8UmbMedE1V+vK8eacuYu9M6GLcF8HeDmdRmg2pxAAiIXUWRH0Mjj7wQuvvbSBQKVdk6wsY7sSEZiuL6KXmafzHWGrQ+E3sN2+EAzmsSPKGewqt8IlH3tTqPRuLHNPMvR/27weBs4Qf0ahRKjB0wv82f9GiMVVFj3Sd1uN87OzioRSZ+wNMRarVbyzr569SoZxjyCibRKkPO3nECoM2xzvFNXJoWOwIGEqoNXCmNX+HRi5HiKBrRIz1NQUqC5kPX25+Y3+Zagi787IGX5Pk9dMKtcgTWtXWNWisBNLvLF97lSp2FLYHXf5IrS+53fm81mJdrsm8csFouUXXJxcZHWivs8z40TQbODc9bDI176Sx7MGVAEm/4uAnXJKco5lsU6+JIR6kiWTUDD87JVH1/O4zrNgaL6i3pG93o0W8+5o4np87pel1KvpRo68ktGLR0adNyqDTJqXT7mgPJDJLaJWEAG/gcffBB7e3vx5MmTOD09jaurqxTV1uZGEXmnjcid17qmviFviB+5cR95knzlc5n6ICKSLqBO4LvcGCGm0O9KwaYTy7EIneD8TtLGS4zYqgwCa08XdkObczfiOiOLARjK3joZnJvLapuyLoQZdBSLY2fNd9cxeqcyCR8C/xMDqB3ety5HRex7/aW8cpnAZ/jd9YHK8vmR67Pc/5wXq4IOnDvS73p3zth2PMO6sz85T7x9xFGck6xTzhbQ/V53xyCuJ3N6xcnHn+PiWZi8vw5D5bAcMbbKvWu0NuIHGLa5hpFoIJJZ3OvFxrBcb6ADYQe3vM8FLb19ufaIxAAaFKWaMg1Z5bphSyZ0heyDw/7iZHDAw0XwjOYQpFGokBmYLipyryfbnFNGdcKaY+/jwmdIitxo84bpdFpJ5yOTe4SAPHPfwN63QNdYKCrb6/Wi1WrFkydPYnd3N548eZLOMB0MBvH69es4PT2N3d3d6PV6K99FYchPRBWgEywTcPiGFDmhJt5m2eRHpUSpTM0HRoE9qrhcLqPValWOi8gZvmqjQEgOqPP4G/KZGxDebyyLMogbVNCrmDM2KaBzUXkuU6DxKgOu0XjrQFLKWR0g0VxTP3JHWPJbDuDdB9UZsSLXB0o19iiIR0JHo1HiZ+7+TGOJXm6XRTlgTTDhbXCnmYMbfZcy1eZXAqpcl0i5pPlGOaENE5lKRX2jd6lPeGatALzevVxebxbE1FE/Ukn6kG2mHnHw4LqIjhjKFD7PvQUIjM7OzmIwGMRwOIzxeFyZH8wAUf2lGw4ODmJ3dzfthJvTP/cN7HnEEaOY4jU3gJbLZYzH4zg9PY0vvvgidnZ24s/+7M/SXF8sFjGdTmM6nVbG1IlyS/9T95PXZbCSzzlvJLslqzjOaoPrFso+8c7Z2Vmsr69Hu92u7Mqs+qs9dGSoT7SBk86RJm5hH25tbaUNm3RU0nw+TyncOcND7ZDM8ewIzgU51CST1B7ix0ajUUk3zx1DRTmiOe6pl41GI9Vd/cU0ct+5VnNDcui+eV8kZ5tjATdkRNQRlE8R1ayAOkPKbYOc8etY3HF2DsPzGmW2ZKePH5dxCEu0Wq1kL/gc4fyhAez6hjYOMQnLoROG8sGdNuwnXs/ZTG6Hue5kHdnHxDhOdePr48m+0nOO771exGx3oXc2bHOfuvtZSQdC/t0ZOFdO7lkvg+8hI3lZPpk0CGJoDi7bQGZyRnWl5J7vXJ/k+o2AzcGcP+N9W2cI+/05QeRt9t+8LT4ZIvIbaRHQ5rxG3n6Vw/qveuanJI69lM5sNksKUbsnNhqNFLGQ4lK0yscyx/85vvfn3Hitm2cuwHzs3cFCgbS+vp5SMPWhYcCIFI2xXJ28Hu7Z8/6QABTwZjqnCz4CjLpxq5MLOfI+8Y/6gqlxAmiMUOa8xg6yZNgyWuAK7SHx/yr5S6Ixq7bwTMqI6vjVedhdplA+8v1OBPy5e3IASeCG9XPnm2dDOA8ryqI10rpfuoVrhT1y5GNd55x10OFgSbqDfZF71kEewYPzOh1FDqDo6FNUjWmi3ldqt/i+1WpVUtdZ59vm6k9Fd6mD2qr+4ppKGfCPHz+O0WiUIqCeBVen7x2P+F/yUK4+LNPHUeXncFGu3XI+tFqtdK/e44Bb5dFo9Q3xyBd6VsaxMjsiro9KlFFMfl/l/GY/3hZ88f70cur0qeNIlz3K7KFTxPEYMSadug+B/yPiRvucX+qwrssnUR0+5++r/vffHJfy/frO+ubqlGujZ+OIZ3Rvbi8eLzs31rl+cD1FGepleXvqyO/P8Z6XkcNmubLq7svxAucI5U1Ol1OP5cpaRT/IsPVIW939/Btx09BjQ9yD6M/mmIaMoO/cOEC/5cri74xecV0tj0EhM8uzynQxebAFcHMgnh4KKQH2i0foCOi5FoX96O3jZHPjQu8mSKGxwLq6x9b7jYad6kEvF9srwMINWdgPHD+1jWnUDyFaJaOU3t3lchnz+Txev36d2rC7uxutViv29/djPB6n43/a7XYydGm0k3LzyQUIlQkVOdfFsjx66BV5pbEYETfGTNGVq6vqRlI5cE+ArGMQuHEODQWP1upZ8qO3V+3RuizxmXsvVS4FJN+XkyUEMfqbM4Zc8KrPLi4uYjAYxGg0iuFwGO12OyKicoZv7gw51VPAbXt7O4F79aWWb2gfgYdCdcZGTg7x/HJtUKb5sbm5WVmPKeNX/CdDUP8T4OXkR0T+qKjccgzVkeNMMEnQEnG9ZpJr7lymqjw5Knq9XnQ6nej1eonP5OzQ5j45PqYh2+l0Ks4Tbrqke2g0urynA6cOxHmqm+8poXprjlK/0qGl8ZIhpw30Go1G2kxMGyUtFovodDrpGMButxvb29sVIynHY/cN7tm/3EWev+m7+nI4HEaj0YhXr17FwcFBfPLJJ/Gzn/0sHj16FEdHR6k/JdfdYRNR75DX+30eKhp8dXWVdO98Pq+UsVwu0308ooTlKWOAc0l4p9frpQ3iOK8cNDP6TkN1sVikfSgk71Q3ZUQwYisdJJ4ejUYRERU9Q72jsuoiU2trb8+6VZ9p3jPay43fPKCh9lJfqI80D3zt9Hw+j8lkko7BarfblTLYZz6POUb3SWojsy/oKKCs4TMR+Ywf9hllvD9LGcprbqSq7BxRzvF//XXniYISjkkUseQRTpLtbGNu2Yg+dHqr/awH9aDmtDI9nKe9PX7N+508rGvsc8/6zPF6DhORcvYiA4fu+HGiPmaf3JV+0OZRq6z6nDFEptA1Hww3RL38ugHy7yQKHLbB60gGWy6vd+wSGKeAEZNFVFPJRJxsYnoKR/YJPbu5euUmufcd28ZrLkA4Bl4vEu/LGbV+jcyW81aqnVwvyEnl4+CgkWXeJ8kojYgkYJTqNJ1OE4DR7oo6i1HGYavVqqwtosHiAE7kwsHv4ZiTxxxw5t7h76YBQTAdEQlQ+MeVl+ZObrM4Nxb8mhsnNHLoJPG2+3fvF76Lv7ly4LM5o8XvUdRgPp+niLaUoSsu73P1n1J1eZSEfmNKMiN6903eZzljSdeZXk3QJoNXvEZQ67LNZRllRa4ebmDUzSs+R0eNgyV67cn77qh0meWZP+Q/ynx3ElOnqC1MT6aR6XqvDsR7H/i8VVleT+oSH2OXSbyXKZ2M0HW73UoKJvtc/J4DxLkxvA+qcyjr/5xDTEsSxuNxbG1tJSfOzs5O4jVF9dUvHNuc/KgzfnNGhYChp3ezrkxZdie/QD51wmKxSEYh5an+0lHvzhXeQwOU8044Qe+cz+fJaGi1WinSrfRknfGtNmosvFzxm/hc6371f51cEwbMOVI5Dxw3CSuen5/HbDaL4XAYw+EwLi4uEv9Tb5LPfF6zr++TPPiSw6yO90nOt0xp1u85w5Ny39+TK9frTGK9yKv6janiPhaUedwFXmVJ5jP9+DYD0IltUzmcs6v23cjZDHTKsKxV+CenM9yWY5k5XqB+yxm3rsech/x7HU7O0TuFwjiJ/eMAmo3LdaB7e1yRqlEsQ0zmwpTf2fCcMcBr3h552LgujKlRNGylBHSdkYGcUenvFDiiENZ9VAi5/lfZ7Dv2vQMcF9Lsd34ns+fKrRt7Ch0yLY0aGTs5w5bvUH2pbO/bqI2ImEwm6ZiCjY2NtDHO+fl5TCaTFFF8+vRpNJvN6HQ66UxG53VtNOSAKCdkXIH4bw4WaNhqQx4JSHkgfU7qGoG4NnzRvNA4eqox6xJx7ZVXpIDg1WVCTsDSsdFoVLMAcs87n6ov3IhkO+uMMQemubL1/eLiIm2QM5/PK4ZtRFTOtSWpD3X0hYw8pnLLMPD07odCdYqHJDmqaJ1IfNlutytKURFurtuKyDsaaFRSX9AwzSlD5xc+QwNM97qjjnyj9y8Wi4oDKSIqG9twXabK1O/+HrVPc0YRAR6J5BswsX/qnDWiHDBgBKQOvOfG3YGJ+qTRaKSItZx/4gOCPskXzU85/nJ6IVeX+6Cc4ULZrv7wjK7JZBLD4TA2NzdjOp3G1tZW7O7uxu7ubkRcG6o5eZHDQhwvEo05/S6ecEeKy0C9l9EifVf0URFc1k1ZTLl35jCC7pEDVHXimnGV54ZDRCSDen19PWazWYzH42xas97H9fzMtNK84g7tOSNEz3FusU3EJ5RNer/WB89ms+j3+3F6epoc25z3zNTg0gU63e6b/yOqO/3XjW1OTuo3/y45yT70jByR44WcYZvD+z6nSOR/tYX7AuSwjtrOfUgiqjJAbchlG1Jm5+Yy9YUi49xVXmXQaZMjHxfaC3X9qHu9H3P1zRn8bn+53GHful71+vK9LqduozsbtnVgwUkT0r2KLlTZwbnG5IC7ymGZIgINKnq/n2UTtFCRMjUgF/qncBfj09PJ9zsJ6HgkWO+n0KDXiO3NORHqGLEO9LC9OU8zjVUfw1x6pe4lQGPdBHB17mHd+3S/2rhq4v6UNBwOK6CbuzzP5/OYzWbJiFXKlqK22hm03+9Xorcy9HNGlI81BVpEdf0BwZU83Yzyie+5WYWn/ft7edbqYrGoRBY5dwmINGcUldO5fTQW9Ff9SIXuMoEgn212w1X1zYEn3ZNTJt7uHK/TkKDMENATQKJhxHRwGk7kGxl3Av16VpFuGbvMDrhvYv+xPxzwcWza7Xbs7OzEzs5OnJ+fV9KSxasCAYxg0Jnl8oGUqwudkSzT5bIAK8+nZD/TMScdIRkwmUxSNEu8rshRo9FI/KgjwpgeyigFDcTlsupEknOIjlTKZdZ9lUGbG0f1nTuWVbbLIl3jXCTojrg2uhuNRpJxcuToc3V1lZyEZ2dn0el0Ym9vL7U1p8vuCmZ+bFLbKFdp0Dk+oKw9PDyMxWIRe3t7cXBwUJGlTOtkxJ54gsS5lnNQ83+NiSLC7FvnPS9P71dkdDQaVZw/lH10KomPqWfULzSIOO+pP4QPZrNZmjtKS97e3o5Op5OO0RuPxyk1Vv0Zcb05mfhac1jRXtUnt1zG5Y2i7JTjOYNK2EiOAPW7fqdDXGXImcN6cuNE9ctDIW6YqLH1dfGuRx1zsn9p6ERUg0S6t9FoVDZhFA/mjnXS/yT2b8TN6KxI82E2m6X3MLiVK8cNQsoHdyoxU4V1Zl/QYGVUn8vD5AhyGew6gHLA+8RxZJ1h6faTO3Icj+m+uo/mh4IB4h9Gu51/OBfvquPeOWJbZ0ixMyKqm/+sajCZwwW6p/pyMPi/l+11yl13cM760jNC5hGpXkwHcIDgTJZrh64zmsV33NbfuWsk73+vQ53AqasnFVIOSHk9+b8rBRdEOYPjXdr6Y5N2YRS/EtBxTYYEj+/6fHV1lQSmBGouEnfbmEfUp+vrN89sIC+v4kuWpfknfuDYEQi5R87v17iv4hl+d+cII67ehlWGaq7P6pQS2+HjQPmQk18eGV9bW6soYcoPKUnf9ZiRdv+d6zrvm+oAQ0R9nwvMtVqt1D4Hhrkyct9z8yLHP660V7VHdXG55HNKfE8DhBH65XKZIqsE7dxUTEQHiT6KWpydnaX6CAyrPm6YOKjJzYOcjK8DMbm+Vn3Z9+ynOq99zuDz74rUyonjvHCbHLwvoq7P6VgCP903mUxia2srJpNJ2hU/B7Rz/M1+uU32szyWuUpf1+Ej8ql4nTs3EwNRTtNpIyON0SzXHdKHzq906kuWyDm+vb2dDG2mS1PvUebX4R61Qfd7P7nupLGc60vWxXWIns8tb/Oob26M7wrqf0xy2aX25QJPdVQns1fJd2IR9lEOD/izq7Az9YXGzY9pcn2V4wEfo9vmW+4eb7tnCTATMiJSSruXdRc8XUerMH2u/v5sbm7rWfKNO8XvWv+7tunOhi29zF4pVkYvZ9qRNy7ieoIo/dcjN/LkCBC5IFAZendOmOteRnMogAjK9btSDPVMu91O4DJ12v8fkHIdoe+a5nVSe70fBQI0WaTglZYng4Dg10FYo3Gdi8/fVab3DevJaASFMMknmPcz2+iM7fX0+tNYUltZNqMw90mvXr1KIF2eah53o10alWI3mUyi0WikTTt0DIa8uQIJufQ7EgW6iArShTcNKQlqvZPgQWlYjC7qHRTsPF9SCljeNgJz8YyAhr7zQ4Ofc9w9+Zy7UpruKRfxfvIL5RE3dNMzNGw5/1kPzllX3uLJ3d3dGwBwMBikdbeeTkyDldkeEdU0bnn26eV/SMRxjagCaIL9TqcTy+Uynj59GtPpNG1GRj0iAMzNOuoi+RonN4QiquPszsiIm2mdDiz0XndmkHdoXIoHlstl2jTp6uqqsn5YMk2RIgJ8eeHPzs7i+Pg4bTSnbI69vb1otVop/ZL9Lj7RWtaI66wF6lgfE84N1c2NJ58LdEqpX8nHepeyGHTMmd6vKLRkXa/XS2U9efIk9vb2bgBjvfchEZ1P5HcaYWwH5VK/34+rq6vY3d2Ndrsd29vbKcOHx8mQ3ymf3EjTGDvo1rjmylHdid8kh90hK54mDuG+AWobsy9UV+ka8TznlfCYNhfTO+bzecI/4m/JSDpZtXu2Nmfc3NxMy0G63e4NnEeZwKN92Cd1xOwJx43ubJXzyvtJOnY+n9+IdPF51kl/uffAQyFmK4m3cjg3Z/wwIBRx8xzbnPNWfSrd4MeMEUPWGbY53CCizFS6r+pIh5vK4bvEm8q4YDYA6yL+yY0x5Qfbor96hliLm7pJD0RcH0O0Cq9Tjns/rcKhIrfxeD/niK+dVj/p4zZJLqDB97m9eRvdGS25svfGunD1iesMR+akMnDhqs5z7x0Hzg0x1lnl5v7yHr1Dk1Zb9Pf7/djc3Ew7l9JjyTQGlcvBZPvdM89nqSDJOC4U+N09STmvIw1PB/18t0cZSEzl80nC7znjOGc8OGOu4hu2976F+2AwSOti1P++07M2EpLg4XmCEpgEvO/SrpxB5/PRBVed91rgWs/k5ofqTe+gPlLSVODkOXfcsM6sO+fDbX2xij/YP57mw3dLCdfJAzq6cmNEoKjUU6VXaoOTs7OzBLRczrDdAkeLxSI5DWgsrFLG90U+luQdzvWI6/Fwp4QbSzJ8mI522zj7ux3o6JrXiXOhTkdROeu6wBTlo4A3ZZ/4WeeS+u6mNCYWi0VawiCD/+rqehdbgVo6f8UjHiVzAKN6i79y/Vk313IGkfcXASOjdDJQmGZGEi+02+1klGstrtqa0xH3LftFGjdFSup0LO8XCdj1+/0YjUYxmUyi0+lU5DR1qOvrVdiA78vpe9aFz3k2jJfFcdfYUdZxx+TlcpnO5P3+++9jOBzGZDJJZxN/+OGHFdxEWTmbzSr7V2hjxeFwGOfn5zEej9OShqurq9jZ2bnBo5KrNLAj4sY4ydhUe3L3uVHAOeuGCPuLek+GmPATdUpuPtGo87GV0fwQ5kFuXvs+AhFVXZnTG/6/X/eg0yqZkPteJ/dz76bRuFwu02kELr9VhstTn7d1da2ToyI3+GnYOh9FRHKes++5ptyprh+8PnWYkG3wex07ubNDeJjrqfk79SOdYD+U3mlX5DrDVsTB5yA54FBjIqIyofUOHtydMxJd+Agk+oDlhIEztoyURqORvAnz+Tz6/X5MJpOYTqfRarXi6dOnsbe3F71eLzEPo10aLA4wvS8U5vquvnEDXP3ibVQf0hOqZ7iOkcJexAnAftS7XLHqHtWPXmAKWtaPTE5eUT+74HJyL6judwfCfdDx8XHanp9ePUXV5NmeTqfR7XYrXk2dwydep0crJ2Ai7pZ+xKwDjo0UpTsXXB5u6EkAAQAASURBVKjmwBRBKzfFkYe92Wwmp4/W4MrQE6/4BgFevviB88GjS1QSBFc5pVBnpDg5f+e+E/yo/v782tr1rsVMQR+Px+mjSH1uLsrRsVwu0/pMrSWTweS88BBATa4eLru8333clJrIMRIvaF6RXykTyBfsT6aGudLN8Yt73vkuAtCI682uIqpLVGhYit/l2OK4ao8Gd2ReXb1dazoajWI0GiW+2t7eTnJF9dG844aGdIA4cb7ofzooOZY+j/w6dbnzgICXxkOGjbJVWAeOT7fbjd3d3Tg4OIhOp1PZREj94PV5CETdLgcE8ZBjGsca5+fncXR0FAcHB7GzsxOPHz9OTorc+lOPxnLJEvGO62G9T3qg0bjOWuP8lI7I4SwRMYwyk8Trknsqs9/vx+HhYfzFX/xFfP/993F4eBifffZZPHv2LGUetNvtuLy8TEbteDyO4XCY5od07NraWnz//fdxenoav/nNb6LX66X+evbsWWxvbyd5ofYyNVPj4selSbYzi2ixWNzYB8INW5Wp6y6rIqobK2npUqvVSu/QGLNPRXwH28DMpYeAg6hD1X4eQ5bjS5/Hjktz2NGxiUcYWT6vRaxeXsX7KesZRdQ+EFyzXaeXcnK0Tl75c7yu39yhLZnP+tGRqms0DF1GsJ4um7xvWX5de6grOW7kf+ImzRc6xPx9EZEwci5b612N3N9bfpsPvCpG8O1M5YJD9+YUcy7dgAPI//Wd9aHCYNSE71VEigpmPB5Hv9+Ply9fxrNnz9JZdErPVPoCAbHqweM7ZDRr05EciJcgU4qPvIpk2oi4sc4l53Eh5cChC80cYHWjlWOhezyixb5lu7jZgOpBb7/q4fz0UMCN0tO1NjYi0sZQ3CDqxYsXaYOog4ODBFQjqmBEvOZzwJ0zOWNU5UlpexmeLiNAruiieygl4OlMEQCJiJhOp/H8+fM4OzuLnZ2d6Pf7MR6P4+XLlylq+8UXX0Sv14u9vb2UVipv/HQ6TX0n/mAqmoSgb9IgoevXyBtqM8G3eC8HyHMKlL+759HliMpXP/N8aY0ro48sv9G4PvtuY2MjOp1ObG1tpaiVypKhx1TPh0DOi+68y4EMV3yUY0x/pDwkH9NojbgZGc5FznK6whWjAxI6/gh4pGwlj3U2MSNWnqEwm82S85IOTDeEJ5NJRETlPE29h0BH+kBnenLTObU34vqs56urqwrf5IBXTjeuAmgOvjhOctQp8uypZnqODgCdWyvgJsDvgDZXl/siZhtQNkVU9RXlg0hGVL/fjzdv3sTm5mY8e/YsGXviK7WfjgjnfccD/F310/vd0GU/Une7gaE6q52aA9zYaTKZJAfnxcVF/PVf/3X89re/jf/6X/9rHB0dRb/fj3a7HR9++GFcXFzEL37xi/jyyy9TVtNgMEj8oghZu92O4+PjePnyZfzFX/xFHB4eRr/fj8ePH8cnn3wSjx8/jvPz8zg4OEgGMTOnqA8Y+eG46K92J3aHAccgZ7yyzxxzaS4IF+qs88FgUHGWuT7LZfA1Gtdrb3OZgPdBxA008qXTvL8iqnzpDhhiEd8vYFV7OZbupIy46dQUHnA7gPpePCinlfCTYzInNw4d4/rGlnUORzpLvc46913tjbien0qZV/+6Y5x9Q+dhTibU9bPf61iJ9/t9yoAdjUYJL+acBJIzHrF9V6M24h0jtqLcQOcY2jvDGc07lREmZ9JVSs7BfW6wHNC6p9UNMoIcrZmUkbCzs5POK3UD0L2ImnQ5IM9JpnfKM+8RM7bbDdlVEy83Lt6Hdf3rYL/OqMiVRcFDIZKrl9ffee0hkMZWm4BIAHGzn4uLi7ShhVLYPQJHPvG1m051Y+cAk0JKRK+XjxfJ+5oRWK5vGgwGKWVwPB7HaDSKk5OTBOL39/cjIlK0Wh/xvK8tJ/DXHFoVGarrn1X9xPvuIpRdLvH+nNEWETfGIMfrbIcibormKe2Jzipv+0OZA6I6GSuq0w05mb6qrbnyXW7kZNAqo9bHtU7uucwTcHOnBfWJ3kUej7jmEa6ppnHEo78IpiljJGdy8kREh6M7GtyDnmvzbSCnzrhV+XTq0ADgfQ7A3HG1SkatqttPQewfAkTVnf3vvCe+ODs7i/F4nIw6RYeoD3Jjq3IdD0ju8BoxVI7Hb+N/EcdauETrgpl2rgjs0dFRvHnzJl6+fBmnp6cxGo1Su9+8eRNPnz6tZKwpBVkGpto2nU7j8PAwXr9+HUdHR8l5rGOTer1eNJvNFBXVvNJf6jzHSA7CI6oZH97+nJHGvnOnP2WClu1MJpOYzWaVNGSVwWd8zPjbffO+yI15dxjkHNF1eF9l3CZ3IvIynHOlzrFKHnD57hjAMbfbAayL2u06wo3xVXaMz6+cge7tI59Q3kjXKNjBpYk5cpyee6ff6/1225iKmJ1HW0ft4tixH+rqchd6p82j3OikAMlVhsJfgI5KPWdM8nkpTN1DL7R7tXORQ5He4wuadT9/i4h0Dp+AzHg8juVyGS9fvozf/va3MRwO4+nTp/HLX/4yG/XkJiHL5bKyWYIiwjKCtI5kbW0tDg4OotvtpsPbRWpnLkWR/cXJRUXLe0g5Bae+4OR2L8wqQ4nXCHLUfo0d150ycut11+/3Ldh3d3dTirrqJQ+lDJTLy8s4PT2N8Xgc0+k0Pv3003j69Gl88sknKTqh9o3H42g0GrGzs5O8zQSCEdWoOYkKXHXhjn6rjFgHm7ouIohRhGq5XMabN2+SUa+UNHnrz87O4uXLlykFUSBN/SAAslwu0xxQuq7Wogrw5wS96kj548aNK4yImxv95OQL+0Zywp/hHPB7GNXQ+jNfQ9JoNJLxur29He12OzqdTorUagMg1o9p7nUpp/dNHJMcOJTxojTEy8vL6Pf7tUpM8l7Kk2vgROINEfvavet1Sp3vcmPN9ZMbrTyjVOCVG+XQyaHf2RfySDebzXQ8UMT1UQ8Ch4qQKbKvTcTYRslqla+P6qHr7mhRhJS8zHKpj3Ngf21treKQkYxnqjbLoSNAUTllJ1Bvus7Rd/69b1L0nES+JfgkuKS81kZSJycnsb6+Hr1eL5bL6830NO9zADYibsyLOmDpuMRx0V0Miohqamaz2Yz5fJ5wi5wyl5eXMZvNYn19Pb788ss4ODiIyWQS3W43Dg4Oot1ux9XVVfT7/ZSufnh4WMkmWiwWyWl6cXERX331VXz22WcVeblYLOLo6ChOT08rx8pxY0eCcOmUra2tFNmSvGX7Kcty69dpvIkPcgYTl+FcXFzE0dFRSremXBFp3iljQf0gqgv23Bd5xI+GDuuo7DBlb3hfR1QdpDnjPSfLaTO4URRxc6MovpcyRWPELEL9pp3ppbc1H93m0BpX1a/OiM4tC6Os434N7OOISI5/n8csg3ooIpJM5lFcLoPIi453ctlvEVU8r3pQxrvBK1IGAzccE4/IWZZ7p48xcddt9IMitjkGzJED1FzD3UjmOzhZ+Jw+HFg30ry+PogyAPlOAgCteev1egm0NhqNmM1maZdSMpwDDDIuI1dK35EXT2e1yehxY599kPPmkAE4NnWCMKfY2D85QMHfcoYEx8ABoZSLp37k2uPKYpUX6aem/f39lFKrv7ndhiPeCqPj4+OIiBiNRnF+fh6dTie2t7cTb8ggevr0aSXdPCLvPcuBdZZDhSsSz0o4RNx08vg4iu95hqbSBwVCBCAODg6i1+vF1dVVdLvdWF9fj+l0WgHMGmNdYxonBdhyeX3mJw05N35Eq/jcZQp53AGN7lv1UZnu4aWSoOPKeVxROUVpBca4U7LuVduZWkd5cp/k/ZFzMvj9asv29nYsFos4PT1N4I+KVH2q/ru6uqqACX9nDpTnxm5V/+VkNcsk79aBCtaJDly2X3/1GyNMfp/KzqVXUtZTd+UAo/8l4Fe/uMHk99b1FQ1n12+ShZQ5uk8gRoaS6yyX+Q+NCDbpwBA5aKVjUmPdbDaTY+/09DRarVY8efIkPS8coXGmoUyHBoE+65fDadTX7hBlGc5XlMEaU9VL+rzf7yf5pWOM/uRP/iTJQzm2dnd3U2CDGyyyj4QPOp1OfPTRR/H06dPUd5QzzIpjJDmXGSWis15GpPqCy4vYfjomWF5ufhEDNpvNtFZYZcoYyBlr5P9cZoXf9xAoV3c33iKqRkpubNzpVkerZD35tQ6fel08tVuGk+5jOZwfdGrmyliFU3ifrwX3PvQlk7nNFbnETb/T2I6IipNMz9bxEfnV2+H2SB1+0jsYYJNeoONIS6+2trZSO2j3eJ3eld75HFsHda689FdMIGtcApqM7KCG5XAyODDR7+o8CoOc8UzwrGu5tasE2wIWe3t70el00uHgZ2dnsbe3F91ut2IkaBc8B1C6R4pfka+jo6PUtr29vQrzcY2v+omTVtfYpzpLc7FY3AAeq5QdBQy9V3zOJ3EOfPik5HokesfcuUBF7ROCQuu+hfqHH36YNnmRY0LrpQXGJfTm83kcHR3F8fFxbGxsxOvXr2N7ezs++OCDxFfq7y+++KKy8VLETaBJYp9QkXvkRXNL1yi0BURdqciw6na7CXw2Gm83hxgMBjGdTuPs7CydJ3hwcJDA93g8ToDNlQ7X9tIZQFDDdaVsG6Ncaj/7IKdMRARxdc4vlw1UfG4c1d2rnTu1xpCGrYwZ9afO7eT6Qq7FV3t9Hf1DMWz5lzKJ48B+U1sePXoU6+vr0e/3U7THFbT4w7Nn/D0RN8+XFLk+4DvcGHGPf50xR7nlRqGPkSKtmod0evmOxuR97mbpR5Kobs6TNFZZf3cARFR3t/fokOtkPZcDLIw4Cwxyd2fKITfetZN4t9tNyzly77hvWb+KxJucnxE35wLHi79vbGyk/nr16lWsr6/H559/HhFvx0hRDRlb7CONodYjRlSz5nKOaRpz4hmmwauu+s35mlhCOk5rbc/Pz+P4+Dg6nU7SB0+fPo0//dM/TXXXGtrRaBStVis5SeUodefscrmM/f39+PTTT6PVakWj0UjreXWM2uXlZZpjchj6LrYaJ80r9acyxQT4hWuk6yj7lYXhjqqc7pHsiohUN9WHY0bM6U4GvdP5Svr7IcwLl7ecr1xDyz6jPtQ14kPH5jn5pef4l+SOtNyzOXxKktOdpMgncbXGkRuyubMj4uaGrWwbI5TevlzqrvAi5yn7mBhbWaHka/Gaj13OuUjHj/fdKjnt9or6YDabJbxJzKNsNZU9nU5TW/gO54270J0N25w1rYprwnsnqSJU1G5oRcQNBZdj8lx6iJjQjTC+W787g+VAPRdjSzDTs7C3txfL5TJFbJU+QAObRhqBhO5TijMPf97Z2YlWqxW9Xi8JaXoTI6pnVOUMQqXZ5CYM+ygnHHJjwoibMxXLomfJo7I0EuSllWKKuD6njZPxtnrdF2mDF9W/1WrF0dFRSrXVR6B9Op1WxqbdbqcUtOVyGUdHR/Hll1/GL3/5y2T41M0PApfc3CBP0Csmp5GPOwVVxLXylMG1vb1d2aH38vIytra20pooATTND0Uhz87O4uTkJMbjccpIoIfe15hLOIuPmXrLFFz2i8AV53uOR/k9J1tykQ7yb07WOZBRuvVkMokXL16kc4ojriMJXE/LDYDkPODxFm5o0VB6CJtI5fo293uub8XfX375ZZyensZwOEzOEK2zu7y8THsX6PxbOtz0ydVj1TU3XNXHDjTJA74G3OUaDQkaqxHX519KlnNspSvoLPSIDsG16qvUXekcOsd0T13EQv8zokJ5UTfGDtoozwlYZeSoz2iUcQ48efIkdnZ24uDgIK3Xz8mmOhl430QHFLGOOxloYLksobP/+Pg4ms1mOiNdY0tDSO+IqDrtGbXV+2lAUDeQJzxYIICpcaNBS2eI2q8IizYJ1N4jqq+ilWqj5s9wOEzrchVV4hm47jRnVgezopQtxCU8XJrjctSxpdovvEIHjRsl1I+Om1wn+VyW3pOzk0d2UYa5PPN3iB6CYzOi2hcRN7NN1B/MvHG5LblFJ/vFxUWScY5v/H/qR84xH8M6zOO6XWVqDKfTaZJlCmppeaBwistbUQ43+DuYzks5L33T7/dTv1BXyankzkWV02g0UoBNjmPxu6dT5+wl1juHNT1Y5h8fH86NiLfyg8tqZFcpYKI5LueT6pFzBN1G73SOrRdKxmEnipwB+ZwrhhxwZzmuUFQn/Z4z3BzQ1N3rSoC/y4AVQCEgUtvYPq4T9PfIECCTNZvNZOzSYGafS8HkmIaTe5XwW2UwOrjh5K8DFBQWLuB9HAgUuQ6L/UiFm1Me903alU5nL0ZEilAwrYSbgKjek8kk8QU9zt1uN3nl6qgOpPJ//V0F6F0xkyQkZdjKWHUjU/OA5zgyvVIC9OrqKp3lyvRjT9P16ABTc3NAPdeGOv7wubLqr1/Llec8rjUjMtCGw2HMZrOKoSMHloxa9Ss/7DtG/yhrGDV4qLTK0JUM29raSpuMqc06FkmysNPppHPD5/N5mmMecVf5OcO2rg5uCOTmB510dc66nFx3cKP3MGNJ93H3W5VLBzF5LaLq1HR56QBc783JUH1y4DTXfzmA7f3A+SxgyvGUMaR01J2dnWi32zccsD7/HoLMd+IcjajPInKQ5waKQOp0Oo3hcBjHx8dpd2Tyg2Ouu2Ic1dUNXPIl54IMU97L8uh0ES+22+3kXPFlJ9QL4j8FIWjUSM57JFr3qE4sX/qo3W5X9IfrRY9Q5bAEMZPPF/3ucynX7xwn6TutIyZg59j49zr5meOh+6ScXs3pWceG/jsdAPrrcsrbTRnov/nY5vR5TrbksJIyMGezWUREytCQLhafEsPn3uc8qd+pz+gklPNfDl8Z+7IbKFPd7pBTTO9UnzYajfTX78nZFK4TfYzrxjpHdCTo/XL2yrD15QPST+QT9uVd58EPQku5htDIcvJUQlVUz9UJaHWGe8Rz76BwoSfdf9PzHFQyijweAjV6v3YudA+CnpVA0zNMI6LS2NnZSe1UGTTwVF+BH02oHJhSW5zpVMccGM5NNAogKhT9njMEnHQ/PVACXjICaMSx3zUeAkZqE7099w10tra2YrF4u/6Ha6z29/djb28vjo+PYzgcplQzpVUsl8sE1nkObr/fj5OTk5hMJrG/v19rxDvIjaimcHPii5c0/lzsr3sd7KytrVWOnVE9Oe8EZHQEkDZ8Yl0lNBWZu7i4SMcxcL4JDDFi5NkInorLueoCnaRrbgAQ/PO+nFxwQKT3LxaLmEwmMZ/P4/DwMJ0/enp6miLRjUYjOQeUdimDVumX29vblfNNI6rHXbF9iuTLAH5IpD7NjQXBvxti4qOPPvooRfkEIBqNRtrT4OLiIl6+fBkvXrxIHnTd4+/TNVfo7lEnUKUM59zTXGHE1oGpt5WOzIiq0pcuoBHAZ91I9Iwf1lc6jQ5SvcedI97/uk/yh1EmJ94XcX1GuoN59cv29nbs7e3FV199laJyilq3Wq2Ufryzs5OADYGVxsbfzzbct/yPuJ6nXNrBLC/xkqfYOohUtHo+n8ebN2/if/7P/5n0yO7ubnQ6nYozW/1PvcMoiMbK+UZ10X0RVfzl+kO6Q9/Zbs0NZt9JVzAKe3l5WTHUhWOEnxhJYoSOET69Q+ty1c/MDmLkirpBfcHlPewLGtQC0evr66lvuTGY6wzKOhon3Nl/PB7H0dFR/O3f/m2MRqM0ZzudTiX6pjnkuJZjS/zKsbtPos5UX4hviDEcqzt+dZnH5SeeTaI+c9nPqDzLrPvu2JnvEi8QwwjrKFNNwQhuBCrbQERdQRxLbC3dIpyvPmBWA2WjHOS+dInvoR3iKcnMiHDMzX5UX/Ev+ynHA96//DBDT5lp29vb6bvK0hhyc1XJCtqH76IH3hkt5QweXc+BRDdK2RksJ2eZ11nn3kgHLLzOd3l5bgjTKFNZ3MWY62vI0GyrUnXYZu546W1wAO4TsA7E63d+zxm5qxjWJ7/3nY8Ry+Q1PsvypeiYauhjIaGlCZvz/j4Egc4xJliV91jn1V5dvV1zNh6PkyJ1BRwRKdWEqdn0qt+lzW6kCuASCHNtFQ1fgQqljsnYkkFLfmKmBJUYAY8LWiodgggCMG8nn2HbcvPWwaL/nusn9m2dAOf9TjqL7c2bNykFXVFpKZf19etdX2XgCozRO0mBzfkuXuG6sVUy4KckV9i5cVwlt0XkJwJlgv5Go5GUueucunfk9IIb2ZRjbJd4WfKea8F9iYTLWe8LKWm2K+ekWdVfOYNUei7i2siS7CAw03cvJ+dwIPByOc5+Z9vcoy5nzt7eXspY4Q6dzFagsefGbB05ML0v8jH2fs7pK8pA/y7ibvIqb39//4ZO5TM5nnHdzvtcX6sNEVVwSQeJ84X3Ax1wxEpaJ8xd852XNNfphKWhs7a2ljbWZGTWdZPPH/9OpwznTx1/a0zZPu9jygvqWup0YR7HvT42nIduqHmbHooOqNOvXj+1xbP4+AzHXNdX6WQf35we8o+uU//7sx6ski5QMEYZB8zAUVl0AuUMW7WJ2Wsql05GysyI6wzP3Dtzhqf43TG8MJd0BuWW7rtNb7/LuHOOEAMrc0ft0Xgw60/11adO795GdzZsXdH695ynhkYAw/W6XySQ7MZZzhOjchntcK+cTyiVRcXvk0pghrnv7lnRd0VfIm6mT3KbfrV5fX29sgugiB45CXcxozyOFOTeDxQCufRoB1HunWcki8Ja/ai6kAH5XtbHvb9iUBl58uLnJpEmoyb+XSbaT02MJMqg1f+KcO7u7qYUSqWmar2tCwUpfaWd6B3kS5/UOcAUca2Mdd1TKSmwqdyZfszjEsRznI/MuqDDQnODRjnnPhXFXYx2B028rmdXGbbu4eM85PO5euQUEp/p9/txeHgYv/3tb9P8oENLgpvrSNxhEFE9ooaAUvKDR7wwsvsQiH2U8/TqNyeXGQIEcgQQZEsRevs5dp4BFFHdTM3vr6uT3ikDludy+tIJPSMA4fJW33l+dc5ZIzlLZ5DXK8fX7Gum7jHyo4979Vk/9peMEXe+uqHMuaTrkvnaH+Lp06dZXeVGc8549rHMjeN9G7YEjY5VIm5mn3lGA52L6surq6u0DvP09DSbZUYZ7hgrh6moo4mT+IxwCXkxIhJ+0d4KHoXLjZvmgvhoOp2mTQQj8umZa2tvM4X0jPYmIK8Mh8OIiBty1KPPbLPLJD+aSfLF+VT/K8JFg9ixlgdBqA8V4WPkm++hEaU6unwQDxDLPhTK6U/W0TGmcHguM8SxiutzH1OX4fqNv7uM4Xtz2IA4WeUI6+h+2gWz2eyGLqN+UoYC38M5KKeHltgwmy7iGpNxeRgdpMTp4hO+Q/zOQBL3/eBf70terzNW62S0yyL1hbKyFO3udrvJcGdWquSRZIE+OZ64C73TcT/+cUFKEEnQ54YVJ7UbxP47y3ZGz4EOpjkxfc8NMjKYjC4xGCO0+ivmUN3kXaUxQMbRhKFRTOMu4lrRqYxG43pTHu6s56CPfcYJnQOaOeXCPnEHgDOwC+EcX3AMKMi0+6EEA0ErjUSNi3ulVJ4befdBnU4nGo1GOqtP9Y+oOmYIyCOqacNXV1dpjaom/Wg0SjvpirztvFY3hgRBfF7RP+cVHc+TyzAg5RSSyJ0uVPgEC74pBNO4cu3IARbWhbxCgepK13/TX2ZHOH9TKYq4bkobYul3Rmm58RtlAg0O7bQpga7x0foTdzJovB4CEUTQoKpTOm5UOmDJ6QG9R7yp6PeqXecp97zcVUYio51Mi5a8z6Xvazw9BZJGh8Y1F/WibtQusdIlcq5GRErJdP73OcAIl3iLQIEAnXLC9QgBOPmfYJEfGQAaKxlJKjOnb1hunbFKoykHoO+TuMzD614nOx346i/7VXyi8efyDY0tnSd8X84JzPd5X3KeOOZSHeruYZvUF8RJk8nkxl4KEW+x0mQyqeAyj8TSke8GqvqCS8FUl/l8nvqGOjin+7hZpd6xWLxdKsU9VOpwDvW4otL6jdGpRqOR0sk5Fp61xfHx8db/q+p0H0RsIXIHnc8LjYXkLe9xzJCTPzlj12UxSfKVY0bMTZnNeeyGaKvVSgYt5ZqCVJLRrL/4QmPH+hH3EUMQJwgvuUGs+jlGdn6SzaBsCMkU4iG32zge5DeXKxw77zddd32nfux2u2lTUs07jp/adXV1lQJCzGR0mXAbvXMqcg5gO5Cm4qNnnR6TnNLKdRT/9+85g4dggsra2yBhrPWQ3JWXQEd/z87OUnvOzs4iIiq59gQhuo9ecL5PE41CmB5+X1dMIZID7349N2Z3EYzOkCT2e917HYQp6iHPDJ91hubE1vN8730L9larFYvFonL+qDzuDmw1nnSUcMc3AXUBafaPaJWC5T1U0P68+lVEUCxPIBW6zycKaL/ugF7XPXIfUV3DQWPC60vgmCMqQ4LnOqXqIJrf657NzS/NX3kRqSSlSDR/OW/d+FGZNMbEK3KGMCrhCuO+yRWd8yL/5saXZXg5rkjVr37IfA7o8bqX7YqQY0te5JpaglQZHizboyt1/5OXPEopOe99xOiFrlGn+dwiCKEx7I6qunHL9aH3V+5DYCK+p5G1yjhYVY+6+fsQKNc/dMiQXHYSVFLeqlzJTt98ULJC96nsnD6uwzp1bYmoGsF+f127hHfYB5KPmj+8l+Ca5btD3COxjEixT8mDcuYQLOfaw3lLh44vp1k1Z3SfHJ26pnKo++Rcol6lnOCYuZzP9XvdnPqpyftT7crpU8cnLhMjbjrrvByX5SyTOrTuGRrOjkdyekR/mW1KZ7R0ha9dVTu4LlR15Br53CaarjvceCWf6b66ec7giurCZSvibwbf1GZ34uqddVQXcHKdJ2yjSLTucV2qvuUxR+wDH9tV9IN3JHHBrAHUsShiBu0mK1BI4ZIDm/4OBxUR11Epj3LxmgCjBo8pLxcXFzEajWI6nVbORvMUzjpvkoQ0I4++mcFyeb14WpvOaKc1eTfpWVG0hwur70K5iKr6wFMLcv2bA/NkIk4yvkO/+4depuPj4xQRbzQaNzZpIAgUr9BzwzG/K0P/WPTs2bOYz+cpbbLZbKboCknpvuIFpuGLVzR5x+NxHB4epvW4nkoZcfd2U/GqHppn2sWYnn8JGZ3Rtli83RxJRGXjQpjAgyDeU8lZN/GG5IHud+HuXjlX/CI9y+iYAwMHjoy25PqObaWQl/ySJ1HjyDR0pp/qOzfAEk9wIwhFI7WhwtbW1g2lnJOL90W5unD86p4R3TaXHTR1Op3Y29uLXq9X4a2Iay83IzKS15R7TPvOvYf3EYi7fqKBQcPOPypTEV9toiRPNYGJyzfqLDnCqOAjqjzBqKs+Ln9WGUY5p5fuazQaSb7xefLA5uZm9Hq92N7eXrnTseq5CsD69dz77psYHRS53BGAbDSus6+IlTQeDAJQPmqn5H6/HxFxI5Koj2eQacwJUHWdBpbArYN43Utsxgg8fyc/iMd8Hw3JQG2Es7GxkYxezcmzs7NaJ5AwkXCl11O6igYLM6k03+bzecqA0Tu0iSP5cjqdpvmn8trtdpL/Ind6EVvq2BIuLaLhJ9K4+5jpHmEfGvoPwbEZcXN5IPmh2WymMSZ/sa9cx9JRkHMc03DVO0g0nMmzHqUV/iIGqrNDPCOr1WpFxDVfis/FMzLE6JSkYUsbhvVUnVw2uM6SLFH7dT8NVY6PDHLJCW2+qBR5bkhLQ5NylzIn18eiOnnNfqJh6xhMfH55eRmDwSAGg0GMRqMbWPNddcCdDVv3ytQpHCp3H1QHQDlDS9dzYCn3bq+HBsEBtzzyMmwpiPXxs7c4CBQuFGi+PoDKirtqUsGwPapbzmjQRLitH9l3q7zm7oy4C2ioA6O55zh+ElZuvHCyu9fNy86B4vsieWC1hlZCnIdKS2hIkXPhvIQIPYGNRqOSdkEveI6v9bdu3vg1Khz9L+HOVHcXpD7PJGwdENEQ5Zxx0OCKrq4td+HFnGFFb3COfldwLEeExongiRFWOnUirr2nV1dXiS/U79pQipkaOblW5xW9D3qXflw1Hrxn1TXvpxy/3KaPcm2oi4hSNjqf0jmiuqk8luPyksaCGyh0oPo453Rlru0sV+2gXvJ+JVhhPVgHleF14Xs8dd6jDDm6bY7WXXso/E8dTGKfOh/4mOUwDq9redRsNotOp3PD4GGZubr8UMoBSeIT/dW9ub1HxBfL5XW6cU7vM6sl4qbBzP7y+ul+YjERDQPVQb/LQeB9r//dkav5w3l/m5wRDnADXvXnfSqDRo3/5kbkQyDqKdaP48xreiYnG9m3jGKSB3mvO+hcnuYCXSJhcx931kNykNF4LncU38mGUJ0UHND9HD9iLhrlKpfZerkdi72+KpOynzqA93EuiqdlawjH3MUuU9t9nvB+OhOI+9zxyvEQSebpeCzNY9e7HjBZRXc2bGmw0XLX4JLZKbQI5NXROQHBCqthfKc6kHn69HzxmlIDZVRyQxCtc9UW3jRumR+v97kQosCUB5SAVynIV1dXaY0p03MYtdE7mDKgSKAGVJG1nDHICcDINNetqm9zoNA9/ryXef0ulG4D3IyOc7wajevjm3JtUb2cH+4Ckn9s4lrKdrud1tr2+/0bqS4SJOJLnuGnaLwifaPRKE1oj9iJJJTdOUJFH5FXgHqWqbIEGhTqEpL+oeeZ72bElk4MemFzkaAcMKSA5nUnd/A4uKeiI+UUn7+jjsd0tpw88vLidrvddIyDxkHrryIi3avMDB6lpIPfuakUNwTiHHso3nryRMTNYwLqAH+OnIcJiETqZ823HJDxqNJtSlo6hOt35DEmwJaMzynX5fLa080IMbN1HMxpHrEvFdVlSjTnuDv7KEtVhr9Xc5BnTXsfa65RTnNsaajkwJnGpdfrpSN8PK3ax9rnNduZk1ls40MB9jyiQuTj68De524d8Ne4jUajWC7fblQnw1b35+SA80idjPX65vqT4xJxrcdns1n6Lj7g3iPCONzN1eU0gT3PRZchqHvkEOaxi+RD1d3Pglb99ZEzrNvtJr3LKJ0bYZ6x0Wg0UkSZ/Z/TwRwjRm4pJ1l/RvVyDi3Haa5775OIydUeGUvE+HSCMHuMTl+1lRg9oprpofH0zEGSR2kdv5O3RB7gUTtkG7jupQ6Q40lBCx7lJKxHfKR+ogOVATaR9jtR/WhPkYdzBr7z9mKxqGQLKkOQNoLGxQMqTuzP3G/SGZ7xKj1LXKsxYeR5MBik4y/pGPB3vMsceKeIrTqNawZZWQkc3efpeFxz6kKayouDJFAtIrCRwNWgi5FkpCrFWOtatcaVKcEevc11KCcyvSUE8ZpYYlimVsjAy008CQX1iSI8Mo6UDsMUGQ5yLpXAF11zrYoLGPYrc/cdeDpjulFF0pb3qifPAGZ0S/2oCUYA5RGshyDUI97WQ1G6L7/8Msbjcezt7cXr16+j3+/H0dFRRET0er2Uet3pdCpRP6azSsjNZrPo9Xo31hVRsEbEjX7hnGHqPzMJmKJFRVFnPHn5nAMuTDV2ciRpTnC9lQMJn9dUYARnbF8dWMuBTBeM3jY5pHIGENup+TmbzWI0GiWlpbNlFQVQmylP6JxbX1+PXq8X3W43nj59mpwjdEDVAc1VSuU+yA09XeN45mSGjx2BkYM58qjSCHkMkJ6XwmbKf86Y4P3sa91Ho4QGicqT4qfslmylo07AIyIqa7MiIitbdR8NU/EYx12ymuv2aSizv0QyDLgngO7zpTwyrNj/7Df+1Vhz6YwbV+xvz9aIqAJ7JzdqHxI5j0ZU5bMbKTlHHfuKv4n/BK7H43FyvtP5pbGXDqVsVX8TE+g3Oqr5TsouZq2JFwVOdQ83TZLznmmVMiCEMTR39J3OT7WZR6Fp3gn/RFwfscKdmlUH3acy9YzSNIX/Li4u0mkWjBiLD3PHinnUVeXKeCVmccNXz+odzMiijvNx0XyRkUTM9hBoe3s76XfKEH3P9QnHKje/OXbUvbyPxqHeQeNYH40By3MDU2VS/nOZojYQ9MweGXDKstP4LhaLG8e7UUeqHtzHgcE2OhTFm8TGxMr6Tp2n+tGw5dIYrm3l3kHChkxpdpy1CndQF7FfXbZrOSZT1ZUiPRwO482bNzGZTCrBP+9H11m30Tsf9+OGqQMGTUx6eN2gyoFRlZUDtTkSqCEDiCEkzGSwSvhSyPGcQm7YkHsPJ61fY5sIbl0peP49+5ITSL9rLerFxUWF+SjkCBhYd1c0HhX1vnWwxntz4+Hj4ozs6Uky1n3CueGqj0eCbuOFn5oYhdOxLOr/8Xhc8dDKY3V5+XbLczo6JBQdMNDAE/F/zhMaYvSK6z4KQXos5THLCSJ/3o0SN26VpeCRS84priG+y7vYNldKup/kc4IK0gHmqvZ6XysCKydaRFRAvd5No3Y6naZ3ile0dl7OPk+Nq6M6g/4+aNW8zxltd6E6HtdvzHBxQ5884/KMMs3vr6sHDQTOYfKt5gx5n/e5UuZcpt70e3KOPDdiCVxycpPGlpybMpR5L6/pOvvyNp5rNBrJ2MilINfpFpdhTj+Uh34qyukrl9kEn3dtT278dEb2+fl5xakj2Zpbp+nzUXzsded7dV2gWzJbPORRGAF66XTuM6H5oKirgHNEJAeIMtJYPz3DyDXnCjfl4/wjzlR9aViKCJjpwOI4eR8SRJNvGcAgvtX9jg2JzZgVpTmv39g26lHKhodA3W43OYWJ5WnIe9tEGi+3GTRed3FSu1FLckzO+eeY0t/NKCODUyQFIYTf6BzXe6nX+Zz6KGd7MFAoxxD5iFl2mk+5yLneQSNV2I8Got7rY6R65xyVTqxfDhew7eon2TVXV293Ph6PxylSq8i167PcGN+F7mzYMl3XGZYKWB0r8KdjK8i8Dg5cuavT9WHKY8T1GU0SLvLa6Qwx/caNmsi4UhwU1K4QyLCqu3uNKNhHo1Hy2qivxHTyVIqx6bXkBOFaMvWBDJ6rq6u02QwnNyMHuq7JQmZQ+9hW/eZCILfmj+XUGfkiCQWfkFQg7FsaXHWeuIdE7Kutra14+vRp7OzsxHw+j4ODg+j3+/HixYs0DsocEFhpNpsxHA7Tgvl+vx/9fj+ePn1aiaqqvyKqm4C4R15EZR9x7flyTyIBGeejK1l9d16jwJEgVlk6c9CjkZor9OCTZzjvGGFwg1bt9Ofo6dYz9IbzPoIaL0fv1DySAB4Ohwmo9Xq9aLfb0Wq1YjQapVRlOsk4dhqDra2tdJZbu93Otp+KgkD5odCquUiQF5GPuOV+r2ufwGyv14uzs7PY2NhIUSwHUPSg6z0R1SgB+YQKX2MtJexgwdc+aWwl1zwqqjZJF+jd4gPVL7fxmfqFTlDyu+Ya5SpBC/tW+kXv1e8CEXwv55svlVF/SK9vbW1V1obneIPPUea4A8rngAMtL/M+aTabpe/kCZFHMCg3I272pTs5KPtPT09TdPGjjz6KTqeTDFw6L1kHGkSsk95No1jv97RBbYRDQ1f6i7uGE+9pnopvFCFqNK73kBCWUbbSYrFIc1p7FXDjTPE99Vmj0ahsyiZ+0DtUdw+8qA8uLy9jOBymDJCdnZ00fznvKXcdWAuPbm1t3XAK8DhHRnvVDv6ve1Q+swWJr2gYPAT6xS9+EfP5PPr9fnK88K9jOuEfyjRiCGF1bXAUUV3zqnaLD4gpcxiURqccypqrdJpwnNTH+shBPZlMKvOX9zFqLWNVS4zEU6qnMLzaSl5lUIxZAOofZaKqnVdXV8kJpPe02+30e8Q1fiOeUcq0+FpjojIc2+l/Lo/SOPBdbrsRe8n2evny5Q2nmXRQzigmr9Pm4ry+je5s2Hp0xytA4K2OFHhQhd26zxktZGT3zrh3hApTAyXDVhv7aNK4J0cC2o9a8UGsq6NPOA6oFEPENVMRGOX6VoJPE1B1ZSRPg8t3atJ6qhIFunvVV3lh6gToKq8Mr0loSBhTORHsU8CxvDqh9RCobhI2m9cHaT958iTtBqndsF1o8kiRy8u3Z/yNRqM08esAnRt0bsi548GFlJdR1y4KKj5PIe/z1MGNHFu5OvC5OplC3ljV/yL3btf1Va7MnHNGSmw2m91YU5Mrl2URqCpiyygvlfNDAu4/hHIyIyfn6saS99bJntyu8z6eHMccIBWfEbD6vHFlTZ6nAefvlszlWkHdJ5ntPJhz2HqdKLdZT5HXy/tXOsCjJHwfnSi58dI97Af/eN2oN32O1umNVW3IlXWfxPaRB/Sbyzn+va3ciKgYS1z/HJE/05F8rf9VHvmeuElEbCEMwmUzNHbdqG00qhkpfga3HEbL5TJtsEOnvvAOsRGjxGqD5j7Ph5euZHCBBhHbpHZyr5OISOBaETLd5/rAZTRlN++h4aJ+4pzns051hsND430ZbjKKeKKI4+KIa+ek9GlEXm/S0e38mov8sk/9GfaV7qERS14g1mY0VnOP2F5tcFuIDkTH/XrOjWJvb47v2EZ3RCljwuW5+lxE2a05RHvp8vLyhrM0J7/qbIPcWElWqL0y5HkUkvrLbbucbFJ/+rVV9E4RW3r/ciBTHc7Uu83NzUrjXfCTMd3jrbI0MM68SgGVcaAOFGOORqO01tYFBdeU+CRzxsoZB7omYSuvByeK2qHUHAcqotzElUNA7dJE1PlU6ht5OnMpMczZV52pMEQSPOyLOsCvZ31ya1LLc+mpBdxYQv3DcRX/yFiXslLZD0Gwu9Lhd/XzF198EePxOLa2tuLly5dxcnKSDq4fj8cxmUySh1lOl8PDw3j16lX84R/+4Y2zvm6rS52RpHtkdJJuA7Msl+UoKpWLSCyXy7SpTKfTiW63m5YCULiKuF5K4EfvUlk0LFh3Ki/VkfzE9rhAdsDuApn3nJ2dxcnJSYqok881nymnVIZkljIstIkJ13ixPq4YyPN39VD+VJST3w6Wc8/wL5/V3xwoF+moAEVWXGb7uxhtJChxuUwg7KBfclvA3eur59R+HvFBB4bWxQr40aDNOX2p6OmldhCd6/McKFZf8Qg594JTnztQ8rnvGRwuq1xH52Rl7v9V4P1dPPU/JrkR5jqSfUK9mFseIsphD8kEz5BjwMD7jpiFvxGP8N3en+LFwWAQ8/k8xuNxkt/c3NKfUebK5uZm5dgykerP43aUPRARKQMg4jqiOp/PYzqdJpm+vb0d3W439vb2Ynd3N/GyooTaWE58LbDu6xC5fljzkWNIJ4UbxOo3yRZmQOg+LUMZjUYVrOyGra/n5X3uCON8egikbKNOp5M2VFT2I8eAMoRZWq7v3eh0eSceyM0b/nVcQFklY1S8uFwuK5maes90Ok3RWn1UjurvSzto92jOqkzpAeEc2Rw0sL0tMvrIl+44UBBFukbLFon3NG/Fa7pf9sJkMonF4m2E2x3uuXlAmSZaW1u7kcUhmcWlFMxW1fMesLwNGxBn3oXeybB1YUpBp07hJOSEFvNQaVOQO6h2jzYFNJlC62YliGlcyaCgF4VARPV0Lw8HkB5S3tNsNtMkb7Vaqe3cPEvXPGLrfcRoL/tBqTobGxupbTIeNOGurq5SZEwOBa6/iYiKgeuGJRVhzjsjxnJBpL6hBysnoNhGgTnd49c4PiwnF4G5T6pzzEREEh6PHj2K0WgU4/G40g6un1hbW0tprq9evYrRaBTtdju63e5Ko5PE8aES1TNeV441+3+5XFbqRtJcVMqle90FRGazWQJGaq/WVDlY0F/3auq7t5F/+XvOwHVw7n1Bo4R9QeEtAS2AJYCkvvKzrwXYOM/UZ1tbW7G3txd7e3uV5QQ5A8IN2jpn2H0Q+488vMrh44rLr+fe4de1A/XOzk4sFm+zcliO835Op3CTGbYhoppCTf1EBS8Sn3JDQhENVsltpkLn5KK3m4aj87A7lRwwu6GldyrzxyPEPpb6kH/9XeobP+LH20OZlDNw6wCKX/dxvm/ysfN1dvyNz/Ael1nuuJN8UbYITxcggJccE8+5jCWYns/n6V2KgNLII57Td24C6bqj1+tFq9WKvb29ZNhq7uksSmYiMdVWfKSgh9qoYASN6Yi3y7y2trbi6OgoydBut5vksXalZfAgx3s621YOJ85NzwQhEdfSeKbs931FRLkME1+OxT7hd96/as78lCT50Gq1Ynd3N7X/6OiockIE26i+kpyirSD+5b40NGyJ/XP6QrxKZwBxreQ0Mw7EX+J34XamuXMusD4cA3cmqRzhBeojGX2U3zlnNsvj3PQov+Y8jV6OD48SvLq6SmfxKgCnTUZzdXD9oDao7e4kazablQwK4rRcgI+4wXGP2s+/OWx7G93ZsM0pJweYzmRqEO+nt1jX1Qg1mB8yh3t71MlSAkqZ0fpapYFS+NOz4HXPKd8cU0Vcn7EoD4jqz4HU31WAQvfQMGw0rrea51qXiKhEPlWmjOeI6yMJaIwzLZh9TXLm4rU6HvB+WuWpp0JhnemFpoAgAOSkf2iU67ONjY3Y3t6OTqeTlLf6gNEktW86ncbJyUk6JqDb7aZ76oCjGwh1k5/CgfPVoy4aDy9HH2UHSIhpLkqQj0aj5K2WMvF353iLYJ4evbq/Tqyv8x29xzml4X3E+tJBtlhU16Lwd5cT4nG9W5kr8nILVPJdnKv6607Ah8T/dTKiTqY4j+o33uf3k5Te2O120zok6hN+dwDKPoy4aUR4FI6OTAIa3S++Fxifz+epTfSOc72hHB458CaSDJTzKOdBr+tb73vOGdXfndD83T8cLx8n9Y2vKc6BIV3P4YTbQHru9/ueA+xX6l7JsBw4rMMUdL7kxk5GpaIeNGwdbFOnugyRnJrNZpUshEajkfhQcswd1LkNdFTnTqcTnU6nctyT0g2Hw2EcHh7G6elpWsLBCBajTUpVVGBiMBhU6hDxdkNGydHZbBbtdjsODg6i3W7H9vZ2cvYrO0L1Vh+oPySbI66dUD6ebCPbrPvY70wpVT9rXClH9LzjWo4n5RLf/a6Rqh+b1I+tViu2t7ej2Xy7X4gyQ1zWRFxHaiOiYtgK34oX6ShwfnSHgddJ97CvxVsaF6YYy1ZQnSmXacNwzF2u5mwcGvDsC8dAemaVk56/s0/FL26Q6v0yeD2TU7qIG4m6vab3u12W6+tc+6lD3IkrGemBC5frP6lhy0aSKTmYFxcXybDqdDqp0Qzns9GrlLHIPTXL5XWaoibCZDJJKSwE3a4QIq69RzorluBhFZNpYjQajZRuub29nYQ6DU9XYFwUr4iPr52JqApb/aY0A0WImIq8trYW0+k01tfXY3d3N0X6eJSIyvC+43i4F1l9ywmjvnOw5EwecX3+JCPLmlStVitFwjjm6g8qiDqeeGhE3lGfdbvdODg4iIuLi/jmm2/i7OwsGUZKzVksFmljnFevXsWrV69ia2sr9vf379xeGkVSOhQ4OedERHUTMXr8CdLpcKAylhF7enqazmrW98FgUEk50jpV8QrrTAPAPe2qa10/0ODwtrmQlhJQn+cMMH/neDxO7Ww0GtFutyuywucLQYscAJrvGhPJJG7Ow7pTeHPdC+XCfZIDj5zCqzPEXZ7m+i9nDKgvFB3Shh6SF1SWl5eXaS5IgbuR5im5HDu16erqqnLkgx9RwJ2vI+KGjONmUjqX1D3Zqm+OvzUvdKyYnKf6S6Ndctz7UP9LBvMIFvI606Q5jvpN/aRolzaE1GZGdBbr+br5lQNFOR5ynlEd7pu4AzCXSOVkrPjNx5hGivCE9IGuidckt54+fRpra2txcHBQ4VnJe1+OQlxBB1xEdf7JAFQQgDu28ghERfu1JEBzUTwxGAxiNpvFixcvYjwex+HhYVqOlHPq03DVdxkaAu10FJydnSVePz09jWazmaK2u7u76Wi94XCYNvtTm2XwttvtuLq6SrJ5uVzecB4xS0H1VL+pHRxLPTsYDGI8HsdgMEjj5o4dZsjxHWwzjTKfjw+B/yOi0h8HBwexs7OTsM7h4WEcHx+n81JF7iiMuE59l0EsjOqRxJyRS6eS5CiNZ+labQAl+S2e1l+lEOsZ50VGil2uCSOL3DHBjZ3URmH/iOoSAeoeyg53urKeEdfyQ2Wvra2l8hQYI691Op3Ub7IRJJ9oo+TwUMS1DSRnLrEJ5w/nivrdszSpM+gc1Ptzc+GuRm3EOxi27uXVS1k5CeT19fXK7r9OVIIkMjEFtTdKdZEQ5vbcviudM0TOY8D3O+U6U6DJ08ZotERUDcHbDBU973Xh5GZKJ6NtTJH0HY1zgMKZ1+uR89LUjZUbugJJBHgCQ54qLebmGh737pHHHgLVjSP7TOm5/X4/jo+P04TmuaciCvjpdJp2B3RFVjepHVS5VzhnLOh/ClApV10Xb+l5bnh1enp6w7Dt9/uVQ8D1DkZ13YnDuZ0Taqz7XYRaztPo13LPONCWcmO6EgHkqvd7f0vpnp6eJmWjaIdAVs4jnwPKD4ncMPF2c8z4va7/KJdYjp4RmJUxpXtWedP9XTmlyXKkuKW85UyUftF6PoEwKnYBf+kGyTdGARzg0aCkrtJz8/k8GZWSoXoH5f4qGXCb8eURijp5wbIJXnI8QeL41Mmg2+gh8X6ur2kY1enYHH/nZDQBovQI9UKdfnaHgMtWOVWpeyWbuS8G9x4RttJO/o1GI20MJZk+mUxS6vGbN29iOp1WnJt0ANCgFeBVfwkrUU6IL2XY0qEjx+NoNIputxvr6+tps8bRaJTavbOzk4xbLeUi6JZxQ5nh/UnKGTgylqgvyCt12I73EVPn9GDOWXgfRL4Sttvb24tHjx7Fs2fPYjqdpvWbpJxsZ7vc6a3vup/YvQ6bcm5oPDgulOc0hv09OUcd68dxcd2j+vN4P/3O72ozA29uL63SlRE3l2zlorjKsOPGVdJVy2V1KVjuPewHl+V0pPm8cPuAdh3bcFd6V+P2zoate7rpcaBwElNvbm5Gp9O5AWpdkFFReuRQHcFG0YiT0FcaixhZHelpAXy/p3nlBJbep+d0TZtiETSoDfSQyLPBdjnjcRITEKlOeoZCWFFcGtbaWltpoN1uN+XVqwwJ9hzgqyNOdr+fbVFkWEcibGxspHQhefjFN7PZLO0crGeoHGjY5SbNfVIOVOi66jyZTOLXv/51/NVf/VV8/fXXaSfBnZ2ddCyMAITGfLFYxOnpaWxvb6e11XSS5JSCzw3yax3Yz5HqrTkor5/GS6liw+EwJpNJvHnzJmazWVoPdXl5mb4LBIk33WMnksDV8zJc3IBkhND7noZJrk/0W53Hu86o0IHiyirQXKNBVQc0OF+Wy+ujAF68eBGNRiP29/fj4OAgnj17Fh9++GH0er3odrtZwEw55uld90HiCRH7ltepwHiv8yrvl1JmBFLPyWG4s7MTvV4vOp1O0jM5Q1rP+xjpfx7VIv6U3NGSFo0/00FlXCyXy/jggw9S9EoOu8ePHyeDRFEwZSssl8tklGpc6RzVHFFblJap/RHk/dcGZN1u90aqM40IpgrndJnew9RN9U1O5+b0nOZjHVjJRaVdJlEmUIZSb1Mn3idR33IMxUc04CKqOw2rbXRi+aZkvLa1tZXWnJ6enibDTfqUhpBHsthXAtc6EkSOZKXTS++Ox+PE+2qbNjocjUaJr9vtdiyXyzg8PEyb6x0dHSVeVV3EI4pgbmxs3DgRYDgcpvGl/BCOYxTXDUR3LkVEmr+j0Sj29vai1+vFJ598Ejs7OylyprqoH3L7Suidns2XC9Qsl8u0FpqblFKHOb5lGbrPMZ3Pxducqj81aSzW19fj0aNHERHxp3/6pzEcDuPo6Kiik3OkfmDfaN5wU9iIm0cS5vCMxlUZJFraxb13OD4MvKmvVS9GLyWj5FTKOeBVR/XH1tZWbG9vJ0ekyhevCStLNoqXuQbX7RIGzxzbuVMy4jp1eW1tLebzedqnR45XrrXNyWmV7SnQGjPVicEo1Z1ZTnX1ovzKRaXp8PAgy13ozobtKu8EJ60E5mKxSBPz888/TwzsOd1kUlcOMnCcocUU2pWNuwaTEdl5ZEb3EOkvPXd1ijciKlFpXaPBqDYKEHE3NHpOKPjUlwR5uf5nmhIBhq4vFou0mZUmaw5Q+sRxgOITiCCDk033M2KvNil1zs9E1PhIefnZXsvlsrI21cfhPsj5wL12w+EwxuNx/PrXv47vv/8+/tf/+l/x8uXLGAwG8bOf/SxtfiOvuMpTOshisYjJZBLj8biy0Qe9kHqfU87o9cgQwQ/HTXOWBqjGsdFoxHQ6TRHZ4XAY0+k0hsNh5ZxogX5FnbmOQx538T0jPaobhaU2W6JS9zav8gb7/W7gEHjk+Eoe/6OjowTsNM8o+DkuKoeOPn2nt1QARuUfHR3F9vZ2fPDBB9Hr9WJnZ6eSxsxyHxLVjYso10+3lcdnned1T7vdjl6vF7u7uzEYDCpAwN/v+oTAgHWUHKPhJoOR4ECZJlxH5+BK80tlaq29eME9+BGRDFCt5Rbo0a7ydGqobhGRsj+4eZHzqNrnho/3dw4o5aK9NM5y+oM6NRdZ8e+OJRwT1PHIfZHrafY/+ZbObXeuuNyg7qXRy74ejUaxsbGRIpHSjRFVoKg0dcoOJ8pDyX7Jccl9ORxPT09jNBrF8+fPk1P94OAger1eGmPiG847l7viay4zEg7gfic0YCIibQ7FzdgiItWT7xffajMrruet0xnutHc+dfnO3zRPZdRynpBX+E7iLPYRjdncHGYfPQTyOdrpdOKLL76I58+fx3Q6je+++66Cj3PYk/0kPDidTqPdbmcNR+pWN3SJ36V3uWs2I6PiOzpgvXxmTbDN4m3WnY5CGY1yQEpeU17o3Y4pc/KAfUfZ42PAuRdxnVnTaDSSQTubzSon1Yjf6vAF+4Yf2gb+0ThSprg+p6xk3+Rwrjs6cwGKHL3T5lHemS7IyVTz+TwJGIIHRmBYtv6n0ON7mZ4qppWHkeeGqQzenwNXLjwiqrsmU6CxDIFTGWO6JqChevAeRq09RdrBQq6++u4Tj9+5nljb7ne73SyYqRtbTi43BHgvQQuVvBSd2uTKyA0AbqbCtbUR1+nmnEgPjTjZT09P482bN/GXf/mX8etf/zr++3//7wmsbm9vx/7+fvLC05PFyDQ9v4rAeMZAxM20DAoKCsCc0eWCQXNW0VbNXz0nY/bk5CRFbLkjrOafBBkNW2UMcLkAwRfbzzlBh43zYY6PXWnyHne81RlO+i7Dtt/vJ4VIT6vXgQ49zW1uykLPc0TEbDaL4XAYa2trMZlMkuHz6NGjynyRkr6LYfhTkcv9VQbpXcdrFbk8UtSy1+slPqIiJ4nf3ehwg0zPihfpYNG4yaCUYat55Loi541WhEvZGXSAClhwfZTq7EBMHzl7qQscXPiYOSCr04Xsa+psztVVhi2fzdWF78q92+uc44X7JO8L71fVk7yRmycqy/uNxPdMp9N0RMfW1lYFG1Fuag4wC6iOCCqJn5h+PBwOo9/vx4sXL1J2lfby4B4MMiLZJ6qfZK8cunQMaT0lN+HTb8w62N3dja2trcreIXKKTyaTmEwmac4Ijwp7+tIs1Yvfabz4mOl3l/0ybHmsic8TGluaTxxb5yk9mzO03VF0X6R5SLkT8TbD4NmzZ/HRRx9Fv9+P169fVzC46zKXvTREmQ3J9vPd/n6VzQASN4qSHncMTvylZ1fpXfKBRxHF71o24o5MZTConYwM63m1S7jPHSNuEPrzdHSq/5SZwLXFaqMi3N7mujmguskOooHuWFL9Wdd/JMcLLhPfFQvd2bBV48kUBKYybCKuj+BRvj2ZyNdXUmHz2BwxrXtEVRftvqcNXtjxnAwR1TVHZGyVxain6kKQJiNDaQYa1H6/nzwg8/k8laH1KjIAxMz6LBbXqTpMi1PbCcjIGAQNBNRUphFvU2HX19djb28vTS4+70xL0OAKkfd6Oqnu1zPq152dnbRjIr3Dqi+9q55GRKUo4/ghpKFRwEipPn/+PF69ehV/8zd/Ey9evIjj4+P47rvvYjweV1Icv/vuuzg7O0vb45O3VJYyEEajUQwGg8R3AhA5T1XuGhUk5yNBM72kOhZLaWXymuoZGbL9fj9Fb2Xw6V4Zg1JO4uvd3d0037UWV3Vot9s3dgp2ecDUv5xAo0ygceIgwMFmRNVDq7GYzWZxdHQUL1++jKOjo5S6xCi3v1/kssff789dXl6mzTZevXoV29vbcXBwEF988UXs7+/HZ599lqLXqwDqT0kE4b+rwerOASpU/6u+lCdcco0ZLkzhc2PPswQ4R/QOrWPlWjx958Hy4hvJKjlsGo1GTCaTiLg+U1nAQe/1bAmOq8qnA5TzQ04PHRe1s7NTSSmjIVCXwkhd6vzPZQ91Y8W+4/jpu69VdMpFGuoMVgdvD2kORFz3C9Nb9TsdWpRh+p18F1E1bjQOwiURkZaCvH79OhqNtzsSCyux7xi5jLh2CkdcpzlK9lAXbGxsJH4WvysbTktLxIOaJx999FHavEn1UZsUHWIWgvCQojnL5TJlRQgTiC9kxMow1TzQLrwRkcoZDoc3sgDVp4rectyEz7iB4+XlZWqfdBGdA3Tc69rFxUVanqN+Io+of3MOVfWTAhKUfxFR0c/EhQ/FsI2IJAMl8xRZ/6M/+qN49OhRnJ+fx+HhYbx8+bJi2Iv/IqoGk5b/DAaDxGPUuZpHOUcEnSHiW2W+8TcGVFxO0VimbaB383eSO2S4/45ktoJ7zNLkhrMMPBBj5yK2fp2GZUTcwPq0aYTBZMxKZ+g+GvmuQ5kBq7LPz89v4BzKEO5Irf5hNovzlBuykl/U17/3iK1e5i92JUXywWLlaEyqPDJJzuuZY1AJ6ZznmgKe13IglBFQbyeNeA6M6iHvkBjN0w1cQLIfcgCB3/2aG6HObBK6jBI7w7gx67+x3Lr3eH/yfYw21r2b7aeXLeJa0Us4UCDcF8lInU6n0e/3U4rWmzdv4uuvv47Dw8Po9/vR7/eTB1fewvF4HO12O20eRIOd0WpGsJ1nvf3er3V8JKHFeci5xcirIsZKNZZHmmuwBHrUFwIwcmAJzMlhI5AtoapUdWUYqB5K+2Gqvm/SlgPV3id1BvBt1xaLRVLUah8VT844vct7fDxIKp/pyhsbGzGdTpMRJwPmrgL9xyZvi2eE3Aa+6FxbdX+Op8mvlPl1Y5OT5d4GylQZwcvlMil8l3fUe/SOq3yXlZTjt/EQjVEa60pPV4q0wBINW8nU2/ifbXCwUjcOOZ3g5OPp93s/r6pjXZ3vm8hrNOZzuKeuH3Ll5MbNo4xXV1dpo6ThcBgR12czu+OBmIq/URcQDNPo5keOlI8++ii1VUccPn78OB23IyOUeltOOc1VGo7c6FJ14s7NelZLUhQ84C7GDFb42mdvo3hd3/nhmNTxLIMG7EdFBBnpU587vuJ1GlOr5guxEnnuoZD0NTNYut1uPH78OD7++OPk4BCGcOcUeZMRVsfnusftgRx5lJZ9nBt3ls/31OEu6gR31LlslU3gKdJ04tCR77zpuu02/eXGL99BO0Vzks8TX3jdvL/cTqqbG2wr+45tqNOPdfryrnrgnQxbesQjolJpNlCeC93L9C0qbv2mThIjEBAr9YpAWYxAcOwDQcUtME/jlSk8qTOwJpVAR8JTXnwXqOoL9gO9E1ocznfwXhr9pBzD+XefhOpHGRG+QYXGrg5k6Br7VfeoLozea7Lo/NLF4vrMT0+jdcXH9ZlKZdU4S7kpQsE+vA96/fp1HB4ext/93d/F//t//y9evXqVvMXL5TL1t3h6MBik9d/Hx8fRbL49701AQH0pg5Kp9fTY0RiNqHrvOHaupHWNhgCFXMS1QaXsisFgkM4glMeT6ckydo+Pj1N6sq8ZFmDRukHNG3nstenP+vp6bG9vx+7ubjoLUecxrq2tpbQzjb/4SQCfjhEHDIxWUwGp/5znF4u36+EPDw/Tx9c0uRBXWaScElpFBDja+fT4+Dg2Njbi22+/jSdPnsTnn38eT548Scen3ScRgKt97ujTfaK6/sqBnNxzkhdyPJycnMSLFy9iNBqldW26Pycf/d0En76EhnKKqeC8R+TH50jusi3SVyTyEYFTTsGznppHBPvSR0y3lN7T+5nRw/ZLLviY1ckUySIvy8dVdWA/58aD99cBllXg6j6JY6WNnByQRlwbvT6m6n+NG43jXLRG5b958yZlAn344YfR6XSSLqFhJz50nSHdJBDtGIh6fmNjI+10+9lnn6VMCcl7bRJJQ3NraysiIm141mq1YjwepzbpqD9lLjF9lzsku45TdpBwpfqs0+nE3t5e7O7uptRPRf6kv+RwpeOUpxPIWaT208iQPlI6qetQ6WzhUGIrj7pq/kRU92PhfSKOn8awzml1XyQHytnZWdphV/Nhc3Mz/uW//Jfx+vXraLfb8c0338Tr168rGVBuGAof6NzjiJtRVOl1jUtOZgpPatyJ9/nX5yXxsN7PeekOiYjro4pEa2trCXsPBoOKM0d18/OpFVRQqr/rB5XLay7LWX8aquJXZZXoPVxvyx32+Q45LBiVpX1BA5/PiSeE6bkZHXUC8VsOIxBXuO1yF/rBm0eR6jwX+vg6IgoArl9To5mOk/N8iTmoQD21mZ3A1GNn3pzHjwqBA680FglKrcNi6ooAA9eTqJ458KD/F4vrY2848Rzs0YOY8+pIeclgosc/BwIloHJgX4zKiJmDGfYnPaW8zw00fSQEZBR7uRGRwJyf+/lT05//+Z/HaDSKly9fph2AmWYrw0Rn+sljuFwu006Nx8fHCTRwUy33cHkKTER+rXEdGCRvqByVwd/FZ1JMu7u70Wg0Kqn0mqOKOJ+fn8dgMLgBmlQ+eZcbkujDeSijmtFr8hmj/gTvPjecZ/Qb5ZL3D0GKxufo6Cidgfi70m0gJPe75mJExOHhYYogP336NLrd7u9cp9+V3KMaUfVgi3LyzXmX5bhhRIAdcb305Pvvv4/nz5/Ht99+G6PRqJKuyfcQyDMlkMYm+SwXxXLAwnY6n+leAmGuE4/IH/1GXna9xHrQqcojhTwrhoawG1M5fUi5T/BAxzN1DAElARbfkdMjLpOo/+vGXvV0Q/khEAGa/s+13XlF1/x3Rk98/PV7o9FI8lP9LgDqWS3ETTSY2O/6q/KZZSadoB2Ynz17ltKO1VYt/5JjWzjIHYqcX9xkKqK6pwnryDkRcW1giOeECbQ7uDaXcnAujCEgTozI+cwgCN/j69zVDi2bkgHFcaHBRPngETTHdhwX8onPl/smYlAZbWr/cnkdCBKvfPnll9FsNqPb7cbr16+TruXY6lmeO5s7GjEi30eMiHK5nztvOBddBrNsjrdjG7ctZD/oI17SRpzcCJApulqDyoxTb6PLzRye43265ktv1BauY1adKDd4P+cJy2b7czJN71CgKne/6yuR2uXYrk6PraJ32jwqVzCVNZmF/68ybLmWgYv/cx2r7zRsqSypCFm/unLoDZPwpNLS5CXTSkhqEMQY9I5IgMvboYmXC/fzey7CzLU7BFjO1Bx8eoGUy0/vn+4TuaB3QU6BrXHLjT/HIAdw1C4aPgLvmmi8X7xQB4p/Svof/+N/pDRcRRMllNUOrZH1owoksE9PT6PT6aSjmOjAId8I6NA4U39E1EfBOA4EWq5AXeBLiciwlfLhRlDdbjdFcLkphz45xxEBtAAQ601FxDlJQ0H9RD4jcFBZ3ifsO/ZPro7y7Ot8XgJNJ+/v3D111+vIy7y8vIx+vx/j8TjtTPoQDNs6kOEAPncf5Quf9Xty/y+Xb51HL1++jO+//z6+//77G/KMRKVIPhRfSN5HVJfLOMjx7yrPdQSzgeRIVCRVfJZLsWMZ0oueKSAdKcPWvew5mZCLrLNtrlv5LOeX7lGKvOsZ10V1oEOgk895G3lvDtDlnvupyd/v/Za732VW7p46OSVipoA7FKTbI26uxWs0GrWpgHyXO6QbjbcbO/V6vbT2X98l92XQcTmKeMXbIczmm8kQN63qUwJ1OXl8IzmPjqseiiyT/xzvEDdyTuf4jsBdzmxhwpw84lzk/HOnbB3p3dT/D4HkYNCxjepDyScdYffRRx/Fcvl2PTX1GnWC+uLi4u2RleITGjpO1CPNZjM5ZTygtMop5npLf3XdDVvHVvqNWZ16TviPzhHNA6ZKu2FLHqZs8Lkr/CTy+9g21Vm8qww6Br3cKVRn2HK+en3UdhnPq5zFrKfrWc6NH4r972zYKkWADWbHOgOIFotFAvqMZEoQKLWYnUcDV42jcFMKq6eBUEhFVM8P46AILNDbQoNLBiVTIeUpZz04UAzPq03aETM3KVjnnEEphuAuwxTeHl2OuN4YQb/peACdIevpLO5BJyPrXhrWfj8j1VxXS0NNbaPRrgl2eHiYzsCT4CaPSTDQCLwvWi7fpi3t7e0lI03HwfT7/RgMBsmw9XUUZ2dnMRqN4rvvvktjqA0FOp1OMob7/X7s7OxUHCJ1Dp6Im+A/x2t8lt+5pkNAYXt7O549exYff/xxfPjhh3F6ehrj8TilDY9GoxiPxxERMRgMotPpVICNxt1BteaC+Em8LH7RukGm1SmNRztw0jnG9rjgc28g+8qVgYTw69ev4+joKKVW35XqgMbvA4CorrPZLL777rtaI+6nJK4Fds91RH4zMxIBfg5gR1QVu+45Pj6Ow8PD+Ku/+qu04dbBwUFlAxjKQqb6SSdIp9DYdB2m90dcRxJksEofqZ4E2qqr+DkHFpTdk8uOERCnHqRTj3pHf5nB4lEw1dkBHefjbUZazhDlXPP02ZyB5mXn6uMyjST5t8rR9FMSwaP0o4ArwXVufLneTvzClFPXu4y46D7JxFarlda1ireJJZihJV5gH0pOS39Np9NUPufU7u5uOmGBUeKI6hm82uBOYL3VaiW9IL6nwSIsKcNWUWf1AdtPXaA0V+IOGa58ttlsJty2vv72/N+Tk5NKBpXkgTKv1Ea+R3iE6ZQC7a9evUrRRRoiIo0ZZQZlguZpbp07+5pG9l2jVT8m0aGo9iyXy5R+q/NbdYLC6elpcop89tlnMRgM4u/+7u/ixYsXcXh4WLEFZrNZnJ6exmQySXtMiLSGm0scuVmeMJY28hLP+47bkm0+l+lcdIeHYyeNl3hHuqLReHs8ImU2sw38FBDKTepO6j4PbNCBKh6NiIpto3ax3gp2yQkkA5d2keStjHI3Sl1vE+NKrkim+MZSOWJ9PXim/zXeOftlFd3ZWqBh4grKG+8eYwkvegX94wqB5ThD0fjL1cc9ZCQxCAXZKsNWBq2MKw/dq40eXWOdCQTJMPqf0V+Vx/rqGiedK0ICeaUF+XFDOVDhYMf70Y3unNLOeW407jmjXUJIhhLBAeumPqOiu2/SBFYardaFaM1ELrVEQk27KHa73djf34+I62yGZrOZHDYaK/JkzpjLeRnrhDANEQrtiGtlxbkgw2FrayvW1tbSGs9GoxE7OztJyeccGrn5zagTo1zyGvJdvMa1tauidCTvG78mkoNlPB6nCMR9e8b93YvFIm249ZDI+UuU88qu6k8Hhf58RMR4PI7BYBAnJyfJCeRlsy5ehvjdDT43JL0MRnadn2iA8BoNEvJSDqCu0qFu2Op/3pczDFm2l+9z0sE4y2WZ7Oc6p0Su/71+ufqyr/h/rvyHQF6Xun687be7kst/gT3JXK6Xjbi5v0Aui42ZNNQ1dAg1Gm/XS0omqzy2y+eAjF2Cep8H1Ov8OH8Ri+k66xBxHQRhVIwGMZeLKWWW/SVdJTmg+cUUf71Dz1Dfc02kj5nzeU4niVhvxzoePX4o5FhZeEjGktY6T6fT2NnZSUdPbm5uxmAwSDjn9PQ0BW+EDZUqK8O2TkazLhwnx48cA8e5OX3g8jknNyWPhWm414HrBdXR9YljtlV6gXjQnZviXdVNfcFnxb9uN9GwVX/QVnF5T150XKoU7Jy9keMfb1+Ov9hvdKbeRu9s2OYqwcqIsTVITDek50uD5OtQNXD66L3sKN+FzpmOHafyXLhrS3Ffn5EDFRKQ8mgSaNCzkhtseUD03Q8W14ZJaqOigRJuNIrpXFBdVScxtJ6JeHvsT7PZTLusqi0aQ1cuFNScmC4g+LxI3/XcYrFI0WN6IKfTabx58ya++eabeP78eYzH4xtGByfc+fn5g4jYRkQSvPJIyUM4Go3SsTjcREKkcdcmUufn57G1tZUilToaSSnN8nbRo0bjxo0vB9PuRCH/UJBTADcajfSORqMRjx49ir29vTg9Pa2U02g04smTJ8kj7m33NCDVT2mUXFesNriTSUauol/urVs11/k7KafUFG1/9epVUrYs5yFQDtDdF1HZiHzu6j7en3u+zuB1GXN1dRVv3ryJFy9epDVaNGxzUT2Woesa29zGIypD7yMojoiK/NazjFgRjEreq2yPwKl+XmcaGNQ9/OvGAdvAyBxBDfvaQV6uv1g/9o9HjOtAnyj3LsqEiGqE31Nh1TYaXw+BckBP/zPa6eOre1nGKqBGPuSGmY1GI+kORSPVb4rg+CY0+ktdIlktUMxIouRvt9utRH9zRupyubwRtCDolwEo3Sb9Jl1KsB9RXfPXarVSJI3ZX1dXVxU8oCiZ2sHf1BbpV64J1rnA2pxS80zzXf0uh/P5+Xk69UCZS5pXmoN1zlfOGeIq8oVneVAePBTiPGeEOyLiu+++S/u6KDJ/cnKSIv8a03a7HU+fPo03b97EX/zFXyTjVk6Kk5OTWFtbi/39/TSXlOHGjCpiTY1TxE2jUR/PzvFruo84gHIv4noNa7PZjF6vl1LiyXu5wJc7LOhwotx2RwqXfFH3qE6azwxw6RQLylDVwTeP0yci0nITn9ONRnXfCNqC6hMtxdOxkNwUmH1H+e9yxOcN5aScB3cNcN3ZWmCqSE5psYJkNBkC3BzIFTQbyQFS51IprwJH7ilxAEMGUXqx1jvK4+KdSi+JexHUJ6w/iQzF9SUyjultZH/Qm0JhLEbjX01O9RmFZi5KTi8MmZhM5+NDBuc4Oz/IY+NR2GazmdLRj46O4vj4OF6/fp0ESG4tBb1LnHz3RXQ6KB1JiprR2joApr6SQtQ5rjwGSO3nJktyWkhouyHBcdTv5A0HrawP+YAebPIT01PURnlfHaSqDIJrzRNGGcQrqpMvC/BUUpWTM1br+sF5nLwqUDUYDFK69bukIN8HPQRjm1HzOqPUDa6Im7skEwg6UWZrd8XXr1/H69evK8cwSWZJjtJ547Ka5bpTh7+5wUYgkXP8sY2cC14GdYXml89ZleUGZE75U//6nHadSqdXTk74+Hlaq+rCut3GizlQ6WPg/VT3vDtU75M45uyjiMiOB/8nMNX9mgcaV/5OA4m8qffwXFlhBPIi9bbKEO/5x1PZI946/sk/cs4Sn+kZAvPLy8uUDqrzz2UIKj1ZG8vICKJuUMqpHMBybmqDweXy7ZKgs7OzCo6iA0hOAY2TR56o71R/35xQ19lGBiQ4Lj7GHPfcXKGc8SwM4jj29V0B/Y9NxJLiM611fvLkSZycnKTjArUxqByRclJPJpN0EsJkMok3b97Er371q+QEGY1GsbW1lXjasUZENUobUV0KyPmpeyOubRjOO3d2NxqN5NDUM67zFCSiYculUhw71YX1UD8S2zIowPpQl4noaFLGJ3HiYlHN6svZSOInnkRDe8L1ZA77sw8133USCNvM/veUad7juox95lj2Nnpnw1YVrlOMEdfMT8OWXuxcB0XEDWag8qCw8s5muWQsCgZZ/UwnbrVasb29HZ1OJ+2yp/o7acAJyujpF2DPCSW9TwKYAFvt8nYIYMigYDRQikxEMEkgQ283x8b72FNnVQ8BHWcqRuTcCJdhq/U2mvA6yPy7776LwWAQ/X6/Mpa5vmak8L4NWyltbswlo1YCOddXIl2bTqfp6IJOpxMHBwcVg0HzRu11wcbxy80ljsdtdRFp7LmLsaf+ymN9eXkZnU4nyQM6nyiguaZMnnd67gjafCMqKnsKuFy976LwXRErbWo0GqUNox66YfsQyMG2g7Y6eV6nkHJGJK9r3dabN2/i8PAwptNpRQYyqsVMCdbB/3JOUFZq7uX4ydPHnO9y8pH60Z0ydcaa5gsjN94nBBQ5MHCXOV93n2QPx5Epbjlj2+vvBm2dXqnrO7bT++m+Ddxcf/vY1o1rziHgfUS55wYTda2MO6UKR1T1ggNllS29KpnN6CVxDEFxnWHr7ZCheHFxkQxb7RuhaI42W9Kyj8lkkgxSBRcUid7Y2Eh66Orq7Tm4ipaxT6gfNC8Z6XInL/ucUWDvfzfepReFx1QXHyfyhfOA85D6W3V3WcW+d2Pgvsj7UGMTEfH48eMUsdNxSzJsr66uKqmz29vbsbe3F1dXV9HpdOLrr7+uLA1qtVpxcXGRIoXubKOx68EX542IuPEMx1b8q7HxiD/TYGU3aA2wsj6FcyOu5TgdFd6H4knOQS6F8oAa6ys+UJbBYrFI2RpyGuV0m+YHeVY2SUT1GE/qrjrDlh/ZecrIcLlP7OBRW86JnHH7Q+idjvuh4hVAzCkg9zjTEKOBpXLVOfLW+QDyfglCpQZTUFMwr62tpfV59KhI4FGAMsXYwZvezcgnmZxpzGqf7uMGHx45zQkyGXPcHZdp0Nxpze/Lrfdwg9UBjXvneY+8bBx7n2Bra9fb6WvdrDaD8lQqvWs2m1X6sM5zozbNZrOUInGfJMNWCk7eKSnwVUYtSf19fHwcg8EgRqNRbG9vR7fbraScaezEk87rTMfiuDDNhADGvfN8RnWS4eqpnuJD1V9zsNvtJkFG8MW1xpprkhucpzlFru+6X+knriTciKmLiLh80k6eR0dHyWBihLxQPeUyJ27zTNNIcoDPsVIkRNkP/X4/jo6O4ujoKJ4/fx4nJycVvqLM13vd4+wKWTpI/JxTvnTgUmZHXJ9dSznONFk3fPluZlzo3pwxnzP0fJkMwV2z2UwGjIM+ttkNMJVHZw/Bvr9Pcly6SHM5F31mH7FNOUOVOkjEue18dJ/kvNxoXG8eRdmUc/rUOYL0G8vXd6b+MRqqs2GbzWYcHByk/7kpkviXIFhjoDmm5RfMGJKR0m63E+gmD+QywDTe3ClZ+xboXcrOUiROsl1tFUbjhjjiaUaXCf51TZFAygLdI30kQ4sO84jrpQq5JS+cG69evYrvvvsu/uZv/iadDPDo0aM4ODiI3d3dpKfII5InHGuRR/Y4Z93QeEiUm+tnZ2fRbDbjyZMnMZlMotFoxP/9v/837aPy7bffxnw+j08//TRF7YRD5Pje2dlJxp02PX316lU8evQopSQvl8tKf+pDI1C/EaMTU7hB5rghIhIvkic8XV7ykMs0IqqbHolyzj3VU2WLjzUHXYcS16k8vkPyQWn02oWacqDRaKQlmNxJPOLaceP1lFzzTUE194X/FawajUaV86nZF7QfXY6qXL/Gur+LY+cHLVwUwxAcuOJhZSlM6irnxpOTMyM92xQoZEQZq9qIhhFbRZFcmLEueq/XTe2gQeh1pICKqO4iGVHd5UzkaUESzA7OFP1VOXqX6uMeSjdiVBYBiBuuDlJzilrvZxqSdlvUJKFQIOjLeX69L1n2XSJzPybRMPTPqugoyYG8jFOdGcg+dMBMxafxct7QeNKg8w/HgHzMe1yhOmhmvQRQHKCKRyXYKPzJmyQ6Ozi3Vz3nhgGJ/eXCmLs5uwcxRz7X/79IdZFGN+z0PXdfjievrq4SANaZ1qenp+mj48AcVLshwfJEjBoLpKounrIsHs+BNzfy9K6c/K8zrDl3I/JLMFgW9RDrl5PJdfKnTkflxsRlTk7vnZ+fpxRY9pG30fuQOiX3bl6rq+d9g3zqR5HrTr9+VyKf6X9dk/N0Op3G/v5+DIfDyk7JAqrT6TQbDVE5rlPp8IyobgwjOempmHRmcK4R51FXqh5MZ/cyBMSlSzg/aEDQeM3JAPYf7xVod0eVg+86HSUH/mQyiaOjo5hOp2knaLWj1WpFr9er9JXPXY61rq/iIQ/+PAT9k+s7OVnIi+Tn0WgUEZEyI+kgUYSR46yMquFwmPYfqTNsKFMpz4kXc8ap2wu8X/vu0EZg5DTnlPCxJDlGyY03+VbOJfWt7uE8JXHOK9im55n6SxvIZbvmr56j3tQ76nQd18+7/eL6imXmHEnsC/YfP3ehOxu2bLSDXI9W0bPAs860xbQzWI452HlsdERUIq1KdyWjSvEqEqvvPLLHNyNSfenV0XsptAmOxIRiFPUF68kJVWc8+8Az3SaiKuClMGQ4yluvBfzL5bKSsqf+ZRvYZjcSCMxYFzI+66zruRQEB8I+ziS/RqUkL9R9EiPTSj8WGPfIeI5yio1gr9FopI2ohsNhSo2lEODzLjxUB3rQc4YAgSSNAf9N9zOlWFFjHXMgz5y88JxDEVHZBIsZHOItgSu1gTsn51KwvZ+pDNgXOVL7dKbw8fFxSo+/C2B+CKDivilnrFAvrFqDqfu5W+bp6WlKYZKO0JFLUpJXV1dpaQMNRpXHTAJuXCb9QLAqYsTIU8jIUyqbIJwZOmq/nlGdlQqWS93lnNfvPjfUx+4MJQCnvuEc9/mdAzDkd49+837u9ql5/91330Wv14vPPvss6Tf1f87BRx1DfUD+cTCYu+++jdqIm8cPeZ3UFzlw53I8Z5Txfr3r/Pw8Xr16Faenp/Htt9/GYDCI5XIZv/jFL6LX68XOzk602+1kABMHUXaKVzzNkPNA2Gm5XMZkMklt0ZFrbD/5jWMkOaByO51OMnh0D/uHAY+1tbUUtaI84V/WW7qCOJRtELCnAe96WrhQ6yWVlcFjaJRyGnG9Q/tyuYw3b97E2tpaPHv2LHZ3d+MP//APY3d3N3Z3d9N7cgEMjb9javICZQvx8kMhGkqqrwxW4XxFPk9OTuLFixcxmUzSiRDS/XJc6vlWqxXj8Thms1l888030Wi8XbK1u7tbwfludEVEivhfXl6mvxcXFyk7U5FQD4S5TaPUYmWQShbS5nEM53KYRi+dLOwrRnmXy2X2He5EFd5qNBoJg3HJwd7eXuJfLrESfmu1WsmJpHdxHx+1ldkiLpvIA3JGa201je/bsD4z8nJ2JPvpRzNsKZw1SJpwbgyqc9RIbRzkgNobyonuv3ldxHjcVVggWqBG6zZk0DrAJrmgJdhXpzMVle/LGX9iQJ9QbrzT08TrIgf46juCD67TcMNaRrc8K7nJRkDjCthBBvtLSs49wJwAOQPejV0KFh8XRnbukzTxlVbFtMgfCrqkHDQWTHH2o2cIeDwiT4AoknDVd97jfOoRtNw4UyALOAjAu4daRB7wcsh3dNyQZ0UOnsivvMcdRARfTGWj4VTnJXxXcnD+D5EoB3Lz1cE0QaUcX8PhMK2305nP4nutz2dKsRxKmm8RNyPD9Lo74M61gWDEZRW/E3yQ/13mq60CQjlZRX4lQPf6E7R7un6dYqf85Dixze7kYt1dd/M5ztfLy7c7ls7n89je3o5er1c5a9LnqMsRL5fygHXPyaBcu35qyjlqHfvoekRV7npkSO0UaawlozQ/RqNRfP/99zGZTNLxeDoTVu+U815nztJZx3tUL0V0mMJLPtb8ZtaVb1BFftHzirZeXb1dN8nlJ8JqcirxnQTunBPSjQwQuBHC+cY2iHT8iMbPHf5qD41iBgDa7XYcHBykj+Y459NgMIiLi4vY3NyMJ0+exNnZWfR6vcpmQj6/cnpM7XL9rjGoc9r+lKT+5WambKOWo52fn0e73Y6f//zn8erVqzg5OUm8OxgMIuJtHyi7T3NE2H2xeHuCRr/fjzdv3qToKetBu0H10Idp7vpLma46839do0HrdgHlvv6KfzknxU8shxhNjh7ye50NQN7XfBBu4+ZpsgdUD+E06ZNWq1WJmnPu6j0sX6T7HMfL2Xl0dJSyqljnnM5y/UUMTNmY03suZ1fRnQ1beg70AnWO1gb6ZBU4V3SLgIhr/URMXWQHeadooCUsuU21JobSO5lPTkHjCpwfB/piWglmrtVwTzuVmFIatB04GZTCV5EFF3rqd75D/ap+1ARR/7FcgiO1gV6iiKgoFb6Dk9FJ9edHgi6XzrAKcKku9MiyDxiJvE/S+MtJ866GrfqVPE9vdETcMGypDN2wjahmMeRAl54RT9Po4L3igVxb9BuPhtB843ENOaHsHkmCAU+RoWGbWwuTU/b+TvIT+53OF278RU9nzmB4F2P192XUPmQD2ZUN5yzrLX6TE+Hs7CyOj49jMpnE69ev0yHuSgPXvfI+Nxpvj4Vgdgr3aZA8yxm3Hr1k3Z2naNjmAGbOyBOPCvxEXGdzRFw7ed1J5IqeczOimt1D504OCFA+83qdM5J9kdNzDhhUV/4uvaYIy+7ubjSbzcr51u8CPPh+r2fOMfAuZf9Y5I53jQOdJD5mzqcODskfzWYz6ZjDw8O0G/jJyUnifW3ARKecsFCv10ubLjHdV/fwnTKgpMu5YaH4SFkSMgDOzs7SDsU0FNRGRnWFTYT1hJsU4HA+9B3HiZcYQVLfETPQoOA4eRto2Pq8l9xRpE8GeLPZjEePHsXjx4/j0aNHKVhBvtWxf3SYfvTRR+lIPL3b564MJeLm3Bzgu+6b3LCNuMaoi8UihsNhHB0dxdnZWezu7sY//sf/OHZ2duLly5fxl3/5l8kpo2doB8gw0/FLs9ksTk9PY319PZ4+fVrZbyPiZjaH+FE8I1K/0nATzsjxFueo2zWu5yQbufcD7SM3bMm7qksuO83rQpxIw3a5rGbEaf6Lh3W/7BDNX2Yjse9yhi3rovqLD0ajURweHsZ4PE6Bjpwx67qU11Qf4jbq1jpn4Cp6p4gtlTGVnSq1XFZTF5XCNBwOU4qBmMmVO0EL38W0HzVKf+V56HQ6FQZUfjwHqs7jxY5iqjEZVYBYQlEG+9XVVWVSu4DWxke5zavIAJroTCfmwDPapH5Seo/qyfeqTt1uNxnVqpufVSXh6hNI97BtnNSqn1I7KdzFL0zT0zMU8JzQus8nLfv7PomRWhlH7khYRQ5o9J0ew/Pz85jNZgn4n5+fZzdUo2CJyKfuuzCgIKXH2cGP7tNz2vFZCimXukgPaZ2hqDqImHbD7xHX6YsEPnwXy3JwTyNY7xWf00ElwHOXMfsp6aEatRHXjrKI681oeLyTDFA5ZhSZ5c7hs9ms4uBYLBZp13zxu94hMEwwqrFl1oRI/K37aWwSCEv2cvz1u+abgwXNFQIwAlGfQ+S/iKpMz6Uo0+MuIJIzkMT3kpFMk3bjT7/nDEg3bNmPAnrUUbpHaeTPnz+PyWQS/X4/1XdnZyf1I3Wp6st3upyoM2pzsu0+qc4wpVOWDgYZLjmeI2mjpW+++SYGg0F8//33lTRDOg40rkytbTavN8mU08jltLCSlo6o7jKE2df6X85w4TldU7omj+LRswLXcsBrHmteKTDAsrmuUPynT25OutPc04z1nRhJKZx6D8uJeCvThsNhGsNnz57FwcFBPH78OG3umJPPGhtloJycnMTFxUXs7+/Hs2fP0u/CO3R+Of9wzopvhN8eAn388cfR6/Xi6dOn8cknn8T+/n7l2JsXL17EaDSKP//zP4/l8u0RP//8n//z2NzcjJ2dnfjuu+/iV7/6VVqTqTnCIzdns1kaH+25sL29HY8ePYqPP/64VkcSi+zt7VX2K4mIlEXADWNpALvDn/MtZ1ATQzHAIznmPOo4zPE98bXqQgeP3q0yNPeoMynnhfU1bxjkc6crsbicRbI5pJeIw87OzuLly5fx+vXrODo6qugPdw7Q1mPf6n8tFdUmpGtra7G9vR3NZjNtRCs+ydlwOXqnzaNyYNW9kVTqtLplEFDR6R5O4pxn25W1ntcg+e7DSj/Wfa6gRS5caCRqQniUVoBJzKvOpiIneBAAlCdKTEjvkytt927wOtvC7zQimWrku/UxcudjR2Hv0Q6vJ9vHaEsOmOS8N65U/B4aVxIi90mM+rk3/Hch9gMNBK6Hcr6l4PAx1e+5+ylcCLw5FzVe9HJzTsjRQ4Ca4yP9r3e5ce4RKhfo/Di5fHBinTwqpf8dCD1k8jl0XyQ+0AHsa2trSS7KWaBzCLWWVg4a92hHXDu/nNdpBDF1UERwz/lBHpPMoCL0OcKyRA5I9N3nGCknz1xOsm3id1fS+k2Ann2hOtCwzRl9zvfuJKozbG+bZ7pfmSSj0agCpmTc6Ng8Ly9Xx9zvdb89hLnqclVUpwcc3OXuFZ4YDocp+jEYDNI6Tpaj5wmkWSaBPdOGWR/yle5jBLLOQUJ9LF4mnzLySMPN0/Nl6KreqrM715lhJwxDh0vOkUA5SRlD3cdMCE8jF57RHOx2u9HtdlOU1sfRx0VOOo2nsum8Tq7j6viK5eZ45z7ok08+iW63G0+ePInHjx/H9vZ2Ov6m3W7Hzs5O7OzsxGw2i+FwGMfHx7G7u5uO9xmNRikQJfleh1eoH05PT2NtbS2ePHlSWQsdcRMjM+tFjs6IqGBvfecuy5KxXqZTDku4fmM2J7ENnflsa0Q13Vzlc37pusrVvKXe4f4R4m/NH9+ELTdH3Hh3ma22uX73/soZtrnrPt7KhlL2CeUdZcRtdGfDNgcuOGCMjmqwGX2bz+dxcnKSdjkjQ7kXQ4zuXgC+n5FaMgwFX87YpIDVOxh1YLqpjAwH9kzBUBto6KgNOq90Op2mRdvaiIDMxuNQCKRUd12Xsa4Jr4hEo9GorHfc2dmJra2t2N3drWzGIMGtMqiYGM3LEQ1bKWOB3Mlkkg7lzilFTj6Ojxv2bK88uA9BmEdEZW2mNo3yOfEuVOec0LFJXGfrRr6eFx9E5Nc8ifRdY+1AmQpWY8DUXX50JIt+FxHskN9UJ9WDgt2FHY0eV1aUN95vuj9nFHtUi4b5Q+Gt2+ghGLUREaenp7FYLOLbb7+teHQ9giRPPI25iLyy1LMR1c0kPN3flzhwLCnDyMOqGzc5kRFGY1R10fzTPXwfwUNE9dxQ8qI7DgUuOE8J2KlDI6ICPkisq6jOubNYLJL+yt2TM3LpFNA9OaA1Ho9Tn+s9v/nNb+Ly8jJFqD788MM4ODhI56z6HPS6Ol/wHs7jhzBfOZbsU8liAcm6OesAcT6fx8uXL+O7776Lly9fprnj5es5ymTp8oioyO1Op1PRJ0yBpEzWGttms5l0mtKeLy8vY3t7u2IAtNvt7HxQtI0OT9UpIlIkTuWura3dWAZCXECjts4BpA2ztLaVuiwisniM6aaSNTyBQHwmjPro0aOUhZCbZ06a/+fn53F8fBxra2vx1VdfVbKklstl5TgUjq/+lwxgpt7vy5H+u9K//bf/NprNZiX6zSUdiqpKLvzn//yf45/9s38WP/vZz2IymcTm5mZ8/vnnKZNnOBzGfD6Pfr9fcZbT8bBYLOI3v/lNHB0dxe7ubjx+/Dg6nU6S78QN4iPhx4i4MS89Y4YykniIa1cpp4nNfamMR9ulq8QXusYNtujcp8yVjlB/qy/cucl3av7IVoiISoas7mOA0XlR/S+bg3JZMmU8Hqexc3noelEkHvcPsXSr1Up6pNPpxEcffZT64l10wDutsXWhLgZgipY63VOILy8v01li8oqxE3Wvk0eYKAD4G9PGVD8BHnUIBS4BEBlUikPfJVS4xpbGYY5R5CkiQ+hdEVHZql9RVTKXKyD9rZuI+sg7qrXFWuPB8jzCod9cEeQMDI4nPVWc0J5myOdz4ElE5cPJcBeF8lOQb2Jz1wgC+ZWUm/zqP77DgV2uz3i9zoggr9CQdcNQ3xmhZkTeMxJUL09ly72DfMvfc8/5724Eu8zIeVoJsnKG7e9KrFfdOP9Dojdv3lTmP5UqPwTcOYOMekM8Rt1BOZJzVqgM3esOFRldAveqR46nGC0ib9LgJs+Jb3IZJJSBOeKcibheP5ST8WyjiLrM5TBlbm4uskyOU844zzmNfEnOfD6Pbreb+nU+n8fz58/TDplPnz6NbrcbT58+TU5dUR1AyRm+rO99kxsX0qGut13neV+qTdqZ/fnz52mH8NvaSaeyOwJpDGxubqaNvaS3XB6qPcQQBNJKW+YmmB5A8KVDxEJaiuZ9xqUGHi3KZSxwfvC9EdWzpZlRRGewY1NfciNMt76+Hr1eLzqdTkq1Znv53G3EJVqdTicZ4qxTjjeEKakXaZTfN2lcKONY3/X19eh0OvHo0aM4OjqKb775JtrtdgyHw1gulymarbFS366vrydnDbOpNEZaDvXdd99FRKTxaTablTPCdT/xDne9198cliK5PufYicc8IMZ9IOj8If7neGuuyXnEuc+oM8c+h5fcdnBcSb3Ktjj+4nf/n/o9h9dyzp+c0ey2i9qvYN/29naK8GuM9Rzl3W10Z8NWqUY50MmwOytCZtCOmEpjYxqTGsrvrmRpKHPdCgU614HIs0GPiYNxMZsYkhEpMa2UDdOSz87Obgw413NJiat/aCRL6SyXy+QB5YHMDt7cGHRGJJiTYFZqSKfTqTgaOHaMcnC9nMqlV8iZk0at+kTX3Psp4pi4UImobiDlxox7fu6DBA587dJttKreP9SwZb8QwLuQy71LpLEg0OHukS6wqXTIn4zU6Zrza06J01vv/Zgzbt2gZRnkNSot9onuIb/eVUjWkQvsf+j08uXL2rHI8ajG3IEtx4JpRtzdns6ynELlOymrIqKSoqVnCd4jql5p/128w7rzN+kNvp/6jgYxdZobpBFVkM35SZ6mjHCDlsb0KsPWZbH0GSNluXmq+yX7tEZaf/X8xcVFfPvtt/Hq1atot9vxwQcfxN7eXlxdXcXjx49v6MScDmC/1/HVfRLBvINGXXND03Wpylkul/Hq1as4OjqKr7/+OrXxNjkiLKWP3hVR3bhMawiXy+WNjdqICTgP5BwXJpGDXABbe5qQZ/QO8p/0iCKiBNTK5GNUijjO91tgf6h+XH8r45kYlKc/kO91jdE8zeXJZBLtdjulH3e73crc1Lvukg6pPt/c3Ew7ACuq7HqH85o4mP/TyL9voowRsV7r6+vR7Xbj2bNnMZlM4q//+q/j/Pw8vv/++3j8+HGsrb1dvsK2qW+Ju92o16ZcX3/9dayvr8fBwUHawM55hDKbvOYOWR8Hl7PEDsS4wkJ0FgknMWjlhi3xteQvs3eIV3SNp2ZwDOqwkXiVWSMcM9o+Pq4cS3cCUBf7mKuv/VqdHaEy1cZWqxXtdjt6vV5sb2/H/v5+Osas1+ultuaWOtbRO62xpRBSZzDdl4YLo5lSjG/evIm9vb3odrvx6NGjG/ntMnaZOiOiYcmNklQv1ePs7Cx5Abye3C2QKcYCUZo88krrXkau5K3Re/VXbSEwyq3LUFlKORIzyxDNGQLsC05aMa8OB+eE8HQLMZcUFzeykreIwopKllEKRmnVDqXNEoyyDGd4B6gUTlK0UtIEh/dJSp1514htHRFMsO1SstpQRwrbwR0FEQW3vKDusXM+1Pxw41DjJ8Et/mRqP8vS3FOfeLQupzAiqmn8/Ks2Od/yWs55wucpwF1Qe7seEt0F2D4Ecv5ypxVBrgMFGmYEBrllGJQlNIhyddE9epdIzysNLKdzuIZPZXEXcAJkeulzc1j1yAGEXF+4E0B6g6mYagf7hM4nOmoYUSAQiaiex+uOKAfS3i5t/KXUMy6V6PV6Kb2Sey3oiI9nz57Fxx9/HJ9++mlaiiPdS3I95zLvvueGxpyGBvs9B+x0XcbUYrGI77//Pl6/fh1///d/H9PptJLxdhtxfKVvna8o25QyyuUkjkcY/dUGO4wUKZW/1WqlZzX2whNqa0R1yYsfj+M6woF2o9FIm8nwNxqXjOpyraXaoXe7A0nXCdbVh71eL3q9Xuzu7qazdzmuOk5JdZtOpyvHSY6fX/3qV/Ho0aN48uRJHBwcxNbWVrRarTRWHgHN4YqHYtRG5OWYZPl4PI5Xr17F69ev45NPPonFYhFv3ryJq6urODw8THaBcI0cY8vlMhm1kru6V++U4afznC8vL+NP/uRPYnd3t7KDvusL4lpiF7Uhl8YsXiaelUyTk1+OPvEYo7gRkZwrJMp61VFyMyLSebviB7WJ+E/PsT10jBJL5/ShyyrKMNZP7ebyQsdU7qRRedSlXhddY4br7u5uHBwcJP2gpZScG9wd+S70ToYtK+j/u4D3ybhYLNKOr+PxOHZ2dm6AXi/XJ5B/5/uptHWf/pJJOGA5Y9ejkHrGUyT8/TmvCtvB9hCUaDJrsJ0ZfM2i/tKo9vfkvIqcUD4BcsTfHJBSKchz7KmDt5WV6yvSQwP5TMX9XY3aiJvGGuePb8ZVZ8CxHBGFlBuWDrLJT7rfo0ZuQBN4+hylkIyIisD1+5wn9A5vk//mQjbneazzikdUz6n23+6bHlJd6oh8S5lHfhK5MatrbqCxXJXnRo3TXZwSDuCd93IRZb2bv/OdnqGQ6xd/B+sSce249T7yutBbz3dTFrOf3Pj1erqOXNVvPkfdCUxdqs1YpMOWy7fnUzLVutlsxu7ubqytvV0qo/e4XMuNx0NxQMnAIsZhv+cMEM4JRXsGg0EcHh6mTdbehdwp4riI/CCZLmNQoJvLSTSuGgd38jhwzslo53vqCDnNqYNy9Vf/cZ56m/Uurw91qO4R/9PJyTYL2+m97XY7HYfi8265XKbTLbSe+DYSnjw9PU11knODDoLcXNP1h4aBIm5my6g/tTdIv9+PwWCQ1inv7OykJYjT6TTW1tYqThn1M7FORD4iuFwu0/pOHTGjoE5EdVmj/ncdkpPpbI/eTVnqAS53LFEeMutNRF1ADO52QG6j1xzOyQUqcnzissF1jerm88d1dJ389fHK8XCdvch6KRtEQc9er1cxan3u34XeybDNCRh9VyOlzLj7lgZoPp/H4eFhRETykMlLQS8xvYDOcBKU/pHnk4eES3BxsxsZqNq9TmerKVJLJqXQJ2P5egcamrmJSeXC9SNULCpXHykFHjRNxaE+Zll8vwN836peY6YJmjNGWI4rQEVrR6NRAjF1Bgr/V3n0aKlt3NxBdclFnu+D1MZ3SYdYReRvAV3x3HA4TFHbnHDS816eSGMl3nC+i6g6Yihg5IXXZiDiBfGP7qEhS8+eytPf3JzV+3kPhaeiw24Q0Rhyo8gVWM7IEN/5+rRC70Y5w4PjkQOREVUnKKOMlGc58FBXNvmAuogpmTRqHeSKL3Vvo3Gdxiie8vTDnHL1OUnQzXV6ahvvJ7iJuOZ9bS6iDBwHGnoXI8paJsEUb2Y3iKhHctFZ72vpRkZp5dScz+eV4/WUEaE+3djYiO+//z6Ojo5iPB7H48eP44/+6I9Smh3rKfL353juvkj8KAOIpL7mxjoEx7PZLJ4/fx7ffPNNvHjxIo35u5DjIV7LRfM1ru12O5bLZWU3Ux3NpzW1wijkLWYxXF5eb2SpTZWon8WXOu5HOohz7urqKuExzkmVI76i3FYWg/hc/a/+VV/wIz5kZpzwBeeJ1hB/+OGHKfWaOER91mq14smTJ/Hhhx/GdDqN4+PjW3ny6uoqBoNBjMfjePnyZQwGgzg4OIgvv/wyOp1OdLvd1P7cnjPCVJQ9902a/9Sjita+fv06fv3rX8eLFy/SGu8vv/wyfvvb38Z0Oo1+v5+W6lEmOvaks4MOmoi3ToH5fB7ff/99fP311zGbzeIP/uAPKjhX80HyKeJt3ymtNeLmMhbHFeJNBruEq7iWW/fk9t8REQfxmE7xluon20W7AUvOSk+oDN/klf2lzCSVwbZSd/B5dzZpfOlkEu6j7uaSvNx40mah809yIyJS9Ftp2a1WK7a3t9PzfNe70J0N23a7nQxBWv1qtHvgPZKoDpvNZjEYDGI0GsXa2vWuWxQSLjDE7OoUKUEanxwEDTA91+518ev0YlJRcNKREbx+Inrjeb/q7mCb79KzvnECAVOdYeteSe97Pef9LOZh+V43liUDTJsj8ND1VcQyc9dzHiTW8b6FOkHi74O8jSxbuy9LKdd543KOJo6xR4Yibm7mQw8hU71k2ApUc5MQjjUFZu6juuWcHLl+qGtjjm9XvceJQrkYtT+MvL9vGxtei4gbipFAWMo6t8aKf/1ark4izgfpDH6nV5iyVUTwXeekY50YnczJUdclKoOAgO/SvXXtdN3BiKpn0FCOux7ix6PYBDpy/HI81XeSHd6fXFd2fHwcFxcXKZqzv79/41xtH8eHZNx6BozqROBK4nVhkuFwmNJU79Ie57GNjY3odDppztQZPdQHEZE2f2q325V0co3tcrm8scmO3s8IpfNyjjd13X8j9hLvcM7RmJA+8nnGCLA+7uxhXYgdNT+Gw2HSqwqwKFqbw2h638bGRuzu7qY1gALljn1c50rm9fv9pFN3dnZib28vBXa4lM3HPTe+90Xj8TiNEc8rn0wmcXR0FMfHxzEYDGJt7e3Ov4p0dzqdpHfPzs5qs7iIZSNuyn06vU9OTmJtbS0+/vjj5JCQfufSON+Vuk4WUwaRR+s+vg/EKvxC+SDepgPFnYtuY3FdO4OG7Bv9Jd96AEDtzTk8OU/rjGAScR/L8L8uT+jIUTnMomBQhuNAJ9ttdGfDttvt3ljcTWDijc0pyuXybYrS1dVV8t7s7u4mwUFl7YLZlUZEVDZ74uDJe03DzZmRHalr3vlkVl8TqHfl2pgTQnXRR4IZeVhVNoVsLgrAgWZqg8pVn7rB6u2Uh5RHA+n3nJJQ/zKy6EqK78i9V23kX9bV33/foOb3teFQjtxQ1LplKZGIm1FJB34aG0WrGAWhcKMnj84OfuRVXCwWaa2Rr/VQGXTI5ASjyPnPwTvbIp7xKFUO1NMTqLmh8kWsl7yDOcX5Y1GdTHjfiGOwyuHizk0+w2ii+FY7wzNiy/FxoOhg2PUG78mlNGkuS6ZTtrJN9BKrPKWL6RpBtm/A5H2WaxP1Gu+l0VvHO5qX3M2fnnSNg66xLOoUd5h6fWU0K9Kluml+aoMh4QD123K5rGzk8+bNm7T770cffRTNZjP29vZShI+8kwOJ902r1q85DpDMkq7W+PT7/Rt4pY68zZorzHRbZdhS1ivdLyJSX5+cnFSiTzQa9f7lclk5OkRzTGPMCFmu3sRR4lU6uHiCBPUWUzMJcNWn0nWMbqkPqDOJWRTBPTk5iUajkdbS7uzsRLfbrRiXbiCoPw8ODmI0GsWjR49iMBhkDQSOAftBRt9sNov9/f148uRJfPDBB9HtdittrTPqHoIOGQwGKVtP+O/09DSm02mcnp7G4eFhmuPKBOh2u3F+fh6DwSCt1Wd2ouPoiJvYLycvDw8P4/z8PL766qvY2dmJ7e3tdK7qaDSKiOsUcGaH6LoMRhrUIvEMlyZ6xJbZnDns7/OCJMdURHWTq1wklrjf917Q77STVB/fJdx5zG0czT+ugfdMTzdiiS1z2DTi5hIBr7/0iPp0Pp+nqD5tNd8hehXd2bD96KOPYjQaxeXlZTJwVVl6IwRKZGE78y6Xbz02z58/TzvRaTt0KlU2wAG4Oi2XxsQ1K1L0nuIqIcf1oQ6UxaQcWA6gBJ2YSu2mwSlmo+fHGSviOuWE0Ws+7wzP6LR/2Gd10WO2odl8exA5J6UbEuyXi4uLOD4+jsPDw3jz5k3acEt0V2NGY1wHAsXEnh51X/T7SkEWcT4QCC0Wi5T2JyeQg3cfGxqTUsJMbfKIqkCozysZxRsbGwnMKGKr8yh9/kloco2MO3rYXl13w9b7Qu2gYUJA5N5IpluLOF89W+OnpPvm3d8X5YwsB3XUBfqd9/F+yUotPREPMpWYsp0K8jZDh4at10FlcQnIKgVOOSV+F19ubGwko9z7igYCeS73HqZ68TePbOWykHwtfs64rTNoGQnw+SjZILCh5Ttql6I2Alvtdjtms1nFmKCMkCyRQTUYDOKzzz6Lvb29ePToURoXZgDVjcl9kPMueZ0yjfVU3x4dHaXPbDZ7p/eurb1dnvXhhx/GH/zBH8Qf//Efp7M8mWnGeorID5pfOzs70Wq14vLy7RGMiqQLO0n+cww1V1T2dDpN/J9z+KovuDeJDNvpdFpJ2yTfUY4LL2njIPF/o9FI6zU1v8Wn4jfxv6Kqs9ksxuNxnJ+fR7fbjXa7Hfv7+7G/v5827VQ5chRxozk5BpRpcHBwkJ4ZDod3SpWUcX9ychKj0Shev34dr169il6vFx9++GHaOIdGjnjM00/vi7755pu4uLiI6XSajMjJZBLL5duNxx4/fhwbGxvx61//Oi3x29zcjEePHsXu7m5ajuj7lThOFM87xiefSS6NRqOUxioecAely1FtTkQML8e9dINsBze6yGfkfY0VcVpEpGiy9ISMbe1NIJ6Xsau/yrKgfqIDwHVKrg05Xem6mPerr8lvOezpmJX2g/BWDi/Q+aS2ak49evQo2YKSFaenp6ksbdx2F7qzYbu3txcRUfHyeacSQLhB6UbecDiMtbW1tB26GpkLs7NDckLbvXW6h5sDqAwOItdMumHr9XbF4RFYB/DuHVd99R620T0nOaoDx4xWuYK7jRh5YP0cgLqCm0wmMZlM0rpmMrXur6tvztD1sWUf+trQ+6LfZxoyKTdmEqICeBwHPuOCyQGVxldz1R037G/9VZ+vr68nL77+d8OAPJcbV96rOrEdvDfnNeV1NxLcCKByyvVp3XOF7k6rgJWPqV93maL73LHlz/s73DmWe6eXzXpTtgvoyJufq7c7ZNgWNxAd5DgwqKtr3Xv0rPSFZDANV0+Hy33qHIyuq/wevV+GgoNG6VEa5z4Hc84qHZd3cXGRzlrd29uryJ2csXbfhi2pzpCtu1c6k9lNt5HuUTrnkydP4unTp/H06dNot9uJb/WOHLnMV3lra2uxvb0di8UixuNxqpeiuRoHGadqr8rRb9w1lTxD41QgVXiLp0sQFMuYka4hT+p38ZDjHm+rAPr5+XlyFCuVfn9/PxmRinz7eNGBpHfxaJJ2ux3T6bSSvnwX/lwsroMq0+k0lstlcg5pzTNTzYmBHoJhK+eA+lNjq7WznU4nGSJyKMhhoY23NA8i8imxshtoJEbkszgcy3PdZ0Tc4Fn2IY1B1xM5vMHoYR3m0jOMDDPA5+/j2dDEXx4gc8ejymZb2CbpJ5frOZuD7cvZPny2DoPmxmYV6Xc5trXGn4EM6RzpaKbs30Z3Nmw/++yz6HQ6yTtFBmInUKmRId0gVfrC1dVVfPLJJ/HRRx+lyJCOrvFn6fV15qKAV4fQg6H3yusyHA6T0GNH8zsnhQZeQp/eQv5GsOBHSyyXy5T2q3JoHFPIMwLMNAP3UjLa7EycmwAkByFiKJXnRtNwOIzRaBTff/99nJ6exmQyqdSTfeeMzUnGCcpJLQYmcGKE5D7pNsfDDyGOH/tFHtHRaFSJFLuAooHqoDoiKgCBAoge0JyypICVh8znhMZGxLOdOZYR1V04mdHhhk2OuM5K72SqKhWGO3jciCGoKvS7ER0Rq4wOjS2j7OINph87b4pv9TtBCMdbmUERN3c5pqzWmnEqb3mN9W7K4zowqTrRg04grHrwXslHylnNBZF0iPQD5aLuFf/TsGVEjBs7iaif3UHI9+TGVu/V0ojJZJJ+py4VwGV5bCcNOaUuK5L261//Ol6/fh2NRiMeP34cH330UWxtbcXV1VXSL/eRZXEXcgBLvCNDSP3z/PnzOD09rWwWcxuJz548eRKPHz+Of/Ev/kV89dVX8cUXX6SdpWVE6L16TrzBDW5EGqf9/f1otVrRarXi5cuXMRwO0/pIbQq2vr4eOzs7ybh2OU695aBYfHB+fh6vX79Oxw1Jpzl4pRGgjCJiKS4DoD7QO2UkrK9fn4k6Ho9Tmuzu7m7s7e2lzZva7fYNGca5IvkkB6/Who9Go+h0Oukdo9EoOWpuIx937SL8+vXrtMPvV199FQcHB/Hs2bMbfXvfxKWIGjseByUn3P7+fhwfH8fz589TX37yySfJuFXE9/j4uLLHC2WHO/scyxA/Xl5exmg0SsslJI90v/5KF0i2692eGad9TiaTSZJvel76hjLf1/hqnaj4Uc8oCite6fV6FV1G3aN3qPycoRqRNzjVnyyLNhMDenSWSm5RJ9RheeprjTv1HO0lPqt2cUPSZrMZg8EgJpNJ2sF9sVhEq9WKra2t6HQ678SndzZs9/f3Y7FYxNOnT9OE5q6tEVWvWp0lz3u0oF7eR63R4Y6DFGQ0oHPGMt9LYMBUBG3KIw9incfTjU29X+RGpe6j0av20kiXkqdx5+BFz+kZlZ/ziNPbQkMh53FhO93YyX08MiDFNxwOs+uECHZ9zHPEMaQQcw8WjZR/aOR8TODgEVveE5FPMyaxP3OGMIUp3817c06anOLxNejkcQfTOSPIr1Ohe3oZnTjkFe9Pluke10I/jAgWIvJKNScnnZ/ccLtNDnn0cZVhQCerxprr8lhXKXndyzSwnAxmvdyoZd9IdvI+d/TmHLR8nwM58m9uTrCPfB6yzwm23LHE74y2cZdbZlXRuFafMwJeN556l6I/r169SgaO1hy22+00Pg/BuPV+zUU09JvAvM4+5y7EdeRla7Onx48fx7Nnz+Lp06ext7eXzpp1GZuTvSyPzmpd39jYiF6vlzby4qkRckIwZZi86e8iv4tkVMtA4Fpq8i35Q9FiOoho2Poc0z1ycrHfhVNklOrcU6WC6ln2lS9NEGjf2NiIbrcb3W437aYsefFD9m1wual9YV6+fBnj8TjOzs5SZFkY+b5JDrTRaJQi4K1Wq/L7crmM3d3dWC6XKQX87OwsTk5OUvotDVw6xtxRQpnmmFyyhum84gk6CCOq61i5fIP/EytwR+1cYCWHU/mb+IfyletjqXukbyQzVReepex94OTGJJ2g1DueieDl54xm/q3TLbrHHRE5TMe6SKfIkbVcXu/LoCi/+F6b3t2F7jxTnj59moTcZDJJA19nnBAU8Bq92ldXV2nb9Pl8ns6j0no+pmO4N9w7Tgpewk2MtVwuK8f4jEajykHzHHQOANd6UXmQMZmGw4npXnAqFXlO2WcyWrWWxPtL72O0wg0VgTOG8/nJMZoDNhrJ+qso1/n5eRwdHUW/34+Tk5MKmGO/1Ql13evr7xaLm5u4rK2tpTWeFDb3STlj7PdVro+NwIC8jw4W9ByBQa7fKVDJK4xy+b1eLo1a8gWfk9LXnNZ1lcn5mzNMVtVd9REoYn/korXkEy+DhkCh340IkPm/5JRI/U757es6c3PAy5Vsz2V+RFR5iPfQC617GOWkTGbU0YGU6qC2STeQ37WRjepMgKO2ECioTZ4+58YHAZvqzA1M2BY94/1B7z2XFzggI6hU+dKXWp+o56T3uCZWIIXt0Dt0j/qs2WymPS6+/fbbdFrC559/Hnt7e/HkyZNksGhd5n0SZYzreMoU9bWyXXjEzru8S+tAP/744/jwww/jo48+isePH0e32806rb2OnCfEDOI1jZWiTTs7O2nNInU8HQw5B5V4hnygOSO5rQw5rtEmzzMDQcYK2yjw7/iBhq2OyNrc3EwG02w2i42NjbRZk3YiJrZ0Y4FrL8V/und3dzfG43F0Op2UiqzNz96VHOgrnXY6nUaz2Yw3b97EwcFBfPjhh3FwcJCi9PdJGtPj4+M01jx6STpWfLq5uRm//vWvo9/vx3g8jna7HR9//HF0Op3Y2tqK8Xgca2trMZlMbsgtykeXUxHXGQ1yMmjDS2Enjq34XP1MzKQ+p4NGck1GMw06kfQX90fQ3OBaUD3n/LtYLNJGSYr2yhbyFHnKUZLrYV//63hNfeqZmZzTuXe4vRJR1eUsw+9zG5B1mc/nSVaqH7Vzvo6M0jzXkom70Dsd96OGa22MUpR0dhKFPdPJPCU3IiqNGA6HMZ1OY3d3N2azWWxtbVUmsRouEKKUFlfmFEjNZrNigHPdIgfXQboY2D0aMgYIxAhqPAqhPoi4eS6fGFoMSGNUXgruFKoJ7H1IwESF4satrru31ZWQ94sEVb/fj9PT03jx4kXqU+8zB5nuvVwFRGm8i2+0bqMu/eJ9Jnf8eOSfKVru0fYoj0cg2d/kVxHBpfMSjT8KafKQR4cibm42Q4OWZTOrQEShSd7U/XKquHHk/JDjD7abwt6dO/+QeOvHJjfO/FodkRdyhptnqxCQ0wjztUrUOTTgXBlrY5GIuGEgNRrXR4FERIVPKdtZf7aX6V7uXOGZnOR91zG6RkDifBpxLasJYCgDnJfdEcA6EDCyfSKlGmtdnTt/9cnJIDrcHFyxjXI4nJ+fR7/fj8lkEicnJ9HtduPnP/95PH78OD755JPY3d2tNeZ+KmIb6WjRWNIpu1wuYzwe126ymCM667rdbjqGhhHb3d3ddHoBwTnlmIxW8irHyx01zWYz2u12tFqt+OUvf5mObtFyseFwmAwIOrxFOQeQiDuzyknuMoD9KYPk7OwsYTlFs3gMSE5uK/Kn42TW19fj6dOn0ev14uDgIEVpGSxhXfQM+416sNlsRq/Xi+3t7XTmLQ3unPHzQ0j8dHJyEuPxOBm4D8GwffHiRXJWMPLtwSfhWG3QdXp6Gn/7t38b0+k0nj9/np4VHtfz5Gl9Fw6mE3K5vN7kUliZuEDRb9Wn0WjEeDxO5WrXXW2IxyOIiLuYyi8epEGn8iQDhdNdBup/8RIdrSqXOElOIBrW7vChbaKyucmV7qE+I+b3Oej6VM/nHM+OyT1wxbb4ckK1X3V78eJFkgtabyvMJ4fgYDCIk5OT1K7b6M6G7fr6ejJunz59GovFIn77298mYVQnbNzAERFQy1gdDoepURIYZFZ6q+mpdq+D6iJBykXu9I4TnEdUzzyj0sqBDHrlCYLqhCKv0yjWfevr65WULzHJbYZdrr9ZHyfWje9fZdhOJpPo9/tpDQPbnavLDzEWHCTnFPI/RMoJDjda6353PouoN/rcmHYBR0GUA8q5eq5S4nxfHa/ovbm5RaGY2xDirvxAvsoZDP9Q+erHIPa/G7ci9qcrwhzPuONEzzn/8N5c1JYGKDNk6GRZLBa1m7Cobtwwh4a1p+1Sb7iOcx7T+/luzlufy/SoU8/wORqHbhx7n3lfextoJHFOujPYx0vkepT18DF3p4beqzYrOtxqtWJ7ezs2NjbSjrE8duY+yNtBsOq/KTtsMBhEv9/P7taaI2W/yLmt41J6vV50u90UybmLAeXOdgJb1pkZN0p/Xltbq+AR1V38ycACwTDnkOYR9YqMe+8z/c55p7JFxEQ5XKX6zmazFC3c3t6O7e3t2NnZuYGN6gA7x9F/E/B2I/l3dbrk5pQCOOPxOC4uLiopv/dFg8Gg4hTx9FrKTNkM2vn21atXcXV1lY5JkhPDx5JEue7j5RvOkj+In7RGmphb9VZWnIJz4lkfd2IQry9lgDuUIvI75DNQ5Y5UOoYo/zV3GbSivpDDU4at4/G6gAL7Wn9vw3dO3l9u9KofRMpCWi6XMRqNotlspl2Rl8vr9era+O309DRlfdyF7mzYKmK6sbERv/zlL+OLL76Is7Oz+Oabb+J//+//fUPIOSOS2Mlc2Dyfz2MymcR4PE7PadGwmG2xWMRkMkkbQHGbeipspVApzUDpCV4Pdjyv5wwIMTYZ3NtKwc1Nc8iI+kgQa3JKqG9tbcXl5WXFO6PfWO+I67x9EQEUN7dSndzwjqimmMrDKubq9/vx5s2bePHiRTrQPTdBPP0591599/5nehyjLrko+D8UIh/kDFl5nnXNx80Bijt3JDgYkZHnT8JeQlRjJq+kp8uLF7je2gUqPyIKeQfrq4Sm2q8+ELhWPblxj97haaRUBBFR4W0qjkJ3Jzq0csatG5GMkItHuamGgJo70jgPaPRofD2q4jLFM4c09pJTAl1SnpTfmgOLxfVSGG1YSMNE5Ugv+ryh0SpATL3He1RP9Y/6QeSbTFHxiwiQuLTDjWnWyftK5eujI360Rk76X/2h/qbscmcu1yx723UvPfkR15G3X/3qV3F8fBzj8Th++ctfxuPHj9+BW3//lNNdwgBaRnR1dRWvXr2K4XAY3377bRwdHcVwOLyRGVZHWn+4vb2dNjva39+P3d3dtFuuyzh3WBCvKJrIVEd3/LC8tbW16Ha7aXOlwWAQv/nNb2I+n8fJyUkaQ80TGQ0O3mlgXF5exnQ6TRtpMVuI/C++Vn01n2gokY+Y0SP+29raiu3t7fjiiy/i0aNH8ejRo8RfPJaLckN8rbnumMrHp91ux/b2dgrEMKL4+yI3sLW3yX1Tv99PmZFMIdX4SzborNq1tbfp248fP46Tk5M4ODhIm9Bqp3DJCV/GoEg9lzvQ0a1dmKkPer1ebGxsJINIzqVms5l2sBbWXi6XlaCXZ9AQb3M9tmMa6jSlIGuN+tXVVeWMZAXX6GQStdvtxPvT6TTG43Hab0hHUikjRHsQiISTJpPJjQi0ZIbaEFG1eXLOT2I5N1TdfiA+Vwaq+lk6bW1tLc1xjbNkk/Y8mk6naUw1T7Wr9sbGRpKJd6E7G7ZS/hFvc+pbrVZ8+umncXFxEb/97W+TEUkBWdd5dYCEhqaYWZ0jL6U8PTKAGV1iSgyjPQS0LvxJrK8bU25I8EOPikC26uBeDAIelce8+9lsliKjXBeQ89ywDux3NyK9rrmIn6e1qa/9WCRGD9guN7p9MvC+uusEYmJ6bnLyD4Vy4xJxMz2bXsK6MfXvMmb1l8/qHSyLfCAhTydKbnMaOkH0v0ATIztsb47vHODpPhrQNESdz3LGFculApIDjICu0LuRy0sfY11znl5buz7nm0Dc5U8OWOTki0dmvW7OAw66CZ5cfqocyXDxHw1qKn43DPRO5/OcY7LOYHUnUE5v0SHlsp9tppPTM4DYj+xDzb35fJ7W1rKtuQgEx41jwXerDascS8QAWpv58uXLZGT963/9r2uf/SlJ48C1oeorgfbT09MEcFeVE3Ed1RHgEyDV0TI6d1P97nqUZYn899z4rXK2CGAKdHJ/Eq6/pkOLzifpHwFtRX9z+0ZQj7iekDFOPtIcYJrj/v5+7OzsxNOnT+PJkycpaqvy1UY5QWmMrppL7D8Z1zyTlM//Po1bUg6v3gfRgVwX+dY14kj1k+yG0WgU4/E4Xr9+XXEwEt/qmqLjxM6Lxdu13zRsaSf0er1YLBZpbf7V1VXF2eLylrs9Ux9Q3kdcOxAjoqKvHIu5U9d1osrjhnLCu8woVZ9T/l5dXVV2SY6I5DQaj8dpbopHfeNPfVdd+NdlwG04yeeL+tb5g2XLRuKGXxFVZwA3FFZae6/Xu3PWwjsbto1GI3q9Xqyvr8c/+kf/KNbX1+M3v/lNvHr1KgaDQYXpKbRzHeQTVYJruVxWQKjSPwSARqNR2uBAwkYdzKisgLGn00RUz2yloFSdclFPMpfotigG+88FOUGUGFaM+ejRo7QLn4j147tV37sYtp7iRgXBPtf7qIzYB3Wg0/vH+6JOedCwlSdQf/X9PskVcd3ErzPY/Jo7OLwvKWwlsPmcys0pE5VHhw+JvMoUMSkB8aMAOSP6dIDQy0lhrPKZ+uMRnTriWiw5VFzRiNSuXJ94X2ojEZ9DdXTXcfxd+eCu9BBADfmMwNiVt0ftIqKy8YwrWPEcwYAAiI87nV7SMTlHn+pG5aqxlzwh/7tRSqeS3ifjgp8cMHbdF1Fd067nuBOn6s9IGJ22LItjwUwZylNGECRX2Y90GlInSu4IJCk7SmCFEW/2P8eeMoiGgI9RDkCyjZeXlzEYDNIaq1arFf/+3//734WFfydiZF9t1TFIx8fHaYOc0Wh0wyG3SnZEXG9YpDTXRqORoo+9Xi9FopiBU2dIkQdd3mr+RFw7QTmHuSFmt9tNm3jpaJbnz5/H4eFhMtoHg0Fl3jabzbQ5k3S2dIvkue+XIOyjeed8QB0golNof38/Op1O/PznP49nz57Fl19+mdrA0xuoh2iES96wbzlfOMe5rpO403WT3vf70AE/VGf8GKQsAPKiZ2IRB2gMIt4aX1tbW/EHf/AH6Sid//N//k9yBPnzEZHetbm5mWR1xNt+VEaDjgcTTpKTY7lcJmeM6q060ZAlLnG+jLjp/HE9JxLmUZSS10TiNeo93Sd56TKw0Wikza1kFGqNsHhDwbDT09PUBq1j1pp/N8JzvKt66fdVRJlNLKYP1xHnHFc0zheLRTptR+vrNzc3Y2dnJ2VJ6Nzpu9CdDVsC58lkEmtra9HpdOLJkyfxh3/4h5W0wVxEkB3nSjCn5NRZMra0AzMZT3nzytXXdYIpX5+XUwSMQqmt+pvzSuWI9coZLASFErDet2rv1dXbM/y2trZid3f3Rt8xBYITgv3G/iVI4mTWNYIp9St30tW9Dp7YPgcmDi7ZTxwLV84UZKoHt+a/L/JJXjfpc9dz11xQ+r2Xl5cpC4KgmICfRMMxB4AFdnVvbh4y7UfPujFLg1Zzk3NHfEye1XM0IFg/8pk7oggmc3yn77cZWlprf1fD9q7j+C6g43cBKA8B3LAOPh7epy7jyF8qS+PLe2gUE2DqGU9jovPCl0OwvnRUCkhLibtDj3NFIEUOFz8mh2mYlME5A977kXOGfUbZzPo4iHB5zDYzBdUNX0ZzVUcBjtxmP9rIr+7D8fX25gAgrxMAEytIp0W81eOnp6f37twkPw2HwxiPx2mJjpZFqe/cgKkzajUeMpik7xSdyPEbIzB1pPs9C2K5XFbOZ5XMFdGRIlCtiMmTJ09ic3MzPvjgg/jggw9SNP34+DgGg0GMx+OUTecRG+crn+eqG9/POolftWmTjFkZN91uN548eRKtVqtiaHOOuqPKU6j5PhlC6kv2jeNCGly30UOQ478LiT+13w4dBcKMEZECEvv7+ynzQ/p/ubx2Ln7++ecpTV0YQ8seGo1GOmd5fX09ZURIpill3vWQHCxbW1vR6/VS+q/Wnco4JG7hs5wTnuHgdo0binKk0EEjftc9tKUkK0SUzczQcF3BLJrlcpmO4NQu036UVd3cYrt57218ura2VnHukMQTmnt0Aute6UiNje4l1lxbW4sPPvggpSDzGNjb6J0MWzVa3ghtbKCtvbVuaZVSd9Dpvzsg0YAylY33EQzQgNQzzjhkwlyd6totgyL3G8t1ZhfQ9/ewHT5RCDDoXVQZBInuCPB304PiERMaJRRQnFhqE+uba/+q/2+bJJxYfD8B410Z+n2iVQ4T9275cyIfy1z0KmcU6p66Mjz9mMYp+YX3sU5sB+/z+e3OFqYfa+74nPf+Y7tywDriOr3ShfiPRe87gFlFOdDuDirdx+91n7p5wMgn30PQ7IDGgYY/22hcZzLwGCvnC92nvy5TWaaAMueZy/RcH7Le/O5GooBcznCvczTmorTeDwRYnMe5uU6A58Z03bh6O3Nz4i66V978+ybW/+zsLO0erNMhVt1/W7nUubm1iz6+3r85XUvZybnElMy6cRPfy8Dj7r86bqjValXWYcvZ7rgkonoUjC9rcsMyh9folNnc3Izd3d3Y399PO0W32+10XCSxDvtM1zwlv04fep1cNvH6Kv79h0TM2PC5T76UcaXd6L2fxEs6V1hBMaX0S/d3Op2UEq9gj3hIxnMOh2s++fmoniFwGw5nxiblZQ7n8zlhaeoL9Z/ud/3AjdPcecU+VOBBxqsCfzL8mSHjfeM8yTmySk+xzrrfl5joOnEj9VBuTuWwI/u71+vF7u5uPHr0aOXad6fGMteaQoUKFSpUqFChQoUKFSpU6D2hfzg78hQqVKhQoUKFChUqVKhQof9PUjFsCxUqVKhQoUKFChUqVKjQe03FsC1UqFChQoUKFSpUqFChQu81FcO2UKFChQoVKlSoUKFChQq911QM20KFChUqVKhQoUKFChUq9F5TMWwLFSpUqFChQoUKFSpUqNB7TcWwLVSoUKFChQoVKlSoUKFC7zUVw7ZQoUKFChUqVKhQoUKFCr3XVAzbQoUKFSpUqFChQoUKFSr0XlMxbAsVKlSoUKFChQoVKlSo0HtNxbAtVKhQoUKFChUqVKhQoULvNRXDtlChQoUKFSpUqFChQoUKvddUDNtChQoVKlSoUKFChQoVKvReUzFsCxUqVKhQoUKFChUqVKjQe03FsC1UqFChQoUKFSpUqFChQu81FcO2UKFChQoVKlSoUKFChQq911QM20KFChUqVKhQoUKFChUq9F5TMWwLFSpUqFChQoUKFSpUqNB7TcWwLVSoUKFChQoVKlSoUKFC7zUVw7ZQoUKFChUqVKhQoUKFCr3XVAzbQoUKFSpUqFChQoUKFSr0XlMxbAsVKlSoUKFChQoVKlSo0HtNxbAtVKhQoUKFChUqVKhQoULvNRXDtlChQoUKFSpUqFChQoUKvddUDNtChQoVKlSoUKFChQoVKvReUzFsCxUqVKhQoUKFChUqVKjQe03FsC1UqFChQoUKFSpUqFChQu81FcO2UKFChQoVKlSoUKFChQq911QM20KFChUqVKhQoUKFChUq9F5TMWwLFSpUqFChQoUKFSpUqNB7TcWwLVSoUKFChQoVKlSoUKFC7zUVw7ZQoUKFChUqVKhQoUKFCr3XVAzbQoUKFSpUqFChQoUKFSr0XlMxbAsVKlSoUKFChQoVKlSo0HtNxbAtVKhQoUKFChUqVKhQoULvNRXDtlChQoUKFSpUqFChQoUKvddUDNtChQoVKlSoUKFChQoVKvReUzFsCxUqVKhQoUKFChUqVKjQe03FsC1UqFChQoUKFSpUqFChQu81FcO2UKFChQoVKlSoUKFChQq911QM20KFChUqVKhQoUKFChUq9F5TMWwLFSpUqFChQoUKFSpUqNB7TcWwLVSoUKFChQoVKlSoUKFC7zUVw7ZQoUKFChUqVKhQoUKFCr3XVAzbQoUKFSpUqFChQoUKFSr0XlMxbAsVKlSoUKFChQoVKlSo0HtNxbAtVKhQoUKFChUqVKhQoULvNRXDtlChQoUKFSpUqFChQoUKvddUDNtChQoVKlSoUKFChQoVKvRe0/pdb/xP/+k/RUREo9FIn8ViEZeXlzGfz+Py8jIuLi7iu+++i9PT0/j222/j5OQkRqNRnJycxMXFRVxcXMRyuYzlchlbW1uxXC7j/Pw8Li8v4/LyMprNZqX8RqMRu7u70Wq1Ym9vLzY3N2NjYyO2trai2WzGxsZGrK2txdraWjQajUr9nNbW1qLZbN54x9raWiyXy4iIWCwW6aMyLi8vK+Usl8uYTCbpHrXn4uIiPdtqtWJrayvW19fj6uoqxuNxtNvtaLfbsb29Hc1mM5bLZayvr8f6+npMJpO4urp6OyDr67G5uRlnZ2fpnrW1tVhfX0/1ZRvOzs5isVjExsZGunZ1dRXL5TK17erqKhaLRaq//uq+VquV3qvfFotFXF1dVdqlMRwMBjGZTGI6naZ6R0Tq32azmersPKM+ubq6SuPZ6XTiyy+/jD/7sz+Lf/Wv/lU8e/YsRqNRXFxcxPn5eUwmk7i4uIh/8k/+yV3Z9fdO/+E//IeIeNs329vbaSwbjUaaA2dnZ/H69esYDAbx4sWL6Pf7MR6PYz6fV/iq0WgkHhB/ra2txSeffBK7u7vx8ccfx+bmZmU8Li8v4+rqKi4vL9MYisjz4hH+9d84Z8RPPo9Ydt27VDeS5gOf1TV9xAdO+o3v4HP6X7wc8XbOktdzH95fR5In3W432u12HBwcxP7+fvziF7+InZ2d6HQ68fd///fx9ddfx3/5L/8lvv322/juu+9SOzWXNzY2YmNjI5rNZmxubsbOzk7s7e3Fp59+Gvv7+/Hzn/88tra2kvxrNBrRbrfTOFxeXqa55337b/7Nv7m1HT8m/cf/+B8r/4t/nMRLGxsbEXE9Zs1mM8nFZrMZw+Ew5vN5mifT6TT1xWKxiMFgEP1+P16/fh2z2Sym02lMJpMYjUbp/RsbG7G3txdPnjyJL7/8Mh4/fhy/+MUvYn9/Px4/fhw7OzvRarWi1WpFs9lM8tT5OKcz6kjj9rsQy3jX8jgX1LeSz5eXl3F2dpa+j8fjODs7i9FoFKenpzEajeLVq1cxHo/j+Pg4Dg8PUx9fXV3F+vp60sfT6TQajUZsbW3Fz3/+8/jiiy/iyy+/jG63G9vb26k+0uuSa9RPEdf8oDprPgpDuMzQh+3U33/37/7d79LtvxP9t//23+Li4iJms1l8/fXXcXh4GF9//XXM5/O4uLhI7Z3NZqkP9dt8Po+ISHJCvLi+vp7wgmR+s9mMVquVZMnm5mZFXmtuUWbnPvxN+CEn69n3zWYztVfXNWf0TsdalOsRkZ1fxFYcT5f3fHed/lB55P2czCfGoQ4V5ry4uEhYhPNkOp3GfD6P0WiUxlEy+8svv4yDg4P46quvUhmtVit6vV589dVXsbe3F7u7u/HBBx8kGT+fz2M6nSas5jzPvlbbnPT7H/3RH70Dx/7+STpPlOtzYk7hQ7/v9PQ0+v1+/OY3v0l9Q/x4dXUVw+EwTk5O4uTkJN68eRPz+Twmk0kqR3zMudNut2N9fT3a7XZsbm7G1tZWtFqt2NzcjF6vF5ubm9FqtW7w/Pr6+g3cQjtA4ya8VjcHRJJ3Kl/3kP91n+Zkbu7l5qhjIfH0xcVFjEajxLvi6fF4nGQQdYPqJlkjHan+lOxR321vb8f29nZ89tlnsbOzE8+ePUtznfNRpLoKx0sGRkSyVyhP1AcuIx2X3sUOuLNhmyOC5I2NjVhfX4+Dg4OIiDg5OYnDw8MkHNT5ul/AnmVRyInBJVA2NzdTg1WGhHUOFPAa769TBBGRFZAsT0JQ19UGDaiYWQwqwblcLlNb9C6BX1cCquvm5mZ6j+7Z2tqqGOL6LaKqCLweAiucVHRO6MN3qc4yRAVMJQCkKObzecW4dbBGxhd532qSdTqdVGfdLwZ3B8N9kNd7sVjE+fl59Pv9GAwGMR6P4+///u8TiPRnBNhpiF1eXiZhu7+/Hzs7O2mcRW6cOuWMQf11oONGLecFqc5gqesL8iHby2u5OXUboOc94jM+QxCt/qTwp0PH303S7+fn52mMLi8vY39/PwGYbrcbz549iz/+4z+Os7OzePXqVZydnSXe7fV60e12k2KfTqdJjp2dncXZ2Vn0+/3o9XqJr3POvNucC/dNqwwx8poAioMIyYPz8/M4OzuL+Xwey+UyKdflcpkU8+npacxms5jP5zEej9NHwGVvby8+/PDD+Pzzz+NnP/tZHBwcxGeffRbdbjfNJTkc6GzzOr8Lrbr/rgbrbUa1P+tym3Nb82xjYyM5DOWElN4QyNvd3Y2tra0YjUbJobm1tZV4POKtYXZ2dpbKOT09jVevXkWz2Yxnz57FxsZGzGazpL8crJGPpaNz5CBIfx0s+dy9L5J8GAwGcXx8HEdHRzGbzZJcEq9Tp8oZSfAqHCNMIwApAC6nmAxb9qEbrDkjlvOPeIog2nGPynZdQyyWA5nsm9w8Fzmv5pwZXlbOMKZs5/00OtyRog8NDLXp/Pw8Go1GtFqtpJOFZxeLRZJPEW9xyunpaSwWizSPNjc3o9/vx2w2S86ezc3NOD8/T3NLdcs5pVVPn0OrZMdDIHc68XoO80RU5dx4PI6jo6MUwBA+brVa0Wg0khEr2XN6eprwtMol/teYdbvdaLVa0e12Y2trKzqdTjJ2NaekY2iI5TCUY2PxNduid3t5dCDRYHUbwrGZKIcDfO6xjpubm0n2n5+fR7fbTQ6DwWAQ8/k8hsNhDIfDpHuFUzSvxZ9si3T4xcVFCmS12+24vLyM3d3d1Kdsu8+3nMzQPMvN+xwvvetcuLNhW1fw+vp6dDqd1MG9Xi8mk0nM5/PkZT8/P08CXt5HNj7i7YATcIsR1XGMuAoU5oSl6poD9K4AnJlkqJL56HmhpyMnpKXIVH8Btna7XYniOtNysqhvcvWW8PP7fXxyAFn9JfDCvsj1SS66KCZvNK6jwpoMMn7VP1SsMqzJ/DTsrq6uYmNjI0Uq6WXV5FL08r4oJ8AHg0FcXl4mb9RsNkveeoFM8b3mhwQe2yfAubOzE9vb27G5uXljwpMHRBxj8QHLpmDlfTnjlnzkzpM6ygEqByxqY+4379cc3/I5zg0+yzLliMnxmgtfB3ER1+D07OwsptNpclBIoW5sbMTPf/7zODk5iePj4/j2228rHkk5pZrNZvR6vWQ80HstxSKePj8/r0Tw3aP/0EDOKmONQJj9rutbW1sREUlWKCNEcr3VasXl5WUlQnt+fp4yN2QkHBwcxO7ubnz22WfxwQcfxCeffBKffvpp7O7uxqNHj2JraysBGp8DrG+Oz39Ifzs/reqn296Xe/9t/7OP9Vd8eHFxkYyodrsdjUYjRS8EBhuNRsxmsxQREeBZLt9mV00mk3jx4kV8+umnaQzomGEdpCP0keHmQNHrz++aqw/FqI14O0+n02nKRGPGEjORIq6NYOprkfhRhisjJHJ4i28pP+vwz/+Puz/7jTTJzvvx8yb3zGRyr6W7q0fSSLA9mjEMyIBgyPe+8JX/St/73gIMf68MWbKNkWyN5J6Z7uqqripuuXPN/F0Qn+DzPjxvkqzRNOlfAATJzHeJOHGW5ywR4Xyn+txtfOZ8upzyLK28ckfZ5yvibuDR7ZNndbLrsjknaVBVtwFy9KV+7uNTvlRM4c790tJS7X54ljlEf89mszg7O4uqquLdu3exu7sb29vbUVU3VVsfP34s+n9rayuqqiqYb2NjoxbMU/6GPhnPu154Lk1p7QkT/z7itu8kQ8bjcYzH44iIEgCgwufjx48xGAzi7du3cXp6WiokcV7hRWhLRQ6VVmTQ+UztgDqn8IX3kd8qt8qzzI9mHbnPcZbzNt8pHztedn3Ke1WG6aMGatHV8CxO7srKSpydnRV6QU8wy2w2i+Xl5WITNjY2ig7HX2BuZrNZDAaDqKoqBoNBdDqdWl9dFzmf65iaggoZPynfPaQ9KmObvQQwCXDDmJ6fnxdA4tlCBc6a9VTnikimKnF1bhWINwmTMnLmwClT0lRYM4CtmVnewfURUXN8+UwNl0+iO8+8x/uuDK0Cl2XWdIw6Jh2H09v7oHOkn+HAAkCHw2EtEOCZWWd06Kd0u7q6ilarFb1erxgZBTeqjJ666bwRrVfnFn6HVur0MxY3Yqurq9HpdKLdbpdyEN7h79W/nfcdpLhydb53mXBDnznz2ge/P7sucz69aRDFn+WAzR1b/tfnK7ikjxmY9rEo/15eXsb5+XmMx+MSjCPgsLe3F/v7+7G/vx8//PBDiSTj4GJ8FbRqHx3AKCDM6O40far2UKOS8VzEbbm3lqkxdgXt19fXJVNCKScyFnFjZHu9Xuzu7sbr16/j5cuX8fLly9jb24vNzc3odDrFmVLdn43D+VZ5wcf7UIf3IddlAFz79FjnukkPYJ9p2GqCKtfX17G0tFQy4oD38/PzYm8BSNfX13FychIrKyuxs7NzBwBmctykv5v42QM6TTrwKRo6YTQalay22jPFDE0OXETdsdUlDFqR5gED7ncA7Doz+zzT0f48nw/4RvGWBtSzQITjiqxvqoezTI7iE32ev1evU9pmDro61O7E0wDuqo8I7uAEaFVDv98vGUHeAdDf3NyMyWRSnGNsB/wCHtb3ZThO23PQ/xG5bnMbT8vm8vr6uugXdEzErYN2dXUV/X4/Tk5O4vj4OMbjcQkEwJP8tNvtEjQgS8sysW63W4KbjqmaaKk2We2Ajs3xCLpNfZtM5pxv+VyDLBnWV52hGNzlW+kIfgODVFVVMAiJN5xbqhIuLy/Ltevr67Vqk6qqyu+IKLw9mUxq1VD0k3G6Q9v09316PdNd97VHlyJnyorfrVYrLi8vYzwex4cPHwrx6LyW0vKZprGZIMpyqP1WxU9EM1OINM9UqdJQBlSD5A4x92rZAP3U6AVRVpz46XRaIrVEdXq93p2acgXSgAzeB9hQZtWSYErMtCzbnW0dtysXmFbLJdQI6Hzqj67VpV/T6TRarVbNoeed9FP7dnV1VYSPvozH4xiNRjEej2Nra6u2Nm+RIvoxm/ItTgzzRVnN4eFhqVDQtcnn5+flGYB3svlVVUWn04mDg4OijH3MGR0WARX9cRCiUXgHH3ymwRZ9dwaQeI8rqqY5c71BnzJ9wvN8vFn0VN8PGFGaaJ88IuiRWQWlJycnNcNzfX0dw+Ewer1e/OxnP4uPHz/G4eFhDAaDAlbn85vg09bWVmxtbcXOzk6p2GD+iVCjfzSjmzk2z0EGtDloVhrSfxzRqrpZR8x4ycSiM8giVtVt1vDk5CT6/X4MBoPi2M7n87Jm+Y/+6I9if38/fvrTn8b+/n68evUqdnd3S4QeWWsC9U1jyv5e9Jl/91CH1Od2kT17SHMHgN8498g8c0I1VLvdjhcvXsTy8nIcHx+X7Pn6+nrRcVTRzGazeP/+fVxeXsbu7m50Op0SxI64DVJTsYJdgK9ZXsP19DuT4c+lw++zDQaDOD09jaOjo1JJ4OvIs7XxEVHoCn+Cb3RdPhhHAana8iyg77reMYbLgH6W6V30vDu02g+1hW4fIuqJC58/HcN99kzxCr/RLRq8VP3u9kKzrWAY+ucZZpwrpefV1VVsbGzEZDKpVWSdnp5GVd1ktPb29mJ5eTnOz8/j6OioPGs0GtWcK3UuPNnj71Xc7DR96qZVTxHNdljtLWv/p9Np/PDDD2X9PoEByrxPTk7i/fv3BQ+en5/X1rUyjziy6+vrsbe3F71eL3Z2dkpQU20AfK79hr4a9HN8q7zV1JTPNICu+Cpz8HimZqCz9+r8876myomIKEH4Vutm7THVOhcXF7GxsRGdTiem02msrq7GcDiMlZWVGAwGMZ1O4+TkpJTkE5A/Pz8vvgL9Ho1GcX19Hevr6yVYw/IqHZv7WvCC6iilYUbXz22/0xrbiHrnUQQ4eLrmgd8eOXcgrswICLxvPZoTyJW7f+c/SnSafoYzqYpQjYT+wNyAAi0JU8UFSMbgZUCnyXFx58HpkDn0jAMHWd+lz3PBy+gEMK+qqmRuR6PRnf47YFdFRzQURU+ZF9Eo7bc6Gk/VlNbwKBklQDhgpylTq/Os2XzAjjo6vHMR2HMgnvG7X59d41FGbR7tdr70QI3e09Tfpt9+fXZ/Fu3TPmnWyEv2Vak2VWQorTW6THkPQY2VlZXY2tqK7e3tOD8/j8FgUANfBOgwJgBXgH5Wcqdjbfr8KZvS02mnzcGagmlkXdfm6yZprKEF1Gg1CGBme3s7dnZ2yg+be2mwIOPVDAh8TsuCDk28nF3/Oe+47zvnG8aq+grgwfrBq6uraLfb0Wq1Ynt7O2azmw27eMb6+npERNHVEVGqGAjk6EYsys/Mmcpskxw3Nb/+qRt8yWaZEXczhegAz9Y6RlC9pVmoJkfUAa1ip/uwjeIulcWmoI/e57grC8zrOH3OlD6ZndB33idTzgfuTOm1asvATDoO1b9850FRHIz5fF5K6TVgDc4F64Fl2CyKEn7mH9oT/ATrZA7+c9D3D22L5gVaoW+UZhG3mXE2BRwMBmVtKFly5gebqqXH7Xa7LOHqdrul7Fg3OvMKuEyXOMb1a1R+fMx+r/6t93hAiM8cd2UYruk9TX3VIA105v2tVqusB/elopSKq/zP57fBSp3H0WgU7Xa7BBj0vYto7J81+TE6RtpD7cCj1ti64tEG8+CgjEajkrn0daWqOHVtikYIYU7d+AIlS8uyUjohTqCmKD7X6uJ+QAB9Q0Epc2kGmfuIckyn07LBQLvdrkU1icjCSFr/r5lP7aNe52v2dIzQzoMIAGrdzADFgaLVuXXjqAYR5cza0Kqq4vT0tBbx4hkIjDvZOAqtVqssTD8+Po43b97U5tQX2z9VU+eUDc2Oj4/j5OQkvvnmmzg9Pa2tucJ46hpCovCMaXl5uWT1yOqr8ouoRxczhZkpukyBZJF95WN3AmkKUJUX9LnatCQ942PvJ02Vm7bsWgUlWsGhMkbf3JgpIPN3KuBBFsfjcdmoiHVSbKyzv78fb968iaWlpfjhhx8KvyLflERtb28Xup2dnZU15ypTDsg8kPPU/B9xGw1Wg5rJpgYNGKPbh+FwWNYWdzqdoidOTk7i6Ogojo+PYzKZFB3ZarVid3c3Xrx4Ea9fv44vv/wy9vf348svv4xut1tAjW6202RIf9f22Gd+zveL7nnsdw50yJiyVnZtbS1ev34d6+vrZS3W2tpanJ6eRqvViuFwWIIGbID29u3baLVa0e127ziw2Be31/TPHZys35ncP3Vj7R8bYsLbAD8N5KoMeLA+Imp6RjeQ0gySYhbsOp978Np1rTumKreqMxfZimyDS9fZDkz1O21qD3R8alv0Xg+yOz7R4GDmILue0uewHKKJ51qtVtE5BDCwKwQ2dVOpXq8XVXVTeTWbzYp+q6oqDg8Py7OYX5ICyisaOGZOVbc+dWD/vqYyrXpA5wmndjAY1BzWi4uL+OGHH+L4+LjskE/JP8/GDyCIiV3tdDrx4sWLsmtvVtWgfOAZWQ/Ccp8HqBZVf3JvVVUF4+nzF+EdDzw10Zbf2fX6DuU1HNHV1dWSMSfRhi+gpffD4TDm83n5TUAH/YZO551HR0cl0KAbvyqds6CN/+1zkQXrnBb3tUc5tllkgA6h2H/44YcizCjtLHqhg1CFrZOi20374m9lMmceV+7+vyoQB+qZgxdR39wKJccObhG321eT/p/P5yWy5EyrClTXEGeZPW0eHaWPCub9PU108bVuPCMDpU4b5nV5eblEftiFjdJkVXSe7VOlgTLg3Th9OOCeLX+q5jwTEWW8apzUsUMm1HFUh4oydY6Y0Qx2ZnRdEfM5v9VRUh5ibjX6rsBHZcB5S4M2jEt36XRQkwWV3Fnns0Xj0JYF0ZR/uEblAHnSZzhfe2bZaa0lVKwn0efMZrPY29uLy8vL2NzcLGuwKJ1VmlEaRRZyMpnc2ekdJyOr4HgODUDJ3xrAcOc8om6ICZ6xZhZ9qkEJjisYjUa1dWhshHFwcBAvXryIly9fxsHBQezt7ZVose/H8DnG8P9fmvIo/0fczgcbeMGr8Ofl5WVt7eze3l7ZeAR5onyW3b3X19djc3Oz5jgTeGVOAVQeUM50WQYEnwv/9/v9mE6ntSorZAJa6rGGqmOwgRq49zWsTQDW6ZDhBNf9Tc9xO+Cy6/c5buDv+xwtx4s6BrVV+h1/Mz50vAZ11ZZhKxWjeF/dqVU7pOWV+kwcWvrIHAPsNaBH5mo2u12iVlVVqUrp9/vlOSyzYv5Zy0jSockWZfR8qrYIgyr+0fFwbb/fL3uyQGeqICaTSVmi0u/34/LyslamT3CZPRTYY4GM7cbGRlnq6LTSQLj6DfBPxP2l3pkMNGEgv89l2Hl6kV50OiMbKkc6XpUF3oNOZozoJd/wjioq5XccZU9AgstZNrS5uVmzLdrvjLeVZqrzs+DD59jvBzu2Cm6940qI4+Pj6Pf7hXk9NZ111LOwWpqjBsAVf8ZYrojVEWlybPXdTX11RlKwptfpQmqccu2vlzuroGVj80nGqHrLHAL/zgWSMhDdMTC7N/uMPrIj9sbGRm1tsTZVhiqEGHstweJ+XYerwvdUzZVQRJQyVY8eq1NLxEzHBr+QrUJpM684+RH1AJBnw7Vv2j/PlKDcXB5cUXtQh/fS5/vWj+kznXZZBI/vfByuW7xvWRDHwbvyYQaWVdY94u+OPJtCXV5e3jGc3W63BCeoUlF+dX4mUk3WjHfTZ11vn9HrKZvyrwYFssBIpocVxMEzGtSjDEoNLHJCdQjlx9vb27G5uVk7Ci5znrz/2sf7xvrQa7nebcV9Rjn73vk9k4X7npFdo3OF46mZKyLvm5ubZTORra2tor94BvZsOp3GaDSKwWBQgjY8X3UV4EiDGdn8NDlC9P85NN0wCr7UUwH40SyP20PHJZkD6de4LsiwGP1Rxzbi7mY22TsdB2W2rglDaGsKVOjfrouzZ6ludvugQQLFZHyf9VX1lv5o0FZ5Vm1IVVV3dgFHd2EbptNpVNXNTuPQH5sxGo2KY9bpdGpBTOzCfH57uoTTL/v7ObSMF9U2ZBVHOLEa5NEzftH9k8mkYEr0En9T+kqGtt1uR7vdrp2eElFfB+wB7Mz2u+7Wz2iZHPEux06Os/lf7Rp9UczU9P7MMfTrwHnaV8V+9BVer6qqVEteXFyUHZXBrophFQNyL/Z6NBrF2dlZyQS7PvH2EJv2kHsXtUetsXUm1sbaG0oKMqDpay35WwWdVDlnWmWlZe7kNjFRpsQ9og9hNWKHogGEVVVVzqeMiNqum/p8tnJnMxR2aKP/RAJVseK4Q0OEjegf52qqstBMKzTincqEqmh4FwCDKPrGxkbZ8psz3dQ5wli6geX/zc3NWFlZif39/ZjNZmXzrIioOf4ItNIfWlRVFb1eL/7wD/+wlHvybs5SfE6lOJQgsd5Ky09xdBkXZadqSPl7bW0ttre3i2JGGXBd5tz6/4vAURNYirjreCgA0ObX870rPJrynYMONTKa9dB+6LW8R5uPIwMDHiDQoIj2Q8EFitz7HxEla8vaWniSyoJutxsvXryIqqpqO18qqGdNEWVB4/E4rq+vi5wzJs3Y0s8mIPljNzJ3HoByMK1gAb2DfqHCQQNaEVFKz1hbxeZqy8vL5WifN2/exKtXr+KLL74oZWjoT44yeKhBva89lt4ZCL3vGdn3i+5t+myRA636l/9ZFsH6WADX+vp69Hq9wqvn5+dlyQxr33S5xHA4jLOzs7L2mWvVXiNTVDDA7000c73xXJzaiNv1aCwnwOb7ZkC6szeyQFZb9XxEPdNKQzZoShO16corer9X5SCf+tttgQaRVIfSH3+HO4F85g5Pk56+L+ijz3X9zX1k9Gjw2H1NMY6C/9nsdodYnqW2eD6/3RCPrDzL1JAf8OJkMqk5FSw7Ikiky5FUTnxDq8wmP5emmcdsfpeWbtbgHx4exvHxcXz//felugm7zLpajs9imU9VVWW528bGRsnK7u3tlb0tONpH/QStetMMMv2lMe9aPsuP4rCIqFUP8bnLj2MhxVUqS2rb3R/xADv9pO/u4+i79Bl6XcTtzvfofPwLSuJbrVZsbW3FxsZGjEaj+PTpUw3D6HPoM7Rj+R0bD3Y6nTuJHMcvGpxSneb6RTGQ+h8Pab/z5lEQRjcFubi4KANTwmdZG/1bnU8v0XEH1t+v9ytT8XnWb73fn41QODgHfGqESJkPhwVHZ9F6r2zcMIwKl06+C6A7Nihojwrp975plTJYFilWQ+DCi/PKUTUrKyvFEdVrNTPFvToWpZu/97FM/ftoOhZVdApMfEwZ70IXHCRopsDF+cWVmF/j12fOnoPIJlny1iSzmSHz7+6T86Z3Nt2zqJ+ZAl0kd+4Q6LXZ2AAiKgco3JWVlVpwAt3BTulEQTXiT9BMMwU4APB80/ifqt03r95UfqGfBrNUron+ekZ3ZWWlROe3trbKJiGs+XxIpvbHaBlQvw+83/f9Q5uDBv3bdXAT+IKvATxkSa6urqLb7ZZ58cAwpcaaLYmIGmDEjmo0v4lvfB6fE6jXJTEqC+rQKRjT8WoVjescnydtXKtATz/3azN99li5yHSt6ssmZ4a2SO9nf2f3OJ96/5RvHRg/hJ6KlZRGWj6OXb66uiqnFZAE0Pt13S3zzAY8JDum02mcnZ2V0lqXQV1e00SH59Cyviyi83x+cywieyqorYNu2EjkCxqyqSZZWfas6HQ6ZQkKdkCrf5paplcU02b8pkFbTX7ps5TvvDrxc+XUf9+HgZV/m8ZKm8/nsbGxERFRdp2uqqrwJ34cOF6X2mmiAHvOvdzjge5F9im7hu9+F77/LMfWJ5WSJo5q0EivZkZcqUTcRgEibjc10O3vPbrpzkKWhcoyWBH1SAF912v5XjM0Wq5LnzY3N+9s9MD7tfyY7Avf0Qd1enRcWp8OE/H+qqpqEWCYR7MezAXvIfIecesg8yxlHC1/1LXMKiyASOZM711aWoqdnZ2YTCbR7/eL8td1KnoOls8LhkQDGtBE+/PUDZoBwMkUcTSG7pjI9dAU8I1i4Mw1DsXW5zPnEblTq/zbpBA80+fX6v8aEXMllJVI8R19apobXb/CNcqr/jyAoD/f36Oy6jTRe/W++4wvfXJnQ5U5UXxK0NAPa2trsbu7G8PhsGRzKdEhm9Vut4tOwKDr8Ur8kBWivPM58L025yHmwUu6kHui6AA8PftTZWI6nZY1jACg9fX16Ha7sb+/H3t7e/Hq1avyN4EEjtFQWi6i2aLvfxdHU3nJQcl973ponx7Td62MgL+1VNazA8wH5X7z+U25vG50pvYDnX59fXPc2Xx+W/kAOHUZJ2jj+lH/BuBr3xY5UT9mY/mA2n13anFm0Bd61Is6YVwfcYuBsoxFxK1OJzh23+Zo94Hl7B0emNXxaB/0OW6/uU6vVwciuze7JwvAqJ53fQ+/6NE+mZOh72Js/j53YqA12XZkYTweF54niMkRZmyKx1ErvKfX68X19XXs7u6WvkN37IZmnZ+bU9vUfJ6U3mwI+O7duyL/2Pqrq6uYTqdls1mcLLKwBwcHtZ2Pydj2er2SYdQsrfMv71Hdojyr/dc9MbT5iSxNfoXrKL3Wm/svNA3WNNFWP9O+8Lfuf6IBYvV1uBd/g/Xea2trMZlMot1ux+HhYfT7/VJxpkf3gXN1LgeDQU0u8EUcU7meWEQfpW3TtU3tUWtsmxyT+fymLOno6Kiss9QDr9WYeec0K4oi8Wyolpw0KW6fYDeq3KvP1AgM3yMIlLYp2MZpJcvmGQdKL3TRO/RB4dIHLaHRvmlflG5splRVVe2ogUWRSXf4obGumVJHG/rrfRpt1s89Y7m5uVkUDpsp6PNV2Hgm5Txra2tl3YSuydYAwHMB+AA3XZc8n89LlEtBo2YmUADMoW4apE3BuSoifZ+DFb3OmwMMVygoKFVU3h4CLBlzVjrr79fvMl2i92VN78nK1BRoRUTJGGrfFGQ6bZXPvVSI9/EO/scYr62txdnZWTHYOGo4si57EXePAvGo8HMEOM5/0Icyp5WVlXLOqYJjBxo48+PxuJT0RURtR+m9vb3Y39+PnZ2dEgjSMz8XgffPGdPv0h76DJeBiNxxza7T5vLizoH+zn5cTjRr2+l0oqqqwsMEr9Ve4ABXVVXbldptPuAfZ8DHmGVqVQ59rE/R1H5netqrEnR/EF97m+ltnwvooWWv+p06Xlkw3+VC7XkT/zFO+tnUVC+pnsoAvv92m6hLQHzOVR/r872SKHPG9V3+XncYuMdthGZ1W61WOXeVBA7VieAy7mHd7dnZWZknzg/FgfbNe7Q/2diemv+b+uDzDW9eXFyUs2k5MxU5IYuN3p9OpxFxY0e3trbKTrusqWU9LckAKgQVQ6mu0wCc8wF9dqyWjU8dM5ep+4I+mf3OsJvjJcdOfOa6XWVfMQT3LXomAXmWErbb7aL3ocnq6mr0+/07Jd3wOAGB2WwWg8EgIqI4uLpMc1HLML7bJfdTHtJ+51JkOkK2TtcTZhEzJzCAmh8Mq4I8lIA3ZZ5MqTddq0rLU/cANH7jsBLhYPLdkDAWjkpQAEtkW4/s8bLeiLtZNZ1MdYYX1ZwvCkDoO1DEMGyr1SrMqBl2jw67gUJ5UB7S7XZLOUMm8Jplw0FnTTXlEYzD5+6pmypDzXwwt2SaMgMaUT86R9dW03ze/G939lXRZOBPgYAHGPSazIA+hN6Z8nHeXORU0zev6MjG4DTyfjR97vcoGFUj4XLIfSovmuFwx0HlHgeNzWbI7mowy5W1R56fA797a6KjgwXGwzmoeo+X/pGt1U2jqqoqx6R1u91yJBZ7FmjpmTsZ/j7v96LvnAf9uQ+Vi0XPa/qevjx2HH4Nfytvqr5q4nkFpARmWY/VbrfLEiOAjPaFyiD2aEC/0cABOGg6lsfw+1PLhPI8TTOIDpYVx3iGKJOdRe/VQITe75mYJl2pAFgxS9P7mxwYB5YO+vk/y7rr/zyf6hWcOw/u6Tj0uRqY9L6qfncez8blc+r006VCyAS/tSpOHdvz8/NotW6y9yzPYj36bDYr+p65zfqhNFN6/r/QwJcc33N2dlYCnVq6PZ1Oy7m2GlCj0oFyZKqecGixt14JB53csY2orwsHi3Gdr2n3sTTpLb1Gfy+ii/shyq/+DP3Mk0X6PHds3fdSmxBxG1xrt9ul8pDPCWJWVVUrSXa9pX7SZDKJVqtVqtR0LpymmV+Q4cWsLfpO26M3j9IOwKTT6TR++OGH+O677wq41xJGVfbOeBFRjKkuBNcNpJgwnRiI4Q6TRxmdeVzpUVqC40hGk4nBGCv41PMc1ZCj8BA2HB5KTFBynklV2mQOK+NGyLXkFeFGMBU4UhKtDTpeX18X55voohpIlLRnRmjQkFJkBOLq6io+fvwYV1dXMZlM7igNjc6qkfLItUaJvCT9KRs8Q+lRv9+PT58+lRLSTPBQCsp/WtrNcyMWO/F6v1/rikPLBzGgGvHXSgmVU57bBH757QpWr9eMtt6n9CBzr2CoCeS6clb+UaDtsq3PVWWstMiMmDfoiS7gfDjlXwzy5uZm9Pv9uLi4iNPT03L+7fb2dm3uZrNZKW3U5Rf38cBTNs+cVFVVDKLqXzaQYImKglc/G/Py8jKOj4/LET/omuXl5Tg4OIhXr17Fy5cvY2dnp7aDuJYfZ63JCV0EQO4DKo+dkwzM3/e8h36mzWU/oi6P7hhxnQbaFCDp+Yfz+Ty2traKvY+I2po4NhhZXV0t2StwgUb24XfsjgKlDNS4c/ScGn3TDC1HguHcLy8vlw0dwRLoCWiiOlCrpdwB0+C+VvqoblPco3OuGMNtbAYiVf408658o/Y6A9oRdcfT5zebb7WR2Tg8GaC8oVmqrC/edJkP93qgWseMnmHdZ1VVRZ+rXbi+vi4BOubw/Py8ZMFGo1FUVRWDwaBsfMdzFV/pu3mOOj7PqTmGoE2n0zg9PY3f/va3MR6PiyMFfdn9mPPK0e1U6rBDO2tqd3d3Y2Njo2RusTHqYGXOn/ZLK7Mc07ptdjymPLsoIOVOaeazRNxiXnW8vWqAz+ARfR76OFu+533XAIqvY6YC9fr6ZvMzHFT6z8kf+AisN3e6sfHtd999F61WK3q9Xs0n0aCq8w7XNCVEPgcLPcqxzQDXfD4vW56PRqNCOI8wNnnsEFh3NcuO+tE+ZAKe9SvL4mZMqaA5ou5o8W5dz+pGhe8zh9X7qxFWZQ6lrTuQvEczOhhVVSyZA6/PcwXJmL3fmWPhAQPu9Qg/CgdhwpDxXn9+Vd1EjTD4KgD86FieqjkgZH2IRhzdCXQ+U3CRBTAWjTFToPeBeu2zfqegx52VbLz6vSujxygdH0PWz4wHVZn7GJS2Tu9FitHnyv/ntyvaJqOHDLCEgXUpHGPgaxuhveqCLFr/3MCMjt1BODpQj+qCZlSH6L0EiHAIZrPb3dAJEnBuoZadNekp7WOm4xddl/1/3/2L3pnxFJ/p789ti+5X/lc9qrbYHV36qICLUknAz+XlZdlER0so+Z+sS5PTpH3xvvq4dHxun59Dy6p1fIMtrtOW2Xz/ibirnyLq2IFrVI9ncqGfcb06gn6dY5OM5lnf/Ht9Z3af3u94K3Puud/5QK/zv5veqdcu0ut6P5/5cjkN3il2YSOp6XRasrSaqSR54hgpy+4vovWP3R6idyKiLM3Sc58Zl+qLiNvALplYApe6iR1rbfUaL6mPuA06ZYkwnWfozXXZGHjeInnya7PnZPTKZF7l3N+dYZJF636bPgeHNzn1ETdHGLJDNXslMSbHj0pzx8QaxHNbo011fpMMPpb3H+zYZhM8n8/LbpbD4bBsHKTr0JSZ+UwdSDIaWl4AQ7PpgiplHbwD4QxM6OTyTncguMd3c46oM4/W82sf9JlVVaVGP+J2e3rP1jmTaVOQQdPSZi9x5ncmHPSHvmsZcmZwlY5NxpqxcFTEbDaLbrdbyjFxfr32n7laWlqK169fx+7ubiwvL5eovma7M7o8RYOfKSs6OTkp5zZnSsUNdMYrqmD5XNfcZDJEyxR7U789Y+kRfH9+5gxrf2nqlKnC03fd1zKwojyp2d+me1Th8gwdP9e4c+GgKJsf+uNVJq1Wq+wCCPjHCeN8uPF4HMPhsJQkU+ajGzboWJ86gLOouV5UsBIRBeyhs/X4MsqyGXur1SoVD8fHx2V9OqDmxYsX8erVq3j9+nXs7OyUkqls/bH3cZFBdIdJWxMAeUhzfXnf81wnP1a/ZbbYG7YHUM1n2A0F46qHqEii6kMzjqwZ9AqN+fym8oeyNq0OoY/qCDqI1+qiJno8BxsQcUtDHFqOOoROupsudNJlCIxdl6NkQJd3adZGszPz+bxWJqiBH88Iqe1uCqq2Wq07O/QvAqP8dll0/Q2P+Nh0GRh08OoifZ8HRR46V449dWxeMgmd0fdu+6jMY+kUGEUdVy3NJ9C5vb1drh2Px7G8vFw2FGTc9FGr1Z5TMIfm8ulyW1VVDIfDcq47+JVjEtmQjvJk7CC8jSOr+7Zsb2+XbC5OryZLPHjH/DEXYM2IehBcs5n34RXnX/8u+z/zSZp+smuUd/lMy/UZW+aouq+j/oHugQTNoCsVksvLy3F4eFhL3FRVVebUj26bz+dlSerh4WGpSvCApgccFJs6HdBXj5WDBzu2SiAVdohDJApljtFqYhaY3aMyOLa6eZQO2p2FDGx7P/X9ENSzI2qAFeDqezMA7tGLzPnY2Ngo1zEud1aU6fxZGllSEKIbLSkjuzOf0UO/U+PKde6cZKVMzD39Y+H/1tZWjMfjQu+Li4tot9s1o7u0tFSUDpvCZM5vkyH+sZvOK8J7dHQUo9EoIuIOv+g9mcKBpgp+uMcdtkWlMfqZ91Ofl33uTqBe53yif/sYVR4zoON91+uaHLmsbzreRUY/G88iWch+NKClVSUeTMDQkK0FyGjpFQ4t/I6+06MKsoBbNqbn0NwRV5oBjAGNAD2Av2ZkiOrj1GJw0SO9Xi82NzdrOx9rYNH5M6I5a7PI2aQ91MFcdN3nfJfx5uc4ui4jagd0nvhRIKh6RR0vnCccADaUUsAIOOJ8V61ucpuDw6ffR9wFbk1A8Smb6j/oR4DAy1eVLhlWUVuvjqrSqen9Tc11otvrDFfos52HMkDu2CJzcDIbxfuct6EFtMsylo6zXJ51PtyGeaVCZjO8r1yTYS7mWYMMVClo8IhdZNk/gIAmZbhaAZEFAdQ+P9aZ/zGa84nKMTshDwaDWvIEfaI+Qrvdrl2DDVhdXY1ut1scW6r6NKMLzQi0IY/8rXpPfYjMf6DvNOeH+2QvwytNcuA08/dpv1y+FN/TMlzu/6u8qH7VIKViWM4a3t/fj1arVcroNeii/eKZV1dXMR6P4+TkJA4ODmrBMqUTfWNO1L/gc+SsCdsuao9ybJsUg4I3XbejwumMpCUdWnagO156dN4NNM/LnEEnnjrEDooWOQsaVfRxZEYg69v6+vodY6JGj88URLuQ6fvcCecZOp4sENHEGE4/d2JUwboA6loq1heza50Ce6Uh/SMj0Ov1iuObzeFzaDqn5+fnMRqNSoUCn2eOmgMNdWBUEbtBzn4yYEHjs6yMyQGB9ikzmhng9bHQlyaj67LBM3SOH6L0XTFrnxcZBn9W03vvo7WvY1EQquOhEkMdW3QVaxGRFd1Z3Zc2OO8/B0CvzXnQDayXIFPdwG66nU6nyICe88u9OLY4tZ1OZ2Hp2aLmvKP8nwGXRdc5rzWBnUWAqMmGPGRM3hcHZ5kT4jqJrJkCfg88q44CiFJuOZvNygZ/VGZdXV2VcjWOB1peXq5F63kn+oKMrdJCgWjWMtn4sZvbRJwQ1+H8eNYxom7jMxlaZKcX9anpftdz/O20XvQcx0n3BeA8+RBRXwerTZ0SfcYiO6X9aeqzz0dmp5T2Oqamqh+qTcCTmV2gsd8GaxQJDl1fX5fdlFmv6PhLg9/qlD2HlvGq89bV1VUMBoNyDBh9Z2kDmAnMCE1U76yurpbNSDW4iX3V/RWUh6Bz5i804fyMz/md8QLjdDrwt1/bhMWbMFITveE573/m2Gb9bZJ5fuvywW63GxERu7u7cX19XfbN8f1T1G5HRFmWOhgMyi7gWnXruC6ivkTPZdb57aHts9bYKqNWVT3yjhFUIniEoapu16S5U0tkXs+xzQapA3VGUcWYOQP6LFUoamxcOTtR3QFEmDLHIgMZzrDcq04ufXXFzHPYjMWfp9f7vTquzADRfF0zn2UGC3AOKN3b24vJZFI2uhqPx2XTF50rDW54KU42J0/ZPDPNDn1VdZu9iKgbYDd6GYhRcK/vUoXq2TyvXlikgPVd8FLm2HnftbLBFWKTI6a8VlVVDcy44s9kS2XSHVL9XiPji3gjMyLQTrNFuh5HgY4DjmzMeg36jHv12DKuZfMLDeQobzTpm+fQPHimOlbPHteo+XQ6jeFwWDYQ6Xa7xTYMBoMYj8cF3PH91tZWHBwcxO7ubgl6NW320eRkLwIJ/l3T/4ue9xB91HTNQ/t53z2LroO3NCLvNgdH00vF+B6djN6OiHI8BPowImoZGN0Y5vr6uuhIlUM212G9LlU98AC/n1vTceDI627RGozHsdWsLBVqBLQyzBJxm7WjOX5R3ajZccc3WeaKpvhFgxnKI/pMtQHKK/cFm9wu6RiUrto/1S0aRHCdmGEi1+OZHnX97Z+7s7O0tFRzlqqqik6nU9trgznjN9WLJycntRJadGNVVSURsL6+fsfOZXbmudkExR7QnyWJnEtL2bFvsLW0dHNE5HA4LM8CQ3Ju7f7+fglwgh81MKp8gTyhg3iXO2PKx8pfOi9u89UmL/JDGEdGJ/1bcY1u8qnLAPxet7c+B/xoFaeOYVGfsK1sBAkep9R+a2srrq+vSxZed8d3P2FpaSnOzs7i6OgoPn78GJeXl8UGKV012chnmX5S3O36aVH77HNsI26VgmYkaKqQvMFcgH7dJEodJQcy9EOfo/3jM2eGDPjoMxhbZgTuUybK/Fm0JKNb1jeuzRzoh/SDpobEIx+uLO9ri4CZRmz4Yd4otUSR6y7OOqdN5Z33vf8pmq4ZY8e+jY2NWmnGoiBIxN058TI2ByRN8vOQ5so5a5ki4V7n6UUAIXuHB36yd2bXPeS9942j6e8mfUHLgk5N71LZVUWtukvlQvugfB9RP8v7oWN+iuZ6VYMeDuqhCUtUlG7wNk6BHoGG7qD0LMtqN+l47eMivv+x2+f0Re3KffzoskNropcGWjJaYv/4X+00Oxqvra2VTXAALpoZZu25AhoPnKl+00Bak+546qayDmjWI/N8LO6AaiWaB2V4/qJ3N81n9ltbBhr1d3ad8pLKtN+b6cOmPjTpN/jEx5qNJ+Ml/a5pTA+xyfq/v9dBuAbyHHDDwzi4k8mkrDfVfVGocPREyyLc9RxaE6avqqpsBgjm0+SJYhzfCybiNvune+0QHNYSZN6n+sNxu9pcp68GaHwMTbKify8av16byYN+3tQHf5/LTcafqru55iG+izr7PBM9X1VVdLvduLy8jK2trbKfgO4vQOBC5QC7z8Zp7BT/kH41ff9YTPSozaP0b5hzNpvFcDgs5x1h5PDo/V5V8mQ49G9+UP56X1aOooPGCDvw0r9dEJTBAJi6vk6v5V2ezdLJ0H6rUnXmVBDMNbrRh4IEHy/91e/1mmzjAS9xzgyVKwqlRZPAO5hfXl6Ozc3N2Nraim63G9fX12XxuZYszGazkvlkvjMjqWN9ysaC+YiI/f392Nvbi++//74srndQo8occBNxO1+AQi1LYq2OHqPhdFfa6GZGOkcZkM0ULN/Tsuyo7ojHs/S93qcsKNTEuwr8tPEslTX652PLgIvzi8qj/tb3eR888+6RfXVceb/ulqlVDO12u9CSyDWbR1VVfZOlDJw9p+ZZIj0izdfSkM0Yj8dFNywvL8d0Oi1HPVxcXJTzDZeWlmJ7ezt2d3dje3s7ut1uurmW6vj/F4Jin9OXhzg7i77PgDK04jgfmsqHAkKda673DaXm85tNo7gHO3Z2dhbz+bwcj6L98SxORF0naFXFc2vwNeX1bIimAU4F0tCPHV03NjbSEx98vrIMplcv6bs0sKDNr3cboU4Yz3Hsw+8MH7ht4neTM6mfefIiy+7SF+jLc7LmdHFM0zSfi57Db/qh2UL2D2DTS+w146ckl6Unr1+/LmvUkRGcAx1vRttF436KltFtPp/HcDiMw8PDIv96NN7l5WVxlpCjk5OTomtWVlbKplGbm5u1ak7+1/XMLIfQwCg00kop3yRVdSb4RitbtHpO9ZLLEk0xMN+5n6HPUrlrwrxNWGVRP+iL9gFa8Q59jsvH1dVVzbavrq6WasSDg4OCScGng8Gg3M99yrvD4TCq6mapoZ+UkgVzMgzkPspDbemDHVtP0yuBdHMJV8h6r2czIIZGv/zc1GyA+m6a962JUXxMGbHY5ESJ/BDD4c5F1k93cr3MRsG8A/uM2TOHM+tnRgNl/szRZUyabY2oC08WecZhXV9fj/F4XBsvRmE2m9V2UwYAQXcvX3gOrdVqFSdclYUqLneAGKdepwpHz4NUGcv4VnlLnSpXvnqfP89b5gj7fGV94L04JHpvJgNNY8mA0X3fNT1DFaPLn4PFrF/ulDs91UD6ParPfLdTeJ7yRQIZlF9q358TeGlqTbylfBkRaUZLd5LV5xCV5+xC1lLpPLpT/Rwdn6w5H/0+dZq/h7nQ9a76OyJqekSrB6AvgKSqqgIE/QggMvD0QQMbyIPaidlsdof/dRMh+sV3v2+6PaSBc7RCTQP4NMU7yq9a4aC/M10VETV7m93TpNszvYte1qC52g7PSDLPygdZy2yOYxpvTdioyZnT56mz67o/sxt6XdYnf6fbYB0/fKtAXnGrzgX45fz8vOyazVpbDY5cXFzUsl0PdXCeqmX9gC6MczKZlHm7uLgoiQ12Pl5ZWYnpdFrbUAuchA3Q82qpjtMkC45wkzww7xr4bMIVrl+UJzTA4/6Ffu5YXemVBWR4nzqDfp8/E150f0Rl2JMG2lfF3srb7lTqu9bW1qLdbpey8fF4XI5w0jXTVPKoj6ebZnoSQPFzNm/Yomxj24e0R62x5QVKMJRgpswWgWzN8PHjm0bdp7T0PcpgixSEXhdRV2QKWN1JyaKVOMA6VmUymjNZNi69tsmxhSm1D9k92h+/pkmAmgyKKnMXfsbpmT62wtfdrfV7no/gsDkA3wNgXSk9dUOZqjKMuF2j6YIZ0ew4quLXdSDZmmLnj4goSoS/vaH8mxSyP9edE5cjvUbXsDQBNDcmWf/0x9+RVXvos1UWmsat79E+Okhu4q1MLnXOM30Gj+jad/qruwTztxsWH+dzapksKq39GuVrtRXsyeCOLWvROAvb9UbmKPh7H9MyPvhcmi9yXt0uPfa5+gx/nj7Xdb/yvVZauIOrQKMpYMd7KAUkm3JxcVEi+zpuDeS4TPI92S7tix8hkdHiqRqOrFbUkKVzB4rxwq8OwFVfeNN51Osc1zThG/2tfMIYIm5Brv7W92d8kAU5/T59B81l4TEy4Ho3e6bikya5WBQ0zGyVjtnXLUZETRepY6vfo/tw7ghqwvtsLOXJHB+f4sXn0DI9SWUe1Thcxzr08/Pzchb5yspKObtcA58sRWHTKP7e3NyMtbW1qKqqtvGcnjDiMuIYhv5ktMz8Bm1N/JphfMXFitWaaOjZer/GeS6zwcr72YZ1Ogb3RTx46I782tpaXF1dlY0c2+12TCaTsqcAAU02yNVd8TXDq5U/bseUdiqvGd0fKgOPdmyVCHjt29vbZfdKFL0T1R1ZraPXI34obcsiDw/pE+9bdF3E3ZJRPvPJ1olw56Wqqhq45xkovYzZvFwvEz5d7O500M8QamUMBTCaTVLGdUbiWZkzoJkRV/yegYeWZGy73W4MBoOawqGUJOJWUM/Pz2M4HManT5/i6OiobDoAEG4CAD9mY14ouSfaqoERnR/o504fMsB4cHSI5EY0VxJwPy0rG1uUDciepVE+p3EG0CPqGRx38LhOecUdYH2WvsMzAwpSmsCxNgxFk6Ol+iEDhUoDl281mDjVAJT5/LZqBfog5wQvkGddcgFQ1hKq59woC1bnQw0QfAyQYQOR2WxW7j0/P4/BYBCnp6c1WnQ6ndje3i5LGJCR2WxWK3f2fRi8PdRZzT6/z24s+j7juYc+u+kdTfKnf/tnzuPO2+gWbExE1KpK1I54ZUpV3Tq2a2trZb47nU5ERO0sV/iCjaIc+Kv9UZ2lGIHrMmD4FI0MBWCNnW9pauuhn+6ArusKXf816Xpfk5td43TVuYy4xSTKT66PteJOn8WY0M18n5VF3zcefaY+S/Wq8yvPIjDotsptr97L2PUdjul8HtQGKX30b/gbvLq+vh5XV1cla6UZqogbvTgajeL09DRWV1fLZjzn5+clOKSBfK3eem5ObdaYHzaQPT8/L7TCDpydncXW1lZE1OcG3EOCgzPLKUmm8k/nhblmUzudfxxlSsOxy8r7eg8yzZxm1zU1z6a6Ts6Cvu5cq8wpL/t9au9cvtA17ijS0KX6LJpucMd1bEqrS6tYUqTzO51Oy0Zh2HKCF2Ci8/PzOD09jW63m+Jh5ox+uW+CHKhefUj7LMeWDvHSjY2NAj60NEcVmINDJsPXm3hmRd/n7aFAwxV607XO1JmzrIbWwW7E3ZJtf45GSflcge2i3+o4MdlNjr8yiI6haVzZ3/7jRkmVt/aBchPfFdZBF/ONwq+qKk5OTopjS8NQ/+IXv7gzzh+rqVGjlFINrV6TgQelj/Ogz6srv2yu/H59p/80KQO9xvvt4MPfrwD4Ppnye1VmVFlnCr3pfx1Xkww8pC3SISorTc9X8IdxVIAecQuEVF5dNiMWH6n2HICNZil8F0nGAlhhp28HFYANjndAV7CWik1CMh5+SLAm47tFYOWhjq8+pwkU3yfjGY8v6seicS7q56LvoHlEPZDE38yXNrVV6njyQ8ZW17+5vfIyN5cJ9EFTxoHxPGXT8bjuj7hbraU20gPATSBVQV3Td9l9/r33yW0vf2fja9K7Lo9N/Lno+SoDrjua5E0D9E3VYxmtsj7585vafXZU55NApuNXfjRDS2A8IoozuLq6Wsv8N2WXn5r/sz4oTtGyYj7TDbJ8Hao6k+oY6RGgvrmo6lznC9c7jp0yvnQe9Hd4u49vmp6bYSy/3ul632dN1ziG+By+gd/Jsm5sbMT6+npxXElOgnEI8mkGWm09gVBN6ugYMj/Hx/SYsTzqHFserFHf5eXl2N3djU6nU0oMNBocEaWszJUEEU1+VDn4wJXgTYNrAvIZY2XXuzFWBeoLn7nfHbyIKFEjZ24E3WnAeFTQeYdHV7KsXib0XJNlYp02DrZdeJSpdOwaSVbwQhSTtRFsIKA7Z+tZh//jf/yPO5ktxq6l6f/u3/27dN5/jKYHgrOWRDdQiYgan9D/JmOrEXKdHy+r4nM18jpHCjgzB4A++fvhSc366jM1S0/LsgMZT3Gdl5P4ezQgFHEXGLp86rPgPeilG21lwMyb64RFcqF0hO/1/e7MIQPtdrsE+1hrNZ1OC8Ahk0M/VP4zB+OpG1nXVqtVIuFkUSNuN+BjY53pdHpnQxUtTSPj0ev1Ymtrq1T+sCyB7LDqAM94NbWm+b8PYGT3NN173+ePuea+8dz33Ic0lSPsE7a61WoV3azlgRG3gUW9D6BydXVVzrbtdrtlI0muJ8MLmFddSfaTd1CmTkki9z6XpkCt6RSIiGgMzDQF8bMN0PR7nh9xt1JKm16bgXPPkGogzXGEZoH0O3+32x8+8/sUDzXJsPZ1UXLEEwv6d4ahlD5uNzN840EIpTvvAK+yT8j19XWpWHSMh07s9/uxuroaZ2dnpUpiOp3G0tLNESk4yE129bk17ac6tfT76uoqRqNRyQBy5BHJLz3bnXW13W63/PR6vZKtVT7zMnnVJazpjLi1H9zjATYasul+iweam3C2fqaf+2fKE02YJONbaKmYu8knynhHjxTSexxPar/hf/DJ9vZ2DIfDmEwm8eHDh1heXo5ut1voTTYX7MP+Cq1Wq+wMjl7HuXXd43rL9VLmyDe1z9oVGaXm68NUqTQBTFdumrnNQLk/I4vE6D1ZhkxBf0aYLPPgDOYRZx2PNxVCBXWuqFx56/3ZeBc5s9n9TYbPQbvel42Nd2dBh6ZnR0St1BDQy854CABl6LrAXueWeXvqpuPLlDj9VFnQuXda8oxFUUZ9t/KAl+y6rKiSc1nIZDIDGpny9pY5vzQdszuq3s+MzrRMZr1vTUDOn7PoXYt0DffyHubXlxvoD98DYnF+J5NJtNvtuLi4KOfGZQGNJvo8ZWOzHy1FhyaUraoTr9U7lJyxkyVGc21tLTqdTlm/o8HNRT+LdO8i4/dQ4/gYI/qYtkjn3vfuRYDJdYzqcb2P75hHfZ47DWoD5/Pb9VP8TaYW/a1gfz6flzVWqmMi6udGE/hQeYHPmnTSUzX4G0CuzmxEXl3ljhO/1VF1R7BJ52V2P+OVh9LpIWA7w2H36WPnt8ye6XX6uWbhMnuY4bum/vKMiLsbWmVzoffr/9mSK8dHOg/ueM/n8zsZW55DMJTPMr5ZhPV+7ObYNOI2e828EfgkEKQYkM9Yi1tVN0GyXq8XnU6nHPXG7uHQXm2kvltxkc6j24iqqu4sk3SsxGfu0N5HhwzneB/1c++XX7/IHnjw3/vptsH709Q3p5n7GySrmCPmEBs+Go1qVThVdbPEkMC+YiPsTBYcUz9SAw0PmRNtn7V5FB1Shm6KlDUpIRxaLUfO6sjdQDuDZ1HIrM8ZcI2oT6xmHlyAAWOZwOhzdLxaWso1Ci6ceTKmVOC8SECyMS0SoMyoZEBfn9n0Pn8uz9ZMPICWheS6/mh9fT1ms1ntGAqY/7mBe+Ysc2z5rXza5CwBkrx0p8mo8T2/eU8TyHeASvNrH+Is6DPViGeRe/1p4il+UG7ZWDPA1URrj6z7sxZl+PydOh6XcQejblQ9uKe796pjy/ps3pGB5GzunrqdnZ3dWQejBoox6s7PXEc1BhtPqGPLhlGAGQ14NpX3+Zwqv2WG3vlxkXzdp1ez5/p1i/jN7cB91yzqUwZ6M7r4PZol9Oys9kGDNFV1W5FCdonS8aurq9pZk2SlCGSqruAZfA/v87kGUJrWUj9F052QVf+7Pc30ePadV34xLx48dhvexG9Nc61/Z5nVLGO8iNe4N2tN49X++3UZzkNnOp30mdhh1UcRd9fXZo4PTT/P9ArP0x+nhQexHRfAMzi28PfS0lKp9GEznoxvFtnkH7tlPK0JLmioGyVubGzExsZGrbLp7OwsxuNx2UAUx5b9Wdyxxc5kMud4jD6ozsehYgw0bJjzgM+hYi+lxX2y6bRTOjVhcl3C5E19iqbxZC3DEvCqJ/4yPqYyodvtxsbGRllKhA3QeeAZZ2dn0Wq1ahvt6UaSjhU9caCfuc68r332GlslGPXwDDCifoQAnaN0Wa/RUmTdIdEdOweOWT+UybKIb8TdaFoWZVGGzoCuXse1vg7ABcGfmW0YkylsB3SMgXszhwQH/T6F6IagqTWNVfujmzwBSnR9BPNKFIfPKUf0tXjZ3Dx1A+hRUrponZVe76U0Go3SHcU188g1WmLroEQ/j7ihE0CS//UzjXYrfZuCNf53FjXLlLv2L6JeTq9yp3Tx92Xv4Dt3rgDaXAs9tXx1EeDKdFWmS7Rf/NYSKC2zX15eLlF4zWABYrSvTWXHmTF9yuYOEGMDyJydnRXHnQAW13O8A2XIV1dXZcOo3d3dslGIBjv5jW3wnUMjckBxHyh/6DUP+f53ec6i6x5yTcT9TvSi+yLu2i13IlRHAL4jomRo5/Obs2r5zf4DABnOhNSNqMjiqsyhKyOi8A79zAKET9E066Dn8CrAjrgt122SW8brGWzHCOrs+vhd7/IZ+qQps+kOWtZcplRfu5zpcwDJ/pn2179XIK06Xa9Ru6MbnrnD7KAfnlMaZngyw5pKA+ZK59X7Sd/UpqvTEBE1/adypHsO6OaamS186pb1RWWdn5OTk3LMjy67ms/nMRqNYjKZxOXlZXzxxRdl08Dt7e3achQ/USPiNiEWEWXzTg84aWVgRDTaWOUDWpMDqM0xzn16XHUB/YCX1B9yPtS/M/8DOaeMugnDqX5pwkHgVPebFCNRgdntdmtl5gQ+Ly4uYjgcRrvdvrPRHjyv/qLrGXWwachiVk69qD3YsVUQmU1m5oAp4Ry88uNReb/HAS73Z6DvPibLJpbnRSw+rNv74P+7MnIaND0ve07TmJv6wPcZuLsPePl1D2GezIFRo6IZF1dMCJEb8WxuHwrufqxG31HkmVFUx0rv82v8uU1/Nzl+fr+Cq4dkX/V5GZBpep8r/ozvXFc0vU+fn/E5nzc5MpotVDqojrqPDk3zkdFFx6V99vd6tjHi7gZSDwUtzwnU0DRzjewSncdx1yCNAggtT2bDKC1hhWZKP7cPj3H2mv5+7P+PeY5/fp9d+pz+0B5Ki0V2T+dRgbvyrup11e9+lqefbOBnVSK3mY6EL3yt26Ix/JhNx6FjaMIV92GYRdd5y+y/85frI9ezi370HU06M7ter1NH3HHiIhujz1cMlgUHMj5QPnbb4z9ZIEXbIvurAWR+1LFVvvDERMStE+u7Hnv/fFzPgfe9OV5zx5KqHc+k8h22m6N9yOqyJ0sWxKQtonuTbom4u6dHhhf8PRkf6/f+WVNT3na+asJC/h7+zv5/iG1owpFN97rsovNVz+OkEjji+LdsTuAR5iGbJ6eNysSiyjtvj8rYutLgJXpkiUYh1IHJFHpVVcUIahmwZjR8YNoXnk+0QhVhpiQ0CuwKy6OIPub7gKgbG//cn3FflsYZWK9VwJGBd2jhytefu8h4ZZ/7s70P+j2ZFl8PClMT7faolSpBnvdclDr9Zg2hl6NpSQzHuDBen38FhV76oi1TpNr0vUTV4HXeqYfHewVCU2WDzm9EfdMSzUxoP7xP/nk2nibZ0v4rCNExaFYCsKCRS+juwRV9rkZsm+RE++bzpJln3s9xOKrAdQ0V41OHwrM4vDMDX0/VVEdj4CJuIvaDwSAGg0HJ2MJ3gDnGRTnz2tpabG1tRa/Xq+1+iUxolvYh5aiLwIfr8Ow7v2/Rvcqvi4CFX+/9XHTdQ/p33/P0niY96k6BOra6WY6+jww997N51Pr6epyfn0e73S4buIzH49r7dCMq1R8akZ9Op0UmHkLfH6uRbVPnRHWIl81H1DEM+kErSRzwsgtppmO5JptL9D9/R9Szs2As1TuagfWscKa3s2C1yoCOnTE3ya1f1/R9RJ03VKervnSnHt2ppe6a2aPfij29qfPpfUNPadkoGJjspWawKTtm8zytTnG+BhuCDdSOPHVzekBrSq0ZP5sHnp2d1eh9fX0dJycn0Wq1YmdnJw4ODsrvg4OD2N3djXa7XXOWeC/vi2jeyJI5VlvF/WzqpjyhfkCGWZqcQccVnm1scqC5NsuONtG7CeMrf/i1TrPMiVTdr31Brjxjrse0coIBdmJzczOur6/jw4cPNRyq2D4iypLEdrtdo6PyldsXD6g+pH1WKbISbzabFWWvjJJNhCo+V7IQm6YGIfPim5wdVZiLHCRnPI8UulOszOPv098whRrjrJSqyam9T3C1ZQZGadDE5FnLhEfHogBc1yv4ffp83c3U5zAiSobH++vXPRfHVhWnO1BZFF//dgc+4m6wQ7Nc/n1G30zInZYKOtxxc4Whyi/jH1eAHkjSeVP+z/hax6mylfE4AAH6qg5ZxM86b9pcVly2tb9NoCcLZvi6awWw7BA8GAxif3+/Bo4yAKX667nwf0Tdwb++vi6lZwA23RyKvmvQYTa7ObOQ8wk5MsB3jNWSZNe58IM7O4votIiWyrPe7gMdi6577PPue8dDv29yAnX8Wd/5rTsYo7scpKsDpsf+sM5WAxJkaQBKOB3qHNLnVqtVK2tkmdIim/9jNV0rprreA2o+HsU3GYZRvdwUEHR9kDlbjrHcVjimcNuQfZfZDr7PrvWxNeGvps+4v2lN5KLGXKgTSwBazzTVEnINqGkAwOdMqwgW2XovR9a1wlyH86cls+wgi7Og716kn37spuNw/pjP52XtLMkpPfZRdxRvt9slW8vGgQQ40R3Ze2nuF/CjNtfxFIFYdq9W+VNZ1vfpGPmcljmlKvcRd3Wuy5t/R3OdzN8Z5lN+yXC08qb2IdNF3j/Ftzxfl46CX9rtdjnfliAHvHxxcVGz7+h4pxPzwHfQ2PXmQ9pn7YqsCnQ2m92ppVeHyJ/BvQpeMnCiSsoVgw8wYwifbAeNGslxJ9YVSpPiV1pkzKvC5m0RwNLnaN/9e2dON0b+nIi7Dn12jwo149f7KSfQjV6ycahjq8+lXyg6HY+C/M9h6N9Xo09qlFTwlfehsTssOg8+v5lijcjLq7RP/jubf3VIXYFVVX39Ee/O5DeL9Lux0WxBFpRyWWoyHiqfKkt8p9njJl2gNHHaOe/r5/p7EfhivFqiqJUYOk4AVr/fj+l0GlVVFaPvR6H43019+LGbzgmgDPCIU3t2dlajLfpCZYR1OpyNp6VN6tzyd8Zrqp8e0+6jZdN3fp/zTPa/257s72wM2fOy/izqfxMYbrrPy70j7pYgI3cRccex1R3u1bHVDXL06A4Avo8ZYFRVVTn6h6OAnloG0P1ZtpZgjutYaOAAPCLXQQ6stTn/87+CebfVfNdU9aD3NX2uz/P+qu7mM60yyeycf+7vBYTzfzbmjCbMgwYgyBhqaSwb981ms9qRPWSkMqdWbZsHsp0XMh5R26WZXd7DRkrtdrvm9Di9nrrpOKCTrj0+OzuL0WhUxqYbiGInrq6uYn19PXZ2dqLX60W32210bJvmPHNsNfjm/Z3P5yWLOJ/PS1VIFtTW3xrEj8j3t9F38XsRxmnyeZpkUJ+RYe3Mb3BauY7K/AF9Z/YcpSNzynPb7Xap1ELuer1e4QkNUmMTCHrq2Okv8+TY76Ey8NkZW4hycXERo9GoRMEweEoQVaoQTI+CuY+JHfg7oFdHQg0Dfysg1+e6Qs4cBP9fCduUfcqEi99MVFaqoJs+eSmmjssZUwVUBdCFVr/Xz/xvQIz3X8cFQ2u5mo65qqpaJH88HteUz9LS7fmeeu5hEwB46ub0ns9v1xW6U+t9V+F0Xs34yg1mE596dlC/06bGmff7TnYKyjQj7TKTlQTT9BmZ8eEa5e+Iu0BoEdBy/udzNivQbF5meHiXg0qX98yxp+lGaYxL50znkecCqI6OjuL09DSGw2F0Op3aHLqcOu2euqnuVXB2fn4ew+GwOO/oA91Qi+BnVVXljGs2CVHw42d8amPOVDd+DuD7XIDYdJ87qU2//TlN48ve4/r2MWNAFjlrcDqdlvcDJvWM4larVc6eJ3Chz2EO2BQNgMPmUQQsZrNZrK+vF6ADmNTj3xTEe0n/2dlZbQPCp2665Aod6dhEQSTBH472Ul2qDktEHSPo374pTERdX+q9eq3qS3d8FY/5NRmgpSHX4DzP7NB0vjxp4FiQdzjdGLvbEf3MnVjdoE6DELr+UwNt6PGqqspRY+vr64V/Nzc37+ihjE7ab7fvagupbGEfAp3H8XgcKysrRX4esvziKZraJPiNo3smk0mMRqMYjUYRcYubCe6Mx+OyVGF3dzdevnwZW1tbxZlX3nR5Vzup7/ef7DqedX5+Xj4Dl7rN1kSCv5+mOFU/U55wx1av0b9d57td8/fc58gqrZT3HJ+4f6I7crtcK07T0xxWV1dLBn51dbXIDbqbs5nJ5KJnCDAgg16dwXKu5eXlsjv2Y3fI/512RaZjemahKlQnvircLGPrAG+Rk6vX0RedBAfTalQyIOLKPFPy/rcCYHVAXNmroCnDanMmd+F2YO/3ZS0DW4vGop/rc+8LNjT9OD18XtQwZVE2p91zaKps6HvT+PUeH3/2vdOV7/w33xEVpWlAwjcp8nt1rZsqYzcKHjFs4osmWdGxLuK5RfTwZ2b8mjWXaae98ihjzeTP+6eghef4Z1mbz+e1M159jfZzbzqP8JfuhKnldxgo6ML3rVarAEh1ZJvmtIkuGuhzflG+b9JdEXWQuiiQ4Z9nwGcRHz70ukyXq665vLy8UwUTcTeo4nyOjT45OYnxeFwc26WlpdjY2Cil4ZqxyjIUbsfdnutGUl56Np/Pa1H6bJ7UhpPZAvw3LQn4MRsOjNs+b016IdObTgf/vIlOmtWgZXOi8lhV9SVglIZrKa4H5n2u9V36W3mkCZ80PSezfao/lF80kKw7rl5eXsZ4PI6Li4uy7EMDDqqL9H7tI5UBXEfwV0F/RhN1snW+PTmQOWHYbC2VVlukNH4OzXmecdJ/fiLuBi7I1uIEdTqdUuHhOJH7Mwyjz8wwqOtBmtvoRVimCXc2+Qxuvxb97XKQ2ZImP6HJHrrNVH5nzBpI1ABlhusyzOb6SJ+FHuGoN7AxPK1/u1xqg5fYowa51FNzHtIe5diqIKMwMZij0ahEWAE+2UTisevuifrMjJH0vRDII75KeC0fQIH7ZGnm1DO6ep2XwjUxqfYj22DBf6uh5lotY8wYW480yZ7d5Ajo/+qoKJ0yhZDRjOYKxUuHPLPncwTIX15ejul0WgDbQwT3KRqKACU8m92W4Lsxc9ppWaUbanWm9BgMj6xrwymi7JN3aKaFPur86Zp2LfNDBrVUhPs4rkP5nP91rrKMscqTK3HNRiuNs/GqAqyqqqyVyeidGbiIumzRXFE7SHfApfR0sKS7/Wa8SnQYpa/XZfyg/PMcI/eAM85lVKOFnmKt5HQ6jZOTk6iqKra2tmJzczN2dnZKtlZtgJf469zosUnj8bhkw8jYEzDQ462Qz6WlpZJB4/udnZ2SrVSQdV9bpIsyJ+UxTW0hVVBVVcVkMonBYFBoRpkXxy6QDdI1ftBpMBjE+/fv4+3bt3F6elocUF3nTOaE4zaIvqMzVEeovdBqD6qwNGihO2dOJpM4Pz+/E4UHLyAXrM06Ozsr51+yFvspWybj/K8OYwYGm6pQHLyrvcwcQXgevtZ3KFj17Jf+MIdUSeiaOTLLmiHRdai6TED1l2aC3LHNGrxLy5xDzWwiu5PJpOiUy8vL2tmwnJGt+3ZgK3T+NBhN/9Ajq6urMRqNYnV1NabTabTb7Xjx4kWtKkjtM9jy8vIyRqNRqYrw+YFOl5eXMZ1Oi67CRqKXkI9FtHvKlgXddW6gLToWuY+IODw8jJWVlfjiiy+KHUCfsRtyhlkj4g520qCHVlC446SYwj93LJY57PTBsY7LupZjO85gjlUWm6pUVY49uERzPaL3q/4Ha5BljYgiyxqARA9wv56znOmWzG9Cr3AU0Hg8jslkUnQ7tFeZRY8oNmM+4SP6iG1+aIDz0bsie7SDDVEAwN50QtzBbVp/qe/QrDDGW5WGKlKNJOikqPHQ9zX11R2OzDhotEPHps5DBnKyaJ72X8ehz80cZb+/qTSoaT78eT5XPieZ4wCDu4PivOJGGrCp27qr83Jf9uvHbs5L6tj4Na4onUcQ+DolAAEAAElEQVSbAhBOMy8Dht4YTjIvEbfniqrSBjj42dEOVpBFDIvzfhYo0v650+pjU4Wv8+9OLter4fJsFLyhNCFIglNDCawbETdQ+k6ACwrfI8iaacpkQw1lNqco/k6nU5wn9FSWwXqOoEbHpE6iZhoioibPk8kk+v1+TCaTcsA7DpUGNjNAwLt4Hkb6/Pw8+v1+nJ+fx3g8LrwCsCIzSIlsxI2zhExwBvXm5mZtfejq6mrs7e0V5wxdDthvyqK4fclkOxuXOzXQlTHQz4ibUm6W/LCZEtcMBoNCC/gfHTGZTGI8Hsfx8XEMh8Nip+FZNnVis4/BYFAcW0oitUzcnV0tc1XnBzmCH3Sd7NnZWdmhVI9/oKljo5tIPXVTu+e633XfItyQ4RDnA31GRg/AqutU7sswgM4ZThzAlr9xMDQ4MZ/flonTPKmgfI9u1/dnOEL1vjolHjRE15yfn5fgCLKgR4yp0+n6Wx1n1bdKL00wXFxcFFyry+s2NjbuYDOV+8xmKV00I6WA37NaWp6p/PXUzfFOxN25U76sqqroovPz81IlogFNeBE73ZQUcZvqmb+sjN3LXPmt1/uztWVzkNkAx/RNdiCT/0yOHS/6uzKewx/DThIEYkPH6+vrgvfYD0GXBOnyNKeD+laZDuQetRXwNEkU1tayDNHppDiMZxLgJYj+UDl41Dm2/Ggm6eLiIk5PT2uOrTO2TqSCzfsc24jbclXW6BCp035oZEOdWkpxZrNZDUQ1gZMmw+KOo/6tz1DnQJ+jWRgfH98r7bxpyt/Br4J2Vc6L5kDHngmOZ2Y9Mqx9dYFWJd5ER+Uj5iWibiwzB/ApmztemfHyHw++ZNe4YdTrNTijzgTGnTVrVXV7bBZGGTmJiGi32zUlj5Ol5YMoO5dPvtMMAEZIDRO0iaivH0ZROZ+5LDgttIQl4zmnCzsxXlxclJK0+Xxei0h6oIDGeHFoAEeM39+d6SwFTjwTmYXuKysrsbGxEe12uyYT8Ib3y9/x1E15WHeudcdW+XY0GsXR0VFMJpNYWVmJXq9XHCfANM3nOaIeGGEtb7/fj+Pj45hMJnF8fBxnZ2dlfRf9USdsaWmp0Hw2mxVHUAMYOMJ/9Ed/FL1eL3Z3dwvfbG9vF/Cv8qF84M6tjsF1hza3C2rrBoNBsXUAFfqN/J+cnJQNyXD2oYUeT4MzqeubOI6jqqo4PT0tMkDggTmiXHltbS329/dr6w/VBvv5hmTO+I4jUNBb0NADZBrM5geH6ymbOlqAOp9vD1i7cxtxNwNDkDeze1VVFbAK33pwnzlQoK9Oh16n5eGaVedvKhc0mzabze7snaJz72NSYE7TfmV2clHpsFZ+UErf7/drGV6lvQZrfd58J27opMFarqUCUR1m6OT6G5nKsoDoBXXSfXdtPlcn/b4kxVM05QGaO5XMBX3XgOP6+noJ7qr86xp0bL7ikIi8hN+dWvqgtM0CPlrVAh5yW5tVWPhzvD/6vd6XzaHLu8qP8482xV2MXzdGQ99jAyaTSfkMfsUG67IoDey4T0B/se0qS9pn3S+DYNz5+Xl5L06ubhyofpkG3rjfy/Qf0h7s2CqooZMY1+FwWNtQRYEtAu3OmG/p7eAewo1Go2LAdSc57RfgGcXjIB5CUh4BIwN6aUo0JsyzNLPZrJR76oTQj+x5ysD6N9dkAqFMzv+emW5yVn2+vC/6Xr/Gn+sOhCsJ3dlPjYtH8JRGXAsTa5mgGiN3/p6yaUZCj7WIqK91VTr4HCuvuMJSYKzr01BcbLLFBhm6lgX+n81mJWujJa9LS0txdnYWg8GgRLpbrVasr6/H9vZ2OUt0aWkper1evHnzpryDMiIckKq6LcdWXvEz99wxWdSUNrqFPDwHPZUniAAPBoOYTqdxenpalDg06Xa7NQfejaQqdBwhduulVBYwTeRQ9ZrqBD3fWCOOvIM+7O/vx9bWVqyvr9fk+f+F1mq1iuOlJcgYOC0tPTs7ix9++CE+fvwYJycnsbe3F9vb27G1tVXAc2b8VdbhJwz0p0+fYjwex2g0KgY5IkqmCX10dnZW6zfOLHOFscTBUj57//59kQuyy/v7+9Fut2NnZ6fwB7yF3WEMWWvS0dq0bxyZwTgVGOqxJDi/p6enMZlM4uTkpGRukX+cDM1Ku83RCg7sJxVSS0tLZcfYlZWV6Pf7sbGxEa9evapF51V3ra2txcbGRlxfXxcHN+IWwGgGjrErFgBsVlVVHJpOp/Pkjq2D94i7mcjMOdXv/W9tjgPgh36/X/S3Z1OwDW5LmFcFo7PZrIBb1eOKZfr9fqyvr5ddTQmKQnu1UyQM9F3usGeB3yxTS9BDN3uCh7UyRANpXtWDLtdSS2RzNptFp9Op2RrNQiv/81zoenl5WRxp6La6unpnfw11+nzs2Ijl5eXaeHTfAceGnvB4agwUcdexhT5aJaKZaMqur6+va0sf5vObyg3mhLlT3K50PT8/L7ZXMSc8gz5x3OCyqM+GBxyXeeaVd7kfoPdxresFbS6Xjun9twY/+Ft5Dhmh7FerpxST8hklxtjnlZWVGI1GcXh4GOvr6/H69evY2tqKL774opaIiqgHxeAD3stRVWpjkA8CRAQvdEdlbAG00QA/n3n2NgusZO3Ra2z1t5aGKUPqBNGUMTza59d56QmROpjWM4r87xFEfitR1GhgUF0pq1OJgGROOH975FrHsoiOCqq8z4uc1gwE6jubPsuUryoPaOnP1XGo8N8XWco+bxqH9s0V/HNpCgKJOGbOiY67aSwZENF3aDWAGg8/M1qzJSgBjDqbaCBLyBG71F1eXpb7eB4lg7xrNBoV/qfPACJ1FhVU+FibZCIzAgQOvBrCHWSU92AwiMFgEP1+v9AIBYxi5bn0mXcS5URpqz5Qp0DnqCkwpFF3rzrA6WMtIxFrN4RNMvecmhpcLesDJFBmRHZVj3dg3WbTWpkmYDwajWIymcTp6WkJ8PBOBecRt9F+1fd8rmAYmVLQAE9h8Dc3N8v5fN1ut3bUFw6gOuE6Dv2t1zXNK3ZAy+kZK+XWgGCeRVQe+miEXnlfqy4U1BGQ0oyJBmbV6dCMEju3EvXX57ljoc6FBvQ8K+c2HRutGS7G81RN7V1Es85vcloz3bfof+hPZp2AjYNwL4vWagIF7gr6cRCUf7EJ8/k81tbWSmCPhADlhTgg3EeWUzPvnkVVGqhjq06pZtG8LNdLk7OmvAeIdtwGTbiWfqmDzzuwa/AeFYPwu2aQMszkcq/9b8JPGVZCHp6DTcgcW3hKNxBUpx757XQ6hfaOe6FPlunnWv0+s7+K1z17zD0uC5k99/frb+51PJLp+kXNsb6/2+WCCjx8LZx9gpvq2PIcMI86x4ot0QMEx1jbrRVK6mwqNo24XRdOUCriNslCAIf3Kl4FJ7guUBooXbTy9qHt0WtstQNaAqaRhOw+JTYR3fX19dr3GLHhcBjD4bAAVoypOhYOlokKEz3QCVClBdEgPmuLWFei10XcOs7uyNwhZBK5z5SRg2PPTLpz7IIXUS9FUBo4mMuENXMeUdwKyj07zBjVGOgztFwnE2w+U6PEe1SINdIEWH4OTeeo2+2WzL1GDxU0R+QlKRG32T82j+CHuVNeQnGwVm44HBaFRIkgGZStra34+uuvC6D827/923j//n38r//1v8r6lu3t7dJXaN/v94ucffjwIb777rvCTygljcRSUntwcFAyvjpXCnJdcSu/OJhhE7HV1dXY3t6OjY2N6PV6RVbZQKbdbsfx8XG8ffs2fvWrX8UPP/wQy8vLsb29HV9++WXpO048gH8+n9eAO4oXPYSCr6qqbFV/fX1dy6DrZgw4rMrbup4Eo3BxcRH7+/uxs7MTf/qnfxo7OzuxtbVVwGVmTB3gPAdQowFHAizoDC31PTo6in6/H4eHhyVTsrW1dac6IKIuVyoL8/k8hsNhjEaj+PWvf13Wk6+trUWv16vpQPpEKTKBGuVb6Kel4mQTGQfzSYZ3MpnE8vJyHB0dRbvdjr29vXj9+nXs7+/H9fV1zbnTMn5vi4CO2lLWzCLnZOoANRrQYiyAG67DWVGnEtvGPXqUAlkUMqJs1gRw0rW+Pv/dbjc6nU5sb2/X5g5H+fr6OjqdTskSOi8xVzS1PSpTutnIUzbN2Dog06YOvoL2JsdYbTbXg63IimA3eRbVOi4zGVgHv7gjrP1SZ4/nYzOwEzoW5FWdQrIwGS7guY5F0P84Rfz2oBnjoe+KUeAXnPFut1t0DP2D5xXYe6DF5wbbp7u+n5ycxNraWrGj8/ntuZ4EKx0HKG4j8OfOOfZGnQSdQ3jjqZvyjWbDWZPMcgndsIgxbW5u3qkiwX6it+BB3UxU5xsbrLzoAQbFLrxbsYcHT935VRyjMhpRP85Tn+W8re/IcLonkJQH0fMa6GQ5D8Fi3WwMpxZMh75HR6C/wax6vBtyMpvN4ttvvy1VVn/wB38Qr1+/jt3d3TIPYFP8JbVXmlHHjtCv6XRasvQ8g+PgsiSN0oU5R389tD16m8EsqpABsUyRKdMqeOd+Sij7/X6JRBOhcKc6U3jKNEokLYFSxatMrSWD6qDq2kWYAodEx6sRzIxmTcrJFbRfowaLZ/maJJ8XvnOaReRlsx4V1b6oIwxt9XmAJ3eim8C60kGdeI0IuwPUFEz4MZuC73a7HRERvV4vIqJEyVxBZobI5yRTlKqsWVc1mUxidXU1vvjii7KrKAqMcsmtra344z/+48KPb9++jePj41p0UqsbHETSBy1XI5OJwmTNIQ4FShNgkT1XFRU8pllhzkAdj8dFkZ2cnJSSb5VjQBplyGRqO51OHBwcxM9//vNSJsv6y+FwWOhPBFN3rtQsLQoaJ9uNqs6r87DqEp1L1TUKRGlZ8EN5xT9/quaZWi3jJkiIgzmdTmu6eH19vZShAWbcbkTcBin7/X4tsNlqtWJzc7OAV+RMQRBzCRjQueN7sk3z+e3Zfevr63fsg8oKc4oRX1tbi52dnWIftNydtkg3ZzZUs1T87UcpKdhnPlRve2BJgwW6oy3rVdkgiuN+0Cf0ibJMzqIFSMHPZ2dnha8B905zZHhtba1kflVXwkPo+oi4EyzSLMVzaQq4+T8i7ug+PnN+8HtV5+Mo6JnD0NcD9FoppnaT59E8w+vX8hwqKnSXVF2HqLoPfveqN83yqGPgzq5mpBRLKt38XvqlTg/Xol9YJqDYwvuYBaEUVzI+fT7jwk6orXNQTjCA30pr5F0z0tDaA+MZ/zxlA08oLsOGq+7CBip+BbO43dSW4UR9Dte4s+oBEt04yXFp5rPwroh6IsztQRYY4bn6DNfx7nfwHPhBA04a8Cfw6hU8WpaPrcWWUbXAczVL2m63Y3V1tdjSbrdb+sxaWJKL6G30Dk3tLXOPnKAjtFoio51+3oQDfF4e0z5r/3yPCOrndNSjLXyHgtZ6bRrg9tOnT+XQZ57vTjBgO6K+lk3T7V5yEnGbWUUwiXzADO5sAcRWVlaKQ6MOOvcoWOJep1MGdtRgZNEfdzDVsc0MPXRRQVKFqk4Y16uy1b6jxOk7DK2lBboZSRNfuAJSQ8NvaBkRd8CPM/1TNOgK366vr8fu7m5UVVUDe35P0/8KzDXiHnGbzbi4uIhPnz6V9YRff/11/PSnP42vvvqqRORY77e5uRndbjd+9rOflejp3/3d35VIWUTcUcrOj8wjO68yTq7b3d2Nra2t+KM/+qOYTqfxy1/+smTJiKj5OZgRd0vOyfyQkXj37l3JUnE9RkVLm3BWcG7b7XbZ/KbdbsebN2/iL/7iL+Lk5CSGw2H88MMPZTdZfd5kMolPnz7VdAZ90gwkAa2IKPypAQLNzELD+fz2rEUcp4jbzHumzzJwrE4xnz11A7jo+jCcJBzbfr9f1jtrQKTdbpfs4KLMG44MR9P0+/3odDrR6XTi1atX5V0Yc4JhVPSwsRLOgYNU5hRdjUy3Wq3a4fOqk5FNgiRLS0sxHo8jor5RjcpXprNcJ/JbI/PqzAJkcCAV/EREzYFnPNBWA1PwK8C/1+uVqD3AhWAZzqkC/IgoWRg2tKJ/k8mkBN12d3fLu7GPlKBvbGwUmikuwA5neAF+0HNJn0NT26R6TfWqy6vKNM9wO65ZGvZCoISTLCH0VKdKsRQ2WzPrPFNBtI4DOW21bjaVISuDvkQu1DlG9uA7xT1uW/xd6sBp3zIsqX0GuFN14wFbPTrmvgSD4x9dwoA8O31Z3gNPkrnSMWf21Z0arXwAr0ZEzcl1BzwD/0/Rvv/++0Iv+nZ1dVU2kMWWqu6l7+gftZ/ZuHS+VX8r7yjP8D/+A0eQ4kPQkD9du6pzrM4XQTl0qi6/Un9GA6aOcfhfMa8GuBm3yr0GPXTpGbKMY6sBT6pVsbUEf/mehESn0ynr5re2tspmmRFR7BtBf9bzU9XT7XZLfzWbzt4OVLSiWzQbrxh3UdBP51sDSjp3D22P2hWZF7hC3NjYiNFodCfqqJ3HcSQ6rAfucj0Rfxh5fX299jz9UaMNc6hjgPJQ4jD5AGP6xBoSZV6eRWkhBh+hAARcX1/XooiUo6hzrJOnxkwdXle6er8qb8bnEU6dE8/KMhcIopZUzefzUq6h2QDuVUdYS8ARluvrm00BfBt8DB6CrcoEGsDsGHDmXqM4Wnr0lE3nqtvtxtLSUvzJn/xJfPz4sYB4wHREPUrFXCl4c0XINRcXF3FyclLoRcbj6uoqXr16FX/8x38cr1+/jqWlpfjhhx9KOSRl0X/9138dx8fH8e7du/i///f/FscAg5NFrZVv6AuKXuULGfmX//JfxvLycvzkJz+Jv/7rv46///u/j48fPxZnEMCsmRieo2XHlFtSRvzmzZtCM+ZdnSk9xgc51WMv3r9/H//lv/yXkn3qdruFRxkbAJ6+MC6ewXrFo6OjUvbz8uXL2N/fT8/SVLlkrLqmUY2fZzhVTr15cOup+T+ifnYv+hf6Hh8fx/HxcakwYGzoSZzTbH0tAUYi7JTec67qwcFBbGxs1EpeKXMCuKOP2KCFTYf4nuATpa1aDjifz6PdbtcCfxFRm0PmLeLGwR+NRhERtaNStBRzUXNdrfxNvxR0qUPhwJw+UKKv4BygwzPY5ViDtbozrlZSKc8RpCHrroEp5JgjJZB96Ad9NKBBBl71DDKPnPIsBa2+KdiP3TzQ5Lo0C3aBMQCDntmLuK2i0jmG3svLy7Gzs1OyK752WXlNM7SLskCqW9WuKS7y/tJPDdq4Qw5uaQru85tx6iZKuh5Ps7gaQIBX4A8tkfSgkgfaFY8qaM4carVZzKliPM1KKrbVHw0gKJbTPugyCcV20ANMBYZ6Dm06ndZsHrhd7TBji6hjSMavTpljJA84OA95VcfV1VV8+PAhjo+P4/DwsFR/sXxDS5FVj2qgTOfY7TZH4Wxubha5cLuuVW0RizPsnqFkTIpvssooXXaifUdnU36vmxpCcwIwuscFwTGt5OFduqnf0dFRrWqEH/w4AsKj0SharVZZYgUdoJPLogZGfL49KOW+50PaZ2VsVVFoNEM/dwOgzKMMxLU6odynEY4mhlfiOFD3eyPqWassMo3x1ffxme/86pEGjczo+HVitZ/6HqWtX6PviLjNaGa0cUfWlTxNFYmWIuvzVAFgvFQ5eWRX36l088AE8w4tUeTs1OYZsIxOT9GYE8Dh3t5eXFxcxPr6eimj1UCERp90rpqMMUB9MBhExA19OGvz/Py8ROuhuTs/8/k8Dg8P4/379/HNN9/EyclJOeZDedblJQPMDm71bwDuq1evipOP8tOt3ZlHAkc8H+WJgSNrtLu7W+7TDWugC4Ek+q5R36q6OVbgu+++i/39/eh2u2UdFE2DM+12u5a5c8BGZP74+LgYhp2dnTu00Gcrv+p4VcYUBDcpaueT59I8sKjAnPJjnFoFE+gJPeLBn6uZKnTJxsZGbG1tlSNmFOjhvLmBxEBfXFyUDAtZeNry8nItg642Q4GQ2igPVGVARHWbNp1HnVvVqxmg572LeEAdCdX3ADD4fWlpqYAagAx22DPOmvl1O0bmW4HraDQqAQOu9Xt4l9td5ScaMq70gd5P2Ty44HPjzm5E/VicDPiiG1z/auaFskGCcoq5tF/wsX+uvKaAGV5XedYKBC3F5BnoMOYI+Yuoz1uTftS/FXe4A+6OrdpM17PQPNMtSgf9X/uRYTCVZa0uI3hFAAZ6K80cyOucZ/Ou+kF53rHpc8BAjE0rX3z9v/4oplen1zGHBioyzOfzWlVVwYynp6c1x1Yd5yx4kNFegzo6xoibOUFvYnewPd63++y1z6fagkwe3Fao86ey2uv1SmWMYoxWq1X2T1AbrA66ZlcJYpJQYLM09tBQZ1iD1FTO6TnnmQ+jss91Oka1Dy6bKsP3tQc7ttpBDDoRgt3d3Tg6OiqTQyfcsAGIydjiuGpEljIynpVladQhQ6l49nc2m5VoPUZYQYdm1mDura2t2jpBxoEwaiSDfhB9hskYMxPWarVK9koNBULsivo+hvBrHRB5aZo7+xG3UUG9h894ngofTogaP/o5mUxK+dLW1lbtWAA16lpqoYI1m83KmZTD4bBkdTQD/BwUujprKImDg4O4urqKra2tGI1GMR6Pa+At4jY4AFDWoANZRUqr3r9/H6PRKIbDYbx+/Tpev34d3W43rq+v44cffojj4+P41a9+FW/fvo2IiH6/H71eL/b39+OnP/1pAa5sAkVWi51LNeiUAWxf/8I44O+qqmI4HMZ/+k//qUTsBoNB9Hq9+PTpU4ncqczxPp7Xat0cE3Z8fFwU5qtXr0pWGl0Ar+iRD27oVO6Rp9PT07i8vCxAGhnd2toqlQVkm3SdSUQ9WMM63slkEt98801888038c//+T8vZ5xq1YTKkypuDAPrfchuPoafHZQ9ZdPxIr8cS/Px48dSNsV8TafT2NzcjF6vFzs7O+XsU3XocYjYcTTiJgP56tWr2Nvbi729vRJdZi71WAnXLRFRSjd1kwt2fKyqqoAebI3qOwXY6kRzr+4irg4XYCDibuCjKaiou0pqoEczyVnmh88JEvt7kDcFa5qpzbK5gBU9hgkaa2WBLr3BjlP+Tfns+fl5dDqdYvva7XYJYCHP0MgrAKqqKqV2bEC1trZWKyl8qgZv67EZEXHntwNQz+KqI6n6YjabFZ7lWCnwUuYwuQOQBeXpF7oSPYsMg7H0GVyr9sFxiQav3BFU++FOO46QZ491WYg7dw5wkUPFfto/6A6tvekzHWepY6EYhf91DngneIByew2uqSNE3zx45fpCx682+zm0f/bP/lmpqDk9PS36nw0a0RVU4hHwX1paKvcdHx+X4/Tm83nRf51OJ6qqqlVqaPA6Iko2/OLiIr799tv48OFD/P3f/33ZQA+eQTfTJ/CXBkLQYxrwqaqqVs3JPj8RUSpPkFENDGl5bhbE8gCpyo0612prVD9Al16vV8ZIdRylwtAmImrBTQ3IQgulLbwHZlInXjfv5cg+KrC63W70er3Y2toqlVr9fr9mI/EfsG+alIMmqgvQrRk+zRIKTe3RpchKeC9XcdDiikaVvCpoF2RXYqowuZ+mhlkNCxMP+HHlqMCFz2FgLQNSQmokgvco+NFI5iI6ukJlnEozpbdHMFTha9ZAGTeifh6gzqFmwvhbHVzPPDhw1HmgH0dHRxFxu8kF9NcSPeULFTQFdTjrvt75qZvysipZAKOXV/ocapQ34rZEk9I+zmO9vr6OXq9XSt91t7nr6+va2ZusWWu1WrG/v1823RkOh8WZ8sikR8EdIKm8qozj7AF4mDcNoPA5c69gg3fq+i9ogCJ0/tAsJ/3TyJ7PjfaLiCB8TTSx1+vFxcVFjMfj4uiSvdXdjplfzfqy5l/LT9VIqnPEc3BcCG5pOV0TWFFd8FwATcQtsI+41UuUo/rGIQA6glR6dl1EFHm4vr4uWdrZbFaAA/egY9SJ1GCe84zyOs4bwF55H1mAX5Wf3J5p02CK0kF/IuLOM7WpzfMfzQAzxmwN4iK96LYWpxVdrEtudKwKNHBAXN60H+gHovRaiYHt4T0u55rxUzsNbZEdxoO9esqmY9e5AMw6L3qm1pvbc+jJPGlw0XWg6xzeq7ZVbb/+pj9ql90BVT5mbJq4UJ2u2M2BuvbZdZ7yuwbnHfNoYxzQVnWw9p9+quOidHe6eD+VDvqTZYV1zuiPPlNxk2fl/F2erXMH56kbAWzW1oNPIu7yhPYZPtY5VxyQ2TrHJeBdMrQfP36M4+Pj2kaB+k74IyLuyFBTUIrvfV7QPYpreG/W36ZnK50y/nJsxvXoUJVVzbbqe+mnYy9srvIjGFNpFnGrG9TuEoDGRoOf8JU0O690Vvn0tf/Ly8slUM37VX6UNqrP7msPdmwdFGCgNGOiTMSEKEDgGo0sqkA7YXSC+FvXAfEOJiKLWM5mN8d+IEgwI+NQwMN1VVWVCWPzncvLyxKp8WwWY4bZdeyqLJUu+jtr6gi4YdDopi4gz0AIzZkFBgOQOjBTo8n72MQk4nYzHZgUgVtZWYmtra0aiALUM2Zoo+sGWKdxdXVVwJLvxvbUTRUFmQQE3IMgEfVAgjuNVDB0Op349OlTHB4exng8jpWVlXj9+nVERC2LBZ9yRuV8Pi9r28bjcTlz8927d3F4eFgyp/RDnS43PBloQoHrmgw/GxCnU3fGJrOv8060lnWPbIija+21zAeFCtiFv+mz8ivz4Y4tgJnoLutQXr58WaLNm5ubsbm5Gaurq2XDBHWMV1dX4+XLl2XM33zzTQyHw6iqKnZ3d8vmYb42UUuviEazWQNBEC1jygDLfc7vUzSNiKM3CMgwTugHD7BhBY5qxK1uwVgeHR2VYAGbTJFNVweY9zv445kRt6AWWdPoMTbAywkzPemZIP0eno6oZ3hVh2Z6y4GMg1wFERrs8/NLPbjqcqzXuUPr66v0WWpf1JHUoJ7SjPewhp9rr66uys7qnIWqmQ6lA31gwzo931mDes/FsdWgCE0BlwdVMh7Sv+ED7vGgGbJGoE4zWOhpBY/6GeDX36tBRPiEd9AnvUfBfcZr9F/xgzr37jhDJ2SS3V1dNrS5k64ZW58fdxCRKx+zrgXO3qXOAHOhAV9kTysSdZldFjRQXlZ6Zk6+9tcDW0/V/s//+T8FO/qcaOkuY6Apf+BMjcfjMpdsYqRyxG/oPpvNYjgcxrt37+Kbb76J3/72twXn8H7VWQTkVf+7TWVe3bH1voAJtDH3zDF/Qwf4TOfY7YL6PU1BUmwpgWLN5CuW5vlZdYhiUR07dMV/wIHWvRGm02m8e/cuJpNJ0fckCcCdJGi0+oN3aIAaW6ZBVwLbyKQGwJuqNu5rj8rY8mAUp2YJXRkq0OM+Oq3lvqrQGBgGcHV1tRaN0Si0R5x1TZEaYjUMCKSWTCpA4trhcBit1s06vxcvXtRq2fW5nhH1yAubaJA5UzABnVygMudIlZ4CNF0kr2ue1GjwGb8VgLkSVeXpkUlV6lxLeWVExHg8jg8fPsR0Oo03b95Et9uNbrdbM26qMBTcA4gxkrPZzTmSnGP6mEjN76upooGHUUit1s3GLJRaMk49zw3e1GwMCmMwGMRoNIq9vb3izGPsdc1CRN1JVoD6m9/8JmazWbx7966U3kLPk5OTO5uvKAiiv8gZvMpOesiibjaDPCr/qFPDejBX7sqb6AkcPnVo9XqN8LqByipGlJ9xiPjRNbs4Dhha5kqd6+FwGNvb29HpdOLrr7+O8Xgc3333XYzH45hOp/HVV1/VNsIjawUtceR1V0J27XwoWGlyfp+iQVeWjQwGg8KrfEZwCidKl55oYz7Y2bvT6RSHFr5Uo6+7jys9FIgqGKQMWYN1qnf0euU1D3hmO58qLfwZvC+r4nCnVPW6O7daqkz/AWkZT6gsKBBSu8uPBqLpi8qWzrdXfSiY1b8p9261WtHv9wttlpaWCh8Ajhg3m94RfKKfSt+moPeP3RbZIaWDZ+8yekXc2nt0LWPXBIECVv2teiqiDlhVZ6pjoLjIgzWa+eEZ8IQ6CwQbuUYdV3S6Ousa8NVnOu+qXXDHVh16muIXr1rTd0AvrnVaKMBmHty5UidBgxA8AyygwV8dk8oQTogGsLSqxDeQ493PJcC/v79fC5xFRHE4W61WnJyc1PA0WEKdfDA2S3MIejr+1XtOT09jNBrFb37zm7JR4dLSUnS73dQhVP7SrL3qaGyKO5GMTytd4A+tKNHqBeUNxuHOmPo5mQ+QBWbct8rGBwZVGXFZ12AMTa/Hedf3zWazsm53b2+v5rPN5/Po9Xqxvb0du7u78e2339bGjI0icKHHvrmjy7W654PqzMzm39cevXmUTrwqI51MFXpt6pi6gud+Nd5KdAWvKLps8wuIpn3QyB3ZhYjbIzjcqAPSmESYgr7QPLKiBkfBtQq6OhLQU2mQRYuU0bPSAC0RVOdVoyfquOsztW/K9J4pV4HRsTPWq6urkvFm91IcPTWEPMMNIu+mL2dnZ+XZWfnPj93cWC4vL9dKOMg2AYgj6pkpN4YRNwqJo1Gurq5qFQLMs+4wqnQkisfzjo+PYzqdls2OOGP36uoqDg8Pa0eVeICI5vy3vLxcc1AVOGuZOWOGpzIF5A4BTQ2IK32le1bCpYYQI+PjY868QkGdZZxRLy3CgcNgQVN2gl1aWorXr1/Xgl2eucM50T0GFEAq7Rf9/9T8H1HXUQQxcE5xTnSDH4AiYF0DHBG3QRpKj7vdbsl6aCBH52sRndQYKiBEZvnfaalOsQZR1YFscgqa6OTPV/uoz1AbkQEbflTvZu9Xu5yVH2vGVu0mLaOtAjYFFuhv+gFt1THVPvIeLYOOuD29ADlhbL72U+3Ec2j3yabqIOeZbO641udFbbLacZ6j8uh85PKi/Wjqn+ox5TPXiWAvxYB81+RgOA5pAv2qP51eKjOaqACQZ5gLG6ABMrXDyAgBIObD9YbSOMveatBXZeO++eE3Dm9TRUoT7/zYjd2BkWMw8tLSUgwGg1omm+a2H3s7Ho9rpxRoc/04Go2i3+/H0dFRwZl+7JNjSN7rjm3EbRUiy788u6xOmWIl91vUoaUv6E2XUR+fB73UgXN+0e/47QEYx1Xqp7l8OxZVRx1ZgY8JyrsuYkNHKhabstPQD/nQJID6ju63MQ7Heg9pj3JsPVLDxih43Zo1oeMQMRuYPpeBoYi0xJlr1FirE6sE8eyqPl8zTC9evCilkTiHgDTA7Gg0iu+++65kHnT9lzIiRwIxCfyNU6xlVh4x0f6p4KkjihKH+ciMsL5Ny8P4ng1yHEhp1jdzpt0Bw/FwetJwbjUSyRmhlHFqhh4+IXIDfZQuOLZc1+QM/JhN6cSYKF2dz+dxcHAQL168iE6nU/p/cnIS/X4/3r59WyKxlG70er1otVrx7t27EhXDYdDy8MlkUt7Hlu28c3t7u/Dwu3fvYjqdxqtXr+LFixfx5Zdflh0D/+qv/ioODw/j48ePZWMd3smuy55Z3dzcjL29vfjqq68i4iYjrwEgHGvmXg30cDiM+fz2aJ2NjY3yPeVB8MRsNqudo0l5NiXWnz59KtlWDbTQT3j17Ows1tfXo9vtxldffVXoOxwO4/3793FxcRGHh4fx6dOnwrOsEcJQIlO65iMiyu7SHDvzs5/9LD5+/BjfffddvHz5MpaXl8t95+fn8eLFi4iI+Pbbbwvw2tnZiRcvXpQt8r2sCR7L+O25NAWPnA+MDETcVigAepmPXq9XM3ya0aakifU68AVzTFZDjaAaTZ4ZcWufNDhEcAzdyHPRV8gZsqeVI/AW76OaSIMxTcGezHlWA46+J9AIn/jSkPn8ttyNOfCm9m9paakADgAJQTeCBpohirjVt7wX3a/ASrNIOiborcEoHAX0AXYZueYMbrK08/ntuvXz8/Oi6waDQekHwcGnbNn4FSwqgFfb6fbT78dR1GVONA8EIQdgLs3sK5/rfQ70kUX6phut0U/9rY4Y/eZzDSLyvQc6FTwrYNdMPD+aQdMz0XkG46VSBLuAvqF/6jgSONG13+BRHFqwmo5Hd6FW/AhdNeO1srJSW3NItYjqTBo6iz4x98zr2dlZ2WjNncSnbl999dWdZAUnIZCFxb5GROEvKs9ms5ulgfAcPMOSJ9VJ6CUC9tPptGxCqJl6dKjOuZ79rY6VY9hs41R14FR/uVwqrtbPaf49fIf8ZT6T6l3F9L6HBX2DB8ETGhTVd2qSSN+nQazMCeceNq0CryGfVKHt7+/HfD6PwWBQ3q1BTAL7zDG2jootrVJRn8Jp+tD26F2RNUrgaz9csUOsiKgpVAbgkQnuc8cqol6Trdlb7ZcziX9OP2FSnCt2kl1bWytZMpwtgBBRqVardefYCXfgGZcqdZobHAVpeo0aMS1fzYRQDQVAULPRKoT0VZWtGj0HihmY8Kgnz6Dp+pEsEqOBDo0qaYRU+5I5AT92c+FSJQBP4IDCN8gGAQjW0HK0TcSN08RYvSRRAxDsCgoAJyCgZekKDjiLlc0VUE6AF/pO9BXjDk9eXV0VgxIRtey0jlXXKamMZUES/dHNZDRLoef2qi5xRefRS3ZkraqqZFMB19Dv4uIiPn36VKsymM1uyqiQB8CPRl6hH2Vj7Xa7OGDMH86xBnBYH93pdGJ3dzd2dnbuZACalPZzAjM0NbJka3WDMnQSfKFrdTK9z/xrFlFBMD/YGdUDGsFV24N+5xp1zJCVVuv2OCl+OwDnt+qjiHrlRETzpiP+nX7mz8r42qPsaiN5Tmbn4HuAo8qqypuCct7N/9CIeXUQpPZBbYEGjtUW85t+6fFj6DLmhiCw6n8Ha0/VMhugTi3NdZ1/5i3Tb0p3D/qip8h8KX20osXvUXzCb5UPtQUqs4oJuIfAXxZ0YU5Vf0fUN9XTvqpsZuuo1WnRXfKVH9C39E3xEXKObo+4XUOP7sHxolqAvxmjOiLOC4pnsiU7TQEZx76KGz249Vwa9FT7qwkiDbwxdmiT2TzH9Uov5pLlTegu1eO8D17g2cyj+iDaJz7zgBO6yPuq/ok6ljyD7zTAuGjus6bv9IoytYF6jSa9POCiTvnS0lLBMXym9pI58n6o06syrckp5AdbgxwTyFDaKv9U1e1aeX0vz9d+qP55SHuUY+tMh+PEgDyrphMNIRB2zzIqs0BgBysKgJuiJ5mjpY6wAmiYA0cQ50A3QiF7y+f6TBxFlCiKUo2FO62Zkcqarq9yxvbSGxzvy8vLcpYkmWctMdB54f0qsBoxVrpnCieinilQMKOZCBci7mNhOu/lGdBWnSYttX4OTYU+4kaJ9nq96HQ6tS3+l5eXS+nOcDiMt2/fFsD59ddf1zKyS0tLNf5So4YTOxqNimzMZrMSKcXpioiyU/Ll5WX84z/+YxwfH8fV1VV0u904ODgoxn06nUardVP1wAZKui4OR/D4+LjMO9moly9fli3mT09PiyLnGt0WXzN1XNNq3W5AoJtHafZAqw34jqZrbZHLw8PDQueqqmI0GsXW1lbhHRxfghCbm5tFVvr9fkREkV2VK5V7Sqc2NzfLetB3796V6gjWRM9ms7IZVbfbjb29vXjz5k18+eWXNeWe8ZUb4ufUABpkazkzEF0E7+vGaGQxNEuJ3DD/fgxNRNTArm7c4Q4ZOkrXNGqEHt4DEJOhByydnZ0VO6A2TfWiVqQgCywR4Bro4/p9kXOr1UZcr4Bfg37qTETcLbnXkkpkkznQJQMe4EV/kzFaXl6uzWlE1JwIH2PE7SZyOEv6v45Vz+EmuKRr3NmMUG29Oj8670/RMtl0Z0cBoDu4HvTn74hbgK+BXL1H9RH6TE8SIKigfOJgkGoZ5oXn6c62ZBw1CKp6W5duMM9aiaaVDop9PFCl8q1HeBGchBbcq3uKaGUbpa+z2awcOUJAkcYYVY/wDoA5m/utr6/X+j+bze7gF+cJMCuZSXgcu6Bz4M0dW8aqGfjn1LBzWuFxfX1zqsPR0VHBIcrf6CXGp0EvXSKh2XF4k8otrWiAX3ByVTehL5kzdcJpGqRT5zvidudqlR29NiJquF77hZ5rqtDQ5zV9rv6QHmunSSoa17k/gG5Xh1XtJnSnr1TzqNOvfeEeT1hwJNnq6mp0u904OzuLTqcT/X6/7Cui4wXHojegHeN326k6Q5/xkPZZGVteBFF2d3fjhx9+KNlOjeQCaAGtviZPI3V0HoJE1Ld1d2c2ImpKodVqFbCvwgOg1Qi5O8AwgAJzGErBbVVVtV1TI+6ePYsjCpMQ1fRoBddzv08m/dPIjDviuhMpvxGITBi0r7ogHicHpuU7XcepUToFVUpLxuvCzg9gFjDjPAZ/4OyqQnkujTF1u904Pz+PjY2NWkmYguG1tbXY3t4u5arw1Nu3bwudNzc3Y3t7u/BG09lr0Iw5uLq6KqUdOAevX78u755MJtHv90tQQA0m88051ASnMBrMne5iqhkcZB8nWKOcDnJdkc/n8wLIlpeXi1IGOLGeZjQalXFh6ObzeeGhdrtddoDGISYTztihE/pH5ZjyYZxh5XUPkl1fX5dxRkRN/tfW1mJnZyfG43GMx+N49epVXFxcxLt37wp9t7a2ymZqixxYN3zPydFFvzA3OIiA1Ih6lF6Xb+jn0EArZpB7BedeehVRX9dEmbsuV1A9pQ6a6kT2WcgyOJ7JirgF65qNxyBjJx4CQDXyrQ4Q+k4dZ7eN/O28qXTVSgKO4yAwpfaPvvv9bo80cKfZtoioOU9um6GnZi/gB/QlessDVAT6tI9Kj6dsmk2nLbJNrksW/URECiIjbvUP5/uqDUAv6R4BGljV8k51mlZWVmqbO6ptZ1M4SmrRc4rLFKAiD/C19p151Awkcqe8rTsjI4fQRK/F9jAesIg6MFVV1RIC8B5LFObzm9L3ra2toh8I0Lbb7XLmOfhJ5UL/V6wUEenJAQ7KoZePi0BZhk/JID8HHPTf//t/r2WUobeWC0fUN7tS3K2VPNjsrAx5NrspWUZvZ8sX1fFCr6mehj818Kp+g+Jxz4TSPGuoSTSu1ZJ2XZ6VObHuPOo7NIHmVZeaCER+CP5DY9UlKuvoVM6ehUfh3+vr63JeL3hV5cmDAJptbbfbsb29Xd6J7mZjMPQEvK4+Fjzh/pD+zdw+1g941K7I7ljiwOgun66s6ag6S1ybOXIwJgRVA+nOqBM+og5CPPuoTpwKkTMshhglS7SYycbAahZJGZZrMqcPYVPjBd3cgfAfBQEZ6PGSZQVbDiyrqqrtPq2lCOr06kYg9Eujsj4nGDZVZgpwdEc0BSooQl1D7c9+ypYBGpTy2tpaAfgEUTQCyfrZzc3NoqxPT09rQZRut1sz+JoxUj5xhQO9mcdut1toi5NKv7XMlns2NjZKZi0rH9Esg0ZHmRsii85rWRZDZYT+EXUFjMHDZFPdWYmIoqS3t7eLk8L42ZkVcMa7icjzLAJAvId+aRDGZRqnWA9s5/mbm5vlGtYxs9MvmyuowVMdqHTLgFBmIJ+iMWd+PBc8q5Fq9Imu6eRzDYwqXRz0eelVRH3ZRER+BBzPUP1IsEircbKsiOocBc46b1VVlfGqrs1AjDuybhczvay2Qks1Ve+63dIMLPyt8hpxW1Kp1Ur0R9ddahmlglfV+W6XFJRE1I/R4F6yWgQy1CHR7J1mZxWoPYfs1UOdWr5fNOeLbKjSGH5m/SV6MaIuk+rYEshzDKJzrnKqPMy7VCcqhgI0z+fzYu+wDxFR9LhWI6icOEZhfO7YM34tLdbMKbyucwF2UYcAntc5bLfbcXBwUJIDJycn5f3sP0H/wC1NgQ3wjC+pcAe4KYGR6Q766XL+1O3t27e1PsMfBKShN7pSdabjcC0FV/0NfZh39ItikYhIdRPN9Tj2gP/1c3SsN9V/7mfw7IjbjffUx9HvvU/a9NnqAKrOV58A3U4QMOI2Kaf6RHnr4uKiOJK6cz1zAQ0IBnESxn2BPBI3BMj4TKtPlLfVN/Ay/Qwj6vs0UPKQ9qhzbLUjrVarrEugzE9bpjx1x8tM8NWx4jtVzKoQyVwyeQhA1g/NAmrmUAFLxC3h9Rw5LZFUBpjPb89k0n6q0DC5qswUwNCUJipwKtDKrMpszhg4UgQbdAxk2WAsLUfgGRrxVRCkfdLoq5aj8H4icfpeVVzMtQJc/VwZ+7k0VUAonbW1tdjc3IyXL1/GyclJjEajci30qaqqlqE4PDwspRrLy8tFiRBA8YyK8ruCAZ6r63mWl5fLLn/n5+eFz4+Pj8scMd8vX76Mra2t2N3dLXMMr1BGhTJlTlHqs9ksTk9P45e//GX85je/KYe246Qzh5r1hy4ACXYWns/n8erVq1hfX492u13KXPXwdzKFe3t70el0Yn9/vwQVcNw/fvwYETcb2sE/ZIXX1tZif38/9vf3o9frxfn5eXz48CEmk0nRXfTTwbo6uhrI29raiqWlpfj222/j7OwsRqNRnJycxMePHwvtDw4Oig74zW9+E1dXV2WzqaWlpeJsRcQdZe5G8DmAmuPj4xiPx3F6elpK1RUY6DobgixkUhWQKl9o9iWiXoKsEXkac7C5uVnbdOXk5KSURpM1YP4yQwkvMnfqGPC9gm3NCFRVVXjr7OysjEP1szt62XyqbtSGjdFzbHk2skX0G8Ayn8/j+Pj4DhDe29u7Uy7X7XbLe6A3lR0K8OBDtRUe7GG86A635eqMr6+vx9XVVWxtbcVwOCxLDghk0R+CqW6bn5tN8Kb0QhdqsEfBuV6v3ytwhr5kak9PT8sc6YZq7XY7Xrx4Ua6nag17QKUQuovd2be3t4se5R2a1crOlo+I4jiiYyNusZNW6CguUMygGEaDWO5E81y1JQqU2UkdeWGDw6qqStZpOBxGRL1SbX19PXZ2duIP//APS9Dxyy+/jKOjo/jmm2/i9PQ0+v1+bG1tleAAwVNk1SvSqqqKTqdT6Iu92Nraqsmk6j3XCRpAJWOn1z0H/lfMy1zoUgVwAnOhehRdhxxQZaLHwaFb4AuuYV8bD7hE3JYPU70wnU6j3+8X/a4YNeLuMkXNlMKHnojToCnjUnnheg/m8S71NTT76okq9L3aQK7Dtul+HvRrMBiUEvGI20TE5eVlHB0dlT5ydOGbN29iZ2cnfvKTn5TlKqenp3FxcVE2xdzd3a0ltjwowfNarVb0er04Pj4uWWR0/dLSzekoHA2EPKkPlGXj3Y6pb/WQ9ug1tmq01Zlj4A7KIKgqAGUujbhkDptmMzUKrxEGFL1GdRWcqkNLP8gWuaPNePQejTYxbo8guzNDNNGNlY5JmytzBdj6LpS8zosqfY9iMV7Gg0Ov2RKNMKlguwOK8lAn2zNP7mhrpBJH2csOtQGE/HnPpTmgi6gLvEf2lLe17FLLCnmuNuUhBQG6dpn/FeSQpZzNZqVcl3VJAJTV1dWyWyoBmqqqCrgHzGA8dGzMPWsVKUflGq+wcH2gcogR18ikr99RmqOoyZjCxwA1nsc9jBfw6CAh01U0jy5rBhLnH4edeYiIEulHhnA+KAkajUY1I94kP8+xZZlaz1YqaMmOXvNggeq8LPOJ7vcgHdfqOd7YA65VZ0ttC+/wPsB/GpxUe6cZJn4UmMNvapAXNbcr8LgHsrTvmkWij4Bg5Vnlb0CYjhud5BlhHTd2SkGmZsm0cb3rbp17DZxpuSayyjVkJAGzPOs5yIY6p+50a3BZ7R73OdjVz11Xqh0hGEi5LnNVVVXZ26HX65X1jzhElA5rRYVmSjRIt7y8XJZlKI5R2dHP3DapE6tYQbGOX+uy5HTxDB7PJ1hJGSSZK9UvOnaXI3UmoEOv14vLy8vY3NysVTuoTKjTrrqDeUbXa1WCZqGRD8akfVIa8a5M/p+6aaCPtggH6eeqdwiWU/GmdNR71ZFy7IX+IJA/mUxiOBzWzmPFwUMGtL9VVRVHS5MLBBKn0+mdykWdJ+ZGd7JmLr0KQu2bO8k633q98gJOtC7Z1Gfod27HKLlnvyAwVr/fj1//+textbVVEizz+bwsY2HXY8XymVPKmvzNzc3SJwIZJCx0PxWVbaep/q++02P1/4MdW480KiMyWRp5VA9bnasmgVDG1aYRZCaX6O58fht1Jyq5vr5eM9gAfO1Xq3W7iy3rknSjkdnsdp0HUVci5QiaMk9E3FF6jB/BUiCik4iDh4OqDr1GaxDKVqtVxqhRUBUGnTNlQJ0z3tfkUHs5DXMBqGK8SldVxA4wmWNdcM4uhgraNIPlAvCUzY3zfF4vkUL5aQRQ6a+grt1uF6PqytpBofKkR+SqqrqzJvb09LSU/BGNrqqqAH+M7u7ubqyvr9cAkx7pwzs8Qgc/k0Fgww6qBPQ6BcL6GQ4iZcBqeABXSmd+yCqwSRMbc3GkDI6jyoUapKqqSimfOp4arIHv1djRX/iWkmfWGJOBXltbi9evX5fMCoGcra2tEsX+/vvvY2dnJ3Z3d2vOhfIYTfnhOQAbMpsOsh2UQjt0bObcaGAtIu4AOQe2gBDuI6Byenpa6IQuZ027Zstw7NBLBDdVNjSooo4culv1okb51bFWfX5fU3poVF6fSYAJOmAHdA8IouTIIHwZcaN3rq6uCuhjjPC0gv2IKBlwfnCKaeg4BR+Z3aApGAL4K9BBBjRbgnOljq3aqadsDsTUntM0C++4w8fgdk4D/OhE9gJQ2WOe/+iP/qhktL7//vuSoQS7wAvj8bg2FxE3Syl6vV58+eWXRba///77wnveV8Aqz4m4xQRquwmGq7wpvbCZWcmlOv5aNQfWwkHa29uLzc3N2N3djcPDw5r9rKqq2CL0M1ku7Gir1Yrj4+OiIzY3N4t9OD4+jtFoVHNm6TeYzqvRkD82FWRpj+Jf5RPGr46iBtCYe3WOnwP/g1si6rKArWNM/CD3ugfC1dVV4b1erxfdbrfGlxoQwf6ix3RtN/zBfhrv378vFVy8j4ANOhD6w2s4171er8icVnNpQBw8AK+pnuSaV69eFYyuSQKVBQ1wwQca4HfnGWyGvDB25gOf6OrqqhyppsdE/vEf/3Gcn5/H+/fviw66vr6OH374If7bf/tv8ebNm3j58mX82Z/9WSwtLcWnT5/i9PQ0rq+vY2dnp/hPnryYz2/3Wfriiy9iOp0W+3d2dhb7+/uxtbVVjmiiDNr5x/2WpgDfY9qj1thqpxBYvHIt08ju0c56prPpGo38YfDJThFRgbF6vV4p/5lOpyVzFXG70UVE1CYWBezGUx1MnAaMsBtyxqCRNVWwLkg6qR4IgGnV4VEHWGkG/fnN+z2L0sQU6nio047QaamNCqM6Kx6NzeYT/uA5MPjGxkZtx2l3zpUuzvhP0XRcGFdV4Hyua2y1fA+lRtmHlrD4GNW5UgdWlazSRvmGfikftNvtMl+6noXSHS07dgWmAAGgSwah3+/HfD6PTqdT1pUqryhog08U3KKoP378GNPptHY+nYJjsn/QcTQald0SoQGl90tL9TW7Gxsbsbu7G0tLS7XyWWjB3DIXqgPUsdHqBgXvjFENcbfbLfKuZVTT6TR++ctfxqtXr+InP/lJOd8147Pn5tRGRAHW+kPD+dNstTu26BV1OCOipq9oOn4ADwaeCDlzTJaEPgB04SVKXTVQqHaF8jUFGFpRQeZZd3/VPnrm6SHNbY5XB2kAVcEtvE25tQahABQEgK6vr+O7774r46fsnrOr1flCX7FeCh2v9EfW1EaqnDog0/GhV6gWwbklS4JuYQzwm879U8uBbk4DvwKkVW+qvuMzrQDTgL86PWAAxT5Uo+HQ4oS9fPkyut1u7O/vR8TdNeHwEUuP4CFsFTqLOaZ8VtedataHuePZWi1H07lyhx7+VIdOZV7tviZJIm6TBhoYf/nyZVn6sLm5GfP5vOzMqrs849BqpZ9m6QgWsUkR2VuCvs7fOrfa0P0bGxvR6/ViY2MjJpNJTYYct2lAwGlBFo55ew5ObcTdyk3H7Wr3dcMiKpmqqipZWgLFbg9U/zFuXSaBvAyHwxiPx/Htt9/GyspKfPnll9FutyMi4v3793F0dBTv3r2Lw8PD2saPGjz5+PFjLeO4urpa+sneKBFRAvBUaamuQ79S+o/Trrpb8bzygmJIvgePR9zuOO+buLZardjd3S3Z6pOTk7i8vIy9vb04OTmJw8PDQruDg4Oy9Ivkyp//+Z/H1dVVvH//Pj5+/BgnJyfxd3/3d0WmNAih+BLdrzQE17NBJvriT/7kT2Jvb684+xm/MJ5F/EZ7jHP7YMe26aUoPHdsMyfFP8+ex0Bd8FFYKJvr6+uYTqflOQquI26YXoVClUpEFMcC8KDOReY0MFmaRXPwmWUuGJePWY2P0sVppXRR+ijN1HlWw6GRogx4MR4MlmY51BnFIPuuc1kgwkG/GkQiZPCLCrZGR3VsSpunbDoX0EDXQETUAaBm/NRpJOvEWa3ZXKuzq8ENVSreN6UPtOR5unGGZ8nUAaZ5Vg0nmLFSkjoej4siJDvMO93xc1BMpPT8/LyUD2npj/ORljehBzQAo7v8aaUGwKeqqpL1oB+azVMlfd+PA3qaghueRWYqIsra3vl8Hr1eL9rtdm09tc/nU/O8t2yzOi1NQp5V7pVfoY/SUXncQa4HCNmghMxjVd1s2gVPofs4dkKdvPF4XAP/EVErPdPSd55DnyOiOCbeV1rTZxmf8B1tEa8B8CLijl2kn+qI8j6A+nw+L867HkmFjPH+ra2tEmzUs2aZSwVazKdmWXScygdKB57F0gHnDwX0yKUus1En6ikafQEz0FfVHW4bGbNih4jbQLd+1qTHVU/rTqSUIcPDNNW3ONURURw4xR3qhOA0E8hRuciCL+ocq33QPjN32JAMyNPcBvKZ2k/W1Xa73WKfcJJwnnBiZrNZSYToO6GJZ73oL5Uf4Dx30jMnU3WeOmyqxzS7746NB/abvnvq5rgvop5tdt2ltKCKaXn57hp0paliHZo6tlw7mUxiMBjEyclJvHjxouyhcX19HR8+fIjpdBqfPn2KT58+lb03eD6NOQMXdDqd8g6Vc7Ae43KbxxIpAkLKK47xlA+yoCjjBuuAb/Se5eXl2N3dLU41Sb+tra3iI9EHnH2STN1uN376059Gq9WKvb29+Ku/+qs4OjqK9+/fR6/Xi6+//rrcDw/qvGhyC1pRrUAlUavViq+++ipevHgROzs7pbIwmwPnL+fz7LP72qMdW2VqSjD39/dje3s7hsNhiVKpgMLIWnqkSj8D6hqtBNDoEQ2A016vF7u7u/Hq1atYWVmJw8PDQgQU38uXL4uBJ3vy/v37iLgBLF999VXs7+9Hv9+PyWQSJycndzZW0jIUL7dShqXvjJMsgke1UHpanuDKwp/vgqBOrG4wgjLUo4pYG6eGWI2azsfy8s2mB5yD6N91Op07kWYU1Hw+L6XdEVE2keF/SleJgDEu7ZODWl2P9VRNAyMaHNG1ay58OLcK4KHNYDAoGWvGCTjXQIxmxpXG8I6+i2vorzZVrurINikM+IjMkPZlOByWqoi9vb14/fp1jQ4KyJWn6R+RXPoNf/b7/QIM9OxTBVIRt7KhkW+eq2WY0Gk0Gt3hed6N4tfSKQwJ2WV1tjUgpQGfbrcbm5ubpTya7+nDyclJTKfTODk5KfK1t7dXMs0e2NK5fS5NM7boQwUfzD+BDoJjXJeBFQ9eaXQbHkR3USFQVVXRQZPJJD59+hSDwaBsOvbb3/62lJLRV8rQyPISZNOqlaWlpVrVAfNMKblG6+FvBW4aNHpo4x26Pg+QBNCOiJo9ub6+OTfSN5ZSu8mzKfk/OjoqWTYNQPFsKp707GHP7EZE9Hq9QiOAnsq5BuJoKnvLy8u1zUROT09L5l9lMCLi9PS0ZMC0v0/V9Gg1LUHUrLnqVwW2Doj1O9UT6gxplQ1zTwaMDE7E7Vma0An+mUwmcXp6eidQDZ/t7OyU7CL6G322urpanGkqYzTL5tUrLrO6Zlp5Q7/XMs3M2dbqBD5jgzg2/NNqnpcvXxYnRXFOxA0PUln4B3/wB9Htdss556PRqLYxF87z9vZ2wY3QRNcJegAXfYAdmEwmpYJInR30CA4TGJcgAM9rcqKfsnlgg8ZnnIe6s7MTVVWV+aD6otfrxd7eXuE99wkibh1lynl1H5GlpaWygdJf//Vfx3g8jn/1r/5VfPnll/HmzZv4z//5P8evf/3r+NWvflUC8EtLS+WEgvF4HJ8+fSqB9Z///OeFnzkK5/r6ZtOxk5OTMj7wCA2cE3FbUXB1dbMJnwZcHc86NlHsqMER9Q20AoHy4E6nE1999VWpnDs6OirOd6/Xi5/97GdlydU333wTg8Egfvvb38af/umfxsuXL8ua2pWVlTg9PY3V1dX4+PFjXF/fHH3FXKuvhc1jzpDlqqoK/gG7raysxF/8xV/E119/HTs7O/Htt9/GP/zDP8RwOEyX4SlvOc0+p31WxlYnh6gMu8FhaLVTWcaj6XlZFMN/NPJLplbPwaJBJBSJMo2CSUojUU4wkkae1ThnfXbnFkbX8WeT5szOOxTYaqQ+u0c/V8UIA2qZl14PI/EulD+RWIwD0U3eMZ1Oi1DgsEJPHS901sg849fyGzUSOi51QJ7asY3I11c1CaDyuPIuQJANpLJAA80/BwApP2R98+dkgDDrdzY+5Q0+YwmA7rBJqWfmzPrfCvSI5AJk1GmAB9Tw0Qd4VD9X8BhRP55K36u0jaiXT2lmRZ0bl1817hj0drtdypAjojghXq6nWQV3YFUGnlvTEl6dF2/MnwL5RUDNdaFGyTUirSXq4/E4rq+v4+TkJPr9fpycnMR4PI7pdBrv3r0rGVv6q+vH0Wea7SSDSF8VbKPjut1u+QwDrxshNdm2RfaOps9lbRTyoMApIkrAiTFyP85LxG3prupOpS3vQ8ZZR4ujRumrrnHTUlrX/1lzew9tAZW6hMkzegS1CfZped5TNdcDi/Qq16uecDvnOpvfLg8aRFbdBp2gIRu9sKM818A7PIM1jwQocIKpbMCRwPHUDByyoZkcH7tjOLcBGe1Un2iAQ/Eb3+keCRqM4jN25lU+x+mE78B5BM3I2OHY6/npqss8A6c/6D2tSlOnXvVlRqcMR+hnT83/9MHnU50y9AfLNrTaAP3EGmSCui4P0AnZ1wZ/f/r0qfD0xsZGDAaD+Lu/+7v4/vvvYzAYxMHBQW2TpMvLy9jY2LgTENnZ2YlW62Z3e2w449BlWpqddHnAHjp2cj5BFhc5t/BwVd0EJQl68J1iIIJRGlQlgAv9r66uYjgcllM4dD+SiJtE09XVzYkGX3zxRVkzq3sg+NzrD3RQfY4MomPY76Xb7cZoNKol/poCoe7TeHXHfe3Rjq0rqpWVldje3o6tra3o9XoxHA7vMKMDHQwqz/OBNJWs8EOpCLt5sVbNlYQSCgOdZcRQeru7uzGZTGJ5eTmOjo5Kllgj+gBxpYc7mSh/vo+4LWPKohH6vwIOpY1mYrXpfU7z7e3tYgQAQETfUTQoD7K/bMpTVTebqhweHpa5RYjH43HJymiJckR97S4MrMfSUBahxlGFR0sC9Xm+FvHHbqq4PNDivKbXadUBYyXyC1hXx8uVI00DC2oIMkOoQMgdbAcfDq6VR4mq80zGe3p6GmtrayUat7q6Wko92RRJmzo0GniBd/hMgQtOYZbhgF7Ze9Q5UYMATzJeHbsakkx5w39ch4zzGRno3d3d2NvbK0enMAf8vbq6WiK5/X6/rOtU457xwXNpZEo0uKgGn99qaP3HnT/VgarvASVUBjDngKT379/HaDSKX//613F6ehrHx8cFiI9Gozt6Q48m4n0edVbnikANfLSzsxN7e3sFuBJQ1aymVvIsmjeda+VBDbzSf/Q3fIfTeXJyUrLnONgvX76MiCjfX1xcxN7eXtl8iAw2oJ2lAMqDEVHKt6ERoAVnGx3e6XQaA47Md7Z+DpBDtlAzbGRo5vN5yfJsbGzUjp14qkbQTnWYBizdriMLXnmircnpwx4TXFC9R6Y+Ikogen19PQ4ODqLX6xUwq/YDUB0RpZSZqplPnz6VajVkjewYQBdnDzml1B0ZUcDtmVl1AuBreAu+Q5dgc5aWlqLX6xXMoPRg40KnMZlt1vnBTzi/Ozs7JSt3dXVVji1DxlZXV2N7e7skTHS+PRkQcWvfNWCAbsA5yBx4mtJL15lrFov2XLK3HozROYX+EVF0C3sisD6VDRb39vbK/LrzpMFnXd8ZcUPzjx8/xi9/+cvaUUF/8zd/E3/5l39ZMsL/4T/8h7i4uIiTk5P4n//zf8bR0VHh38FgUEpyX716VZxfjoHa3d2Ns7Oz2NraKsfIvX///g6WYD2uOpeu72jwoq+nJvHkPAattEoK+Qc3IPeaVPz06VNtOdR8fnMM3NLSUrx8+TK+/PLLePXqVbx9+zYGg0G8ffu2VGL8+Z//eQk2DAaDsgGV6zbVZcw9VQrcT+abvjPvHz9+rOk05ykPAoAFtDryIe1R3oJOLJFXJtUjWSqcWcRSn8ng9B3u9KlzSZQ8y4Tt7OzE9fV1idKw5gpGQYEQweFszOXl5WJgtRwHgOMRcHVQPbrgCjwzyDo+pYlnOFzZKb0AYjhNRE6IFhJoOD09Lf3BmF1fX8eLFy+i1+vFp0+fCvDZ3d2Ng4ODso3+3//935e1gS9evCgBBAXlRGegi65FQjnpuirGysYbCKwy7Wx2uwPic2jKk6pkoT+fKQ34DDrAD9fXNxtY6AYczB8gQB1blRueE3G7Y7iDKXVs+YzrdDz033lKG88BZF9dXZVDuff39+P6+jqOjo5qQMhlmQZIUOUFUNZqDx1HFjFs4oms76qHFIAqr7nDpbKt9OQ6BZo4U+zw2Ol0ys7MEbdrM8mIUQ3CbqeTyaScK+rz89wahkV5EadQmwcjVGdG1NeRA+pozI1u+MJmUePxuJQY49h++vQpIm7m8PXr17G8vByHh4clG4NDRAYKPmX3ZIwvOzhub2/HdDqNjx8/lp2XB4NBRERsb2/H9vZ2tNvt4tiy0YaXImfAxp1et4UamFHwhMzPZrPifLBeqd1ux+bmZnQ6nXj16lVxCNHPCio9+KibYW1tbUW73S6BGc5l1oDA9fV1AXPYAcYCqGe+oYUGmmg41Zubm8VhRi50d2QAzXQ6bVyP/mM29Lg7Ig72swCOg0Ftnr3wYAeA3B1VAhicVQuv93q9Im+6NlCziRERR0dHERGlVB8dpVlL31AMR1ADso57aApQGQ80oOJBZUJlPiIK77N/A+sysbmZjuT5PBtnCztA0EYxnZYZe6m1Ot0+1zpOnUuwJrR2h0CbBv2qqio85c1t6VO1puASsqsZTgIgyDbBQdZx65jcPkTUMTK6ixMTSGZdXl7G//f//X9xenoaL168iH/zb/5NfPXVV/HmzZt49+5d/OY3vymnN+zu7sbq6mrs7e2VOXr79m0p58WJprpnY2OjBEl1t2d16DSASuUnzrY25wHH/OpTEIyBNzlzGtlAplkSRn/hX+YDunLme6/Xi9FoFN99911xlNvtduzu7pbNs8Do6+vrxRfCpnmwSnUZ/ez1eiVY+rd/+7fx3XffRbfbLTYT3ZJluR3/KEbVnZ8f0j47DYbS0PIwFzydTHXYuN+flw2OpoTUunwUFs5Et9uNyWRSDDDRS/1foyzb29tFCVKWwvt0QtWB1miIZ8EeCk6zCIgbQp1cdWzVUdEsh2YT1tbWYnNzs7bWhb6jQPf29mJ3d7esYbm4uIhutxs7OzvlCIDvv/8+jo6OYjAYxNbWVqEHmUie57soIxBuODQIojvGeQDAjeFzaO7c6vw4mNcsnDpozBn00JIysksuK3wGjdSxc75TYEXT6z34RB/1O71WlXjEzdxTWrK5uVkimjrOLEjlwF4BInzVbreLcfRneZ8ypzkDjLxvUdO5a/re55d5BCTh5HiUnoCc7rYIiCOamTm2+v9zADQRUQPyNHd0I+KOHHiQwu2BOsdqzLQkdTKZxPHxcfT7/Tg+Po63b9/GaDSK0WhUdNbBwUGsr69HRJTME5sJqjEFhHQ6nfIZa5739/fLWl09Sm5paSnG43FERC1KTvZTAx80pQmtKdAJLXSH+ogo4E2BI8fdrays1Nb0bW1txXw+L6CNXZBxRF0/65p9ss/ssktlhgKtVqtVNibhaAccL83Y67O10kZBLCBM6UffsHPMvzq7T9m8b1qZ5kC1yW5ltp7nZtcSMHGgBz9An/Pz85IB0+MAKcfH4aJ6KuLWSVA9pkEP+FuXJ+FQk2WCT13Xa3913lRGNFDA3xG32WWq5dSmqd3wyinFOuARgjfIgZfvU8aNQws/qrPBHEXcrVikaSAU/QLeycq2dY6VJk4vffZDs1W/z+b41gMTEbcVmuh25kqrNHS+I+4eJ+qN79E/6O6zs7P41a9+VZJUP//5z+MP/uAP7gQ4CfC1Wq2yRr3VasXHjx/v6JjJZJLiLHhM51MDNVrij97TajQdi9LN9YUGEpHFbrdbKjXQyZzYwmcEo5BTnkmFK7uGIwsrKyvFbuzu7tZK9cm44g+p7gGrqj3XagXk7e3bt4UmX3zxRXz99deFVrpM02nkfoDSXk+4WdQe5dhmgGQymcT3338fJycn5SxZB5yUoarxcgHxjCQNQqBkyFKikMnyUDLDYePr6+vx7bffls2KAAUwLE7dwcFByWqyZXYWkXRGdkXkY3IQ7A4IILGpxJbrUAAaCWu1WqWfGsVQho6Isl05SobnUBJ5eHhYMhO6SB9B6XQ68bOf/Sy+/fbbePfuXXz69ClarVZsb28XHmBtiu6srMdvQDdAEFkUhIexagCEpvzyXJxbmspCRNQE1UE+AOPo6KgYxo2NjaJo+Z4ASxYM8qAQAR41qPqdGwoHU/TXDQzXa8NoMZdff/11Ac6sa2R9hSpA7YM60gRgWMOCo7y3txfHx8fx4cOHO+XtCgAyp11pxvdaBqfylAFLDyoBKHm2GyAyZ4PBIFqtVtlsLeJ2V11kzcEOoI1otmYENKCjeuc5NN3sieYBhlarVbIVun5SAYDSFqOmxzBdXV3FeDyO4XAYw+Ewjo6OYjwex9HRUXE40WEY5r29vdqZnu/evSvl8RFRll1QkqibgWDgt7e3i0Gn8md5eTlGo1Hhb10fyo9WWmSBmOy30k8dCuiGTtWzLi8uLuLg4KDQD+AOeD48PCwb3/R6vbi4uCgbp62urpasbObkAn7YyGl1dTW++OKLiLgFqvqj+zdwD0tT4HPP1GtbX18vOzFTrYGewZHnuQQVntqx1SCs6xPnbcU8qpeY50WVSPP5vJap5UcdfSrJAIYE8NWW8gzmT23TbHZ73Bl95x70H84s2SyOxdI1ri7f3KOObzbeLPiFfALqqZiIiIIp1CHw52kGDYdWeUoxlzoj/Oa+rDxWg9Q6T+psQnddy8i6Zy3bVruu85pVe/A9c/3UzSudqqoqa+HX19fjD//wD2N/f7+cm/pf/+t/LWWk3W63yDo4kCye84faPl0i1Ov1ilP3m9/8Ji4uLuLf/tt/W5bGcQYr1Ti/+MUvYjQaxdu3b+Pdu3fFH4GvSM5Qfvzhw4dSqUJWcz6fx+vXrwvP0PSoL7KVBLh9iZX7EKof1bHW5WlaequnaYAdNbsPj4B1VEepTGBfKBve3t4uf+OQKu7S4BMVDtBAacH4v/rqq+j3+7UlqeqIQ/9sczl9L/1Xf4JNHB/SHu3Y6osZLIouK+mDOGrgmqJ5WVMlgAL0OnWil61Wq0QrActarhlx62ABSGBgPctMnUhXNihuHcdDHIPsfwfY+g51iPlcnX9V1jAJ37OT7fr6ei26QjCCH5x93SQK4Mb1gMder1eLFmm034MSPi6P7GVz7jyTOWNP2bI+K29G1KO5yuPMk9+r5dq661/WmuigstHESxmoVueXsek8uRNMpAwQQPbGjXVWwQAd3CEFBCJr3W43xuNx0RUOAhQc+v/0XcerSr5pzhbRFZpkPItjqtkQlQcMooI/dI9mI7WkLgNtGiR5Ds15xHmHUiPfUEnnTIEMek4DEgrm+I6SSM0kQTtdg1lVVXGWcBAVzGLgKaWNuN3ttqpuS86qqiqOBeuxDg4Oyg7v+qN9f6jO0jn1oIzSZGlpqWx6glOufAYNAUjwHWVxBH4BFNCS96G7+Q5nnpI6DSxrZhXnFRoofVVHaOBJG0DY7wUQql3xEtXn0Fx3Km836WL+zoIf7jC5/YQfkDkwkMqVOt46F8wHz9R59DF4IEIrBcjULgq8ur5aJAuuxxU0o0MjohbgyGirwFjnQR0K5J0kiNJHqy2yd9w3lgz/ZcGNzI5k+Mkz0U2Y6Sla5gNE3OjQg4OD+Oqrr8opCa3WzUZRHOcXUXdYFVv7cxmv6xANHrGfxx/8wR8UffPx48cYDAbl6EDm16tKaLobvVZBYH/UKYRPFUNjJ6ji0aPS1DYyj5lvxGcEvbFrHkhrogv/q9PnMuKOLUfz4IQ7dsn0j1aLZL6bVsBSzYeTrvOqWE3nI/OH9NrHyMGDHdsMCJLdOz8/L8Cj3++Xkg+NwukW1kog76w7Rxpdc+dMnYXRaFTWFqFQyKLoRgo8h2zmDz/8UJwKXfzuEXiNTvD+DJw4ndzw0VSx6mcZnTUyq2cT+uZD0JJMEfTRdSPqzGpZBTvEHRwcxKtXr8rYu91uvHjxIpaWlmrrArWkycepdNIggAKWphJkpYWD3efUFMiTcYu4PedRAzCsudQsFveyMcZwOCy7e2tT46+ykgEqZIOmhl7vwUCowvJIGPcSOBkOh7UNMciqVVVVW1+tSs9lgHcg1zgM7HD74sWL2lFREVFbh+VOqzrAfI6suDJcxGP0UWmAUdMgGgqa4NHp6WlcX1+X3RT5jmAZ9wGWMKJUhKCv4BnN3LqRem78H1GX6YgoAALHU50/+JAILHPMfOmYNRBCppHz9fietXKj0ahsMkXpLWfqtdvtQl8N1unSE55PqTLPuLq6KhsTvn79Ora3t+PNmzclI4zjp6XnDvgzvsucFminzjafIU/of45mYRdojv1hHgjQkglB17OBR0SU5SMRtzs96xEO6CHdIVQzte5IaLbLj4ThmW4vKY0DDMIbBKY1yKCbKD11Y37BMzjiBJA1m871TQ4R+kSzmjiO6mBBOwIQ6BHV2wQzIurHZjA3AH+AuIJi1cv0VTGFrtfm+R5k1HvVTunYMmdfAbo6A5r19R2LPZCk9zlu1EAAfXN59bl1u6X9zeZSx6tOiupB5MCdFOyrYkoyeJeXl0++rtybVjwpBt/e3o5//a//dfz85z+Pr776Ks7OzmJ3dzd++ctflr0RsHsEF8ANNMUwGmQhGMzfBA3+4i/+olTqsMngf/kv/yU+fvwY3333XXnH2dlZbGxslIyf8h6biXFMIEeCUn2l8gBPkggj2Njr9cr6YY5D0z2ANODowR/GQ6UCOtt9JIJ7WjKtGJl5Yb8gDWShp9inQPWU6gLeo3aMzyNuMRF4hSoDDUq9efOmBD3/5m/+ptgp+gOfL3JmM9zWVPnTyKcPvVBBsYNYImIwBCXKqvxgJAWgnuVz8M5ngELenzlREIN1sigSmDdzBOgHz9W++dgdxGnLJkczE2oIaFk2w+/Xa1WhMC4EV2kJ881ms7JWIOL2PFlq5nU+KEf4+uuv48WLF0XIKT8ik31wcFAcGlpWZt4E5tThGw6HpQRaBT9z3nyun7Jp/zTy7f2D/xRgoFj0/u3t7RgMBgWoN9EwG38T7/iPRw/VSKtcaH8zeeJzKgKyd6kMaemqKlm+a7VaxfBcXFzE8fFxXF5eRrfbLeedscseY1Dwkb3Xg0NNgKQJ1HhDIePY0o/pdBr9fr8YRSK5rAFS2VedCZ1ZK4njRZ+y9phI5e+zqaFTRxRdh4OvmyopqFVQomX3GNP5fF6cquXl5dpmJBG3Zx6fn5+XMw63trbK5jlasdJq3Rw+r/SNqNsUQA0OFhUrXINu293dLTv5ci33KjDzSHeTzNI8sKvfwZ+UNUKr4XBY6AAtCcwyHxoU2N3drZW6ASqdFpRmMzes32XO+Aww6iW4OreeyQaUqXMLqCIAAXjleUoDzRI8ZdPAgwJKdIOW4HvFgoJQ1VX6m/mOqAfKmXsNcmhgkuu5R2mvmUie5RlE15OZ0+UBQx1TZm8c+9C0v9gbD+57wF+dCz53LJlhRrUZWVAkC7563/SZmZ3Nro+oO/Q6B87DTi/nE52Pp+b/iFvnRgP3LAF8/fp1XF9fx8ePH6Pf78eHDx+KTGsAiN8XFxdFhyrtVB4i7mIunMednZ1ot9vF0ZzNbjaowtnGLuAQqrPKGAjCaeBHS4a1uhH5413snr27uxtbW1ulmser7jwIDx1VH5PkILiFnVMe5Dm6QzK6h2s0MaLy7u/XoI8+C93iwSOdlwyPwJsEfgku69rmbH2yyq3qBpe3x+KfR++K7C9D4IjYcoyJMg8dd0b1zioIV6OpgoGgOBDVyAbPJmpMhNqVV8StIvX+eGSNyVBH2MflCj5TVjrW7L7sezcQKuTQS8eNALK4HEOhO6apQWON2ps3b4qgw5BE2q6urmJnZyciojgjZOodwOoYHAAvLy+X6C/P9fIGN9bPoTlIdedl0VzCrzhpjKvVapUzxYgA4iBE5Flw/9zlwJWRy90iBy8zKH6WYUTUqjHUAOu9TY6tRjEjbhxHeK3f7xdjw+Y/aviVj5pkReW8Sd7ohzcPAETcRgoz2RoOhzXHFiCofcxoiz7R9ewZnz8X3qcp76qjgSyQpWBnRZcPz/7xPIICWvVAgBTeq6rbYN1oNKptPMeOyf1+v+iVVqtV1swCprQhj7rZHiVabLJDxoXD7NURw3FXmjTJlgPozIZqvxyko7cjbtfGk83BsdVoPuukAIG6NpP73UbpGi6eq04sVVd69AvP0Iy8O1QOzvnR7L5m0+mTjvW5OLZqf92mzuf1MkkP9Gb2n98OXr0pDxEw5VkZX+vu1BlWor9qmx10A+pVdhwcq/1xJ9Df7zLgPK46m3u5VnGEXqfP0/74e+m7j1/v0Wf7b2ie2TnHlRlmy+y0Xu+y43R1ffuUTcdKn6i82tnZibOzsxgMBnF4eBifPn0qNlxLwbH/OIhNfoDOrwZ12OiO4KIeQ9fr9cr17Biu/XR6s/dCUzUI+lQrsPAFGDdOLbrR5TzD//CTBl7Qtyzt1KUXGvhTX4SfzL/i/VpB4pgyq5LifR7MclzuvFBVt8cPEdxm3wZkiJ9Mzzl/eZ8fg4c+e42tKxUiiGtra6VkRaOaqqiybK07Avq5D1CJ7wRWgfBSRZ94dVp9ghVkKRD397iiVfCm46fPDnj1M43cae09CpLNr1jbp332jDbGl+ciuJubm+W93L+9vR0rKyvx8ePH8k51bFutm+g/W6zjjLEzJkJJ5EtL0NgYiQzDn/3Zn8VoNKptXNXv9+9Envj/7OzsjrJ46uYGVJs7+aosNKOD09fr9coGTJwluLu7e8eQ+7v520FFBiL1M22ZcafprrARt7JGyX4TsEIZ038Fa1VVLy/ks3a7HbPZrKyvJWpJZp8MmQMkfY+WtmrgoEln6bxlCjOjM8b506dPcXR0FP1+P37xi1/EwcFBCS5dXl6WZRHq4CnAagI42hcFnM+xAXpxaFmLzwYhOEK6lMR3HVUas95S+UkNGsGETqdTDnqnFFnBMfQmMqzHNPA8gnGUIOOwaf/QZTh17DLP2iQcu0XBNwfBPq6IuztuY0e5r6qqQkeyytPptJS0k5Ugis8PcqA2iPJZnq3gG72l42ajKZ1Pjo4gSOfOk9qeiKidkQsoY48GNpAaj8elBNkzGZolYZ3eUzUP0LL8Ch6CHgSHdd4zh1DtM59rgx4KAp2nMvug65vdJug98Ic7nRFR08+aVHAHVJ14r/iJuF2a47pU3x0RtQC5b9yj9ziQb7Vu14wr3RwrOs3UeeY7dZ4yvUtffF49UOd98PmEtqqn1G55kB/aP5emc7m0tFTW/X/zzTfliBc2bR0MBqVkFx0fETU94Tid7xUHUg6vS71YlgeuoIyY+9BZOzs7Bctgt1wGI6K27Ej1jgbYq6oqgdDXr19Hr9eLFy9exNbWVnHmIqLWN5aAZEFs5BtnkHl2PAN/smxQg06OebgPOlJxh+6tqqqWrHAbQJBOv1Ndxf96DY4wdgFnlnFgv/RUFp9z5QuVb5X5h7ZHlyIr02WRWVeo2nFlGh8IrckYqLevA1fnEiWj92bAVt+bRer8Go9yaMucDKWHC2tGVx+PR+4Q7iYFmvUpe6bTQMeO8uCZen4hoAjQQ7mDO/Xedx0fETXOEuOQdd7JtU5jN6jPqTFW5ZNs/PzOwEWr1SqZoOFwWBT0Ir5xnm7icdoi4O2yp9FUlCAKyrMQrhPcMC8C9PqZAjsFcxgWdtHLnMIMaGT0aLqmyfFv0hdXV1fFWAP+2aTNDRCgnrE4vTyKm7VFuufHbmQ/iSjjfOCk6EZArsM8k+Xz4dUefB5xCwgjomZQ6Qf/60Z50Dtbr4SjSKBO+6+OLddp5lbXzNG3Rc7tfW0R36k9gY907ayWz1EJQ790x0y1MWq7NQhHQEDHTaZa1wriXJNdcPuvDrUDc3dUoG3Ts/QZjznq4ffdFOdoYETnosk58uc06Sia6wjeTVObqWBdZZDr+J3ZJNWB+lnmrDm20L752Pz/Jn2nwU/wzqL+YiMccyimU9pkMpbpm6Y5a8JZ2fMcMyqOyzDnIh2i9zwHG5DNN3hwOBzG8fFxHB4elkRQp9MpeknLdB0vanOsn9EHbMAcU/kH/yObbDKoelF52vVUlhXXfrI0hDW7BHO1wkf76IEdfabSAN07m83KkTm6hET7oTLu/KTN9VGGy5WvoB+/0ec8q4kHfBzYXe7Tyi3HcIt03+9iVx/s2GoGgRfqIdQaacBgqkDPZrM7Z96qcPv6JB0sDAc4UYWrRt8VZ2Y03LHTz9WJ0nWfEXFH+FzBuzHR//UeFT5nLhUgB4fQG6aBAXmmMiB00fErUzE+vqdk2Z3pqqpqZQVEonV+NYqO4GeODyUhr169KpsOvXv3rvRd1/EovVBaz6kxb9BTo67KD76mQBUG9L6+vi7HcPzjP/5jnJ2dRb/fL4pykVOqMuZ8nzlEmfJQMBoRJeNIxFzXHqoDwZypYnOlqH1Uxz8iyuZmGg3d2NgokchOp1PKkwl+4IhoOaUGF9whWARqMsCnBkSzENCH9eW/+c1vot1ux8HBQTmyhLOgNUM7Ho9rDm9EPaOMA6X9UMfAq1qeuu3u7pbsoM6nHiXjG0VBRz/H2puX9Gd8r1UsVIEMh8NSngyI0mg05bcabMBGaVZNN0DCcSNooZndrG/qeN/XfHxqc9TWqJOnf1OCvb6+Xs73HY/HpbJFN4siy4lMqY4F+FFVoOXW2HQ+I3O7tLRUyoYBql7mpkBLswZuoxgPO+6vrKzExcVFjQeQgYgoy1aeuilYhF7tdjt6vV5NxpvwQuY4RuROVabHsns0AMJ1fJ+BancQlXdV56gdz56h12c4yfEQPMQ9rvuxLehPbJMGNOgvvKAVcvTL+cSdXdczKs+PCTQ67tPKHHW+eaZmhL1vmrDh+TpHGqh6yuZ8ih64vr45bmw8Hhecxxnb3377bRwfH5cjxRinBzkZq65rVb2B3HEN1YSKpbVqBfvEviYaDNFAJ8/TI6oUoxPAXVtbi+3t7djZ2YnNzc3Y29uLTqcT+/v7peyWDCXHIWoFgM6tywRZW2wQmxOenJyUTbe0X7PZ7M7GmjpHzA02g3d6sEAxq9JCHVuewzy4jtA5aLVuAs56JBh00flehGu1Lzr3j2mfnbFVJatliursKdFdkSyKTmXAoQlMKFjOjAPNwb8/TxWVgjZ1blWZ81uZzcGc9jOLTOm7fZwecWX9WkTUFpXrtd5PZTqPlGTBgMypBgBqxIUd3FQ4mpxx5ohI3fn5eXz8+DH+9//+3/Htt9/G6elpoaVn+jL+eermCoS5j6gbeQWS3hwI4xD1er1YWlqKwWBQnkOJW5Mh1j4tolPTferYUu5D2Tg8BwhWpcP98BWKS3nNMzCqN/R+X2ONASNDhRHTPjkt4WEtL1N+d3rrdyrjSj8HREdHR2XX3Ha7HS9fviylo6yPbrVuNiWKiBgMBiUwo0dyYWxw9jKnV+erSV/+2G1vby9WV1fL2dnz+by2ThLa6+Y5WfbI2yLjDD+4ntcAG44FpWa6doslFbobvJZH0y+eh3OuRwbpURHaMnlyWfVx6ZyqveQ6Dda4U6IODOvLcMQBPvAa42X8ukmfOhTqyOu4dW0xji3OnNqVJqfWdcTy8vKd8cI/0Fxtr4KuLJv/FE31lwcGGB/AsKllOChzGtWmOiBWOVD96vKj3ymAzfiRvmumJaJ+IoMGGlyv871ipKurq9pmiT63yLRiFH1eRP3sbMcV/sP9+k4F6Zk8ar903IxBaeR/Z7Lq2FhlWufWs7ZZOXLm9D11y/SR89V8Pi/ngpPIAFuwVpVnKeZznOABOXXwNbjhzunV1VXZmJEzczlBRB1nn3fNtvJcgqkkd3Z3d6PX60W73S7nofd6vdoSDvha903hR+dcnUitxqRsF/qw678GRjwgpRhCeS7jQ9WtWuGqdOcdnu3N/DuVCfeXVNarqqrRXvt7n8/3WB/g0fvnu0JGKTEomiqIRU5tpmT87wzo8T5Vpq7A9XM3IN4HmFGdMC+HaXIOPCrpClgnZdHkeIaG56Cw9YgBrte+q8LkM3VKtDngVCdNx6FOi/5P5I2MiPKCOtrQAKE+OzuLw8PD+Id/+If4/vvvYzKZxObm5h3gqEr9vijqj918Pj0C7AaX5jzE9wQOWP98eHhYnqfnp6niURnMwLG2hzhGKFAAsGZu4Aflz4h6mYlGHp0PtG/eb3iCPvAdCrfdbpcjpjj2QY8rUcPooE/pkQEbrtUMsNNM5Ymt6+fzebTb7djf379DF4xgxM065YioORPu2KpsZoBH+/PUbWtrKyKibNI0m81qfKIRYtcZ7qR5y3g2A+v8r5Fx6IZDq5soAajYoE2rU1Rn49hxVi6VCrqpSDYHmfF9iBFusoNNYFHBMTpds88XFxclcwINGL86uvzNu7UUm0yBbqql5cdaqaMlhR6QyRwxBXYq+wRGvIRc6fPQ0t7fd9M+aRkyvO/nX+p9NP8c29j0LqWpO0kRd3eB12sXBZIy/tJMJ/bGnTJ+Z1lPn1u3Fzpmvd5thYN+H4c/g/+1okOvU7ovwqI+R02A2/k7yzz6fOl3TckSTZg4jtWxPGVzu+o4n752Op3Y2dmJL7/8Mt6/fx+Hh4clsKhzohhZdV9EPTvP3xoA4HNdbsIPTi3ZQ96d8abiXtdBzO/e3l50u93Y29urVfKwgZQvEwSvawDWqzQ1CKYJMbK2BMvACB4gdznSeXBc7/zPZzjiLkueLVV592fq+zMMozKkFYw0v2YR1nmoDfisg+F00rUjOD1EdWFKP87FB8NkajTCCacRwQz0uKJQocsiak4sZ2gYFaHRaFFmcJUJeB+gSMfjUUl3TrK+MQZK4drtdlnjp9unq/JzEO/PctCh1+hzNMJDtA26An7ICGS1/ABMFPq7d+/iw4cPcXJyUp7la6d07h4KFH/Mpvzvwq5lyX5+WVNjDjmD7PLyMvr9fhwfH5dy4O3t7cI7vm7QAaM6eDR37OBZSo+Jaq6srJRIJNlEVVrZBiJKhyxr6xtGNI3fFeLS0lL0er1SDn96ehr9fj+qqqqdHavzoqBSv8tAnsq7Xu8y3u/3YzQaxadPn2J1dTV+9rOfxc7OTpE/ZF0zHpqlUpCGDuCogE6nkzpvCnKeg1MbEWUJBDLPmaVEuqEDmywpLzxWhv3aRfe6XsXBY20VmSMi+vBstp5WM5LasmCD/g9IyPgsk393LtDBTY5hBio0yOgAUEuRFaio3lJgrmtsCUowHtUDOj7kxEv2VPdrf7GH6Dh4qNvtRq/XK8taeA9BCOZIgwxP0TT7gvzCQ/QbGxBxo9c0MOm2LNNVji2YH+UTDxo71sn4ipaBUmzz9fV17fnYL5rbGMag3zsO0qZBAZUbHQf3UyngFRj6DMagm/6ok4Jz4XhVl3Bp0NjtWzY3OheZk+pyphuv6TsVp6nNdhutsvQcmvIVmFOrF3QMa2tr8dVXX8X3339fztvO9irQZ2pJq9Jd/Qj+5v/JZFL4RIN3yr+Kn+EzfY++D1xK5nRtba04tGAj9JYu2cDes2GqO8caeHTZVtkB06GL2deDpSdU4bg/4lhG5QMauO5BR6sMqk53O+HBan6gNYFUZBIZ1KpePelAm/pJi3TkQ9rvZCnUyGdGuAkEeISAhsB75MadaAXWWXPQoM/zPmfOpH6n780AqD5DIzAR9bU22Xh5pqfj3Tn3AABRFhUE7nND44Ayo0nGMGo4GQfRIgCjCqfPm84dNJnNZsVJ0JKULBLZpOCfsrkTlfVLQY0qn4x/aRpE4MiRi4uLUlrJjn6aQfK+LHKe/XNVMFqio2vGAGzKB8rDLl+8x3mN3x640WtVhvx73XmPjC2l+ASf9LmuHP1HaeBOo/eHLPZoNCrnh7JpBBULHkhyAJbNOfQiStvEF260nkMDgFDu51FqNcjKH67T9XlZc37W//1vfVZmGDUSr6DCnTkP8mV9auqngyP60+TUan8VXDk/6XXZGNVGsHst84Lj6IDb56aqqjvOrAJ4d9ycV5vGc98PelFLoeEhBftq956yqR0mCLIom/xQ+fXvmubYeVuxwyJ9vMh+OmZQJ2+R/tR73XG8T49lGMEdPe1LE/bT+9VpdHpBC6WJ22/V3/q/jznj7Wz+lSYP0XvZ/Pg8P7fm9tqz+Gov2Z8h24CP+/md6UXHo2BtMBZOre+Cr/1ym6zv1b7gwOnxdfqDY6s7/6u+5F0erFc+cF/J8RXX65nu8/m8LDlx2eMZbjP1c/3efTFtTfranVsf03w+r+FedLsmsHy5qr/T+5ElaB7SfqeMrUfJdAG/fpcBEn9exC1DaaSXpsrNhVyVsDILzKMGkXu93t0FVCdOgZv2xd/HxCLUi4CNTljmyHMNO6VdX98eTk4EnfcQKUeQXJlnDoMasAyk+Of8rQvs6Q80ZswusDDz1dVVvH37Nj5+/FhKA935199upJ+yZXTjfz7TTaLIgBK1h7f9eTrv3L+9vV3Wc7x7965sjtPtdmNzc7O25s+jzPBBk7NJP4kAjsfjoqj39/dr6z6rqqpt4KBZYlVyGiFXYKARclX2EbdrYRXAarRf+YuoKM7tu3fv4uzsrByNRMbQo6E6bpVpmkfnVfbn83lMJpN49+5dKWf9F//iX8TOzk5sb2/HbDYrRsYDZ2pg1fi4jvLypMzAZH8/VVMZX1tbq41dz2AmMOJGsSkQmbVFwM//zpxAdJJmbHwePEj02OCB66lF4DT7X8t5kUvd6KoJFPNu5dmIuh1st9vlM+ROKzwcoGf6oqnv9Nfpmf0offR6pcHKykpsbm7GYDColTrrezQI9JQNvqJagYysz4fqvsvLy3KdNrUhGX5RuckcNb83q4xw50AdA+UNdcIUfGZBFxo8qwFqrleMmPGLPgOdmd1L83E32TWe731VPOK09e94nvYPWurcaim6yjI09PWhWcVENqcul25bn7IpPfRov4zvI252Rf7qq69iZWWlnD9OCa/avoi6k6nBU56v/ItcqVMLVtH+4KDSJ+VJHY9mETmjHOeVABbLMtgFmetIAGh1Fv9rtYHytsoWWILNQrknIspu64wVOlXV7TFc+nzFGyrf3rSyhuuYP8bk2VkcfZxttx2z2axsdHV5eVmu5djQfr9fxuY6Sudf/9Z5egx+eLRjmxlwZWgtZWpqTYaPAbiS4B3OIHq9R+ruAxrKfOpY80xX/Jmjvuj5mcHIFDLM6IYni94ovQEotGzi9R6PHGWAOou4qpCo44by1j45eM2A4vLycmxvb8dPfvKTshGP7tzpTE9/M1r/mC0LACiAVuWo31fV7dmtEVGcUuUTN1rww/r6ehwcHMTFxUVZr4nD7LTmXU3BI5qeI7u0dHMGHVFUSqE1U9tq3e767Av/6T+BFZe5Jn5XMK7P8abGqdVqlX5iCMimTqfTQlcteeEZSuf7fgAjw+Gw8CU7/nJmJbu7q1wrYEJW2Bkwop6dVb5ROfRsgcrmY52u30fD2LNRE2tWI+pBAs2ka8btoYbpPh5uas5nrq+zAN5j3uNgKCI/l/wxz1VeiLgtG3OnIKIOytVW0aBvlgnBTqqduM+WZU6Ig3C/Xv/OgjVNcs7a3vX19cJLnJnLmb1PXY6pgNuPtvKMo9vwRc6a8lIGfJvmyLGF2ne12Y6HMv2SOX4+x5454xmOczIa6PtcF+tztO9qg5yOi+TLg71KHx9vRgtvzvNOT3WmcLR8rTX4gCVbOocZ7/g8ZPP/FC1zNHT++U6Xd+gZrSornqxqstHqXHmQYNGcNcmfzgt9UFnW9f66j09VVbUNLKkw0eyxOtsZVtLfTf1UHQGmpM+KGeib0tD1tY4x4x/nM8Ul/Lijq5iMfmjAAVp1u92YzWYxHA5LmfIif0h1mLfH4p9H7YrsHaIzGinEEKkjqs9oclogEp/RtLxBBd4VnPYhc7BcOWg2Rd/FezzSpgyg/V5EL4yKXp8ZDBW4JsFV5lTHlmvou9PRaQct1LFQReMgyvtXVfUjXXiPMnxTq6qqtknL8fFxTCaTODk5KY6KzokatqdW6q5wIuqgFMPFelJVxhcXFxFRXzuRKSAaCmt1dTX29/fj6uoqTk5OYjqdlvUkyJpm/5rApvIRALHVapW1u+ywqs6IG2ZdO5zRJePvTGFl8ukgw+Wf68nMrq6uxmAwiMPDw5hOp3F9fV2ODFEeVrnXPnoWRPkLZ+3w8LBUSWxvb8fLly9L1uX8/LzoODXuDihZW06fGZsbDJ+nzBl4rGL/fbSlpaXaulTWcSowiYg7JfNKb28Oxvlbv6M9xPnKrn+o7rjv+ZnMKq/rtU0OXPaZOrboCp7hc589V0GlvuexOrOJ9xb13cFIxscZoNPrq6oqGRAc24goR2n1er34+PFjjMfjR43n99FardtjjjyLrMBU9UITjnA9pQB2kQOXzYnPgTt3mQxmssf/nqF1Pnc7jU3SZMCiQJY6MUq77Pn6XnhjEV9Cd+2700gxZ5Pe9ecrDRSXKp117ac7/9m6SMe0iju9H8/BBig9NOOoc4djS1UPm/Gx7lTXvUbk2Ip3uY12fNzUN5rykjuOjkXUcVOHVTEFto+xgfvIGusu/MqrmS70/md8QAKC77TKy32SLLHAb8aq785smDq2mr31Uy+0ujar6Kuqm7045vObYw+pYlQ8r/1Vecx4oYlmTe3R59hCXBqAU0vUAD+kpJ2xnOBZWXCmuHxyPPLiE6TKg+t0gw13CNQg8JO1DLw7iNY++b3aNx2LCpFGh+kvjgfPV+HWyGz2Xp2DJqdD+6NOPs+D4bM1BV6SyrPZnGg6ncbq6mr8+3//78uW6ZxR+unTp+LYHh8fx3g8juPj47K2dDQa1QDfUzTlPRpzpOdzXl1dxfLycmxtbZV5nUwmhf5eXhNRn0cHCwSKXr58WXhkMpnExcVFURjwNP1U55R+8tnOzs6dcyv53nfPJjPKzoIoLXXq1DDAB5ql40flKssKKG25VoM1ym+Uum5vb8fJyUlMJpM4PT2N6XRaA546HpdXlW2iq7or6KtXr2Jtba1kjdy4AGbUGELH8/PzUr7MXCPLyI6uMWoy1A7wnrqtrq7G5uZmvHr1Kj58+BD9fr8YdpyT9fX1VGc72G1ylJrafc7rY+97aGtyEh0k/67vcEPPOwDEHjTMeGIRbR/aj0XPb/pc+5kFZj1QrGWa2LpOpxNbW1uxt7dX+GR7ezt6vV68ePEiVlZWot/vf9a4/qkafVbdpvaTOcyWJ9A8C6tNbYIGzbheg3Ncr5Up6sTyPd/p9U3AkfcyJ26n1Nl1J92rUTx76+PU1sSv2XU6Nsd+LpMZjmyyAdn92g9/h47RcZiu/dSgBc/SpArfqWzgUOi8PRcbQIPPI6IsIej1ehERZWnB6upqjEaj+P777+O7776L4+PjWFlZidevX8fm5mZNr+l8qRwxbjZeUqdOA8eK5efzec320rK505JaftBLqru06s7lCT9Hd6En6OvYTmU5Imrzrs6zf+6BHujjQTP3R3yMPEfLmh3L8RnVt2BQLc1Wx1b3kWGe2BNGsZv6FWrrlBZKX523RTora48qRXbn1J1QOqWKLmMsb2oA/Ln6mbcsIuhOm7/bFbIrnWysn9OanpU5+P55RH13WfrtjoB+n0VfnFbZWLJrs/nMBEAdJo++qPHAKVpfX49Xr17FixcvYnd3N8bjcZyfn5dy24uLi5LFPTw8LM7uyclJKXl8bk0dfgzUfD6vGSaPZEU8LOqu9NTypaq63e1RDSjfuWOLYllaujkXVteskm2OuBuIQXFnhtgDSdq3puCKP9edYpd9VeZZ4IodA5eWlspGWx4Y4JnaH/0uImr0Yy7JYhN1dPmkfxkNNIKrgMcBoNIjM8IP0Z0/ZltaullDu7u7WwJN4/G4GH3WarseaNJJ2jJ5+F2ayk/2+e/y/aJrM2fivjG5zdJ7FbB4NYK+x5+Vgfz7+nHf2BfRQWXWA9kPeQbgSTO2EbcAmjWtT9mygBxNx5I5r+5kNc1b0/+LWqaf9DneR9Wp2fXKA+jopgqu+/RSk27jN+9Qva6ZK73Gx6P9VZ5fRFu9timr2/Q8fY4HLhxfasBZn7mob9l4nZbPoSk95vN5SUAQ1GcnaOzycDiMk5OT6Pf7sb6+XtuDIkvy8Gx1brVCQpMt2ifln0Xy4Dznc6COLY0SY183rUkwz1pq9YInlniXOqX0D4wAD1VV/bQNHYPjRP3bx5zJgdIiw/RZkkIDdypH0IuMtY7F8ZI3p432/XP8sM86x1YnSaMU/E9kxbMZizroA/ZS4UxBe8TCFYLfowznQFeZTO+5zyA5bTJBYTzz+W3EQvuo7+czjPza2lrZhEgbxp4soT5nEZN4GYP2OXPw9V7P2Go0RqMyOv6Li4sYDocRcZPxwWGIuFkYzxbqSkP/fXp6+uSOrUbPlD6AfbK20+m0KCLdbVWjfloNkDmIygfMla7rbLfbsbS0FAcHB2n2w/nelRPK/z5ArWtFGCvP8XWU2nf+d0dTx8TaES3LXVpaqm2eo6X22vT/7e3t2NnZiYODgzg/P4/RaFQy2nrUid+r/NxutwtvqnNGNFb1TdZ0jPP5vGxsNRqN7hhoLVW/DyA/t8YRHHt7eyWjtr+/H+fn5zEYDGJzczM2NzdrVRvMrQYxmgKS/5St6XmZ4X/M95muzsCTR5iz52VOBCXryB/vIgCltG3ioex9j6GvX+syrJ+rXVWbrXRysKpyD51wXDudTozH47i4uIhPnz7Vjs14asdWbbgHlVWvO787sNWmcuJBL6XhIr50J82zPw6A6ZcuoclwizoVZMj47dl5nqd9UjwIn+vO3dgKB826VtGvUTpkWVR3UBWca3Pn2W2609mBvs6F8jibGI1Go1KppkfC6fne4KamnbXdWXsOzTFKRMTp6Wm0WjdLdDgxYGtrK5aWluLo6Cg+fPgQ79+/j7Ozs+h2u8U2T6fTOwkBddgUS1IJBL6CP30dK831DjpZM80Rd0vg3bGF74bDYbRarej3+2VJUubgetZxPp+X8bLZVubnzGa3y9Rms9tNmFiXSuCATdb8NAg9KcUdYNXffKY70NPgbbCdHzmmwQXFpuBDcOp4PI5+v1/6oDtW6yZ6TfPm/KbXPdSOPdixdUct4jYzAYDUTlBXn5UaPOQdi4y1RnkWOZv6Lld+quhciPw+NQpN/ddr3DC50+h9z4DEIqWs9IARnamb+sznGCt3hrN3KDhXpZ8BFneSceigvRojHfeiOWT3uadsmcONEGZlpfxohA/aYLz1eVlryhC4o8Z8RtSNe+a4NgFxfZ4qar7HIVNA4TzqPLLIgcn4RdceKyh2RyIbF4qeQINnsnmm8qwH3vSszEXrifUZ+jnjofqgqqra8UkKhJ2P/LOMz566Ma8KJjY3N2sb/+habdX5jKEp85K1xzhjNNd79z3jvusV9PD/fc91Q5xdm9k6BRDQDN7wLKbyBP8rf30O7ZqcJh1/Fvh1x+0+u+K6TIPSrVarrFUD+E4mk4V2/sdqme328UfUj+XTe3WsrsM8MO9Okzo4WVC+icb00e/R375ZIO/Vqhqu9QzVffjB7RGf6fVOF/QL7+EzHEPPLOl4HzqP2h9v3l/uWUR7HQvOrZ6lyr0ZjsoyjJmtacKBT9XgR3yA8Xgc6+vr0e12y1KnyWRSnDo/UQNMkTV3uljCRXCL5/AsXc8KXnEbrnaJls2h26z5/MaxXF5ejuPj42LjdRlXJg9akq687HhJ+UBLj7Wsnc0aLy4uak6t8ojrJ/3NfDn+5v2O5/T+LOhCf51fSSww561Wq/Q943OfA97J+zTIsAgre/ssb4EX49hyDqYSbH19PSKitv7wsZ3LlJU7RUyOr4d1wum12nRy9HpX/gomMmDLb+2XC1vT+HScrsiy6EYGzv192Zj0vTC0GuWsVMABlxo6NbgqENonzzZG3Dq7WWTU3x0Rte30n0NTkBJx69iqstG1B+pgafTcAxAZH+iccK9mSNyxdCWloDSiHs2nP7yb93pWGQPiikd5gznPzsFkrDQfL9eTKVUQpRFR7tF1GrSlpaWyHb/LtIPQjNaMW+fPZciDdw74eSbRyaq6WXe6s7NTQG5WeaDjbAJNj9Gbv6/GnOoB7JubmzW+U16gKd1/3+Dssc5Ppm+avlfAo2N2XvP7F/VJ7RlywHsAA6qfI+4eXUV/tDXZnOyaRdfq+DLgrbLiTl5msyLurq9SmWy1WmUXeNbMj0ajcjzIU7bMeXTdEVF3bDUwoXrQg3p6jfKM6gTeqfdnoJDfSq+MD+EbXY7i/MjvLFirPAl9MoCqvKn90+sVWylfoWe0YiHLnuqzfc6aQHSWCc0cAr3X/3deB9uQcfONpNRGKo66D4c+F6c2C8zgeI1Gozg4OIjt7e3Y3NyMiJts7vn5eY1nsNV6bGWmQzVQR4ZxY2OjYCrkS/EXMsRnuv+IL9tb5Fw5T1I5sry8XI6v2d/fL/tmeEIDWum5rsib63vtu5cew0PT6bQszSPrmflUTQ6i8p3KuGdgVe71b22OUWlXV1cxGAyKYwvu9/XGGaZRf0LfoTRtys5n7VGbR+lLW61WTKfTOD8/r3Xs+vpmw5sXL16UMhSiLR6VhODcn4FPZ3iNKOoEalmkNyWkTrQbbIjnx3TwjkwIs7p3fUfE3fWyGS10IjV1T4AAYda1gXqfKpvMiDlAc0dBP1NaIxBesqDPInrG9ZTboODPzs7izZs30e124z/+x/8Yx8fH8e7du/j666+j1+vF1tZWuXd7ezva7Xa8fPky2u12bG5uFpp/+eWXd+b2x2pNwI9MX7fbLconok7jDAxmoI/fnnlZBI4dHOg8NQUq9Nl8prKHAj0/Py98QImMAjBVhJSpsOu18oxHH1X5q1xyLuT6+nqMRqOYzWbFEcQYetmWAyXXCzp2D05xHfd4hlfnxOmN3KuTwRgpxzo7Oyvluuvr63FxcRF/+7d/G/P5vJxPl82Xz6vrnKdsl5eXMRwO49tvv42Tk5M4ODiIXq8Xr169KhtNaFCDlvHi77v9ru9yhy8DDfc5ww9tDvTdxvB+BW44T6wzBzQ+1AFcBOKzvrkNVHkDxGW8qtdmAS6lKTykx2oBDJ+6+XIibPX19XVtjT/f6xm3/uPBkYgcaEfUz5ykKX7AhkNbDS5mjpED3oi7ZyrzHN6FfszWGHIf41XHxY/9ypwY5S0dO88HCyldHZcxFrUn+h1BYJdZXZqV6Vh/Tpax1WVFNJ2XiKhhOucBxU6azXR98xxaxqOt1k2VxYcPH2JnZyc2NjZic3Mzzs7Oot/vl9MuWHt5dnYWS0tL5QggaOgl8fCNOo9aCTGf35T5oit06RHJLtVJSnftv/Ka6jHlb55FqW2n04lWq1U7yoh7I25xNbso63udlsp/6A/mWzE0YwRjKs94oEubyiR0Vf2hiQgSDMiY7orspzioLiDBqUvXNEutY4ZOztPK65oUggaU9T+kPeq4H14KASkvcCPXarXK7lma+ckcTNoiwc2EWxWif+fXNzkRzgRqfB306zv1+gzs+Lg8o9Y0xkU/GrlwxZ0Zi/vomSl/d8qb+t5kjP167e/e3l50Op0YDAbx/v37+Md//Mc4Pz8v6/Iibgzo9vZ2dDqd+PTpU3S73bJWo6qqJ3VsGZ82aMjaCD903BVWBu78efrb+T2jP9dnMsV3WdZ/0bMUtDCnCub0OuclXy/FO7yP/pyIqDmt6qh6lrXJWV/UMv3gY1Y5yvSD9x3auIEClERErK+vx/r6etmsS+U3M0bZ+zNj9RRNN8Uaj8cxHA5LiTU6M3OqmvT0ouuaPlvE5//U4C8LMuh3PqaMV+5r3KMy56Webj/hGeiuoI93K1/+U9DFbWCTjcpky+2XP5PrXH8oXRfpzR+rZY6GAmDdZyTLJDr+yXRZU2u6NuNDtcGLbIk7EAp6sRsejHcc4mNRoAyw53Pe7YmLJhrwfM12q1z4eNxxdjlooqvaR9W/WTAgsyOus5kDDe42lW9n8/dPrcf+KVtGS7AeR+9VVVWcTY69Uf7BuWdudF75UX5UvuZ83LW1tZJUo+kzHGu4fuJ75UVallmED3U/GypK1tbW7lRdaXApq2JymdO5X+Qr0A/FEJp11bG4PsjkXXWFyqyup9X+ZzqZPmlgTytsnO6efHC+yuivtvEh7dFrbHlxRMR0Oq2d28Skr6ysRK/XKyloFnzDsD4QH1BTc4J4tK2qqnTg+kwlFM9xxteJ9+coY0XcClO2BhQmUgbRzxEQdSAyEEXUEiWhTKbGyB2ADIwpkOIzhJCNSxirC5k+14210ornUY65uroav/jFL+LVq1cxnU7jiy++iM3NzRiNRjEej+Pt27flXFJ2UI6IUlpKBuwv//IvG3nj990Ypzte8GG73Y6Li4v48OHDnTItB6gR9TnSz3hXZkDVCGd9A9z6s/09EXHnuvl8XiuZoQ9evkJ5TEQ9oq+bZHEdffUgx2w2q0VXGRelSWqQnFYK4JVm2jKgpA4Bz+E6lWcHN9oP/UzXQnIN9INu8/m80I8N0zQiD115PvTLnOzn0Pr9flRVVYsef/r0Kebzebx8+bJEhd2ZcZDc1Jrm8r5rmj53OfpdmvLMIofhc5+NrWQ9kpZuZRVE5+fnhaZUOsB3XJfpisf0KRuPgw6/xx1QBYS61swBJTxCQFzXfT6npnaADIg6trpMhL0hwCkKNNXp06a6IAP2/NCagtH+vb7Hs4n8rXoXPcbGR/o5CQ0F1prV0ewOy4h0PjPgqu93AK12U0tQ1b7ochno71hObbLSQoMAfnSeNsVDyg86d/D3xsZGwW3D4bC2cSRjyLCZ2mHn/efg8Lq+q6qbfSSurq5iOByWMlT0D85uxG2WbzQalQoHmmIGeM7xAPZ0bW2t8BDLFriGZZHYUioH1XfI5s/xluN75Vnm8OTkpFTL8D0Va+12uzyTjK3+YP9VVpAdqjR5Lzp9Op2WAIIud9JNyTT7r/LpGFA3j9IjCNWRRX5VplWOtPoOnbC8fHPUZa/Xi+3t7bi8vIzJZFL6qklDTYBpQ27VQSeT/NDg5qPW2Lozo/XjCuq843rPIrDmUUAfrPeDvxddq/8robSERvvlzlzWX+2nMn1TX/XZ2gcfgxsyhEij+bxL6+Ij7q4fiLgtYVMj4Nc4eMhop3Pi/dY51v6r8UQ4OO5ne3s7Xr16VcDcaDSK4XAYR0dHRWjZUbDf78dkMonxeBz/v/b+pDe2JEnvhy2CYwwMDnfM4WaiqlVdUHeh1FIBDQGSlgK00VqfVCtttNDiDwgQutSo6mplVyor82begXPMwSHiXfB9nL/z0E6QN1t5yQJoAMGIE+f4cTc3N3vM3Nz9vol95/3KdA43xnUg0Puav/ln74cPqW/dmHNl6+PTI6k8hFzAQZsGKSji/S8ZUHk8M1b/I6pKTs4zAz6UXzql3l6OZ+ev99cy8vvrHF83iO7MyTEZjUZxcXEROzs70e12o9fr3XD4vQ1ZQOI+aTKZFMCmcS2D2Ol0yo7S5INHa0VZu9hu3XNXhzV77rZxkvVfBnDYlsyJuO1ddX0pPXF5eVkAoY5PYsqijwOBNt2jshVUUF0I9sXf2+rn9mmZ/KlO7sjyz1NX/c9tmmSIZyByc777JPGEDrrAN9fDCfBxbwkGOd0eZ+R9wb7PnFnHDnqO+tivy165I+l6VG2S7mbgk4E6nQKg/7L5dGzpdPq4Yp3kVOs/Mxl4njDb49+Jkyjf6os6HSS9nWFZtydu2/W8NjCUg+c6Pps4qbue4Yf7IurAiGoWEzN51JfZulbuzSO5UP/IUXR9yT7Wztp0hOVoSa6yYEY2ccRrGfZmoIoBn8ViUTm2SM5hr9crzqnao82t6De4Y8uxqpR+lSk+yUlXsIBpvhlG8QCs+kRlE7O6rC+zZxlf5Hju7u4WfLO2tlYJ0pIyv5DvdyKOvAv96BlbAl1G8QRwKTj6LkBUB3AYya2LjGUMr/P6s+eosNUWKj1XrnXT4hlo4yBi29VuXXPwxGtUwhpIBAZyBFzB1Dm2rhRvA+Ui8okGQ+9m+gJ/z6JF2j1uY2MjfvGLX9wQ3MvLyxiNRnFyclKyAN69exevX7+O3/3ud/G73/0u9vf3b/T7x6QMNLiCZB9kawEyELgMbPp/jo3bysgAqjtM2Z/uJagRabwrAjedTmN7ezsWi0VZg8v7aYhUnpQcwRLrJMCutbUZmOPMGdvIfnFecCbJx5iIv2czSs6brM84VuWAKBDQaDTi6dOn0e12Y2dnp6wD8nFHY1vXpvug4XBYHFuB1oirdGtlVWinSw+KUN8uA/VZXy5zPv05dyJd5nlvnbMpUr0JmFwGPUJeR9l7JOuz2SwGg0FMp9Po9/slhU/EWTF3pDRzO5/Py8wAdRVnyeuAfFbvrL53fZ42MnNs1Xb+tlhczcZ0Op0SKJNDpGyH+yYCWtVdu7+urq6WTIZ+vx/z+bzMXAnYqt0a3wTgDqppe7M/z/7ylGHaYnf4RNzEiDiHxFlaAnkR19Nqtorr87jnAmWCsqHyiCc0C7ayslIyAunY0gHydtLO0iESvzWeM57zGv/XpWJmjq0CNPP5vDKr706Gg3tiTxFx5UOwAY4JRQrkDIfDODk5iYjr7CR3uuTUSnexfy4vL4vT53xVmTwyhjOyOn1DcuN2X7/xmsYmg4fEIrpX8qfj/y4vr/biabVacXFxUU4/2N3dLfKv+zn+1SafJeUY3djYKI7x+vp6nJ2dxebmZpkB11E6DJZRLj19mHLnGWPuj2Uy6H3vtn0+v5pVbrVa8fz58+h0OrG1tVWxn+6E67Nn2Gb2hON6mY0l/egzVGiYJ5NJOTtSHdLtdktFdT8NWwY+dZ+UFtN7s4EkZUCllkWPHQg7yOf9FG69l448c8mpPGlw1DZXvJnQuFFbxjPOirswUoA9CpoFCPgs3yPiInE3nhE3d9d1B4DKYTabxfv376Pdbqep4s1mMzqdTnGO5vN5vHr1Kv7qr/4q/u2//bfx3/7bf4uvv/76xnMfk9zxI0BvNK7S73XUCdN5I24eeUDZIX/rwKQPZikJT8mlfOuaE+us8tWX2eYgWscioCKQqTGv9BgBGqbdqN1MWdH4YVBM9dEmEzJuUvpssxS3K0mCRfLRgQH5z3aSb9mz1CHZ+j8/25FjkY66ZqR2dnYqqdwsy+XtoYAazSrKCdF43dzcjL29vdjc3IzV1dVyfi/l0EGhKHMy63Sh68lsbCwrL3s2q5NAN5d+RFwvCfFsDLVPYIEOg4NXlT+fz8sYEhicTCYVx1b102Ye4q+c2/l8HuPxOJrNq2UfAiwax5rZoO3JgkG3EXlDp4GRe5dPRvQd0PvshXSF9Ee32y2gd21tLba2tj5o45CfihiEoh7TmjJhH/VBFmyXYyv5pLxkgRLqKwa83HnN9CHXKmfjggEGt9v8jbpbZROYyzbQ5jugFm9kZ2Rb5DTrPqZnSyYirnQPgyKUHR/nshHkR0R1oyjdR/6pbiTvg9uIzgODDdQ3HqDIlmjQsfJ23Cc5XqUjtba2FpPJJE5OTor+0h4p6uvZbBZHR0dxenoag8Gg7D3BzYSkXxnkyDCydLHuUfAk4jolmZibDqCPB33P7Lf0qc6VlRPX6/Via2srOp1OycSaz+fR7/fj6OioHH0jjKS6sr5c/jcajYpNYDrwyspKPH36tLTv+Pi4HIVGcn9E79T4pvy7f9BoNCoZWOSNynH+6DfxRo54p9OJ7e3tGAwGpT8Z7Pcx6zLF//RdPkT+f9TmUe65M6InY0QmswxXRizT7yPzXSHz96zR/p7b3ksBz+rsQuJOR52D6kbKOysiP3KFZbAubLOnfnt7+byX4+XzOSkBf68/Xwe4M+U3Go3KTreeHifl4wN1e3s7nj9/Ht98882t6/N+avL+dnll5FoKPJO32/qh7t1ZPbLZfzpvtykCH1NZ0ImGXgBMm8IpGi1AwEg7AbXKdcfWI3kCOIvF9VoVNzgRN3c09/Yv4x/buizQ5mX679m48eAQDYPaJkPmayDr+E/9c9+kVEuNYQF4GXptJDUcDlN+Oc8y+cz0uK4vG0vLKBsLrEsG9rmngdKrGZDxfpEDKjAiQOJjgONATu1gMIjBYBCTySSGw2F5R8T1umuNEwHGiKoD3mg0is6hQ52Bw4zHWf/4Z+e7y+xdxiJ/c4CjeiqVVXZhbW2tss74viibqXBgrX7QTPxt2IbkIC/TMXW89jIy3JFhBfahnvfr/k46ZJRx6kDJq/hF3MNyWBddY10lD25Tl+ntrL0k2Q8H087TOl10V1qm3+rqWFefDwH1PyXV1aPRaJSgvk6HUFCKtlzYbzabxXg8LoFD8oHBo4ib+JjyTXnR92U6i+W4/hE5jiZuUSaN1tEqw0TZSlo2d3h4WDI4fL10NsYYBByPxyWw3263y4TJxsZGWbfv+G+Zn8VAUzZ2nH/LylHfuG6g80zn2PUL2+9jwfs467u70gc5tv5SpoVIoU2n02g2myUNR430tRHu3Kl8Cf5isSgLjnmd9xPsMaUhq7uDkMyoMFqYRSUEdnxqnErer9MIMNWG9aKAzufzEm1SWYw4iX/u9PO72pMBem+z3ql36T7fBIfGSs/6YGG79Zxm3Y6Pj6PT6aTvyhxkycP6+nr8u3/37+I3v/nNjX69D3Kwof6SEn/x4kWcnJzE69evS9t4DIL6yGeuM5BHBUjHkf2mewmUXGGJfLaAY9L7gTMJFxcXMRqNypoypQwK8OtPjoDqoM8cI0wp07oMKcyzs7NYX1+PVqsV3W63vEu6QA4VQRSNWZ1xInmmgfi4rL/volypI5z3HCPD4bDMSOnIHzd0bIPKvm9QHxElAq1jyDY2NuLk5CQ2Njai2+0WuWbArQ4cLgN9ddc+1MBlRr/uHoKXi4urcwplrCmD4/G4cuA8nVw5tkzFZGo2TxFwx/b09LTMCDDg0mg0Yjwex+bmZpmVPT8/L+MmIgqQ5HhS4En153IA1enH8lXEMchrdBp8TJLPPvO2snJ1BEin0yk7jqoMjq37Itl/8VsZasI5mvHY3t6uDW5G5On4zid+lm73DZukm2X/eZwHdYo+Z/aDTgTlLksfj7jedEbLi5juqP4hbpvP59Fut8tOtlp3pxnb6XRaGU9st0A89aRmbiUPCiaTj/7ntpXZaFnWgT47r9w+ZzpZ/a7ZRNpyrieNqB7XkmFE37jxoZDrC/WbAlCnp6dxcnISz549i1/+8pcxGo2KT9BoNMrRd3/605/KqRitVqvwlMvtpFNJGjvKDmNwRRheOo4TURxz0j3UKZ5h44Hv8/Pz6Pf78fnnn8fLly/jyy+/jO3t7Wi32wW/fPXVV9Hv98tGi3Ti6JBy3HJiUPcqtVnly4fSZ8mm/CvWk7iDgSbxVUugxAfKs8aDZxwRN1FH6JpndsgXZKZNtntzne1xP+FDx8AHpSK7c8tUFyl1GdJsWpyMZqMYBfBGeGfxmhsA/lZ3nwPOiJtOMY0BHVsaYj6TRR75PiowGms948qL5XDHNN3jwJF/dJ6ytrNtzg9952eW5860E5W4PmshvRS+UuTqdgVU+5VqobUFDsbug5w3WdRdaydns1kxcOovGlA9y3T7OhlwI+2gRffzOX+eSknkRp3PUGYJdCh7lA0pZf6udzEFhuWrDpwFZPqNjxVvX/ab3+P95vzhM7ynTgdlPOdzbijURtc17AsHj5kOewjE7JxOpxOrq6sxmUxKdJnGzbMJOFbu4nAuI7cHH/qsf5fcKiKvNrrB1xmMTC9jcCXiOlVXOlvODcvWuFPa2Wg0quyGLECgZzudTgkcbG5uFrmhbhGwkk5RfXj0lChL7VvGI/IpG3+069kfdc+yP/FPzgp1wMXFRUnnv09iv7Xb7Wi32wXvaOwzFd1xg+sb6vK638lnn9G8jbKsHn/O30XcQ6BKJ0xp91lqocqUM6DZOdl+2UUtbdB3ypUyFThZQCfanQ5do8x4fUSux52onzM+611eblYvtUX1yrAvcS+Xr7mdeAiUORjktfRXv9+PbrcbT548iadPn5YJIW0MKj16cnJS9JrrFpfDiHxHY8qlr2Wtw8ki2mmfBSZxLGxsbBSHXLsfK+AljMs+ZzDTxwknFTzAIl1yeXlZ/musRERxcOXYKnhKfnEiTTxbLK6DNrRhGZ7VtUyPc2KEeN+zg2Tv2GfLyMdU9vk2+uA1tjTkclAUrZQBYkQgc+SyKG9dREwd7yCJxMHGmTBXGiq3rgxXgjTaisDRoHNAedsyB5EGL3tnpjCY7qd76TzwXQw0SFC9fVQYIjrmJB8UXPuQgVOPCEtG2u12JUWFB6x7e9U3w+GwgBv2431RJhsO1pvNZtkcaHV1Nfb398vaOdVf4F/jxvngxoyAWSQZdFnTeNH9mWGm0fXUeq+HosYqW+NA8sx1sFJ0Wo7AWdS6NslRZnpPBmpdzmn8yDP+RvCRKXYH1PyN/ezXl5F4kOkYPc8xJX1SB3zZhodAkpfZbBZ7e3vR6XRiNBrVri0XsS1ZsMLvXQbYCXoi8tTluzhsNNKMmPP4OrVL90yn07LrpzYI4pEI6nsBEa0dE980y6drnLGiQ62jz05OTmKxWMQnn3xS1nKur6+XMe4py1oPT/6qHpQjyWDm9GR9p/8ZmFd7Jfv8o67hePN76Aw0Go0yu0d7Kefovuni4upYk+FwGJubm9Hr9Soz/RFRgrA6a5NgM3MCqacJMrOxIt3rDm4G2h3zRNzUna5jfMaKNoJBds3YiidZBlJElLV3/X6/4EWeha1ZcK5Jlpzr/WoLZTkLyJJnPiPuRLDuOEmU4R3yMLMRlGvxk9gvs4nEle6Yq8y7BjJ+aqLeJJ4UCScfHx+XDQU/+eST6HQ60ev1Yjgcxh/+8Ic4OTmJg4OD2N/fj0ajEXt7e6n+EX+EsTPM7EF41yd12F/PUnaoG9lmltlqtWJnZyd2dnZic3OzcoKHjjEUhuHEAIOalBf1u65xg835/Pp4H9oQ+QayP8x6owOtNlLOZLd8wrGO/xE39QJ1g2yQMoY8VVpt9n6gLc98Ez37Y2T/R20epRfv7u7G5eVlHB4eFkZpAxilS4kpXsksKkJHkgM9A93qMB9cVFIOsjIDkA1UKk+CHilX7ijmAEGOvdrta67c8fOIp5wJXVdact36TTpIrqy9bJV/V9C+7LoDcPKYg+zs7KwoO0Wz1Ee6jw6KZOf4+LhExDOw/LGJ/cP+0280kGtra/Hy5cvY3t6O2WwW/X6/yJBkQAb9+Pi4Iu9UduwrBx8uO+7k0cn1MeF/XkYGNim7XGLAsRhxBeYYaNGzqpvGFjeN2tzcLIpaY0vjj1vhsy/Ic76/znnxwA4p4wHJlTEBj56dzWYFoJEHfEez2SxrctRG8tnbxmsPgS4vL2M4HMb3339fNs14+vRp7O3txfr6enEKfTxkoDsj53/2XVRX1l3eoXLoqMsBcSdEz+g8ynfv3sX79+/j7//+72M0GsXZ2VlJTXv16lW0Wq1SthwyOcwCJ9xIRUt5ZrNZTCaT+Pbbb+Pdu3fx/fffl9R/yYp2C6b+1OxAo9GopIDK4WQQSrqVMwpuk7JgUZ1NJSh0R4mOh4O5DOBwLGg33a2trej1erG7uxvffvttcdzvk2THBoNBrK6uxvPnzyMiKjMVlFPZcvWV74shygIHHEfSu7yfek86lc7RbVSnazwtmRMV6jfHMZeXVycbCJMIdEsfDAaDck3ywKUr5G+j0ShjgkED2UzxQ7zhsiny0jGeYxXaN7VNddDvuk7b6MTnfGxMJpNy0kNEVGSEY4JYkgEDYsiH4thmmE8BKfXZ0dFRbG9vx3Q6jZWVleh2uyXg/8knn0Sr1YrPP/88dnd3Y3V1NY6Pj8vRgeS7B9M5lk5OTordnc/nlSVwzAj0+lLfZG3yQGCz2Swzyu12u+C29+/fR7PZjP39/Xj//n0cHh7GP/zDP5SlJc+ePYunT5/Gy5cvY3V1tXIcmHjGfUQODg5iNBpFv98vwaPt7e2iC6lX19fXo91uV2aqlaqssRNxveGh/ArhLuIvyZ++E1cSp3hAgTpeskqnVJlHdcF5d2ZpG3jPj6Ef7dg2Go1otVpl0xA6Vtwliw3Qs8scFZXB73X3+efbACAVGA2QP8fZTip4d2bp1HoH8T2MKOl+diKVNGeA5RzSsNFQZgrcB633Wdb2DNC7sNVR1ma9W4M4i+B7fVUvDV7t9lk3C/SxKVPkGV8kJwKhl5eXZV0RZ6snk0k54ojl1/GcPPL6kPd+jY4Ygw6UHzfGlCGXZcozwRODQlmd/Hk+p3HBXZDVXso32/ah8pkFebwcRvyXkcuiHB8/8oyGU2XzjM4MJNQ5uQ+BFourQJsAxXw+j263W9bASa50r6hunNT9pt+pJ7Oybuv7unJpmAmapauop+hE6pzZ09PTeP36ddnZU46xZiUYnFRgT2uNlMoq8CGeaSb4zZs38f79+3j37l3JdvEZXaY407lRm5gFoeMmxDuCN+kmlaGxmdmH7Hud3fCA2W02n+WqbnJuBXYjqhvZ3ReJx5ptlx6ts+3k6226xfVQRNW5YpCf40MkXelO7W1jzd/v/X0bvpIMa1JDS4hYLp05zvjov1+Xc8tx6llzKtvxTqZ76nSp89B5Qb4S47lOymyJstQU1IrIs4dURl2ZdbNp90F1vHJsORwOy4y87B6dtdXV1eh2u5WgiMa8l81UVsqLdCv7hGMuw0uZ7V6m0+iAzufzaLVasVgsygxtRMTh4WHs7+/H/v5+vHnzpsxGy8nf29sruIaOJoNDi8WiOILihSZCqPcWi0XhJZcDqK7E3rRzahcdVc6k6hnhEvFQuoiTkplc+viV7E8mk1txmo/B7PuH0o/eFTkiotvtxvn5eezs7BSj3e12S6NkPB0Iiwk0BDTQfN+y+lCY3XBSqNWhnlLC31SmAyduAsBUnCxNiGWqnWq3joPJlCUFU+XKoRUftVZVs2WK8KvdWXTcy2TdFDnVs+7wqo6+aREdEfYD+0L9K8CnjU2cZ5yV5vfZbBYHBwdxdnYW29vbS+XgYxGDD/rzTQ0iqhFv9f2TJ09KmxW1Pjk5iePj48omU5mR9bFBeWPfE0DxOd6r/qRjy36jkvLZK8qy9yGJ45AbKbnMsAyOJxGVsYJmkkE6HzRgDv4IClWeRyqdj1TqqgdlIDN68/nVFv+UdaUjao1Zq9WK9fX12NnZKetyPGXIHYAMtN03TafT+OGHH+KLL76I3d3d+PLLL2N3d7cy6yhZibgZlc2cVVHmwNY5tdn3uxIdWo4DHx8y6BFRAOpwOIzT09Po9/uxv78f33zzTXz11VexsbER//7f//v44osv4m//9m9LwFegljO2Wm8o23JxcRF/+MMf4v379/H73/++yGCv14ter1c2DBHYl1MrORPIkSzKdgj0MV1NqdUKoOozgy1uU6lHuI5a/KdOJG99XDn/pV+o/5SGyjMRGTi5T6IsK/CqlOSIqPDUn6HuVHs5/vW8iHpH+EMzNRE3dSbHFx1cdwLdISROiIgbwR0fY8xWiYiyVlbHvEimNUO3vb1dsg4cn8zn1xvMCAATtMuu8Tme+6m20ra5o0h+Z/gwK8ed54xfukbeS9dPp9OylOCbb76Jk5OTsgEcAxY+M17noDEz4r4p4yF5rpnS7777LjY2NmI8HpfNoZTN+MUXX5R0/j/84Q8xm81Kdqd4JPvI93K2ez6/3lhKk2jSe8RexCvin/BsxPWxQLQF7Bfdq2NsNEt6cnISX3/9dTQajej3+/H27dsy46pA5OHhYVxcXMRf/MVflE3xZAuY0q+9G4QPlJZNXDebzYoPoeA48QgnxGgH6EjT1k2n04rOp5PLpaXsc/2nDZAcD4fDiIiyydVwOIyvvvoq9vf3y/vdFxFl2SW3+X+30Y/aFZmCrOjcdDqtgEJuaqH7OVXtURKWmzXKQTrrRKF1ZVRXtoNir5MrHA4UT7Fkub7e1qOSfr8rYl2T8FBZiIdK3VTk2AEIlaA7IOzHrP1OmcPFa3yv6uoOlw6cVhrH+fl5rK+vV3ZCFG8JLB8SqHd5JRhbdr/fw2CPZiYEBEVU3jQe5Lne4X0YUR0frAsBp4MaBwG3BUgyGaPjSMocEhp45xXbKmXLyGJEdXbZ5dn54+8hAPTnnW/8X3ff6upq7O7ulvWS7nyvra3Fzs5OSd/lLobsK69jVof7JIF2bXg0mUxKZoLv7FinwzOwrN9EH+qw3vas60XJNv+ovyUbnH12faxlEq1Wq+KoCaQwnZC84ZpCzTroGW2worVKW1tb0e12y3EZEdUZCzkABDpsM/UKwRyDP5TpLKvIAX1mh90hILlzW2f/2Tfisc42z8q9D3I9p5Rk4R/qNd4fcb2EhfbMgz/U93yeS5v0fuoNnw2uG38RN/dY8D7w7Cq2hdk03E1Wx30tFtfOnTIBJIMMjGf2SPK7ublZZFD3ECNkm2k6vspmxzOMk8m4y+myIA9psVgUeTg+Po63b9+WjA5uepaV7TOMdX8PiRwziJQdMhwO4+joKN68eVP0peth6saIqEwiRVwHdOjkUu4oj8s2VK2Tg9sCceqbZvP6PGU50ysrKzEajYqvo3t6vV45c1yb/slJ9P5WexSQEa53TKhrWo7IzQGdZKO5ga/GkHgnPSN8rsky4i7+90kJ8kdjVNkrtB3aX4Zjn32QyZP30110WkYfvCvyjQL+/0Ir5pFJ7LTFYlFZk0blLHJAzs6jonWHk89Q2LOIpIPbbH0RhZ11keFXR9OJZX1o6CX42aJ0F06CdS0Q1/PcqEc7kjIqQ6fAHULyhtFcN8TOK/GRAQnxx42x2q4UCt2nlJPt7e3Y2dmJ6XQaGxsbZT2GotBce8pokAP9+6KsDuSD9yVBjKfRSPkrMpY5g1lfUP5Fkin2k5QNn2NUUrx1ZaN+9E0OVFe9i+W50uMsLcdMFqnz+hHAaHxyDGUOMvmSzWp7+dQ9fB8d4LpgisuA6ri+vh57e3sljej4+LisrdS2/Z9++mlxbjVu3WHwMet/901KgeXZqzpnjxshkchvySnHS+aUZm0lgHIw5e+rI8ksZ0op541Go0ScNVY1NrmOa2Njo+wvcXp6WpmlluPv7zs7Oysz+kxh1e6gWp8sfrbb7djd3S3OrTbrYdBPjgCPg6D8CswwACU97fpF/cMZMY6TZWPFZ7+9L8njOpkWr7iRXK/XKw7DQwlwilTPo6OjWFlZiSdPnpRAZcRNYMZZKPGagXHqYndW6eBq3NDh8wyyZU6Q96c7cwL4HgDV2ND12WxW7L2Oatne3i6zNcJ+HrClnSE+bLVaJfXewbLayE3F6NjS6WFd/b0Z5sxsA7Ec+enjiO3RuN/f34/vv/8+vv322xgOh3F8fFxxAlgO+9gnTTKePQTn1vECr0VEcbz6/X68e/cuvvrqq9ja2oonT55ERBTZ0Sw9MYkmPeQ/yOZ7Fpp4RV+Dew3UObTeB9RbGs+SJ/krnFmVDEpeBoNBqZ+cWmJiLaNotVqlnqq32qT0/cViEd1ut+hf2Q3KMzNrMlupuvAMWf1On0Z+gO7j8XTCWtwrSO1Xu7mmXbwfjUZlgz/ZtH6/HxcX1xvf3sW5ddlSOzzQdhv9qDW2fKEcLd/9zw0gDaoDbzXGwa8ExN/pBtEBj4NTbsaUObt8P51eTwWRoAtkyFAxwln3p4g+BZKbd9Dp5QCkISOQlmAyBYHtIjhhu5nC4HzgzLDz29ML2ceu/BXNPj09jcvLy2i1WvGrX/0qXr58GU+fPi0DV4NB68Z0NqYGpyJUWqvwEIjyl8lq3cx4RHU3YCkpzWJ7meSn+pN14D0+HmioPSrp9ztwqgOzlFG1kw6rfuPxIpJNgozMSSN4ov5Q/SR/+l2z3gJXfL/Glc8IZ4oxCxpkPGbwgoEE1XNjYyNevnxZ6nJ6elpAm9qvjTNorNh+589DA/Ii9cVwOCybXDjIpKwyABJR3XDLQZzzJaI+FXmZc6uyMjmrC5Z5sJI72urs3sViEevr69HtduPZs2exsrJSUro2NjbiX//rfx27u7vR6/VK2+Ss6SgIzdCyHqurq/H555/H8+fPixytrq5Gr9erACNuDqWNlZ48eVLZYErv486aBOHkvZxh2qGI6yU0ziM9T176jJru53/XKRxbLEN/mh2RDXn//n0cHR3FYDCo7e+PQcQFaqvArbIytOZcMhFx1U46cSqLvJHDKBnUddpy6jWRz65zjNBm653eBwS+DH6qPhFRCTxzNknOCJcrRUQJXDsOZD2EB+WsalaL55yr/cIC3FxQZTKrQnzTn+rreIczu+IFAy/qM8dw5CEdrEbjaqOc169fx9dffx1//OMfy7nvdIYz3ZYFMPQbefVQqM5u0UbK4RyNRvG///f/jp2dneh0OiX4Mx6PC/90jNnR0VEcHR1Fs9mMzz77rOKccWKAAXn1kWRQ97u+kY5RoMRTadUOXo+IMksqOXK8Q35okkLBuJWVleLYKuirgKoHMNwu6V1cuqi2MfuBtlT18noK03OfB/GKs+Muz6qLJiq4cZ1Ige7Ly8s4OTkpm8cRc9YFZdzuezszmb/N5lfqdqe7QK48GU2IqILUOgfKFYU7BHXv9eeye90RI1NZxrLoTgb8CWpdKBXxYbuddF9WV/3uO9+pPBo51cUj6Nm7ZXw9Wp6R8yHjMwMNDvx1TcZRKUlydl68eBGffPJJ2eWYKccCh3LaOXOgwcwUlPug20B0HbhwR1X3S44EGu763mws8TfvLyoZyV82JihnmZxkRtjHl65xjMnQ1YEE6ggHW2yX2qFn6DBxDAhMZUAka1PGt4zPriscBLXb7ZKWq3Obpdip29gHNMKZzvB+vW8iTzXzyPZJ3jwIozZGVNMpHaRHVPsksx387cfUO5NDyrAAFd/tYEcboERcRdyVcvb555+XbBo9R53I2WKCwmazGTs7OzGfX23GpfdqFkt2gfLfarXKeyX/lH3qfM5OiO+ZrPM3Oj/eTw4exa9m83odV3afO1W6JwN20o/n5+dxdHRUdqB+aHR2dhaj0SiOjo7i8vJqYzCtK9VaevWd+sHBY0Q1W20ZsKu75jo16x/XhXxHFmAgaOb76BBKpvge4hi+y/EJg6Uad9xQjY4S9zahvLuMs556p89wZTxxufTx75+pO8SH09PTODo6iv39/fJu39XfdQ71p9ND0fukZc4Fea0deN+9exf7+/txeHgYW1tbJSi9WCyK86aA32g0ivX19Xj58uWNWUfaXdpk8d6DNZkce+ozy3ddRWfWM84yjM/ArdqvgI020ZrNZjcmCDLcLaeVepqBp0y/RlQz1phaLN+EGZF0WDnz7TiMPPE66rsw/Hg8ToMddT5RnTw5Dszw9G30o2ZsqRgiro/4cC+djkkdqMgq7oavTtm7s6f7qXykADMA7kyisfF3ydCyTdpMZDQalcXTrVarrL0SwPENe1RPlclF3LqmNnBjJf2pHJYpUOMgus5wOn8znrgyl5Kum63TpmE6gFsp1CsrK7G1tVUMvvjc6XRiPp8XY3ZxcVEivXt7ezGfz+P7778vMya//OUv64XyJyYHCa5kdb2OnOeNRqOk241Go1rjRuXB/vVyJeMe6OAMI5+hnBB8S26knCOqR1C5opJs8Jw11Uky4pum6Z1MBfLxwfqKDz6T5NFKXvPxTqfAHXAaC+erG1LvYxkGZSlwvY3a6MsavP7sO7Z3Gci9D1Jdms1mTCaT6Pf7lWwVpdsS+LKv2VfqE293ZkCdPsSpZbkM8PA9nGVgxkir1Sob4C0WVxsGydZ1Op2IiPjNb34TW1tbZZZO7/L3ZcElgQ2lc2qGwIGZ3t9oNMqGUi9fvixLPMQr8V481piMuJ6l8jQ7LY0guHFeZ+BcM9gCga4XJPNM+1Z7uNaYDnij0agcY7G/vx/9fj+++eabcmTafVMGtLVRzMHBQUREtNvtMrOvwIT4pIAEj+rwzAUn6ULZeNZF/+v0I88/1r0e6KYe9vR8B9rCJhFRcSj4LoF64ZqI6zRh4QiWRWyi/8Qz7mCIXEdyjbp4kW1+Sb3v2XacxaKuoo3U2OZ+ItPptKynnc/nlSMhXXboiGj/EbVReNWDX24P74vID++LiOs+bLfbJdvlH//xH2MwGMTZ2Vn0er3odDplLEi3TKfTkuH3s5/9rGwi5bPeHrSWLvJAHpd/iJ/cWZ74hdhDfaYMQsq9j1H2MZ9nv3P8KNCl9woDqg4u51kmJvnsExXEf9Lbzeb1EYObm5vR7/dL9tB8Pi8pxkxTzvAOU73Z59TnTB2vC1rX4TOOC7aZPPTry+iDd0X2a670vINlNGnUM7BW59VTcblAkwhUyFwyxBmatY8M5kCiAicQ13W1WzueKc2LhsbLoTMbUT0HTakL4/G41EPGQg6HC4Pzhjxyh5Xvch7UgUnnHT+rLRJyOmIepeIzAjO6X8Zib2+vGB5Fmh4aZQrAeZeNGzqe6k+lZ3t5Xpaeoyx78CbrV3f6GN3zMZY5WT476+WK6EBmCo4ONXmmMqRYfRzymo9PjlHWnfKcGYcPpczR5Nr3iJvR/WyGKvvzZ+vuuU9y2WBdCYg9Ws6IbxZk9LFD2eC7f2ydqauzYILGoS8NkZPZarViPp+XnVupz7SD78bGRiX9l0Fe14G6ntlJvVM6WvXU79vb27G1tVWyAzhe5FjIieKY51j1tEvyJKK6jpY6xm0px6LKyWZK/Dv7xv/kFChYpODxYrGoLGm4D3K5pE6i7Gtd2WQyqfByY2Mj9vb2KmvW6mbDObaoozl+XBcz0Oe6hMsF+B4B2mzTxjq9Q73rSwsUHFpfX6/shsw2cKxlTnSm+1lnfne94n3jto7luEyyPG9vxgsfU0yJ5bPeT7pGnZDZ1x9rpz4GOQYRUT6lQ8fjcRwcHMSf/vSn2N7eLmOg2WxW9hfQ/gw6RYA2Ve90x87Hnusc3Ue8y/HBgJvKZqCP/cM+Uts4DsgP1kF9TcfOx7mPaeerB1nEA96rd3pdWaYC7ppd1TnDskER1b14+F/1yMaq/tzf0TMir7s+u84j6Xvms9TRj9oVWUzSS7j+gelCnOGkR8/KUlBYtu5xo0sl44oq4npmUxHKiJvp0d4ujxSwbqo/B47n4ktoNSWvQSHBpwFjGRICDWAJ0OXlZRwfH5ezslSPnZ2dMuAzEKh6kociGlgOOII78oB9Q94uG3iK3mjmSmtkOUtLHus75UT0+eefF2MhxXefRN7xex0/SGyX7lM52vFUzrvkweXVlaE7mwyyeF9y9oT1cFBFJUynNGsXx2bEtTKkc06Fz/soV3LoBcZZPp8h73WNaZqMFooHnppW1w5vY52xIZDRPRsbGyVl1I2o6pvpKgePHqAij90huG/yQNXl5WVZj0rdyFlKypoHuagfM/n1zz72nPiMxkW2KZ3kRZtn+Jo8fVYKnXSadnXXEWySaW2WIf0n+dOMGWfu1Wa9k2CKY2OxWJSIe7fbjSdPnpQZP54fL+dF/OTxQO6kcK2uovT8z3qoXzJdQWApvtNJctDjjrCeoXOgrB3tmj8ej+P09LSsNb5Pok6W/HrdLy+v1p87cG40GtHtdiMiyqx0hkvoXLlDyGw4X7bkeITPSMYzJ4sOmQc9XG6oD2UnuMO7MKB2s5YMSjZVP+0sK8xAeWFQyPWo6sD6k1/kFfmg92Q6mO3y6+S3nstIbdAaRtbV9Zz6VLzjpFA2y5W1+z4p0891OFyzsjoO6uLiInq9Xnz66aclGDiZTGI8Hpd1qOPxOMbjcclsoBz6LKZkhbrdZ+Gl+9UvnETyDDO3B7QFkmXVQf2nttN+cUzR9knGOMnnMuZ8ZL0iqntU8H7JLPW3iONY6361D4P2CFDZup+4UuRYju9mm/heL48+QDbx6DZe5dOu3oU+eFdkH+gapN1ut0QAMkApA05DqN9daVMQpJRImYLKjAOdyWWKwQ0Iy2E6sQaMjIQU9ObmZmWgccfiiKicPefKU4IYEcW5UQrF5eVltNvtCp80GD1lgIDI2xVRXYtLHjpfl4FH9Qf5qvcK0HAdlwYKdwTl2gk6eT5gCAo1Y3LfxPpqJjmiGsXKolP+PNuqVCQpG1cOIkbOGP3LnC+9i+/MnAnVlzNGKiNT2Czbv6tOW1tb5RqBTR1P9G6CH08/Ig9YdwaE3DBkOsP1g8jXl1AH6Vl+F9+bzWbZ8EzXfTaMzywDU84bGq+svPsi1ZspdI3G9aYvmSNDh046jWc6ZnqX/ZPNEIt3dTNe7lzToSQv6VxmqY7SP7JDGqeqHzcFckBFwK53OBjSdc2+chZAMiYw0ul0KrO1dG7k7MhGEIRF5EspRATy+k6wndkMd1Rp/6jPMyfFn5NOY1puo3G947PWLd83uHenNrONEddnxFPmBBL97F7yxh2wiOpYoN6hvuJ1tweqG+2KO698j+sjD5ZSFiRzdFh5JAkxicsp6+czzN5GXSMP3Nl1/Sx5dJBf1w6OySz45WVThwjfCLNRX3mf8T1ybImBWCeV4frxPol1cbue4Z2Ia+w5HA4LrxSUi7jSoaenp0Wv9vv9ssyCgfKIm/sWaEzxnbyXGQlcFsG9DqRv1R8KVtKxpX72tHjHweQJ5ZT6j9d8Vpjtc+eP/GQfODbSd84s8529Xi8mk0kcHx+XmXJhc00Y+ISX922z2SyTeZy4dDvrfp3LjO7LJuWYBfMhE1w/ao0tBZhAR+tGXBnqHgkDhc8HcJ1idhDIumSDPjMQfKe3oe47QQYBAAVf4IeRId2ngUSA4HXX4FIHaoBrQJHnDAw4AHJ+Ov+8nbzf61XXD/4OVyLc9VUOgxQLUwmoHF3ABYhUhv7uk1x2pMxEmXPiz7msR1SzHfibAwIvm30p5Zj1L+tQFz2W/FCp+rPePu8vAWE5eXy2LuJOvaByaGz8fr6X4MPvc765LGe6xkFe9jzLpzFk37GMrN4OBvx30UN0bF1WqM+9vuwf6oCzs7PKsQkO0r0v+F72dQauRCqrLkWNZdIu1cmcZuPb7XYJxMiR59pBl0W+TzqMoJ7XOGNMnaegsZw8piA76KE9qNM7Tg7g1Zcck+wH8jhzbF2fk/98lv/VB3SGxB+lej+UMUByOSEPM71FME7+EatkOoL31gVO62y26sWxWPe57r1ua1gugx8utxxP/MuC7NkYuovtWcbriJtHwNVhmoyyNmdySOeJ/VBXhnjg2Uu3tekhkdt/6m9di6j2vWYxufeKgkCTyaQ4LpPJpKyX9n6jHncdlPGMWSV0cBV01DuYNcO1s+or/cZsA/Wb8L0cPZdn4iAPmjgWUb29TeS3O8G65n2S4Su9e3Nz80bAjUFJlZkR+Zw967bZA9PZ2MjGVYb1fMKijv5Zx/3o5fP5PFqtVqyvr0e/34/RaBQnJyc3UpqUxuXkAsm1SSQ1kMaPkTB3uOpSESk0TPvMiDNaXHzebDZvgHhGOQgy1GaBD3Y4N46aTCZF2La2tspAplGj80EF6bPT3n4Xmkyh+ky5/vssR8ZTKg72ncrPgEtGnOFYLBaV1Ob7TEUj8HWl4rn/VMYkVzzN5vUavU6nEycnJ7XpHHqvGz13pBz0E3D6GFB7GDjIHApvAzeOITDTONF9s9mslKN3MPKp39guBY2yyDjBisZGtmmBAwaWxbGSOSNsJ/npOkKbSyhNlLPM5KEbYl1j+ibrkY21uvH3sYkG9fz8PKbTacxmsyLDivQ6iJ/P52UMT6fT2NzcLDpR/eWOmjvKDtozo8uZGvGUzq2DLU83y0j3qXzpbAEypmBL/jUbrdTey8vLIu+0VwRMsgN0bDXzpdROrV303WHd2ZHulF5SGzgzKNI11T9LReYssxP7iE6+r92knFPe2a5WqxW9Xi8iogQONjY24pNPPomjo6OYTCa3yuhPTQRbXFql3yhvEdUj3haLRTnu6ezsrHI2JB1E9pN0YR1wJUmOFVxXGe6Yeqp4tnke25DZBrWNwd1s4kJEzMVZOLVf7+NSNsqSYyo9fxtlAS2OeeIl6mliQ+I356V+FzbU+GOKMcuVzVfGC3nL93KMUyYeArk+pj0lL0XUt+6o6Qxw6dDLy8sYDAYlnV/8IM7kGFT5nFhh9qBSWDnuuFyQm/ZxzwL9Sd8qO8ln2TlpE1HN7IyoOnV0sNW2+Xxe7Ivu03M+3hkIpR0RD/w52jsenXlxcVE2QXz27Fm5RpvkGIn81m/yhTQ+XBY8q9R1pf/G3/mbdIQyY+9CH7zGNlOoNNQ6l4oC6+QNZOO8XH8uY0JdPfldn/19fr/f5/eT0WdnZxUgRuVFAfEOoxNMQXTgXvd+F9zbKOMjPzNiTOGk4qorI1MyVEJq62QyiYODg/inf/qnUtarV6+i2+1WAgQcsKpXZngfAt0G9jI513X2HyOB3u+6353ZOkXB/y4jvJ8KPCMHowQf7jhQbrPz5+jY6sxitZdOLtvqilXgjrLKzAWmJfuYXsarbJwvI/3O9FEGf5znDuYzh70O9LNeD4Wk16T/RqNRSaXXchQZNaahupMkeVrWvmU6WOTBO+dxFligjLlNqauP7idQbTSu17ZzTDIAwGCL207xg6lfBMSSr2wjE+cF30vnWNk/Lp/+PJ2ciGsnXn3lAUnXU87ruvHAe+fz67PY5bw3Go0ycyPsoHT/umUaH5s80EQ9eJs8e2q2ri97jhiDeovBSf3O+/mM18PHBJ+jfPC625U6LCY5clDv/OMfZ7HrdGDddbeHrte9PeSJYy133l0HZfxiamtE3EhjddzpwTwP0tXhhodAWX0yrF1HdVhb1+fzq036tFGfYwH9d73uOIUBJv1nH0nvKrjAZRCqJx1e6uJlM8lca+r9n9mgTG4pLz5+nRe65mX4eKK9E8ZW2rWPZdqZZSQdzkCVjyu3GZne4LjkvfpPf+Su4+FHrbHli1UhVfTZs2fRbrfj7Oys5G97IzPwHlHtIDbEGZ41PmswO9WBbl0aaWaEVTf9EeD7u3ivdgVk5zgwibjeNp+/qzxt9OHv172Zwq1T7Bn/XBH5OjNdazSq6wf0vM8YcuCdn5+XyOTh4WG8f/8+/ut//a8FsPyX//Jf4pe//GV8+umnSxVi9u6PTQ7YVC/+HrHcyJL/VHbacINrktyAZrOMdQCX9dE1V8Se2u1yz2gnU+odlPl6WEZlfeMBAm6lVW5ubpb6eB1ZjtYuUQlycwbO5hOgUHewnW4cda+vecr42GhcLb3g2j83Sj7+9JcFaShbLlO3gd6PTc1mszgZ4/E49vf3Y3NzM549exYREZ1OJ4bDYYnkzmazaDQaBUgooEHwe1v7aJR9bLlecLDDKLmITmZmfL08tp3ynY1llS/HXiDWs1XUJs3eeBYSn+EmM3R+XbaZcqbZU+1+6bNkDnKkkymHHG/LZrfZfgLJzNHivcrCabVasbe3V+pxcnJSNpJZLK42z9JRRg+B1Db2P2dJMzmVjtCmLZzdph5aZp85y6Pf3bFl37Ic/Wc/OWZRXUku//7cYlGdFb68vKwE/HUP75fe5oY+nNl2m8J21jnqzqvMAdUYc7vk+j4rJ8MnujadTss6w4hrp4m4he1glkbd7FjGu2UY6WNR5gNkGWsuN9msLid19Pvl5WWcnJzE9vZ2uVe6lHVwOdE1zZ5rnHEdrtaSaqZWR3O6/VYgT5u8ae04600c0mw20z1mRHKomUHjPo0HgVwmfNmPqC7byR18YTP1h2aKdQ669u3xgKz6M9Np4qsfSZrh0azvKR+8JxvPHyr7H5yKXPdiVqDVasVnn31Wzug8OjqKs7Ozkjsvpe6NVSMp8CyXHZeBobr79ZvSHHmNitKdNBd2lesKXmXrdxpuByhZJIMDVQOZYMXv52xv1m7+d6DBDX30nHhCvrsQsy6eGsJ1BRyUZ2dnsbW1FU+ePCnn/Soad3Z2Fu/fv49er1fSzpS6enl5GaPRqLx3d3c3Wq1W2ZjoPsiDJBH5LCwDGA4a9Iw/v7a2Vs7B1CxLpkj0Hv5nuSQaFzcqEdX0MgIrrXFZtsutwLU2gJCj4u3OovDq49lsVgx7p9Mp0VMZ/cyRdyPPnT4zhcmxnhkV58kyB5UkcCKnXOOf9cxmJTLA4jqG9fJyHwrRuI9GoxgMBtHv92NlZSV6vV40Go2yozt1J8lBva5l+lHPcy2TZFOH3ntAhfLqQQp3Ct0RuK3tbnCl230mSNddLlWGxo8AB/lKO8DZBI1RtTdzHpvN66OKeC6ueMANf/iMfhc4o73y8eNAjA4T0wVdvhmQogOtpT7T6TSOjo5iNBqV/hYIvW+iPqEz55TpI6Z8cy8O6g/KDvvWbQo3lclAZ8RNXcl6sr+8ntnsCzfB8rGkejcajbJESzLHdzl/nDIMw/dIrtRupm/yeW8P5Zoypz/xOJtN8xkk8pE2g066r78k9iKmcx1U56Dclln1sSmry13kUG3JnEKRfh+PxzEcDoucy7H1/uFEgN5FfnKSSE7Y5uZm9Hq92NvbK+dNC/M4JtbO3tzQL8Ml1M1cRiD7ow11le7r2FznlNM+cRZZY0pZYiLZDul0x+YMYDUaNze20v1aRqr38Z6sn+mjsV1uRz04lcmH2/86mfsQGx3xz1hjS0DoleDZfp1Op6Ss+RqZDOypE1wx37VRdQCffz7w/LMb/TqA68Y8IioKl0DHQUtWPh1ERoj8GQ7cujarHDcSmbHzei3rW/7d1n+Xl1c7RPd6vRiPx2WtmQ6HHo/H0e/3Y7FYFBnRc0dHR6Xszz77LLa2tuJnP/vZjTp9LMoMmvOJv2VGMCtLSklRQSoW75Ps+rI6+v0ui+4wanMfOrZUjjLScjxXV1eLUswiqgRQUoAKYkj5yymWwnZn1XlFmaVDkPHFFbze6eU5nzOd4O9QxJ3ls+3uTDivs9+z+7gW977JedBoNIozMplMYmtrKzY2Nm5skFOnO10f8b+TA2qtadNmVASzlDf2hd4r+lBj6XUkwCK4EIiT/nMgrroyDY5ySACh8gmWM/lxkrOvtbURURl3WVsoc4vF9a7jAod1Y4Xjvc6x5e+ZE6H3X1xcxHg8jtFoVPpMqYD3nYp8F53L7x6gF2+Zrqjr5FHEzb0V/F71I4MDeq8DRZcP/143DlQWAxKsA++jPeR7s0yrLDCf2Tl/l/hJ21U3fr1Nzjc9m/Hb38s2sc0izsa54+POhdrqgQk6Tm77yOP7JscNGbbQf8qD38trDEI0Go0yA84lLHqfyGU+oupIkZfUlVr20O12y2aAs9ms+CbsD27qp2vCK5l8aIxIDhh8lU2kvpc+YBBWfGBgVP8VPPV36n+zeX3MKccTZTzDgTrbloEUUWafna++c3X2PHnrY93/L8PUdx0DP8qxZUfrpeow5qLv7e1FRMSnn34a4/E43r59G8fHx9Hv9+Pdu3c3jjehsGeANmvcMsBHMFMHEGi0HWypDBprEgXTndjM+HudM2DHyCRTy8hj7tpGHomWdT7LdkWQ1dsdLZZBhcNolBzX+Xwe7XY7Xr58GZ9//nmsrKzEr3/96xgOhzEYDEp+/+vXr4tyIcBRHf7H//gfMRwO42//9m9r2/Ux6a6AeNmMuq5rVr/VasXOzk4sFosYjUYpyP0QWScYIrmz0WhcrxMcDAZxdnYW4/G4YoDm83nZgOHy8rLMrHa73YqBYPkeGddMxcHBQZnNo/OxsrISo9GobKSlNF86Bjx/kzqIY5uKWXXx9W/OG+qC28Zro3E106YUe/F+2SxV9p8GJ9MVHNN1zuHHJvJNa490DrN0hdKUufU/N9wjjzkTKxmQgeZMRQakJIucaeJnzqIQYH+ooawDmNxEhMBD4MXHOTdL8zIYpGRAQPLtaXACXZkz4DZFGxRFRMmWUvR/Y2Oj1smtK8/lkzaQOtudoTqwxCBERJSxNZvNSnCz0WgU8HWf9GMdDepjpSHzeKxsWYj/eV9n72Z/ZHpez7hTxeddP3kwgnjIZVj15DpE6kXnCd/tOJDt8ToyO07jI7OPfI7OhNrBTW98A59sLDhe0jVloTGrgUEK1kdj15d8+Xe1U3pTAd/7JmJS/ndyWyv7Sn0jmyFeSY8Oh8M4OTmJ8Xhc9mBRlmddRoH3DQN7ShHudDqxs7MTz58/L/hCS61YhmZqpYu0VETvUt/IrimwOx6PYzAYxPn5eZkc0Pm8dKw9A8dljXaOe5GoXb4Bp55dWbnaQV+/yVlmkFATKFxW4gFZzlCTp1nQxjcIdMzq7aEMs3y9n3JB+3+bvDnd2bH1CrsTRPAoJosEijPHKfuegcq6QV13PWOEA14yLQOzdX/OE//szKfxdsc6e1fmKLtw1A0G1qXOmNQZRd7nEUbeR8dW93BmSf2/u7sbnU6nODaLxaIojZWVlbJJiP6zzVqfvLKyEoPB4N6j9XeRybsYHn+WBkCbpOi3zJBm9al7TyYv2SyPHAGNUxlTAk+us+VZy+pL1lsyTB1AMFTnrAhsTCaTSiQxA98Z6PNx4cDiNt5lYzzjJ3em9XG7bFxneuTH6J37okzeNXPN9WLMKKFt0DP6TLCpsc8AYl2wTZ/13/mepSAzXWoZAM5skBt2f44zSRwrlD8CCbXLj/mJuAZpbkvd7mZ63GWF9WZfRFynAWZrf103ZUFb9luWhs+ZiKxMl2nKhGRHjgfT7O6THC/wOvsikx+RnBWtu8vGdYZLbtMBmQ6hY6uxFlE9DzfDCsQg7uhStnzccPzxXV5P/fnsn/+u92Wzm3RglgWavXz2x22Y0u1UhoWkW4h/6nCXxhuDYtkz7kRkTvJ9UcZPykTWn9S7jn+8P5vNZskCGo/HlawW6iHnl09OZbpSSxqEVYh5/OQILm+R3ry8vCy4Rzjl/Pw8xuNxjMfjmE6nxbHlTsya6KHM+l4NjtGywBAzNFjXiOtd5Pv9fmWZVMTVGnDKHzPdVBfZrizo5ZkEsuFcV8w+vU12Mp+FVCdHH0J3dmypQLLIkqbbqRC5Tk8VHg6HMR6PbzgyVBzOQL0/on72wpXRbaCWipX3uoHmNSoYCYXPTlEpM8pDIcnqzXQBprbwGVcQmWDUKXn2XaacXdl7GgjrySAFAZn+2u12dLvd+Ou//utotVpxdnYW3333Xczn8xiNRtHv98u668ViURQNU996vV60Wq3odruxs7NTFv7fJ93VwSBQv22wc4ZKaftKY2QEeJmBqJud1bsFaihbJG18oQCCH2NBZ5Zj/PDwMKbTaTmmQyCZaTd8h97DcSQHVmtFeLyTNm/gcShSwD6+s8yC7Lv4zag/+ywjjudms1k2lFA5HPOuM6QfM3Dq1wjm7gpoPza5AdayE6Uh+w6+ao/PyFCvuK6V3vfZTL2TYyHbdZ9OlfqE6//0Xicfa67r9X7WlTNZWfRa76NzygCAggKakaEe9YCAg0H2ideNQJHgZbG42lBKOkEAiH8+u6Xy5vN5CvYICnWdeiLi5kZbWZ850NJ6fFGdnvtYJHvPtvkaSMoPv0dc9890Oi1riKlz6uxFNhsScS1/DDCLqJMiouhX579jAdWRbeRnyggxjy+ZyGYr9S7usaLfMr1H2WFapsYVA0IRN2d9OU7dEcjsZp2tzsYVx71vBsb+15hrNBolpZ5rGjmOiAVozxQMue/Ajuri5DjVZUxBTw/Wqa16RrOrk8kk+v1+HB4eVjK3IqrZUXonU3TFS+/r1dXV2N3djV6vFxsbGyWAf3p6mm6AxBlRLXlRNttwOCwztGdnZzEcDmM6nZZlXFz6ofG+WFxvAEV85MupSMRtIsmeJsnEm4ODgzg9PY3379/H2tpadLvdImfCT/rOo+f0XfWi3RAPGRxlPTVTrfZRFtw3qbNjLkP6XIfFbsPTojs7tgQQTD1SDrmiFwSuBNEawIPBoAhERDWSnSlmJweTWWMdLIo88uwgxZUqP3M3Ux9YPCNQ7yGw4mAmDzNDxbrpGo2oPnONX+aoighU9N0dpCy44Aab9XCBVd+22+3odDrxL//lv4y9vb149erVjRlqDX4FOHwjMf3Xcxo4DnI+Nnngwg2lUyZ/WTn83Ol0yk6hcgTdWHh/0XBmdaC8y2H2eklpCfwQLElmPdhyeXlZzl0+OzsrZ3fq4G+lWEdcp9+pH6UjZMBVro4moawsFosC/JlyJr4wOOXvJd/If/+N49z7lJ/FI519pzI4s+HlOmCLqK75dV1FwORlPQRSvWScpUvo+PmMacQ1IKK8Zw4iDar45DNL3t8qlw6enCulmkmOlDad8TQzxCQP8ok4ZgQQIqJW7wrgcJdw8U9OncAabZTe5f3hckXZUr11VizXuWvjLf2eBRmcN+pXd9jq9J2uSVa8TJ4fKRKQn06nldS4u4Kan4oEzmk/MzlxoB9RDeCoD7ir+23to2yrbNbB5dnlhnrF7bpjNA9MMMXcdVxGrut8DKheDIBpjHo6u8rjuGk2m+UsUmaAkU/L7HMGqLMxzfvVfwT5CsIKozhm9LGoMa9stGxNJT+r/e7M3Sex/2/jma6xL+ko+fjRbxofciBpZ+TYkdzxEm5ROrHWnfZ6vXKsmBxR9SvPVdckSqPRKOOBDrD6VT6PyvKJPe41QV54IEdYiH4VMZnqKEdY+vL8/LwsB5KjzkkntV/BAepZ8ozv0m/0TTJMtFgsSro138k+9YCb2qAyXKdRbtwn+lD6IMdWlVYnckqejXTAqMYp4iHArgGcMc+dBx9IdYDVDSzvISB2JyUibggbFZQGl+7je6mk3Li4EOuPji2dF9aNTjGVvu7xdSH+XtbPjYt/ZjnuhGfKif9FnU4nnj17Fn/5l38Zz549i62trRuGUfKzu7tb1nRyTa7+BL54sPZDIMpNRKR8Xab862ixuJo90c59PhPlcqx3LrvGOixzwiUjCtC4MxcRJZrKoJKchvPz89jZ2bnh7HFcyVhpNlb1kmwKaLMdCuCwDQSA3n6fVchAmDtI/vwyhU5gkq3ZYll1f86fDIwue/YhEMcpARl/c50quaJTVBeV9fdwtjPimn8+o0mwJHAuW+Wyk9mH24h1IMmuqJ8ksx48JDjzmVu+g7MY4h3bHRGVcXibvHFmmOdMK5uKswa0N3yebXVdk+nDjEeZzuSsPEGfdL90kvPpPihzPp3XblszG8CdkT1Q7OWyzAxT1fHd9RnxjI8D10scWxpH/v5MT/n71VbWmfiLgR3xwrGC5J+OS7PZLLKhvQ583WCGY9iPETfP/c3wncj7VTzl8TLkg8Yny/LsCbUr0w+OJ6hTHwKxLq5Tl40Rt7+OpYl1NQHGoGidXfYZRvFZcrFYLMoRgwpQcbdvBkgnk0klS+3s7CwODw9Ln6r/tISOm0P5pB+z39gOLgnR7C3HADGZZE1tIi6KiKIjNd7p1G9ubpasNwZQnWccKxkGIr9VH+67whl173eXhUw+VC5lJJO1u9KdHdujo6PKQmnNvKljXQkpKkUBUFSBCiVzVr2hEdUdHbNBnoHYDDwKJPlapgyc8r0+kP27DzTm0TcajRJZdHAigWU0ihE6GSJtnsOZAR+QDka4TpVpeZnCr1OqjPxqMBIIdbvdYmB+9rOfxc9//vN48eJFrK2txenp6Q1nQxF6bRJ0eXlZdsxWhI5peASq90k+sB20uDPFa/zugCPiWk7FlydPnsTFxUUMBoN0oJNcNt2QZv3o9ZSMSOlrB1KVTUChmSQ9L2f1zZs3sbGxEVtbW8WZ0OZKTOVRgEzv2djYKPXTRgl0HpXyq3Ik1xnY47j38cDvalPWTw7CeF2Ggmt0GJ10QEa+Z+sQM1C6DCTeN62vrxcboOOpdnZ2SnpXxFVd6UQJpLDNDhzJb8oo+eZOjQf9CFQka7I76rsPpWzM+bhfLBaVjASm5qqeEdUIebbZCQN6ui4wwp3C5Zgq0KS1mhzfEdWsKgEhbdanTBltbhJxvbbVUwbdmc90DQMKy/Shnslm2f1dl5eXMRwOS9k6muM+SX3D/qeNX6ZHGJQRaB+Px+UMc91X5xw4uU12fSVSvxCjSbeS97K5whgKLEh3U76E85ZhMJXNjCzO1LGN0qXZOCcvF4vrTWU4i9dqtcqReVzDKnuV9Y1I19weiLduQ8TDZvMqVV47eOu4GDq9PiZ9Bk7ZRS4nWV0zh+A+iDKgOnlA2IlYjo58NiEkp3E+v1rq9PLly8rMKmcWVR/hCW1cKNmQrux0OmV2k0EFTrSNx+MyUaf/0+k0+v1+zGaz2NjYiF6vF5999lkZD1pPqyVW1Mee4aoxI/yQpfdTfqSLdRRiq9WqyDTXHU+n01hbW4vt7e1ygsjTp0/LfXqPZ0c6/uAMKzGf+2jSCaenpzcyKW/Dq5ks1Tmy1A8fSnd2bE9OTsqsijqShtwrpc/qZKYyZoPAGc2O9s7goK9zjB3sOtCgI56BTL/f3896ufOSzURnneP1pHHzSBafIUD0+jAK6BFJf/eHCkwGwLlDrHa91eBlv7Ou3GxGAE5OkAAbo2GZwf7YlLX9/1WdWLbW2srJjLg+z45EEOh183qqjCwgROXhKVCePqg2cx2hrlNpSico8kgjL1nNIogRUYAJz1XLAGPm7FH+6+53Y0yeZbqGJLldVvZtf162vyf7/lCIhs/rRcDKaDlne/R/mW52Z2mZrXA+0YAzbcwNpJenYCHH9DKnNuJ6JooBW9lDgRrJo3gi/tF5oO5eLBYV50nARGn+XGvufPDgicYowTnHOGcMmFa+zO5kOs/l4C7yy7qQr+wXzlzMZrMb6cr3QR6Q8bFQ50A5D9Q2ztpm5ejerL/5bq8HsYG+M1DOFFg6cUxB5p4Kkle+w+VK9SZv6Fx4qnD2fo1fbkjD8slHD3RLVjR7pbWHDCiJWE6dDXcdk8k9A7YMZvF58oa7/Ds+cx7W6bj7Jued61R30vhbnT1kucTAo9Go+Bq+q7zrMGYOLRbVJS08V5l6R04hd0b2ZQI+IcClLNrYKqIatJEeXTY+RKq7yuakmHCx0o3pbNLHiIjy+9OnT6PT6cT29nb5jXs/LMv0Yb9m/aLvCgoIo7s8uH3NPtfJkcv4j3Vu7+zYfvvttxXw4B1OwMoZRp/R5QD3lBCSG1EqgrpUGt5HBc5Blc2mSCmxPnXvms/nFeFWuznboBmnzNhkxHfpvwTRFbPK1EB0oVBaw8rKSpydnVWihOIF36n+4DWPIjrfOFOlI19WV1fj22+/jf/v//v/4je/+U08efIkdnZ2ygAYjUYxm81iOByWTYGePHkS3W43Xr58Ga1WK54+fVr6bTAYxGg0iuPj4xiNRukmMR+TyAN9JtAigOYz/p2K1e+TU/bs2bMYj8dly3sqv4jqRmB6twdg/L87tlkduNlZRFXhMEKotCufIdJ6I451yZ+MDreql3LmJg36TqNBB0HvzQyp2sjId9YXGYCsA+BMg+t0OtFut284FOQF66HvLDsLLrieyOr5EECN80szQdRDi8WiGOJ2u13ZmIP96EEE6p6I6mZCNOAE565PBci1LEZLXpjK7LLBsjw1S/V0WiwWlawlOtLZDBfLkaPmUX3fHEVjQY6tshu0RoxgTfLD/S04k0v+aAxqDKk/sjHPfpLcZs6lBwl8pisDKw7O5IxwzHNmm0db3BdxllB8cpwgmWVwkEH9iOsMlslkUmaZaHMd2zBYvYwYtCc5buNSEP0uWWG2A9enq42SgyzFmEEXbljjs2kqS2BceOf8/DyOj49jOBzGaDQq7+ZGQ+Qr+bOyshKz2axgL6Uny/64Y5uBbXfyvW89EHN+fl6cL6YiU7cJe2lmOVvLznLrsOpDCO5H3HRAsxl2t83EKY6jsqCNxsLR0VH0+/2ynlr9L72osiSLDJQru2M+n5cjzyhPGrvHx8cVbKE6a4ZWNmx19fp4Qz2/vb1dwT2z2axg1SzzkAEXZb5pUzBt+CQ9T93PbJs6u7K7uxutVis+/fTTMmnkS8fIM/GD+Iay5v4N+59HG2n5GHWfy0mdw+vjkO2hvN+G0zK6s2ObpYJyEOo7hYbRj4jqZgFM4fFoIBuTORJ0TOscXDqbXr4DUg5Ad+j0HpbBSBFBlwMnARzWT8KVpfKIHKR79IezY153KlYpDv3PgJvex3K8X7P+UV+8ffs22u12fPHFF9FqtWJ3dze++eabePPmTXzxxRdlgCrtrd/vlwH37t27aLVacXh4GFtbW7Gzs1PSieQAtVqt2NzcLAdo3xexHyOu05JuA8DOW5I/o/I2Nzdja2sr9vb2KruNZ3LJ9yyTJ/3neFG9ZPh5rh/lnLNFesYzNdwJ9RQ5rnehAYq4BtXuyJG/mexyRpkzAnRUnAcMHmU6IXuHUsS1q2DG98yRvUufeDnZ/XUBsY9N0gOrq6sxnU7j+Pg4vv/++2JQI6rtItAlb72d/plOJvuFPMocWx6vIMdOeo/piZIb7UAuPa62ZQ48s5WUwiaHlgFcZZtQ/8ouqizuH0CeeqBKY0cpdAI4Sl8lQGI9fdZB5I6FxoBn1ETcvm5O17xfdD2TaS9bgRF9lzOvc87Z15oNv09aBuIj8qwE73v1iWRImU1MA9e7XBdlfSFZjrheZuV9JeAs+VA7mH6szzzCRGMo08GSz5WVlbIDq2RSdlt/sucan6pDp9Mp7dJvKnswGFRm6RaLRQWoUxZ8TSJT92nTfFYtywbK+jZzglVn8UkTHhq7skd8h9Y9EgPKFvK4tIjrAJFomS352MRxT70uyvRIRNWB11jInB7xR3qg3+9Hq9UqWNjxFPtW/OZkTqvViojqBpgKunS73RvBvRcvXkS3241nz54VfT8ajQo2EwmXyRk9Pz8vOy4rkONBbo0PrqeVble6sfAMMbvkmHpaZ9IKL3IygNmxsnFZIKJO5v0e3ic7KJ0sWWB/Z+XUjSUPGFEeWN9sUqCO7uzYZjNSrIyISlN/ajzXfNIhjLh2nL1hTKHxqGVmSPWd9XMn0h1bOqQOqN2Z5XtVvg9KCSOBhXeSA2Av20EB2+abSEVcR/w5+L1s1e+ulAF3b/fh4WFMJpP47LPPYn19PXq9Xnz99ddF0WuWSxFZrUkZDodxeHgYm5ubMZ1OY3d3N87OzmJvb68YyfX19eh2u7G2tnbvm0dlhsXl4Daq6xORZHFjYyPa7Xb0er14//595TfWxWVU17J61tVVio+AX89QkcgwKwWIa+UjqhE2rYUlOKdj68ETlUOl6HX2wAzHpRwI8tH57nUlb8gjf4dAitLrma2R9V8d7+ueqXPw/NmHQOKhHNvFYhHv37+PJ0+epE6Hp81SHjKi7Lrucx0s0EBZdkeT75OM61mNFe8zB2iKqmuXTh71oDrIznGJjp73tatyauR8CmzxOCs9q/rwN6XDz2azMitOR1HlkQ9sD8v1vRfq7Keu1/VbRsvkluOXjof+NGNHG63Zw/sk17d1jqfrYwfhkpnJZBKtVquSjkxdWOfUZriAfcNniA9cz8omC7zLsZXDlq0F5w7EGletViu2t7dje3u7OJZbW1vF4RVwZ2Co2WxWNpfk2aVaW+3rUTV2OH6dP2qngpAMbmU40e22jwPvB/33dEw5S5w9jKjiLY1dt43SD0yldcz1UOyA82GZ7vR7sqA892sRCYsQK2rNaB321p9n58h2+2yxsgharVZloqrRaMSzZ89id3c3vvzyy7LM5P379zc2OpXDyL6XE0rdyjozm1L6WthIgZzz8/Mbskk9rrYr0Nntdstxe+7DUP+4LKvNmVw5jqStFR/UhrqAX3atztn1654l4RNLt9GdHdsMZLkSjogCeAQI1HE+S5tFI6hQCJQ50BXRYB04iJxBBEQEq75GhCBZ90jp1hkozj6pvnLeCTIYseXAdmdY79GA5H10QFQWtyWX0eEmKbcpcXeQ3DgKeKjeHozQM5PJJP7u7/4uXr58GS9evIhXr17FcDiMr776qpxDq/MS2e/9fj9OTk6i3+8XJ+7p06dl9zpFo7je9L4ocyY5+DNFIhL/5Dhmg55A5fLyMjqdTrx8+TLev38fi8WiHLJNg5e9g3LjQIbEeqotklMCTkbtJfO6Vzvz8S/LDFhZWSnpkwQqNDYC8E4si+OMfONSAm5+w+ezDAznPftRPFKK0O7ubmVjC9cTfo1l+291oGWZXDwUkg5QxPYf//EfY319PX7961+Xc2wlA5qdiLgOXHK2gml6okyP+yyN6zTNUvK4Oc2CaJMr2RmdZytZ5nEITMVXetnZ2Vn0+/0Yj8dxdHRUNhvx1HjOfDG7hOdtyh7IaeARIeIr9QBnmflfzoSAGSP3BB8KJPo7NPYIvgSmeLQOQWJm+/WdaanZ7wQn5Jf4rPYoePBP//RPcXBwEJPJpIA+prTfF7n8ibLvPsbdCZvPr850X1tbSx058py2JrPn7kCwPuxL6TbJhtJoJd8E25Jj8V2pmDs7OyWdVoFrzZBqlnV3d7fCB9ZZ9bi8vNocjBkGAssrKyvR6/Wi1+vFyspKqeNoNCrn/2ocMFNH2V1KGdXYcP3i2JK8zTLpnPfqu9PT07KpqsYXcapjXS0pYDBHY9iPLfLgbN3E0scm8ps8yXhGbM7vnNGWPhZJ9qWTjo+P4/Xr1/HJJ59UlvexPOopXVdd19bWotfrxdraWskCubi4KDh5e3u7yJ70q2RaAZjNzc345JNPStaO/k5OTkr6MU+K8cks4j/5FNTpxNrk5WKxSI/vabfbJVWaRyHKxolHGV73mWDi0kzP63nV+/LyMo6Pj+P09LSS/cO+I6ZTGa6jWHZGrvc8+HobfbC3wMqw4sucXgejXo5fy5hLBtfd5+S/193vRoj31hkSAu6I6llkBChZp3rbOGMsogPNa+S189tTMJ1P3p5l/HJFL6DljpkUiWYxBEY2NjbKwBwMBiVyKuBJgR2PxxUeatdVRX95buh9UeaQZoN1GbnzssyZUWqK0rDH4/ENJyCT7TqZv82hjriOwEspUpYFJmis6dh6kMsNjs82U1GxTB9jfs35R7Ch/xmwvI28D2V8lWbEtVHZ+70cH0d1feJjrk4v3lXGfkrK2n9wcBDv37+P/f392NnZiU6nUyLuPuPD/3q+Ti7rxpsbODpK7kxxFoSbZ7jjTcdUoF+zhgLVk8kkTk5OyloqD1LS8DPgyNMB5Nhq/RWDwA7KIqLyLAOozWazbKg0mUwq6cm6VwEpzXDN5/PKOrU6Z8z1hd7nY6kO2Lp8OOma2s+zqsVrrbNUX2Vj6D7IZS7iWk+4vc/Gv495AerpdBqbm5sVHevP8v0f6uCwTo4f6vQX3+OBG605lI73CQo5qrxHqZqc9WIwin+0HXXAlgFLOczaxFIOpOTddQ77MOurZf0vTKTTQXTOqvPUl6hp1lrBJGZy1KWQZ+9/aJTpdVJWZ+8Pd9pp9+VATqfTklKs53zMZRhaDqF4Lh2riSAGAyVHCjBxPKpcrd0VTuUYqGt/hneYKi2Zch+D7VpfX6/sXSFZV5uzd3gfMLivd7jcZj4C5V4ZHr62dhne4RheJidZeczYXbZ80+nO3oLPfEg41GAqezKyrtO94mwQ10+xg5cxh53gkeEMVDKS4pFV3scIlf67IyrQQMcg4vp8KX+3l8MZbdWZSk8gMVN+HKyKKEmpu2ESb2mMnK8qj0BP97EvMxk4PDyMwWAQL168iI2Njdjb2yszHaPRqAKSBPo0gyEweX5+XlIrHEj/h//wH3Lh/AikNFoSZYVyqmvLBmFd4EfPaaai1+vF2dlZHBwcFLn18URlomigl+f9x3GnejBNWAqf67D0nI5X4PEbBPdUxpRNzuxwzClSzRkqyT431XGnPrvmqZceOfSAlBNB2urqauzu7pZNJCTn5B+fo/6rA6WqR52DXucYfCiY/SlIfck10V9//XVERHz22Wfx13/91/HZZ58V/mkWKOLaFmSgnTpF/13vU1Zdb0tPMT1ZQQnpQR3NoBmh1dXV2NnZKfpaIOX09DSGw2EcHBzEYDAo4FWOmNKNmcniTq7eIZlWGzyd0s++dIDD2W+OD/FB7VA7BXja7XbhqYD35eVlhR8Ea9L3nGlwvZT1B/tMv9HWuL1j8GEymcTh4WGZmVX66+npaXFu5NizXvdN7GfqA88s0T3iaxZMmEwm0Ww24+TkpIBspu/rfZkOyyibJanjmQC/3qHNPrlDrNIruXZUm+PIyWAAVMEjjTWl6zebzZLy6XIvB5GZL8Ic4/E4FotFORpJ6xE1c6X2KVNEs8ntdrvYqCygqu/KUnD9k/GVz81mszg8PIyjo6M4Ojoq8s70f8mu7IgcEzlZGq+6xve7Y+Gyd5/EOrp+qLs/s30Zz4mbNe7H43G8fv06Dg8PS9ZAxM2MNOkljkO9Q7P2csbYJ8JXDEZy9lN2gU6v1o5HROUINQUNI6q70jMrRnqAm2dKLpmVo/cpSKMj9ZjBSOxNPKJn3cei7ch2M3Z+ev9pUyzZSMePjutcnuvkmr+p/Xy3ePYhy1Hu7NgyF14C5AZHA9mNnc/cuHOkZ2kQ9buDdEa3RaoTja4bk8wYO5BwEEWlzff5+zmYWA4FiW3Q/8xZdsPkqSnkGcvksxpQrLcLIMGjSGUzsEAjysEjAdR7WMbx8XEBYq1WqyiJunO0VGcZRSkFOU8fMvP2U1HmqNY5Idn3iOqM1zKQxv7hAfQR1dT7zDhwLOq7AE9miPy/Ipl6hqliDgY86qhyXHlSwbOekiHOrDGAxhnjOseRdadsOq+pvDNwqDIkz5oB0E6FepbvdrCaZX3c9TvrS/Jg4X2SDLcApvrk4OAg/uf//J8xGAzi008/LamIPAZjb2/vhp4kH9mH1Oe8l30nfmS7sxLYSJfozL3ZbFZSFOUAnp6els1rjo+Pi4M1HA4rh9Ar1Uw72tKxpV2SvGrmNOLmeca6R6R6Mt2WgaaVlZUbeyto7Gj8TCaTEtXX2GQdFfRiIFVlZWNF3xVw9WBcZlOzMrLfp9Np7O/vxx//+McYDAYVedA9SlOUvC3TmR+DJO/LguuUXf+NnxeLRZGnfr8fnU6nsgGM3pHpKgWnSbyfv/G63s3ghmRnfX29BG84kyreM+Cu+k2n0zg6OorhcFjWfTca1ynJuq/ZbNbu6krHVvWVvSGfLi8vi4OieuuznFid+Smnso7/rlM9IECZdqylPtOJBcRZnJDQbLWuKegkPss59z0nFAhgvXym7T7JdTX/R+RBW7/HM0A460gdoL1Vjo+P4/3797G6ulrZcMzxV2aLiVU0kUJdrfHGOrE/KAMa16y7+pZjibOaygDiOl46sdz8T2NGS0u4u7dkWw6xxgV9mDr+E0/V8U51IjnWUdaSzvytmx32upB/yyYW6L84xmLGyF3ozo6tp9uQIayYz8A6YJYQ08khZQPBDWjdQMpApzu8/q7MUWYHeATV6+RgivWS8JJvDn7JJ92bXfM1XT5z5wDQ+8z5J0F2QK13iX9UOJwRcUecz5+ensbq6mo8f/68OAU801b3+QwOI8JSOgQT9013MS53dVzrBndE1XhQuZH/mcGjQonIt0zP7iG5A6hIo5xabo5BcO7lSl6kgD3YQnBNx5Zt87J9hsxBiLch+07+LTPAirBzjSbHDvWLnqvTMcvkxtvhvz0EuReRh+o3HUv193//9zEej+PNmzfx6tWrkq2iVO5er5fOFtbp4Gz2idep71g3v18GcTAYVED0YrEowZqLi4syO3t0dFSOJ9OMM9eDa8flwWBQ+kbjUoBaoDYz0AQ1fjIAsxrUNvFJQUTaVw8KTSaTyporX4MoR1E7zmscE/DoXgaYVldXK0Eq1YdjPJNf1+0sfzabxdHRUXz33XdxfHxcAnhagiKHVg79Q3Fs68byMr3v1+jEaKnOzs5OZWMapsz7e4g7eJ2ObZ3zQVxCJ0ygX33NncVle7gGUHbh9PS0lCe7rTXDst3NZrOy94fq0Whcr9WnDGVBUDnfTM9XGcxUUJvqZrUjqgHITIcQRzlQl/OvY2joECwWi8JLTdTod0+PZqYFHQr2r+vFu+CPj0GOqZfZ3rrn+TmzmRFXjq2Wtx0cHMTm5ma8evUqIqp9SB3La8SqzJ6RHpRcMkuR2J/liHzGUH1LTCO9xXIye0dbsVgsKpk3spvCftoxmbIm+cowIdvP8aPf6CBmgTr1Ae3WZDIpy3KUlbRMBtwfEWUy7X6cB425GfFd6INSkckUCs3GxkZZLyNi6pMMKcFGlm7sqVA+ALweFBYHECKV4wOO678k+P6dQpSBYZWvOjEqLgDh9aNxFAjhbtF8jzvCVHr8PZtJ8vpyjZacFPZtxmd3HLjBiIMgjzzOZrP49ttvo9PpRLfbjV6vFxcXF2XRueTI+1hypCixr5G5L6oDE/7ZAXZEDoiWGV6WyQ0DuLbB35nVxccCiYA346+vT1REnsqFhn/Z+geXf25t77NSPhPs5fgYyxSkiOB8mQxlzwpkt9vtiIiKc+P3UgHLaN2F3GFfBo4fAnHTIel0XTs/P4/f/va38b/+1/+Kra2twoPPP/88Pvnkk3j27FkBnhxHH9pW1wc03CICW204c3h4WCLoEVEJ0mgjHe5yymOD2EZF4B2YRETs7e2VzahEKmM4HJa67uzsVCLvi8WirN09OjqqADG1QWmikhU5utLJEdV9HjizRQdG+x9oDGp2QPxSGR6IVqCC9tSd3rusgVJ7ldbWaDQqASQGW9U21fshjItlTkZdCrbrJOrvi4uLGA6HcXJyEpubm9FqtSo4gfaeOm/Z+KnT6XR6CbB1XY6ZUmkV1FHWlAfXpYv1G1Ny6Qw2Go2yjwZ5J/xC51GfufaUckiMxM3f3On1d/EzcSdxJH/LwPpisYh+vx9HR0clhV7PuH1jAGp9fT06nU5FR7EN3ESPqamkzAG8D6JceYDgQ56tu18Om3ij+16/fh2Xl5fx85//PN3rRc/6d8oYA9TExWoLcQz7gLJJ2SYm0LuVBaMJHW1gOJ/Pi/7mel/2veRcgUnpZh+zeq/zn34UdbGcd57owLRotU2bZRGTqb6arT08PCz6nrhTn9kHXLalcek+GnlLu+Kzy+LHXcfAP2tHHveyKTBuZEWu+B2c8jeWl1GmIJc5t3XP+oxr3bVsIPkgkLEguGD7GfHxyCpntBgN4XfNlrBONIKsm8rzmV22369n/PFraqfn9bNsgUMNWAHhOsXNdzBCw11M75PuopRvez6LjIlc1mkoXZ4od5TPOsfIQQOv84/9y9l+yVej0Sj9suz9WdtYlqcdc7z5uMvas4xvzkOv1131CQEH+U3ddFs5Wfvvev0u9f3YpDEr3hBoRlw5cYqwR1y1Q0Za6bwRVV2Rtc/57ffQSGZ6WX2mmSceM8I0YjmtXDurgKtm05QGKX2qMSmgqtmsiIherxebm5sVx1bRbY39lZWV2N7eLiBLAEXO53Q6LeVy7Z12Yva18ZkzSd5y/boCzeoXZku4zNHB1TUHG25/6PiwLAd/nJX0mbhMFhg0uk9yXae6OX7h/XX2lqTUxdFoFLPZrEwGuA1QOct0wjI7nuEF6lzOPrrzJ1yj5xjk8IAe27rMdlOGaIMoe3X2QuOFZ6Nn78p0LHlYp9N5ne3Uel+t98tsGx1bzs6q3KxdXj/HsMsw08ekzM4vw8jLvvs4yspXX4/H4+j3+zEYDMoaaucPy3fbX+cP0JFiSi/7IMPoEdd6zOWYAYqI6yU8cjp9hlW4mFlsHsCVc5jpQ7WHWN/b545lnc/g5QqLTyaTyuSl68I6PVenDzPZ4D3ejxlGXUYf5NjSeHGtBUELI2pyZvQso2ER17vF6RqdGpEAAOtAYc2EzAdL1g4JAJWLA+26Z/k+giEXIu3myzz+DIgoJY7AT9EbCTlz8b0dGjBKZdN9cgo1+8l2i/9sMwXKo1X6rDYKNLrzLp4I5Opw6+fPn5eZRxoF1SPjicr1dJ37pjoFnl3Xb27s6wBKJt8aU5IDpQZz23j2QaYcWLYbInfg9FvEdZolx6GAOstl6ojzgeM+m0V2J4nPEqxwzGbtySJ9nJUgiCN/WTeVwfRv76fbZqayIJvLuvOCittl5SEAGpH0mfpCztfKykqJSPOoGQH04XAYW1tb0Wq1KnpHpPaLJwzKud2IqMpCJlNyWgeDQTl7lkc1NBqNMgM7Go1Kn2pTmohr2efMgdbzffnll2XmU7OynLFVfZRloXvX1tbKmYyydZoxlj7VTJTSN7vdbgyHw+j3+8XecPaY41F6We+Xg6xUSG1Ip3W4GnuKhivTysciv6uPqZ8ibgY7RQRMqqPWcNJGyn5xFlFjgmsPHwpJhuTAUA+5Hud3ZoZFXOnT09PTWCwWsb29HYvF9Xo76n4+o/fzP0nvIi5zHURn1GfjmVavPtcsDx1ZOmysl+okfMegh4Ni4hgPbFLHU4drvSo30vG2k+90KLPfxJfMeRfeubi4iMPDwzg8PKwc6SXZ1CkGGxsbMZlMYrFYlIw1Bbvm83mpN3Gh3iPc5vVlhuFDIfbTXZzbTC845uCfcEez2SxLP77++uv49NNP49NPP00xqvc9yf0DynnEtb6XHlOghzLD4KLbb2UwCVPRwZVtYaZDxM0ds93/UGCV92bt86wBBk48gOn+jfcPnfWLi4sYj8fx9u3bOD09LYFX3e+YipNz1HPMgBVlgSjHZ5mc3IXu7NjK0dCLaMSoICOiwrgMYHtjaPiyiIG/NwPfbjScCRK8TFE68R7vbAm36uIpihTOxWJRWWtGgMRBRKeA5TSbzRKR1AB0I+egX8LoEW7Vm0Bf1zODTKHUtWWOR+YYUSFoPYpSNGhcM5mRIZ1Op7XrnO+DaARFrlhd3jOjzt/ryI2wlFSmYN3AZIab72Q7fCbZAYaDNJdZjn+mOBNcO3H8yQh40MV1hyt9J8oT35O1n+2irMv58KUIETcNo783689M12UGPvuc1fE+SQaKQTbJY6PRqDhQWhep1MbRaBSTyaSyiVTETUCUtdflo9G4XrbCjc5EcpC4gYdmaofDYZFZObva0XJ19WoXbK1vkiO4ublZ9FFElFlX7Y45HA7LcRQK3kVE4Y+OstE7lHarMhV4bDSud3jV+iqVIX0px3s+nxeHXfpefJfDq/uVVq21iNpZ1GXRnQempJHqxlNmU3x2QjPh+mNA2Ovkjsh9jwHW0+viASzijYio7CovYlmSV20AdnZ2VgkaMchDfOI6k+/IbIHjKZcB2nuVJ7laLK6XDxEkZ3yibtd4zbCX45TMKaL8SC9rnHgGWJ2DlbWVM1dst98rXTEajeL4+DgGg0GlfqqTgqEE8LymYJCCOTwzWjZdqa7EeXKqfX3nfVBmuzxAcdszoix4kT2jvjk7O4sffvihBOe0mZjrMJbp9XN9JR7LYVxZWbkRwJFsyefxvWL8XjrHXHKZySDbS6cwGyvEMvzvbeJYYTZDhvU8qOK80lGTOrmEfV7Xv8RDd6knf/eJEW/3XenOji1nh1QB5lq7IvfK6b9XkMqNDHHngAxzypjH9/q7MuXn4NTLpCPKQ5AzB1JlK5InAVfOvPhJheXCIIHjFvFM53WhcEdE12lAaFw8wul8oKHQM4xKUzBdmeh3/qbZHK6DWeZQ0Yh64OQ+KFNIywBfdj0DAXVluoJTH2mGKuI6OKK+0XOUzUzp6D/7mO9V/zio5VignDl45b1yeLJ36Hsmu86vOvDl8u4gqa6PCLy5pofpbTSadcqabV0mI6qnlyFaBtrrjOHHJqZMSQdyoyQ5ZNI34uPl5WU5E9YDFhHVfsqArkCHG+GIK94QDKoMZY3wfMzpdBqDwaCyAZQcW822aBfsjY2N2N7ejna7Hd1uNy4vL2M4HBad1O12y7Fk4omcep63KP2t9aQrKytl1lc8UxrcYrEoPNNMK3Xz5eVlAcqNRqMAMO4aG3Gd2qq6ZjrawUkdKNKz3i8si2WQHECpb+Roc2bZZ2fFG7dL90mZvSM5b8XHiHxDJMox0+Yln7qHDhj7rQ7w+ZFvEVX9smxWhAFn9knmHKgOmZ6V/dDYZdYY209clfGU9eXsU7a0iXinbmZWtorPEHPwPj0vx/b09LTslu7188w81UU6QW0VL2hj2Efaz4Kzx8zGe0iUyf9tWC3DQF5Whl8jrvTamzdvotvtxvPnzyv8q8O1WcYVZcRnExlMcHut8nwyK5vppQPsOMw/Z+PKMRgn5er4T71Ap5ZZAT7uqdNcX8zn88p5zX6U4jK862Pd6+3BbflL7MdMt9TJj9OdHdu6zlX0jB1K5lDYs1k6AnVX9iqDnzMQzUZnTPAOVx0ojKxXs9msCLYUTtaZDnLdyaUzPJ1Oa9ft+SBSSsPl5dXZtNrxUsBI4ItCoX6hw8CByxlXgggBK18jtVgsKhuCiYccrHLeBbS4vblHI6XcG42rmQmdTUfZUd2Y3sYF+w+BVFdfBxGRp06J/HumzCTXg8EgBoNBfPvttyVapr5kfzuYqnOcloFQ8T0LXDD6zH535cWZF08zJ7Fctkflu5L1ddwCeizPr+m6ZxhkwEZ/XIPo62N8XbGDJLXfKXMibjMImQPi/XVfxHVt1NvaCIgO6GKxqPDu5OQktre3bxg8HxMEKnVGmHIjB0gp+tLVnLmUDGnm+Pj4uKwZ0r1yFnu9Xtnsbm9vL7a2tmJ7e7tsovPNN9/E4eFh7O3txcrKSnz66acxGAzi7Oys6GPuACuQqlTEZrNZZpu0B4Fmwc/OzuLo6KjY1l6vF/P5Vfrd6elpHB8fxy9+8Yty/u50Oo3Dw8OSotxut8suu+ITwbScbv357sn6800N3Q6yn9QHEdf6geSyLidBa5qFDagTfP3iYnG9I/t9kjt9PjYzfa82EU/QPlPONZvNEwTcLnNyge8WuVPg9fI6ZMR6q55qs862zfZZ8DL8/cQ9HiQgVtSf2qosr0ajumbcbWnmhNPpyDIQnC+umy4vr85SPTw8jLdv35aN3OiUSxcJByuIv7KyUtbiT6fTaDSugnRbW1sle0LEPqZN1ZjjkTH3TZTfrA/cfoto2x0XsN1Z5oHW1I7H43j37l2sra3FX/7lX0av1yvLXehHkFiO4wI6Upx44v4KlPU6J5XOrDu20mXkBdvquCzDTJnzyee4ZIHOrH9XW7ULuutZli3Hdjwex2g0qmSCkn9ZnehMsw11uNDb6ZMd7mfdRh+0K7K/JFNe3kD/TsVap5QzEEil57natxEHooSfCtRTd9lOd345eOuckqy92fPeRkYJHRRrkBHQRVwLNB1bGiUqGu8/p+w660CeZPf7wPdoJB1vlpcNLC/zvoH9Mnmuu58Dv07WI24a17Ozs7L74snJScxms7KWiYaBTqQ7bVk9nZcOBLL7l/GA9Wdfc5bBI291gMfb5g6jK9A60HRbfd0ZZf9w3GRUJ6vZe2+79y5ys2xc3AdxJo9rHslHD/ZIb+n4HOnTDARF3G5HdA9Bt+rlsxyuiygnjK5TN+mzUpebzWZsbW2VMqbTaZyensbR0VGsra3FYDCI09PTODk5KY4i6+19Lz0tnc5N8mazWZlFZqquzgodDocxGo0KuNdGXZPJpDh+mvnTTpjNZrOkU2vXXd84Koue32Wcug1bFqXnvdqTw3VR1r+Z3rovytp029is41nETSc0s68OJP15B5ksdxnPsn7KMM1isbgxpjPsovexrRkf6vjjAD/ieglCtnM+27FM7/vn7Dvb40Rwr3Nr/RnXiwwUK11WfSFHnRlBdXbCseNDoDq8z2t1Tk9m328jtZsTHdLBWv7Bdd6ZfdcfMbHup+wzE1J/IgZesn5a9sd2+HuFk5bpQvLN+0DkdpB89s+6n/rFcZ/kWff7BIO/n/XVf/Kv7hnKSIYTb8NLdXRnx1ZpUYx+cKaOlSSYyJwbpdVyYMvBJGC6rUGZ0PK6G2P9JuCiTuWxDt4GAqFM+YgHW1tbZeaATjPfrTY6AKxTzv5e8Xw8HlfWs2lmRO9iVNPJndIMRGQ8Z120+YqiXI3GzeNeGo1GSVNcLBaVY2I0I8A6ucy4QC9zOD4GZTKQKSMHHi5LPqNBQC4w/fr163j37l28e/eurMF79uxZBcxHXKd3MaovZcR6UHkRIKhNjOaJ6mZfCHRorDNwTGOUKTQ+r3bpWW6SwJn8u5L4wvoQPIoajUZZT6nIr67r/QJXWiee8USfeS2L0C6b0fJ7XAfcN0mntFqtG4fOR1TTp3S/dlJ88+ZNObIq4lpPLRaLG0e5zOfX61lF3m8EuOKRHCbZEfa/jpTRrLH0ljJStOvw/v5+9Pv9MiO9srISv/nNb2JjYyMuLi7i4OAgXr9+HWdnZ7GzsxM//PBD7O/vx+npafybf/Nv4unTp9Hr9Uq9ZGsU8VZwUjO2SpM+Pj6Ok5OTeP36dXFipSP17Pn5eXz33Xfx7t27WCwWZUMpbdI3Ho9LW5Varc1rnj17Fr1eL1qtVnQ6nbI5lWyFy7DrKg9G6Fpdyl2d86sZMNkQ4gjdI7tVd9b9fZOPSbVhmd0kYCYvMqyiMvUsZ7ZZbkRUdCgDmw6E6YDVOSW0V9TlGmsKhszn8xtnYl5eXp9z66A2omq/PUPO2y2nj8efqO7iu95FME/euI6vw1seOOU9cqIODg7i+Pg4+v1+hTcqR+vh19fXS1BKerLX6xUeabzJ3qg9nKEmSZcpY+1DJ3R+Kqqzw5l8UhayWTjvJ3/Wv6+vr8f5+XkcHh7GyclJ4TNlUffSfta9IxvHqqtkXD4OJ8XYTv4xYJr5QbyHOpcz/9QVHHvuT7EfpMczp9aDvk7Eh9I329vb0el0StCU8rdMDn1sOL91DzGD40PHTh7cuwt90IwtwbHPfjo4zhSFhI4RODZYwIQpGnXA77aoHa9TWNxRosJn9D4Dk1m0RmUTsHAwaYC4g6pIXqPRiMlkpdggXgAAOzRJREFUUpmNbTQa5VxFKVO1WYNb54pKyAjAtQ6LoFH9QMPqfcABSsNK/tF4+oYGEn69OwPxNEgcdLpGB8kV3H0SFTLJQYCu6X/2O8uLiAJwDw8PYzQaxfv37+P09LQYSW3AI2DhMs2x6HXTu7J76tpCRVOX/kRFR0XKtlE2KUu8p65vVVdPf/b6ZkbQo5B173Kj4e0ejUYxHA6j2+1Gu92Ora2t4lD4jBPrUlfXZd9vu/4QSPpN+ozBOwaxpGMoF4PBIPr9flmOoX0DFovFjTVA7vBEVIGKO2GUryxKrzq32+0SVJ1Op+X89eFwWDZ2OTw8LO9SyqGOlxBw1Rra6XQab968KTsa7+/vV5yQZrNZUqKPj4/LOD85OSmzO/r99PS0LDmgfVgsFgUEi8ea3dUaVQFm7jC8tbUVm5ub8eTJk9ja2opnz55Vzkf0NGQHFm47pReWjUOfsaMd0X1ybMVvBkMoT5I3vfdDZnl+Kqpz1mX/XV4dhNbZEJVF+aX8EwyL+JvrdtrRDOA7BtI1t1OZzpRMcoOdbEnOsu/EIP4eyoTk0wNfWfnePpeXTE9n13R9sViUDaNkl7l2mcEKrZfVxMXZ2VnljGjqBM+U8PcSlyqw4zjpvok4QVQn17pf/2kflpXPz9kfx8Pm5mYJEDp+zexynU2RHHpQXThaNt/9iCxQs2y8Exvx/qz9kgn6Bs536lA6wO4Is02uaxqN6g7v2lvi/fv3hdfuA9xGHriiD1aH/bxO/ndX+iDHVgwXk6nceCQLBViMlRHPFs3rfq1NyGYaSRKibGYvU1Z0xlyZSmj0DNe3uKASLLuw0vFQ3aSUO51OJVW42bw+B1ED4+Liohyj0WhcO7v9fr8MHPGz1WpVUl9UR4EaCS9BgersYIE8zBx3Bi04iMgn8VwDS+X7mVeLxfWaXZZH/vss30MB+nWDbNlg4ziIyDdZiogCrr///vsYDodxcnJSZrrkCPh5vpQHRrL53qz+rJuPCV2nzHBdm7dfBkCK2vni63PdSa5T6BxrdWlYqid1knjsEVGCPG8Ho6IEaZeXV4eSv3v3Lj755JN48eJFvHz5svSXRxHreJ7pJ+e391lWzkMgOrYax6qrMlVEDsj6/X5JH5OO0rIJzsizXzJHIpvl0W+UCfa96qz69Hq9om+Hw2Gsra0Vp/vw8LCsk+ORNp1OJ3Z2duLi4iLa7XasrFztcqrZ04iIg4ODkrIoW6B9B/r9fnFGeVySZrrkXIsn7Xa7pEbrmAgCOu1P0Gg0ypEn2ndB6/c2Njbi+fPnxbFVPRVY4A715DH/k9eZrnC+U7ex/zguFQgggGHgnDIlHZD1+ccm2lGCWdo/fs4cJl33wJvK5ewdZV9Ok+5ZdgyiBxz5O9/Nd/j7vD0izu5zaREdBr2PxO+sk+qZ2Q4eOyUekJfuuLitYMA8uz+TedrF0WhUlh1ovDForzprozfOsG5vb5dxyf1o3LHN9pBQWzlT9lAc2zobFZGnopOn4hkxI8vK8B6xqf4reKByFGjUEUuO/VU2MWUmE45rIq6PWRKu1RhU3VgvygT/XA94wMt55vx1vOj+FWdkecwQy+fY9wCw7tNY3tjYKNkG4pvsUjbWs7aQN2xDpifY7+7YMj38Q+jOji0dvSxCoU6VwmXl2DhXpGKu1gbN5/Not9sVoaijbBAsU5a87rt5LhbXG1ToeAbOSLqR8Pdpyp4OCFO9dD8FMaKapqnNRJrNZmXRNg29Bhij3IvFoqIwnTc0lnxfNsvHdlEI1UdeLteTcECJOHMhwKj6Mg2Oi/QVBdWAqqvnfRD5kYFrBwZ8hjKktXEHBwfR7/fL+jm1dzKZRL/frwBWgplm8zpFS/0qkOzjjvUjuKWyUT9qTDDq78SghCtSKsxsBsNlrw5oSN/4Tny6z8GhK23d58aFQIltIGCTszCfXx2p8n/+z/+JP/7xj7G+vh7Pnz+PX/3qV2UGUmugtTlIZoDqyANJzhe2dVk5H4uUCRJRDfZFXM9+q9+lL9rtdqyurpb1o/v7+7G+vh6dTifOz88rM5GusyOu+7VO/0pnMxhJ46j+1vmSnU4nOp1OrK6uxs9//vMYDofx/v37GAwGJZg0m80qM6jb29uVWdGVlZWKc8oxI0DscqdxopRmOiHkAWdRj4+PYzwex/HxcXmXzgHe2dkpfNLxQZubm+WaHNuXL1+W9GM6zlyqQv2t9oh/bqf5u3ROtmwhC0xpkzGtIyYW8Gwl7hUhB/y+7QBtNvWdE8cu11Iy9Vj3+dgmb92Wc6mWxpmC23Wg0m3SsgyczCHh85QD1//uJFAPexszm+J8zmabaK/oUPA32kfHfgzq1+ldBe21fEI6Xr9pnHL2VpvBKcsuImJrayu2trbKRmiNxlVwTMfUyMHTmFQdeEqGeHDbRM/HJA/mRkT6OevvOpli2csmq3RNGElnlPMs4+Pj45jNZsVJczlS38veay8C/UVUU4fl5ErPCWsRm3rgrc7Pqcvq8GvuzDkO0n08xYH4W/8zzMC9JCTzkjnZyadPn5ZggfjCpYPsS+/jzGn3/mRfZPwidvS+vyt90K7IqoQrLf1nhVyhLlNm6jh3nO5aJ6+HaJmX7wrQB6YboezdbjAIziiUTAfW4KGB4TolPSsnmSBN9csEgdHAOoeEiiUzqtm9y56n4Dr4JJ/5J0XACBAjOc6n24zgx6K7yqUP9jqlLEf2+Pj4hlPLI0oUta7jK9cCqnzy0uum+tGIZI6l+pTRS3+3FGi2xonlReRH+hCg8H6fdVV7sjHubfKZEB+n3o7MgXeDKMCi3Rg/+eST2NjYKDN/DJLxfyYzdePOAe9DJAUAHARTDj2AJvkZDocxm82i3+/H06dPKzzK9Lh/X6aLPAKdgV3urMozELUZ0+npaUwmk+LYdjqdMosqR1gzM5pRVdkES+TFYnG9FIQywqUnKkOAWCBNMz2NxlX2TsTVGOIZmGqPjg8S+JjP5yUVUufy6n6OV6bcZfrCee2BpEyOfYyTuElWBtQoW7LBEdWz4R8KZaC57r5svJBucwqo3/TdAaDrOfKPNjbTzXX1znQz28QZUQ/y8J1so78j4wHH7TLd7WVnusnrnL3Tda9klOd3Zg68t137tsgR0A7S0okch+ofBoVk86hP6rDcfVGdTXMMfdvzDCSI6vRGRvP5vCztkC5T4FUzuhwXjm2W6S4GVohxRNkJCV4O8b+IMp29S3X1+8g3jXm+hzO2WUBH5IFfyuDl5WWZRJENIvaSTb8LfYgcZOQ8cl/jLnRnx1bG2lMnBKY9t5sCRfDhgGaxWJSNLySMDnCpyMkYMp0dFXFzK31nKAcUozPcvGplZaWSdpgx1hWlZp0Xi6utyZvNq6Nb1C5F97rdbrmmLeS58F0zCDL4q6urZdbAj2gQuNGmIRwcrJsCCFKaelc2CLOIO2dixB/dq3MaHcSpDmq33j8ajYrjpKiZC7SfU3bf5MCgTrb0u0hj5+zsLE5OTqLf78f+/n45xonG7fz8vKzVWywW5fgRjhfyRIpNs7eMxmUOm+rIcaJ+ymbd+ZljkQDZgY0rVsoVHQ+WS/4KXNylzznu3bGh3GbBARlEps+zzo3GVZRda23/+3//7/Hs2bOYTCbx5ZdfxqtXr+LJkyflmBbN4o5Go3RmhPpJ/KHC9lS6OgN1X6RzGmlQlVnRaFynmNFgKzCjzVe++eab2N3djWfPnqXLV7LghMivuR2R48SNrQQkNdO5uroavV6vbCR1cXER4/E43r59G4PBoKKDZZOUjcNjaDqdTsUmNZvN+PLLL4tzqSNtdnd3y0yxAnqHh4cxn89ja2urtOX9+/flyCDp+PX19RgOh8Wx1mZQmo11uRfvV1ZWYnd3N9rtdtm85vz8vKQ0c82i9IUfb8cxpEwQB3S8j7Ou4h/B2OXlZUyn0xiNRiXLQfdJT6ndcvK1gZZsRBZk+5jk7XVHx9tMOyk5v02vZTzVddcpnGFiYID3ZdiJv/lYishnb3ld79bzni4s5+42bOHvUFkiD5Zm8sl60R6x3ny/ynBbQZ71+/2ydGI8HlfGOMeL5FV6R8sapF/W19djPB6X9f3tdjs2NzdvHEdG2ZnP5wXfcZbsodiAiJuz5CTXRcuCEyrLHZhMZkScjVSW59nZWayvr8fW1lbZo0fBM/Wrr9MmzlC5sg+eKdFoNMrxONSTxG0+RprN5o3xSrvmWEuYnHLMsSWc5n5PJvvuOAvb0DZSJ6tNe3t7ZT8J6Qy12WebVec6DOyykckAdQmvsd7Up54NuozubCmkTDImk5iSJqLS8gpHVKfH6wbKsmgBlZXXmQMmU6TsLDFO6yVUhgy7AykynQad/JFDo3dL6TP1U8JFhaGdmuXU8pxNCgkHJKP2mVOr9qh+jMI4j8UXj/SqDKbQ6f46p5/9zwCJO8g+KNwpu0/K+p71zaLbumc6nZb0xsFgEKPRqDi0lE3dpwgxd732epA8upjV150klqFnJRMcg+6UsmwCCPVl3bs49vjZQYjkkMYuazv1gj/LcVQH3GgE6NBKTmUEVEcBmH6/H1999VVp//b2dpnBW11djVarFf1+P87OzsomU8xE4Xjytjnp2l0jpT81KSWOWQF0RGmIyVP1sXb/VdBOs551/eagyJ2HiCpYyOrCjZcY2VdkOiLKml/N0qocBeK03lVpg/P5vGxwyFlFgiLqxkwvZqDG9WC3242NjY3odrsV/a57lcoogKV7Njc3Y2dnp6y11bhWEIIOotpEYMWx5d/ZV8t0jMu27KDqy/HAILTaIMdBelEz7vdJtIdO5FGmg1kGx4Xr1+x+zowSVDsPxfc6EO/jif3E8ept9rFInZoBaT6n7z4hUveOugCp84X4hHXQs/4eB8WyWY57qNME6OlME0+qHK3tVPBIyxTId+lOjQN3zonjODtMh/chUIZzInInx++peybD5svKEF+VMi5dERFFL29tbZXNv5ja7fhBelTBCcqZ+kN9waVysi/iieTG9SHfSb3gMpsRZdvv5+RCNimUBcUod9zzR7ZK/kUWNPJ+y/rH8Rmfz3BhXfszPZW9dxl90BrbiKoD46nD6uzM8ZXRovHUdUUTeM2Nps9AUXgysO9gh53tTMuUNh0/zoI5iPYOc6PlQF1gWcpQis7brplfghWu12X9M8d2sbieHaJipGEUP+nEu7HUwGdZGpgaCFQamUBLgcjoKsXaZ49JXAP60MiBn65F3FTC8/k8Tk9PYzgcxrt370q6o0j3r6yslBnc8/PzsnifMxUZCKFx99lWpjWJ6MzpN5bvBsoNKvuUY8WBlhNnTJcpLo51XSOw4D1eN4KViJsyRD4wG4DvEw9lNOkUzGazGI1G8Yc//KGU9Ytf/KLsmtztdqPZvFrnI4M6nU4rUXl35JYpa+qYh0BM86IsSj8wcCkgQDk9Pz+Pg4ODMhMix5JrlzJj5wCPfeoyQTmUsdZOwDLgWm+rsaX7JpNJmTnlDCfBAGcuZbc4/kTUnZqhoR71Nul+vq/X6xXZozOr9mpPBsmpzqrt9Xqxs7Nzg78iB1h6nryn3SSPs3S2ZfaXbVSat8oQXpANYZ/pnvPz85hOp9Htdv9Zsvv/gjJgzM91gXkGbLj2rQ40ZuBYfJT8SJZkPzl767OlKle0DKhmINKdVx9/3jaOebY3kxPd59lZXieXM5/ZJaasw2TeZ8J1dDTYZ9m6feIftV/nc8tJ0IyXftcY5jud9+IVN1fNbOB90zIbL3LeZ/Ll9zn/eU/m2DJQJt0qPS+M2Whcb8LKbKKI64wD6SHpcfZto3F9JJ0wgRxgYW6VJzmhfs5kNvNXsvFIXyobdxozvjxIfUOHVxNns9msEmiSXdrc3CxBUO7+zKxOHxuUAceMHGP8/S5+V2b7b9MfGd3ZsVUnsoMJMuQgTafTG6CD55FpgFKQ3bHNokJU6j6oMuVFgKBnxKRMSPif0Xaljkj4s3V/bgRUD/33gRuRDwQXWjkdcliVbkqh4KYm+qz3OtDKnC7nJ4XaBxSVsvrDjToDBzRqupeRS8kHN2JwYfc63xfV1cUBSLN5lYIymUyKQ3t0dFRAXcRNgCTArJ0Xt7e3i6Lx1M9sxoAOrWY5ODazNF1R1t/sD4J2Kk4HTZ7aHFFNM6KRo8PGPzri2Rp0jj/vAw9e0fD4mGcatfcrHduLi4uYTCYlwMSdMd+9exfz+VU6qTYXErXb7djZ2YlutxuDwSBOTk7i7du3ZaZeQIepvdIFD5lWVlaKgXSdOZ/PKzvt+p4Jmv188+ZNvHv3Lvb39yubBHLGItPlNJ4eRBOx72WrNDsro83zW/Xe1dXV2NnZKWeRa4MjyQADnKyrwJWIgFgOtQBEv98vz25tbRUZEGmzDtaJIIRpb8x2Ec+bzaud9jc3N6Pb7ZZ1UuI9z1dX3bWuijqM/GMWhm/QxfqQVH/aYI1dpeqz3zjLrXeJN43GVQqg+O7rcj823ebAu56MqG5Wo+8e9Fc57iRS99OhaDabBS/5hID45LrQHQx/RtdcF2a4Qc/pHgeszAhQ+cQljvPqQL7rAeEhyQjb4O3yepLHmcNaF3TlNbfzel46QDhMx8KpH5Q5IruWZWC5nRWefigOrcjtOcl1dER1pt7xtgcIWD7LdMdGNmgwGJTlI7L/ulebP87nV5tM6YQJ6ldOwmncOG4m5lJQVNc51pgeTZnQb87DjK/OS/pJtHmqO7N3vE8o28wIZf2azWYJymtTQ7WNmEr9qHo69pN+88BUJie34Xn6C379J3FsCRY835qAVUCAlXQF5B58BrhFdULu786UIJUC6+gK3N9Do0AwQYXsoJx88vq6Y5spXxcYDQYOQDow6gut82BU33mV8V+Dxg2Nt4tlMIqva8vAOJV/BgDEUw8+PETyQZr1oeRfaahaqzMYDCqOn7eRTltEVGbn64yI10t9KZl1Y6w614Eb1YNjNwsGZYaHjkcGoLKxyd+XyVzEtZJmhJ081z2qO0FC1n8ZeMp4KuCoMlW3y8ur41ZOTk7i5OQkGo1GWcu4WCyKs7G5uVmcEJ2hKueYAYVMJjx4d1eF/lMSwQo3xGs0qseHiVfksyLB4/E4hsNhBZAsM1qZLLl8ZPWUfuTOkeoX7i5PXR9xlf7LNF/uWCqHi7OMTF/TbCRBAI/E03t0XJDuoX2gflQbtZO8zwbIieCGVpq1pWMccR2UcPBDJ4r10e+0pfzvYLPOyZAjcXFxEdPpNKbT6Q194raR4DMby38O5Dov468oa1umr3wigfrI8QN14W1jq05nOybyvs1sYp2tYt3oTNY9w/bQAXbH6UP0otsY2pLsPtaljg8MSCpQKWzDyRWmgmpXZL5rmV2lPb9vWuas3Ka/ec2vE1c6H/yzeKrTCLg0RvdJf2xubsZkMrmxhwAxj8YWU5Yz/aQyOfvOume6sE62M/yY8Tgrg0trluEy6l8PSIpfyrrMsDrrRZ7p+l18NpL30TJ++HNZ3ZbRnR1bKhp1MDeT0Eu1YZJmaRVdZDmMYJBxMrB1jp/uE4N0rztfywA0Z5McUPIe1lPtFuAhmHGgzbaxfjRGdLZVF2+vyhQYooMbEZX0ZAI2j4zqfXw/05gUyc8MpIAbf18sqkcLsT8E2HkeLweX6i0+sT4EfnUzN/dJy5RUs9ksM1QHBwcxHA5jf3+/AGMqRpZFQKwZnbW1tXLG8TLgV1cPrZHwlDc9x1ly9o3e4btqU9lnM6GcuVEd1C5F7h2MRVRndjPA7IZIMpvN2EZE0TeellOnb+rAjd4nhT+bzcra2eFwWPpZu2Z+9dVX8eTJk/hX/+pfFX58//330Wg0YmtrK9rtdjx//jyePXsW0+k0vv7663jz5k18++238e7du5jNZtHtdmNrayuePn0anU6ntIX8uW/5F0knbGxslFkIAQzpfekGRa3n83nZLE8bp33zzTfx6tWrordc9zJgRpmn4xxxDdy5Xl0zmEpr1dmuvk6VDpO+P3nyJGazWbRarbIxiTaREijVZlAEAwJaBKr8nZtS6cggti8Dwpox1uaCTAEXr3kUmGRHG0u5zJBvfo2/MSDsdaPOcPmkTuJ4PTs7KzvAn56eVvSA+lX8IJ8iorJx1ENxbqlf2Me0j+IH7XCz2SxyFZEf9xVR5bm+O2nMMJii2UBmdqmO/p2OMp1u/u59qrqwvx2vUYb4fLYEjMA8wyD6nPGesuA2KKurf6/DmLKNnh2k35WZI1ykvRg0ycDgpfr85OQkJpNJ2eCz1+sVDKWyHYeJh7LJdXLwsSnj/20O97Lff+xs9GKxiMFgEK1WK6bTaXQ6nXKd+nZtbS263W5lky+ewa4+U38SN6hf1LeeRSGcFVE9ModYiQH3DLcR9zCIp3f5Eq6IuLE8TZv3uj+hcSHMokmX+XxeMpmUKUT7STyuMpV+XZc1yOBLhtvJMxLLIs4kHpBuVRDjLvRBm0fVGUU1hswhE1Rpnz3lZ0b8db+Iyshni/W7MzSb2fEyXRl6R+i/z5ZSATkPqOg9zUvvoEJnW/0+8ZgCTgeEDm+WCsCB5VFPn9nVACA49N/d0Pgslga31937LwNSETfTHbiu7McqwP9XRD7wmpTiaDSK6XQaJycnlQHIvva+F+hTuzmb5M6wD37KnCsUd4ZJBC8+HhSwYQCLylLPSIkR7PoYy8ajytE9khkqL4L77BrbwT8fH+QZlW4WjeW9LM/HyObmZtklV+svR6NRrKysxJs3b6LX65WdGS8vL8smUrPZrACi58+fl3WQe3t7JZ3q/Pw8vv/+++JQ93q9SrryQwD17A8Ze6YlU09SXuSEKails2PH43F0Op1ot9vlHZRJd2YzmWIEWu9m8EwAkmuRRJwtpy1YWVkp/UWATV1KnSTQ4AEelzHqAZdxPU8nReB6Op2Wa+IF1w4L6GR7MDhPHVxQ1usCTT5TnP2pbLel0is6tzs771l9QdDEOtIW3Cdldtp1sX5f5oSo/SxP1ykjjh0oV+of9Rv1I4Ep38NyVHc6sO4A6nNmg25zZnh/RHUiwZ2H7LkfY+/ZD65HqC+YVaE6Edt53elwUG5VHmVT2VosZ3V1NabTaUwmk7KkRWNXzq4yRYgfGaS9K88/FjmPeS3DAR9Sd/HOg+Ei4i45qgwGuK9Cu0B9Rh07n89vrG1mvenQUmf6GCQvsvZn+ISYyvmp3+vwFMl1KtOPubOx7DFlTe/wdjDIqoB7Xb+zf1wWiAX8OcqLjz/25zKd6vRBm0dljPdZEjEvc7a8gvpNlRcAcYUvciAtYRbD6Hy6g+VMJEjJjJIrSEY169ri5bAT3Vh4lNQ7Th3sacj6LCBD4EZQoDYQiNGpdMeSTtZisShHUbiDUddWDh69m7Oyeg/X/7Cueg9lSu1iX98XOYjWNe12fHR0FMPhsBwPwABERFUZUS54pqPOo/Q0T8qu+sQdZdIyQ6LrDLoooMFNZHTOJx1bjh1dY5kR1+nMvLYMMDMjgOBe9zI7wp0F8imbqeWY4kZSHg3NFLU7QvP5vMykHx8flzU8On/4//7f/xs/+9nP4tmzZ9FoXG3YcHBwUGYNtUvtZ599Fp9//nlERHz33XdxeHgYv/3tb+Pt27fx7bfflhn+Tz75JHZ2duLFixdltvG+ianDXOND0Jeljy4Wi9jY2ChRX83a9fv9sh4tA9UEEOxbAnk6lOpb7gzP/Ql8TDGAJHnT+yT/mkmhXdG417PaxER1oA1jmyTDdFw1i8AN9eTo6jMznrTunhF3Bjnd1vH9kn/aRoIzOr0EinRsaYP5m+sc3jubzcpZ3XJsXT/RljGIyrF+345tXWCtDkdk+tHtsq55ubpOh4aBZP2uFP+Ia9mknnPHluDcAXbm3Pq483pmDpfXUc/y/X6/l0HeZPLlz2fkfNdYUuaDY40MnDPI646n5FSyu1hcrWc8OzurzORRj0mWNXafPXsWW1tbxfHSzKL6ljz4EGD/UxH7apmzSjnM8Pey8uvkTOVKf0p3EkPpemZHlAK+WCwqx2ty8kSyoLqI6Fu4Y6sxSH5wUsmdOXfYfXxmvOUYcMddv2eOLe0MZVWOLcty+6B3qYzMtmXtoN2nHXDnVu+os5Xs8w+V/Q9KRRaz1DHc/EJGmWkZDsx1n5xYFz6m0jpxJoDOlgNbMoeGRffrdzpLFDaRd54LI50LN2C61x13CoA7K/5OjxDpGsEjhZ2RXBq4uvZo8FJBaHv08/PzePLkSQVMs51Mx/ZgA+vLfqHj6sCIM8UyQNpkJ3M87oOUVrq1tRXn5+dxcnISx8fHMZ1OYzgcVqKG4oPaSLnwflIaidJdCUYygy9yueGf+lfv9vQNd/44FheLRTEUBMtS3nQoWQcGMRyUENTQOZKBkmwoeurGyaOodJ4ysOb1YLuzmV0SHQkdu6S+3dnZiUbjKpvh7OwsDg8P4/nz57GyshIHBwfRbDZjNpvFX/zFX0Sv1ysz+YPBoKQ0Hx4ell0It7e3Y29vL37+85+XMz6/+eabODw8jK+//joODg7i66+/LqlU903ip9YPb25ulvRbbUYxn8/LMT4K8hDkrK2txenpaZycnMR3330Xa2tr8fz589L/bjfYr67DWCemYPIezWz67LvLFa9FRNF9zebVBhs6sk3HcandTPOiLVKZns5IO8KzFj2443pVNlXBL6UdM8PDx6XbCPKFv0sHuHNGu+b2m3Xm/bpPzro2eTk4OCjHPHGNIf8TuF1eXq/jdsD2EMhBm0Ax+UyMQAcnIl9HmAF/yk7EzV3t9RttgQdOms1mZVfwDLNkoNrlIMMbGV/cifWyvU0k6ZC72Hx3ejM+Ul413tQXmoFSG3W/l0OsqTXiWrdJ3OrpodJpDDKorrKlmt1ttVqxvb0dT58+LRsUKdh130F9p9tklJ8pDxku55+Xz80HiRmEZ7Rj+mAwiN3d3VJms9msPKsxJx0nLEO7Jd+CwXLVgdkydOw4+8+AfSZHbAPbyaAheUd9wrFEne4Tio67tBTONxr0ZR3E3RHX5zX7+/2eZbLh2F/tzyb7MrnhfdIJOpbvLvRB0wDuiGYRRDqPfC4rx5WcO49OuodKKHNI656nk8HPWf28LLbVQTwHrQsi604g4M/rHv33AU/+uPPI7z6o6vjI+/WM1g7qqCHWifeqn9luL9vrJ/KZWpblxtmd8/skrWduNBrlOJDT09Oy1lLkSlrX/Df2kYyep9v52KoDEhk5sPXx5vdFXGc58D8jbVRMLrP6zPHMcar3qEw6tPpMI+I7FFKxZ0GfTO4ynmRjKxuTBIWLxaIcH6Bop1JEFZjQOumVlZX4/PPPS3rZxcVFDIfDmE6nERHl/NaLi4ty5uGTJ09KPTY2NmJ/fz/G43Hs7+8XZ4C7794XiU/MEuHmTOKfQEKm11ZWro+10ppLpfNRTrO+zGSdThxnHyOquyS7rfJ6cXy5ceX5vR6EYTRczzIowyUJ+lMZPKqCwMEdHDm1mnnWuloGnjJHI9M7bL/Go+7JZtLcjtPh9t95nZF+gU85FnJss/qRD+zHuv7/mOQA3oHrsmeoR1UG9SX18zKdngFdkfeNPnMWKnM03cbrP/9cz3v96+qayaXzsc6GeFlZGX6f11u2heOUOqPuuYwPslH8L55mEx8MPuia2iEnS8Gf4XBYjrlSdkLm9Nw3ZTgi06n8XFd/17l1fgLlWvpKDiYDFirH+1PXPFOLZbIuXK/Kuvkkiwcgfex5GykLxBp1domfVf+I68nFiJvngLNeTLOm/aHcu+1zfvM+9iWxWdavrP9tcuBUh6E/JGPnzo6tgJ07axG5w5NVljnu/hwFkALg71tZWSlC7Ol57BQ+y/p4Sq6nudEos06ZEfH3ukCzziyLz6iebrQ4K8vynMdM1VsGOuhYsN56PyOXnnJIQCeQr+9K8eN7uHOcnBQfLBHXa9M0M8b1wq4EMpn6mLS9vR0XFxdxeHgYw+GwbCxDHmbgMHPAIq7TRLjJWqZkKI8e+b0NWHG3u0zhe931O/tLayjZPyrXI3rL+km/OTDQOzQuySfN8DEt3YEZyfnhitBnz/xZ8n0ymZRZVjmxSjHb29uLk5OT6Pf7cXp6Gufn5/H06dMYjUYxHA7LLOTf/M3fRKvVilarFT/88EM5w3gymcTR0VG8e/eubG6hYyJevXoVf/VXfxX/6T/9pxgMBvH27dv47W9/G+/evUv5+jFJBrLT6ZQNi+Tka03qfD4vjiAj4xFXPFfUdTwexx/+8IeYz+fxq1/9KjqdTrRaraXBLMoxZ8kYMFRUXWNKMqvfKUNynmhHsnerDLVXQQqBZcmZAh1Mn5dMa5w3Go2SAUB96A5Ao9EozivX07bb7fI54ib487GovlB7VR+3Lfrs+0J4+dJF2SYe0h1MpdZGen/6059iOBxW+snHsa4L7BPM3HUW76ckYSACZBFnTCKq9pbXM53pDpZAKbM03LaoXzzYx+UdxCLSZZwJEoD34A8Bsr/Dl2d4yrgHWeqwIN/Pe4gZMqfad8CVfSNP3KGV86NrPHFAzzm2Ux2IVRWMury8rBznoplbLU9h9gaPuCTe02eV9f79+7i4uDpK7rPPPitjXxjDneT7IuLWZX3r1/gb9Ur2nP5T/v0s+GbzaknLfD4vgWPqNn+/5Fdp4BHXgUr1gRxG2QXKM3U8sbKe9Wwz2YiI6pJLtZN6QLyQbPPd4rUCHcz4UIaS4zfqAJbHPqzz47yvXUdRHzBY7M4yy82WUXmZmRP9z6E7O7bumLFC7pzSUSKznLlsSMYQV2xksoPzOpDvTOP/Ze0Q3QbW/X0UVDkj3un+nM/E1vHZ3yPAxVkAjwBl76MjHnGdfulGg/exb2nYM57RCfM2ZA4uZUVA+DYn5mOTdsSVc+IBnKzfsnp7/2TraQncReRfNlYyhc56iZfkfzb2xHtvnww8newsIOMKMwMtBB6csWU7CL4YZfW2e/kZuHfgRUWf6YZG43pWnkpcYF4b9ujsNxrFZrNZZm4PDw9jbW0tdnZ2YjgcxsrKSgwGg9JWpbUSMGlzEa097Xa78ctf/jJevXp1o28/NmW8p6Fm0Ex8rotIN5vN2N/fj+3t7Tg+Po5ms1l28xX4jshnDReLxQ3w7oFHr5+ML2f7/T6W78HNiOuZ0/n8+sgOrj8S+NJadZXhdSLoWCajOraHQQSebZ3xh+9xZ7nOtnnA0/vando6kE2+CeArFZ8z89k7KBd6J9O0mTZ6XyTeKcATUc0k4X3UK+wHv85nvE8zsMdAiN/r+1EwOMFgom9OSJvD/yLqZo11/e5ObIbVnCeZ3RCpvr7+T0Ts533jGIMOKvUE9T/rSwxJORdPXe9Qt1BemYHCdrnNlu6QbhqPx3F6ehrb29vRaDQqWRl33Q32pybH2Y5xvF+WUSZjvJ7pKtdLciI5yeCywGsid1gla3JUiXHpTLJMOrJMSXYcnmEN6ZC6ySu9I5tAY2DW8SBlkdilzie7DVv7hIL3hfen2xtvd4Zbydu6On2o7v/gHUkcLLjz4xE7KhQXSipXfua7Im4OFt3Dw8mpjJ2hepcUpjMucyC8rVm5dZ3BQZIBOi87i+KyLq5INSCVL8+1x54Krvt9sHPGTCBegMyNEWdHGo1GZdMYpjvofeqXVquVygrryQEnflGZfEj6wU9JBwcHFRDriqLOUOt3BhGokBiVZDqmP0dll4FhPZcpmwwM6P3kr9rDYImUsM/S8H0uw/rdt6D31CpmT7CuAvFqlxsXbxvbRINBncP16eSz80yfNSOvZ1dXV8uMTbvdLufSKnX/7Oys7E6rtdc7Ozvx6tWr+PLLL+Ps7CxOT0/LrJUcIP3Xrpmnp6exuroa3W63bB71N3/zN9Htdmsk8+MRU0NpkMUjOmvqR8680GldXV2NH374IdbW1uLdu3exsbERvV4vzSjJjLt0FevDGSkRAzp6bwamKacEqXQYJNMRUZmpVVaL150yr1kctoe6nG3w2VntjO1rAml33eGhXlB9MoeJ/UiekzRO/S8jOhIXFxdlL4Lj4+Mb5/c6WGF9NNumIJuc/Psm2XVPk5bsUU9nYJL6Sf3us/dOGWD04IZ0tcpTYFL9xD7jjJTKZ1toBwigaTN4zzIHRH3mGDEDr7qm99Ih1Tv0Po0rHwPu1NIRpQ1QmW67VVf2id6tpVqsC/mv39gXWR/qOdkP7Usjmeh0OjGfz+PFixdlhjFz5h8K1eF0kXhcZ2sjcseWZbojxP7VHie6X78Rb3hf0q6rPMmbNgaULqa+5jsUjPY/yl/GE+I2T3tWXYS/WH/HMlmwg88Ip1O2VH/KPfvIfRqeZuCY09vj/cY/2iPvy8zh9rIzbLuM7mwp1DhGvVlpCQmVABvildZ1KiIqoLrGReQK150BKb+I6tEmWfSEApgpaX3mAMkiM3wnDRnLzFIQ9AwFJBuIAuXaEZNpLhwA/n46sZljL5CoTXE8VVx8ZkqefmM6seSARlVGWH2glCAKap0jSGN638SIoJMDBCf1qQME9anLZp1CdKOZKRL9RjmgrKlcrrly48F6R1w7wQRskgsCd3+WStsNs677jLUUMa9nQCgD7sv6gP1Q953jWzvdss1qr8CGUs8iorIbtiLsf/rTn4pj1+1248mTJzEYDMombaL5fB7T6TRms1lpvyLR/X6/OID/8T/+x9q2fQxiiq9mrAXmtC6fs/mtVqsEzAhWI6704GQyicPDw/j9738fa2trZQOQuxBBOHVmFtmVDtJnGlTKOAGz7pWDpfs4I0O++A6bTMcVX6jvCFCkUxWs1BpaARNuCiV58pkIAhMGbzJSW92RcQCl79LvdPY9kEx7oD4fjUbx9u3bODo6islkUhxbB7Ssj2anxVOV5zy/D8oCvpluFZFH/Ex953rLZ0b4X+Qg050zBUCYZcO6EYAzQC7d5XXyLAfHaNTlGVjnmHM+eZCYvJKMezqw2xtiTskT18BzTGQzyBxXzBJg2brm2EV1zWbPxBvVW2NdQRrqw9XV1bIR5cHBQZydnUW73S59o1Tb+yYGm0WUl8wmZ2Vk/oB/z/QXx8xgMIiIKHtRUD5YRobt1f+UbeluTcwwNZj9546y7IY2zGNQhA571hbXo2yj4zXiSMmOjyuNPwXZl9kA/Xd/hBMZzebV0XI8xpC80bv5Ltdz3nfeP/zz/qcvxLJvozs7toy08oW6pk7XjqISBFbYG6Rr2d+yBtAgu9C6wNFpYNlunJycyV7XjDLnos7Y+Swq35N1JnlMJe0C5u/ToHMwQ5LC5CxZVg4VlzufArQZb9leKYk6w0c+qW51Ed6PScsUVEQ9CNE1l8m6Wd86crn1Picw4r119dTnTPHocza+6urpsp4pNwIwvsNnAj3t2Ovp5bB+fLcDvoyffk3/s41GfNaCW+afnZ2VGUpd6/f70W63o9vtRqfTifX19RKNn06n6WyD3qXdmCeTSQwGg3TcfmwSCJAOoh6ibKoNcswiqoHMiOudF8fjcbx58ya+/PLLmE6n5Rk6DaRlRjEbgy7TJDfoBCJ1Ol8yoDYI6MihWCwWJUVd8iznUMTZWXdstUkdnQ2Owwww+Zits7t+fwYAM/BHoOOA3+skW6N1sv1+PyaTSQFjlGPaD8qNZMuPQKqzux+LOJus/z5zcZst9mvkfaYzM5mtu8f1aUR+RrzqwXWLEVEJOhCf+Lvd5vB5yTLf77bDsU1mB31M+xh1e8zrDCipPNVtmc6vw476TIdXbfP2uJPO91C+GSTQsysrK2UjqUajEZPJpOiVh0RuT++CoTOdk32ve5fL4WKxKM7+aDQqEw/Z+Fomx45pI6ISPKSME1dlE0rUfy5PfJ+X5W2UTFF+MxvnY4BjibOsmd5kvT1gyLoTkzGoyb7zfuRYyN7Lz7QJ7Jc6zH9XG/BBuT00svLeadwjqo6lIge6zggAo3CMcEsJscEZuI64nkWWQIk5VHxevjrSFTc/U9j1ne+VwBBAMDIvPjGCqDIYKSHP+B4KMZ1ZRWHUbirwzMhRyDwKyfUDulflc40YBVtl++Bliu7l5WU5W9GjoxkoVf843+UgaHbsvtPQuAkLDVFEdbAxokfiNSoekSu8zAC7EfD7OHYajUaZRaN8sQ9VFwcPBGxyMrghjv6UIuXlsT7+ORs7+pwd7+HK3Nvs6c3+HJU9ZZhOZEZnZ2dlNlJjQ8bTj3nQrJJmXHmQuWarIiJ2d3fj5cuXZQOl09PTyiYkjUajsk5Tx7toPD0EUj/5n3gp2VldXS0zE7QZkkfxfzwex9/93d/F3t5evHjxovBO7XfQq3IywyceZeOqbtZf5Uqf+bhoNptlHGXglwBa+lO6n/o5A7/aeI9gVxuCUE49ndv1KGd+mVGje9gu8ckBWQZG+BuBm+7j7Bkd0IuLizg9PY2Dg4P44Ycfot/v3xi7DvooF51OJxaL6+OQRqNROVf4Pkn2TU667GjE9UZpLh8MYkTU63EG65c5CfovXebOG+sqfrsMidSvkm/PaiBOoB71fiCY9vpLTth2D6T7b5msq67ceE384FhUurCImw+SH94X5K1+4z1eD9dB+qyy/fgf8knXLi8vi03hvcrYefv2bezu7pYsjodiAzKsLOJkRibHfo87Nyxfv+ma3ic9oY0bFTyjTtO9vOZyw4BhxPWsqDt21FnM3BNOls7jf87cEgtyM0O3ZZludLymOjmvut1ubG5uxu7ubvER6JM4rnPcJ3IsqCUWb9++LW3a2dmpHDNXp5dZ/6x83qd2i3iagI/Bu9CdRwqVmqe4UKnUNcKNsa/XcwXnDHFHgWUxmpAxwZUUHUHe7+9wx5rv1O8coD7LlDnQHMwqO1MAnB1xUE5BqOtwHwCsN40LgR9TzH1AkhcEa0w3pmNF5ZDxkPJU5wDrvVnffGyqU9J+j/cFlWvdwKy77kqVssX66DcCKX0mSHGZq1M6rqi8PwXsHMAs45PXm45D5uxmz2TtzsCJ30d5I8+dL7rOqD8dBmWjsEwGMhQAkG6TcZlOp3F8fByLxSI2Nzej0WhEp9OJyWRSAZ0aP3QYdM9DADUyjFl/cQxz1ijTBSKB3tPT03j37l1899138fz588psZRawdKDpoF9lUxYccHMs3FW31M3oqDyNNzrYaiPbr+ucsfVUUI5RBo693dS5vn6c7azrB3+X2ukOrbfXA5v6r7/hcFjS7hUIku5Q0JK84Xu0xligSkGj+3ZsyUsGqPmbrrkOyuQ0s23EE3pO/5cFZ/gexy1Zv/pYVB0IKPUs5cZl39vtdctwmfjjvCMu0WcH5o7lWBcG+fXnS12cfHzovQxSOFYkNqJzlNVP+px9y77g5lE+5mazWdl7QUs/7psyvHqbg5Td62Utw0YcD+KT0n61ZIh7HGTYXs9S1zkm1rMaZ8S13mbZQsmL7D5T4ClHKltLKlwO6saAj0PWSQ7s+vp69Hq92NzcLPva6JlluNX9nsxmK7DeaDTKfgn9fj82Njai1WpVjqDzAJLbGdapzjfJ6vhj6INSkQmaXdkJCLoCVkdRuHRdUULOYFHxZQ306wIDVDaZEdazdTNVjEa7Y5W908Gy6q66iGdUeu4sugHjez0K7zOmHHwEJ84r8p2DiWlIAkcSSgcbbAtBt2+wonrqHR4lpkHXvTRg/k7J0kNYW0KqU+Q+mOsUrD8vnmYRd8mX+tw3v3Ggy/Gp8rJZTT5fp+RJXDvIMiiHouw9LJ9y4A6IjzVPH2N7HaSzPL5f8l1XVgbOtKmHZmXX1tZKVFjt1pjRc4roaqZXzvDl5WW8e/cuRqNRtFqt2NjYiO3t7VIeHWaVp/dPp9OYTqdLDdTHIqbXep8xCu3LJRwMipRuenR0FH/6059ia2sr/sW/+BdlsyTKM0GyqA40qU6+tCKTc7dL7mxwXLt9yOSHtswdVZ8FkEwKoKgOTPl1cJ61W+UxCyRzXmiLvQ1ul7nWMAsmsE/p0ArcHR0dxcHBQQyHw7I5Dn9fLBaVI+H4Lu04vbm5WYC90pnvkzj2mbGWzcT5OMlkleDO126qLL5XRB2X2XyCcY0b1ZkZBqyLrin9m7+J755Or9+Jn4TdKMtsD503vZe/848BdA8ORVzjGPJd40tjK5uZcgeTfJRTwr1G3AnxenofOm6SM0aZuLy83niQY4E8nU6nMRqNot/vx4sXL6LVasV9U4bNM5nld8lvti6X+EZluWzT+ZPMaCdkLddRdgd9FGJ6vUvXXd+xLbQFXJfNscx+VuCNx/7I2eZSQfoMdXsgCEPo/R6MZ72U0fXs2bPY3t4ugQ+d1JA58tn7VC71hmzA9vZ2DAaD2NjYiHfv3sXvfve72NnZiVarFbu7u9HtdstGl5ubm7G1tVU7WeW89f7O8HGGRe9Cd3ZspbTILBor3xVSEScJGysskpAQJLrS8UFTZyAEDJg2JiXigEqdpg7wKIM7jOyYbNDVgQ6/P3s+U7K87rMijBLxGY9myzCwjjTC7Du9j6lIHPAEh4yWEZBndXDlsYyful/XPXr5EIA9yR1Vbwt/p6EjWHd5rnM8+btASvZe9nmmELJ3aZxE5OkpXm/udMs6uFH2dvC7O551Sj6rtz9HMOO88CUNXt86RU/ALr2ipQB0SJSezuNbpPfm83nFuZtOp7FYLOLt27extbUV29vbJV13OByWd0oXMZ35IawvjLjuBy0P0Pmq0vNZqldmpFwXNRqN2N/fj3/4h3+IX//617FYLOKLL74o/aSUXeqxzBb4bI3e5fqEx6Jk8iGeqwwG66gbWZeIuDE2ffM0EWdqxQMuqxGwVhTc10t52/UOvZv6krNe5AHbkJXt48DT6ggcedyFHNH9/f04ODioOFK8X0QHiJu1rK2tRbvdjvl8HuPxuByzdp9EXmVy7XIUke89IF74DJw7WdT3bi8dd2T/3Z7qfk+Z1rsiqhswqZ5Me/blVRzjfiyI88d5RqeU1ymD4gHfncknsQqdWg8MU875TgZmHNM2m80bAQG2kf3GtjUajWIzqGfIB7Xh4uKiBDX1fq2xXVlZiXa7nUjkxyfHZI6XRdQTETcnWersGbEhifpMpwioDM7aMqioOrhjrPJ80sSxgfQynVuXdwXthsNhjMfjIjMKxHGs+XuIuckj2iXJsmzt5uZmJe241WpFt9st9ZLcOcbK+Kz/7ohqrKvuT548if/8n/9z7OzsRK/Xi9///vdxdHQUw+GwZBLobPutra1yasT29napN9/J/ncc6TzSPS5Pt9GdHVs5tTSa+l4XTeNsXh1wZWMdCC3rECd2jChjFjuOdfVpeJWVdUBWJ39Xdm8GorLoa50z4AbDo53+XAaACCgzZV3XT25sGciQHLAOdcDSgRn57XVw3t8n1fHXyduTtdf5Ucf3uv7knwMJD+LU1dXr6I4hxwrr4+Akk9UMyC2T7cyhvgt5fe/Cw2wskWgM2UZ3RGjcxD/pO6VeMjIsMD8YDApQaTSuj8MgkNO79G4Ct/smGmTOiBBw8j7v16zPGo2rtbYHBwflSCTOiHFNY11QyOVO10jUJ+wfl2Ufr7rH9RzHLp/PdDrbu8yx5cYlWr8sx551WwYMyQ86CQQHLKPOGaFM8rOItp8AfTabxXg8jvF4XHmmrj4cO6q7nFser+RLne6L6nil3zIswvu9LPZVpmPpRLje9vpQ7qh/+AxBvspgf/jyItbD6+7BkSwInfFG73SM5e/idw+u0LH18Uc9nemezB7WOc2Z7Gf9lI0NvzfDcBkfmN2g2cD7DuyQMj3D69nvLuu6bxmmzj6zXyLiRqCG8si+ycYJyXW6231eo6xphpSBGgb7vH/5vizVObMvshGtVit6vV602+148uRJcSx9YrGuz/w9qkedTlssro7t/OUvfxmvX7+OH374IX73u9+VLBpls41Go1hfX4/JZBJbW1txfn4em5ubZVKAPK+zX8vGicvVbdRYfAiSfKRHeqRHeqRHeqRHeqRHeqRHeqRHemB0/2dIPNIjPdIjPdIjPdIjPdIjPdIjPdIj/TPo0bF9pEd6pEd6pEd6pEd6pEd6pEd6pD9renRsH+mRHumRHumRHumRHumRHumRHunPmh4d20d6pEd6pEd6pEd6pEd6pEd6pEf6s6ZHx/aRHumRHumRHumRHumRHumRHumR/qzp0bF9pEd6pEd6pEd6pEd6pEd6pEd6pD9renRsH+mRHumRHumRHumRHumRHumRHunPmh4d20d6pEd6pEd6pEd6pEd6pEd6pEf6s6ZHx/aRHumRHumRHumRHumRHumRHumR/qzp/wfeYwIeieMNUgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(2,5, figsize=(12,5))\n", "for i, ax in enumerate(axes.flat):\n", " ax.imshow(x[i].squeeze(), cmap='gray')\n", " ax.axis('off')\n", "plt.suptitle('Sample training images')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "8d56be15-b2a1-4b41-8dbb-704f2e80e190", "metadata": {}, "source": [ "The sample images show grayscale face images with consistent alignment and similar resolution." ] }, { "cell_type": "code", "execution_count": 43, "id": "29944310-6408-467f-bf99-01ebc167d72a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAFWCAYAAABdIQEzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXmYbFdZLv5WVU9VXT13nzk55yQ5GQlTIEAgCUQhwUSmICpIBPUnyiR6Ha7hXoGgKCgoMl/BICTINYiAIoRwCRAJMsickJDkZDg5U8/d1dVVPVTV74/ud/W7v167uk+AdLfP9z5PPV29a+81fuub19qZRqPRgMPhcDgcDofD4XA4HFsU2Y1ugMPhcDgcDofD4XA4HD8O3LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA7HpsNTn/pUPPWpT133vY94xCMecl2Li4v4wz/8Q5x00knIZrN4znOe85DLSsOJ9Mcik8ng9a9/fdN7vvjFLyKTyeBjH/vYQ6pjs4D9+OIXv7jRTXE4HA7HFoMbtg6Hw/FTwAc/+EFkMhl885vf3Oim/LfAkSNH8PrXvx7f+c53fuJl//3f/z3+8i//Es9//vPxD//wD/jd3/3dn3gdjp8+fpo04nA4HI7Nj5aNboDD4XA4HBaf+9znEv8fOXIEb3jDG7Bv3z48+tGP/onW9YUvfAG7d+/GX//1X/9Ey1XY/jjiuOiii1CpVNDW1nbCz/40acThcDgcmx9u2DocDodj0+GhGDYPFcPDw+jt7f2p1vFw9mcrI5vNoqOjY6Ob4XA4HI4tCE9FdjgcjocJL3nJS1AsFvHAAw/giiuuQLFYxO7du/Gud70LAPD9738fl1xyCTo7O7F371585CMfSTw/Pj6O3//938e5556LYrGI7u5uPPOZz8R3v/vdVXXdf//9eNaznoXOzk5s27YNv/u7v4sbb7wxun/xa1/7Gi677DL09PSgUCjg4osvxle+8pXEPaVSCa95zWuwb98+tLe3Y9u2bXj605+Ob33rW6n9/d73vodMJoNPfepT4dp//dd/IZPJ4LGPfWzi3mc+85l4whOeEP7XPalf/OIX8fjHPx4A8NKXvhSZTAaZTAYf/OAHE2XcfvvteNrTnoZCoYDdu3fjLW95S2rbAOC+++5DJpPBzTffjNtuuy2Uy/H5q7/6K1xwwQUYGBhAPp/Heeedl7qH9brrrsP555+PQqGAvr4+XHTRRYkord1jOz8/jz/5kz/Beeedh56eHnR2duLCCy/EzTff3LTNJ4K5uTlcccUV6Onpwa233goAqNfr+Ju/+Rucc8456OjowPbt2/Gyl70MExMT4blf/dVfxeDgIBYWFlaV+YxnPANnnHFG+D+TyeCVr3wlrr/+epxxxhno6OjAeeedhy9/+curnv32t7+NZz7zmeju7kaxWMTP/MzP4D//8z8T98T22HIPdbP5XYtG7rrrLlx55ZXYsWMHOjo6sGfPHvzSL/0SpqamTnxgHQ6Hw7Ep4Yatw+FwPIyo1Wp45jOfiZNOOglvectbsG/fPrzyla/EBz/4QVx22WV43OMehze/+c3o6urCVVddhXvvvTc8e/DgQXziE5/AFVdcgbe97W34gz/4A3z/+9/HxRdfjCNHjoT7yuUyLrnkEnz+85/Hq1/9arz2ta/Frbfeij/6oz9a1Z4vfOELuOiiizA9PY3Xve51eNOb3oTJyUlccskl+PrXvx7u+63f+i285z3vwZVXXol3v/vd+P3f/33k83n88Ic/TO3rIx7xCPT29iaMnFtuuQXZbBbf/e53MT09DWDJ2Lr11ltx0UUXRcs566yzcM011wAAfvM3fxMf/vCH8eEPfzhx/8TEBC677DI86lGPwlvf+laceeaZ+KM/+iN85jOfSW3f0NAQPvzhD+PMM8/Enj17QrlnnXUWAODtb387HvOYx+Caa67Bm970JrS0tOAXfuEX8OlPfzpRzhve8Aa8+MUvRmtrK6655hq84Q1vwEknnYQvfOELqXVPT0/j/e9/P5761KfizW9+M17/+tdjZGQEl1566U9kj2ilUsHP//zP49Zbb8XnP/95XHDBBQCAl73sZfiDP/gDPPnJT8bb3/52vPSlL8X111+PSy+9NBiyL37xizE2NoYbb7wxUeaxY8fwhS98Ab/yK7+SuP6lL30Jr3nNa/Arv/IruOaaazA2NobLLrsMP/jBD8I9t912Gy688EJ897vfxR/+4R/if//v/417770XT33qU/G1r31tzf6sNb/NaGR+fh6XXnop/vM//xOvetWr8K53vQu/+Zu/iYMHD2JycvIhj7HD4XA4NhkaDofD4fiJ49prr20AaHzjG98I1371V3+1AaDxpje9KVybmJho5PP5RiaTaXz0ox8N1++4444GgMbrXve6cK1arTZqtVqinnvvvbfR3t7euOaaa8K1t771rQ0AjU984hPhWqVSaZx55pkNAI2bb7650Wg0GvV6vXHgwIHGpZde2qjX6+He2dnZxv79+xtPf/rTw7Wenp7GK17xihMeh8svv7xx/vnnh/+f97znNZ73vOc1crlc4zOf+Uyj0Wg0vvWtbzUAND75yU+G+y6++OLGxRdfHP7/xje+0QDQuPbaa1fVcfHFFzcAND70oQ+Fa3Nzc40dO3Y0rrzyyjXbePHFFzfOOeecVddnZ2cT/8/Pzzce8YhHNC655JJw7a677mpks9nGc5/73FVzo2Nq+7O4uNiYm5tL3D8xMdHYvn1749d+7dcS1y0dxHDzzTc3ADRuuOGGRqlUalx88cWNwcHBxre//e1wzy233NIA0Lj++usTz372s59NXK/Vao09e/Y0fvEXfzFx39ve9rZGJpNpHDx4MNE2AI1vfvOb4dr999/f6OjoaDz3uc8N157znOc02traGvfcc0+4duTIkUZXV1fjoosuWtUP0mijsf75TaORb3/722FsHA6Hw/HfFx6xdTgcjocZv/EbvxG+9/b24owzzkBnZyde8IIXhOtnnHEGent7cfDgwXCtvb0d2ewS267VahgbG0OxWMQZZ5yRSAn+7Gc/i927d+NZz3pWuNbR0YH/7//7/xLt+M53voO77roLL3zhCzE2NobR0VGMjo6iXC7jZ37mZ/DlL38Z9Xo9tPNrX/taIjK8Hlx44YX41re+hXK5DAD4j//4D/zcz/0cHv3oR+OWW24BsBTFzWQyeMpTnnJCZSuKxWIiktjW1obzzz8/MX4ninw+H75PTExgamoq9If4xCc+gXq9jj/5kz8Jc0NkMpnUsnO5XNh3W6/XMT4+jsXFRTzucY9rmt69FqampvCMZzwDd9xxB774xS8mDlG64YYb0NPTg6c//elhrkdHR3HeeeehWCyGNOhsNosXvehF+NSnPoVSqRSev/7663HBBRdg//79iTqf9KQn4bzzzgv/n3zyyXj2s5+NG2+8EbVaDbVaDZ/73OfwnOc8B6ecckq4b+fOnXjhC1+I//iP/wjR+zT8OPPb09MDALjxxhsxOzu75v0Oh8Ph2Jpww9bhcDgeRnR0dGBoaChxraenB3v27FllCPX09CT2Ptbrdfz1X/81Dhw4gPb2dgwODmJoaAjf+973EnsF77//fpx66qmryjvttNMS/991110AlvZUDg0NJT7vf//7MTc3F8p9y1vegh/84Ac46aSTcP755+P1r3/9uoyKCy+8EIuLi/jqV7+KO++8E8PDw7jwwgtx0UUXJQzbs88+G/39/WuWl4bY+PX19SXG70Txb//2b3jiE5+Ijo4O9Pf3Y2hoCO95z3sSY33PPfcgm83i7LPPPuHy/+Ef/gGPfOQj0dHRgYGBAQwNDeHTn/70j7Xv8zWveQ2+8Y1v4POf/zzOOeecxG933XUXpqamsG3btlXzPTMzg+Hh4XDvVVddhUqlgn/5l38BANx55534r//6L7z4xS9eVeeBAwdWXTv99NMxOzuLkZERjIyMYHZ2NrE3lzjrrLNQr9dx6NChpv36ceZ3//79+L3f+z28//3vx+DgIC699FK8613v8v21DofD8d8Mbtg6HA7Hw4hcLndC1xuNRvj+pje9Cb/3e7+Hiy66CNdddx1uvPFG3HTTTTjnnHNCZPVEwGf+8i//EjfddFP0UywWAQAveMELcPDgQbzjHe/Arl278Jd/+Zc455xzmu5hBYDHPe5x6OjowJe//GXccsst2LZtG04//XRceOGF+PrXv465uTnccsstuPDCC0+4/Yr1jN+J4JZbbsGznvUsdHR04N3vfjf+/d//HTfddBNe+MIXPuQyFddddx1e8pKX4NRTT8UHPvABfPazn8VNN92ESy655CHNJfHsZz8bjUYDf/EXf7GqnHq9jm3btqXONfeoAsDZZ5+N8847D9ddd11ob1tbWyKr4OHEjzu/b33rW/G9730PV199NSqVCl796lfjnHPOwYMPPviTbKbD4XA4NhD+uh+Hw+HYIvjYxz6Gpz3tafjABz6QuD45OYnBwcHw/969e3H77bej0Wgkolx333134rlTTz0VANDd3Y2f/dmfXbP+nTt34uUvfzle/vKXY3h4GI997GPxZ3/2Z3jmM5+Z+gxTRm+55RacfPLJwYC98MILMTc3h+uvvx7Hjx9PPTiKaJbW+9PAP//zP6OjowM33ngj2tvbw/Vrr702cd+pp56Ker2O22+//YTenfqxj30Mp5xyCj7+8Y8n+va6173ux2r3c57zHDzjGc/AS17yEnR1deE973lPoq2f//zn8eQnPzmRZp2Gq666Cr/3e7+Ho0eP4iMf+Qguv/xy9PX1rbqPkX/Fj370IxQKhZCdUCgUcOedd66674477kA2m8VJJ510It2MYi0aOffcc3Huuefif/2v/4Vbb70VT37yk/He974Xf/qnf/pj1+1wOByOjYdHbB0Oh2OLIJfLrYpQ3XDDDTh8+HDi2qWXXorDhw8nXrNTrVbxd3/3d4n7zjvvPJx66qn4q7/6K8zMzKyqb2RkBMDSfl6btrlt2zbs2rULc3Nza7b7wgsvxNe+9jXcfPPNwbAdHBzEWWedhTe/+c3hnmbo7OwEgIftFNtcLodMJoNarRau3XffffjEJz6RuO85z3kOstksrrnmmlUR0mbRREYg9Z6vfe1r+OpXv/pjt/2qq67C3/7t3+K9731v4iTsF7zgBajVanjjG9+46pnFxcVVY/vLv/zLyGQy+J3f+R0cPHhw1WnIxFe/+tXEvuBDhw7hk5/8JJ7xjGcgl8shl8vhGc94Bj75yU/ivvvuC/cdP34cH/nIR/CUpzwF3d3dP16nkU4j09PTWFxcTFw799xzkc1m10W/DofD4dga8Iitw+FwbBFcccUVuOaaa/DSl74UF1xwAb7//e/j+uuvTxzIAyy90uWd73wnfvmXfxm/8zu/g507d+L6669HR0cHgJXIVjabxfvf/34885nPxDnnnIOXvvSl2L17Nw4fPoybb74Z3d3d+Nd//VeUSiXs2bMHz3/+8/GoRz0KxWIRn//85/GNb3wDb33rW9ds94UXXog/+7M/w6FDhxIG7EUXXYT3ve992LdvH/bs2dO0jFNPPRW9vb1473vfi66uLnR2duIJT3jCqoOMflK4/PLL8ba3vQ2XXXYZXvjCF2J4eBjvete7cNppp+F73/teuO+0007Da1/7WrzxjW/EhRdeiOc973lob2/HN77xDezatQt//ud/Hi3/iiuuwMc//nE897nPxeWXX457770X733ve3H22WdHnQwnile+8pWYnp7Ga1/7WvT09ODqq6/GxRdfjJe97GX48z//c3znO9/BM57xDLS2tuKuu+7CDTfcgLe//e14/vOfH8oYGhrCZZddhhtuuAG9vb24/PLLo3U94hGPwKWXXopXv/rVaG9vx7vf/W4AS69BIv70T/8UN910E57ylKfg5S9/OVpaWvC+970Pc3Nza75veL1Io5Hvfve7eOUrX4lf+IVfwOmnn47FxUV8+MMfRi6Xw5VXXvkTqdvhcDgcGw83bB0Oh2OL4Oqrr0a5XMZHPvIR/N//+3/x2Mc+Fp/+9KfxP//n/0zcVywW8YUvfAGvetWr8Pa3vx3FYhFXXXUVLrjgAlx55ZXBwAWApz71qfjqV7+KN77xjXjnO9+JmZkZ7NixA094whPwspe9DMBSGunLX/5yfO5zn8PHP/5x1Ot1nHbaaXj3u9+N3/7t316z3RdccAFyuRwKhQIe9ahHhesXXngh3ve+961rf21rayv+4R/+AX/8x3+M3/qt38Li4iKuvfban5phe8kll+ADH/gA/uIv/gKvec1rsH//frz5zW/GfffdlzBsAeCaa67B/v378Y53vAOvfe1rUSgU8MhHPjJ60BLxkpe8BMeOHcP73vc+3HjjjTj77LNx3XXX4YYbbsAXv/jFn0gfrr76akxNTQXj9hWveAXe+9734rzzzsP73vc+XH311WhpacG+ffvwK7/yK3jyk5+8qoyrrroK//Zv/4YXvOAFiZRsxcUXX4wnPelJeMMb3oAHHngAZ599Nj74wQ/ikY98ZLjnnHPOwS233II//uM/xp//+Z+jXq/jCU94Aq677jo84QlP+In0N41GLr74Ylx66aX413/9Vxw+fDjQ4Wc+8xk88YlP/InU7XA4HI6NR6bxkzgFw+FwOBybHn/zN3+D3/3d38WDDz6I3bt3b3RzHFsAn/zkJ/Gc5zwHX/7yl6MOiEwmg1e84hV45zvfuQGtczgcDodjBb7H1uFwOP4bolKpJP6vVqt43/vehwMHDrhR61g3/u7v/g6nnHLKj/WOYYfD4XA4Hg54KrLD4XD8N8Tznvc8nHzyyXj0ox+NqakpXHfddbjjjjtw/fXXb3TTHFsAH/3oR/G9730Pn/70p/H2t7/9YT+V2uFwOByOE4Ubtg6Hw/HfEJdeeine//734/rrr0etVsPZZ5+Nj370o/jFX/zFjW6aYwvgl3/5l1EsFvHrv/7rePnLX77RzXE4HA6HY034HluHw+FwOBwOh8PhcGxp+B5bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsabtg6HA6Hw+FwOBwOh2NLww1bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsabtg6HA6Hw+FwOBwOh2NLww1bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsabtg6HA6Hw+FwOBwOh2NLww1bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsabtg6HA6Hw+FwOBwOh2NLww1bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsabtg6HA6Hw+FwOBwOh2NLww1bh8PhcDgcDofD4XBsabhh63A4HA6Hw+FwOByOLQ03bB0Oh8PhcDgcDofDsaXhhq3D4XA4HA6Hw+FwOLY03LB1OBwOh8PhcDgcDseWhhu2DofD4XA4HA6Hw+HY0nDD1uFwOBwOh8PhcDgcWxpu2DocDofD4XA4HA6HY0vDDVuHw+FwOBwOh8PhcGxpuGHrcDgcDofD4XA4HI4tDTdsHQ6Hw+FwOBwOh8OxpeGGrcPhcDgcDofD4XA4tjTcsHU4HA6Hw+FwOBwOx5aGG7YOh8PhcDgcDofD4djScMPW4XA4HA6Hw+FwOBxbGm7YOhwOh8PhcDgcDodjS8MNW4fD4XA4HA6Hw+FwbGm4YetwOBwOh8PhcDgcji0NN2wdDofD4XA4HA6Hw7Gl4Yatw+FwOBwOh8PhcDi2NNywdTgcDofD4XA4HA7HloYbtg6Hw+FwOBwOh8Ph2NJww9bhcDgcDofD4XA4HFsaLeu9cWJiYtW1TCYTPgDQaDTC9Ww2aTM3Gg3U63U0Gg00Gg1UKhXMzc1henoas7OzqFQqmJiYQLlcxvHjxzEzM4NyuYyZmRnMz8+jXC5jfn4e8/PzqNfroR6Wzbqz2Wyof35+HrVaDfPz88hms2hpaUFHRwdaW1vR3t6OlpYWtLa2orW1NbQ3m82G//V7S0sLcrlcuM462H/9btvEvzpmuVxu1Rja8QSQ6KstT8vV8olarYZarYaFhQUsLi6iXq8nfp+fn8fCwgLK5TIWFxexsLAQ7uXYLS4uIpvNhr6zHfV6PZQPAK2trSgUCigUCmhvbw/PtLa2oq2tDdlsFh0dHdi3bx92796NU045BX19fWhvbw9lNhqN0H+lJYJjthG45557UK/XUa/XsbCwEOiK7WI7OWZzc3OBxhcWFpDNZtHZ2Yn29na0trYm+sqxamlZWo4c+1qthpaWlkBzuVwOuVwObW1taDQamJmZwcLCQphHto/lknYbjQYWFxdRrVZX0WWtVkOlUknMc0tLC2ZmZlCtVlEqlcL9Sk/8rmU1m8OWlpaw3rQsjpd9lryCfwGs+q7/t7W1ob29HZ2dnYk1rv0hjyGt89rc3Byy2Szy+Xx4nrxmZmYmQfe1Wi2MY71eD+uqVqsFWu/s7EzUzzng85zzGI/QcWS57OcNN9zwU6TwtfG2t70ttLGzsxP5fB79/f2BhxIck4WFBczOzmJ2dhb33nsvxsfHce+994ZxJ+9Q/qkygtdJZ7VaLcxzV1dXqJdrL+0v22zrivFvIu0+pUsr57TNtjxtj8610jCAVXLTtp/0oOtc1xvLtP1Pa09srFjH/Px84GWU0ZOTk1hcXAQAtLe3o729HYODg2hvb0dHR0foP/lWa2srBgYGsH37dvT39we529XVFf7PZDIJHpCGRqOBRz3qUam//7Rx5MiRVbI8DaT/kZERjI2N4Zvf/CYOHz6Mb3/72zh27BjGxsZQqVSic7UWSF8cX5WxrJu8lfPOcW9rawu6TEdHR5ApnOtKpQIAaGlpSfSVMkRlE2mNNMw51Gu2X3pN13psTHWt2d9ja9uOj9bD9jajrxNFX18fBgcHccUVV+DAgQO46KKL0NXVhUKhkLhPZV2sfbY//F/XJ5/p6en5ibX/oeAd73hH+N7R0YH29nbs3bsXhUIBxWIx/GbbDqzQULlcDp8jR45gbGwMd955Z9CVqONTvlq6Y1mkC+pflKnAin6gdEjap1zO5XLI5/MJ/Vb1LOos1Ll4LSYXtN8xmo7JhTSd3/Jitt/qCHac2W/VNcjHVabyPo4rx1bbVi6XUalUMDMzE+agtbU1jAfbwTnR+WFfOzo6EmU2Go0wjqSFhYUFFAoFtLa2oqOjY5Uet23bNvT29mLnzp3o6elBe3s7HvOYx6xJp+s2bGMKq/6WxpxUUdPBrlQqqFarQTnntVKphLGxMVSr1XDPwsICKpVKMLxIhFqf1s+B5gKhQt3e3o58Ph8miETOweek8TcKDjU+qNwASBC2KnYxJVVBwa//a1+UEKzipP3l75lMJqEk2ntbWlrCAtFFCSwxhYWFhVULS40WLhb2XxkWhdnc3FyYXxq0yoQAYG5uDnfddRcqlUoYz97eXrS1tTUVVJsBysi4sDmuVGIWFxcTjIB0TcbY2dm5irHxrzJqrUfHnP+TMeRyucBIWlpaVjFyMlIVqOrciDE7Ndj4nB0HZdRWgbF0pIpua2trwgnAutSpxOtcZ3rNGj3W6WEVt5aWllUOB84Jx6y9vT0Y9XZurKDjWKrByTkol8uoVquoVquo1+vBgWEVGCqMpBm7ruz6tWO60bAGovJEO6+1Wg2zs7OYmprCyMgIJicnMTs7GwwjdVSpIkNFnHx6dnY28PG2tjbk83l0dHSE+V1rzCzNKg+0gtf+tX3T67E503WqRrm2w46lVQhixgDHiOXEnHzKl21dej3WV72fc0oZRb4OLPFwylZVbBqNRsJRTAWGvG16ejookTTC9KPjZPujbdxorLcN1GdGRkZw5MgRDA8PY3x8HJVKJRiRD0XOkZeSz3GNtLW1hXvUYch7urq6gv7DtVUsFsN8Uc8irauOxXVZqVQwOzuLubk5AKv1nLm5uYQRogap3keaoIwhP7D0z/akjZXqo/zdBiE4HhxztuknYeSOj49jYmICt9xyC4aHh3Haaadhx44dwcETM2BUB0ujpWbrdjNBx5x9i/FJgvKXTv/Z2VkcOnQIExMTmJmZCfKdcpHP2LmjrLC6BI0zPsfySA+q96uRq/pWNpsN16xhS/B+DYiprm/5MJDkzYqYLpg2fux7M35o9X5giZ9rYEN1MtVl+Fxra2vgA+Tz1G8t/XIONHDGuVhcXEwEbNj+TCYTxpNrs16vo7W1NfCQfD4PAKhUKmhtbcX09HSwN9aDdRu2MeUh9r8yQ3sPo6hzc3MolUrBQ0Ov/ujoKEqlEqrVahCgKkjVSx2rG0BC8SThkXnTq0zCVqVVvTJUwFUB0kUUg1W2rfJjx1G/61jFPPbWcxozcGnsWIWFfWDfSBhqNHMhq2HFsVZPpxoErJvGnXra6HUpFAqo1+shIpbNZjE3N4exsTHcfffdaG1tRaVSwa5duxLjnTa3G4m2trZAV1zkjDqpgKZQX1hYALA0R/RE6QLnb/pRz6NlYMpMeL2lpWXVQue9Wr4tg3OfpnxYb6dVflkW6Y7PqXGu7SFz0wiylkOQhpUObbtUgOm9KoS43jne2g+tn4ydioiuezqqrCeXgo9zroyaCuXs7Cyq1Srm5+eRz+eRz+fD+mMf2T/r/FJHCZEWxdso6Hha3mR5nnrd1XjL5XIJOuOH49TR0RHKpHNRPbpqNAHx6KNVlO160mvaBy0jZkxqXdYpqX/TyrbPKO9VxYP/W34fQ8zZo+sjtna1TpV1qqCoPM9kMuju7sb8/HxwNjCDAViK4HR0dIRoPr3wpHve297eDmDFGZXNZoNzNabMNev3ZgMNvJmZGRw5cgSHDh3C0aNHQ5SWGWgnUh6woqjSacAILMePfE+jVuRpra2t6O/vR0dHB/L5fIiQ8JmOjo4EL+O8ahvIk6iPxeifa5xyUZ131CWUF8zOziYcI1zjtl4q1zaDRWWONWzZPnUaKe+lYW0zfx4Kjh07hra2Ntx+++2o1Wro7OxEoVBION6UpumwPRFj9SdhiP8kYHkugFXjF+ODOn+Li4uYnJzE8PBwWBPAivNZ5QHpxUbt1XGhY6NOEJXlNGJpByj9q+NdbQNeVwdojBep3mKDE3Y96jWro2tf7Hyr899meVg6sgY20draGsZSnZdc91yr1OvIL1RXpLPMOiY5ZpQF1NO07Zxj/lW+oOuSWaT1eh2FQgHz8/MolUpRfTcN6zZsLWKeBavQxJ6hhU7jldHYmZkZTE9Ph5RjGg+aHgusVvIskSmjoqJLQlYDg8qSKrQxw5bCXT3kalDatsSUUGWoltjUW72W4qKTbw0g9kUXlxI+CdlGUVWJp8AlwbM/WqaOgV2kJP65uTlkMhnk8/mE4KEwISMbHBxENpvFwMBAUFa1fG3nRjN19f5ygZMuKajtRxUO0luaIwhIGoFW4NoIjSqj+nxMwde6rIGn5Sldpwn7tDrsmrDGq37sWlCmbevUcmPrjmVwvdoUImugK83q/LAMdbBQAVGPLvmKrT8WiSVd6FjwWZarbdNIOZVHXbubFc2MW+skUTogT1HnmUb9NOqUy+WCQs75skZf7K8awEr7Vn7ZZ3WtWmNT77WIGbVWadFr6mhJW2/6PVZvrP2afWGN1FjftXxLd+RHjUYjGKqkUTo0KccoT5mmyPTEmF6Qxhe2Orh1amRkBKOjoxgdHcXk5CSmp6dRrVZXRSDTaMneo9FwzUzh+KnDh0o57x0YGAiKKrdKMEpCxx6wkoXFqKy2RSOfytv5XR17NGLm5uYCH6WspN6na5z0yTReXTOa5kjFnM+ooauyRvUN6jyUB6oHkWZjGQNrgW1kRsqhQ4cwMDCAPXv2JAx0C12Tm5mvp4H8hd/XMrrVgUa6mJmZwfj4eNjyxPvUsLUp3KwvjX+zDKUFjc62tbWF9aNZXfxLO4EZhNaAVrmgc2flhl0Xsbbb561zU3l3mk4X072s0Qys6I7Kx1WvpF5DvUX1Hm57a2lpCRkUarDG9BqNrLMOHTvVB5SWlEZoQ3DNz83NBTpZDx6yYRsT0vY6wQ4xUjs9PY2ZmZnw//DwcGD+ZJxM6+P+v5hComWrcsQJoVeTERP+r9EXGr4aUdIUwpiiYiNJwAqDVAXICqY0JcwSRcwpoPdTsVNi0fJtynS9Xg+KdyaTWSW41CAg6HEnkVkPrhK0trter4eoO4VtW1tbEDDcz1OpVHDPPfdgZGQEmUwGg4OD2LFjxyqv82bBzMxMQplTgUoj1wpH7kEjo2TKq6UFy2zITFSAx5hbLM1RvdWWyatyy7I1bYwM0BoaZGZsE6F1s1+kGWWQNOr1OgWWeq+VfjWqZNe8ZieQXjjOVP64RujxJ19RRdCmgFIJbGtrC/OpiiLHTvfoWMVKlTxupZicnERvby86OjrQ09MT2kflZ25uLrEnW6ObVrhuNNgeK/D1r72WyWRCGuTCwkLCqcnsBo4JPcQUoo3G0n7etrY2FAqFULemmsXqTzNK0/iKVUh0vu0as0avgrJIeXXMSNb6NAPGGoBWBlmaaKaUqyzRNaO8XPmBlelqdGoqn/I6NTTosK5UKmE/VHd3d3iO/IfpsNoPtk8dQXYuNwOaGaSUgxMTEzhy5Ahuv/12PPjgg8G45bkhpP1YGTGQJ/X09CT4LJ3x1F14tgAd+Pl8Hl1dXejo6Aj8R/d/6tiTDqjcKn/W6FmxWFxFk/p7rVYLEXn+buUG07FLpVIwdlkm+bl1SNGBwmu6b1DroGzRcyD0mspq/q9ZV9xSdSI0x3Mobr31VmSzWfT19QUnXIwnrlX+ZjZ47ZgDSPAIa2QCSMj5er2OyclJHDt2DPfff3/YmqLzwWc1wGW361iDiM+wfk05psHKKLrSGDM4NZszZqgqP9Q1wf4p/cZsBpZHqDPf/q5BDCt77H12bcXohjoUebg6nDhW1E/pmKden8/ng87O9qhM0bIp5+0+aeqldCJkMpmQoaNzOTs7GyLq1EunpqaCA46p1OvBCe+xfSggo9T0YubYT01NoVQqJRi+przYNIRY2fxLwalef00x0NQnm7aov2mUJqbEWEPD/k9Y4Rwj7JiyFHtOmbzeo8qXKma8xyp+XAyq6PCeWDozFRnbJm0Xx1O9bTSeWS6hv3Ov7fDwMDKZDIrFIorFYsi/b6ZEPNxoJkRtZNUqHwq9V403G2nXBU+hoL/FjEpgJXJo55332dRhTQXTvq2HgcSMLdZjDdbY+MXqiK2h2NpRo1fXgo4F50cj6lpH2pqNfZTe1dgmo6bBpYxelSYeFNPe3h74lCoE7JNmABCbxbCNrUEdoxjIY7ktgSnaOvccO1UqOEYUlnRaWHpfq20syyoFWr81GGP9W++4xJQZq9zaCDz5rJVlhHrhNfKt69rKSKs42bVhxyJNtmmbgRX+pTJVDQd+VPnhh+UwmssyYnKLfzeTDEiDHUerBOuWqtj2jzRwTDheajDquLa1tYUUcBq0/Nvb2xsMXF5T5Z/tjtGjZpzQ8ak0x75TRnHeeTii8kmrfNPxSCWYPI4KsD28inTFa3QMqEzRbCob+aPjhbol5QF1TDWiTiR6q+0ZHR3F8PAwjh49ipNOOinMS1pZ69Wp0/TLjcRahjmhcp7jPTU1FSK1OmdKa+pMT6vD8kvli5q5pQ5vlTWxaK4Gd2Jyg7D6v71m74393uxeW/9aZVo9KU0O0cZRp4/q8KrPakBMt1rZwIW1L5itaOfTylxg9VYG1e0AoFqthsAYD2FdD04oYhsb6LSJV7BRehra+Pg4SqUSjh8/Hq7xgCh69CgIOADKYGNKABkmrX6N2MbSEuzm8Zi3hnXEIlVqVMaiuGnjo4qCGpm6F8SWlcmszkWnAGKEQwUO26TKEOti38j86QmlF13byf2EdvO+VfZ1MzjbWSqVwnwxB59CJpfLhWj8XXfdhdnZWbS3t2PXrl0JA2yzgvNhx4b0ZAW/esTZfwpzjpnud1CFwEbG+J3zranzfIZMwDJdMm5GgtXos97IZsKLZem91tgGVu/zY/t4TRX0mKLN56xwt2USWi8dZeoks32wzhwrfNRosFkcHAOOo60/l8thdnYW5XIZpVIJlUolsU+ENNDe3h7WPudOoyWbxbBV+lJDkPRu+SQj6Z2dnRgYGEBbW1s4T0GFKiNSVIhV8eaha/ydCg+QpDNC58by5JiMUq+yRmuVHrSMGG2mKStK1/ohz2aZzAywTjN1lrGtXLcqP2LGrfIgHQ+r+Fhlg/SmfdHIHq/rNgwqqJVKJURIKLu135TNPDmWkVsAwdhYy7jdzOD80cgcGBjA0aNHE9kb63UaAitOoZ6enpBGTF7NOaHTqKenJ0TJmWrc1taGwcHB8LYCzcriuqvVkqe8q6zh/LJvqtRqgIBzReddo9EIhih/VxnBvX4dHR0hW0UP6dGtCGyLRmFj49doNBJRImtQMZjCbDGuFV7jqd90yK/X+UDMz8/jyJEjuPvuu9HT04O9e/eGoAoRMz6aGU96T8yZt1GI8T/OsULlPIAQpT906FA4SI10pXszVSeJ8W2VM5Ynq7NHHT42uKXZDTbARZD+lFcyuwBIbiNZj1Hb7JrVb9JoXJ9TOyQmp/hdHaNquGtwSXV9zkmtVgu2U2dnZxh3ZjXoflvl8Tbgo7plmuzk+qU+zDJKpRKy2WwIeK2Xd56wYWsJjf/bCnVg6ZXj3pOpqamQmkPPje6ltVEwOwDKbK3w1Tx6phZYzw2/x9IbYsRl+0zmb3P/9a/9bhmUNVhZbpqCr+Ohz1oPfkwhUwVHUwO0XCpNvE5DmcY/gISHje3Q6AMFLdtNpYdErXuCFhcXgxE4NzeH0dFR3HnnnchkltKS+/r6NoUyTzBlRlMoyQRU0LPN9jcdE1XgYh5inbuYE8cahhxXIJl+zLKs0UEmomnVysRVoVjP+ojRudIm+2H7YJ/TsprxGP5vU5/4HBUyVWRsarHWofOmShH7ag0EjVKxDNK9ptUxOkthUKst7T/TNc3020xmKTIzMzMT5oc0Fov8bwQ43jEeFTP4yA8YteBBgfTM8kA2YHX0nzyaaZWxg8e0DWqQqQEWozHrZWZbabxxjtVo13psP7Vcva7lx+qIydPYWGiZ7JsqCixf15h1iliFLSbjrHyJKdOsj84Y0jwdMpT1dCZpZFGfpzKZNlfKHzajQs//tY3kCVzr3NtK59rU1FQwvlR3iCGbzYbUYb7ainNUq628Wqy3txddXV3o7e0N+2h1q0N3d3fYBsA2Wx5IQxNI8mmuX0ZKNStLM5P4l9Fg6hE2LVN5JmmHdbCcQqEQaEGdsLzPZt0AKzKP/Jb1qazhHOj2G+onPNAyk8kkjPxmctleazQaqFareOCBBwAA+/fvx9zcHLq6uoJukGYQWvqy9TQzdh5u2Mh7rK3Kf3Q+GNGemJgIvIFzok7nWBaZGs8x/cFGaguFQiJ7wR4OZQ9fs/qz9kXHP9bfNHnE8VLeGxszXreIzbetJ1a3yhYtW+9jm9rb28NcqYNabTHep9t/OEecJ3VwkbfrGuJ3K0+VH/EeXXcMdE5NTQWjdz04oVRk/WsNuNh1DgIjtvSMlUolTE1NJU4PtQfwWAVdoQq6CnX1vOgBCyRq3TSuh0fphJPBcuHYyBAnwhoA/JsmjJspVawjTXm1SqP2W42nZtC6dMwsI2LfyGg4dlS2rUc0loqgUUjuqWO5HFsKON7L1z4NDQ0Fr75GNjYaZMA8/MN6I63CasdIF7d6r60Tx0IFojJ1pUsbrSWUtkkzrM8atcpMYoadFTBAkhdY/qDMXf+POWj0nhijtvfYdmhftR59Lx77HUs1tZEsO6+WB2i6Da/bE/uoMNJhxLVDryTbQSWw0VjZL8zr5JtW4G4U7HgD8Sim3kO+TEWSSjLHwBqr+pyeYKlnBMRg6SKNNvi/ClcguU+Mv2sKLRGLGLFuVY6sbImVF1N0SX+2fWoQ2jlQfm6VQVX4WI7lEVa2xNpv76U8pbMISJ6ATcVIlU27rlThj615VdI2A5opuXqdegH3ttZqNYyPj6Ner2N0dDT1VGRLn8xW4PsgGfElH2tra0OxWERXVxe6u7vDPtpMJhP2DFLBpwLLTB6OO+dBI7HWcLDrWx2Elr6VTrXcTCaToAfqBqoE05i3a8Aq3Tre/N0GQrTNpEtGvEmb8/PzIWrMA686OjrC76pnrgeLi4sYGxvDwsIC7rvvPhQKBZx11lkJfqNopttYfXSzIY3P8q+V89wvOTk5GXQ96iM2Pd8atVp2TPdUGtT95mrAkh7JtyhT1KiN9THm2LD0YPUkIvas/Z52z1pGbRpfVPmTZqvxL3mM3frE9cgP9RuOHfWcWBYnP3rYFOfR6q1WTmmklvdwvVYqlRAAWA9O2LCNKbVAPE2NBhLfV3v8+HEcPnwYR48exdTUVDhoggq2etKAlfeE6gBoXcpQScCdnZ2Bqespx2rgqmKpA6vM2qZj2T6SAIiYIqVjpfWxLP6u6UGqJNnx5rN2H0CMAaTNmS4+9bpq2gfv4ZxwzKiwqFdT+2zTMvVABjoS1NPP1wJ0dXWhXq9jamoKBw8exNTUFDo6OoLQtv3aKGhGALASlVUHjmYOcJw1ZRlYTR8aJaIhpcLMKrnqCVM6sgJePer8jXPK9xFq2qs6G1ThVG8boUxP6ZvtVMVIHUGasqvGPcfF1q1MkYgxRbZTD4qiEyLWx5hipoaJZcIxI0IPBrIMHECISHV2dib2cHFdMFPFCmT+RqFPY3ijofvadD54DVidQloqlTA5ORle68CoitIVsPLqF44tX5NExZw8Ssff8oSYMWazYPR3Nag4/+R1zZ4DkKBZW7/ybm2vjZxy3JR+1KGq48Q2WV6gbbBGrfIJfX1UDDFF1fKgTGbltXFK793d3WF9UUHhQSDT09MYGBhAd3d34sBCVXrTlJ7NwPObwRp7mcySM2v37t3hACHujx0fHwew9O5T1XViyOVyIQLb398fjDBGLfh7T08Pdu/eHeRkX19feOWSZqypc4lzRyhNWflB6KvuuOXI0grbbQ0a5fd6KCLHyzq79H2hLEuDEDr2KtuU/5D2rUNSHbm8n9kFuVwO09PTgcbL5TJmZ2dDpNca92mgPvud73wHs7OzOHDgAAYHBzEwMLDq+ZiBtNlhdWBrYMYCUszMPHLkSHifOfmF6kWqo/A30ifXih46pDyV9zFDobu7O6GL0RGkmSJ2vK1xBmCV3q56iZURej/Xgg0k2TFTPmp5r9XrVdeJQeWadcLxry3TOhjZNspBOtM4ftTxOX42MKN2FMdbU5fV1rLttO3lfNNI5nau9eCEUpF14JrBCtZqtYrZ2VlMT09HD4rSqJEaWNY41HYAK15fPQlV92hodJaKUzMPTQzWC2PHQvtrlaVYHbHfbTm2HgtNwVTjwtZpn7XErsxIiY11sP8cAyVqFYJpi5L1cF7JxCiMuLdXjTS+A5AvZC4UCic0Xz8tKCOMMW8gPWKvBpz1MsYMKz4ToyFrRKlw5+/aFjt29qCMmDJjv8cEMBm1je7GHCxp5eh1axzb32K0a+thRIL90z1ZMcGk/bH16Rhb2Lmz5XBNahqOCmjSAsvnnq6YwIwZMhuJ2LjxejODhNFXjZqo510Fombe0NhtNuax/2OyQ2nG/q5OoDQZYXkcr6lQ1zmLtc+uT0u/ds6tvGjGc5R2VQG1Co22r1l7bD36HNNXFxcXE15/3RZBOs9kMolU2tiYaDvsWt8stJ+GGM/VlEd+0hRqwuo1pCeNgHMNMULb3d0dDNtCoRDeH6/rxwYCuPZsO1Qmr7WuLP+18kYjy3bO+T8DF+wz20leYJ2g2ha7LuwapsJt16zKq1wuh2q1itbWVnR2diaiuiyT7YhlasTmjwr8+Pg4hoeHMTIygvb2dvT09DRdX+vBRutARJoMsL+TF83NzaFcLmNmZiZsRaFtoPOkuqKV/bpVinOneohuXeFaIx3Zg2OVt8fan8YLrd6xloxQnpkms6yM0msckzQZoOsipofEENPXVe5xHVkDXdun23Ri+pmWqXop6UF/t89xru1BktTtrEM9DQ/JsGVldrD0OhvCvSXj4+N48MEHg8eG0TqNptiGK9NimUAywsU8ehJzZ2dniM4yistDkXRBxPpjlV8bwdFJpFfDGjlpTJzflXkTmpbIdukY8K/2n+NB4rDeSdZl50UZiC4Uerasd0yZDDfac640FYH11uv1QJT01LAstp0fekQZoeHLmKenp3H48GEsLCyE1xVsNCjw9ERFjqMqpDGlTZk4kHx/I5BkFDEhrmXZ1B2rCPO6rYP0w9PImVqd5pwgGJVm+SxLGZuu2ZgiqnXYqC/7kyYoeB+VJOUHVrHhuMzOziYOi9JnbBt1vrQtGk3kM1ZQ2YgWP+owoOeZY8b+6EmgjcbK6eMaCSR/24zKvUZYCaUTVV7b29sxMDCAYrGIfD6Per2eeJ+nPZGSz2h2BLD6HXnkfzGBynlVhdRGTNPS0mlYWIOQ98Se5TUrH62Rp/uMVDlj+9TJp1FQ1m2VKz6n487vdn2oI0HnrNFIj4ppvznftg46Lev1epg3PTE5k8kk5lejLBZ2rW42xMZff6Nhw3kmLXNcVKdQWDrIZJYM2tnZWczMzAR+1tPTg6GhIezZswcDAwMYHBwMhi331/LdwQCCgq+HS3LtKf9m2jDldDP6t8Z5bMuQ7rEm7Vujt6WlJfRL99PSOGEbuO7tqah23bOvpEmuHfJg0jhpsb29PRhbfGVPqVQKKd7t7e0ol8tBj12vUl2v13H48GE0Gg3ceeedyGazYf9zbCuBpYNYebG1shGwsjOmY/I7g1rU/8fGxjA5OZnIWmK0XvXK2LYoXqOuRLnANca96HTq6Nk65DWavUDEZLry5ZhubfU8a3zyWsyA5XdrvCrS7BLV5/h/zLDV+wlrnLIOXSO6rnUcmKVJ+cXx1/fe8m/MvuJ61Gw56jxWtpEmVH5w/QLp2zUt1m3YsuJmFrpCCZKpaGNjYyiVSquUagpG6xWzKSbWEKCHkuk3etoxI7kcaGs0xFKN9TedMPs726EnpMVSM+yC199UKdNyrSDRazZ6o4pQbBHF5srOoRrASmzaH3oteZog05qsEqd1Z7PZkHZMj7MqORTyAFAul0O53KQ+PDwMAOjq6kJ/fz/y+fya+4h/mpieng4GidIuF6qmZqjhaRVKe6iGOhh4P2EZQ2zdsXytI2bw0WvK0x9thgSQ3J/L8vQQLG2XtlV5g01F02fYdjVC09aLtl+NF9bBNa3eXo6DZoPo2rc8ir/pvjIaltp/QtNmY2VZPsP26VhrujrL0DrUICZDt8J4o6AC3s615V1c58ViMfAUnn7PdU/lRBUROgw12qR0b42imHHB6zF+aRVEjfLQeNM1FFuPWq/l1XpfjGaVRmJKuhob2gftn+XrGs2wbdX+kYbUQLUZF3a8rPHM++jUBRBe66a0yjnkc/V6PXECKb+nHRhpx2W9RsVPE8rnYuuf1ymnenp6QiofHV40UtOMd/KW2dlZACv9bmlpCYdE9ff3h1Tkvr6+4BTW1GNLa1xrjUYj6EV60B3bXigUAp9iG62M0j5bWm5Gu3yea5sRaPYzk8kEvUDHmHRhlWY7ZmqMs36mUds+kk6595gR1Wq1ilKpFOQkHe8nalgyM0odeBZWL7NyvRmv2SjEZLS1DYCV/tORzreekPZVJyTN6HtstT7VE+i8USNVD0izacd2PcT6EVvPqhOpTInxdjuPRGy9pF1XnVvLV9q15WtZVtZZaLv1Xl0XscCBriXqVaRnPgMgzKU6sChzaKCqXgwg4eS142jtNS13PTjhU5Fjf7UBvM6OLC4uYnp6GpOTk5iamkrsqVVlWDcwW6JhHZwYEiwJWT18ZNqqGClBsT41kixzSVPc9B5gxZOWycQPmbJ/tXxdrEpI+kyzttmFapUua2xo/5VYuHC0HAph1ksiI/GqMLNMQQmTwlQ9+iqESAM8clxfDzA1NYW2tjZMTk6Gl0TzZMeNAA+X0Ei1PVWPfbCn/BG60DkXGq0EVubIegWBuKGYZtgqs6DHma+cYNRZI6lA8nh7Na4ss4wxUX0m1l4LFYSWodrnlfHretKMBRWO3L+m+1d1TLRszon2V8tXntTMc24dCnzG9pXrjYw6Nk4qVJmWsxk89mqcWUXGzh/HO5/PJzJbdJw0Qkvl0Rq5Wh7/xhQMIN2ws9cs1DttnWdpfNbyUpZDsD92HyXbZJUj5Zs6zrZ/llYs/4613baffbQyLtafGE2rDAOQcAxxLDVaAiDQsablquMnjddouzeDYt+sHcq76WAvFovB8KeDMc3QAVZoaG5uLoy/Ou2LxSK6u7vR1dWFrq6uEFmkg18PWVODUw+y0/myyi1lv+WDMR4co2U+w99Ztm5zUn7A/fOMFOu5BSxDIz06TrzHZjupTGUkmp9MZumcD5bFjJhisYhGo4Genp5wb1tbW9h/a52va4Hyh45wu7ZihorVpazBtF6l/qeJNAPL/kadj3oHjVo9l0QNW9URrWGnOqdmgzCjh6+D42+cd2vYAunZWzF+HOujNQztb2ljo/fE5jHtmm13TMalPb9W3Wl6nd2SSJ6utoTeb3UyK581EJbGT6xOob8DyQPr1oOHFAKzjEcHSsPTjNLec889GBsbCwcnqEeQDMAye2vQqlHAtBseg2/fUaWpncp8tTxlFFZ462DHvAScUCouHHRF2qLgRDVjlNoerYvtsOk9MWVEkZZWRGahzMUStFXCuVfKtl/H0hKrOi6Ynsx2sy88YAxA8LZNTU3h0KFDIU2zp6dn1Vg9XFAPujLORqORMBTpoQeQcKyQKXNceUquvlZJ07SBFQFBKE2ocqlGqiqt3Gs6OTkZIraaLUFwjvS0Tl0vymzsM5bZNfvdMn4yPevttwaQZZhsj+7FUF7C8aDynGYYphnUbEuj0UjwJa4jYMVZo+lvMQWIUQGOnzJ4nU/yTo4RDcLY+/U2Cmpwx4wsnUedd43aKe0xOsN35alhq2XpGgKWxl4PZ7M0Fvus1S+uQa4fm8Ksxq+WZ6NZ1hlCfqm0oQLaGnNap3UU6Rgoj1WoAg+sPvzEftd1YQ1dpU+NxKoBl8stHY62sLCQOOeCh3/xJMtKpRKitL29vYk0fB1rK0+UzjZasV/LCIm1s1KpYGJiAtPT06hUKqt4hO2nyhc97LKlpQWDg4PYvXs3TjnlFOzatSscGGWVfmAlnV+NKhoWqsByTskzKeutY5Nti6XPx2iQbdcsF43IUXaRP1L2aJaXXfeKGM9l3VxvqpOQh7I+yltGqDOZJQcC5UY+nw/G9tTUVGIM15M9wAMajx49it27d4cUZz0olLDjFzM+Npr2FbpWyQc4R+Tvc3NzQacrlUqYnp5eJT90zuiMVr1R+YLKQzpxent7g0Gr8kPXj90uA6w2CK0DzwbYYvTdbD5U/ltDNG08VR/QcbE6gh3/mHzTtanjrb9Z+4fQdaPBx2w2G7JCstlsSE1mWVqXba+OcUzvtHPAubf6UkznSMMJn4psB882ko1aXFxEuVzG5OQkpqenUS6XV+09U0XHWuvWuCORtrW1hRRkfT+VehZI5DHlxjLiGBOxE8LvaYNq2x1DjKBOBEqEse+x+mPXtB9pC4KESiHLv4zA8jUPmj6+nsgB76MAVSFJo0Q9t3zvcblcTuy12wjwBeLAyuJX7yM/bL+lOVUO1DtpaUeFhMLSpK4XO5+sg/uc+Nem+1kBFaPv2Jzauu1ztlw7Hlp2rHy7bmMGlKU3W5cqPs2MwrUMH8tU0yLZtr1qbGkbdJ+htlPpgPfxN418bTasxe9iPFj7Sr5i6V/5dDPhrf/HFBDl37H7bZ3avlifrCGYRqdpfFqf5V+NjmndVibaZy1tpiliafw+Nj5WVtgxUmcQP+TNNFR0PEm3TE3kvZYuLI3E2rvZ0EzJ4rzaU9lj92nfNRql26VaW1vR09OD3t5e9PX1JaK1yifUCWEjlnT8s926zni/Rt1ZdzPnQoz3xwxSpaHYWCh/Y3tUfmpda/EKPpOmQ6pB32g0ghNgYWEB+Xw+GK8dHR2oVCoJI0lP8E1DJpMJxt3o6CjGxsYwMTERtmXEgiDKG21Zmw0xXgcknTPU5+bm5oL+YfV8PmPlqZajfIS6vj1XR7Pm1A5I043X4s22XzEdZD0GVrN1Y+vQ/1lfrJ1r1RszkNeqP0Zz1DGtgZrJZIJTWedVnc6xdrDMWLBDv1s9i2WlOdPT8JBf96MDpxE5GrbVahUjIyN48MEHMTo6inK5HH5To4gRXv7GemjEkgnxnWydnZ0hUmuZlVUWY3sjbDg7pog2E7h2cGPGcIxJ6VilEZ/eGyPwmPLOemwKR6xuIJ5GGouoqcKt0Vo93ZLzrGmftk0ccyVM3q/94zW+JoLv48vlciHSv5GYmJhICFNgJZVbvdCkS26uZ3QJQPBYx5hFTBm0Ao9zzEixGtbqEaO3lPvZmUZtBUuMobHOmHGadi2N2VheoUzMOozU0AGSik5aFCnGJK1CxPFM67MqeZoJQVCZ0br0f9tPnSstl84gnXvLn7Q8HnjH+zaDgmN5ayyCCax+P2Oj0Uikp5J2WV4+n181D/Y94wBW0bBtl9ZnI5303Fvez7q4bm3kSp0oMSNT62um/Ns1w3vsOwTZTysP7bgqrenBKsoHYhFfO5YsN6Y46fhznPTVS7yHxpUaT7pO2UaepTA4OJiQ3ZrxlOYwYl83Eutph45vtVpFtVpNnDQc20us64NplcViMTh6uQ1n79692Lt3L0466SQMDQ2F/YakU9IV5Y2WS6dCLpcLMluzE7jedPsG+aEavKorWdlDUEcAENpCuacHRnGcGOEFllKwacCQPlmedWYqL1I60Wc5J+QzutWBr1ar1Wro7OwEsOTApr45MTGB+fn5xCsKyf/T3kVMcD/1bbfdhs7OTgwNDaGrqytsoYvJIaUd9m+zIab/K88hffDAoVKpFF73o68XtHaA1Q8JOh04Z/l8PhyWpvaBfkgTQFJnsTJA5Rnvsfp1mtxtxgNiOpbKfB3LNP4W4/UxOyC2LiwsX9cy0xAL6HEN0KHWaDQwMzMTzlawepDKZerElK2ayWHtLuvoYMDoRLZknXAqckzx1cby/ZFjY2M4duwYjhw5gkqlktizqRa59XypQNTBoWFbLBYTRq310Fjj1pZrlY+YwqHPx/Z3sJxY2N32RSdHlXe7L0Tr1+ftuAPp71DUevQ5HWM1NkmobIMyVCU2u8iY4qQp5Wpk2cWnhG6NKwqKbDYbXh3B8sgcZ2dnN5zJ24M2gLhRp+kbqmhyDHT/oGUA6pVk+fxrN9or7XEua7UaKpVKMGyZIs0y1LPGenU/Ukwhb/a/lpM232rMxgwSvU9pXL9bGlRvopbN+2LeeqVLrdsKk1j2iKZNshy7zmICkm3MZlcfYqL9Y99U8OpYbaaIbRqPajav7B+dLnTwcE+gnX87d2n8VnmWpRcLqzQC8RMWtR+cY5VFqkToHOsaJ2xkir9reqjKQCvY1bC1ZceUFbZZ6VPHTCNmdnxZno4t69G1p/0nXZI30UBVBYQZLOwPr+mWCf6eFgVrNq8PN9ZrXNOQ6uzsRKFQSPSfPEUVeOozfAetZnZ0dXWhp6cHPT09KBaLiQN0NFqVpkuxPn7XsbfrTe/TPY+cV9KkZt/pmlR+q7qi8lH2z+qASrOkKZ17qzxb/chGm5XPql7IsdP389J4zefzQffg/ujOzs7geKfuSZncLHLbaDTCqcDDw8MolUro7OwMTksrj3XeYtc2C/2nzYnKPUZr+e5Rvl+e+2o57jZzTelGHb8MdvT09CRSya0urR+2MU0eaZ+0b2n3EZZn619b5lrXY/yE17QPFmn8X8uNGbxpuoe166yc0/Lp/OIbDhqNRuI1TvZ5qzvxd5ZHnqTnW7CdVk6sFyd8KrIOgmVEathOTExgdHQUIyMjIVytCptVHrUey8DoQevo6AgHCClBpym0tv1avx6gkNZfMndbplW+eZ+9puAY2bQ7FXCWWC1hqWLEcdHf0wwHazBw/NiutEWi46DGgb63kCfsWmXcttsa/5aRabSEY0XmODs7u+FMXRVoNWpsRJD3qvEVm0dd9KpUqNdR61MFguWrEkqhUS6Xw2mMMfpWutG26t+Ywb5exOjPXtffYjTabO3a3+135QP2+VibLIPl9Rjt6nX7f6xerV9pJBZJo2LL8tRBEhuTzYSY8IwpoLVaLXGquCogwOrXKNjftT7Sg67FNBpKmzNdB1Ym6TXWRT4XgyrUQPJVVqxLx0Flp1WolEa0T82UaCufY+s4Jsfs/7ExbCZP6ZAEkNjHyHnTszQajZUT9u28xcZe27AZcCI8kRFu6i3Ka0grVo7Q2GIkiuPLLDW+zkQP0GFZHFc7blZJ5xwoPdssF6srqeNN5TRhDVD+tfKOv6lBSTrXwxY5VkpHsfbZOYkFGmL8mXNDfktjlweRzs3NhS1v1WoV+Xw+HHBJ/U0dxml0Ua8v7R2dmZnBxMQEZmZmwhkcaTIp9r/t50bCysUYf2aEjbobsxb0LB21G5QXqvFjDdv29nYUi8UEj0n7KM3FeF6szWlrgNA1EbvejFel1WvHNPacvS/2m722Hl4aa1NsPREcFwai6AwinSufV5mmtgPrJf9gtDfmMLa86kTwkN9jy46TiEmc1WoVk5OTuPfeezE+Ph5SS9Rbr14bS8iZTHKvCD2Uvb29iXdXKUO3RK4TpIxZiU8Hyk68Mn1e42Qq01RDgM/FmBYnSL2hMWUpZhTYey1TWM+znCslGFWu1bBOW0jsA+vV0wx56mPsEDCWSWFGxq7vtVWGwXv57tqWlhZMTU0l9rhuBJgapu/zApIOED38gEKQyo2m1mvENkbDur9JlY/Y4ud80CPKeWK6E5kOoyk2FU7pQJ09vMf20yo7bIsKet4fU1j5m5ap9xPqsLK0rmWo0WnXvpatjpxGI3koVFr7qGxyvnkft08ACGmYAIIDTu9X55uOOX+LzaeOP7DyPunNAPJn64CxUF5LucAsAq5xVZRJ+2llWwVFjQSlYeUjaQqK0okq1aq0c72ot9n2yUKdlmrIKJSu2W8dMz1ALOa4tNk6VtFUnsA1YftglQ9dQ1bB0ywSTdm2DjtG3nm/7v/kfKmxb3mZlaNpY7wVwPlfWFjA1NQURkZGUC6XUavVQjoqlX6Onb7nlmVwHfT29mJgYAC9vb3hXdAasVWDUY1CbqNQJRNIOllo5PG51tbWcKq/yiadH4V1zBJcO0zZZVtUryL9s92ZTCbRFvIH+z5yVXhV39LXS/F3pUn2Wbcd8FnOQW9vb+hXqVTC/Px8ePsG9VjOWTNHE0Fn8+joKEZHR1EoFNDT0xN0AWsQ6f/NDKWNQswhqfKTOtLk5GQ4X4fvCqZTU99jq/yW5djXdLa0tIRsBeqdwOq3TCj4rOrrVnbwmv6u60T5czMDUPlh2vxpe3TsYjqVtUPs+o3p6bG6lKdrW2377RjE+kR+oO2q1+thPijjNQqvemxMplmHhsoErk19peqJ4IT22MYqsA2rVqsol8uYnp4OTE2VD1X60pilNQ7I9JXYlaHa/2MTbZWbGGJKi43WxJRm1hf7XfuTNn6EXXBrgUxG22AXQFpd2p+0hci/1nigYAFWhKm+x8oaCizHKn0qmBih1RfEU/ioIbGR4IJWxYztUkathhSwIkh1DJRurWFrGZidV1VerdeT5arg17ZaY07bGvvdIiYITgSxvsXWTKzcZnWl/WZpey0+kNYnHXs7Tpp1kMut7KflNdsv+7ym9dnULCB5yM9GI22cYzzX0hAVSCqawEpk0yorlp/bCKfSLz9q3Np2xjIXeK/yLY0o2LnWsjXSb+tIWyO2/VZGaHn6TIxmbHvsGMXmh3xgPQp5jE/p3KhDknOpxq8qp/xY567ti+23HZvNgjRdSH/jeNPxq1kKNIq4T43RQpUTwMq2FaYzqx6UFpWK8bc0Way6Qxqv518amLE1kfaM1R3sfZY3xsrRspr1EVgdzQWSrwLiWHAedM1R12w0Gujo6MDCwkI4fZdzo1k3zcaAoL4wOzuLiYkJTExMoKenB/Pz86vSLmP6Ytr/G4mYTqnjQH2Njva0SG0s0MLylYboeKEjx/KTmC1wInpwGpTXpvHpZvpRTO+w7bJta2Yn6O/rWX9pWEv/0TKov1j9g2tHdU3unyVvU4Pclh2TifzEHLEn0j/iIb3Hlt85SKpgj42NYWRkBMPDw1hYWEBbW1uIJJHIbeSRA6QKOIVgoVAI6TcqXC3TtQYBJ0AVd1V87EDFBKky5jSliQvMKqPNFhZhowAahbBKjC2P98YUtmaTb6PMVoFRArNEpfNGw5PHf2skTPeG2UXIsbJRBaUFls16eDLhRoLvX9bX+bCNehiCjaw1Go2oU0aNICtAY5FHq0DXaivvRKThT+HMZ1hGJrPi+eJc8bVL6lVj2cpgY3Sg5a6H0cSYmwqg2F5Ca0DE0kbtGK0HMYVLmb0qTrHIvNbFtuvvfEdiLAKl9VLhmZubw/T0dOIQDXVGWN620bCKnVVIrAGu/IKZN3pSt/aPPJ8RQpbJrSz0+Cu92H2yMR5vFVGdYz5vXzCv+9zt1g/bP6VjjfbqfvmYw8LSdCaTjFg1Mza0j81khR0bpflYVNxu79E50TcQWBlcqyXfU6u8hoppZ2cnOjs7E/sU2W7rPLXzth5l9OFEM2ND1wYPGtL3n3OeGdHW1xXqmDC6t337dgwODib219o03Zgcp5OY5QErZ2tQznJdETRAVE7TqLVvtdC5AlbrL5x71mH1Lp7VoadGMzLETBmWwbHmmmGbbb8VmUwmEeHjWq5Wq+GVPuQD7e3tQTEHlpw0jNh2d3ejVCqF1xfRcFvLQdRoLJ0cOzw8jPn5eezZswf1eh179+4NByHZ+bH/bxa+T8SyjPQ7t0GRx+uH96ic0zLUqOH64r5aZr2Rz5BGaFRZw5aw4xer09oAGjlUo051VLu1SMtK0xUU9v8028HStI6blt2szpgxa/WstHtUB9GDDtVBx7WczWYDz7HZGba/Os+UveRJzO7UOTnRdfCQD4+yCilfxDwxMYFSqRQImB5LNWqtYcV7VbjncrkgJKksWm++pizbydEBVUEe86pbQ0Lr4L1qAKQpb1aZWkvZU6ZgF6UuLIWOe4wYY4Sg16wiqsLJjo322y5glqnvaVSitB45bb+2yfaVi4EnSVIwrSfK8NMED2KyDIV/2XZNa9RxsAyVz6nyaOmO9yijT/PUr8XQNa2L/dDosu6bsgqWpTM7h5YR23Vny7LtS2P6MQbOcnRMYnXE6Ex/17QyHQcKMjUsCetRVL5l+VmMmVOxotBnehYdFFTydJ1ReG8GBSfNQIzxGn4nDykUClhcXAxplNwTyPFqZszrOuH/aXuQY4pKjL6U57E85TGxcnVdaFl2LHQNWDqKORVtfWlG3FrKkY0iWxmjIO3a8bBjrvxHx0d/ZySFcsA676xc1v2h2vbNaMAqTqRtHB9uRaHTkmNFI4r3cLzIi7jHs7u7G4VCAfl8fpXTQedMdRjlnxx/daxYJ4uekaFpv4RdGwASij3rj+kZlmdw3ZNWWA+3wZBf6HkDVpfTa2nysJleRMcT+2bXCHVPHh7V3d2NiYmJVenIdILFMsq0DUxHHhsbQ39/P6rVajiFOYaYLNksiM0J26cHitKY1UAWQV1JDVxC+Y86/akf6Xc9OM22JSaTYvpCLMqvz6XpPjH9RmHXR1qb7Jg2u2Z1alu/5eNr8SvydNsnWy/7w+ucM3sAHNcN53tubi4xtzaybgNBXE+xwBrbqnvxm+EhhcFiCubc3BxmZmYwOTmJUqkUGkEiV6M2ZqTw/kwmEwRAR0dHYu+J7pXgfTpQLEcHke1ku60iwkEk87eKVYxxc5Kt4q1jY8fLEm3avpG0cqzASvvN1muVhbSxsIZCrKyY4k8BRM8ZnRmsywo4PpsGMj1Gc7jnbKP3GKrBASTHQ5Vz3RNgvduWQSqtxYzaGGIMPKbU2HaqEFbvuJapTEM98pZBqmGn9di/awlmy/hjvzW7R+vjM81+s4qYMmm7ztl3u8+R9E961Cid5R12PBhF4XYNniTIaA6NXNbBtcW2bCbEFBuFFbY0bKnkq2JuDSelaa3LOjDTHB8aMbI8letVeR7nL2396LxaY9rOi8oNHQfrPLUyI7bOmo172lizLo6l9je2HrRuu3a1L5aH6T1q2Npob8zhFlNGtQ4LO5YbhRM1Mmi0qlFLI7Zer4d1oPs/gRWlPp/PhwOj6Ny3acj6jHVs6Hc1YjW4oOsOWNnbZiNSltczSKBRGTtWOm+kDWsA69rmmJF2YvsLYzw8lnkQ67+VyxwPq0hTl+ns7AyGrR7axftVN4nRLuujYct9pzzzwtJ1M9raaNpX6JwoX9P9s5qGrI4R0pMat2k8kVkN+rofGras1/ISfZ71xfQXe19Mvlo+Hqsjpl/H1oOlYTuetkwr02wd2q5msuNE6Ub7rFCDWQ8L5FzyDCKNtupZSjoGdiyso8ga22zTidgAJ2zYKgMlcfKQhLGxsWDYlsvlcFgI904qA1ADlNdpuPL0Y/XuawoUhUMsUqsM2XqcaYDZ+wn77sQYIZORWXCvqSrAOl62LNtOIE6EMWXEeoPs4op5wFQJ5PirQW+VtVjEVb2/bDOJkWk9rEv3y6ogYR2xwx+0rzxSnMIjlgb4cCKmsPFAjGq1Gv7yvYOa8mVfb6HMnX3T9DLL1Owcc77su1GtcUDweltbW1iP6s1XZZMeV9KKfU0XvxPqrbN0aI1CpSelL7ZVlSVrENg+2XVvf9dreo8tT51U9jAfHROl31hkT/vB75rOx6jszMxMSGVj/5m6xXcoUkAwA4JpWJsBqkjqeMcMGJ1rKipU1PP5fIh06Pon/SmP1XVnjSvLo4DkS+JVSBKWFwHJiJE17JSO9WMVKttfLUP7wXtj12LywPILfSZmcCqULq081Ki3nU+7rnS9kb9rxNbuD1Untn2FmdapKYXsj+37ZsJ6FEhmMdGg0fNG+H52a9hTyWfadm9vL7q6uhK6ENP9lD8qX9DxpyHAOeChUMrj5ubmACTXEdeB3bpi6VLpn7wzNhY8LE7LJQ3xN82k01R80kTsoD99RlOuWZ7qedoPtnd+fh5TU1OB3zKKSyMqk8mEd6b29vaiv78/nPDLV+pRsc/lcsFhmUYbuk51npQ/WZkX43ObCdboUB2/UqlgdnY2vKVBHcC67Ya0rNt3WK5uQdTtWmlRWuV1/J/t1L/adsvb9L4Y79SyYrqRrkfLi5V/xtpm+xIrJ2aTaH9Vp4z1J1aeIk0e6Bhwvvg8dV3+r+/ErlarmJmZicpCfthm6vq6HU9lXrOAmMVDSkXWAdAoBBe8vqvQpiHwWW2kCkDdz6OpBpquab2WMYWWg6d/lclpm9IUFat0pBEe740NfhozirXZtmktQtd7YsZzs/q1zeuFFcj63e7FArBq7q3iaAWm9ksZnx4us1GIMQW9ptetJ9sKNquIxj6x8jVirtFE1qmMWMuwxqaWoV50e51zE5tDwq6XGJ3a6zGstYZj19YSaGnP2blUJmrvVYUojd8o/7D3amoWjVd7KqQKeo3s0GOdz+c3hWFraXc9c2qjsLE0VC0rZqjGeLUqrbF7Ym2x9dn5bBYFYH0/joKZZiymKV6xvigvSJMRaWVaxGjZ8rGYE0Nlv3UEaTusEheLzqjD0OoFsb5vJNIURQvl+czIoIykYZvGE+nkZKSXESsq9M0U21iWg3UQ2WfsurPf08a8mZ6j39VwswYwjUkdi9i4KL3F6tf2qi6hsk77proFHcoq+zh2+gqgQqGAzs7OcOq9vtVBHcFpNMH2W0dUGjaa1tNgZS2vcVx1S40GtNJ0oJg84TxoMGs9un+aDmDpPk2WWznQrIxmsLLpRGHpSGWebcN6+p9W7nqe4T12jRKxzBxeox5j5zc29jF6sM+ciOz9sbQler6mp6dRKpVQKpUwMzODcrmMcrmc2ECs0Q9NQbDEk8vlgneSUQt9VYpV6PXZ2MBbYlBBqv2w96d56y1DjylA1qjQ5/i7eqZjxBZbGDGBqIqOvZfl2zbr/TGjQCMedgwzmUziFSgsiwK5Xq+js7MzRAVjaTf2O73IHBf+zv3ZNhq0EVBDlYJMBaYeRrG4uIjZ2dmgxFCgMXLLsQJWmHhMaQFWxp4eODUQgGTWhFU0bfSD5VFAaHnsD+vSulUZsO3i72lKeYxWLQNLU84sI0yr3zLKtLSwmGKq60cj36poW4Gn9E/o/7q2mF6sh4/xXkZxSeNMP2xra0NXV1cwaguFQqCXjQTHw6YzNoPyDs1MUOWfB4IAyQNEtE4bydey+d16wm1WT7P22f1a2hbtP9tgXxxvaZB0pJEv7UtMybKGqlUItV86plzLNtOh0Wiscn7ZtWb7qH0ln2MEK41XMXqrdZE+NCpXLBYTvJ5tiClAOs+x9m0E0mhPoXNJnj83N4f29nYAK4YQ0zU5tzRcOd6tra0oFAro6+tDX18fisViwqEZkxc2Im/XjZUHGo3lvfxdv2t/VJaxP1YRVQNGo6q2Dpt1AMRfw6jyR/UEQg3LmNOM4DjQ0cD+53K5oF9qtIhGWXd3NwYGBrCwsIDx8XHU63WUy+XEIXctLS1B17EZfWw/gz+8Lyb3mhkemwExI4XjOj8/j0qlgnK5jEqlEqK2hB5AFjNiWC7ngVFae7BmM9pPi4xb2W+dQMCKDOD9abItzdBM0+WVn9trsXublQck15xtQ7P26v+E6jxpZelvVm/jmqNOpL8VCgXkcjmUSqVV9oLNWmAd1vmj++Ft25vhhF73o6DRovvFGLG176nVxtr/tWz+JcPQyIW+31DbpJNirXolcCvA1WC1Uak0g9IyLGW0aiTohKlQiDEFuzj1tzTlnOUqgSiBphkMKmj0N03xizEcKzC1LjIb9UqzX/raE63bzp3+bg0zMsONZvC6t5v0TSat6bt6OAgXpgq72Ng2M9yt8h6Lplrl2NI/x3atwxosY+V1pe0YTcaus/40pAkcjkmM0cYM7jQBof23fYn1Xeu16zQWTVJYfsYUW/JCRmupzKpiq/vI1CvNaAGdfJshYgs0p5dmY8vvSu+x+UmLSq1H8Utrhz5v76WhEDOAYwqIfeWE5fl8zvJRlVNWhsUcBLHovzUIbX9jsqPZOrPPxaAyW8uIzZPlNfaAmOnpabS2tmJhYSEYspqxEGuj7c9GIo3fECr3Ca5lKn5KZ7F5YuZaoVAIJyDbQ+UsTVt+Z/UPymc+bwMLsbMV1CCOyRDWZ8+UYH8452xjs/Mb1MhT5ddmIdn+a595H9tJ2cxxt+dJqK4CIOiXNHSz2WyIznZ3d4etdT09PajX6yiVSoGXcd+nngQcCyZoRluMB9g+xYyvzYI0XZGOWm5D1NR35SWx7T38XigUQjCLH7UBgNXyRfUgYPVp+Zb/x3QufT7Gwy20Lqt/raWXpI2n3pd2r22n9i+m7yifj/XZ1h9DWvt0LZG21flbry+91oxO/Fh5ad/t/2n6VwwPKRWZH0Yi+AJmGrbcPxYjYjKymKHHgbLvw7OGbYyBWsUvpgCppyMWsVTGqZOYJmhjxGAXjDJcW5+Wpe2zExgjVmXM9llrvFrGwt/4nftfYmnjKkRVAKlQ1Xs0XURf9WTn284hocqcGrYbjba2NgDJSIYe+sP+6/4CAFEmznKaKYj8jd+tM8MqHJZBqfKhwj6WLWGNFQuriMWMEbuW05i3pSddD/o35oBp1g6WH1vDVklIExaWtyivsIw39j/XHmmW+4tozDLSoQYuBQCwcho7hYRGcDd6jzmQ5Cc2egfEMzwUGm2KOeK0bH2WSi5hn1O6iLW5mbHMNRtTDGLtsBFlLcv2Wfmc8jVFjNaU/9k1o/TNtvA+0oi2T50ylv/Y/rJce1+MX8Si2TE+w2yS+fl5lEoltLW1JVLv9cCZmMMtNlabESqXday4jq1hqxFufWZxcRFtbW0h7ZWGrb4ux8oBawjG9Bx1ytsobmzbjDocVD/ib8AKfZNm1Xjk3DNSzai+0jD35jElGEB43Q/brLzb0mBMr9BrOi4ce6sz6XddN8wcBIDu7u7warbe3l7UajWMjo6Ge2l4sf+kebYnpvxbQ8v2y/6Wxt8eblj91baVhi1tAc415yHmOAGSr5LMZleyOKxhG+M5wIrOoLxYYccvTW5Z2WWzF7U8/cvvsfZYvcXWGRvLNDrgb9pH5cWWzytvielUWm6sTWvVretFtyHyOk+FZ8YCf7MyxupRsd9+KoatNoQexOnpaUxOToaXT09MTKBcLodDCQgyL1XmbDqCGgZ6GjI/enIgnyHTVaUvpsDEvOysU5+NheX1mqY72HpUYKniroJD264KjN1nEjMUtC414jUtSQVrLDKXyWTCIVea/mcZsGVe6n3Vezl2PHSBz7K/uk9Io5raJv6vC5J0wLbZE4k3AjR6lBmr51lpg/cDK0Iul8uF9+e1t7cnHDb2lS6WtuyYk55tBgHvZZ0cX+51oQdVlU81smJjrEzIKkuq8CgDtYwr1ieOkZal9GVT3FivFSikzVjUS/ughn7s9xjsfOhhJrH6qaAz7bhcLgelXo34mDef7VAmrpGvzQDL35plGsSQzWbDQTg8GFDTWNU5p84sy4s0ahTjV8oTqQzFDFR9XZw+G6vXGsg6TzElh23SFHJrGKhMs+tAFQirsKnRy3L0PqUnjZiq3Iy11/bblqV9tkYZ74k5s8nPWff8/Hx4b6i+7qqZImfbu1FI0wX4G/8nD2b0ig4t0p0af/Pz84GvF4tFtLe3h+0Hykub7THU+dGop9Ih+T3bwLXX3t6ekAGqO6jBHHN8s24gSQtq7HK8gJUsN6snsC+kC8tXtQxbp2ZJcT2z3/r6Pdav71FmO9kWvl6QbaHxzUhsX18f6vU6BgYGUKlUUK1Wgwzv6+sLWy34bvJGoxHe7zw0NITt27eHbSZpiBlcG63/KDi21kler9cxOzuL6elpVCoVLC4uJnRVq0coL1I6o0OXzh19F3GMxxFp12KyKs0gVZoAVoI+2kdrOMd0G12LLC/GMy3/t2NlA3Aq66zur/3WcVI+YNun7YiVo7+rAa3rVz9qU7ANejAq5YLlW7ZNLFt533reHU08JMNWFWIKpmq1mmDgVslVYadCVjupG45V4Y953BVKFPY+VQj4v96ng6ewwjRm+OlvVtikKQ22nbF22DbZfltit/UpE7d1KgPhNavoWAZh/8bGMabkUhBbp4Tto11Ilm7UMNko2HZZhsB7VCngPTHjyzLc2Dxq3Yo0hYZ1aepVo9EIx+7Tg6prUSMmyvys4ynWhhMZu7S+pdG6bUezsnUc7G9p7beM3vbJrnP9aNQhxuP0FT50KqiiyL/aV8vjWB4jGJtBqbdIG79mbSU/SEv9BdaOzDX73c5TGn+kAqyCn+2L9cvKkWZrQmnL1q/PxKIG2mZr2Oq1mLMjRkNpvDU2ns3mbT18IHZPM8VI1wz/Xw//2wywfbR8jNkZ1I/UscWPygSOT0zv4bVmJ+fHxtxG7m0GAKHlKd+3ZWidVh7r3KXpFnaOY3pUTK6pjmj7ate5Oqq0HTaAYfUtK5uBFSeX7vWkU66joyOxV5d1kOdXKpVE23VubSAihthYbmY0Go1EGrJG+2O6UzOdT9P3rdM/RmcWdi1aR2HavXZNpdFcGn/X+23UUf/GZJ7Vh5vNu9K6OtjS9J9mMihNj7Wwa86uZ9se1ZH0N6tnxsYobV5PxA44oVRkFkzipWE7Pz8fjrUvl8uBoFVpjqUcWcbDg1KUedj9CLwfSDJku3eF96Up1Hq/jazq5MSIIrZAtF0qJKygiLWP5cbqSiM2JRb15KuQVSPGRojpibTeE1tfbEFrZCVtYXOMeaog39mpqUtq8LFc0oYqO80OhHi4UKlUwnerINATRc8uf2e7le4tnTHNtNlCB1ZeixVTBtSzrUYsD79gRERPKFSa53WbbRATRDHaTkOMZvV5q8QwXUxTjnSfnnXAWGaYJjB1zuw9KvCsEs51pG1ROtV1pqdB8jvHXXkeaYJKKufWpqixzGq1ikajkfB8bxSU1mICaK01yrEjz2o2XyyP91khyftjdVg64/ipQWu9+MobLd9XRVnbaAUt6UHpNOZ01Tqt0qW/ky9oOpw6RpT3A6sP3tG2WF7Ntlt+YqPDOud2zZNu7XUtU2mFh6GR51nDLjaXafO8EWjWDqvILi4uolQqYWJiAuPj42FrCg9YrNVq4VAV3Wqlhj4zobq7u1EsFkM0lxFOYHWWGelFvyv/tIam1aU0KmsdP3oWB19fpPOor/SxDmnqgwsLCyECx99V3mh5bJeOPRVjjV7zo6+CYduZXaM6JNupc0bZw7ZqGTzIq6enB729vVhYWEA+nw96MO/VA6jq9aVX3kxPT4cx4WFK1Wo1pDlrPzm2G63rrBc69vPz85icnMTU1BSmpqaCTqE8Sf+3Di2lS2Zp2j3JKgss344FVtThoL+pbqZ0SFg+ybarrmqNuGZzpnLDtlHrim35iNkF6vDSdlrZwnUYe2+81b2V7tLsFkufyh90Tzvv0ywcygqm6LNMtsvqZ8p3CNUB18K6tSWrxGl6I09Bnp2dXaUQAysRXt13wAFmSiwZgs2pVw+XNRw17B0zsGLC0irDHDBLtBYcfCtstY40QzUmfJQoLBO3ikVaXXqPVaBYXuy32BhxLqyxYZlIbCysx9Qqp2RQsf2yyjyUudjvGx2x1XbY0/2078rwrBJpGYbOazNaJdLuoRG1sLCA2dnZxGtluLeBa1ANbLbLvtc2zeiwwiFm3MSMzrT+WMSYvmV6vK70qW2JtckaZLaumHGiCpn+ZoWoRml135pVUK3SFDOq7DpjGZuF/q2wt4gpHHov+Z4qLDQ6bSTKlqFz3axtwOptITrmWpee9mvpQnl0M6PLKt7WgLQGq22nNbKb0TPbpGVq3dp20ow6TwhVDpTWLGJrOG0sVI5RlnBdsE906FCmx8qNrd3NiGZ0yL+6T76joyOMjx4GxbEiDye9M0Krr/uxZ43o+lLa0TklzdCApNFVry8d6kL6sllVlj9axVwVWDU4LN/U9ZHJJFPz1eBQo1nbzLaxfHt6unVEWfmrac52zLg2dJ2oUs3nuOd5YWEBXV1dqFar6OzsDKcck0ezr3TmNxpL59CwX7OzsyiVSpidnUVnZ2eqbIzJqNj/G4FYG6gT0WhnyqiVW5q6HCujmR7FudYtSrrWrI0QswnserGyilBeaY05vT9tftJ4g66fmCOzWdvT+qt1axvVSLW6Occh5jjWsmLGvu2rfSbmYLDzYg1bXlc+08yBvh6ckGELJI1UKtAzMzPhNT8q3PghQWvqBsFIEYCwH1Nf86NM3A6UZZqx9gKrX3Og7dMB1LbwHq1PlSyt1xKcChirsFgvj11sWh/bDqxOF7LjaMdG+6uRUG0nsHJaofWGWKWG7UxjFsqMrGGrxi091zFDyRqzdo42EmyLRuWA5IIGVoS1jfJYI8UqCzG6s4pfjJlSqHAPUKlUWmXYMhUuZtiyT1QaOFesW+nOOlss07HCw/5u12FsTdvndA2lGayx61bBs/Rt26r943q19GnbybLVsNVxpaMoln6WVrftw2YybGMGucKOe0wJUqPWGrZrpSfHBF2MRyvP0d80DZpKPu+zSrntq6VzVaSUR8Wck/q/3qNGvu7f1igbkOT39j3A2m7tr241sIpZzLBNM17tWmym0Ol46R5+NbI57yoTbd2W1jeTcWvbYpVRXiN9MQutUCgE2UeezLKoGzG6Qp6h77FlpNY6+5Vmdf1ZoxNAQgbX6/Ww75Z7be2ps0qHlgdx/6/qe0y/VaVYo9CawcTf7NgywqrtpjHO/cG6/uwa5zX7neVks9lw2CPHQiPcdi1ls0t7kGmIdnd3o1qtolgshghsqVRKOBFo2AIIDmeeuVAqlVAul9HT07NK3tm1aHXLzYBYGxuNpXM8ZmZmEoat1RFijn17j+pD1vFB+k3jSWkBKW27yuD19FHXUYynp+kzOkaxazE+asuNzX/MeNT+2PWg/MHq6+TJavfob7qOm7XJ6v8x3UZ1MXs/EbPFHirvP6E9tmRQFFilUglTU1MYHx8PqabqBVOlT/f8qcAGVt4BSqOWRGxz65XI+LwqDEA8YqSCXFNU2D4q/srY1UCJKdW8h/2JHVClv8c8l7Y/KpR0rNIYIH9TQlDPp562SkWDz/G7ChcKOtahgkwXN7CywPRwBivYWb5GbGNjGVOkbD/Xm4Lw0wLHj6m+Ss8cf2sMqrFDwWwNoJgSbaHGMYXI/Pw8pqamMD09jYmJCUxOTqJSqWBqaipsD2C9GrGNpRizXFX0+eE1/rWKg86VMj0yJSu0VHFQJq9/Y9C6dNzSMkTUMLDC1Y653mcNFkuv1sDSOeV30ojWw1dC6HpjG3mvjp8qg5pJsZFQ5c1u/dCxsryAv/GZvr4+LCwsYGJiApVKJSEPyCvTPPYc+5jDj/8rHfN38nY1CrQPWpf+r3XY9rDNwGrHHKF8wfYttmdSI2oxY5ptjkXHrHGlfbQRMfIjnaPYR/tJpx6ARHqbZibw9Hg9qI7yjm2jos9sEs3i2UxG7FqwCrZtO3k1s9rq9Xri9V16yJwan21tbSgWi+ju7kZPT09I344Zs9qOmD7B+/QwRv1r9Rs9/Z98lPMYO0hHX+2oiqhd99peS5PWwaFOKb3W3t4eda7pem5paQnRUjtGVq/Uflt+Zbe98HBMvs+Wc6iKPA+HZKQ9m80GXaFer6O/vx99fX3o7OwM43witLYZZAD1THWwzM3NhUOj6DSw0VnOs/K1mN6nfE4/MdnPMqzM5nVr3Fl6BFYOglReae+1OoydB5XzMX3Q9lXlvOpO+ryOS0wuWTtHr9nyNJhE2HJ0XpSmbVtUvus6tWtY+2vtQG6/ULmsY6YyXvnPiciGdRu2aqhq6oy+r0qVG2V+tlFKJEpAsdQsO6hajjJTy7D1OWsUKfPSvYd2IdjJt4unGSwh298sYVui0MWobbZ9U6XJKjZWUWe5Ou5WQHDOYgtN+6+MJfbR32LjGBvDmKC2/dwoaCTFGlO6+HSMSFcAwuseLMO382NhBQP3XVarVUxNTWFychJjY2MYHx8Pe3r0wKJ6vb5qr2dMgWUbyayodFOA84RICjX1tsXogd/5uxUMVkCkrXWlFY4B71d6VR6jTiulZ9K/rjfblhidxXhPrH82emvv5dixLWp827WiUZLNQP9ETJFIE9qxZ0lTxWIRHR0dwREApAveZutDx81+9HpMttgytW/WM6+GstK+GrNKgzGZpONFoW5lnUaP02iDddk1kzYuOldpykdaWWk8WMdB5aXyDh1LjTRzXVonX1pb0ujp4UZMx4jxjZiewg/XAJ3ClveoccZIrY3Sx9qTRm+EGp1WzmtGV0xh5l/yLP1N9T51PCntsV86ZlbviB0qo/qHrmO7dvU3RrVj48P79XfLb2PzB6y8j5gReGYVkq/QyGdbyOd1Pzkj9/r6tjS+rm2wjorNAJ0DRv01Umvl1lo6us6P5eGxunUtqO6h92hdMd1Y16SWoTxd+6j/x8ZC+2PbERu3te5Nq0/rSdNJrK5ux1jvYd/VgR6T7VqnXb9r6bDKA+24Wwep1nOiBi2xbsNWD6WZnZ3FzMwMpqamMDMzEzwCZL4aTlZlOjZAyhiZeqPHsetA6iTweixypoNpJ0FBQ0ENFW277p3Qw1tUOVZPjUVMoVBmT+VGlWCrHGnftA/aThUkqmRwrGKL1holLEuJ1EZHYoRLQcPoUszTagk/thjTlC6brrRRoFc9prSoc0QdP7yvUCggl8sFg1M30KsSqMqypUcatJVKBUeOHMHk5CQOHjyIyclJjI+PB28pI2CqNNLxpMZuTBGjcqCpovQu0xBhmpUq5xrZVVgFHVgdYVPGqGPGNaF8QD1+di5s6iXv5zVLg6p002hXYZMmhNlmzeygYkbhzldnaDs5B1S89HUPOk58Rpm87n/bSFijzvJY5U0Ka9AVCgU0Gg309PSg0Uh6lMlr7fiwHNsGNToZ1dK2aaQ2pmSogk96tooOaSObzSYUWkvHpEHNltDIjOVtKg9iUSyObYwna/TMpqsrjev+RH4oy+zhHixL58uOM2V0LAMhm115rc/i4uKqPaHFYhH5fD5B6zHElKnNQP/AyhxyrFXe6TXlp4zi6dizDDUygSVZUSwW0dPTE3iuZrIp7Ws55HHAUrTcpm1Sz2CECkBYd0qPOs66n5WZbVaXUv6cz+dDFJ5OG9bHV3vx1XdWMab81PFU3cIatfZVWcrHdYxsVkK9Xg8RXWbK5HI5VCqV4FDgWFpdJpfLoaurC3NzcxgaGkKlUgmR+Gq1itnZ2TAWfX19YWwotwYGBjA4OIjOzs6QHce2qV7EeWC/7XxvFrDdlUolpGWTp2iWptXD9XlgZe1wfrm/XPUhld0671Yn1bFSHqP3KI/WCLQ1NmMGqNWhrU0Ss3UszTbjZTH9mrA6Oq9pfTF9m44Vy2+1T9be4vUYf6O84bYJlck2M1M/qtdqhqzKKJ1zlYHWvlkLJ5yKrJFavoTZnnRsO2IHkg1XocoO2tQsfTamxNo6Yl5zZaLWo6TKQLVaDWm7JAouMNs/DrSmWNn+q4JgiUaJh+1QozzWf1uHnXhVjK3hHRsPS2wxWIVVF0GakZJmOGnfrQKVNncx42gjoG3RyINlMDRoVGlQRU4juzY1yvadwpfvjKYz6ejRo5iensbY2BjK5XJiP23sBHK+R5XKg50f0owyJ7arVqsFI0PLUE+1CiErhGPCLMbYY4yM1zlu3K/E/qhCr44edQZYYRBLP6WyRcXIGi12zWq/1FGl0VoauqxLt2m0tbUFxs7x5pirYatG22ZS7NMEd6yNacpCMwOV68sKWf61aeyxObN8S8dTnyNUIbDtUlphX7TP+pzOn2YBafvVOEpbH7H79F7r3NFnrAKh9cZkhB1Lq2DHHF5Kszq/2h4+w0Mhea+uyzQniC1TaWCjoDqAXtO5VZmm+2TZX/IEYOWk0La2tlC2PTSKzkTdChKjA20fv+tv6uiM9SHtuqUxrkvVj+waj+lwquvpuiFsFpD2M8aztXyrP+hvVqciv6d8YN81QKGyXOvKZDLo6OhAsVjEwMAAyuVy2Fecy+UwNzcXymGb+Vogu4XA6keWdynSdLONgK5J0phufVL5G9MBFbrW9Zrll1Y22GeVjyktWL6vuil1COpzRJoRrX2PIaYH2zK1P7a8terRta26sd5v+YLV+7Uua//ob1aeaBl8Js3IjBn7abRgxyXNRoqVsRZO2LBdWFhAtVoNJyFzn4itNG3w9boyS/vOKktYdiHpX1UaCas08LumlLJNFBq6L47MWY8d135o25Qpsm4lDttvfU4Vc2vsp80D67ACSZk1gMSiVm+RekWU8VviYz/V82j7bhU86y2yipbWa/uo9MJxWsu7/3BBGYG+mgFI0jYNSk1LsnOsHmhVWFiGjhkzJI4dO4bx8XGMjo7i2LFjKJfLmJycTLw3ms9zbWjEUk8yt+3mfZZWstmlgzaomC0uLqK9vR0LCwtBIVNlBlh9WINlqJaBK5NVQ5XlURkk3+GrxXQvq3WIaDnKiKmIEVzjlUolRKVpxCsdWwHAOVU657yyrXoKvPZ1cXERbW1tmJ+fRz6fD0o/X4XCuqrVaqKdmyFzwdImsDqdiffxN/ssobyC/9vtKGqYsTzepw7J2PjYuWMUhu1Qfm15vpU/KqxVyKoSS5qIKebaRkvvOi4xvqpjoIanptlrm63DV51oXBOxFFgdB16zPEE/Go21fFrHhkZaPp9fZdhqdkWMzta69nBD+aaOnaUTtpOZB4wQMutGdQvrwOFbIfhcoVAIrz0Ekg4e1p+mDHK/o15XnYFtVbmufE51JGD1O20bjZUU40ZjJfPCvo6INJfJZBL9aGlZeVUUZYmWz7bEHFCx4Ic6DSzvUbk9NzeXGAsr0/mxh2pls9mQbbJz584gf2i4qsxh+zh3HGPNYrS0ZeWj/W0zwBpPlMt8zaE6nHm/bXvatWZ1qlwgVM+2Mlq3I3FulBbpJAdWMqKUb6k+C8SNUOUDtv3WQZiGtHL1dzX69PfYljbVnfRZrcPaVNa4jOlp+rF6rLZJ5aHtoy0jjTc14//rlQEntMeWjJn7+nh0uW6QV+JR4WoFuQ5Ee3s7CoVCSMu0g0eFUFP9mPJiDbw05qCCn4oj20moUkIvaaFQSGyUVwWsvb09GBGxw6N07JQYVWGx40NYI1IJlGOkSrw1YsisaYA0i4SzHrsgbL0xBkIwtYYRb/Zbx5X9t0pXzNDnWGhfNxL2RG9rqNLoogfXCmjrTNFIhjJWgicbHzlyBDMzMxgeHg57EQcHB9HX14eBgYEgKMvlcniXHNOCGF3VQ43UKaQC3yrq1mDRvZCZTCYxj6RpVVpiEbcY49S1rq8DIw3zpEW+Tmx+fj5sf1BD3RqZ1lFE3mLTgdjW1tZWdHV1oVgsorOzE8ViMRFJt/Sniqw1CDRiS6ixxr5yHHmdrwZhWi3pJpbmvRlg51Gv2+9WodUUfPZR0zato0T5E8eN36lUq1JpP9axxzEnvdPhqVF0rVvLYn/VKahtYVtjRq5CaZ/3qDOEfaKBwpTJxcWlV2uo0Wn5jNZhZYWOFT9aljXYacRybmh4aSqZ8hQ73mr8akprmgKzWaFjZmlBx5H8VPkAebAa+0zlI73ncjls27YN/f392LZtG7q7u0Paaiz6ojoEsCJb2VZNOyaN0ZikUWqjyMr7lW5s3VyLVKQbjZVX2ygv5m/WIAKSjhSuR3UIsw7VS9R5oGMOJA8CsmvSjhm/cyzovOV7w+v1emJeOLbZ7NJBgNu2bUO5XMbMzAyOHz+ecFKT/lkenRh8Dy4dGla5V+OEY6LOpc1i3BLKszRgpHJceZxd7814oo63OtF4j+oIWo/q1LyXfEyNXR6oyfFWx6R1VKYZh+rosXqN1T/Sxs/KAF5XHcbep+Ok46blqh6ncig2zqrHsO1Kb7qe7fqzjlWVlXadWlrQvmn71ZbTrQUnkrl2QhFbCi9VnGMHpSjD0GuWwegkqFdMB4FeXTVq1bC1Ex5TtqyR1mg0QkRLhbw+qy9Ct8ahRm+1fhut0r7b8dFn7XdgxRtjBY32jYzERq/ZJxq2Wk7MAwUgwYyBFS+WjaqoMI0tpjQlTunC0kZMadfx3AzKjip/eo3MQffZ8t7YHLMv6iCx40VldnZ2NmRGUCnq6OgI81AoFEK9ra2tgVlTOVWa4J631tbWkOFgje2YYWvnQZkty85kMugbGcH2mRlMb9uGyaGhxBzr+ouNqzoIlOlRgeee/pmZmUTEVqPV6mWNOYqogFGYsV38GzvFWNuof22fYgIjJqwsb2JbGAFfWFgI+5e5Jy/mAd0oxPrP7xb2mjV2raHI6zZiayM0MQVf6cc+o3XYOSNf1DVIPq+0r89zTlXhVGNnrXGwgp70og5d3mdT2jUdnwqz0rR1BnNsLA/SFExd+7qOVDmyf9UxoYoH1y/nEUBCcWK/dF00o6/NwPcVsbnT36yOoY4GjWRRp1AZy0gtT0Lm/lpV6Ju1Q+cVQII3Ayv8T9tHmtG+2PWhdJK2zu0zvK5rx6Z76vPqsFIZZGWu1X+0H+yzXZPa35j+okY+6VR1JSsDOXednZ1hrjo6OkIkXlP2Kcf5HOeYZVnDyeqAzXTIjUKsHapHWCO22VoBVkcpYzJG+arKVvu+XJUBWofyat6jW6oogzkfygdVNrDctIhkbKxic2nvsfaLtYEs71TnlcpA7bfybOXpdu0rf7ay1RqsQPJww1g/de5iY6G2kqWJ2Jhpu05EBzohw3Z+fh7T09MolUqYmZlJGLUkglgnY9eU2JSZkZCojHMPLw/FYTvoeWa5SoBk6iRyFSB2EVBRsMYaI7b1ej0cmKOR2kajEY6Ap6GrYxFbkGmMmQJP/6qBZMvTVEsdJ5tqag/2UWJLIxJV7GnQ655Ljg+Zg0YLqJAzwqB1xhiQXXR2Ea/FFB5usH9WaGpKEu/jwo3tfa3X6+F0RY1OUXmtVCqYmJjA6OgoKpUKcrkc9u/fHzyXdMrwdORKpYL29nZUq1W0t7djbm4u7H/nPClD53qigqyefmWIXIdsmypjnJP2chmvuPVWPPLIkTBOd516Kj72vOdhdjmtt5liBiCxFjmW/Ds9PZ14/9/8/HxIe6rXV/b3WmUkpiRzLnQ9kW8tLi69vozR73p96ZCRzs7OQKeWEVsjCkhmJChP0jVkjVtGujg/3McVizBvBljjJ03Ia5uVvngfFT2NjvI5q/Bo3WpIMYKp0RotS500ymc43iyT65mHpXHeuebVuanXrNFL4c02qTPUKnzWA0+Qhtg37qGno6dWq4XXiWi5arCmOZaUH6scUdok7XJudI6YVtzT07OqvUzz5JiwPars28whVZAsHVnFfqOVe+UrqqDZvlDPAJLpmvPz84k0ZD2wpr+/H/39/Thw4AB6e3vR398f5oR1828mkwk6EJVy8k49tIfyBEA42EmNNM0oob5B2a1KsGZPaTSLfWUbeXYAnbCkzUwmE+pXA2hxcTE4SViebm/R+lmPVebVMavGgWaDsBzdD6t6ZKPRQKlUQktLC7q7u4NuqXyB653Pc356e3tRLpdx7NgxVCqV0E6mLLOfNKJYJuvQ9aB94fir82qzQMeb8pKBLs3etHJe+87/STu6PUL5Bcedc035z481sgiVH1Y2695p6qt2fzTpV+eM5Wm2Cq/FnD+6hmzb+Iw6vVQ+2fG2OifXGa9T1+Pao51inVnaTsoMtsnaYWo76PYCfa+0yjy1u6zha+WNzpGWwf6nzet6sW7Dlo3Ww6LUEFOkWeuWYalnQSdAUxko3DXFU5mjlqUEY40iO7h6yI8OuBpuFBpU6lkGGZEKqpgippFdlq2KUMzYp2CyCiKFScxYolHAdFFVrEmc2k5VRq0BqUo8FX4a+TzhUz1KdsFYOogpUlbhiiksllY2WqlRJsd20SCJGeAx+qMiQcXGpphyHKvVKrL33IP+O+5Afs8eLO7bF17obr1unC91wrAsGqbKLCgkue+Hp0Aqw7NOIpanDI9tecVXvoJzjh1LjNWpBw/iFz7+cXz4RS9aNY6WDwArtGH30lJh00gE+8pyLOPVyJE+YxV7vW49mjRyOb+avaGIGZux8nWerCdVvfea7s11q++v3Gywa9Ia/kC6U8ryfT6jY8b7dO6ssqiC1BpwulaU5lSQ2vY2Go2goKsjk8qVKvZUCpSOrJyxZVueaY1sdVhqap/ydu2HZk2pomN5plVc7Nxou9WYqNfroe98hmPC53WPvlW6NH1ZX8Wi7Uqjq5g82WjE5HzaOiBfiimY/J3Ke3d3N3p7e9HV1RVO0Y+te6tE6psqNEOHbVVlm2vCKutA0iGnCrY1BNIcdAASjp5Ylonqe+ybZpWlGdR2rdj/7fho5oauCTXsuXZYDreTkd/T8cC1b+vJZrPI5/MAgD179qClpQVTU1NhPbIOjpkaaWpQqNGu42SNDiu7NgrK1zmmetaF8pBmOpvKxTQDhsa+RmbV8R0zbJXWdZ0BSPBT3qe6jBq0sS18KpMAhHmO1RWjS+XdVk7o7zEbQWnf2i7U/9WwpR5k+Q4/XP9qu2lwgP0m/XOtatu0b2lyR++NyeL16Peq7653DazbsCUxMdITS6/RTusEW6akjSUhUSGnYs9B18hSTFlSxcAKDhspUk9ALBVZFwiZOQ8asEo9FX1l0ED8tEq9rkoQwQlT54EKNVWYdHFznzCNJgo59fzR8657DDnmVoBwcedyOczPzwcCz+fzIQVWhaIqiZZA1UCywtgaZVZJsDRC+tpI0MBQL532X40qXrcGEw0lKoaMurA8AGiMjWHgqquw9z/+I9Q9e+GFKP2f/4OFYjHsvVWml8msRJK5b4vXaUyrYWvbb71sMaYVEz47pqfxyKNHV13PNho47Z57MDgxgfGBgahRoWVbJa1SqSQMWzq62HauNdKxNWw1W8MalcpklVGqAFlcXMTk5GRI2+a+W9ah46vjZK+pkLAf6yhh3YzONRqNkCWyGQ3bNMU+JtDtOHFcrKGjv6lyrfPHubX8W9ebXXekMSoDaUoH12hLSwtmZ2dD+4rFYnAEcd70wJiBsTH0jo2hvHMnSjt2JOSMeqFjCoCVj2qkAkDv8DC2Hz6MY8UiDhcKCUWKfdKxAFbv6WUdXCv5fH7VPVzfOkasQxVyYEWpVwcvlSj2QdvCveM84deuEav42O+bBbrGlbZixiewxKd4ABRfd6NzTtnc1dWFvr4+DA0Nobe3N+yzj/EX6wTUrRqqlxG6blieHoip9GdlmaVFziWdFaoHsFzVcYDkGRm6NoGVQztjfFCdrUAy3ZV0qfSo/ILjQPmnz6iup7xjdnYW2ezSQYKdnZ3I5/MJQ9fOPbD0aqZ8Po9TTz0V3d3dKJVKmJqaCpk/qt+SFvQ1P+owoC6ga0EdFZrCvBlAfbXRaARHNGkzFsBoVo41HHXd01FAvVYDOhrEsXUpH6Fhpvp1zCmiWSk6X5qpoM5oGyxiHbE2AMk98JaONUCo5cXkhPJ92gEaoGMZc3Nzq+SrnQ8dA7WXNONB947H+JLV/ZvB6pM6RurAsTLBGv1rYd2GLd9VpYatVSDZEGvIkrlR2OkgcLB4AAWVB9tx7Sy9xUroyrDs4Ng9RZaJKxPW9mnKJqNcepJfa2srKpUKarVa2Bun0VZdBCpwqNQR7APTzDSFDVhJ2+Z4s01c7MrM+Zf9UcKgUsYFpZ4qjoUqY6yTxjQFG/cfqkdUwXFktE0jy2TmuojUaNK52UyMnH2msLRRTmDFW8zr7COjcBxDPe2SID0XfuM30PLVrybqzt96K3IvfzlGPvShRASFyrYqDjaypAeZaFRIFQ0yK2Uedk2oIU3sm5hoOmaDk5OY2rYtjI2OlY1W8TM0MYG+8XE80NaGQ8uChf3QcbXRT3XYENawjXkOuc7VwFYP6OTkZHDodXd3ByWd46XOJ+U7usY0FY2CFkAixVXbxvRT0hKN6o2G9V6zj2mGt1X6YwYABbU9PIpKs/JQ8jwdG+XtpAFrsJF/qWJgFS/Svv5Ont9oNBIn2LKcQrWKy/7pn7D/zjtDfYfOPhuf//Vfx0KhkOhrTCmPGbikxfZyGc/66Edx2j33hDJuO+kk/P3Tn47ZtraErLDOXatoWWMqFlVQDz75M+UK3+ENIJxxsbCwgHw+H04R5/hz7fCaNSKsAhSjm5iCuxlAA0+hTi6rJLa2tqJYLKK3tzfMxcLCQkJxbmlpwbZt27B9+3Zs3749XIuNC8e2UqlgcnISc3NzwYhSnkG5rLTBebdyl/NBXqSHvNFhwnVI2c+/NvqqbdZzPth2GghqeOv6tzKI9K2vZuH97KvqlKpfsZ+W/jVwwmghnWIAwtkWLS0tmJ6eRrFYRL1eR1dXV5hXXcOZTCZkU51yyikYHh7G8ePHMTExEXQdHo7KueX+eF2fbDfnvtFohO1EdLJls1mce+656yfYnxI4zxx73YplnQdW39bn+d1+lO8ASzSi26pUXwCSGTMcT43KqmFLHqs2jOom1M+4HYVrVWU1o6IarFL9Sw1S1W0tr9exsY4Wyj3Vhdlufd0hDXWuVR0TdfprWrGuFZ0P6jMabKIMZPv0tW1pgRArY3WcCGvg85rWbW1Ky2Oa4YQitvb0M/UQaMdiFrwqQ7yP19U7YT3b+rzer8JZiUzLtgwttsB0sLR9/E5hpt6h3eUydpTLKO/ahfLOnQmC1gVliZrX7CRrxIrjyvozmUyICIz09GC4pyfBSGxKnjWsLfHRaKawS/OQ6FhY45bRQd5PokszXtQrFVNW1ECwv8doYSNAry0XuLYptrB1IaoCSkZDZqP9ztx1F1q/8IVVdWdqNbTffDNyBw+isUxvdg3EmKj+jRkVoXwjWNSY1f3pdg6mhoaajtnk4GBY28qwlUZYZqFaxW987nM4V/bqfnNgAH96zjkomYgRGbZmUGjavV3THCelUWCFPilQuAaVxzFC3mis7KmnYRuLEFqjyo4579X0apv6Tb5D5dJGuTYK2leFNWD1/jRhZK+pk8UazwQVm5iRqjxT+RHvUwNYlWTWTbqgQWcVEM6/lnnFRz6CvQcPJvqx+447cMn7349/e8UrEv1UQd7MsOVvz/q//xenmLLPfPBB/NrnPoe//bmfS7ybWufBji0VGOUPlGl23tT41fHTU31t6jeNIRouVACVnq18tki7bud/o2WAKoNA0tludQfyZ93Cw/nl+NFY1NPY04xa0g2dbHzV4szMTKAf0gT1EN3GoetLUxn5LKNT5HHKo/icOn94TQ1WHReuuVjkif3hmKqs1DFUw1bXMZ37epAojR8q9OqstWuMGU8qU6jTkF5Js7VaDV1dXaG/NsuEc1goFNDf349qtYpSqYTp6ekwj9ZgZTYcsKJbUS+jbFPDdmZmJpravZHg2GoEVfVrq4On6fP6v9KAymV1ZLAe5SeaRcjfqYcrTSn/1+0dtm28xxpwKh9Ux4vpzGl6a4zn6zjye8yw1RRsNdJ5jWuDa11T4q2z2NoFltfqWleZACBB/7ZfaX3VObZjZJ+JwY7vWli3YTszM4PZ2dlVhxTYKFAzQ1KVXHbUnhJXq9UwOD6O/okJjPX1obp8iIpGLFQpUUZGsG1MOYh5AdSDaT34GuHh/QsLC+icm8Or//M/E+mXd51yCj7xi7+IuWwy7z6bzYY9uCrsSbxkrplMJqQScD9xrVZbeq/m/Dxe8IlPJLz2d+zbh//z1KeinM0m9hiQCetx+ZrqykVRrVbD3hEKMyrOjUYjYRhY5XB6ejocXmTTMmL7u9RQUAFr9+io4OVcWVraaKY+ODgYUr/YH0VMUWWkdnFxaS9rT08P8vk8urq6QkqXMsbsvfc2b8Tdd6O2bVuYayus6d2lUqPpO+rhs04gVeq5jmIGjDLBXC6H2d27cc+BA9h/993IKlPMZnHo9NNR2bMHbYYvKFNWPnDVjTfidJPW/JjxcfzJD3+Iay64AEDSoCWsYatKjSru6lzRMhqNRkJokk47OztDFgWVlUZj6SRq7rnl2iHj18O1OP/su/IodUCR/zEKYpXUubm5xOEqGwkV4PpRPkCk0Y4KVp0zjqWmfRF6iJIeMJamDMQOy1OZZZUwtgtIHrjHtvBgNp4+3tLSgl0zMwm+TGTrdez94Q/Ret99mBgcTPA5VXStQant6Dl+HKfdffeqsnONBs558EFsn57Gocip3fq/pp5qVgYNBiCZNaHppqTvQqGQWD/WwOV46RkOpNNSqRTWjb7DNs3RYdtPWGNnIxFznnMu1SECJI07e1p+R0cHurq6sH37dgwMDGDHjh3o7u6O0i2woheVy2VMTU2h+r3voe2eezA7OIj6jh2r7p2eng7KrkZxaRiPj48Hvsb1SFpn2nShUAgnMzNjRHUMlRdpUVsairyme8TZJ6JSqYTx5Hool8uJAw7JDxcWFhKvgaMBODk5GfqjvIQ0RP7A/bMdHR2JKKrlAeTDlUoFfX196Onpwd69e8Pr4ChPWlpakM/nMTg4GHQsRtQpi1tbW1EqlRLGK+eEcpH0oVlInDvKzY2GGpN0LJAnW7kOJPfi6vP8Tb/TsULer44NbrtTeiKdcFuIOl+UFrn2NMJpD4yN6a1aB+eZdMT2cs6Uj6ozXftnnd4cC+uEIh9V3ZBrV/U6zdLk+AMrGaHk0XyWh71yC0RMp1aZTgeZOv5Jy7yP5bE/6kDj+FkdIc3ZobqF0oo6JtYrA9Zt2GoKEgVbTKBahcEqQMrglaFms1l0zM7ipTfdhLMeeCCU+cO9e/HhZz4TM2LYWg+JjSZpncoMrMHEv3xGjWWdCA7mK7/yFZxz/Hiiz6feey+e80//hH966UsTBG5hJxxILjg17ti3X/iXf8Epxtg5cP/9+LWbbsJf/szPJBQ0aygkDKbs6r2sdvxVCeK9OkZathrv1iOrdBBzdBAqwC0BW8a1GUDjf3FxMURu1ENu26xMnnSk6V7W+5TJZFDfv79pGxb27g3jSYbG1LSZmZngydfrZNI2WhAbW7aPiq0eFqBzxP7W63V86pd+Cc+94Qbsu+OOUM7hs87CF37t14JgjhnS2ob+sTGcdf/9q/qbazTw2JER7KlUcLy7O7rf1I69ev9tu9XQ1evK4MmkmeZtHS4UtDtLJeyqVPBAWxvuXxYS610TbDeA4F1WDyuw+t3PG63UK6xha4W2VW75V++zThKrJHMerOC2DhqVQ7Y91qiksI9FFVQwW0FMBYHrqaWlBT2jo03HqOv4cQz39KxyBNgxsfx7cXFxzbKHpqbw4PIeVz0rIeZw0LR9Oz+sT40N/uXYAitbTshLyE/4m65LfUerOgfs3iy2I01WxrDRsiCmnKseYmmKKXyqACpP0cydWPaU1lGr1VAfHcWB//E/0Pe1r4Xfjj3qUfjKK1+J2fb2YADw9Him1VIBppFWKpWCMaJKeCaTQalUQnt7e0jBZSoigFXGrdJLGk/QyJnSkEYpNT1ZdQ8aIFx3Gpmi44TvkqUxyTYpH7F8p1AohCgr0011T7g6LVXBn52dRalUAoCQis1PLpdDZ2cnurq60Nvbi0KhELapKZ9SnVP5ljoGbLk0oFR33Cgo77D6tHWapyHNUWXXBOleDVC7RnQs9T77m5aVpv/YNmpEVCOnDOzoQWo6r+yHjk9sXbONqpvFbCrqHfzYwKI6zzRIqHoagOA8aTQaIYvEOhxj+j/rT+PllhYs7JypnZQ2B3atnCjWbdjSw0dmY3PTrUKfJmg1DUejmblcDr/6uc/h9AcfTNR7+gMP4KrPfhbvv/JKAPEXH1sDVAUziZPQyI39KHO1UYOdpRIebU5/BZYOyjlwzz0oHDmCiYEBAEhE4ghVtrQtmmaj0aehiQkcMKlowJKy/4jDhzEwPo77l0/vJNSI5VgDWEWIyjTV0KIA5uK1C4790RQj/av9shFFnTd9zjIipRP2aTPAHvSUy+WCgFZjRseMDIj0wD1pNvsgKLwHDmDxZ38WuZtvRkbnNZfD3FOegoV9+9BYFuz0ZNOLPzY2htnZWUxPTyd+U29nLEpFmslkliIJ7e3twSPNw4v0Xp2rbDaLarGIf3/Vq7B3fh49IyMo79yJsf5+ZObn0VqpJBhrjBYajQb6x8ebjv3uSgXjAwNRmtFxVKM/Zkiow8d6la13n23knIXoU6WC3/9//w+PEQfXd3bswBvOOAPV5bWk9BDmUNqs66XRaCS89XqgCu9dj7LwcMAKp5jAShPehBruanzpPiY9oIlpaIyYqnBXh6AKXY262rnQuddUMxuNsnKB65nRniPLJ6Km4XhXVyhL5V9sbNTYXlxcxEh3d9OyR5b39MXSE3U8GW1m3XbdkPZ0zxjHhtEx8mH2oVKpIJ/PB5lK77/yFGBJ8V9YWAj71WIptjElzjpIVL/YaLDP1nlmwcgIx5zzQMdKzLCNrSflZ4uLi9j1B3+A7m98I1HXtu9/H09+5zvx769+dXjtyuTkZHAGlcvlwLvoANUD1Lg+1Chpb29Hb29vcLrpwYSklbm5ubB+ikeOoHj8OGZ27EB51y4ACP2iwcgIH7OKuI7b2trQ3t6+isex7sXFRbTffz/6jh7FkUIBE8UiFhcXgyN3ZmYG09PTqFQqmJ6eDrKRtK6OHdJ2d3d3iJozi0p5AtvU3d0dHL21Wg0zMzOYmJhArVZDsVgM88fnenp6As86fPhw4n3rHAfl+3SgZrPZcEaLNTRIG3ruzEaCvFR5ljoglYcAq7NR7DpWmcwoej6fx8nVKnaOj+NwPo8H5PAuy8/VSLLGEttlDXC1WxTKq8mLyQNbW1sxNDGBk+bnMTU0hOnt24NxS/5H+4f8Vw1pbbulAZvVEdO5FhcX0T86ip7RUdyby+GQvM2CsolOKI6ldchb+ok5JVmvzcBUPsSyVdeyTpeYky6m91sbiVAdUYNq68UJpSIzGqQKRhohq3GS5onUhbttchLnHDq0qt5co4Ez77sP26enMdrXlxDQqsBaQ1cFLifJDpY1gHUA1YMGALur1abj0z82holl5dt6yi1z5YJQQ1oNo3q9jv41DubZXangaLEYnWyWpSkt2hcqfaxPvZX04ur4xISgpiBw3lmGNVyAFUK1xoY1MqyTgsxhM4BjSUFfWD6lVMeAikOpVEooQExXooKjNKFjN3fttWh7yUvQ+v/+X6h37sILcfyv/zowwLm5OZTLZRw/fhxjY2MYHh5OvONVDd5KpZJI5bLOBWVs/L+9vR09PT3o7OzEwMBAEOCW8fD9uS0tLSjv3YvaKacspa4tv3uXzhGbqmKVt+PFYtNxP7b8O8dZT4vUDBD1OMaYqjpu9JAUNYDYJv7G8Wlvb0e9Xsf//vrX8UhjiJ97/Diunp/Hqw4cSPW68q+uNWXyFE4AgrBM68tmggoo204rtEhf5Nuxveb8y9Tj2dnZoLDPzMwEGmfZmnJIA0oNW31lA9vEdaAebysb2B9rdPD/I8UifrBnD846fBg5VcgzGdy9fz9G+/qQMYoE+YF1wGi/s9ksxgcH8aP9+3Hqffclyq5lMrh91y7c19qK+eUDndQxxZR1pbc045d16j0x5a/RSL43npkrExMTIV3V8nSdA9anPM/SD//GDFhtx0Ybt+oUV72D16gXzczMAFgaB0YUrTFseUwsakv6nJ2dRfbuu9FjDhUEllLfd3z3u9i/uIjOk05ayibZuTM4NKempjA7OxtkxNTUVFhHLF+3TJBHUX5NTU2hWq2GdxcXi0UUCgV0d3ejOD+Pp1x7LXb/4AehPUfOPRf/8YpXYHaZLqh7UC5Vq1VMTEwEpzB5AJ2oCT1uchI//6EPYf+PfhSufX/3brz7KU9Bednxwj2ojKaqY0Z5EnmqKvyU3dwqxGwDHvREWa2Gy+LiIloOHkTLD38IHDiA+plnJnh0a2trODE89CObDe/s5sfSgBoglt43A+0T6kjUVGF7cJTq6DHjRfuUyaycnL6zvR1//KUv4THDw+GZ7+zYgXdecEEiaxNYie5zPIGVQ8tI0yyfa1V1Hmv46hxy/ubn59ExO4urb78d542MhHpu27MHH/n5n8dcd3eCd2qkWduoUBnENUHHLYDEPvdarYaO2Vn8+mc/i3Mk6PfNwUH86dlnY2ZZL1Oeq3zXRpR1CxyQ3OMeC/pxXGgwLywsYNvkJIampzExMICJwcHEs6QR1TF1fVi+GYOlF6vHrQfrNmx5pLcaszHvhyWmNNiObltO8UjD4OQkxvr7w7OsyypStlzer4qE9cyoZ5VQRTeTyWBUXkgfw1hfX7hXGWfMwxT7yzo5fmvVN9LTk9iTY8dd26EKhSqYqlTrGCqs0QAkX07fPzqK3rExTA4OYmJwMPy+HmXEKlG2/XrPZlDsrTFIRZKpd2RMZFg2Mk4hHju9NdBjXx8qH/84Knfdhcw992D+5JMxd/LJWKxUUFv2HurJmPxo5J9jqV57TQEjrVP5V8U2k1na8w0sMT2+aD4W+aqJckF66OjoSNBHTJlTNBoNHO/pwQ9278ZZR46sUuS/t20bjnV1ISsKpO7toSKghqJNPwNWnD32hEC7Fiz/YLktLS3YNz+Px42NrepDrtHA48fHsadSwW2Gnq1yokLDGlN0PmhbNkP62VpoZpQon7PfNfXYru9arYbikSMYOnIE840GJlpbE1thOHcU6LrXUwW8FfZsExVanZOYEWXpQBWC91x4IX77llvwCFE47tq3D//07GeHuliG/lVaUDmj93z02c/GCz7xCZx5333htx/u2oV3POlJYRzUsLXRAHUQ6NrWMVCHlh4IaJ1gOlbVahWVSiWct0Enp5YbSyuPrcnYGonRkY7ZRkKj+eyHjhH50vT0dJCpvKZt53flP2lGPyNh+TXOXxiamsL83r3BSUNDsqOjA+VyOWSfULFVZbpSqSSUUhrVTAFua2sLTje2q62tDT//gQ9gpxidALDjttvw5He+Ezf9j/8BIEmHbBOdvwASzi2VXQDwrA99CHvvuitR/tlHjuBlX/oSXnf++Yl3mlI31TrZVo4zzxVh+rGOB7/n83l0dnaGTAPK63q9jtZSCU9597ux87vfDeXPXnQRJt71LqC/P2FAK19TXqQOH9IN22x5kUb6NgusbFO5FQtwxWSCBcettbUVb7znHjxyairx+7nHj+NVX/0q3vK0pyXqsLoiy2dKbjOeQRkQ4/eaXdJoNPA/v/99PNoEms48fBgv+vSn8YHnPz+Rgcf2qCNL+b8a/Fzb6mDVZ4ElXnzVZz+LMw8fTtT/mNFRXP2DH+DqxzwmoWeRzypvIW9nhoDqO9aG4nxqf4AlGixUq7jqs59NbBW969RT8c9XXolyJGsnJvNj8xW7bmHbuRZO+HU/eoCUMiIbkWFn0qInQPJI6uHl49TTMNrbu+qaetJU0Kg3XpmFFdbqZeV1jXBqH0b7+6Me+lomg7v37cP4wABymUzwyGmKtZ1IGj7WO8do+MLCAqbzefzw5JNx+qFDq+q786STMLNzJ7oiwpJtjin4XLQkeOvd1wi73q/7YNjWtpkZXPnxjycOObn7tNPwz1deiYWWllVl61iS6duTPa1SZp/fSDC1zkaPacw1GksHb01MTIS1wnfVFotFdHV1hT09fC9mTGBxvmqnnor6/v1YmJ9HfXHlpL9KpYKjR49ibGwMd999d4gIUDDs2rUrKAsHDx7E8PAwbr/99rD/liDDo4ea/zP1c3x8HNPT02g0GiFySw82mS+VuLm5OezYsSPsW2L0jGlnmtauwoS0XqlU8LdPehJ+68tfxmPFU/u9oSH8zfnnBxrhSZiTk5NBwVZa5/hZQ1WVfvXY00vPtDJGo/QZHg5Vr9exb43Mgd2VCr4r/bKpP9ZIoIOBAofriwoaIwyWh2wUdA+wOrpiTjpgddoYkDxZVtOPdfzbZmZw2Qc+kHiNzre3b8dfPOpRqC2nBmoknQojQZ7OlHxg9cnT5MGaqUMeaBVMNdDYn1qthsWWFvzNpZdiV7mMneUyJgcHMb6c4ZAzMk8zNFiX7g9W+bm4uIjZ9na88/LL0Tsygr6xMRzO53F/WxtQryPTaAQPum7ZUP7N8tQgUajDxo6f/q5jwbGdm5tD7p570H733aiffz5wzjmrDLOurq7QF6YXpp34S6ixb7EZlPsHlx0Y2Wzy0B8gmfnBMZqenk4ceEbeShrr7u5Gb29v4nVeqg/Q+Gw0Gqjt29e0bR2PeASGhoYSQQfVM84+++xgBPLwKG5fYVSXe3JphBL8rgdgDk1MYK+cq0Bk63Xs/sEP0HnkCEo7dgSnJx2sjBrXajXk8/lg1Gqq5OLiIrqOHsUpxmgGlpyIjz52DIMTE7g7kwlOhFwuh97e3rA+yTfz+Tzy+Ty6u7sxNDSE7u5u9PT0JLJiMst6m8pEjdqxTRf/zd9g+223JdqT/8pXkHnlKzF23XWBBrq7u9HX14eZmZmgD+q+c5sZRF6g2SPURdUptBnAcdVot85dzDlonbpWH+T/++bn8YTJyVV15hoNPOro0XDWBmEdYplMJrx+TPk4vyt/1PWrDkLVlxuNpTegnB/ZKpVrNHD2Aw+g69gxTG/fHvpCfUHnjm0iP9YIN9tGfYT6C+VX38hIIlIb6gdw/vg4zszlMCK2kWZnxhzHNntJeYXOlcoFPnvVZz+L001W7akHD+J5H/sYPviLvxjGFki+/tA6ddSoVqjepbLaZnKsB+s2bHXzMhehwhK0eqLUY6wdV2VhtK8Pt598Ms6IGHJ379uH0b4+wAyG9RjZ+m1qmbbLDiYHkQYEy9ew/t//7M/i1z//+QSh3XXyyfjHK66IGm+WsDihdvLYPvaDffnwz/0cXvyZzyQO1vnRySfjQ5deGk1xYP2qnGv/2I8Yk7T36bWYU+LKf/7nVa+jOOWee3Dlxz6GD/7SLyXmpxmj0yiV9dZvFmYOJOeVRojOH5A8fZTrI5fLBcVOvcBWuMXqUwZLQ5B7qHjqIr2TXV1dOGVxEectLKC6fTvmTj45RBja29sxNzeHTCaDUxYXcSqAB3I5HFo2QNk27p3LZlf2XJXLZWQyGXR2doY2UalmP3koCYWENSA5RurZ5Xfyk0pLC97wxCdi+/Q0dpbLGO7uxrGurqV1sRwZmpmZCWnYNB65PjUarbSkCjyFDBUYGtxUbICVvWGEruuYc01xOJ8HZmejTFu3BcR4AtcD+8F7OL+bZS3EFJdm91LpsQ4Iy6eV1zz92muxxyi1jxwexh99+9vhhGzlbeSdKpxtJJTOAuWzNPrUQFf5xPuJ2BzU63Uc7+7GWH//knIcUbbYb7bJyker4GoU6sF8HncPDi7JBKEFbWdMQWD5dmxt27nOlc5iTlK2vVCt4pf/5V8SJ0LPX3IJqn//98guZ+wASBjLll7sGLMtdlx0HDeDc5M8XXULjgvTaWkYcT820+jJW1UmKj+wc6P009LSgsaBA6hcfDE6/uM/Vp2/UH7iEzG/dy8yywaoGkn6zmc6CEmPVLiz2Szy+Tzm5+dRKBSCYW6VXE3RHTAn2Ft0HT+O0o4dCUNb6Uz7R57AcVlcXES3pH3GsLtSwX3d3cE4tg4oOgUZnS0Wi+ju7g59sOnfVh+lkcp56T52DLu///1V7cjUash/6UtLr+I77bSEjsC55d5R5f06x9bYU4earvXNAK5F8o5YCnJM5wNWByps39fa7re9VEoYcbHylJdr5NPyD/6vabo61vy+5hbE8fFw/oftr/J/1UdYP+8lH4jpx0PT003rP2luDpNySrE1KGPyIqYfWT1E29FoNLBtcjIRqSWyjQZOP3gQvSMjS8G9lOw3jof+TZsX+3tMdqyFh/Qe25hhaxtnJw5IHpSjDIDe+g9ddhl+9cYbE4bcXXv34iOXXx41SOkJZIqLCsWYMLSDQqHBsuzeKzJ/Et1sezve/axnYUephKGpKYz29gaibkdSCdA0T62XTJynrirT1+hxJpPBXKGA9195JbZNTWFwchIjPT0YWT7UIWuMdDWWVYlhW+yis44HLgRLRDFlZ2BsLP6qi0YDp91zDwYmJjCyfCIoFUldtNaw0ePalYZiHpyNAseHHrlMJoPZ2VkAyddAqDeTHjyelsioLU9UtEotocqqMhvumRoeHsb4+HhQUvoB/P4Xv4jTxdEwf8klyP7SLyGXy+H2229HoVrF9YuLeAZpplrFzfU6/nBgAC19fejs7ETP8juSJyYmwv7cUqm0tM9DXkXD97gyis/oBNOQ+ZsKcRoSGsmkAqURziOdnTiybEQ3lq/TcGYEhFE4HSee/kljRemY88Z3RtJTz7qr1WpiX4uNzPH7SG8vvr9rF84+enSV8+3bAwNLr2CJGLYaGdO9s6Qr0gH5jyr8do/oRoJttV5eew+QzEwhnVI5BlYbVcDSPPWNjODkH/5wVbk8IXvfwkLw2rMu0pbuq7P8RDN5dDsNaUOj+rYPKqStoqAH6elaVX6ljk46jVi+otFohOge9xfTwLXGsbbByj3SrTrcrNLOsaBzRw00S29Kvy/65CdxiqRHA0Drl76E7G/8BhY+9anQJo3E8Xk9ZIqyX+eH8sDSUozONgo6v9lsNkTiyOM7OjoSjhPyUh46BCTfkxlzfhM6H5lMBmPveAf6X/lKFL785XBP+UlPwoNveUvipNRyuZw4a4Gnruu2FI4pU3M1i8GeBAus8FAa7zNrzMn0tm0AVt7TqmuD5xWwj6p3kC7XyuA7vixLC4VCwolKfZKvZWOmAB2Xym/1ADTKH+plABLvFe6PRBIV2YMHsXjqqYEuNOKl6c82FZl/Venn2DCbh4GWzQLKKvIpPUw2LaBkDTrl3ezv/cuyIQ3D3d2r1khMXyWUH5LHce0RHGNgxbGievRaB/kdKRQwPz8f5lptHsurVZ9lu1X3tvZHrVZbcx1MLGfSqZ1hZZVF2n1qi3BsmR7dt8YBn72joxjp7Q1joHMSM271Hv61fD7mHFkvHtIeW5tSwEZwUux1NWZ04jWK0drailqhgGtf8AIMTkxgYPk9tvTQqOLASJUeekDFSetUT6WWwXt44h0JQ72cZHT8q0Q50tuL0b6+hEdNvXOqVFlFlX2noaDpJ6rgKSGM9fdjtK9vieAlhcF6ypShqsBUxSfNO8zf+b96Fe2CH1iDyfePjWG4uztabiwdhL/piWsWG23YWo9cJpNJvMOUKcFMze3s7AxpT4zScu+OeoLTjFvrVKBhNz4+jlqthvb2duzbtw+NRgNX/eM/4rSIsnnh2Bhue85z0NrairdPTuICwzgunJ/HW48exf/evRvFYhHbtm0LR9mfVKmgv1zGvbUajmFpK0Jaui+AhLNLFTXOuXru9ZrSsCqy/I3px7qPlwoCT6tkZJn8J+bwsZ5z0p+m1zI6zT5Ymstms/g/T3saXvalLyX2Vd6+axfectZZwHLqdmy/kZbBNapCzTpxOHbz8/OrosgbDRXawGoDrVZbOvDm+PHjGB4extTynql8Po+dO3eiv78fxeXTTfkhf1nrVTfbSyUcWxb25M90Cqpyy7GjzCL92KwB0hGfZTSHxq7uPQVWb/Mg3yJt2kwFq+xls9lVfBtYSZ+mYav7x9UAsgoDlXKuAfaPz3O+yIOo9GuEMZPJBENG6Y195HoempjA6ZG9nplaDS2f/zzmf/Qj4PTTVylx6mRl/2dmZsJrWur1OorFYnjHtxrnfO6hKDc/aZx//vlhLq0jQLceASt8fWZmBqVSKbyK5kc/+lE4lwBIRlAIO8dBRhaLOHbttcjecw+yBw+iumcPqiedlHDa0FHHcxj0Xap0lnDvLGmE+pQ6hfQgNtKJHn5YGxjAA2efjT133IGs8Lp6NovDZ52FmZ07w3pi23jYop7KTJrkHNMxWd69Gz865RSceu+90QPUqiedhAHjxKGOyr5zftSxxAwq7RevMxNLD9jh9prq7t1NaWNx377EmlQd0M6vzVCzhp/eR56xWZw7qvdbp59FzAC165jzXqvVcH97O/6ztxePn5paPec7dy45NOvJt1BYPV/rUduD7dRr+rFZn9Tp72trw38NDeHRo6Or2nTbzp0Y6e1FW2Yl3VazBjRwByTnXeefbYjZHKP9/annj/xgxw48mM8DyyeU2+AW50B5cJpjwOq2+juw9pk/k4ODq4xatUGsrmBp3+qJyvvSnOjNcMKpyDbNIGbcxjzR9n6dAE3dAIDxgQGML786B7XaqvIXJJKjhmVswmgAW0bCj+6t0JcaNxqNBIGpMqJQIa6TqMJYPfiqOKdNeJp3w6Zv6nyoR4r/W+KxBK9jxWu2f9ZwzmQymFg+xCsNo729UWVQ+2IJthntbAZYBwGF5uLiYnCK0IO5uLgYDqqgEKUCvR4jxXq56vV6QjHJZJZezbN9+3b0HD+eiNSGMmo17PjudzH0tKdh3/w8LlqOLitaAFw0O4u98/OYW37NT0+thld9/euJV1vd2tWFN559NhaWHUCMvJCRqdGvjFTbr2s/RgMq3MnQaLBQ6ec8nLK4iFMXFjBSKOCe5ZRilsvyTms0cBqAewE8kFnxotNwyWQyq15PMDc3FxQ6riddJ9lsFtV8Hu+8/HLsKJWWjKxiEQ/m8ygvj1eaAOdvOsdqdCsPUV6lzsDNBLum9TsPnhkdHcWRI0cwspxWyIPIrEGmMmF6aKhpvcfkBG3WxY/KAMoJKvazJpJ+crWKXZUKDufzOCY0qwfykUdbPq58m9fZFtJuTLmy8kef1+wVjYAASChJVplkVBRAMOKp3O+amcHuahUPdnTgaLG4ahsEo1mMWqiTNeZoGTSHuqzC3XejceBA4llr3Nbr9XDw3ejoKMrLpzv39/ejbzlzhEaFRlZisunhxknLRiSjrerI0PapbO/u7ka5XMbAwABGRkYSPI2w/F6vZbPZBC00Gg0s7t2LueU035ocIqZzzzMIaOxxG8fs7GzIBNBThckDmdlSXKaXRqMRMow0CtnW1oYv/9Zv4Wl/93eJFN3DZ52FW377txNneSh/0P5ov+2e8Uwmg3++8kpc+bGPJZwpd+zejQ8+4xnIS/ql7mEmDXNMlLdS9nJLEHmG7vXXaBnXcnt7O2b37MHY4x6H/m99K3HaeSOXQ+WCC7C4fz9asZKdqCnm9qOyJSYXCdWN0mTKw42Y4RjT72O2QawPOiaNRgNvOOMMvPnQITzyyJFwz+07d+K9F1+cWg75qzVO7f1pARMry8jH+dybH/Uo/M/vfheP1VORd+zAey+6KFGG5XnWARwzzlQ+qLOf5QLA+3/mZ/AbX/hCwpn+gx078LdPfGLCXrF2ENuk+n3anGpbrJOl0Vg64DNtq+hdJ5+8lLlq5FuM9rXctPrT5k/bthZOOBVZ30tGAtDGqReC/1tjTYUWXxnQ1dUVFH6rcNLjx1c+MErWv2xg1ev18LoTvkOOB+EsLCyEQ3DYbi4kAJiYmAgn4vG9Zfl8Pihe9KyS6arCw3aQmJi6TGYe88ypZ1IZPJ+1E0lFg0KLSqN6jnO5XDhi3hrM6gjQ9nJ/DceE7VJGQ1iiHB8cxF2nnopTDx5EVhlxJoN79u8P6dI69+oRBZInb6aBdGSzADYC+Xw+jCHbzYgtFURgJULf1dUVoj2MjvDdsKoMpUHXiR7SlMvlsG/fPuTzeezfvx/dX/lK03bvnp3FyWukMu1bXMS9y4L+pZ/9LM6Ud7QCwBNKJbzhRz/C657whNAmddDYD9cA0/SoFDEdjMqHOmnq9XpQ3LX/6v3sqdXw5qNH8ZTl12kAwNf7+3H1vn0YW6atHW1t+EClgkt5Q62G/7ewgD8sFtHo7cXevXuDM2tsbCykCWqEi8oMgEQWiM7XSG8vxvr7l+h5ef+yGqYKrneuK64FGtFUtBiJJm9RZTAmlDcS6ohS3t5oNFAqlTA1NYWpqanAP3l42cjICI4ePYqhoaEQcWfWTFtbG2Z27cKhs8/G7h/+MMFb6KEeHxhAezYbsnUozEk7tVoNExMTgX9ynLnncXtrK173ox8llITv7tyJNz/qUZjKZjE4OBhSLkkTNnVNHTn6G+lHo7ax7AHliyyHjlruiQSQ4Ol27FlXJpMJdDM/P4/29nbs6ujA73/rW3ik7IP8r8FBvPHsszENhMjs5ORkGPeu5Si4RotJc+zHWml59VNOAalUD6ajPJ6ensbMzAy+//3vY2JiAuPj42H+BgcHsWPHDjQaDWzfvj1sd1DFbzOATnCbeRKTT+QJbW1t2L59O8bGxoLxxAwTa/jHnF+8bg8YYmYEdQE6Co4ePYpyuYzp6emgM/D95vpmC+pZdMSS11WrVUwv7+3LZrMYGBhAZ2cn+vr6Ar3UajVUW1vx7696FfrHxtA/Po7ZXbswd/LJGJDzGIAlfl+VvYq6HUXHjzyPMmG2pwcfueoqdB45gt7RURzt7MQwtziJPqivAeN6oc5AJwl5bjabxfT0dHDQch4pl2nUs7+FQiGssa//7u/i8X/91xj85jdDX6bPPx8jb30rsuLsyOVyYU+v6gbWYWn7DiSDIOr4peG+WUB6JE3pGRf2o9laNjjA8WB2zXijgXddcQX2zs+jb2wMRzs7cbRYXForWEkdZjYX9WKOO2WqHgQZW5+xa1wP5H+kqeONBq5+7GNx8twc9i0uYqSnB8PLbyXJIemk1nRzawtx3LRu1XE5TlbWz7a3421Pfzr6x8YwMDGBQ+3teDCfR21uDtnlTCU9WVzlheoe1nlGqJ5hjWHFtU9/Ol560004W/ba/ujkk3H95ZeHOhidVmeFOmbXMq41gt5srtbCug1bG7FURpxWaYxJa8esFzDmlWUnmV7Dd+lxAEmAXFh6wqkybWJoYgI7Z2cx3N2No8ViICwSNSeVbbNRxLS+KlOzgirN+2A9G6w7LU2CxK8KHQmaC1kJhH/JgKySpYRuDVFVVrXvrOOG5z4Xz//4xxPRwnv278cNz3te1Pts6UIVFruYT8Qz83CBzgoKQ2CFSdEoYZTWMtNmr/lR2LHmNTKuQqEQTtHkSY+tZ57ZtN0TAwMYX34VVRqOLu+xKjz4YPxd0gDOn5jAnkoF48unHmuqIteKzViIrQmr7Nu11WytvfnBB/FEMWoB4LyJCfxpvY7nLTujrp2fx9NM+y9eWMDbh4fxRzt3JvbYVioVbJucRGe1ivtaWnAYqw+5stkWJ/Kxzj5gZc+Zrk91jFEoqcKr6UybCbF1zYgcFWs11IAlOVJafrWbGi+qxN/0a7+Gp77vfThFXvVx286deM9TnhI18NU45Nypw4DCPZvN4g+/8x2cZV7d8Ihjx/D7i4t4/ROfGNZWZ2dnIg1+aGICQ9PTGF12aKjwtQ46TYvmvGo7daxsFo7KWZveqnxz18wMts/MYGJgIDhYSFu/9+Uv4xw5XRwAHj02htfedhuufsxjwoE7lG/9Y2M4+ejRsPUnlkKZySylxd25fz8O3HdfwunQyGZRefKTUT/1VGTlOSoz3N7DtPTh4eHwdgVGkLnVYnh4GPl8PihE7PdmQkymx74DK44xZu/oqfIxGRszcG3WgBq4uh/72LFjCYOWBpFmEqlxq6eC1+v1RDYR+XS9Xg+v56nVamE7DSOfmUwGk0NDqJ500tJvy4cRkpeRvjWbjP3ndY3W6priOIz09uJIZ2ci4MFDuWiw837N9KGRQh5j+ak61Do6OgAsOXampqbCGwSob9brdTQ6OvCNa65B9/Hj6BkZQW3/fuDAAXR2dq5yWLFM7iems6/RWDoNm21SJ0VM97WZFBsNdWiqk5+fmH6rUNqPGb/Akq41MTiI493dSw42iUoqTdN5wfMx1LGsOprq8DF9X/USzVahzsfnj3R2Ypzp66Kz67yrI97q2KR1Bt10Gw7HxurBmmZ9uFDAvS0tiSCVpjvHIsVWF4/pn9ZJq/xGA2Qzra145+WXY9vUFLZNT2O8vx9j/f1L9zRWp6TrmNh6YzpSjL5jtLUenFAqsk0N4qBopc0MQTJNjTTq63F0gevC4SEMZHy9vb3BcOXx8fSW7Nq1KzAsGsKDg4PonJvDb91ySyLFgS9+HpGoEevTfTMkQptypP+rR9Aatuql0vFR5YiKQMyoVa+YCgP2k/Wy7cokKPw4rhpt4MJQRqWM2S4Ofbaaz+O6F70oeJHG+/sxPjCwVG59JX3bjoMyHF3YKvBUEHFsNtrQtUabeuUWFxfRuSx4BwYGMDMzg7GxsdBfGrw2PakZVDlkRKWjowN9fX0hw6Cnpwetj3885i+5BK1f/GIiRaqeyeD+00/HcE8P5vftwzfvvBOPHh1NLPhFAP/V14djXV1om5tDS+TUO8Wu2VmUduxI9IVttRFHVWxjaVm2r0D8/cf8u3duLhGpDfPSaOCJk5M4tb0di40Gnh7xarcAeEq5jDNzOfT09y9F0Gdn8YqvfQ3nyvvhbu3qwhvOPBMLy+udnn8VVHZ+YkItzXlBmufzLJtrBVgRJNz3yQySfD7fdG4eDuj6jQlOKt0TExMhMku+o5HvUqmEiYmJwMO2LR80Q3qq5vP4yFVXof2BB9B59CiOdnbiWFfXktwwSiB5Bl9VsmtmBnsXFzG9bRvqO3cGpXR+fh6D4+N4fMqrGx47MoKTqlX09vWF13WUy2VgfByXX399Ih3yzv378aHLLkOpoyMY7jaNTGWhygZ1eqkyz3RKVXR0TbHM9nIZLzIn5d9/5pn49K/8ChYXF9Fz/DgebTIu2MfHj41h/+Ii2pej5V0LC7jyn/8Zj5A1cPtJJ+EfLrsMleXTcS1tf/TZz8YLP/UpHBCH5uTjH4/jb34zdsq6JX20tbVhamoKx48fxw9/+MNwmBIdDzSC5ubmMDo6GvZGDg0NYWhoKGr8bSSsfqOwKcO8N5vNhsw0RrDVoQ0k+YktnzyB5es5IJQ1R48exaFDh1CpVBKvmNET5GnYcu8tDa1MJhOCAfwUCoWg94yPj4c13NfXh67ltch7KKN4MGKhUAj7cRn9yufzgcbZl1qtFnQsjhf7yn2/ugdYdaHh4eFwrgUdNTyNmq/bU0eXrq2enp6QQbVnzx709fVhaGgIc3NzOHz4cHgN0vz8PLqXzwrp6+tDT0/Pkr40NIT6qacuHV4lr2RT8DCx7u7ukHafyWTQ39+PAwcOBKOJOqqe0K7zT566GYxaIHkiuDrj1ACzOmzMwWv5nz3Lxupb1G95INrMzEw4IKx3+RwedfqQL1vDkfowD1HT7Cm7P5by3zpNrBGp0PLS9ABd//o6Nj18SsdGg3eaqaR0H9M7VH9WmaLyBFjZZsrtOnyGARVgxdGUyWRwtFjE8e7upTGqrxwWqk4qtfFiWWzN+Ln+po4d2j7rwQmlIqvQtlGNtMiLbSQ/lqCUwZOI6YXXvRDASroU03B2l8s4PZdDuacHPcvpTHoYB4AlL7bsGwSWXvz8yq98BddccAFaWlqwffv24GUsl8voHR7GztlZjPb2YqS3N+F9UOVdhYIqezwkQSMSaYo9FbRmTgJrVGnUmoxBU5bVWLeeI2BlHwiVLo0KVavVoJiwXn1VAPui+6EbhvnqYiBdMH1dPXaWThTWc7RRsAtdjfyFhYXgkedrcehJpNc2jRnGvJvqBKBipIft8D563Cfe9S7kf/3X0X3rraHce087Df/0rGdhamICuVwO73jSk/DKr3wlodj/V18f/vzccwPTvHeNMR5eTtXXfapkXl1dXeEUSc5zGn/QfnNsrYdTx6Rer2OPvFcxhgOZDBbXaP+BTAbjy1GqF3ziEzhTnFzAUsr1NXffjf913nmrHFJWASWsILQGn/ab/dT/AQThpp5jemE7OztDFHGjofxPaVQdfPV6PaQI8kTtRqMR3t2sqemaususBjX0Jrq6UOF9Ec+/zkNxfh5/dscdK+8cvP123H7wIG547nNR6ejA/Pw8Tl3j1QlntbZifmAgpA+2t7fj5264ASebg9kO3HcfrvrMZ/C+5z53VTtUYdPXUSm/4BrWKJaN1gIrkV9Vul788Y/jNOOAOulHP8LP/+M/4vCzn43dkYyLxL1zc5hZNjxe/I//iL1mDZzx4IO46jOfwbuf9azEPsngBO3sxEdf8hLsnJnBznIZC3v3oudxj0Pv8nu+2U/uo73rrrtw9OhRHD58GBMTE4FXUmbqwUYtLS2YmZlBX18fMplMeN/oRvN+Qvdpc96tjCOoXDPT7IEHHsDo6GhwVHCbitWbrKMMWNGb9B2Y09PTKJVKOHjwIEZGRnD8+HEUi8VgPC8sLCzpML292LlzJ/bv3x+U1x/84Ac4duxYoNOTq1Wc1mjgeFsbJlqSr6hhO3R/bqPRCHKODl1NldXsJa5zdbxTjlGecgsW1z37TF6g41GpVDA7O4tSqYR6fWkbEA9D4/qhbpTNZrF/YQEnAzgyMIB7lzNjdu/eHdpYrVZxfNkR1NLSgoGBgaA3Hj16NKQtq6M2LbpEOshmsyHrQ2U/U/P7+/tDOffff3/YosH5Zzk0fvUslY2GBlysDaBjooEp/m9lod5HPkdHl5WVug2v0WgEB0pLS0visDTKUo59T08POjs7kcvlQibRxMREMBDZJ6Y2M9uHDmUACR1ZZZ/q41zTVhawr6p7awCJ/JXtUNvKygM6kNRpyGc1I9MGyXiOQaPRSByWpqnbLS0twWFF+uea5jpNs1vsd46Xvk7R3kv6V9q2do818i2NNcNDitimNSLGpBV6jxKENfhUKWT5HAh6ORYXF4HxcVz9ve8lNnUf+eY3cfNv/ibGlyd2cXERu8tlPCry3rVco4FHHz+OXeUyRpc9ctlsFrmpKbz0059OpGXefvLJ+NBll6Fqjo3X9AIb1dGx4YKwHjnCKvN2TEmsmcxKNFWjrTbizA/BxcCUPNanERXugQQQjFhdeNpv62G2hKgfy8Rihi3LTqOdjYY6MbgOyEw01Vj3SWuqUyxaa8eL31V4AAhCkUoC3zEYTtbs7MTEBz6AB374Q0x+85s4UijgnmwWU1NTwUEx39WFNz/taegfG8O26WkczudxpLMTwEoq5X1tbfjPnh48bmoqwRhqAL7V34/hnh4Uc7lEX0j79NJr+lkaHcTGFkhGxe1aOiS0GcPRzk4sCL3HMDk4iEwm0/Sl50+YmMBJ1SqmlvcTxujT8iobqVWl1D5jPfvAyp5jChDyiFwuFyIfbWv0/+GAFdox/lav18OhNJqGTGeIpl1TadXIvp4pYJW5Zjzh6h/8AI81KcZnHDqEF/3bv+EjV12F3t5elHfsaNq/6p496F42wAGgd3gY++68c9V92UYDZ9x3H7ZNTeE+2VNkBTGQjHAor9Zn0hyZqthns1lsm5yMHhSXrddx0m23Ye8zn4mJ5eh3Gsb6+tDd3o5dMzM4xbwrGFiSiec8+CCGJicxOTS0KnrCeZrZuRMPLmcSdEpWEBVDvm/62LFjOHLkCA4fPhzopKurK/ANKqOM1PI8gUKhENZEmsx8uEF5qpFF5dEaMSGfnpqawvT0NMbGxjAzMxPkhBq2Mbq28lUjFzRaJycn8cADD2B8fBxjY2MhgrNjehpdw8O4r6UF7bt2YWhoCI9//OOxsLCAiYmJcKZAbWQEr7/rLjx5eWsAAHxzcBB/9djHor5sZDBjLZPJhOhvJrN0YBPTbJUPZDKZIA+pE3Fdk/epAcrftc/A6j38pAF9ZzqNbzpKqEi3traic24Obzp0CE9ZTikGgK/19uKas87Cjl27wnOHDh0KWQQ0OtlupjnzULNCoYDOzs6wvSFt7mh0WNnP9GQ6+WggVyoVTE1NJbJhKFt17jfDGtD22Khs7GONXcvPtc90dmnk1MoW0p9u7eodHkbv2BjuyWRw37L8VMO2d/k1NHyjBPkY5cye2VmcND+PuwEczK2cE6JtSdsfqvJf77H9tE4L+1EnVmzseA/pgnX+/+z9aZRs21kdiM6IyMzoM7I//bn3nHuvmiuhDtQgGoGMsIRBQhJgBBiDsXHL45VtLPsNV9mmqp6bsgtkm3LRCBedARthGSOwscAgKJBAQr10patzT3+yz4zIaLOJiPqROVfOPXPtyDyydTPHeG+NESMjd+y99lrf+tb3za9ZaymO14g3gOBc5W75xPl8VnEbeZZ1ENuqoyjNkFWHN8cylo6tHx3bmEMkxnPOP6PKQxu2aRFFvZYWoaGApGBn+oqfI0jFDxyGzrmLnZ7p97c/9Sm80I6HOP/JT+KrfvRH8St/5a8EgXLcGUwX2m1sHWxYMT4+jjf9zM/gqgHf5969iz/7n/8z/vW3fEsY0MFgP81UzyjjQJFB2HeNbvBZBXhkfJ08zsRqkDIdiZHiy5cvh/UhwKGgYD0cD26wUKlUQptbrVZQxFQSjHg3Go0QdXQvi0Z0tejZiOwr20SB4oBPaXUWDVs9/oPOBXUg0JtNnqjVaiGFdHZ2FpOTk4GXHbTo+ACHc4WecJ/4BDjc9bLb7QIA+o8+iu3JSYxvbWHhYGMWHqnBOdSamEBjYQG7u7soDZOZF/l8Hv/0i78Yb//IRxKR3Y/MzeEdr3hFUOhULlznW6lUMDc3l1g7pGtIVOCqYCNI1tR5FtKZZ+uu5/P4/clJvGJr64jR/Ye1GtZnZrC3t4ff29zEq1qtI/d8ZG4ON8fGkF9cxFzEqNVydWcHn4qkjOv80/EDDr2UqnC18BkKfN2Ahn1X+UgQValUQrTjrBX3xBJ4UHaQBgSkABI7g3N+6G64mv6qgNblBN+fz+dxtddLTTF+/MYNzG5soHjpEnbn5vD0hz+M65EjRO488QRKL35x8Ny3Wi1ciRi1Wha2tnB3YSHIcI6jjivHVB09mu0QA3vuLOUcqtq6WS/PyWbx2Ve+Ep973/tw7caNo7tXPvII5r70S1Gr1XDuk58cWdfFTgetA1nlUVtNL6M8YBaVOv+4G2+/30+A/Fj2gUZEKE/plPMjl06rcA7TEAOQkOcKKHVOc/OmbrcbslooSzXie1xkmnzU6/Vw//59rK6uYm1tDRMTE7h27RqG6+v4zve8B18sjv7G/fto/fiPo3DhApaWlnDnzh1kMvu76v+vN2/iZWLUAsBL19fxPz31FH722789tPWpp57CxVYLL9nZwdLEBFYOMAI/PAOd57TrWl3Sh30uFApoNpthHgBJR4HulM55oCnG6gTM5/OJI/V0HfHf/M3fxCvFqAWAL6nX8fc+8xn8xAtfiIsXL+LVr3417t27h8XFRbz3ve/F/fv3candxnPHxjAzM4NnDtYP9no9tFot5PN5zM7OJuSdYlWVhdwwcnJyMvRpYWEB8/PzIVOh1Wqh0WgEeqjziLKB9Z0Vw5ZF9bunInvEMRbI8L6QXnQgFIvFMN6Kp6vV6uGpKEtL+Bsf+hC+ZH091POR8+fxE699LYoXL4YjF+lou3nzZpAr1WoVl4pF/OXf+73DLB8AfzA5if/piSewM5Y8dxtAMHiVBsQEzDwgHzMzEUhmG6rTn3Ne9YY7CdT54/Qjlh8bGwsbk5K/8vk8Hjx4gM3NTbQOlnApBqvX64Hn6DyfnJwMWQXM/KjX69jb20Oz2Qz6Wo1cTxnnb9o/x0YMyMXsI7Ud3fH7MOXEhi2LG7WxRpzkGe0oP+qhUy+AE3B8fBxzGxvRKGx2MMClT3wCU6urIU1lWY6IiJX16emwecDk0lLUS58bDvH827cxt7mJzbm5/Xdlk+fGKgO7we/XWRwc8pqmZzvDc2Lkcrlw/l/5IPpGA2VsbAydTgcL9TrmGg3U5+bCGlgKTTIxDWVfj8v2cpKql8g9NglaHSgsndxuuMY+sfvOStH+8396HBmh4trssbGxhIDmJjaanRCrX2me5gnVeaYZFGwLeYfCbXd3F8ViMYwvHRMUqKqAAGBnfBx//1WvwsV2GxfabSxVKlg62OF53DyJutszhaMaM1qvjq/ObTV2tW69n2D57z3xBP7B00/j1ZJS+oe1Gv7+c54T6Pv3n/Mc/ODnPpe454PT0/jfX/rS0O8Hx6T1rh5kbqR5WJUf1ODUfinw1zp0jEkrNXYZSdC1lWcF1KSBEhZdC6OARovKeFV4aizFPgCO0J6/HZemXl1exta5cwCAd//pP403/sIv4LmyZvbm9ev49W//dgwP5gjTY4/TG8vVagLYsW2xeRxblhHTofzrfR8Oh8eeJdiYn0cul8N/+e7vxp945zsT0d3PXr2K//it3xrOFV0/ZkM51sX2+Fxlm7yP6sTUaAcdsNSXsYgEPxyDmMPrNIs7JIDkTqIs/J9O736/j0qlEhzHnOu+9sy/x+QN+Ysyfnp6OsiNP/ef/hNeYI7+yT/6I5S+//vR+qVfQr/fDw7YqZUVvMIyHIB9nPPknTs4t7WFzPnzqPX7+Ibf+q3ETqgfnJ3Fz3zd14UdhKvVatgDwvdZcDCugDem/1lURmgkiRgFAB7d2cELtrbQLpexOTUVokwXW61EFDr0DcArNjbwKwdrvKvVKmYPMNGFfB7/y4c+lDBy/nhhAe945SvRl5RPl+cxXU6+IA7gOlpGwNvtdth5WoMAPs9Il7OUtQAcXR/r4xsLbPnz2j915tHx6Zha72H5gY98BC82h+YXLS/jL7/vffiZb//2oFPYVi4NYDr/9/3RHx15/hVbW/jBp5/G337JSwLNLzSbuLC6itVaDY0DR6Y7X9Nko/bXMQ5LTN8phgCQMPBZr2YB1Gq1sLkoHWAsdC4Nh8OEUervpmOI64hJP76fdGQdMQwXq9uL3zvKRlJeexhd8NCGLXD0TFtvcExIqfLr9/th4wgOTOFgjU4mkwlGbr/fD4ypoe2xsTE8HtlIRsvs5iZmZmaQyWRwb3sbf7ywgBevrh7xYn9sYQGdS5dQOwAppYixrGW+0cDm3FwwsOmJZkRPGUq9EGoIqZICjm6qpcYnr3P9ye7uLmrLy7jY7aJ1/jwmr17F5ORkInI4NzeHqcEAb/r1X8cXyRqqz16/jh/5si9DPbOfzl2pVDA/P49yuRyOCagtL2N+awut8+fDDpkEeuqIUKb28Wc6pUZfAs0tRTXmpeGznt5x2oWChAB+MBiE1LlWq4V2ux08Z7VaLeF0IK9TYMeKC0PlH1Ug7vDgEVz0IHMMuLvocDgMY5jP50N0nvfHMjHqpRI25+b2jUEkNzrTtVS1Wg1zc3OoVquJ9TGsWzcHo2AiYOH4co5rlMM9m2NjY9gpl/H2F70IF9ttXOp2ca9QwPLk5H7qkWzv/z8vLOBiu43zrRbuF4tYPEj9yh2sAVysVvGxixfxgsXFo4eunz+P+vw8ckAC2Hu6HGWRR10pFzwtSWUj6cf7KD8YvSwWiyFdTY3E0y4xkKrfCTp1bY6CFyC5+Y6mRMXmhRu0/E7+5jjUeeZ5SrkzMYFmvb5P63we//a7vxszGxuYXltL7Co8OFjnRt5tVir49NWreE7k7L7PXLmC2xMTaDWbYQ4pgFDnngIR8rrOCV1HqH112q1MTeHTjzyC59y5k2jPIJPBzccew+2JCYzv7GB8YQG/9QM/gD9cXER1eRn1uTk0z5/HxEE7m80m6oUCnr5+HY/dvJk8si2bxa3HHsPOI49g/OBYOY5VLKJIflZjdDgcBr3ONZg8ho/zw5012m/KKh7RdFaMW43W+HxUgDYc7jvup6amQnrr7u4uSqUS1tfXgzzRjVy8XjeeiXsod6amplAoFLCwsIDt7W0U795NHO8U6uv3Mf5bv4X+U0+hNRyGTd0uy+ZjsTKzsQFMT+NP/vAPY87Wbb90fR3F3/5tvOvP/3mcP38e8/PziawLXU6hOobywdcUsijuIb8Ah+dfM9o2trWFf37zZsJ5+dnr1/FDL3851gcDzNbrI/s2V69j+4DWPMro//PJT+JxM/RfvLqKv/WRj+DH3vzmEIlWY1PTqN1IZzbb7OxsSJkulUoAgHv37qHVaqFer6PX6yWcekobyn3VH6ddFK9xzgNHd3mPja0W/5/RUG5ARpzCdfu0CYB9Q+1qr4eXRTJYuJRiem0N3UIhtIfrcLlE5kKzmVjCGJ4H8KVbW7jYbmOsUsH/8MEPJt7zkfPn8eNf/dXYOzgezSOWjs1YyC+K6WK4l/1TI3Q4HCZOflmo13Gu1cLWwgI6585hZmZmf4Pcgx3Lm80mHjx4EM6u5rKOuY0NPNJqYX16Gt1yOcgp8jb3QLjQbOJqNouthQXsHjh+uCZ5Z2cnzG+1A05i2OqYe4DHsUQMMz6McftQqcg+WLGoUkxh+W+ZTCYYtgr4CYYU8HCiqwc4l8tha35+ZHtvHdRHr+a/ft3r8L3/9b8mDL1PX7qEn33d68IRQb1eD0sHkc+0sjk7G9rA3Zx1YbVPZk52DqQLKxrDygwqLKkUdnZ2MNFq4Xt/4zcS6wPvfOAD+IPv+z40DyKHOzs7aDab+HO//ut4rim6x27exPf0evjHX/VVicjJ5OQkytvb+DO/9Vt4UpTYxy5exP/5lV+J1kH/qJx0jQnbHANmasB76nGMf5S/0rxfp1U0c4BtabfbaDab4cw/po+St/lXd69WL5zOG/6vQCCW1sMUZX7U+TEQHtDN3mKeQF0rzPFhG9Q7qB5TLh+gl35ubi7sFskdCsfHx8Pa35ijy4WbzmmlgcsazovhcIiVg3PkAGD84Hldd57NZtEol1E/kBEVJKOimUwGP/ZVX4W/+Du/k9gV+VMXL+JHv/Irw3pWNWDTBHaax5a/6Tx3w4DtmZycDMCH4KndbieO8Dpt/gfi85D9S2ufOgI0iq0OPtJFgZGCejXwWAeNyGw2i/rCAj55+TKed//+EQP005cu4X6phLFOJzGe9WwWmYMoLuScc5fjP/2GN+DP/PqvJyJWn7lyBT/6mteEnWlVrikfeDYC55X2V2lK/iWw53el08+84Q34M7/2a3i+tOfGtWt411vegkGrlTCet8plZB57bJ+uB+sFdYfVn3/jG/E22+H49hNP4Fff9rZggCrAVh7Qjzq6fczp+PVIgUckXAbGwPFpF48yemFfGImjYT4+Ph7ObeYGTjs7O0eWYcWMZQJI6t9isRj0MMH6YDDABdsE7EjbbtxA/vnPDwB45Zgzie8VCpj64z/Gwh//8ZHfcgBecPcufl92JFbZq0V5g+OpRq/Om2w2G86PLhQK6B44VpQfxsbG8IO3buFLbCO4x27exF/sdPD3X/lK3D7maLTtK1eQy+XwzDPPoNlsYuLWLbxGMjhCP4dDvODuXTx/bAzNg7W3uu7SZVmC3gf8z022JiYmwrpzrqd1fJSmLxU/nnZhf3WXXj0b2dsec4C6oU5swQ3HVG4SZ7vufVTSj2OlvLgYzjzOZA4DOaTvI3Kucqw8ureHb/6jP8KLLQOCEeEf+YZvOOKgUl3G9yrW9WCVG7V8Rp1dDGZ1Oh0UOh183//9f+MlsgnuZ69dw3u+4zsSOoZ7GzSbzf1gRruNv/7+9yeWKHxwbg7/3xe+EPVMJjgTrlYq+Iu/8zuJXfU/cv48fuTLvxzZg2Me6cxn9hv7TWyrOM6DADEDOMbTbvSrTqAj5bjyeZ1j6xZ1jHnTvM8AwkT342o0HYPeDU/RoDLcOn8en3v8cVy/cSPhceZaolvj48gceNErlQoGpRJ+9M1vxtzm5n7U9WA3X2XKnZ0dLFareOqRR/CEecX7mQxuPPooNufmkBkerv9wY4V91T4rTXyyO53UkCDAYVTuL/zGb+B5AsQB4PJTT+HLf+RH8O++53sCcKmtrCQMVJbccIgXPXiAhUYDiweTPHPA2K/7pV/CZVt7+ILFRfzl970P//RrviYoVnVOaFEwx76rMFKDxemSRisFPafttVe+5FzodDpot9tot9vIZPbX+9Gg1Y2jYptHxQwEnVNqyCrgpxfTo6G8j4JQAXdaP/heXldBzKKOJc5ZrsGo1Wphja2uoVODTvvm7VCe0X74MwqGvc0ezdA0OJ9XmsrUGx/HP3/DG8KZbCuTk1iqVvcBfYpBGhPE2gcX3N52F+g0bPWYDI4z0+2YyXKW1tjqnOXfWDTPjRi9x50WvBbzZLNoNgvBNHntp17/evzZ//SfEk6/T124gB97zWuiTh797ryo7+wWCvhXb3xj0BtLlQoelMv7YM6WbShN/F3aX50j6mDk+zmXOb/JK2NjY2hPTAQ9dq7ZRH1uDvWDY3GyvV6Ux9ThxU18MpkM+vk8/q9v/VbM1eu4cBABaF24sK93D7KlnI9jet+XM+j7dWM9lwFpYF3fcZYKHYnaLuXT4FDY2go7905NTQVHIDdb2tjYQLPZTOxb4brSx1BBPtObC4UCOp3OvgPhySdHtr176RIymUzIrFmcnsYfHOxZoHkS/UwGH19YwL1iEdORjcq0LGxtJVKqdT4qgI85tWN4ibiQeqbX6wXHCet4ZHsbrzrYR0RLbjjES5aWcG5rC5/N5/H+qSm8vF5P9G0PwIdnZtC9fBnl4RAPHjzA+vo6rh6z3vzqzg7uHmQGeQr5KMcLDXUaK2tra+h0Otjc3Az7yygecCeh6ruz5ODRbCx1wo9qZ5pDSI05jrsbtpr9ROOpc+HCyDbeLxbDDt6M9haLxdD2lWNkS3Z8PB7RHQ7xwvv3cW5rC+sHu1vrxrExvnB9ye/uEGGf3bBltuZf/73fwxdZlPrxW7fwpl/4BfyXv/E3gizu9Xqo1+vhqK2/+f734yXWl5eureHvfOxj+P7nPhfA/h4yf+0P/gDPtfq/aHkZf/V3fxfveMMbEo5X19Nq2KpO82h2mlHrRqzOByDp9D5JObFhy4p9sbgbJt5Q93LqhgOVSiUs7iYR1AOikcGYsfxr3/Ed+FM/93N47Omnw7XPXrmCn3n969E7UPJsA+vuXLqEu1eu7LdB2qprN37u678e3/Frv5ZYh/XM9et411vekkih1GN+NG3RPc6xAeS9jFTrBHTv3XA4xEK9Ht3JlWuKp9fWsHGwMce8eZm8zNXrWJOUx6mVFTzy1FNH7ssNh/iiBw9wsd0O64rprdMotQqdsbHDYzzUG+n9VQZVY47CTI3AswBwGE1jqke9XsfS0hLW1tZQr9fDcTeMXFJIM83ez37V4vwRi1gCCAKOZ/TxuB/lNwoz/q5r1ZT3VNDomrfBYJAQTsBhCjaN2MuXL2NychIXL14MG4ZwS33WF0srVSNWFZd68FkH5z55yeWLOlH4P+93R5n21w2qpWoVD8rlILTVu6hjk+asU+XrxpsKd/6uu6IyYpPJZMIRHp1OJ6zJoxzkxjNnqfhY8porLU9bAhAcL6SHevuVXurkYOEYqRd/OBxir1rFj7/1rZjd2MDMxgaWq1UsVav74yNt8zEm38UyklSpLlYquHtwbNBep5NYiuOODRbPgmDRe32eKP+QTtz8jfJnbGwM6wfnhgNA7mBDxTQDXYEo6ayO4ua5c9i+cmX/f9HblAv00quMYL9iTkgdL8cI/Mv2sV/UeTqHfPO5mBH8bJbf/M3fDLKWTgI9Zo+GaqlU2t/wbn09GLUvfvGLUSwWcfnyZRSLRTQajQDite/AUWcYaaybaNVqtdCW8fFxTDz2GDpf8RUo/v7vI6PLobJZ3H/+8/Ffbt4MEY9yuYwrV67gJ1/3OhQtAvTJCxfwY1/5ldju9fD0MXp3a2EBlYMNsdwRpRFJ4BCgZ7P7R/b4/hvka/4dHx9Hu91Gp9NBvV4PfPTcsdGQ9dG9PTQuXsQ7/8SfQPH3fz+xD8snz5/HT77mNRjf2Aib5/T7fUwck6VXfelLcXF+PhxVNeqM0lhRg43nDlP2UYeTZtSBwOFmgnR2nRXjdjg8XNqke7LEZMBxNKIMqNVqwVGumSrUHyzkg7WZGTz92GN47JlnjgS2PnXxIu4WCsgcLA+j7qEDuXaQ7fWxO3eiy5E+deECZo7Zz2CuXkdjYSFx1rjidcVcbvBy3sYwBZDUAdwAdmZtLXo+eXY4xPWnnwaefhrrB8dYUV+0223Mrq8nIrUsOQAv39jA1e1tTBxswJgWDHvJ8jIutFrYOEirp+5Q+ycWsdb+aLYc6ROzjagn9ZQI0tQ3Uh1VHsqwVU+qW+zaOLe2ldGpMBnZ8kiWeve1rliHdspl/NL3fA+qS0uoLi9jtVYLR5iQNWJM40ymn0wmg26hgHd+0zdhvl7HwtYWNmZn0eDRBwcTkcJXDQRtr07s2OTWZ/ya/kbQfN52+PMyubKC3KVLKBQKx24ysnxghHEH5Epkwmg532ph69y5I4CJNNTJO8ojE6OLKu60e89C4cRlqkej0QhrfnTCcbLrpNc1hO6hA0Z7fZVHNZKjoMojuqPWwMe8ikpvCiYHnqVSKawbnp6eDoa8bxii83eUZ47tYZs8VUf5wr14msWhciVGO6VzjNZqlPjnOKUco617br2vSg8CZAXuFOh0ljFbg+ndp1m8/aNkv9JeeUHleFr2hr4LODz7j9/d6cDrALAxO4u16en9/RlkiYfypmdOKBj34p5kd1pq3e7U4DPOm7yufXTHj9fB77EIH/9q5IzXFDzpdV0C4PQYNRY+zmnjrve6I5x6TT+MUniU6izpgAcPHoTx0PNYaTBS5p8/fz5c4zFGNFIUO8SWOcSKjzF5QA2h8fFxrP/Lf4m57/s+FN/3vvDs4pNP4r3f/d1ot9tBd9D4bs3M4Ee+/usxX6/jfKuF1VoNSwdnWQ4GA9wvl1P3Jrn52GNoLCygbGPkuE/bHyuKFckLhQMHEvup+nVzZmbkGK0e7JC8WyjgHa9/PS6225ir1/GgVAoRNraHdOtMTuLBi16E85/4BLIajc9mUX/5y7H76KOYkDOlfd+Pk8wZYD/7ho4IzcyI0SRNDpx2UVnpGXgso/RCrD6OObESi+MB4HD/DQD4t9/4jfiWf//vE0spPnP5Mn7yta/FGI7Kbk2bzWQy+InXvhZ/8bd/OxEw+vSlS/g/v+IrUD7Gkbx2sP+MZ4mpnjiJ/NK5HRtfGvkn2SCRm8Pu7e0FWXTlmCMQHxsOsTg2hrlIFoSWi50OWhcuJIKQKr9dB6ocSMMNaXzi3/k/de9JykNHbKmo9Fxb7YymT/GvghLufDY7OxsOqlYwDSBxZqN6inVyKzhoLCxgY3YWg8EAlZT7/K+mFbHNChropV89OANrAsloAcE+wScVsx+UrH/ZHio4TSflfR6FYkrrzpUrI8dn7aCd09PT2Mrl8PFLl/DkgwdHFNJH5+bQWFjA45cuhQ0oGgfR2LSyMTMT1kv5WLmxASTTV2OeKv3Nga8KsOMMi2ezcE1qq9XCgwcPcO/ePTQaDbTb7ZD+y3QXRm3L5XKI4tKJ4MYti/MA6asRAl1by00Q0oxenYdUHvoubgYQmx+cp2NjY5icnAwboNCwXVhYQLFYDOl1unkaaaXCntc1XcmNyNj6S+2/ggAF4ko7flclw/+1TuU1egX1f7aH9cUM49icJlDSzaNUFrly5hoyPcJsZmYG1WoVMwdHTezs7KDdboct+89CUdqqQaR6QSM2GoWLKSZ93iOmyhfKN2o0Oi/wnWo86jpA3kd+57i5ouXc6h2sx1JedKNW1xcpn7tnns4Ll3vaX9dduvkOAXGpVArvptMsn88HoOUOW9ar0UEaWJr6ps/4GCnP00By8OhF5RVpMRgMwuZSqlfcee7vP+1y48YNAMmNTMgTXPs1Pj6O6enpgHOA/Wgl20/cobLmOMOW7+RYq3xTOb5dKuHeT/wEsjduYPj001ifnsZipYJCt4vuwcYwnU4HY2P7OwJzI8RupYIbB30ZlzmcyWTwL770S/H9H/hAIqr76UuX8Ovf/M0oDA8doeT1GIbReUwakYa8Rl4sFosBfxWLxaBfyQ/rs7OpG7p94tw5rE5NIS/HtKxNT2PtYAfw4sE8oTNWd/P/6Nvfjokf+iHMffCDoc76l3wJPvV3/y6Gw2EwFDQzR2WOyw7X4YPBIByfNDk5GTKvYtlUjhsVe5+FosabzgPg6IZgvOZLFVR/kB+5a7TiSPKCO+v6/T7aExP4yW/5lpCls1qrYXlyEsPBAFWRwSo/VW538nn88OtfHwJYD0qlsMxkPZ/HRy9cwAuXlo5uHHj5MtZnZjApy81IF5Vxavfwd/ZB57vKAjfuOC/2Hnlk5JgslstotVoh44tnhe8MBsD735/63OD6dRQKBSzJsVWxsn3lCqampo60UVOQqQdVT3O8WGJG7UnkH2l70vLQa2x9F1W+VBmVjY01jmtEYikdMSGvhIytv+O7HEhoW9KMMTIf3+HeBhqWTItWw5YKRr02Ckj0fZycoxhbr1HJ6+TYmJuLpl4MMhk8c/06Vg5Sk/L5PKrVKn7xTW/Ct7/nPXi+7H74qQsX8K+/+qsxebBxRLPZ3N9JOZ/HjSeewLXPfe7oeuWrV9G+eBH5TCYhdBzQ6aYKKsBiHx9rNaxUiKmyPG2h3ul00O12Ua/Xsba2hq2trUADB7oUVAp4YmOuxb2Tseif8rh/3DhVR0JsrsaEKIFYNpsNyp+7Rs7Ozoa0Yz3vTAWbjq0KO3+PtlP7y3HWPpMfcrnD856V92KyYFTE1OWNg8uYscF2pwlfHS8CWkYcGDlnSrjvIsnx1LNdK5UKcrlcOOuQWQFnpbiicto4iKdhpQ4MV3wEHmqI0XDS7AN3gumYuZdc5bjKa5WrPi/1GeobNWiBQ/ms9aoOihV3LLnDw+eOAkVd10QHmhqxOtect9VRpIatjgWvafvZf++T6lL/qCPH38VIjM5f0iWTySRSetVRpDLktIsabgrsSEPqQTou6ACnczqbzSaOG/E+OR+6ga984jJf9eT2+fPoTU3tL19oNII8J825R4NuxKI767O+bDaLXrGIf/LVX43zzSbOt1phh+0rU1OJCBtxIecGx65/sFab575zXDmvgSRO0iVeajRom37sq78a3/Obv4kXSqTtE+fO4V9++ZeHtig/ajCCMladMplMBs2xMfz+//g/YqHRQOHePXQvXUL74sV92XSwbCKbzQb+pH6ng4f1qDzMZrOh3yovpqamsLW1FZw9vgxDx1vrOwvOHXe2KfaPGd8xQ9cLnQ26mzaLzjfFWLrcqXlwksHe3h5w4OhxfKFyRO2IwWCApWoVi5XKPtY4wEGZTAY/+prX4K/87u/ihbKvzWevXMHPvOENiXOcFa+qblAcz/HTPrCNMcOW10nTpclJfObaNTx+61b0fPKVWg0Q45S8t3X+PD555Qqed+/e0ZTrixexPjODfC6Hjbk5fObaNTxx61bUvmhduICC7ZWgstxxL9ugQYg0g97xreoPHUOXh6PKQ0Vs3UOjHdRBcgGtf+mVo9DSAU9TYDrY/h59n9+nRI+1h0zuxHKFrGnH9O5rVFK99VocIMfoo79rO3lUjk6Kd731rXjru96FJw48xwBw4/p1/Ls3vzlxVFKpVMKgUMDPfvu3Y2p1FZMrK1iuVrF8YJBQGXHjo93dXfzim96Eb/rlX06cfXjz+nX88pvfjOLB2YfaVgVHDrAIRGMGhvc5NsYKlNPG6NkunU4HrVYrGLWdTicRAVLhpEA7BmC8KP8DSadBjH914qti1A8Q34wnzRDR9nPDtWKxiJmZGVQqlfCX59ZyvZ8+x/q97TFDSP/X98d+43VXDO5McsNUeYj9dANc553/zzrSeE/ntI4ZFR4NFBq0KutcSJNe3Ek7k9mP7DFisXeMR/XZKic1MBxAqLGSZgjpPNe5FRtj4GjkPWZc8nf3KPM3vkuLjpPqO9c9qrjZzphxG9OJbkTG5r7+Tx6ibOWcjxm1vK7tAhAMA22/jqm3XR0vWr/PM5//Sgelk0cxdD4qYOY7NNJ/FgxbxQUsbD+dU8zsoTGlu51TN/IDHJ+mq84PLW7Y6tnklBf6LME65bPPI3WQKp9Txi5WKrhXLO5vhiWGJw17jVS53CaO0jF3/tB5ykACjVG2k/1sZLP4Z1/zNZiv1zFXr4ez1rPZLDA8dIZrf3VJUKFQCPRl2d7exnA4xPrMDAZTU/tz6CDSrhhM5xLHOTZuih+ZcQXs8321Wg1Gvs5lN+Jczp2Fwvb6ngRuTPKayzr9TeWHLmdy+cz3qu73uniP00np6PXEMKfOi52JCfzw61+Pc1tbuNBuY2NmBvWDJYnjgnn9nW7EKv/oPWoE6/9Ob7b5Z7/u6/Dt73kPnnfrVvj96atX8XN/6k8Fnmd9moX0bw72DNIg12cuX8ZPve51iXTiX/6mb8I3//Iv43GxL5557DG8+1u+JTEfY/rC5YnSIfZxWqkOoDxxpx7pcZJyYsPWAbUyiIMSLd5JpjUyaqvgRT3M7sHQ3Rz5bj1TlOfdqbBXAa5tpbImWPBn1LvPNqrxphuXsPhaORb32PhGWTqgnv6oAqTf76Ofz+On3/Y2TK2uYnZzE+vT01g/WHMycfAcz/2iUG1duID6/DwGg/00bSrVer0e2lEsFrFXreIXv+u7MLe5idnNTWwtLKCxsIA8gDGJDDpI1QPn+V4qbXUAKI8ojXQyq4LWtRYxgfVslwcPHoRzgmmAsM+DwQBzc3Oo1WqoVqthM5Rut4vuweYamUwGtYPt52OCW+mhB2ATpKqRwPNiB4NB2G7fIx5ap/I8i85V9oN94npaRmr5P7MsNFKrYFplBN+vRgz7pzyvxoHPU9bBjypTB9R6v++Y60or1i4H+jFQoe3mfSzq1ODcjm2ApePNeicmJsLxSaQz13BvHRzTchaAPXDUEaeAJuaB1nFXZTscDsOZlr1eLzH2BKLZbDaxjjwGnIDkuit9V8ww0s3UeK8aUZzPe3t76Ha74UiV4XAYeN7HVEGv6xl1yrjTReegOsOoFxQ0c2kAlx90Oh0ASKz547xwB4DWr6DEDV2lE8dYZbLrRk27Z9SKfMCjQDqdTjC09PgqdTLwXkaB6PxW/eFtO42iS5XIn6S1LsVQ+cvzqYkfisUiut1u4P2Y49KLO390ba9mM+h6X84H6pLBYBBdv8gzzdkP8rU6InimbD6fx/z8PObm5nDx4sWg+xXLuONf+Z40IA9rhE6P0qERPj8/H+6nLiX/NJtNrM/MYHlych/Um17l+zS7DkAw/Cmf+f9wOMT29nbYZVqz0Igz2U7Wo2Ohc8t5ZjDYX85AukxOTibkC+ntOoollpl0WmVnZyekUXPOuvNFjcVY1geAhPzlxpR0ALEO8jBxM3lRHUPAYTYMeYf4y4u2y+0AX/rG+3K5HOrz8+gdHBFVPBhD5fOYMa1z1nEY+805p+/Sseb8ZDubY2P4V298IxYajXCyy9r09D59jGfUWNwulfDOb/omzG5sYHZzE6u1GlanpgAAhUwmHLk6GB/HL/35Px9Suxvz82GDwonM4aagqjPccaFz0H9Tvay0cp5nf305nev/UeWhDFtvfJoQ1sZoYZRHz65VRcz7FeiexFhWsOreYr2f12IeZTIWhbQaszogozYOOI7w2t7Ydf2uzO7035ybCwzn5l5MMCpd9DvvVRC4de5cWCSeyxz1srAdGllwA0f7EeODNBopLR1gnXbx9DHSmLvsVSqVcEC9pg6qMGZRgeY8yrpZB1M/1LNG44A7x8aMS6dhTLmog4XAhYarfmjw8j41GLx+N/ZigF7nu/OIGkJuJJHvtM8+t5V+3ld9T8ywjX33sdE+pNFVHUv9fj8RWdbCecPzvBmp7fcPD5RXR8VZKzF+cnns9CZg1vHiOkx1lugcUqPX36vjEANWDh74v6dIqeHHCIuCVvZP26R91vcCR88tdJ3kbY7pBm03fydPsZ3ctMj5fZQuUjnBsRmly31u65zUeaT0ITDh2DK6pVEKB0Fat0ehz0JRPed9UVxBuuqRhrxfUxjT9KL/VXnu8sadKf4BkvRlvZSlPgc0gk7HB3VEqVTC1NQUpqamwo7uuk5b5z2L10+aqTx0zKDv29vbw+zsbOJcb9KchiivaUDEHTY+TupMBw7XxSvNdA67Xh310T6pA4Hp3s7XPhYawPl8QP0XsnAnZM7pUW2K8av/Tp7znYVZXDb488Dxx8TFijplFWt4/bGMRMVAik1i/U7TVXpNdaSPNfWg6oLVqSmsHazj13nlGIZzje1rLCygPj8PAJgQ/tS5CwD1+Xk0z5/fH5sInovh+piM0b8uA5xOWo/+5vX/d4/Yahn1Al03wQ+BKM++5NluTAlxAqln0cGCggp9F4WAAiI+r39JXPVMsqgCUi8f66Ug1+gAv/O9aZsBsA4VWgQAvIeKxNPLfPMNXXeixQGBM5/SQYuDO44B26k0IG3d26yM53XF2hJj2phwYL9OG+DEaMlza7n+lDt9U5Ex2kFl4LycRh8Hudls9shmT7lcLhjavhEa+cqFvANpeq0ZHeGmVzyGq1QqhU1GPDUszYhQ0EAloJ5NBcAsKuhUIDtPcA1wyGCQeagRAvUKci5rW/W9PqYePVGjwoGitkNpoMCM71BjhH1jlGJubi4cf8ZjxxipPUubhmikMwaOFeTqGijKJQUHLNns/vEfvF4sFo+MmW7I52NIg0kdgORBz/JRnlcQxX71+/0wV7kJx3C4v+ZK5xeQdL46oPXIqcq3GLhRo0Lr0CwM0oROLW4802q1gixW4K9OOM6JmBEUKxrN8Pt8LGMOzsFgkIjsMOKm60BVn5KebKtuvsYyCiA/W6VYLAa6xNIme71emL/Fg7RdzeJhn8oHJzf4+lwg7pxU0B4D7+QxzWhhO/Q5OmqY5aORX84NPeuTz1IPXL58ObEkhWPP7DvlBcdblAnET5xHapQolspms4nMPh6xRzr1ej1sbm5iaWkpHB+kKeDKK4yYso1uCJHntM3KfzqnKVMc96iRpIW06PV6yOVyYcdaHuPlkXV9N7PvmLF1UlD/hSwbGxvodrtBPgJHo3Oxueq6VHEM94XRTZiA5P46HCvVHb5/hfIQS5qh5E4odwy6nCPu0RMuyAea3cCiej6Gl2I2gsoDtlGzAnlN9Yu2Uw1klSeKLV1v85rqmZiDyg3wGE31PS6n1KmnUWnPAlV+0nR/0sDHN608dMQ2BjjZkRgI4/+5XA7lchmTk5OYnp5OnP3K4iBBieIecmVyBQsOHpS4yjQKyFg/04k8CunX3Ijz9SVpfVBGioEGrZv3qjHJ9rvBp31Qmiqj+Hi4caFjoPTmOzzlwo0xT6HQ9zrA8t+1vtiE0/acVimXyyGCRvBNIUejL5PJhLQmBcA+mXV8Y0XpQOBHow443HmbAk03LPGNEZz2Oq5smxoi/K5phu5o0cL6yc8apXGnCEGNKhQ6mVzxMVIdc5QojVQusT5vJ3koxqOsy+kf413tM98fW9+s9ZNPFFBxDHyvAYJOrq09C2Dei89vV3hcw8bNx3ifgh+f39QdqlxZ9DlPN1a5p3LY1y+qDNM54Dzb7/fROTijVpdEkM8UyKX1y+eXttPlsdNB20qgTSNADQQ1VGmMsy+aZeTecRYF9vqbghL9XY+m4cflhdOVMiDGK+wv152z3yovlH5nZQ74GAGHgFjbrg5o7pIP7Ee71tfX0Wq1sL29HZZ28PmYbHUAzHeTlnS6KKbQNZss6vTQdE8WBeKsn1FZ7tS+sLCAcrkcUoWVH4HDdPlYUbxA3lbDe3t7OxFwYDuYSUSQSx6jE7ZQKGB9fR2dTgftdjs843RS/cffFTSrcc8xpL5QwK+GgdIwTafv7e2h1+uF3aiB/fnE6ypTXKc4zkyj7bNZut1uYtMrX5etZdT/pCPxS9oaWw0AsFA28HfqVNIyJtv0u9sTLDEsrXJO+V31SZpTym0XN/T0vfxdcY1jB/J/2nxXA1zlqupsdVpqOzgvdX6k4X3lzZMWxZt6lKG/w/lDg30abDyufF6GrTMxr8cEqhq29PzVDs4a80bqAKtAUsNKB0oZ24Gof2f9HBBlHmVe9X4oAElLHYoZnA5IYx4bVSQ64by9FK4Uar5OVSch+6LtULqOGlfep0JD2++enLR36KSJFRdcSmc3XrT+0wY35XIZuVwOOzs7YY0pDT8FFzRsle95n453jF9jRht5kUbCcDhMbFCi9VO4sXikxR0hHkXTVBv2L+bUcaGm81+PJIrxlT6jfY7xIQGGX9M5HIsoOW0J+FkHjRmf4/zrikfBjPNumlGrc1qVsG4iRQNQPfSdTgc7Ozvh/EuXRadZ0uagKmRGTHRHU21/jG/UuHVQ58afyjzVCyzq1dVx1CUlrFv3WWB6XafTSQBJBbpaYg44lWOxOeM85sam05EyX5/XfR4Y9WF0lLKBTgXVB7oO0KOBCtSVhmwPdbXT3WUH6yCf6667zkMagdCxUkemGidnoXCMVY5pJJxjRNpRNzDS2+v1sLS0FBykc3NzR7BCDNxpUfnkMlAjR/xNI4IAQuo6gITDRLND+AyX11y4cAGVSgWzs7MJo1ANQfaXeMVlo8puroEkzw4G+xF+Nep0rnMtrOpO4knuX9FoNBLjwHZqHxUjAYfZHoojNZCgWI20P05vuT6hs7Lb7YY1yayTxxj584xEcpw0Q+C0ix5tqIat671Rc1bvdSe66zqVC/yf4885QJmh45NmaKuhCSTxKOtQXeFOPc828nb4uxyPuT5I0+u8rvWTX5mdoCclsO++jl7HQmU+eVqNWNeR3h7Vp6OwgL7Ln9WoLWVIjBY698gXatscV05s2OoxP94RByiq4ChoeL4b1yO6IlXh5+8AkAAksYkUA05pAwskN4LQ/H4F0KxXFYnW5TuV+oRTIaZRKV7z9qtHTvujApmg3AdYjRKnv36PgSnSSo0aN7LSDFvWoYJHPZz6HO+PXXNhprTyKM5plCtXrmBnZwczMzNhp1p6LnXzEx1nAoNqtRrOsNO+naSQp/RsZ3p6yRM8coDKUIW8zlk1BHwM+Ls6ehxQK1/xOuc8acCdtjudDnq9XiJN2kEscMjfAKKRWxXUsWd1PqlhQUNRixurLHy/ei9jYDMm+1RecJxIK26SokYRlzvoOjsaKDSsmIKma9dOm/+1OP8oj3AXWKZWqzeZdFSjif3nZjrAYQq7yxU39ICkXOO9jE6pkqbM0p2F1RnDeUKDUOeROiNiBi0BXkxWsqj+8OUrLA6O2A41qNSAJK8p0NFdd+kdV7rTiFCjlXUoSORYaL/ZHmaoOOgi0BoM9je3opPG57XOM+0vx5iRONffaSDw2SpKBzXIWCg3ufyE6z/z+Tzq9TqWlpbw/ve/PzgfLl++jHK5nJgLLo+V1zQjjjRV0M16CoXCEby2s7OTMNAoq3TM+/1+4IdCoYDp6elg0OquwuRb6gp+YvpE26C6he3VdeycZ36MCqOzXHPLOUdezGazmJubQ71eR7fbRavViuqbGB4kTWg8cbdi8mYud3jOsspt0sOjjc6jvjRtOByG9HzfHIfPUs6xTa7HT7P4PFa5ph+XkWl4x+UJ6eBGkUZFVebwffoscZAHvUbJHTVSNXNTx0VlF4AETlJdQIOd97vzgnJc+6I6zI1tACgcnExCHUb+p23B5QXUoxoZjfVDx9J1muo71YOOi0YVnwfUHTwKUbOZlP7KL6QnZUTM4E4rD32OrRuVClrdgHSjjQJKo59phHLr/STfY2BUiwoRBTwx7zrrcGUTe5dOZPcsqYGhf2PRu1i7YxOd79F3xein3qJYyqQqQwdO2m/1Vrmyjf2N0U9pljZOTou0Z06jEGhpmi0Bos4NXRfHNZZ63p+WWJ/SJq6D5phhocJBlY4KdB9bbYuDdxeEsfZ7pFYFrEbg9B2xvsXmuyoSv6b/uxLUel0mpb3XefY4fnPe9Pa58a1zSdOXyEdcR09niWYBuEI9q4V9Y7RW1+k7PVSBuw6JyUcH7057B7FOM96vhmgsdVOdiCq3Yrzj7db36ryM8WSabtH2qied9E0DWpnM4Y62mpGgbVLns77Hac76+FflgssdNU40tVidfFpf2v/aP13aofQ67RIzXBSAKuDmfCatt7e30W63sbGxgWKxGACb4wUWHVt1JCqv8/0+J9ShrnghZiywLjU4JyYmUKlUgkNWT4ZwB7emoivP+LyO4UPKBvIrsJ/qyv56BIkf/k6jlLtOM7ozHA6DQ0XHiEWX63DuMz1a19BqJJBjrP31bIWYHvN3q2Fy3NwYVc9ZKjEZmYb1nEaOLb2kzX+dC44HYvLX9YHLNx1LPeEj9l7vi8/bWDt87umYx2RyWn2K3Uk/rceDXmrbOF103FyXxLClluNkcpo88/kSo0mMNppdcZLyUIYtP/QGjhJcGqXI5faPhVlYWAgbKbiQUubUlBrvJIU1hZAba3q/e1PogSNRNcKpXmplHC3ahpjBMBgMwiYBFH7sj689VODG+yiY1ZOv/VFFRw+5MrZ6H9XTyGd0fDzaTI8Kx4VgSpWqAnalhypJXd+mQEjp5gouJvxVYJ0FYE9eYgoRj2LhuJK+9MY2m82wwzB3xtS+xqLUQNxZoN81osJNKMjXDnIcEAHxM+AUmMcET9oYAYfr6bj9f6fTCUczME3SQTP778Le3+V8qLRKU4IqsBU4uSDlX++nC36vP2ZQ0aFBQ4lrnvP5fPDM+7tUPu7s7KDX66Hdbh/ZaEvl42mXNIWsSjaTyWBychI7OztB/qjBpREuPhMrHO80Oa78w++8T+W4Gg4cMxoU29vb4X1Kd84DjZaozmN9wOEGJsPhMLG8xo1A1z1snwMH7RPvV0ewgy32W+Ws6hoCda5vd4eoHg1D2vmYpIESvotZBvTIT0xMBMeWgkYdD6Wx/s+jPyYnJxNRu7NQYhlVzJzhuknXD91uF7u7u2i1Wmg2m2g2m2HOMK0zZrQozfkeIGlI00ji/TSkmd2jGw5q5gTfqfOqWCyG4AN3P2YQQtfekV81PZ2RXC0aaeG8p7FJR57qLN0IiBtYVSqVYEi6LqOTeTAYhIhpLpcLGx8yest5wGN1hsP9lHDyJWWTHs1GWiivs688IcD3n9A5mM1mjwSCtO0cd+UjxZaKATk/ztLu+I7btK8qM1WGA3G9Tdr60ZBKM96nf1nUYaf/q3xRvM+2+VpZXXql73F5q3zoOEIzEfis16H36vgqrtC6Y/Je5wD5n7KeG6l5mjLnrzuItV10YGkWhvI1y6ilhkobnTfsKyPJup5a71U5x/lAOfIFX2Pr13TCqXFJBuVusRQYowB97Lv+rwBF2+SA2D0uGr3k/yqstX4HGfzuoEAHngPA9qnxqxOIKRLKeG68xfqs9VAY6yYQyvA+Xj4RgaNHPDhD6n0q3H1s/Z1enysG/00Z1aMuZ0WQAwgGW6vVQqPRQLPZxObmJobDYYKHWq0WOp0ONjY2MD09jamD88KApOGlYx0zopy/FVyzLlWqaePvawO1/rS/Og68push+Ju3jcI1Fr11Q15pwr8xJwxLzCCP1aPX3dPv88i97GnfYzRS+mranyo1Oh4ImIBk+hKfYRoy26zpP6wnFvF/tktMLisdOEZ6pImn26kc1vmvtOT8IH9p6rBHHdNkTKzt/pyuAVaQr8AsFlGL1aW/ORhh0f4rn7jhrv0aVRf/6txiW1Qn6rti80R/0znhoFOfV2cNkHRG6zzwaJZjCAWdahjTcEpr72mUmDNSowiqbwEEGUhDhg4s9lWPkHP84jrY36s8mBbx0bYRdzDdWPWrZlhUKpXw3aOw2l//63Tih7KRYFs3OlNnoC6/4MZKdIypEU3eprxxQ4IGNpf+kMbq2FGDmnVSv7lzSnEiaUIHTAz8K72Aw2MC1RhQvRiTK552HNOHp1VcLgLxqCOvqz3Aov3ViGLMlojpea3P3+sY04NEMb3P+Zjm1PO5GOsL/6recnqofvLf0t4X67/yL9+lOEGDSHxXGt5RZwyXSXlWQkz/xHSLX4+Nu76T9ceCFj4vKEe+IIZtWqdiBi5wOCEnJibCRinuhaXXwd+lg6Ilm80mUnhcISihXdjou3RNREx4qzBJA/2Mio6NjYUUGr4jlv+v3lftA+tme5zWrlT4nK4jiAk+vRYTulq/t0HpoZ5jpbk+G5uoDjhd6Djzat8dOJ+2YG+32wnDtl6vY319HblcLmQhAAie+vX1dZw7dw69Xi/0bdSkTDNsHbyooaACAkie/Upw7s4Gnzexj/OTGi7aB71f1/bRsGVqra7vYjt83NmfGC87r6QZ62nPOFB3A4v3k34+J9LmDee5b6LhBgGAhIdelRtBnMolTYUiqNI11qdV0hSWz0/2YWJiImwQo/RncUWvqeuUwS4rHTQQjKgTI9ZufRY4NGxjwNLnHe/Xun3toBse+lf7yrmpf122xgBYTP6pXuNftjm2Js/7GtCA6R0AANODSURBVNMt2nZNzdOxGw4P12GR9i6n3JjWetXoVh3B9bWMFCq9Tlv+A0mACOzTgYZUDBO5YUuZSJpq5E4BqhfPxqEjnfJKj+xRvtI16bpWm3VqNJ80r1arR/bZYNHxdkeIYwG2VyMuemyhzmvyK9tMmchNGoHkbtBsi/M/eTab3T+CiPKH2QSMGNPQ1L1AOFd0racarGr8+IZH7kBlGQ6HCcOWbVS9GKNzTL/F5NppFNVzMaymPKhz3ItiYzWetO40wyhNzrssA5LrlBUzOf/4GukYn2nb+VvsXpdZ7iyM1RErLvec30kv5X9eU/sjtomf4iB+9LhT1amsU9sUw4n8Xa/HbAm3K2J7FXl9MYfKqPLQ+4enDV6MuXl/uVwO28THACWVXQwQ6GC6sTvKcHMApUzv97uQjpWYkRDz3lAwaxuphBQ8xyZtrG6lixvVpBvfw4Hn/fSqA0lD3o0WVdT6fhUEauw73b0e3TDoOOPUFbAW0s7TnE6j8EzGTqeD5eVlrKysYHV1NaxBIn91u120223U63U0Gg00Go1Eirh7mV1ZA8mx5ITWzUKUb5lCpcoTQNhcgI4g0p8gVVM+FMiwLqZr8TdNK/Q2qqDT6K0vX9B0KqVBjJ94PcaT5HvyekweaX2qzGJyRt/pQlVLjKfZZ+50SiGtioE09THlX9JZjWEV/tw45SyVNJAAIADlSqUSzjD1yHUmc2hYOu8QuI8y0lQx+5i5vNHxVlDO9XgKOnWDPgXkbhwzzVPboh8HBzROdH2dRghcz2lUirvCqvEyCiylyVzXXzGQqPXqGkcW1UE+b0gXpid3u93QdxoWntnkwKpWqyVkqvbntIsug3IdzvYxSsgNpDjvSQceFae7x7t+AOJ6QcedbdA0XI2O8n26MSajpnTCcowZGSWv6ZjHeIT9VVnMvjsOdP4jDTUAoLKcxh6Nwlwul6BPDKfRWAZwZN5QzpRKpTAepAU39+JnfHz/LHe+o1QqYXx8HMVi8UjWoW4o5Q4oN/Ao1zm3NQVdHcYK9N0gPAv8DxxuIgvEAz0xoyeGdzlOdBSkzfU0+cTvAILM9ohemn5PyxrSay5DY3aBtjXmhHUjTjFPzJ7Qe9OwstLDs/UcPyrmU+Od72cbfS17TK8rb6cZtLH3Kz1Zj84b5XvXfTFcedLyeUVs/XpM8ej/usWzCru0OpVAbvDFDOe0geDftE/ae7VfQHxHYb3Xf3ewMqq4Yel98P74dffmxupnG0/SHn9HmlKL3e/XHYTFnleG9z7y97MAbNgGXUPV7XbDphNsH4Hwzs5OiO7S6FGw5nX739gHiKdz6DbovEZAQPDohqCm6NB4BZICWjdAiY2vz4eYUep9GkXfGL1jfK3vis0Pvzdtvqc9lyajYuNDemlanY4RkEzNU+PEPZuugHV83SF4GuU4ec1CZalnlSud+Azp7Jkn/tEoqsq9NLmkz8aclUprn1tuWLhs90iu3u/gxBW3GufOlw4cdM6lgQjnGa+b7XXaqWz1OmN16b0a/Yi1m/dopobyvhu2mp3Ac199zWZM9pxGURqwqGPZ5Yz2ncYNnRR0niiAi8l5pbU7A9NoQkOBzk01UrUfOk/dkR3TxWk0GYXnaMCOwl8xrMXvyr96bwz0Ki+qnlPArE4tHUeOj/IjI7Oaqp2WehyjC9uuhi2QNA5jfYphnrOAgQCkymggfZ7q7/o/r8XkcwwL61/W47I8Vka97yR2gL4rrf60cYu13bFN2twY1Ta9z2nF//Ud5EF/h+LFUXP0JDL4OH7V/2POYBbXlSxfsIitW+oUyq7kvSN+TpU+AySjtvyffx0c6vspqHQhuA6oCh7/q8KW7yXA0jVzaYv2eY1eBFViFH706muUy3fE036qF0X74AKUymIwODyfU/sQi3AMh4c7/ikocobyNqmH2AuVp9JVPbK6Hb7Xo97aNHCvIC8G4J7NQoDAMfRNcNgPpp7t7Ozg7t27aLVaeNnLXhZSlmOAkP8rMNS+OxChxz22xlo918Dh5k6kN4t659QA6ff7IVrLiFU+n0/UzfeRjzOZw3N2VYF7BCKNj5Rf3dOrAET5gwLZBWia0RIzUBT0aBv1WVdWnEcK1nd3d9FutxNjpAadrqPTzUxi0U6VITx242E2TfhClxjg8vnJszvL5XJQpuoooXzVtZTA0XX/LJwb6rGNjZUX1Q2x8ddMBveucwx1bRzHnuPvERsFvJq2qPPAecqBt6dJaoaRGwkqU3UcNAqixpPykUadnTaqjxzQkR57e3tBr3N9pG4Sxs2SWq1WYuMgvtc99YVCAZVKBfPz84FvfCzPArAHksCR6ySV/ykDNQ2Z/ZuamsLW1lbCOepRTB1fl58sGqXSqA3HnhHjfD4f+Ir1KP9y3P1YD7ZllGxUuaz6QenE+U0ju1gshuUJ7IPPA84fIKkLNSLmy160Txo5Jkjm5jP8jVFcOl94Tr1+qGsZuVWjV0tMNuveEvl8HtPT02FTNR6DpYX9Iz8ByeUrJwX0X+ii466RNb8n9lzMmaFyTI2tWFH+c/vBl1KonD9pv7Q9xDcxzOLv0aVIseJzzZexKN87Llf6+lxUW8Z1jLY9FliK2QBav/7vOmuU7qXc8Kw0X67l65kV43odwKGxe5JlaMDnuXmUWs4OcrxkMpnETljqaXdAqu/xospXAXmad8Hb4Pdo4eDqOzgQugaGdbgByPYpTdRDrvemAWk3tEd5ULUuZVBtJ5WJ3xebHC5Q0sbCAb7+VVr6OOlidKWP1+vASn8/bcFOJaj8qxPVU6q4M26r1cLKygqKxSLOnz8flCbLKLAWEzD+u/KIKnKCcjU6Ys/zukZiCPipmIGj66ZYfBdvBQaxeRdTSmmgP+bUUAU5as77vbGiRo0/o8aGtsUFvEa3fZ5qKvZx73fe9zVcZ8WwZYnJD14HcCQNkrKUhq0aYTSSHCy7XPB3AEfnhsqy2LrR2L3+G3/XJRI0FMgD7Jcas+5g1Y/OEU3H1nc6D3CuMT1TjT3lQR0Pp4uDPtUBXGKg9SggdIDnvzP1T+cG50Ov1wu7orthy8181DFFB6g6QXVsRsnJZ6ukyRIfC9KUhm2v10OtVkO1WsXMzEwwalutFtrtdpAdx71HdSvv02vuBOG8U/mjwFHxSgws65iqnNTvNKyJW1Qf8V7gkNdoYFJHkafZXpV3qivZRzVk+Z3tp/zQ+RWTU7xfnY98r24Q5RtGxfjS5xw/NLy1j27UKH04F9SQIS11GdhpF9XNJ5WjMfwS47eYjIq9P83holkevCemN9NsjJjTwvsXM1DVCEuTw4odFCeqvtNnXG/E6vQAgtJO9afbCHzG8aP2dxT2dByk98SMT7UZY05U/vW26lirnDlJeWjDVsF8GuDW6zRAuTkBBUQsoqiEUCNPf1fg4msvXSCo0o4JNm2jElIjMbq+Sr3MPpnTDFsfCL5H++EDrdEk/bDEDFbSTYGyr93JZDJHtpnXevi/GzzeB52gfk2FkkYPNL3Mn/VrGqlQhXWapVwuY3t7OxGR9AmrhlihUAje2aWlpWAY6xFMWkYJcv0tJhDSDNsY76TVqUKH4IBC1cGrCmNX+OrEiPGUGtAsfF4FpQo0F7Le/9j8Vr5V0KW/OyDV+n2eumBmvQRrXLumWSkEN7HIl77PlboatgqsTru4onS66/dcLpeINvvmMYPBIGSX7O7uhrXiPs9j46Sg2cG5tsMjXvyrPBgzoBRs+rsUqFNOqZzTurQNvmREdaTWrYBGz8tme3w5j+s0B4qkl+oZ3uvRbD7njiZNn+f1tJR6LtXgkV80atWhoY5b9oFGrcvHGFA+i0X7pFiABv758+cxNTWF+fl5bG5uot/vh6g2NzcC4k4bFnde8xppo7xBftSN+5Qnla98Lqs+ABB0geoEfZcbI4op+DtTsNWJ5VhEneD6XQs3XtKILetQYO3pwm5o69wFDjOyNACjsjdNBsfmMvvGrAtiBh7F4tiZ8911DN/JTMKzwP+KAdgPp63LURalPf+qvHKZoM/od9cHrMvnR4xmsf91XowKOujcoX7nu2PGtuMZbbvSU+eJ909xlM5JbVPMFuD93nbHIK4nY3rFi4+/jotnYer9aRgqhuUUY7Pek0Zrgc/DsI11TIsaiMos7vXSzmi93kEHwg5u9T4XtOrti/WHhQzAQWGqqaYhs143bJUJXSH74Ci9dDI44NFF8BrNUZCmQkWZQdNFWdzrqX2OKaM0Ya1j7+Oiz2hh5IabN3Q6nUQ6nzK5RwiUZ04b2PsW6BwLRmUrlQoKhQLm5+dRq9UwPz8fzjBtNBpYXl7G5uYmarUaKpXKyHepMNQPkAToCpYVcPiGFDGhRt7WupUfmRLFOjkfNArsUcXhcIhCoZA4LiJm+LKPBCExoK7H3yifuQHhdNO6VAbpBhXqVYwZmyqgY1F5XaagxisNuExm34HElLM0QMK5RjrqjrDKbzGAdxolzYhlcX3AVGOPgngktNlsBn7W3Z/VWFIvt8uiGLBWMOF9cKeZgxt+pzLl5lcEqrouUeUS55vKCW6YOL+5idraGtampvCgXA794rtIEz2zlgCe7x4ODzcL0tRRP1KJ+lD7rHrEwYPrInXEqEzR53VvAQVG29vbaDQa2NraQqvVSswPzQBh+6kbZmZmUKvVwk64Mf1z2sBejzjSKCZ5zQ2g4XCIVquFzc1NPProo5icnMRLX/rSMNcHgwE6nQ46nU5iTL2o3OL/qvuV12mwKp/rvKHspqzScWYfXLeo7CPvbG9vY2xsDMViMbErM9vP/qgjgzThBk48R1pxi9Iwn8+HDZt4VFKv1wsp3DHDg/2gzPHsCJ0LdKhRJrE/ih8zmUwi3Tx2DJXKEeoHT73MZDKh7aSXppH7zrWcG5RDp837LHS2ORZwQ4ZFdYTKJyCZFZBmSLltEDN+HYs7zo5heL2mMpuy08dPl3EQSxQKhWAv+BzR+aMGsOsbtXEUk2g96oRR+eBOG6WTXo/ZTG6Hue7UNiqNFeN4SRtfH0+lFZ9zfO/tUsx2kvLQhm3sk3a/NtKBkH93Bo7VE3vW69D3KCN5XT6ZOAhkaB1c7YMykzOqKyX3fMdoEqObAjYHc/6M0zbNEPb7Y4LI++y/eV98MgDxjbQU0Ma8Rt5/1qPtH/XMs1l07Kl0ut1uUIjcPTGTyYSIBRUXo1U+ljH+j/G9P+fGa9o8cwHmY+8OFhVIY2NjIQWTHzUMNCKlxlisTd4O9+w5PSgACbw1ndMFnwKMtHFLkwux4jTxD2mhqXEEaBqhjHmNHWTRsNVogSu0s8T/o+SvFjVm2Rc9kxJIjl+ah91lispHfb8XBfyxe2IAieBG2+fON8+GcB5mlGVsbAxTgwHe+PM/j+uf/Wy45+nr1/Fv3vhGtA8MGXWU+VinOWcddDhYou5QWsSedZCn4MF5XR1FDqDU0ceomqaJOq3Yb/J9oVBIpK5rm4+bq89WOUkb2FfSS9dU0oCfm5tDs9kMEVDPgkvT945H/K/yUKw9WqePI+uP4aJYv+l8KBQK4V6+xwE361Oj1TfEK9+/j8ryMnauXsX21avB2KBsJF8yQ4ZGsfL7KOe30vG44IvT0+tJ06eOI132MLNHnSKOxxRjqlP3LPA/gCP9c35Jw7oun1jS8Ln+Pup//81xqb6f37W9sTbF+ujZOOQZ3hvbi8frjo11jA6up1SGel3en7Ti98d4z+uIYbNYXWn3xXhB54jKm5guVz0Wq2tU+bwMW4+0pd2vf4Gjhp52xD2I/myMaWKGlW4cwN9idenvGr3SdbV6DIoy87gAEoJXerAJcGMgXj0UVAJKF4/QKaDXtShKR++fTjY3LvhuBSlqLGhb3WPrdFPDju1QL5f2l4BFN2RROuj4sW+aRn0WolU0StW7OxwO0ev1sLy8HPpQq9VQKBQwPT2NVqsVjv8pFovB0FWjXUtsPrkAUWWiilzXxWp96qFn5FWNRQBHxozRlX4/uZFUDNwrQOYxCLpxjhoKHq3ls8qP3l/2h+uyyGfuvWS9KiD1fTFZoiCGf2PGkAte0mx3dxeNRgPNZhNbW1soFosAkDjDN3aGHNtJ4FatVgO4Jy25fIP7CJyVkmZsxOSQnl/ODco4PyYmJhLrMWn8kv/oJOD/CvBi8gOIHxUVW47BNuo4K5hU0AIcrpnUNXcuU1kfHRWVSgWlUglv+fEfx6XPfS5Bw8du3sR3vOc9+Pnv/M4jfKyGbKlUSjhPdNMl3qNGo8t7deCkgThPdfM9JQAksmtUv6pDi+NFQ44b6GUymbCZGDdKGgwGKJVK4RjAcrmMarWaMJJiPHba4F7pq7vI62/8TlpubW0hk8lgaWkJMzMzuHz5Mh577DHMzs5ibW0t0JNy3R02QLpDnu/3echocL/fD7q31+sl6hgOh+E+PaJE62PGgM4l4p1KpRI2iNN55aBZo+9qqA4Gg33ZtrmJF//jf4yFD384tG/ti78Yn/0H/yARsaUOIk83m00ASOgZ1TvsZ1pkKpvdP+uWNOO812ivbvzmAQ32V/UFacR54Gune70e2u12OAarWCwm6lCa+TzWMTrNwj5q9oU6ClTW6DNAPONHaaYy3p+lXFQc4pmTLo+9qJzT//nXnScMSjgmYcRSj3CiI1v7GFs2wo86vdl/bYfqQc5pZno4T3t//JrTXXmY15TmnvUZ4/UYJtISsxc1cOiOHy+qj5UmJy2f1+ZRo6z6mDGkTMFrPhhuiHr9aQPk37WowNE+eBuVwYbDwx27CMZVwJDJgGQqGYtONjK9CkeliXp2Y+2KTXKnnfZNr7kA0THwdmnR+2JGrV9TZot5K9lPXS+ok8rHwUGj1nmahUYpgCBgmOrU6XQCgOHuijyLkcZhoVBIrC1Sg8UBHIsLB79Hx1x5zAFn7B3+bjUgFEwDCIDCP668OHdim8Vls9mQjrkxM4O16emEAeHGiRo56iTxvvt3p4vSR39z5aDPxowWv4dRg16vFyLaVIauuJzmpB9TdfUoCf6mKcka0Tvt4jSLGUu8runVCtpo8JLXmH4ck20uy1RWxNrhBkbavNLn1FHjYEm99sr77qh0mdXv91FdWsKVT37yyPuzwyEee/ppTK+tYXNuLsEnqlPYF01PViPT9V4aiHca+LxlXewjr6su8TF2maT3akqnRujK5XIiBVNpTn6PAeLYGJ5GSXMo8/+YQ4xLElqtFvL5fHDiTE5OBl4rFArB4avy0PlX+Ssmt2JGBYGhp3drWzVl2Z38BPmqEwaDQTAKVZ7yrzrq3bmi94yNjeFF/9v/hpmPfjTRl9kPfxjP/8EfxP13vjPsIE+joVAohEg305N5xjf7yLGgPlJDQ7EP1/3y/zS5RgwYc6TqPHDcRKy4s7ODbreLra0tbG1tYXd3N/C/6k3lM5/XSuvTLB58iWFWx/tanG81pZm/xwxPlfv+nli93mYt2i7lVf6mqeI+FirzdBd41kUMpenHxxmAXrRvrEfn7Kh9N2I2gzpltK5R+CemM9yW0zpjvMD3+McDYC7rfFyPw8mx8lChMJ3E/nEArZ2LEdC9Pa5I2Smtg0zmwlS/a8djxoBe8/7Qw6brwjQ1Sg1bKgFe18hAzKj0dxIcqRDmfaoQYvRn3Uo7pb0DHBfSSnf9rsweqzdt7FXoKNOqUUNjJ2bY6jvYXlW2p23UAkC73Q7HFIyPj4eNcXZ2dtBut0NEcWFhAblcDqVSKZzJ6LzOjYYcEMWEjCsQ/83Bghq23JCHApIeSJ+TvKYp+NzwhfOC4+ipxtoW4NArz0hBLpdDsdvFG37mZ3BN0jE/9/jj+KW3vAVNcRwBh44hfnytC9/nIILXSQs3IrWfacaYA9NY3fy+u7sbNsjp9XoJwxZA4lxbLaQhj76gkaep3DQMPL37rJQ0xaOFcpTROhbyZbFYTChFRrh13RYQdzSoUan6Qg3TmDJ0ftFn1ADjve6oU77RCJc6kACEdaXV5eWRdJxaW8Pq1NQRI5nzixEBPRLJN2BS+qQ5a1hiwEAjIGngnUXrdmBCmmQymRCxpvOPfKCgj/KF85OOv1FG+WkD+5jhorKd9PCMrna7ja2tLUxMTKDT6SCfz6NWq6FWqwE4NFRj8iKGhXS8tKgxx9/JE/zNx0yNZSAZLeJ3Rh8ZwdW2MYsp9s4YRuA9uVwOk0tLmPvQh47SeTDA9B/+IRZv3MD2Y48laEKDemxsDN1uF61W64h81Pfpen7NtOK80h3aY0YIn9O5pX1SfKKyie/n+uBut4t6vY7Nzc3g2NZ5r5kanP80rNQgP+2iEbe0sY3JSf7m3xnpVBp6Rg6LY9SYYRvD+z6ntCj/sy+6L0AM67Dvug8JkJQB7EMs21BldmwuK7ZnZFx3lWcd6rSJFR8XtRfS6Mh7nY6x9sYMfre/XO4obV2venv1vS6njisnNmxPajlzQrpX0YWqEjjWmRhwZz1aJ4sCDVX0fr/WraBFFammBsRC/yrcyfjq6dT3e2Eag0eC+X4VGuo10v7GnAhpjJgGerS/MU+zGqs+hrH0St6rAE3bRoDLcw/T3sf72cdRE/fZLFtbWwnQrbs893o9dLvdYMQyZYtRW+4MWq/XE9FbGvoxI8rHWgUakFx/oOCKHn+N8pHvdbMKT/v39+pZq4PBIBFZ1LmrgIhzhlE5ntv32p/7OVyxdMzrN27gm971Lvz0t31b4t3Kjwrytc9uuLK9MfDEe2LKxPsd43U1JFRmEOgRIKlhpOngajgp39C4I+jns4x009jV7IDTLko/pYcDPh2bYrGIyclJTE5OYmdnJ5GWTF4lCNAIhjqzXD5oibVFnZFap8tlAlY9n1LprI456gjKgHa7HaJZ5HVGjjKZ/Ujd4sH/aWVlcjKxfp0OE76TziF1pKpc1raPMmhj40jauWOZdbss4jWdiwq6gUOjO5PJBBlHRw4//X4/OAm3t7dRKpUwNTUV+hrTZScFM1/owr6pXFWDzvGBytrV1VUMBgNMTU1hZmYmIUs1rVMj9oontOhcizmo9X+OCSPCSlt1TsTq4/sZGW02mwnnj8o+dSqRj1XPkC5qEE3cvTuS3ruf/jQa09Mh66NQKKBaraJUKoVj9FqtVkiNJT2Bw83JyNecw4z2sj2x5TIubxhlVzkeM6iIjegIIN35uzrEWQedOdpO3TiRevWsFN0wkWPr6+JdjzrmVPqqoQMkg0S8N5PJJDZhJA/GjnXi/1qUvsDR6CwL50O32w3v0eBWrB43CFU+uFNJM1W0zUoLNVg1qq/Lw+g8cxnsOkDlgNPEcWSaYen2kztyHI/xvrQP5weDAeQfjXY7/+hcPKmOe+iIbZohpcQAkpv/jOqwMocLdE/11cHQ/71ub1PsuoNzba96RpR5WNguTQegEK08eIDqygpa58+jc+lSoh2xdrMeb597xGL0jl3T4vT3NqQJnLR2KuiMASlvp/7vSsEFUczgeJi+fqELd2Ekvyqg0zUZFDy+63O/3w8CkwI1Fok7bsyB9HR9/uaZDcrLPm5pwpDzj/ygY6dAyD1yfv/UygoeeeqpI33IDod4/MYNTK+vo3tgAGg93hdvb5pAdnroc2lKSfvh46DyISa/PDKezWYTSljlB5Wk73qskXb/Xdd1nnZJAwxAOs0J5gqFQuifA8NYHbHvsXkRU7yutEf1h21xueRzinyvBohG6IfDYYiscr4v12r47PXrePzmTWSlvkEmg89du4aVWi0AV0Yttre3Q3sIhtkeN0wc1MTmQUzGp4GYGK2Bo2lmSqc0r33M4PPvjNTSieO8cJwcPK2iBmRMxyrw433tdhv5fB7tdjvsih8D2jH+VrocJ/u1Pq1zlL5Ow0fqyNMjzdS5oXpd9aE6AEkzl6Pt8+dH0rlxcLIA38UsF+5LQENb06VV76nMT8M97APvdzq57lRjOUZLbYvrED4fW97mUd/YGJ8U1H8hi/KEGiKxwFNaSZPZo+S7YhGlUQwP+LOjsLPqC46bH9Pk+irGAz5Gx8232D3ed88S0ExIACGl3es6CZ5OK6Mwfaz9/qzjQn1W+cad4idt/0n7dGLDVnPhvVHaGL5c0468c8DhBGH6r3q2+Nze3l4ARC4IWAffHRPmvFejOSqAFJTzd6YY8plisRjAZSDaASDVdYTFXg+vfMc7cEHWiyy+6EX4/e/7PuxWKqG/TkeCAE4WKnim5dGIVPDrICyTOczF199Zp9OGhffEhLAWn2BOZ5aYwePt9ParsaQL6LWeTOYwhfq0ytLSUgDp9FTrcTfcpZEpdu12G5lMJihmHoNBby5BQiz9TosKdBZVkC681ZCioOY7NUrLNCyNLvIdKtj1fEkqYHrbYhsBEGjwe3V1dSRdp1ZXcefSpSOOHOULB/Ba9H7lF5VHuqEbn1HDVue/tkPnrCtv8mStVjsCABuNRojEeTqxGqya7QEk07jp2Vcv/1kqmr4LJAG0gv1SqYThcIiFhQV0Op2wGZnqEQJg3azD63U57YYQkBxnd0YCR9M6HVjwve7MUN5R45I8MBwOw6ZJ/X4/sX74p1//enzHr/0annfrVnjP565dwy+88Y3BC7+9vY319fWw0RyzOaamplAoFEL6pdKdfMK1rMBh1oLqWB8TnRuUt248+Vzwdb/Ox3wXsxh4zJlHoSnrKpVKqGt+fh5TU1NHgDHfe5aKOp+U39lWNe5cLtXrdfT7fdRqNRSLRVSr1ZDho8fJKL+rfHIjjWPsoJvjGquHbVf8RqzlDlnytOIQ3TeAfdPsC7aVuobRUZ1XxGPb29tonTuHlZe+FHMf/SiygjkG2SxWXvQibM7NIXcQzWafuHs2N2ecmJgIy0HK5fIRnKcyQY/2UZqkFc2ecNzozlZGnJxO1LG9Xu9IpEuf1zbxr+49cFaKZiuRtxQvqtwEksaPBoSAo+fYxpy3pCl1gx8zphgyzbCN4QYWlZlM92Ub1eHGevRd5GlmXGg2gLaF/BMbY5Uf2hf+5TOKtXRTN+oB4PAYolF4XeW402kUDmVxG0/v1znia6dJJ37cJokFNPR9bm8eV06MllzZe2dduPrEdYZT5lRl4MKVxNOUXH2HG27eZtYb+6v38B2ctNyiv16vY2JiIuxcqh5LTWN4xQ//MM594hOJ95/7xCfwqn/+z/Hbb3/7Ec+8PqsKUhnHhYJ+d09SzOsY85jExkKjDF40lc8niX6PGccx48EZcxTfaH9PW7g3Go2wLob0952euZEQBY+eJ0iBSfqox/MkJWbQ+Xx0wZXmvaYzg8/E5gfbrd5BfqikVYErz6njprmwMLJfy9XqiWgxij+UPp7mo/SiEk6TB+roio2RAkWmnjK9khucbG9vB6DlckbHnuBoMBgEp4EaC6OU8WkVn/PKOzrXgcPxcKeEG0s0fDQd7bhx9nc70OE1b5POhTQdpcqZ1wmmVD7SoaWyj3OC55KOjY1hZ3wcP/qN34jzzSbmGw2sT09jbXoag8EAvYM12jT4+/3DXWwJatX5Sx7xKJkDGLab/BWjZ9pcixlETi8FjBqlo1GraWZayAvFYjEY5VyLy77GdMRpy34WjjUjJWk6Vu9nIbCr1+toNptot9solUoJOe2RKx27UdhA3xfT99oWfc6zYbwuHXeOnco63TF5OByGM3kfPHiAra0ttNvtcDbxhQsXEriJsvJ3/8pfwSvf8Q5cFuy0+OST+MBf+2tobGxgZ2cHrVYrLGno9/uYnJw8wqOUq2pgAzgyTmrs0jDx+9woUL3thojSS/UeDTHiJ9UpsfmkRp2PLY3mszAPYvNaz3eO6cqY3vD//boHnUbJhNj3NLkfe7cajcPhMJxG4LtTsw6Xpz5v09qaJkdZ3OBXw9b5CEBwnivtdU25lzQ6eHvSMKH2we917OTODuJhXU+tvxObsa+uux+2PNSuyGmGLYsOvg6SAw52BkBiQvMdenC3G60x4UOQ6AMWEwbO2DRSMplM8Cb0ej3U63W02210Oh0UCgUsLCxgamoKlUolMA+jXZNLS7j4sY8doUd2MMClj38cxXv3sDk3l9iAgWDFjQwWBeiupNQTymd00xMV9iw6AZSOfJcrVt7D9qkXWAWttk+ZXHmFdHbBdYRe5gXl/eoEOK2yvr4etudXrx6javRsdzodlMvlhFeT5/CR19WjFRMwwMnSjzTrQMeGitKdCy5UY2BKQatuisPjO3K5XHD6cA0uDT3yiq6baZ47hztPPonLTz2V9MpnMnj6kUdwv1TCnhnI6iF3cBVTCmlGihfn79h3BT9Udv58Nnu4a7GmoLdarfDRFDo+y0JHx3A4DOszc7nDnWHVs+vtPM0Sa4fLLqe7jxtTE3WMaBByXim/qkxQvlB6amqYK90Yv7jnXd+lABQ43OwKSC5RUcOS/E7Hlo4r92hYqlaxVK3ut+VAVrTbbTSbTTSbzcBX1Wo1yBW2h/NONzRUB4gXnS/8Xx2UOpY+j/y66nLnAQIvjgcNG2araBt0fMrlMmq1GmZmZlAqlYLjQOeXt+csFAVvdEAoHnJM41hjZ2cHa2trmJmZweTkJObm5oKTwtefKi4Bji5ZUrzjepjvox7IZA6z1nR+UkfEcBaLRpCYmURep9xjnfV6Haurq/jQhz6EBw8eYHV1FVevXsW5c+dC5kGxWAw7yne7XbQA/Nvv/m5Ul5YwtbaG7qVL2L56FcV8Hg9u38bm5iaeeeYZVCqVQK9z586hWq0GecH+amomx8WPS6NsJ9053xU/kd4u09SwdVkFJDdW4tKlQqEQ3sExVpqy6Du0D5q5dBZwkOpQ9l+PIYvxpc9jx6Ux7OjYxCOMWr9eA0Yvr9L7VdZrFJH7QOia7TS9FJOjo+wjz0zRut1WAg53QNb2qSOV19QwdBmh7XTZ5LTV+tP6o7pSx035X3ET54s6xPx9AAJGjmVrPayR+98tv80Hng1T8O1M5YKD98YUcyzdQAdQ/+d3bY8qDI2a6HsZkVIF02q1UK/Xsbi4iHPnzoWz6JieubOzg/y9eyNpU7h3D51SKeygq0ahgzUyNw0FKiadlL7OJeZx0RIDhy40Y4DVjVYdC97jES2lrfZLNxtgO9Tbz3aw6FifBXDD9HSujQUQNobSDaLu378fNoiamZkJQBVIghHyms8Bd87EjFHWR6XtdXi6DAE5o4vuoaSAV2cKAQgAdDod3L17F9vb25icnES9Xker1cLi4mKI2j766KOoVCqYmpoKaaXcNfg/vu1teMNP/zSuP/106NfTjz6K/+trvzaAIwAJD6kqNL+mvME+K/gm78UAeUyB6u/ueXQ5wvpJZz1fmuOq0Uc3sjh3x8fHUSqVkM/nQ9SKddHQ01TPs1CcF1WGxJSofle54PJeU+S1Ho1mObhkiUXOYrrCFaMDEnX8KeChsqU85tnEGrHSSM1wOES32w3OS3VguiHcbrcBIHGeJt+jQIf6gGd66qZz7C9weNZzv99P8E0MeMV04yiA5uBLx4mOOkaePdWMz6kDgOfWErgR8DugjbXltIpmG6hsApL6SuUDC42oer2OlZUVTExM4Ny5c8HYI1+x/+qIcN53PKC/s318vxu6SkfV3W5gsM3sJ+cAHVNMm6eDc3d3F5/4xCdw8+ZN/MZv/AbW1tZQr9dRLBZx4cIF7O7u4oknnsC1a9dCVlOj0Qj80jx/Ht3Ll1EqlbCxvo7FxUV86EMfwurqKur1Oubm5nD58mXMzc1hZ2cHMzMz2NraCvpYN4Fi2zXyo+PCv9yd2B0GOgYx41Vp5piLc4FprTzrvNFoJJxlrs9iGXyZzOHaW8Wrp1kUN6iRT53m9AKSfOkOGMUivl/AqP7qWLqTEjjq1CQecDtA9T2jtHRaET85JvPixqFjXN/YMs3hqM5SbzPPfWd/gcP5yZR50tcd40obdR7GZEIanf1ex0p6v9/HDNhmsxnwYsxJQDnjEduHNWqBh4zYssQGOsbQTgxnNCeqRpicSUcpOQf3scFyQOueVjfIFORwzSSNhMnJyXBe6WAwwPrU1EjarU1NhYiXAnmdZHwnPfMeMdN+uyE7auLFxsVpmEZfB/tpRkWsLhU8KkRi7fL2O6+dhUIAzk1AKIB0s5/d3d2woQVT2D0CR9oQ5Kmg8pI2dg4wVUixqNfLx0uL01ojsOTvfr+PRqMRUgZbrRaazSY2NjYCiJ+engaAEK3mZ2dnB82xMfyb7/xO1FZWMLW2hrXpadwvFvedBd1umPOjIkNp9BlFJ73vJELZ5ZLeHzPaABwZgxivaz8YcWM0j2lP6qzyvp+VOcBynLMpTTfEZPqovsbqd7kRk0GjjFof1zS55zKPwM2dFqpP+C6N0ACHPKJrqtU40qO/FEyrjKGcickTFnU4uqPBPeixPh8HctKMW9avTh01APQ+B2DuuBolo0a17dkoSh8FiGy70t95j3yxvb2NVqsVjDpGh1QfxMaW9ToeoNzRa4qhYjx+HP+z6FgTl3BdsKadMwK7traGlZUVLC4uYnNzE81mM/R7ZWUFCwsLiYy1brcbDHo90qrT6WB1dRXLy8tYW1sLzmMem1SpVJDL5UJUlPNK9yrR/rMvMRAOJDM+vP8xI01p505/lQlcttNut9HtdhNpyKxDn/Ex099Om/dZ3Jh3h0HMEZ2G91nHcXIHiMtwnStpjlXlAZfvjgEcc7sdoG1hv11HuDE+yo7x+RUz0L1/scCf6hoGO3RpYqw4To+90+91uh03piy6xFNtHfZLx873Uom15STloTaPcqNTBUisMSr8CehUqceMSX2eCpP3qBfavdqxyCEL3+MLmnm//gYgnMNHINNqtTAcDrG4uIibN29ia2sLCwsLeN7znodsNot2qYTPPf44rt+4cWT3y1uPP447+Ty2ZeMgDnSz2cTW1lZI5ZiZmUG5XA6Ht7Own7EURaWXTi5VtHqPlpiCIy10crsXZpShpNcU5NCw59jpulON3Hrb+ftpC/ZarRZS1NkueihpoOzt7WFzcxOtVgudTgdXrlzBwsICLl++HKIT7F+r1UImk8Hk5GTwNisQBJJRcy2qwNkW3dFvlBHrYJPXWRTEMEI1HA6xsrISjHqmpNFbv729jcXFxZCCSJBGOhCArNRquFcsYnd3F62trQCMON7kOxf0bKPKHzduXGEARzf6ickXpQ3lhD+jc8Dv0agG15/5GpJMJhOM12q1imKxiFKpFCK13ABI26dp7mkpp6dddExi4JDGC9MQ9/b2UK/XU5UY5T2Vp66BYyFvsCit3bueptT1XW6suX5yo1XPKCV41Y1y1MnB35UW9EjncrlwPBBweNQDwSEjZIzscxMx7SNlNevnh+3gdXe0MEKqvKz1qj6Ogf1sNptwyFDGa6q21qOOgLGxsbCzLZAEyq5z+F3/nnZh9FyL8q2CTwWXKq+5kdTGxgbGxsZQqVQwHB5umMl5HwOwAI7MizRgqeCb12OOvOOKpmbmcjn0er2AW+iU2dvbQ7fbxdjYGK5du4aZmRm0222Uy2XMzMygWCyi3++jXq+HdPXV1dVENtFgMAhO093dXVy/fh1Xr15NyMvBYIC1tTVsbm4mjpXTjR0VhFOn5PP5ENmivHUjX8fNHTdqvJEPYgaTLsPZ3d3F2toaWq1WOC7Qx4DzjhkLpANLWrDntIpH/NTQ0TYyO4zZG05rIOkgjRnvMVmuNoMbRcDRjaL0vSpTOEaaRcjfuDM99Tbno9scXOPK9qUZ0bFlYSrrdL8GpTGAEOH0eax1qB4CEGSyHsXlMkh50fFOLPsNSOJ5tkNlvBu8LMxg0A3HyCN0lsXe6WPsS/dGlc8rYhtjwFhxgBrruBvJ+g6dLPocPzqwbqR5e30QaQDqOxUAcM1bpVIJoDWTyaDb7YZdSpXhfuGNb8S3vPvdeM4zz4T6nrl+Hf/uG78xrElkKjL/MlWThgTrcyZR0OLAURlAxyZNEI6KUGn/nZ4uYJ0HtL0KCKlcPPUj1h9XFqO8SM92mZ6eRqfTCZvD6Hl1mkoJ7Auj9fV1AECz2cTOzg5KpRKq1WoQMDSIFhYWEunmQNx7FgPrWo8qXBbyLIUDcNTJ4+NIvtczNJk+SBBCADEzM4NKpYJ+v49yuYyxsTF0Op0EYOYY85qmcaoAGw6HYS2hGnJu/LCM4nOXKcrjDmh436gP63QPryoJGvqxDbUYlWOUlmBMd0rmvey7ptYpuD3N4vSIORn8fvalWq1iMBhgc3MzgD9VpKQp6dfv9xNgwt8ZA+WxsRtFP//N61TeTQMV2iZ14Gr/+Ze/aYTJ72PdsfRKlfWqu2KA0f8q4Cdd3GDye9NopYbzcHh4NiHTL9kfjy4SxNBQcp3lMv+sFQWb6sBgcdCqjkmOdS6X23fstVrY3NxEoVDA/Px8eJ7glOOshrI6NBToa/tiOE31tTtEtQ7nK5XBHFO2i/q8Xq8H+cVjjL7oi74oyEM6tmq1Wghs6AaLSiPig1KphIsXL2JhYSHQTuWMrq3VSPKo81TVWU8jkrTQ5UXaf3VMaH2x+cV6+Bz342CdNAZixpryfyyzwu87CyXWdjfegKSREhsbd7qllVGyXvk1DZ96Wzy1m4YT79N6dH6oUzNWxyicovf5WnCnoS+ZjG2uqEvc+Lsa2wASTjI+m8ZHyq/eD7dH0vAT36EBNuoFdRxx6VU+nw/9ULvH2/Sw5aHPsXVQ58qLf8kEtMYpoJWRHdRoPToZHJjwdxJPhUHMeFbwzGuxtasKtgkspqamUCqVwuHg29vbmJqaQrlcThgJO8Mh/tUb34iFRgNz9TrWpqb2d7/c3UX/YB3Jzs5OiHytra2Fvk1NTSWYT9f4kk6epqCgazAYhLM0B4PBEeAxStmpgFHvlT7nkzgGPnxS6nok9Y65c0EVtU8IFVqnLdQvXLgQNnmhY4LrpQnGKfR6vR7W1tawvr6O8fFxLC8vo1qt4vz584GvSO9HH300sfEScBRoalGaqCL3yAvnFq+p0CYQdaVCw6pcLgfwmcnsbw7RaDTQ6XSwvb0dzhOcmZkJ4LvVagXA5kpH1/aqM0BBja4r1b5plIv9VxrElAmLgrg055fLBlV8bhyl3cudO7nGUA1bGjOkJ8/t1PWFNGbVoPV19GfFsNW/KpN0HJRu7Mvs7CzGxsZQr9dDtMcVNPnDs2f8PcDR8yVZXB/oO9wYcY9/mjGncsuNQh8jRlo5D9Xp5TsaK+/rbpZ+JAnb5jypxqq23x0AQHJ3e48OuU7mczHAohFngsFerxd2d1Y55MY7dxIvl8thOUfsHact60cV8qbOT+DoXNDx0t/Hx8cDvZaWljA2NoZHHnkEwP4YMapBY0tpxDHkekQgmTUXc0yrMUee0TR4tpW/OV8rlqCO41rbnZ0drK+vo1QqBX2wsLCAF73oRaHtYQ1ts4lCoRCcpHSUunN2OBxienoaV65cQaFQQCaTCet5eYza3t5emGN0GPouthwnzivSk5liBPzENdR1KvuZheGOqpjuoewCENrG9uiYKeZ0JwPf6XxF/X0W5oXLW52vuoZWaab6kNcUHzo2j8kvPqd/tbgjLfZsDJ9qodNdCyOfiqs5jrohmzs7gKMbtmrfNELp/Yul7hIv6jxVGivGZlao8jV5zccu5lxUx4/TbpScdnuFNOh2uwFvKuZhthrr7nQ6oS/6DueNk5QTG7Yxa5oN54R3IrEhqqjd0AJwRMHFmDyWHkImdCNM383fncFioF4XY1Mwq2dhamoKw+EwRGyZPqAG9t1CAfcuXNhv40GapSoSpjjr4c+Tk5MoFAqoVCpBSKs3EUieURUzCJlmE5swSqOYcIiNiUbcnKm0LvUseVRWjQR6aamYgMNz2nQyHteu0yrc4IXtLxQKWFtbC6m2/BC0dzqdxNgUi8WQgjYcDrG2toZr167hec97XjB80uaHApfY3FCeUK8YnUY+7iqogEPlSYOrWq0mdujd29tDPp8Pa6II0Dg/GIXc3t7GxsYGWq1WyEhQD72vMadwJh9r6q2m4CpdCK50vsd4VL/HZEss0qH8G5N1DmSYbt1ut3H//v1wTjFwGEnQ9bS6ARCdBwRmOo58hxpKZ2ETqRhtY7/HaEv+vnbtGjY3N7G1tRWcIVxnt7e3F/Yu4Pm36nBTo87fOeqaG66ksQNN5QHd/Ml5gm3gNTVWgcPzLynLdWypK9RZ6BEdBddsL1N3qXPUOcZ70iIW/F8jKiov0sbYQZvKcwWsNHJIMzXKdA7Mz89jcnISMzMzYb1+TDalycDTLuqAUqzjTgY1sFyWqLN/fX0duVwunJHOsVVDiO8Akk57jdry/WpAqG5QnvBgAQEmx00NWnWGsP+MsHCTQO49wvYyWsk+cv5sbW2FdbmMKukZuO4016wOzYpitpAu4dGlOS5HHVuy/8Qr6qBxo0T1o+Mm10k+l6n36OzUI7tUhrk883ewnAXHJpCkBXA024T00Mwbl9uUW+pk393dDTLO8Y3/r/pR55iPYRrmcd3OOjmGnU4nyDIGtbg8kDjF5S1LDDf4OzSdV+U89U29Xg90UV1Fp5I7F1lPJpMJx0zRcUx+93TqmL2k7Y5hTQ+W+cfHR+cGsC8/dFkN7SoGTDjH6XxiO2KOoOPKQ51j65Uq4ygRWZwB9TlXDDHgrvW4QmGb+HvMcHNAk3avKwH9nQYsAYoCIvZN+6frBP09NASUyXK5XDB21WBWmlPBxJhGJ/co4TfKYHRwo5M/DVCosHAB7+OgQFHXYSkdVeHGlMdpF+5Kx7MXAYQIhaaV6CYgbHe73Q58oR7ncrkcvHJpJQ2k6v/8OwrQu2LWQiFJw5bGqhuZnAd6jqOmV1KA9vv9cJarph97mq5HBzQ1NwbUY31I4w+fK6P++rVYfc7jXDNCA21rawvdg42wSE86sGjUkq76Udpp9E9ljUYNzmoZZehShuXz+bDJGPvMY5EoC0ulUjg3vNfrhTnmEXfWHzNs09rghkBsfqiTLs1ZF5PrDm74Hs1Y4n26+y3rVQex8hqQdGq6vHQAzvfGZCg/MXAao18MYDsddD4TmOp40hhiOurk5CSKxeIRB6zPv7Mg873oHAXSs4gc5LmBQpDa6XSwtbWF9fX1sDuy8oNjrpNiHLbVDVzlS50LNEz1Xq1PnS7kxWKxGJwrvuxE9QL5j0EINWoo5z0SzXvYJq2f+qhYLCb0h+tFj1DFsIRiJp8v/N3nUozuOk7Ud1xHrIBdx8a/p8nPGA+dZonp1ZiedWzov6sDgH9dTnm/VQb6bz62MX0eky0xrMQ1od1uFwBChgZ1MflUMXzsfc6T/F31mToJ6fynw5fGPu0Glalud9ApxneSpplMJvz1e2I2hetEH+O0sY4VdSTw/XT20rD15QPUT8onSsuTzoPPCy3FOqJGlhdPJWRD+VyagCYx3CMee4cKF/Wk+298XgdVGYUeD4Iavp87F7oHgc9SoPEZTSNSpTE5ORn6yTrUwGN7CX44oWJgin1xpmMbY2A4NtFUAKlC4e8xQ8AL71cPFIEXjQA14pTuHA8CI/ZJvT2nDXTy+TwGg/31P7rGanp6GlNTU1hfX8fW1lZINWNaxXA4DGBdz8Gt1+vY2NhAu93G9PR0qhHvIBdIpnDrxCcvcfx1sT/vdbCTzWYTx86wnTrvCGR4BBA3fNK2UmgyMre7uxuOY9D5RjCkESPPRvBUXJ2rLtC18JobAAr+9b6YXHBAxPcPBgO02230ej2srq6G80c3NzdDJDqTyQTnANMuadAy/bJarSbONwWSx11p/xjJpwF8lgppGhsLBf9uiJGPLl68GKJ8BBCZTCbsabC7u4vFxUXcv38/eNB5j7+P11yhu0ddgarKcJ17nCsasXVg6n1VRyaQVPrUBWoE6LNuJKquUBCiOk0dpHyPO0ec/ryP8kejTF70PuDwjHQH86RLtVrF1NQUrl+/HqJyjFoXCoWQfjw5ORmAjQIrjo2/X/tw2vIfOJynurRDs7zIS55i6yCS0eper4eVlRX84R/+YdAjtVoNpVIp4cwm/VXvaBSEY+V8w7bwPiCJv1x/UHfwu/abc0Oz76grNAq7t7eXMNSJY4ifNJKkETqN8PEdXJdLOmt2kEauVDeQFrq8R2mhBjVB9NjYWKCtbgzmOkNlnRoneoRJq9XC2toannrqKTSbzTBnS6VSIvrGOeS4VsdW8auO3WkW1ZmkBflGMYZjdcevLvN0+Ylnk5BmLvs1Kq91pn137KzvIi8ohiHWYaYagxG6EShtAxbVFYpjFVtTtxDnkwaa1aCykQ5yX7qk71E7xFOSNSPCMbfSkbTSv0qnGA84ffWjGXrMTKtWq+E76+IY6uaqlBVqHz6MHnhotBQzeHg9BhLdKFViaD0xyzzNOvdOOmDR6/our88NYTXKWJfuYqzra5Shta9M1dE+646X3gcH4D4B00A8f9fvMSN3FMP65Hfa+RhpnXpNn9X6qeg01dDHgkKLEzbm/T0LAl3HWMEqvcc8r7bf319z1mq1giJ1BQwgpJpoarZ61U/SZzdSCXAVCOvaKjV8CSqYOkZjiwat8pNmSqgSU8DjglaVjoIIBWDeT31G+xabtw4W/fcYnZS2aQJc7/fCs9hWVlZCCjqj0lQuY2OHu77SwCUYU++kCmyd7+QVXTc2SgY8m8UVdmwcR8ltFuUnBcoK+jOZTFDmrnPS3hHTC25kqxzTfpGXKe91LbgvkXA567SgktZ+xZw0o+gVM0ip54BDI4uyQ4EZv3s9MYeDAi+X40p37Zt71OnMmZqaChkrukOnZiuosefGbFpxYHpaxcfY6RzTVyoD/TuL7ibP+qanp4/oVH0mxjOu2/U+19fsA5AEl+ogcb5wOqgDTrES1wnrrvnOS5zr6oRVQyebzYaNNTUy67rJ549/V6eMzp80/uaYav+cxiovVNeqTifmcdzrY6Pz0A0179NZ0QFp+tXbx754Fp8+o2PO66N0so9vTA/5h9dV//uzHqyiLmAwhhkHmoHDutQJFDNs2SfNXmO96mRUmQkcZnjG3hkzPMnvjuGJuagzVG7xvuP09sOMu84RxcDM3GF/OB6a9cf28pOmd48rJzZsXdH695inRo0ADdfzfhaCZDfOYp4Y1qvRDvfK+YRiXar4fVIRzGjuu3tW+J3RF+Bo+qRu088+j42NJXYBZFGPHIU7mZEeRxXkTgcVArH0aAdR7p3XSJYKa9KRbVEG1Pdqe9z7SwalkUcvfmwScTJy4p9koj3bRSOJNGj5PyOctVotpFAyNZXrbV0oUOkz7YTvUL70SR0DTMChMuZ1T6VUga3KXdOP9bgE8pzOR826UIcF54Ya5Tr3VVGcxGh30KTX+ewow9Y9fDoP9flYO2IKSZ+p1+tYXV3FzZs3w/xQhxYFt64jcYcBkDyiRgEl5Yce8aKR3bNQlEYxTy9/8+Iyg4CAjgAF2VSE3n8dO88AApKbqfn9aW3iO2nA6rmcvnSCzxBAuLzldz2/OuasoZxVZ5C3K8bXSmtN3dPIDz/u1df2Kb1ojLjz1Q1lnUu8TpnP/SEWFhaiusqN5pjx7GMZG8fTNmwVNDpWAY5mn3lGgzoXSct+vx/WYW5ubkazzFSGO8aKYSrV0YqT9BniEuVFAAG/cG8Fj8LFxo1zgXzU6XTCJoJAPD0zm93PFOIz3JtAeWVrawsAjshRjz5rn10m+dFMlC/Op/yfES41iB1reRBE9SEjfBr51veoEcU2unwgDyiWPSslpj+1jY4xicNjmSGOVVyf+5i6DOdv+rvLGH1vDBsoTmY9xDq8X+2Cbrd7RJepfqouLmJ6YwPr09PYnJtL0IZOH6699mw64BCT6fIwdZAqTief6DvI7xpI0n0/9K/TUq+nGatpMtpl0XCY3HuB0e5yuRwMd81KpTyiLOAnxhMnKQ913I9/XJAqiFTQ54aVTmo3iP13rdsZPQY6NM1J0/fcIFMGo9FFBtMILf+SOdg2elfVGFDG4YRRo1iNO+BQ0bGOTOZwUx7dWc9Bn9JMJ3QMaMaUi9LEHQDOwC6EY3yhY6CCjLsfUjAoaFUjkePiXinW50beaZRSqYRMJhPO6mP7gaRjRgE5kEwb7vf7YY0qJ32z2Qw76bJ43/Va2hgqCNLnGf1zXuHxPLEMAy0xhcTiThdV+AoWfFMITeOK9SMGWLQtyisqUF3p+m/8q9kRzt+qFFl03RQ3xOLvGqXVjd9UJqjBwZ02KdA5Plx/4k4GjtdZKAoi1KBKUzpuVDpgiekBvoe8yeg3lZzzqMs9r3eUkajRTk2LpryPpe9zPD0FUo0Ojmss6qW6kbvEUpfQuQogpGQ6//sc0AgXeUuBggJ0lROuRxSAK/8rWNQPDQCOFY0k1hnTN1pvmrGqRlMMQJ9m0WUe3vY02enAl3+VruQTjr8u3+DYqvNE3xdzAuv7nJY6TxxzsQ1p92ifSAvFSe12+8heCsA+Vmq32wlc5pFYdeS7gUpa6FIwtqXX6wXaqA6O6T7drJLvGAz2l0rpHippOEf1OKPS/E2jU5lMJqST61h41paOj483/x/VptMoii1Y3EHn84JjQXmr9zhmiMmfmLHrslgL5auOmWJuldk6j1WeA/sOFRq0KtcYpKKM7vf7KHQ6eOsv/zKeuHEjtOMzjz6KX3jTm9A72HhUcZ9iCMUJxEtuELN9jpGdn2gzMBuCMkXxkNttOh7Kby5XdOycbrzu+o50LJfLYVNSzjsdP/ar3++HgJBmMrpMOK48dCpyDGA7kFbFp5519ZjElFaMUPq/f48ZPAomVFl7HyiMuR5Sd+VVoMO/29vboT/b29sAkMi1VxDC+9QLru/jRFMhrB5+X1esQiQG3v16bMxOIhidIbUo3dPe6yCMUQ96ZvRZZ2id2Hxe33vagr1QKGAwGCTOH6XH3YEtx1MdJbrjG4E6gbTSh2WUgtV7VEH786Qri4JiegJVoft84th6W3QM3ZnikXsguYZDjQlvrwLHWFFlqOA5Tak6iNbvac/G5hfnL72IqiSpSDh/dd668cM61Rgjr9AZolEJVxinXVzROS/q39j4ah1ejytS0tUPmY8BPb3udbsi1LFVXtQ1tQpSaXho3R5dSftfecmjlJTzTiONXvCa6jSfWwpC1Bh2R1XauMVo6PSKfRSYkO/VyBplHIxqR9r8PQslRh91yGhx2amgUuUt66Xs9M0HKSt4H+uO6eM0rJPWFyBpBPv9af0i3lEaUD5y/ui9Cq61fneIeyRWI1JKU+VBOnMULMf6o/NWHTq+nGbUnOF9dHTyGutR3UfnkupVlRM6Zi7nY3RPm1PPdnF6sl8xfer4xGUicNRZ5/W4LNc6VYemPaOGs+ORmB7hX802VWc0dYWvXX3bL/0Srt+6laDV47dv41ve/W785Dd/M4BDwzZ21r3K7FjasfKPZ7/quGhwhVhFl62QvzX4xj67E5fvTCtpASfXecQ2jETzHtelpK0ec6Q08LEdVT7vHUlcMFMw8VgUMgN3kyUoVOESA5v+DgcVwGFUyqNceo2AUSNmKnybzSY6nU7ibDRP4UzzJlFIa+TRNzMYDg8XT3PTGe60Ru+melYY7dGF1ScpsYgqaeCpBTH6xsC8MpFOMn0Hf/ePepnW19dDRDyTyRzZpEFBIHlFPTc65idl6C9UOXfuHHq9XkibzOVyIbqihem+5AVNwyevcPK2Wi2srq6G9bieSgmcvN+qeNkOzjPuYqyefwoZntE2GOxvjsSiysaFsAIPBfGeSq5tI29QHvB+F+7ulXPFz8JnNTrmwMCBo0ZbYrTTvqqQp/yiJ5HjqGnomn7K77oBFnlCN4JgNJIbKuTz+SNKOSYXT6vE2qLjl/YMy3Fz2UFTqVTC1NQUKpVKgreAQy+3RmQor1Xuadp37D16nwJx109qYKhh5x/WyYgvN1Gip1qBics31Vl0hKmCB5I8oVFXflz+jDKMYk4v3pfJZIJ80+eVByYmJlCpVFCtVkfudMx2jgKwfj32vtMuGh1kcblDAJnJHGZfKVbieGgQQOUjd0qu1+sAcCSSyI9nkHHMFaDyuhpYBLcO4nmvYjONwOvvyg/kMd9HgzKQG+GMj48Ho5dzcnt7O9UJRExEXOntpK5Sg0UzqTjfer1eyIDhO7iJo/Jlp9MJ84/1FYvFIP9Z3Oml2JLHlujSIjX8WDSrUceM9xD7qKF/FhybwNHlgcoPuVwujLHyl9LKdaw6CmKOYzVc+Q4tajgrz3qUlvhLMVCaHeIZWYVCAcAhX5LPyTOTS0t47s2bR2iVGw7x/Nu3Ubx3D6tTU0fmFtvkssF1FmUJ+8/71VDV8aFBTjnBzReZIq8b0qqhqXJXZU6Mxixp8lrppIatYzDy+d7eHhqNBhqNBprN5hGs+bA64MSGrXtl0hSOKndlIDdOY411xesAKPZubwcHwQE3PfI0bFUQ8+Nnb+kgqHBRgebrA1RZ6a6aqmC0P2xbzGjgRDiOjkq7UV5zd0acBDSkgdHYczp+FFZuvKhgca+b1x0DxadV6IHlGloKcT1UmkKDilwXzlOIqCcwk8kk0i7UCx7ja/5Nmzd+TRUO/6dw11R3F6Q+zyhsHRCpIapzxkGDK7q0vpyEF2OGlXqDY+W/FRzTEcFxUvCkEVZ16gCH3tN+vx/4gnTnhlKaqRGTa2le0dMoD0PHUeOh94y65nSK8ctx+ijWh7SIqMpG51N1jrBtrE/rcXmpxoIbKOpA9XGO6cpY37Ve9kP1ktNVwYq2Q9vAOrwt+h5PnfcoQ6wcN0fTrp0V/lcdrEVp6nzgYxbDOHqdy6O63S5KpdIRg0frjLXl8y0xIKn4hH95b2zvEfLFcHiYbhzT+5rVAhw1mJVe3j7er1iMRQ0DtoG/00HgtOf/7sjl/NF5f5ycIQ5wA57t1/tYhxo1/psbkWehqJ7S9uk46zU+E5ONSluNYioP6r3uoHN5Ggt0sRCb+7hrOygHNRqvyx3Jd7Qh2Kap9fWRNJvd3MTywTm4LKxXs/ViOxZ7e0lLlf2qA/Q+nYvkadoaxDEnscvYd58ner86ExT3ueNVx4OFMo/HY3Eeu971gMmocmLDVg02tdw5uMrsKrQUyJPQMQGhDWbH9J0koObpq+dLrzE1kEalbgjCda7cwluNW66bcOGuQkgFJj2gCniZgtzv98MaU03P0agN36EpA4wEckAZWYsZgzoBNDKt61ZJ2xgodI+/3qt5/S6UjgPcGh3X8cpkDo9vivWF7XJ+OAlI/kIXXUtZLBbDWtt6vX4k1YWChHypZ/gxGs9IX7PZDBPaI3YsFMruHFFFD8QVIJ/VVFkFGirUKST9o55nfbdGbNWJoV7YWCQoBgxVQOt1L+7gcXCvik5LTPH5O9J4jGfL0SNPL265XA7HOHAcuP4KQLiXmRl6lBIPftdNpXRDIJ1jZ8VbrzwBHD0mIA3wx4rzsAIiFtKZ8y0GZDyqdJySpg7R9Tv0GCvApoyPKdfh8NDTrRFizdZxMMd5pLRkVFdTonWOu7NPZSnr8PdyDupZ005jzjWV0zq2aqioMcK/HJdKpRKO8PG0ah9rn9faz5jM0j6eFWCvR1Sw+Pg6sPe5mwb8OW7NZhPD4f5GdTRseX9MDjiPpMlYb2+MnjouwKEe73a74Tv5QPceIcbR3VxdTpN3ACTORachyHvoENZjF5UP2XY/C5rt54fOsHK5HPSuRuncCPOMjUwmEyLKSv+YDtYx0sitykltv2YBxhxajtNc955mUUzO/tBYUoyvThDNHlOnL/uqGB1IZnpwPD1zUItHaR2/K2+xeICH/aBt4LpXdQAdTwxa3Mod3YxJy3K1GvrsxjGxAoCw3wnbp/aU8nDMwHfeHgwGiWxBZgiqjcBx8YCKF6Vn7DfqDM94pZ5VXMsx0chzo9EIx19qtNzf8TBz4KEitiSarhnUxlLg8D5Px9M1py6kVXnpIHkahwIbClwOOoUujVSmGHNdK9e4akqwR29jBNWJrN4SBfGcWGRYTa2ggRebeBQKpAkjPDSOmA6jKTI6yLFUAl90rWtVXMAoXTV334GnM6YbVVq45T3bqWcAa3SLdOQEUwDlEayzINSB/XYwSnft2jW0Wi1MTU1heXkZ9Xoda2trAIBKpRJSr0ulUiLqp+msFHLdbheVSuXIuiIVrACO0EXnjKb+ayaBpmipokgznrx+nQMuTDl2dCRxTuh6KwcSPq9VgSk40/6lgbUYyHTB6H2jQypmAGk/OT+73S6azWZwUPBsWUYB2GeVJ+qcGxsbQ6VSQblcxsLCQnCOqAMqDWiOUiqnUdzQ4zUdz5jM8LFTYORgTnmUaYR6DBCfp8LWlP+YMaH3K615nxolapCwPip+ld2UreqoI/AAkFibBSAqW3mfGqbkMR13ympdt6+GstKLhYaB7gnA+3wpDw0rpb/STf9yrHXpTFq2Ddvu/KDA3osbtWepOI8CSfnsRkrMUae00t/IfwTXrVYrON/V+cWxpw5V2Up6x9axqaNa36myS7PWyIsEp7xHN02i817TKmlAEGNw7vC7Oj/ZZz0KjfOO+Ac4PGJFd2pmG3gf6+QzTNMk/tvd3Q2nWWjEmHwYO1bMo66sl8arYhY3fPks36EZWarjfFw4XzKZTDD402TaaZRqtRr0u8oQfo/RRMcqNr917FT36n2cN5S77pjnh2Og9Smm1DpV/usyRW4g6Jk9NOCYZcfx/VyxiA8vLOBFq6vISbv7mQw+cf48lqpVZCQrlHYIMaE6FMmbio0VK/O76jy2Tw1bXRqja1t17yBiQ01pdpw1CneoLlK6umznckxNVWeK9NbWFlZWVtButxPBP3VSkT8cp44qD33cjxumDhg4MdXD6wZVDIyyrhiojRWCGmUAMgSFGQ1WCl8VcnpOoW7YEHuPTlq/pn1ScOtKQQ0NNxp0AvF3rkXd3d1NMJ8KuZjXEMARReNRUaetgzW9NzYePi7OyJ6eRGPdJ5wbrvx4JOg4Xni2i0bheCwL6d9qtRIeWnqs9vb2tzxXRweBiQMGNfBY9H+dJ2qIqVec96kQVI8lPWYxQeTPu1Hixi2zFDxyqXNK1xCf5F3aN1dKvF+LzwlVkA4wR/XXac0ILJ1oABKgnu9Wo7bT6YR3kle4dp7OPk+NSytpBv1plFHzPma0naSk8Th/0wwXN/SVZ1yeqUzz+9PaoQaCzmHlW84Z5X29z5WyzmXVm35PzJHnRqwCl5jcVGOLzk0aynqvXuN1peVxPJfJZIKxEUtBTtMtLsO8fL489GyVmL5yma3g86T9iY0fz8je2dlJOHUoW2PrNH0+ko+97fpeXifopswmD3kUhoCeOl33meB8YNSVwBlAcIAwI03bx2c0cq1zRTfl0/mnOJPtVcOSRQGzOrB0nJyGCqKVbzWAofiW9zs2VGymWVGc8/xN+6Z6VGXDWSjlcjk4hRXLqyHvfWPheLnNwPE6iZPajVotjsl1/jmm9HdrlFGDU1oYhCB+U+f4P3rJS/D2j3wEL1tZCfd/4vx5/MiXfVmCRjHbQwOFdAwpH2mWHedTLHLOd6iRSuynBiLf62PEvsQclV60fTFcoDQjnWjX9Pv7Ox+3Wq0QqWXk2vVZbIxPUk5s2Gq6rjOsKmASluCPx1Yo8zo4cOVOovOjKY/A4RlNFC702vEMMf6mGzUp41JxqKB2haCCjG13r5EK9mazGVJsSCsyHT2VZGz1WuoE0bVkpAENnn6/Hzab0cmtkQNe52RRZmD/tK/8zYVAbM2f1pNm5LNQKPiEVAWitFWDK80Td5aK0iqfz2NhYQGTk5Po9XqYmZlBvV7H/fv3wzgwc4BgJZfLYWtrKyyYr9frqNfrWFhYSERVSS8guQmIe+RZVNkDh54v8oaDbdarHz6n353XVOBQELMunjno0UjOFfXgK8/ovNMIgxu07Kc/p55uPqPecL1PQY3Xw3dyHlEAb21tBaBWqVRQLBZRKBTQbDZDqrI6yXTsOAb5fD6c5VYsFqP9V0WhQPmslFFzUUEeEI+4xX5P6x/BbKVSwfb2NsbHx0MUywGUetD5HiAZJVA+UYXPsaYSdrDga584tpRrHhVln6gL+G7yAdsX2/iMdFEnqPI755rKVQUtSlvqF76XvxNE6Ht1vvlSGdKDej2fzyfWhsd4Q59TmeMOKJ8DDrS8ztMs3W43fFeeYPEIhspN4Cgt3cmhsn9zczNEFy9evIhSqRQMXHVeahvUINI28d1qFPP9njbIHUnV0KX+0l3DFe9xnpJvGCHKZA73kCCWYbbSYDAIc5p7FejGmeR71WeZTCaxKRv5ge9g2z3wQhrs7e1ha2srZIBMTk6G+avzXuWuA2vi0Xw+f8QpoMc5arSX/dD/eQ/r12xBxVdqGJyF8sQTT6DX66FerwfHi/51TEf8ozJNMQSxOjc4ApJrXtlv8oFiyhgGVaOTDmXOVXWa6DiRxvzQQd1utxPzV+/TqPXu7i52JibwAy98IR4bDHBlextrU1NYnpzc56cDDM++Kq9qUEyzAEgfZqKyn/1+PziByLvFYjH8DhziN8UzuVwuLG3gXGRA0I+D1Dbo8iiOg77LbTfFXrS9FhcXjzjNqINiRrHyutpcOq+PKyc2bD264w1Q4E1CEjywwW7dx4wWZWT3zuhkV68dlTUNVjJnp9MJk8Y9ORTQftSKD2JaG33C6YBSMQCHTKXAKEZbCj5OQLZVI3kcXH0nJ62nKqlAd6/6KC9MmgAd5ZXRaxQaFMaqnBTsq4DT+tKE1lkoaZMwlzs8SHt+fj7sBsndsF1o6pEie3v7Z/w1m80w8dMAnRt0bsi548GFlNeR1i8VVPq8Cnmfpw5u6Ng612hgfmsLm7OzqM/PJ95BBR+TKcobo+jP4t7tNFrF6ow5Z6jEut3ukTU1sXq1LgWqjNhqlFeV81kC7p9PicmMmJxLG0u9N032xHad9/HUcYwBUvKZAlafN66slefVgPN3U+bqWkHeR5k9s7aG2XodGzMz2JybizpsvU0qt7WdLN4upy91gEdJ9H3qRImNF+9ROvjH26Z60+domt4Y1YdYXadZtH9uoLuMGSV3Y/UCSBhLuv4ZiJ/pqHzN/1mf8r3iJhbFFsQgumxGjV03ajOZZEaKn8FNh9FwOAy776tTv7a8jLlGA52LF7FbqYR+u1HIua/nw1NXanBBDSLtE/upe50ACOCaETLe5/rAZbTKbr1HDRfSSWWFPuslzXA4a7xfKpVCIGlsbCxxoojjYuDQOUl9CsT1pjq6nV9jkV+lqT+jtOI9asQqLyjW1mgs555ie/bBbSF1IN4tFrFYqezzrDgq3Sj2/sb4TvvojihmTLg8J81ZVHZzDqm9tLe3d8RZGpNfabZBbKwoK9hfGvKUZZwr+r6YnHRd59dGlYeK2Kr3LwYySXBNvZuYmEh03gW/MqZ7vFkXB8aZlymgNA5IQDJms9kMa21dUOiaEp9kzlgx44DXKGzp9dCJwn4wNceBCkts4tIhwH5xIvJ8KtKGns5YSozm7LPNqjBYKHiUFmmAn8/65M5kMgnPpacW6MYSpI+OK/mHxjqVFes+C4LdlY5+J50fffRRtFot5PN5LC4uYmNjIxxc32q10G63g4eZTpfV1VUsLS3huc997pGzvo5rS5qRxHtodGo5DsxqvVoPo1KxiMRwOAybypRKJcxmMvjWX/1VPOeZZ0Kdn712DT//pjehd+AE8DQcvot1uTHNNqvyYhuVn7Q/LpAdsLtA1nu2t7exsbERIurK55zPKqdYB2UWMyy4iYmu8dL2uGJQnj+ph/LZKjH57WA59oz+1Wf5NwbKWXhUACMrLrP9XRptVFDiclmBsIN+ym0Cd28vn2P/9YgPdWBUd3fxpl/8RTx+40Zo443HH8evvO1t2BNPO8ddFb16qR1Ex2geA8WklR4h515w1ecOlHzuewaHyyrX0TFZGft/FHh/GE/9F7Kokz0GRpUmqhdjy0NYYtiDMsEz5DRg4LRTzKK/KR7Rdzs9yeONRgO9Xg+tViss5dLNLf0ZZq5MTEwkji1jYfv1uJ3y9jZe+8534pFPfzrcd+8FL8B//d7vxWYmg16vh06nE2R6tVpFuVzG1NQUarVa4GVGCbmxHPmaYN3XIer6YRpiOobqpHCDmHSjbNEMCN7HZSjNZjOBld2w9fW8ep/OSddRZ6Ew26hUKoUNFZn9qGOgMkSztFzfu9Hp8o48EJs3+tdxgcoqGqPkxeFwmMjU5Hs6nU6I1vLDeth+X9qhdg/nLOukHiDOoc2hBrb3hUaf8qU7DhhEoa7hskXFe5y35DXeT3uh3W5jMNiPcLvDPTYPVKaxZLPZI1kclFm6lEKzVfm8ByyPwwaKM09SHsqwdWGqgo5E0UmoE5rMo0pbBbmDavdoq4BWpuC6WQpiNa5oUGj0VIEI2+leHh1A9ZDqPblcLkzyQqEQ+q6bZ/GaR2ydRhrtVTowVWd8fDz0jcYDJ1y/3w/r9ehQ0PU3ABIGrhuWqghj3hkylgsi0kY9WDEBpX2k0cp7/JqOj9YTi8CcZklzzAAIwmN2dhbNZhOtVivRD10/kc1mQ5rr0tISms0misUiyuXySKNTi46PKlE+423VsVb6D4fDRNu0cC4y5VK97v1+PwCRbrcbgNEbfvZn8aid7fbYrVv40+9+N378LW8J7fFMA373Pupf/T1m4Do4d1qoUaK0UOFNAU2ARYBEWvnZ18Ph8Aj4J83y+TympqYwNTWVWE4QMyDcoE1zhp1GUfopD49y+Lji8uuxd/h17kA9OTmJwWA/K0frcd6P6RTdZEb7ACRTqFU/qYJnIZ/qhoQsmkVDuf29//7f49qtW4n+PHrjBl7/0z+Nn3jrW4/0Ww1H52F3KjlgdkOL7WXmj0eIfSz5Uf71d5E2fsSPtpPPeL3+zlhJM37dYDutojoNONwRNvabPqP3uMxyxx3lC7NF9HQBBfCUY+Q5N8gUTPd6vfAuRkDVyFM8x++6CaTrjkqlgkKhgKmpqWDYcu7xLErNRNJU22/8iZ/Alc9+NkGji5/6FF79L/8lfuKtb00Y08D+Mq98Po+1tbUgQ8vlcpDH3Jlegwcx3uPZtoxc6TIFzwTRorhWjWeV/b6vCEssw8SXY/EdafogZlScVqF8KBQKqNVqof9ra2uJEyK0j6QV5ZTaCuRf3ZdGDVvF/jF9QV5VZ4DiWsppzTggf5Hfids1zV3ngrZHx8CdSayHeEH1EY0+ld8xZ7bWp3PTo/yc82r06vjoUYL9fj+cxcsAHDcZjbXB9QP7wL67kyyXyyUyKBSnxQJ8ihsc97D/+jeGbY8rJzZsY8rJAaYzGTuk96u3mNfZCXZYP8oc7u0hkakEmDLD9bVMA1Xhr54Fb3tM+caYCjg8Y5EeELZfB5J/RwEK3qOGYSZzuNW8rnUBkIh8sk4az8DhkQRqjGtasNJaizOXXkvjAafTKE+9KhQ3+DWqrPVohOKsgHsvMZqNj4+jWq2iVCqFjAXSQKNJ7F+n08HGxkY4JqBcLod70oCjGwhpk1+Fg85Xj7pwPLwefpgdQCHGuUhB3mw2g7e6cOcOrhtwAfYPLH/erVuYXlvD2vT0ETCvHr20v160vc536j2OKQ2nkdJKHWSDQXItiv7ucoI8znczc4VeboJKfZfOVf51J+BZ4v80GZEmU5xH+Zve5/drYXpjuVwO65BUn+h3B6BKQ+CoEeFROHVkKqDh/eR7Ghy9Xi/0Sb3j4+PjuNzp4Lnm3AH258Hzb9/G+K1bWJ6c3L92IAPpPIp50NNo67TXOcP2uxNaf/ePG8z+TupSz+rQ9+v1GE44DqTHfj/tOaB0Vd1LGRYDh2mYQp0vsbGjUcmohxq2DrZVp7oMoZzqdruJLIRMJhPAqB+dQ36JbaDDNpdKJZRKpcRxT0w33NrawurqKjY3N8MSDkawzjUaePSpp47QNjsc4rGnn0bumWewWq0meLbVagU52u12USwWMTMzg2KxiGq1Gpz93DWc7SYNSA/KZuDQCeXjqX3UPvM+pbumlJLOHFeVI3zeca2Op8olfffDRqq+0IV0LBQKqFaryOX29wthZojLGuAwUgsgYdgS35IX1VHg/OgOA28T71FaMw2W46IpxrQV2GY1qtWG0TF3uRqzcdSAV1poPfrMKCe9/q40Jb+4Qcr30+D1TE5GenUjUbfX+H63y2K0jvVfdYgHtygjPXDhcv1ZNWy1k8qUOpi7u7vBsCqVSqHTGs7XTo9SxizuqRkOD9MUORHa7Ta2trYShiyZWhUCcOg94lmxCh5GMRknRiaTCemW1Wo1CPXa8jJqa2tYmZzE2vR0YlLoonhGfHztDJAUtvyNaQaMEGkqcjabRafT2X9/rRYifXqUCOtw2ul4uBeZtNUJQ9o5WHImBw7Pn9TIMidVoVAIkTAdc9JDFUQaT5y1orxDmpXLZczMzGB3dxe3b9/G9vZ2MIz0+BBujLO0tISlpSXk83lMH/DPSd+t0RFNU1PHEAt/U8+aevwVpKvDQZUxjdjNzc1wVjO/NxoNPPb00yPbXHrwAE0RsC6ATzLuanB431xIUwkA8XV+yuN8Z6vVCv3MZDIoFosJWeHzRUELHQCc7xwTyiTdnEfbrsJb172oXDjN4sAjpvDSDHGXpzH6xYwB0oLRIW7oQXmhynJvby/MBSpwN9I8JVfHbnZjA7Obm1iZnMT9gyO61IPPpQO68zWAIzKOOqEiO2TGyvjt21icmztynfOCx4rRecq/arQv1OuY2dzE+vQ0licnE6Agm80GGaxHsCivc0xj4F2dtIx2cUNIbmakzmI+nza/YqAoxkPOM2zDaRfdAViXSMVkLPnNHfFqpOjGXiyKTyi3FhYWkM1mMTMzk+BZyntfjqK4Qh1wQHL+0QBkEEB3bNUjEBnt55IAzkXyRKPRQLfbxf3799FqtbC6uhqWI7lT/5xlL3ipLi/j1oE+IJ9sb28HObi5uYlcLheitrVaLRytt7W1FTb7Y58LhQIuNJs41+2ie+kSOpcuBXnsziPNUgCSuoL90LHks41GA61WC41GI4ybO3Y0Q07foRE5Ncp8Pp4F/geQoMfMzAwmJycD1lldXcX6+no4L5XFHYXAYeo7DWJiVI8kxoxcdSpR7qvxTF3LDaAov8nT/MsUYj7D+nxjJ8cl7JMam+6Y0I2d2EdifyC5RCCW3aJ6yfGJzm3yrm6QRXvB+blUKgW60UagfFIbJYaHgEMbiM5cxSY6f3SukO6epak6Q52DfH9sLjyMY/PEhq17eflSbRwF8tjYWGL3Xy+qBLUoE6ug9k6xLRTCuj2370rnDBHzGOj7vcSISdCUy+VQ6vXw1l/+5QSYf/r6dfzbN78ZLUntPM5QYX+9LTq5CeaU6clInDS+o3EMUDjzejtiXpq0sXJDlyBJAR7BkKdKk7l1DY9795THzkJJG0elGdNz6/U61tfXw4TWc09ZVMB3Op2wO6ArsrRJ7aAqlu0Qa7cLUCpXXidv8Xnd8Gpzc/OIYVuv18Mh4PcP0l7Syr1C4QjYigk1bftJhFrM0+jXYs840KZy03QlBZCj3u/0ptLd3NwMyobRDhrAMY98DCifpeKGifdbx0y/p9FP5ZLWw2cIZmlM8Z5R3nR/V0xpAkCh08G3vec9eP7t2+Hej1+8iHe86lVoHhjRjN5zp31tF+cK20ZZ/OBgDW1auXuwsyqQdDRxnvV6vWBUUobyHdXdXfzZ3/iNRJufevRR/Pw3fAO2D1Iz02SB0skjFGnygsXBi4+hFx2fNBl0XDlLvB+Tt2oYpenYGH/HZLQCRF3mQb2Qpp9jUXG2l5kArJe6Vzcz1OMR9TqzEij7uDEU9UG73Q6pxysrK+h0Omg0GkGPqwNgMBgcqxvu5vPo9XrBcKAsVnyUyWSC47HZbKJcLmNsbCxs1thsNpHJZDC5t4fv+9CH8MJ790L9N5/zHPzn7/ouDA7SaGncqMxwemqJGTg0llRfKK+kYTu9TzF1TA+elawd5Stiu6mpKczOzuLcuXPodDph/aaWmGzXfmlkT8eZ9yt2T8OmOjc4HjouDA4x4JXm1Is56rR9Oi6ue9h+Pd6Pv+t39lkDb24vjdKVwNElW7EoLjPsdOMq6qrhMLkULPYepYPLcnWk+bxw+0DtOu3DScvDGrcnNmzd060eB3aMmzgNBvtpJ6VSKbGwGEDiXgXQ6qFjB0gI7ZQacRT6XF9LRiYhPS1A3+9pXjGBxffxOV7jpljZbBZvede7cE02BgGAx27exLf+yq/gp9/2tsTAsx5lPJ3E7Jd6nviMCmFGcXU9FrfW5pqCcrkc8upZB9foxgBfWtHJ7vdrXxgZ5pEI4+PjIV2IHn7yTbfbDTsH8xlVDmrYxSbNaZYYqOB1trndbuPGjRv46Ec/ilu3boWdBCcnJ8OxMAQQHPPBYIDNzU1Uq9Wwtlo9+TGl4HND+TUN7McK2805SK8fx4vH2WxtbaHdbmNlZQXdbhfNZjP0g997vR6a4+P4xOXLeP79+0cOLP/YwgLu5PPIyXp4ro1iVFQNSI0QOu01BSZGE/6W5vH2d/A7DxRnVgHnmhpUaUBD58twOAzg8P79+8hkMpiensbMzAzOnTuHCxcuoFKpoFwuRwGzyjFP7zqNQp5gUdrqdc+y4b3Oq3o/lTL51w0Azp9KpYJSqRT0TMyQ5vM+Rvxfj2rp9/v4tve8B8+5cyfR3icXF/G9v/3b+B+e97yQDkrjYjgc4vz58yF6RYfd3NxcMEi63S4eDIf4o9lZvGx9Hbp9Wz+TwYdnZ7FSq2HiQIbTq82+bG9vo9FohP0R6P3nBmR//wMfwHOWlhJtfuL2bXzbr/4qfupbvzWRKhzTZXyPpm6SNjGdq9EmXzqSBlaoc2Ly0gGjjpmOp0ePT7OovmX7NXtMDTggudMw+6ZOLN+UTK/l8/mwAebm5mYw3KhP1RDySJbSiuCaR4LQkcx0eurdVqsVlnOxb9zosHDnDhaaTfQuX8bu856H4XCI1dXVsLne2tpa4FW2hTzCCOb4+Ph+9lI+j49euIAXLi0d0Q0fnp3FjWwWOwdOQM4JdQqQP9y5BOw7EamXpqam8M779/H8ZjMxho88/TRe/9M/jV/9q381ZM+4buQ7PZsvFqgZDodhLbRuUqo6zPGt1sH7HNP5XDzOqfpsF47F2NgYZmdnAQAvetGLsLW1hbW1tYROjhXSQWnDeaObwgJHjySM4RnyGDNIuLRL997R8dHAG2nNdmn0kjKKTqWYA55tJD3y+Tyq1Soe2d7GpbU13M3n8aBcDrxGrEzZSF7WNbhul3imhspRd0oCh6nL2WwWvV4v7NOjpzQw2BKT06zbU6A5ZmyTBqPYds1ySmuXyq9YVFodHh5kOUk5sWE7yjuhk5YCczAYhIn5yCOPBAb2nG5lUlcONHCcockU3JVNdw1WRlTiKTO6h4h/1XOXpngBhKj05NISHv/c547QiutFyg8eYKtSSeyGpp4TFXykpYK8GP01TUkBBq8PBoOwmRUnawxQ+sRxgOITSEGGTjberxF79ompc34mIseHysvP9hoOh4m1qT4Op1GcD9xrt7W1hVarhRs3buDBgwf44Ac/iMXFxf3U3MceC5vf0CvO+pgOMhgM0G630Wq1Eht9qBeS7/MSM3o1eqCpPWqEkLbkR03BYap+p9MJEdmtrS10Oh1sbW0lzokm6GfUeWxsDD/8ilfg//X+9+NFDx6Edn54dhb/9MUvTqTGK4jguDMqFVMgPhax8Rhl4CjwiPEVPf5ra2sB2HGeqeDXcWE96ujjd/WWEsCw/rW1NVSrVZw/fx6VSgWTk5OJNGat9yyVtHFhidHpuPr0Wed53lMsFlGpVFCr1dBoNBJAwN/v+kSBgbZxdn09EfVkyQ2HeMXGBq73+7hVKoVME11H5+CK84uycXx8HP/iS78U/+8//EO8TNKSP37uHP7Vl34pJuX8W67lJujhrvLq1GBK8aV2Gy9eXIy2+bk3b2J2YwONhYXQTzd8nN4xoBSL9qpxFtMfqlNjkRX/7ljCMYGWswDqXU9nMpkwr5VvNf3PnSsuN1T3eoYaad1sNjE+Ph4ikdSNQBIoMk1dZYcXlYeU/ZTjlPthf4EHD/Ctv/IriYjnRy9cwE/9yT+JbqEQjGQF6Zx3LnfJ17u7u/hfnnwSb9/ZwZesr4d6P1ir4R88/jiazWZC5nFzKOIIYhq2U99Pvi0UCnh8OMSXbm0d6X92OMSjTz2FqdVVdC5dOuK0dz51+a6/cZ7SqHUnksob0l5xltJIjdmYgaF7wpyF4nO0VCrh0Ucfxd27d9HpdHDv3r3gLAPi2FPppJs1FovFqOGoutUNXcXvuhSRWTa++Rr5RfnTcRLtFe0zeVvbro7CsbExzAD4O7/7u3jh/fvh2U9cvox3/ok/ga3c4UZLjilj8kBpp7LHx0DnHnCYWZPJZIJB2+12EyfVkN/S8IXSRj9qG/hHd0WmTHF9rrKS9afhXHd0xgIUsfJQm0c5MV2QK1P1er2wWx4VPS18nxT6v0YA9b2ankqmpYdRzw1jHXp/DFy58ACSuyarQHOjmGC+trk5kma11VXcPtiOWyPc6vlzsBBrL7/7xNPvup6Y2+6Xy+UomEkbW51cbgjovQpaVMlT0bFProzcANCd8HRtLXCYbq4T6awVneybm5tYWVnBH//xH+PGjRt43/veF8BqtVrF9PR08MKrJ0sj0+r5ZYTQMwaAo2kZKihUAMaMLhcMnLOMtnL+8jkasxsbGyFiqzvCcv5RkNGw7Y2N4X9+9atxvtnE7OYmbo+P4/bEBMYBZA94RPuvc0IdNjGj3csow9Ydb2mGE7/TsK3X60EhqqfV26AOPc5t3ZRFPc8A0O12sbW1hWw2i3a7jerBRimzs7OJ+UIlfRLD8NkqLvdHGaQnHa9RxeURo5aVSiWAeFXkWsjvbnS4QTZbr49sw6N7e1g6kKc0bHVdlPJVzBs9qNXwz77mazC3uYlL3S7WpqawUqsBAIqZw3NA1ftNHce6VM7s7e1hwaJQXmY3NxOGrQOyNF2otFad7UZtmmGrz8aMU31X7N16LWbYnrYOcFo4XdlO5Y3YPGFdTjct+p5OpxOO6Mjn8wlspHKTc0CzgNKKgkrFT5p+/LZf+RU8X8A5ALxgcRHf8u534++85CVBTjMqrDRh+yh76dDd3d3F1mCAv/7kk7i2t4dzzSZu5nK4WyhgOBhgsHd4viXlYK1WQz6fT+wdQqd4u91Gu90Oc4Z49LFjDMHJlRV0Ll1KtJf0cDmh2FKv6/rkHdNpmuHAMXZDxXmKz8YMbXcUnVbhPFS5B+xnGJw7dw4XL15EvV7H8vJyAoO7LlOeVUzf6/VCNFFxnzoTPdDFd7AeTbPXI0B1nwHOG8VfvntzTEcpH3gUkfz+Nz/8YTzf9ld4/v37+N7f/m38yNd/feinRob5PPtF3OeOETcI/XnOAT47HA5DZoKuLVbDNtbntDnAttEOUgPdsSTpmUY/LY4XXCY+LBY6sWHLzitTKDClYQMcHsHDfHtlIl9fqQpbj81RD4BODLaFu+9xgxclvE4GILnuUBmbdWnUk21RkEYjg2kGHNSbx3gPnslmQ3RLP4PBYaqOpsWx7wrIPAVYjRWljwqBdruNsbExTE1NBaWjzzvTKmhwhaj3qoBn0faQrpOTk2HHRPUOs73qXfU0IlWKNI7PQhqaChgq1bt372JpaQmf+tSncP/+fayvr+PevXtotVohArqzs4N79+5he3s7bI+vvMW6mIHQbDbRaDQC3xFQxzxVsWuqIHU+KmhWLymPxWJaGb2mfIaGbL1eD9FbGny8l8YglRP5ularYTWXw7BQ2F+Le3C+XyazH33znYJdHmjqX0ygqUxQz7eDAAebQNJDy7HodrtYW1vD4uIi1tbWQuqSRrn9/Swue/z9/tze3l7YbGNpaQnVahUzMzN49NFHMT09jatXr4bo9VmJ2LpjwMvDGKzuHFCF6n9Jy4mJiXCeJcGPyhFNX1KjQeePtj+bzWJ9ampkW9sXLmDqIDqlco6yihGjTCaDdrsN4PBMZQIHAFgdDvGZfB7Z7W1gZeWInGX96gDV+UGnR7FYRLdSAT784dQ2N8+dS2wSSFqqLnX+12UPaWMVcxDoWPlaRS+xSEOawerg7SzNAeCQLkwh1awkdWipDOPvipmApHHDcSAuARCWgiwvLyOT2d+RmFhJaaeRS+DQKQwcpjlS9qguGB8fD/xMGV68ezcRqWUZA/Cqeh0vq1bRunABtVottId9YnRIsxC4wzOjOcPhEJlCAYv9Psb29nBFIr40YrlHB+cBd+EFEOrZ2to6kgUIADONBvCZz6SO48rkZGLDSs4x6iJ1Dqjjntd2d3fD8hzqQOUR0jfmUCWdGJBQ+QcgoZ8VF54VwxZAkIGUeYysP/nkk5idncXOzg5WV1exuLiYMOzJf0DSYOLyn0ajEfYUUJ2re1G4I4L0y2azIYuTmW/6mwZUXE6psay2Ad+tv2tR/JvJZHC118NLl5eP0I074V/qdHD/YGmap1p7Sm8sYuvX1bAEcATrq03D/VBozNJ5xPvUyHcdqhmwrHtnZ+cIzlEZojtSkz6azeI85YYs5Zfq6//uEVu+zF/sSkqLD5Y2To1J1qdMEvN6xhiUQtoHwkGsXouBUI2Aej/ViNeBWaxWU9cSfvriRSxWKhhIerT2JQbYY9/9mhuhzmwUuholdoZxY9Z/03rT3uP01PdptDHt3dp/9bIBh4qeSlfTtk+r0EjtdDqo1+toNpu4e/cuVlZWcOvWLayurqJer6NerwcPLr2FrVYLxWIxbB6kBrtGqzWC7Tzr/Y95s9J+4xzk+Ojc0sgrI8bZz30OtaUlrNZq2CiXE2uwCLJICwIYOrAI5uiwIcCmUGWqOjMM2A6m/Wiq/tjYGC62WjjXamF9ejpxRFCspP0WAwR+bTAYBEXN/qniiRmnJ3mPj4cW1q/pyuPj4+h0OsGIm5ycDLQ8C8X74hkhx4Evda6Nuj/G08qvKvPTxiYmy70P67Oz+My1a3j81q0jMvxTFy9iY3YW4wcKXOcjlX1Mvrnx49+9PdpHyj011pmezt2h69UqPnX1Kp57926izYNMBjeuX8fG7CwyKe/RPjhYSRuHmE7w4uPp96vuOsncSdM/p1mU19SYj+GeNDrE6ok57jSiC+yDbG6UtHWQYhs7u9Yxlf6mukDBsBrd/ByXyfCcbBa3Z2dRrVaDEap6m045zlU1HHWjS7ZJNxPks1ySwvRJ3cVYgxW+9rnf76O/sIDPPfYYrj/zDLI2R24+/jg2ZmdRGCRTi9N4VoMGSkdGBDXSR5o7vtLrakyNmi+KlXjtLBXqa81gKZfLmJubw6VLl4KDg5mV7pxS3tQIq+Nz3uP2QKx4lFZprI5zLz4OabhLsbM76obDIc4fGPppZXp9HbdlmZ068rV9Md0Wk9XKa2786js0is05qc8rvvC2Ob3cTkqbG8Q0+rvLzzT9mKYvT6oHHsqwVY84gESjtYP02vFeTd9Sxc3fSCR6vhUQc52tAmUygoJjHwhV3ATzarxqCk8ghqxJZZ0KMrhJiArUf/261+F73vtePHn3bqjnqcuX8eNf9VXBCOaaQn2H0kyNfi0xhvPvPglJRxoRvkEFxy4NZPCa0pX3eNqoTpZms3nkzE9Po3XFp+szmcrKcaZyKxaLYeOJ0yzLy8tYXV3FZz7zGXz2s5/F0tJS8BYPh8NAb/J0o9EI67/X19eRy+2f90YgQFrSoNTUevXYqTEKJL13OnYqfHSs1RBQIQccGlTMrug9eICv+tEfTZxB+9Hz5/GOV70Kjezh7rDr6+shPdnXDBOwcN0g5w099tz0Z2xsDNVqFbVaLZyFyPMYs9ks5nM5vP1jH8MXr66Gtnzi8mX85Nd8DXYrlSNpki7UtT1Km5hDZzAYoNfrYXV1NXx8TZMLcdalJaaERhUFONz5dH19HePj47hz5w7m5+fxyCOPYH5+PhyfdprFU1ABJBx97mnW+4CjKdxa0mQd5QUdDxsbG7h//z6azWZY18b7Y/LR363gk23/xTe9CX/6P/yHxJmzT12+jJ987WsT8lMjBX58DuWu9oX6SovykQKnmILXdnIeEez//Dd8A77j134t0eZnrl/Hu9761qAzs9nDcyLdeKFc8DFLkymURV6Xtl37pXSOjYfeP8rYHQVGT6voWHEjJwekwKHR62NK+lPXqXEci9aw/pWVlZAJdOHCBZRKpaBL1LAjH7rOoG4iiHYMpHq+HjmGSsv0y1+O3LlzCUMzn88DQNjwrFAooNVqhT7xqD9mLmn6LvWeG4DEIpzrSrNSqYSpqSnUarWw7I2Rv1arhd/6C38B2Xe+E9flxIob167hV7/1W0PddBax/2pkUB9xKYrrUOps4lDFVh515fwBkNjAU+9j0fHjGKZlLZ1WoQNle3s77LDL+TAxMYFXvepVWF5eRrFYxO3bt7G8vJzIgHLDkPiA5x4DR6Oo1Oscl5jMJJ6ko13xvv7lM49sb+NSr4f7xSJuWLt0XrpDAjg8qoglm83i7sEcSCu3Do6lIl5kUIEbqbp+YL16zWU526dzh/xGeZDNZsN7dL0tsZouJ+UcII/7O9hOxVI6L5jJ55vRqU5Q/BbDCIor3HY5Sfm8N4/SEvNc6MfXEakA0PVr7LSm48Q8X/TIqAL11GYlQr/fx6V2G5e3t3FnYgJ3JL0v5vFThaAD3+/3w/pCGmcbuRz+96/9WlxstzFXr2OpUsH9g92gd+Vwcq03ZkwOBofH3nhkV+9TD2LMq0PlRYNJPf4xEEgBFQP7ZFRN83Mwo4a1eoP1PjfQ+Am76B4YxV4vgMQ5jqdZ3vve96LZbGJxcTHsAMzUOz2SgWf60WM4HA7DTo3r6+shWqubarmHy1NggPha4zQwqLzBeliH/k4+o2J6+U/9FM7ZZmgvXF7G93/gA/ihr/3aELVuNBpHQBPrV97VDUn40WgCjWqNXpPP/sZnP4uX2Br259+/jz/33vfix9785sTccJ7hbyqXnD4KUjg+a2tr4QzE/9ZyHAiJ/c65CACrq6shgrywsIByufzf3Kb/1uIeVeDoUgZe06JgJlanG0YxR9rOzg4ePHiAu3fv4s6dO2gepLW7AlRnB2USv6uxqfKsPTGBH3/LWzCzvo65eh0rk5NYqlb3+UCiEa4D1VkHIAGEdZ04gKijUIGIzkunjzpVadjujo/jZ77t27DQaGCuXsfm7CzWpqcB7Ke9uTHl+pAfbQuwP4fV8aw6RgGlAix9R0yPuExS/Z829mynG8pnocSM9ljfnVd4zX/X6ImPP3/PZDJBfmrK4N7eXsAo5EXFTWowKd35l/XrEqFMJoPm+fP43OOP4/qNG4mI5zCbRf1LvgRTL385quLYZqaOOxRZv+o4nd/Om6o/VH8pzxET5PN5lMvlsLmUg/NeNot3/6W/hMriIqrLy1iuVrE6NYVSPo/xYTLyxnbpe3ydO/vBZVM0oHRc1ChX+eARNMd2Oi7KJz5fTrsoBmUEnv0fDg8DQbVaDcPhENeuXUMul0O5XMby8nLQtTq2fFbPnY0djQjEaaTLG3W5nztvdC5Wd3fxj+7exZfJfgW/X63iB65cwYaMt2Mbty1oP/Bzt1jEh+bm8JL19SMZQJ84fx7P5HLYOUhdV7znzne2Nyb/FM8BwJVuF5e3t3E3nw9nQLsxrCnCXBLAutxh7U461Q3a/5hM0/2PfA2uyh3lJRb2y7Fdmh4bVR5q86hYxW7E+jUAIw1bXcugi/9jhOV3NWxVWaoiZKnu7uJ/vXUrwcC/V6ngb12+jNaBYaFeU1VanLxkWhqNnMAcjGw2i7uFAu6cOxcMWg4w71XDVvui32MRZl27owDLnQk6+OoFYi6/ev94H4uCFx1nCnJPN4yBER+DGMBhv9TwIXjnRNP7yQtpoPjZLH/wB38Q0nC5iQWFMvvBNbJ+VAEF9ubmJkqlUjiKSR04moZMoKPGGekBpEfBdBwUaLkCdYE/MTGB4t27uPCxjx3pd244xIsXF/HYYIC71WrY3EHPJ1RvdIx/NLKv7VZFxOey2Swe2d7GKyMbs+WGQ7zw3j0sNBpYn5k5AtC0bqWd0ifWRkaSeT6vAk0vTu/YPWnX04rXube3h3q9jlarhc3NzZCCeNolDWQ4gI/dp/JFn/V7Yv8Ph/vOo8XFRTx48AAPHjw4Is+0qFJUPlRPsYID/r5Sq2F1amq/rQJqFKiqTtL6yG90JHITMPJZLMVO66Be9EwB6kgatu5l35ybQ31+ngMU+u+yQnnSdasbW95X3UDNx1x1URroUOMtphtG6ZMYvjit4u93usXuVzqlyYo0OcWimQLuUKBuB46uxctkMqmpgPoud0hnMvsbtf3Gd30XvuHnfx5XPvnJcH/ny74MjXe8AxfGxo4sRyGveD+I2XwzGfL97Po6pjc2sDI5icVK5cjzCtTp5PGN5Dw6znZ0u120LlzA2vT0fhslPVUNe46DzukY3ylwpzObmDAmj3Qu6vxzp2xaUaPiLBi2LHQw8NhG0pDyiUfYXbx4EcPhEIVCIaHXVCeQFru7+0dWkk/U0PGieiSXO9xpmDgqzThj+Ud37uCVrVbi2iuaTfyTO3fwPbKpmI6ZYyv+plmdw+EQ//BFL8Lf+fjHE9lmH1tYwA998ReHCD8DH27YKg+rbPC5m8lkUN7exj+6cwdfJv34vXIZf/uRR9DL5RK8Q93CLE4ui2PQy51CaYat4kZvD2lG4znNYNf+aL/UGcT/P1/sf2LDtivRR/XEeaPdczkYDALQ13WEFARMLVbiqYHLzqlwYwqrp4GokAL2Ge4f3r6Nl9sukq9qtfBPHzzA9z/nOWFQ1eCiQcmNC9RTru3QgdLwPPtULBYTClpptxcRsAq2yRC6y7AKb48uAwggnb/xeACeIevpLO5BV0bmvWpY+/26yYKuq1VDjX1To50TbHV1NZyBR8GtPEaDSI3A0yrD4X7a0tTUVDDSeBxMvV5Ho9EIhq2uLaBh22w2ce/evTCG3C28VCoFY7her2PyYFML0jTNwQMcBf8xXtNn9buu6RgbG0NNjl6IlVfOzmLy0UfROhCijUYDpVIpAWw47g6qORfIT+Rl8kuhUAgb42SzWTx/Y2NkW2Y3N7E2PR0AghtEfLcbUjSmWSiEl5eXsba2FlKrT1rSgMZ/DwDCtna7Xdy7dy/ViHs2i64Fds81EN/MTIsC/BjABpKKnfesr69jdXUVH/3oR8OGWzMzM0EmkK/5fk31o06gTlFj03UY3w8cRhJosFIfsZ0KtNlW8nMMLFxstTC1vo6VycmwK7K+09eDqVNP9Q7/agaLR8HY5pjRqvSK0V9pxu9at+rWGOiLFZdRet1lmhbKv1GOpmezKMikfqQBpeA6ZrhTLiq/aMqp612NuPA+LtcoFAphXSt5W7GEZmiRF5SGlNPUX51OJ9Svc6owPY33/72/h+W9PdRWV5F9znPQv359nyflyDZucEewXigUgl6YmJjA3t5ewmAhlixvb+Mt73oXnvPMM4FWn3n0Ufz8G9+I7YOlF9lsNtFv39yp2+2GdrD/uVwu4Dae/7uxsZHIoKI8YOYV9ZK+h3hE0ykJ2peWlkJ0UQ0RFo6ZygyVCZynsXXuGpFXI/uk0aovZFGHIvszHO47HhuNBqrVKgqFQjhBYXNzE5VKBdVqFVevXkWj0cBnPvMZ3L9/H6urqwlboNvtYnNzE+12O+wxwcI13LrEkXKRhho3kuWSOPK545/LnU7CGGQZA/BlrRYe3d3FrYMsshh24niRd6grMpmD4xGzWfyNJ5/E1e1tXNnexoNSCfeKReweZPqpDmXdqjtV93lgQx2o//jePbzC+vGqdhv/5N49fN/jjyfazWAXnUA0cNVYpbxlUMaNUtfbinEpVyhTfGOpWFGj1oNn/J/jHbNfRpUTWwtqmMQ8INp59xhT+KpX0D+uELQeZyg1/mLt4buv9nrRs8zGALx6awvX9vawXCqNNGxp0NK48tA9++jRNW2zAkFlGP6v0V/Wx6LKlMytdSuN1Igk8/oZv9pmp2mMjm50x5R2zHPDcY8Z7RRCzWYTrVYrAQ60baSZKvrTLpzAusucbvkfSy2hJ5G7KJbLZUwfpA0yGpPL5YLDhmOlPKk00cg92xSbSz6+ykvKD9lsFrtXr47s9+D6dVQPvLCTk5NBycccGrH5rVEnjXLRa8i5ls1msWbA38vaMTvZOm38GgsdLK1WK6SUnbZn3N/NaN9ZK85fLDGv7Ch6Oij05wGg1Wqh0WhgY2MjOIG8bm2L10F+d4PPDUmvQyO7zk9qgOg1TwEr9Xr4lv/wHxLg/dNXr+KnXv96dCLrsRRAqGHL//W+mGGoc9zHxuekg3GtV+tUOqc5JWL09/bF2qu00v9j9Z+F4m1Jo+Nxv520uPwn2KPM1fWywNH9BWJZbJpJo7pGHUKZzP56yXw+j51Ll7D1nOegVCohJ/3yOUCjWDMKFLewTdRFb3nXu/C4rBEHgMdv38bb/uN/xE8drIP1IIJjIxoJ/I33c+7SsGbKrNKLuopygPNLN77kO/iM6ntdE+lj5nwe00ks2m7HOh49PivFsTLxEI0lrnXudDqYnJwMR09OTEyg0WgEnLO5uRmCN8SGTJWlYZsmo7UtOk6OH3UMBoMBLh/jvL6yvY2bY2OJ51xuUh4T09Be0DnxoFzGUrW6f/9weESfOGbTeetF8WAul8Mj29t49Qjb5kqvh1sWlNLMDDWqFQt6YMnlvfKi41KuhY/ZGzH+8f7578pjvrTnuPLQhm2sEdoYMjYHSdMN1fPFQdK0ARJLc9b5XiWU70LnTMe2HMfAT2Qy2JmeTqzPiIEKCkh6NGNHKaRFX+kB4Xc/WJwbJrGPjAZSuKlRrM4FtvX63h6u7OzgQamE2xMT4Rlg/9ifXC4XdlnVc1G1ffyooFbA5gJCn2fhdz43GAxC9Fg9kJ1OBysrK7h9+zbu3r2LVqt1xOjQCbezs3MmIrYAguClR4oewmazGY7F0U0kWDju3ERqZ2cH+Xw+RCp5NBJTmuntUo+aGjdufDmYdieK8o8KfgUlu9euYevVr0b1Ax9ARlPfslmsv/SlGDz2GCoHKUTz8/PBI+599zQgto9plLqumH1Qb3kul0OjWsXHLlzAC5aWjqxT+czly1ip1ZCNAIUYoGZRAMPfGG1fWloKylbrOQslBuhOq8S8tjGHQZoRpM+nGbwuY/r9PlZWVnD//v2wRksN21hUT+vgdY5tbOMR1qEGMGU+gIT85rO6qZSCUcp71v1n3v1uPHbnTqKPz7l7F9/567+Of/Gn/lS4Tw0M1T36140D7YNG5jQdVGntIC9GL/6vOkazmnxpiOtflti7VCYAyQi/p8Kyb74W+LRLDOjxf412Ok/yXq1jFFBTPtQNMzOZTNAdjEaSbowy+iY0/Ku6hLKaBp1GEulkLJfLiehvzEgdDodHghYK+mkAUrdRv82srSWcPSy54RDPvXkTk8vLaF24gGw2m8gE4hxVPNDpdBLgV39jX6hfdU0wzwXm5pScZ5zvpDsdzjs7O+HUA2YucV5xDire0aJzRnGV8oVneag8OCtF57lGuAHg3r17YV8XRuY3NjZQq9VQPTDwmG2wsLCAlZUVfOhDHwrGLZ0UGxsbyGazmD7IyhoMBiHDTTOqFGtynICjRiM/nI93D+R6WvkcDjMlVe4Bh3sQ5HI5VCqVkBKvvBcLfLnDQh1OKrfdkaJLvlT3PLm2NrIPV3d2gj3Ad1E2aP38AAjLTXxOZzLJfSN80+DBYBCW4vFYSN0UWGmn8t/liM8blZN0Hpw0wHVia4HGlwJENorFDTrdxEg3B3IFrZ3UCCSJq0p5FDhSoA4Ay7JeI1bqc3MhdYIeF61L6/M1HFQALqy0KEPp+hIax+ptVHqoN0WFMRmt3++jvL2Nv/vpT+NVsi3/B6an8T89/jjaB0AtFiVXL4wysTKdj48yuI6z8wM9Nh6FzeVyIR19bW0N6+vrWF5eDmAztpZCvUs6+U6rqNOB6UhU1BqtTQNgpBUVIs9x1WOA2H/dZIlOFAptNyR0HPm7euEctGp7lA/6/T4+94M/iOt/9+9i6v3vD/dtvuxl+Njb3x42jtrb2wveVwepBCAKrjlPNMpAXmGbdKdLKof/4yu+An/1934PX/TgQXjHZy5fxr/+2q9N9CGNDs7jyqt0UDQaDWxubqLVaj1UCvJplLNgbFPJp6UExQwu4OguyQoEvahM5+6Ky8vLWF5eThzDRJlFOarOG5fVWq87dfQ3N9gUSMQcf9pHnQu8Z35zE8+/ffsoHYdDPHn3LubrdawcbLLCutyAjCl/1b8+p12nqtMrJid8/DytlW3Rth3HizFQ6WOgdIo5oWJY47SLjrnSCEB0PPR/T7XTecBx1d/VQFLe5HvoJOSROjR6gaRhrbxAOe8fT2UHgHw+f8Rhs7OzcySLjr+xnr29vZAOyvPPaQgyPbnb7WLenD1eSg8e4EG5HFL7xyU1dHx8HNvb2wkcpQ4gOgU4Th55Ih2oUylHPBNKeY+yhQEJHRcfYx332FxROeNZGKSt1h0D/adVFEuSz7jWeX5+HhsbG9ja2goYSTNsmJHVbrfDSQjtdhsrKyv49Kc/HZwgzWYT+Xw+8LRjDSAZpQWSSwHdiaeOp+FwiLvFIn6vUsGrWq2EAbQH4A9KJTwol0HT1w1L4DBlXw1b3UdIx45t0XaQjoptNSigc0t1GUsul0P9GJl4/2BZV5qNRH7Sk2g4vxQ7Oo+rbFZnF+c7TwLRPiv91SbSNnk7fewcyx5XHtqwZYPTFCNwyPxq2KoXO0YgAEeYQZWHCisnttarjLVcq+GPZmbwso0NqM+rn8ngYwsL2Dp3DtVqFaVSKeyyx/Z74YArKFNPPwF7TCgREFAAK8Bmv7wfBBg0KDQauLu7i7/3sY/hZXbW3JdsbuIfPP00/uYLXpBQYq6EnMaeOst2EOg4U2lEzo1wGrZcb8MJz4PM7927h0ajgXq9nhjLGK014njahi2Vtm7MRaOWAjlGKxZe63Q64eiCUqmEmZmZhMHAecP+umDT8YvNJR2P49rCwrHvFYv4+D/5J8g98wwqS0voXbmCzsWL2Nvexk69HoyK0sEB4+QPAgcV0LqmrFAoHPF6KmjzjahyuRw6Y2P4Z697HS51OrjQbmNzdhbLk5P7z0i7T6LwXREzbarZbIYNo866YXsWioNtB21p8nyUs4d/nZ8BhHVbKysrWF1dRafTSchAjWpppoS2wf/qnFCjj3Mvxk+ePuZ8F5OPw+EQ08esFZ9vNBLrbTlfNHLjNFFAEQMDJ5nzafdR9ug4Uq/FDFt/Ps2RFLsnjXZueMd+O60So7caKbwWey7mEHAaqZHjBpPqWhp3TBUGknrBgTLrpl6lzNbopeIYNfDSDFvvBw3F3d3dYNhy3whGc7jZUrvdxqePWV5x+yAbiEtcJiYmQrRMaaIAmPNSI13u5FWaaxTY6e/GOyPdxGNsi4+T8oXzAP/q/NGUZ5dVSns3Bk6rOA05NgAwNzcXInatVith2Pb7/cR+LdVqFVNTU+j3+yiVSrh161ZiaVChUMDu7m6IFLqzTY1dD744bwA48szfvnoV/+jOHXy5rFH9g3IZP3DpUphTQDKtnnVzDXa5XMbExETAQwyMUVa6I09pSJ7UOahLoTygpryYyWRQL5XwkfPn8UXLy0ey2j48O4v7pRJyg8O9J1RvKc/SJgGSx3iSTn6/zyN+aOcxI8PlvmIHj9rqnIgZt59PeajjflTxEiDGFJB7nDlw2lj3JA6Hw7BA3K11vZ+eOaYGq6BWwZzN7ufz/9ArXoG/9ZGP4CVLS6GuT1+6hF94wxswf7CjnqYYO3jjuzXyqUyuaczsH+/TDT48choTZDTmdHdcTYOmgJjf3MTLI6ApB+BV9Toud7u4XyodMVgd0Lh3Xu+hl03H3idYNpsNyozrZrkZlKdS8V3dbjdBwzTPDenQ7XZDisRpFt3Bjo4GVeCjjFotpPf6+joajQaazSaq1SrK5XIi5YxjR550Xtd0LB0XTTNRAOPeeX2GbaLhuj03h43Z2f35Lsdbsf2cg+VyOQgyBV+61piKQDdZ0PFn+4EkmOP9m3NzaCws7N9vHnTg6Hov5WM38oHDc+7W1taCwaQR8v9/SS+xzInjPNNqJDnA17FiJITZD/V6HWtra1hbW8Pdu3exsbGR4CuV+Xyve5xdIVMHkZ9jylcduCqzgcOza1WOa5qsG76rB46YtLJaq0UNVzeUfJmMgjuuzVdApMBOMydihqg6exTs+/sox6mLOJfdccr+K91czmjfYhsu6dx2PjrN4rycyRxuHqUANub0SXME8Tetn9819U+joTwbNpfLYWZmJvyvmyJppBI4jGgxusJj22isca7QSCkWiwF0Kw/EMsA43tyngG3kEhWm8QIIkbj12Vl8cHYWL93YiB6Lsjw5idwBT2t0WcE/rzESqLKA91Af0dBShzlwuFSBdajM0LmxtLSEe/fu4VOf+lQ4GWB2dhYzMzOo1WohTVJ5hPJEx5rFI3s6Z93QOEslNte3t7eRy+UwPz+PdruNTCaDj3/842EflTt37qDX6+HKlSshakccQsf35ORkMO646enS0hJmZ2dDSvJwOEzQkx81AvmbYnTFFAEnFQqJDZ7uF4u4VywiB2DhIAKrPKEYXzPLdJkGkNz0iCXm3GM7WTf5mHPQdajiOtb3E699Lf7i7/wOvuj+/XDvR+bm8A9f+EIUBsmUZs7hfD4fsj0Ug3FueTsp13xTUM594n8Gq5rNZuJ8aqWF2o8uR1mvX9O2P4xj5/NauEiGUXDgikcbq8IkrXFuPHlxRlbPtgoUZcSxsTHsFAr4oYNzZi92OtiYmcHG7Oy+t1OiRDEDi+/1trEfahB6G1VAAcldJIHkLmcsnhZEwezg7Li1w5d7Pdw72JE5ZsSwLo+Kx+6LeVL0fzWiqAip4AAkhIKCvpjn12mpdZ92Ko4ahv4ZFR3V4kCexmk+nw9AQtPOlQ9U8XG8nDdiUXT/6BgoH+s9rlAdNGu7uP7BASozFCjYVPjrHNGizg6d26Oec8NAi9LLhbHu5uwexFjxuf7/i8UNEBY37Pg9dl+MJ/v9fgDAPNN6c3MzfHgcmINqNyS0PhaNGhOksi2eskwej4E3N/L4rpj85/xZrFbxiUuX8PwHD46A909fvIjlyUlkUvhKZbL2MeYY0Hen1ZN2n46Jy5yY3tvZ2QkpsEojrdvHx3VK7N16La2dpw3yVT+yuO706yctymf8Xw1RpuVPT09ja2srsVMygWqn04lGQ1iP61R1eALJjWEoJz0VU50ZOtcU56muZDs0nZ2//4tXvxrf/4EP4GUrK6HNn7pwAT/2mtck1vSp/tC+uAxQ+nlmHPWtyjAH32k6ig78druNtbU1dDqdsBM0aVEoFFCpVBK08rmrY83ro3jIgz9nQf/EaEcni/Ki8nPz4FQSZkaqg4Tnneo4M6Nqa2sr7D+SZtgoHlJ5rngxZpzyudViEesHvxcPfuO5yMw047Mch5hTwsdSi2OU2Hgr39K5RNryHp2nALAzNoZ/8XVfh7nNTcxsbOBBqYQbBxkL+QNDVFN/udEVl7c55mf92ie+e5Su0/Xzbr+4vtI6Y44kpYXS72GN2xMbttppB7kerVLPgp51xi2mncFizKHE004DCAPEHe90/S+jqPRM0HBoVqu4dbD7atk2GGD/OEH9vSq0FRyRCckopIW2UydUmvHsA6/pNkDSQ9Tv99FcWBg5Vg9KpSNGq/ZB++xGggIzbYsyvraZ12MpCA6EfZy1+DVVStzM4TSLRqaZfkwwHkvl9hJTbAr2MplM2Ihqa2srpMaqENDnXXiwDZ6+7SBAgaQaA/4b79eUYkaNecwBPXP0wuscApDYBEszOMhbBFfsg+6cHEvBdjqrMlBaxAr7xzOF19fXQ3r8SQDzWQAVp11ixorqhVFrMHm/7pa5ubkZUpioI3jkEpVkv98PSxs0Esv6NJNANy6jflCwysJ1uFTy6lFWnmLdCuQ1Q4f95zNsMzf/y+Vy+Fdf+ZX4S+97X8Kr/skLF/B/fNmXhUwHnxuksTtDFYCrvtE57vM7BmCU3z36rffrbp+c9/fu3UOlUsHVq1eDfiP9Yw4+1TGqD5R/HAzG7jttoxY4evyQt4m0iIE7l+Mxo0zv57t2dnawtLSEzc1N3LlzB41GA8PhEE888QQqlQomJydRLBaDAaw4SGUnecXTDHUeEDsNh0O02+3Ql3K5nEgJ1Si96xfKAdZbKpWCwcN7lD7vvHIF797YwMLWFtanp7F17hyKmQxKmaPrzRUXEQ9ppJQOcD1z2TOWXE9PTEwgn8+H9ZLMytBjaJhyChzu0D4cDrGysoJsNotz586hVqvhuc99Lmq1Gmq1WnhPLIDB8XdMrbygskXx8lkpaiixvTRYifO59nRjYwP3799Hu90OJ0JQ99NxyecLhQJarRa63S5u376NTGZ/yVatVkvgfDe6AISMkr29vfB3d3c3bLTGSKgHwtymYWoxM0gpC9XmcQzncliNXnWyKK00yjscDqPvcCcq8VYmkwkYbLFSwZ0DR8uU8K8usSJ+KxQKIYOO79J9fNhXzRZx2aQ8QGc011ar8X0c1qeMSLMjlU5fMMNWhTMHiRPOjUESh53kxkEOqL2jOtH9N28LGU93FSaIJqjhplA8TsQBthb1ijjYJ9E1FVXfFzP+yIA+odx4V0+TXmdxgJ/JZLA6PY2PXbyIFywuRvPr7xWLgKxvpYDXheLu/Yx5U4D47pbKAx7JpDBWY8MNeDd2VbD4uPw/7Z1JjKxZdtdPRuQUU0bOb6zR5erqbttCatOAjbzsnS31hpVlyRsWSLBggQUsQMAGb9hZ7FghYbHx2uqFJRAGFpZp25RpuoZXWW/I93KKKeeMYJHvf/P3/fN+mfmqqjtfFd+RUpkZ8Q13OPec/xnuuYzs3CaxcJR+CAi/CEk5aC6Y4uxHzxDwEFg4QBRJuOpvXuN8movq8jkukAUcBODdQy0iD/hzyHd03JBnRbnIq7/Px4pAnnyq1DsZIWVewlclB+ffRKIcyK1XB9MElXJ89fv9tN9OZz6L77U/nynFcihpvUVcjgyLBwkIroouE4y4rOLfBB/k/1x1+bOzswSEKKv25+bi3/3gB3Gn34/1fr9wju20gR9GB2jAqj1lip3yk/PEPruTi2133c37uF5PT88rlh4eHkan04l2u104a9LXqMsRfy7lAduek0G5fv28KeeodeyjzyOKcpfzq+/IJ5prySitj8FgEE+ePInRaJSOx9OZsHqnnPedTidFbn3MKFO1RYopvORjrW9mXXmBKvKL7lfF8bOz832T3H4irCanEt/Zv3Mn9tbWYmpqKmaxJrwquEfk9ENnLB0PEZGOH9H8+fYr9YdGMQMAjUYjlpeX04/WONdTr9eLk5OTmJ2djbW1tTg6Oop2u10oJuTrK6fH1C/X75qDMqftz5M0vixmyj5qO9rx8XE0Go1477334tmzZ7Gzs5N4t9frRcT5GCi7T2tE2H08Pj9BY29vL54/f56ip2wH7Qa1Qz/cz6vflOlqM//XZzRo3S6g3NdvyTGuSfETn0OMJkdPWdSXRN7XehBuY/E02V1qh3Ca9Mn8/Hwhas61q/fw+SJd5zhezs6tra2UVcU253SW6y9iYMrGnN5zOXsV3diwpedAL9DgaG+gL1aBc0W3CIi410/E1EUOkA+KJlrCkmWqtTCU3sl8cgoaV+D8caAvppVg5l4N97RTiSmlQeXAyaAUvoosuNDTuHuk6/j4OP79b/xG/P0/+ZPC3uH/tbYWv/8rvxLxksEIjtQHeokiLgxHMg//Zjs5D552JEGXS2e4CnCpLfTIcgwYibxNYuEoVgi+qWGrcSXP0xsdEZcMWypDN2wjilkMOdCle8TTNDp4LSO83hd9x6MhtN60N6vMMeMeSYIBT5GhYUvgQz5wZe/vJD9x3Ol8YeEvFlfJGQyvYqx+VUbt62wgu7LhmmW7xW9yIhwdHcX29naMRqPY3NxMh7grDVzXap/t1NT5sRCaM31Ow5Y8TKDr0Uu23XmKhm0OYOaMPPGowE/ERTZHxIWT151EW0tLsb28fA4+bG1GFLN76NzJAQHKZ35e5ozkWOT0nAMG9Z3fS68pwtLtdqNer0ez2bw0vjchvt/bmXNivsqzf1bkjnfNA50kPmfOpw4OKbPq9XrSMS9evEjVwHd2dhLvqwATnXLCQu2XNUNkKFCeu4yWASVdzoKF4iNlScgAODo6ShWKaSioj4zq1mq1tEbk9Jbzyh2V1C8cC/1mBEljR8xAg4Lz5H2gYevrXnJHkT4Z4PV6PVZWVmJ1dTVWVlZSsIJ8q2P/6DC9f/9+OhJP7/a1K0OJuDm3Bviu2yY3bCMuMOp4PI5+vx9bW1txdHQU3W43vvvd78bCwkI8ffo0/uzP/iw5ZXQP7QAZZjp+6eDgIHZ3d2N6ejrW19dTdM9xMtcXswVEGlcabsIZOd7iGnW7xvWcZCNrP9A+csPWnTLE6MRn3hbiRBq2k0kxI07rXzys62WHaP0yG4ljlzNs2Ra1X3wwGAzixYsXMRwOU6AjZ8y6LuVnag9xG3VrmTPwKnqliC2VMZUd9z8wdVEpTP1+P6UYiJkceBO08F1M+1Gn9Fueh+bL1Fsatwy3u0eAxIFiqjEZVYBYQlEG+9nZWXrH3X4/1geD2Jibi8cvlb0KH7EcuO9ZmZqaSgtd54H5xDPapHE67XTiD37zN2N5ezvWer143GjEZ3Nzsb+/H/WXBmyr1UpGtZSHn1Ul4eoLSNeIienl1DxNTU2l1E4Kd/EL0/R0DwU8F7Su80XL8b5NYqRWxpF45CbkgEZ/02N4fHwcBwcHCfgfHx9nC6pRsETkU/ddGFCQ0uPs4EfX6T5VfJZCyqUu0kNaZiiqDSKm3fDviIv0RQIfvovPcnBPI1jvFZ/TQSXAc5M5+3nS62rURlw4yiIuitHweCcZoHLMKDLLyuEHBwcFB8d4PE5V88XveofAMMGo5pZZEyLxNwshRRT5mmCD86/vtd4cLGitEIARiPoaIv9FFGW6Zw1Jzuq5AiI5A0l8LxnJNGk3/vR9zoB0w5bjKKBHHaVrlEa+sbERo9Eo9vb2UnsXFhbSOFKXqr18p8uJMqM2J9tuk8oMUzpl6WCQ4ZLjOZIKLT169Ch6vV48efIkrSfxPufNU2vr9XrCGXIauZwWVtLWEbVdhjDHWv/LGS48p8+UrsmjeHSvwLW2qmgda10pMMBnc1+h+E8/uTXpTnNPM9bfMlTPzi6K8+g9fE7EuUzr9/tpDu/cuRPLy8uxurqaijvm5LPmRhkoOzs7cXJyEktLS3Hnzp30vfAOnV/OP1yz4hvht9eBHjx4EO12O9bX1+Phw4extLRUOPbm8ePHMRgM4kc/+lFMJudH/Pzqr/5qzM7OxsLCQnz++efx4Ycfpj2ZWiM8cvPg4CDNj2oudDqdWFlZiQcPHpTqSGKRxcXFQr2SiEhZBCwYSwPYHf5cbzmDmhiKAR7JMedRx2GO74mv1RZPw6eBrrVHnUk5L6yvdcMgH/vK4IT4k9mp0kvEYUdHR/H06dPY3NyMra2tgv5w5wBtPY6t/te2UW3NqdVq0el0ol6vp0K04pOcDZejVyoelQOr7o2kUqfVLYOAik7XcBFTmVKp8p26X5Pk1YeVfqzrXEGLXLhoMuWB19+M0gowiXm7Z2fxez/+cXzvxYv03P+5vBz/+tvfjoPJxfEJ8kSJCel9cqXt3g1+zr7UarXYXV2NF4uL50fIvDQqmWrk1foYufO5o7D3aIe3U38zPZcRMLY/571xpeLX0LiSELlNYtTPveFfhjgONBC4H8r5loLD51Tf566ncCHw5lrUfNHLzTXBglkeleJ71vf2Yn0wSKmXbpx7hMoFuntjSS4fnNgmj0rpfwdCrzP5GrotEh/oAPZarZbkopwFOodQe2nloHGPdsSF88t5nUaQFyWLKKYccn2Qx+h4Ffka4bNEDkj0t68xUk6euZxk38TvrqT1nQA9x0JtoGGbM/qc791JVGbYXrfOdL0ySXQUi94l40bH5vnzcm3MfV/23euwVl2uisr0gIO73LXCE/1+P0U/er1e2sfJ5+h+Amk+k8CeacNsD/lK1zECWeYgoT4WL5NPGXmk4ebp+TJ01W612Z3rzLAThqHDJedIoJykjKHuYyaEp5ELz2gNtlqtaLVaKUrr8+jzIied5lPppt4m13FlfMXn5njnNujhw4fRarVibW0tVldXo9PppONvGo1GLCwsxMLCQhwcHES/34/t7e3odrvpeJ/BYJACUZLvZXiF+mF3dzdqtVqsra0V9kJHXMbIzHqRozMiCthbf7PKsmSsP9MphyVcvzGbk9iGznz2NaKYbq7nc33pcz1X65Z6h/UjxN9aP16ELbdG3Hh3ma2+uX738coZtrnPfb6VDaXsE8o7yojr6MaGbQ5ccMIYHdVkM/p2eHgYOzs7qcoZGcq9GGJ09wLw/YzUkmEo+Og1JjPyefTqeLqpjAwH9kzB+Fd/8RfxN+w82e/t7MQ//6u/in/87W/H1NR5USBt2lYhAjIbj0MhkFLb9bmMdS14HhTO/Y4LCwsxNzcX3W43eSnVX91DRUGmKvOI0LCVMhbIHY1G6VDunFLk4uP8uGHP/sqD+zoI84go7M1U0ShfE69CXMz6++zsLB2bxH22buTrfvFBRH7Pk0h/a64dKFPBag6YussfHcmi70UCO52Tk/jdH/0ovruxkb7732+8Ef/hBz+IfZTPZ0SKQjkHftlm9j1n4OfAO6NaNMxfF966jl4HozYiYnd3N8bjcXz22WcFj65HkOSJpzEXkVeWujeiWEzC0/19iwPnkjKMPKy2sciJjDAao2qL1p+u4fsIHiKK54aSF91xKHDBdUrATh0aEQXwQWJbRWXOnfF4nPRX7pqckUungK7JAa3hcJjGXO/5+OOP4/T0NEWo7t27F8vLy+mcVV+D3lbnC17Ddfw6rFfOJcdUslhAsmzNOkA8PDyMp0+fxueffx5Pnz5Na8efr/sok6XLI6Igt5vNZkGfMAWSekJ7bOv1etJpSns+PT2NTqdTMAAajUZ2PSjaRoen2hQRKRKn59ZqtUvbQIgLaNSWOYBUMEt7W6nLIopFy2jI8n1KeaXzZzweJ4y6srKSshBy68xJ6//4+Di2t7ejVqvFu+++W8iSmkwmheNQOL/6XzKAmXpflSP9y9IPf/jDqNfrheg3t3Qoqiq58Id/+Ifxve99L37hF34hRqNRzM7OxltvvZUyefr9fhweHsbe3l7BWU7Hw3g8jo8//ji2trai2+3G6upqNJvNJN+JG8RHwo8RcWldesYMZSTxEPeuUk4Tm/tWGY+2S1eJL/QZC2zRuU+ZKx2h8dZYuHOT79T64Vm8zJDVdQwwOi9q/GVzUC5LpgyHwzR3Lg9dL4rE4/5DLD0/P5/0SLPZjPv376exeBUd8Ep7bF2oiwGYoqVB9xTi09PTdJaYvGIcRF3r5BEmCgB+x7QxtU+ARwNCgUsARAaV4tDfEircYyuF8vbxcfwtM2ojLs6TvT8axcb8fGEhREShVL+iqu65oVDW77KFqB95R7W3WHs8+DyPcOg7VwQ5A4PzSU8VF7SnGfL+HHgSUflwMdxEofw8yIvY3DSCQH4l5Ra/xo/vcGCXGzN+XmZEkFdoyLphqL8ZoWZEnk4itkv887s/+lF88Pnnhb5+6/PP43f/+I/jD37rty612XnNf3JGrfdTY8f/9Rk/d8P2yxLbVTbP3yR6/vx5Yf1TqfKHgDtnkFFviMeoOyhHcs4KPUPXUm7ob30uPeR8r9+MFpE3aXCT58Q3uQwSysAccc1EXOwfysl49lFEXeZymDLX00pd5nKecsZ5zmnkW3IODw+j1WqlcT08PIyNjY1UIXN9fT1arVasr68np66oDKDkDF+297bJjQvpUNfbrvN8LNUnVWbf2NhIFcKv6yedyu4IpDEwOzubCntJb7k8VH+IIQiklbbMIpgeQPCtQwTN2ormY8atBh4tymUscH3wvRHFs6WZUURnsGNT33IjTDc9PR3tdjuazWZKtWZ/ed91xC1azWYzGeJsU443BOCpF2mU3zZpXijj2N7p6eloNpuxsrISW1tb8ejRo2g0GtHv92MymaRotuZKYzs9PZ2cNcym0hxpO9TnL7GF5qderyd9o/GjbCevkI9yWIrk+pxzJx7zgBjrQND5Q/zP+dZak/OIa59RZ859Di+57eC4knqVfXH8xb/9f+r3HF7LOX9yRrPbLuq/gn2dTidF+DXHuo/y7jq6sWGrVKMc6GTYnQ0hM6giptLYmMZEb4Jb83ouDWXuW6FA5z4QeTboMXEwLmYTQzIiJaaVsmFa8tHRUUwmk1h9eT5XGT04OIhPsZlbEU2lqMgDygOZHby5MeiMSDAnwazUkGazWXA0cO4Y5eB+OT2XXiFnThq1GhN95t5PEefEhUpEsYCUGzPu+bkNEjjwvUvX0VXt/qKGLceFAN6FXO5dIs0FgQ6rR7rAptIhfzJSt763V4jUiuqTSXxnYyPu9PuxtbSU3qF2+TjmjFs3aPkM8hqVFsdE15Bfbyoky8gF9jednj59WjoXOR5lRgav41wwzYjV7eksyylUvpOyKiIKKVq6l+A9ouiV9u/FO2w7v2OUQPdS39Egpk5zgzSiCLK5PsnTlBFu0NKYvsqwdVksfcZIWQ5s63rJPu2R1m/df3JyEp999lk8e/YsGo1G3L17NxYXF+Ps7CxWV1eTYctxyK17jXsZX90mEcw7aNRnbmi6LtVzJpNJPHv2LLa2tuLTTz9NfbxOjghL6UfviigWLtMewslkcqlQGzEB14Gc48IkcpALYKumCXlG7yD/SY8oIkpArUw+RqWI47zeAsdD7eP+WxnPxKA8/YF8r88YzdNaHo1G0Wg0Uvpxq9UqrE296ybpkBrz2dnZVAFYUWXXO1zXxMH8n0b+bRNljIjtmp6ejlarFXfu3InRaBR/+Zd/GcfHx/HkyZNYXV2NWu18+wr7prEl7najXkW5Pv3005ieno7l5eVUwM55hDKbvOYOWZ8Hl7PEDsS4wkJ0FgknnZycxBsHB/HW6Wk8bbXiSat1yeErvCZnihxKxCv6jKdmcA7KsJF4lVkjnDPaPj6vnEt3AlAX+5xrrP2zMjtCz1Qf5+fno9FoRLvdjk6nE0tLS+kYs3a7nfqa2+pYRq+0x5ZCSIPBdF8aLgwdSzE+f/48FhcXo9VqxcrKyqX8dhm7TJ0R0bBkBT21S+04OjpKXgBvJ6sFMsVYIEqLR15pXcvIlbw1ERGfYW9vjjaQBsx2nJ6eppQjMbMMUTfoXTly0Yp5dTg4F4SnW0REwYhmISt5iyisqGQZpWCUVv1Q2izBKJ/hDO8AlcKJERjdr89uk5Q686oR2zIimGDfpWRVUEcK28EdBREFt7yg7rFzPtT6cONQ8yfBLf5kaj+fpbV3enoa69c4elb39uLF4mJEXBTL8P6oT863/CznPOH9FOAuqL1frxPdBNi+DuT85U4rglwHCjTMCAxy2zAoS2gQ5dqia/Quke5XGlhO53APn57FKuAEyPTS59aw2pEDCLmxcCeAgD9TMdUPjgmdT3TUMKJAIBJRPI+X68ZBEgE9140MpLOzs8JWiXa7ndIrWWtBR3zcuXMnHjx4EG+88UbaiiPdS3I95zLvtteG5pyGBsc9B+z0uYyp8XgcT548ic3NzfjpT38a+/v7hYy364jzK33rfEXZppRRbidxPMLorwrsMFKkVP75+fl0r+ZeeEJ9jShuefHjcQjw1R/K8ampqVRMht/RuGRUl3st1Q+92x1I+pxgXWPYbrej3W5Ht9tNZ+9yXnWcktq2v79/5TzJ8fPhhx/GyspKrK2txfLycszNzcX8/HyaK4+A5nDF62LURuTlmGT5cDiMZ8+exebmZjx8+DDG43E8f/48zs7O4sWLF8kuEK6RY2wymSSjVnJX1+qdMvx0nvPp6Wn88i//cnS73UIFfdcXxLXELupDLo1ZvEw8K5kmJ78cfeKx09PTaB4exr/5yU/i114WIIuI+NNuN/7FL/5ijF46gNzYk9yMiHTervhBfSL+033sDx2jxNI5feiyijKM7VO/ub3QMZU7afQ86lJviz5jKnS3243l5eWkH7SVkmuD1ZFvQq9k2LKB/r8LeF+M4/E4VXwdDoexsLBQUOi59/gC8r/5fiptXaffZBJOWM7Y9Sik7vEUiYiIR3Nz8V9brfjbo1FhIE8j4n90OrHxUhH4eBCUaDFrsp0ZqEQplOnx5HjxHh9P3nOd55HfOSClUpDn2FMHr3uWLzan1w3kMxX3yxq1EZeNNa4fL8ZVZsDxOSIKKfGSG7Y5ftL1HjVyA5rA09fozstobBltLy1lZUPOW+hCOadMOS58VplXPKJ4TrV/d9v0OrWljDh/dHKSn0RuzOozN9D4XD3PjRqnmzglHMA7z+Yiyno3v+c7GSUtGxd/B9sSceG49THyttBbz3dTFnOc3Pj1drqOvGrcfI26E5i6VMVYpMMmk/PzKZlqXa/Xo/uyiFyj0UjvcbmWm4/XxQElA4sYh+OeM0C4JhTt6fV68eLFi1Rk7VXInSKOi8gPkukyBmVQcjuJ5lXz4E4eB845Ge18Tx0hpzl1UK79Gj+uU++z3uXtoQ7VNeJ/OjnZZ2E7vbfRaKTjUHzdTSaTdLqF9hNfR8KTu7u7qU1ybtBBkFtr+vx1w0ARl7NlNJ6qDbK3txe9Xi/tU15YWEhbEPf396NWqxWcMhpnYp2IfERwMpmk/Z06YkZBnYjitkb97zokJ9PZH72bstQDXO5Y0uf/9ic/ie/DqI2I+Ju9XvzLn/wk/uF77xXwk+QI7YBcodcczskFKnJ84rLBdY366uvHdXSZ/PX5yvFwmb3IdikbREHPdrtdMGp97d+EXsmwzQkY/a1OSpmx+pYm6PDwMF68rB4sD5m8FPQS0wvoDCdB6T/yfPKQcAkuFruRgarqdTpbTZFaKm0KfTIWc97/yRtvxO9vbMTfHY3SZ/+93Y5/9tZb6X8qF+4foWLRc/UjpcCDpqk4NMZ8lq7TbzKel6rXnGmB6joqDT7HFaCitYPBIIGYMgOF/+t5MubZNxZ3UFtykefbIPXxVdIhriLyt4CueK7f76eobU446X5/nkhzJd5wvosopuxQwMgLr2Ig4gXxj67RnGltHB8fx+jBg/g/77wT7336adQhDMdTU/F/3347+nfuxAyMBr3bwayiw24Q0Rhyo8gVWM7IEN/5/rSKXo1yhgfnIwciI4pOUEYZKc9y4KHs2eQD6iKmZNKodZArXaJrp6Yu0hjFU55+mFOuviYJurlPT33j9QQ3ERe8r+IiysBxoKF3MaKsbRJM8WZ2g4h6JBed9bGWbmSUVk7Nw8PDwvF6yojQmM7MzMSTJ09ia2srhsNhrK6uxne+852UZsd2ivz9OZ67LRI/ygAiaaxZWIfg+ODgIDY2NuLRo0fx+PHjNOevQo6H+Fkumq95bTQaMZlMCtVMdTSf9tTy/GR9ziyG09OLQpYqqkT9LL7UcT/SQVxzZ2dnCY9xTeo54ivKbWUxiM81/hpfjQV/xIfMjBO+4DrRHuJ79+6l1GviEI3Z/Px8rK2txb1792J/fz+2t7ev5cmzs7Po9XoxHA7j6dOn0ev1Ynl5Od55551oNpvRarVS/3M1Z4SpKHtum7T+qUcVrd3c3IyPPvooHj9+nPZ4v/POO/HJJ5/E/v5+7O3tRb1+frQPZaJjTzo76KCJOHcKHB4expMnT+LTTz+Ng4ODeP/99ws4V+tB8inifOyU1hpxeRuL4wrxJoNdwlXcy61r7g+HhUitaDoifq3fj9Xd3fj8JX/pCCrxlton20XVgCVnpSek27zIK8dLmUl6BvtK3cH73dmk+aWTSbiPuptb8nLzSZuFzj/JjYhI0W+lZc/Pz0en00n3812vQjc2bBuNRjIEafWr0+6B90iiBuzg4CB6vV4MBoOo1S6qblFIuMAQs2tQpARpfHISNMH0XLvXxT/PFcXxRUdGEA2mp+MfvPtuvHl0FG8eH8cn9Xo8VjoPrlfbHWzzXTJwvHACAVOZYeteSR973efjLObh871tfJYMMBVH4KHrVxGfmfs850FiG29bqBMkfhXkfeSzVX1ZSrnMG5dzNHGOPTIUcbmYDz2ETPWSYStQzSIhnGsKzMlkEv/5hz+Mv/dHfxTvf/xxuuan77wT/wmFo9h/H4eyPub4tozfc+NFoVwZtV+MfLyvmxt+FhGXFCOBsJR1bo8Vf/tnuTaJuB6kM/g3vcKUrSKC7zInHdvE6GROjrou0TMICPguXVvWT9cdjKh6Bg3luOsh/ngUm0BHjl/Op8ZOssPHk/vKtre34+TkJEVzlpaWLp2r7fP4Ohm3ngGjNomPvcAPPxcm6ff7KU31Jv1xHpuZmYlms5nWTJnRQ30QEan4U6PRKKSTa24nk8mlIjt6PyOUzss53tTn/h2xl3iHa47GhPSRrzNGgPXjzh62hdhR66Pf7ye9qgCLorU5jKb3zczMRLfbTXsABcod+7jOlczb29tLOnVhYSEWFxdTYEdjz7HIPfO2aTgcpjnieeWj0Si2trZie3s7er1e1GrnlX8V6W42m0nvHh0dXVpDHHPnL5HWktbOzs5O1Gq1ePDgQXJISL9za5xXpS6TxZRB5NGyH2atPHhpQJfRG0dH8fnLTBXxNh0o7lx0G4v72hk05NjoN/nWAwDqb87hyXVaZgSTiPv4DP/t8oSOHD2HWRQMynAe6GS7jm5s2LZarUubuwlMvLM5RTmZnKconZ2dJe9Nt9tNgoPK2gWzK42IKBR74uTJe03DzZmRA6nPfPC5AHxPoN6ldj5pteLxy8VbywihsugjwYw8rHo2hWwuCsCJZmqDnqsxdYPV+ykP6VxmT3BOSWh8GVl0JcV35N6rPvI32+rvv21Q81UVHMqRG4ratywlEnE5KunAT3OjaBWjIBRu9OTR2cEfeRXH43Haa+R7PfQMOmQmk0mMZ2biP/72b8fi1lYsb2/HzvJybC8vn69p9NPBO/sinvEoVQ7U0xOotaHniyiw5R3MKc6fFeXWwNeROAdXOVzcucl7GE0U36oyPCO2nB8Hig6GXW/wmlxKk9ayZDplK/tEL7Gep3QxfUaQ7QWYfMxyfaJe47U0est4R+uS1fzpSdc86DM+izrFHabeXhnNinSltf5yfarAkHCAxm0ymRQK+Tx//jxV/71//37U6/VYXFxMET7yjsvZ25b/EcVaEGU8ybGRsahI5NHRUezt7V3CK2XkfdZaYabbVYYtZb3S/SIijfXOzk4h+kSjUe+fTCaFo0O0xjTHjJDl2k0cJV6lg0tGHWW0+E1rjQBXYypdx+iWxoA6k5hFEdydnZ2YmppKe2kXFhai1WoVjEs3EDSey8vLMRgMYmVlJXq9XtZA4BxwHGT0HRwcxNLSUqytrcXdu3ej1WoV+lpm1L0OOqTX66VsPeG/3d3d2N/fj93d3Xjx4kVa48oEaLVacXx8HL1eL+3VZ3ai2woRl7FfTl6+ePEijo+P4913342FhYXodDrpXNXBy3ofU1NTST4RE9FgpEEtEs9wa6JHbJnNeV29nU8tu0OOqYhikatcJJa432sv6HvaSVonXiXcecxtHK0/7oH3TE83Yoktc9g04vIWAW+/9IjG9PDwMEX1aat5heir6MaG7f3792MwGMTp6WkycNVYMUjExf4NWdjOvJPJucdmY2MjVaJTOXQqVXbAAbgGLZfGxD0rUvSe4iohx/2hDpS1mDixnEAJOjGV+k2DU8xGz48zVsRFygmj17zfGZ7Raf/hmDFix8/Zh3r9/CByCg83JDguJycnsb29HS9evIjnz5+ngluinOFf9r8b+nynmNjTo26LvqoUZBHXA4HQeDxOaX9yAjl497nRWqCRx9Qm3iNgwLM89bmM4pmZmQRmFLHVeZS+/iQ0uUemVqtFb20t9lZXz/9Hf9VnN2x9LNQPGiYe8aNQZbq1iOvVszV+nnTbvPtVUc7IclBHXaDveR2vl6zU1hPxIFOJKdupIK8zdGjYehv0LG4BuUqBU06J38WXMzMzySj3saKBQJ7LvYepXvzOI1u5LCTfi58zbssMWkYCfD1KNghsaPuO+qWojcBWo9GIg4ODgjFBGSFZIoOq1+vFm2++GYuLi7GyspLmhRlAZXNyG+S8S16nTGM7NbZbW1vp5+Dg4JXeW6udb8+6d+9evP/++/FLv/RL6SxPZpqxnSLyg9bXwsJCzM/Px+np+RGMiqQLO0n+cw55pErEeTFF8X/O4auxYG0SGbb7+/sJxOpa9ZNyXHhJhYPE/1NTU2m/pta3+FT8Jv5XVPXg4CCGw2EcHx9Hq9WKRqMRS0tLsbS0lIp26jlyFLHQnBwDyjRYXl5O9/T7/RulSsq439nZicFgEJubm/Hs2bNot9tx7969VDiHRo54zNNPb4sePXoUJycnsb+/n4zI0WgUk8l54bHV1dWYmZmJjz76KG3xm52djZWVleh2u2k7otcrcZwonneMTz6TXBoMBimNVTzgDkqXoypORAwvx710g2wHN7rIZ+L9R3Nz8V9arfg7mXo7f9pqxebCQsy91BMytlWbQDwvY1e/lWVB/UQHgOuUXB9yutJ1Ma/XWJPfctjTMSvtB+GtHF6g80l91ZpaWVlJtqBkxe7ubnqWCrfdhG5s2C6+rGZKL58PKgGEG5Ru5PX7/XMA/LIcujqZC7NzQHJC2711uobFAfQMTiL3TLph6+12xeERWHrZ3PvkBqO8Fm44XqW4y8Axo1Wu4K4jRh7YPgegruBGo1GMRqO0r5lMrevL2pszdH1uOYa+N/S26KtMQybl5kxCVAAv5wnLCSYHVJpfrVV33HC89VtjPj09nbz4+t8NA/Jcbl55rdrEfvDanNeUn7uR4EYAlVNuTMvuq+jmdBWw8jn1z12m6Dp3bPn9/g53juXe6c9muynbBXTkzc+12x0y7IsbiFyDzrNl48PPcoYR9YVkMA1XGrBlP2UORtdVfo3eL0PBQaP0KI1zX4M5Z5WOyzs5OUlnrS4uLhbkTs5Yu23DllRmyJZdK53J7KbrSNconXNtbS3W19djfX09Go1G4lu9I0cu8/W8Wq0WnU4nxuNxDIfD1C5FczUPMk7VXz1H37FqKnmGxqlAqvAWT5cgKJYxI11DntT34iHHPd5XAfTj4+PkKFYq/dLSUjIiFfn2+aIDSe/i0SSNRiP29/cL6cs34c/x+CKosr+/H5PJJDmHtOeZqebEQK+DYSvngMZTc6u9s81mMxkicijIYaHCW1oHEfmUWNkNdHBG5LM4HMtz32dEXOJZjiGNQdcTObzhWzwcc/1ept7Of2s04p+++WZhDvk+ng1N/OUBMnc8qv3sC/sk/eRyPWdzsH8524f3lmHQ3NxcRfpejm3t8WcgQzpHOpop+9fRjQ3bN998M5rNZvJOkYE4CFRqZEg3SJW+cHZ2Fg8fPoz79++nyJCOrvF76fV15qKA14DQg6H3yuvS7/eT0ONA828uCk28hD69hfyOYMGPlphMJintV8+hcUwhzwgw0wzcS8loszNxbgGQHISIofQ8N5r6/X4MBoN48uRJ7O7uxmg0KrSTY+eMzUXGBcpFLQYmcGKE5DbpOsfDFyHOH8dFHtHBYFCIFLuAooHqoDoiCgCBAoge0JyypICVh8zXhOZGJLCqazSXEcUqnMzocMMmR9xnpXcyVZUKwx08bsQQVFX05YiOiKuMDs0to+ziDaYfO2+Kb/U9QQjnW5lBEZerHFNWa884lbe8xno35XEZmFSb6EEnEFY7eK3kI+Ws1oJIOkT6gXJR14r/adgyIsbCTiLqZ3cQ8j25udV7tTVi9BKwad69+CKfx37SkFPqsiJpH330UWxubsbU1FSsrq7G/fv3Y25uLs7OzpJ+uY0si5sQcQedcur7zMxMGp+NjY3Y3d0tFIu5jsRna2trsbq6Gt///vfj3XffjbfffjtVlpYRoffqPvEGC9yINE9LS0sxPz8f8/Pz8fTp0+j3+2l/pIqCTU9Px8LCQjKuXY5TbzkoFh8cHx/H5uZmOm5IOs3Bq9aLoleOpbgNgPpA75SRwDNRh8NhSpPtdruxuLiYijc1Go1LMoxrRfJJDl7tDR8MBtFsNtM7BoNBctRcRz7vqiK8ubmZKvy+++67sby8HHfu3Lk0trdN3IqoueNxUHLCLS0txfb2dmxsbKSxfPjwYTJuFfHd3t4u1Hih7HBnn2MZ4sfT09MYDAZpu4Tkka7Xb+kCyXa92zPjVOdkNBol+ab7pW8o82dnZ+O0Xo9/9P77cX80irvDYWzMzcXG/Py50Va/ODprdnY28Uq73S7oMuoevUPPzxmqEXmDU+PJZ9FmYkCPzlLJLeqEMixPfa15p56jvcR71S8WJK3X69Hr9WI0GqUK7uPxOOZfjl+z2XwlPr2xYbu0tBTj8TjW19fTgmbV1oiiV63Mkuc12lAv76P26LDiIAUZDeicscz3EhgwFUFFeeRBLPN4urGp94vcqNR1NHrVXxrpUvI07hy86D7do+fnPOL0ttBQyHlc2E83dnI/HhmQ4uv3+9l9QgS7Puc54hxSiLkHi0bKN42cjwkcPGLLayLyacYkjmfOEKYw5bt5bc5Jk1M8vgedPO5gOmcE+edU6J5eRicOecXHk890j2tFX4wIFiLySjUnJ52f3HC7Tg559PEqw4BOVs019+WxrVLyupZpYDkZzHa5Ucuxkezkde7ozTlo+T4HcuTf3JrgGPk65JhrPedqPvBvRttY5ZZZVTSuNeaMgJfNp96l6M+zZ8+SgaM9h41GI83P62Dc+rjmIhr6TmBeZ5+zCnEZ+bNV7Gl1dTXu3LkT6+vrsbi4mM6adRmbk718Hp3V+nxmZiba7XYq5MVTI+SEYMowedPfRX4XyaiWgcC91ORb8oeixXQQ0bD1NaZr5OTiuAunyCjVuadKBdW9HCvfmiDQPjMzE61WK1qtVqqmLHnxReo2uNxUXZinT5/GcDiMo6OjFFkWRr5tkgNtMBikCPj8/Hzh+8lkEt1uNyaTSUoBPzo6ip2dnZR+SwOXjjF3lFCmOSaXrGE6r3iCDsKI4j5Wbt/g/8QKrKidC6zkcKpoY34+Pn65PuuQr9wfS90jfSOZqbbwLGUfAyc3JukEpd7xTAR/fs5o5u8y3aJr3BGRw3Rsi3SKHFmTyUVdBkX5xfcqencTuvFKWV9fT0JuNBqliS8zTggK+Bm92mdnZ6ls+uHhYTqPSvv5mI7h3nAfOCl4CTcJpslkUjjGZzAYFA6a56RzArjXi8qDjMk0HC5M94JTqchzyjGT0aq9JD5eeh+jFW6oCJwxnM+fHKM5YKORrN+Kch0fH8fW1lbs7e3Fzs5OAcxx3MqEuq71/Xfj8eUiLrVaLe3xpLC5TcoZY1/Vc31uBAbkfXSwoPsIDHLjToFKXmGUy6/159KoJV/wPil9rWl9rmdy/eYMk6varvYIFHE8ctFa8ok/g4ZARV+OCJD5v+SUiHuRIopF9BiNz8knPleyPZf5EVHkIV5DL7SuYZSTMplRRwdSaoP6Jt1AflchG7VZyjnndKGh6ulzbnwQsKnNLGDCvugeHw9677m9gHPloFLPl77U/kTdJ73HPbECKeyH3qFrNGb1ej3VuPjss8/SaQlvvfVWLC4uxtraWjJYtC/zNokyxnU8ZYrGWtkuPGLnVd6lfaAPHjyIe/fuxf3792N1dTVarVbWae1t5DohZhCvaa60j29hYSHtWaSOp4Mh56ASz5APtGYkt5Uhxz3a5HlmIMhYYR8F/h0/0LDVEVmzs7PJYDo4OIiZmZlUrEmViIkt3Vjg3kvxn67tdrsxHA6j2WymVGQVP3tVcqCvdNr9/f2o1+vx/PnzWF5ejnv37sXy8nKK0t8maU63t7fTXPPoJelY8ens7Gx89NFHsbe3F8PhMBqNRjx48CCazWbMzc3FcDiMWq0Wo9HoktyifHQ5FXGR0SAngwpeCjtxbsXnGmdiJo05HTSSazKaadCJpL9YH0Frg3tBdZ/z73g8ToWSlBkgW8hT5ClHSa6Hff+v4zWNqWdmck3n3uH2SkRRl/MZfp3bgGzL4eFhkpUaR1XO15FRWufaMnETeqXjftRx7Y1RipLOTqKwZzqZp+RGRKET/X4/9vf3o9vtxsHBQczNzRUWsTouEKKUFlfmFEj1er1ggHPfIifXQboY2D0aMgYIxAhqPAqhMYi4fC6fGFoMSGNUXgpWCtUC9jEkYKJCceNWn7u31ZWQj4sE1d7eXuzu7sbjx4/TmPqYOch07+VVQJTGu/hG+zbK0i++zuSOH4/8M0XLPdoe5fEIJMeb/CoiuHReovFHIU0e8uhQxOViMzRo+WxmFYgoNMmbul5OFTeOnB9y/MF+U9i7c+ebxFs/a3LjzD8rI/JCznDzbBUCchphvleJOocGnCtjFRaJiEsG0tTUxVEgEVHgU8p2tp/9ZbqXO1d4Jid533WMPiMgcT6NuJDVBDCUAc7L7ghgGwgY2T+RUo21r86dv/rJySA63BxcsY9yOBwfH8fe3l6MRqPY2dmJVqsV7733XqyursbDhw+j2+2WGnM/L2If6WjRXNIpO5lMYjgclhZZzBGdda1WKx1Dw4htt9tNpxcQnFOOyWglr3K+3FFTr9ej0WjE/Px8fPDBB+noFm0X6/f7yYCgw1uUcwCJWJlVTnKXARxPGSRHR0cJyymaxWNAcnJbkT8dJzM9PR3r6+vRbrdjeXk5RWkZLGFbdA/HjXqwXq9Hu92OTqeTzrylwZ0zfr4IiZ92dnZiOBwmA/d1MGwfP36cnBWMfHvwSThWBbp2d3fjr//6r2N/fz82NjbSvcLjup88rb+Fg+mEnEwuilwKKxMXKPqt9kxNTcVwOEzPVdVdFcTjEUTEXUzlFw/SoNPzJAOF010G6n/xEh2tei5xkpxANKzd4UPbRM9mkStdQ31GzO9r0PWp7s85nh2Te+CKffHthOq/2vb48eMkF7TfVphPDsFerxc7OzupX9fRjQ3b6enpZNyur6/HeDyOTz75JAmjMmHjBo6IgFrGar/fT52SwCCz0ltNT7V7HdQWCVJucqd3nOA8onjmGZVWDmTQK08QVCYU+TmNYl03PT1dSPkSk1xn2OXGm+1xYtv4/qsM29FoFHt7e2kPA/uda8sXMRYcJOcU8jeRcoLDjday753PIsqNPjemXcBREOWAcq6dVylxvq+MV/Te3NqiUMwVhLgpP5CvcgbDN5WvfhbE8XfjVsTxdEWY4xl3nOg+5x9em4va0gBlhgydLOPxuLQIi9rGgjk0rD1tl3rDdZzzmN7Pd3Pd+lqmR516hvfROHTj2MfMx9r7QCOJa9KdwT5fItejbIfPuTs19F71WdHh+fn56HQ6MTMzkyrG8tiZ2yDvB8Gqf6fssF6vF3t7e9lqrTlS9ouc2zoupd1uR6vVSpGcmxhQ7mwnsGWbmXGj9OdarVbAI2q7+JOBBYJhriGtI+oVGfc+Zvqe607PFhET5XCV2ntwcJCihZ1OJzqdTiwsLFzCRmWAnfPo3wl4u5H8ZZ0uuTWlAM5wOIyTk5NCyu9tUa/XKzhFPL2WMlM2gyrfPnv2LM7OztIxSXJi+FySKNd9vrzgLPmD+El7pIm51W5lxSk4J571eScG8fZSBrhDKSJfIZ+BKnek0jFE+a+1y6AV9YUcnjJsHY+XBRQ41vp9Hb5z8vFyo1fjIFIW0mQyicFgEPV6PVVFnkwu9qur8Nvu7m7K+rgJ3diwVcR0ZmYmPvjgg3j77bfj6OgoHj16FH/+539+Scg5I5I4yNzYfHh4GKPRKIbDYbpPm4bFbOPxOEajUSoAxTL1VNhKoVKagdITvB0ceH6eMyDE2GRw7ysFN4vmkBH1I0GsxSmhPjc3F6enpwXvjL5juyMu8vZFBFAsbqU2ueEdUUwxlYdVzLW3txfPnz+Px48fpwPdcwvE059z79XfPv5Mj2PUJRcF/6YQ+SBnyMrzrM983hyguHNHgoMRGXn+JOwlRDVn8kp6urx4gfutXaDyR0Qh72D9KqGp/msMBK7VThbu0Ts8jZSKICIKvE3FUdHNiQ6tnHHrRiQj5OJRRV1qtVoCau5I4zqg0aP59aiKyxTPHNLcS04JdEl5Un5rDYzHF1thVLCQhomeI73o64ZGqwAx9R6vUTs1PhoHkReZouIXESBxa4cb02yTj5Werx8d8aM9ctL/Gg+NN2WXO3O5Z9n7rmvpyY+4iLx9+OGHsb29HcPhMD744INYXV19BW796imnu4QBtI3o7Owsnj17Fv1+Pz777LPY2tqKfr9/KTOsjLT/sNPppGJHS0tL0e12U7Vcl3HusCBeUTSRqY7u+OHzarVatFqtVFyp1+vFxx9/HIeHh7Gzs5PmUOtERoODdxoYp6ensb+/nwppMVuI/C++Vnu1nmgokY+Y0SP+m5ubi06nE2+//XasrKzEyspK4i8ey0W5Ib7WWndM5fPTaDSi0+mkQAwjil8VuYGt2ia3TXt7e4XCWoooav4lG3RWba12nr69uroaOzs7sby8nIrQqlK45IRvY1Ckntsd6OhWFWbqg3a7HTMzM8kgknOpXq+nCtbC2pPJpBD08gwa4m3ux3ZMQ52mFGTtUT87OyuckazgGp1MokajkXh/f38/hsNhqjekI6mUEaIaBCLhpNFodCkCLZmhPkQUbZ6c85NYzg1Vtx+Iz5WBqnGWTqvVammNa54lm1TzaH9/P82p1qmqas/MzCSZeBO6sWEr5R9xnlM/Pz8fb7zxRpycnMQnn3ySjEgKyLLBKwMkNDTFzBoceSnl6ZEBzOgSU2IY7SGgdeFPYnvdmHJDgj/0qAhkqw3uxSDg0fOYd39wcJAio9wXkPPcsA0cdzciva25iJ+ntWms/VgkRg/YLze6fTHwurLPCcTE9Cxy8k2h3LxEXE7PppewbE79bxmz+s179Q4+i3wgIU8nSq44DZ0g+l+giZEd9jfHdw7wdB0NaBqizmc544rPpQKSA4yArqJXI5eXPsf6zHm6Vrs455tA3OVPDljk5ItHZr1tzgMOugmeXH7qOZLh4j8a1FT8bhjonc7nOcdkmcHqTqCc3qJDymU/+0wnp2cAcRw5hlp7h4eHaW8t+5qLQHDeOBd8t/pwlWOJGEB7M58+fZqMrF//9V8vvffnSZoH7g3VWAm07+7uJoB71XMiLqI6AnwCpDpaRuduatxdj/JZIv8+N39XOVsEMAU6WZ+E+6/p0KLzSfpHQFvR31zdCOoR1xMyxslHWgNMc1xaWoqFhYVYX1+PtbW1FLXV89VHOUFpjF61ljh+Mq5liJXpo6+acnj1NogO5LLItz4jjtQ4yW4YDAYxHA5jc3Oz4GAkvtVnio4TO4/H53u/adjSTmi32zEej9Pe/LOzs4KzxeUtqz1TH1DeR1w4ECOioK8ci7lT13WinseCcsK7zCjVmFP+np2dFaokR0RyGg2Hw7Q2xaNe+FN/qy387TLgOpzk60Vj6/zBZ8tGYsGviKIzgAWFldbebrdvnLXwyobt1NRUtNvtmJ6ejm9/+9sxPT0dH3/8cTx79ix6vV6B6Sm0cwPkC1WCazKZFECo0j8EgAaDQSpwIGGjAWZUVsDY02kiime2UlCqTbmoJ5lLdF0Ug+PngpwgSgwrxlxZWUlV+ERsH9+t9t7EsPUUNyoIjrneR2XEMSgDnT4+PhZlyoOGrTyB+q2/b5NcEZct/DKDzT9zB4ePJYWtBDbv03NzykTPo8OHRF5lipiUgPhRgJwRfTpA6OWkMNbzmfrjEZ0y4l4sOVRc0YjUr9yY+FiqkIivoTK66Tx+WT64Kb0OoIZ8RmDsytujdhFRKDzjClY8RzAgAOLzTqeXdEzO0ae2Ublq7iVPyP9ulNKppPfJuOBPDhi77oso7mnXfazEqfYzEkanLZ/FuWCmDOUpIwiSqxxHOg2pEyV3BJKUHSWwwog3x59zTxlEQ8DnKAcg2cfT09Po9Xppj9X8/Hz8zu/8zpdh4S9FjOyrrzoGaXt7OxXIGQwGlxxyV8mOiIuCRUpznZqaStHHdrudIlHMwCkzpMiDLm+1fiIunKBcwyyI2Wq1UhEvHc2ysbERL168SEZ7r9crrNt6vZ6KM0lnS7dInnu9BGEfrTvnA+oAEZ1CS0tL0Ww247333os7d+7EO++8k/rA0xuoh2iES95wbLleuMa5r5O403WT3vdV6IAvqjN+FqQsAPKiZ2IRB2gOIs6Nr7m5uXj//ffTUTo//vGPkyPI74+I9K7Z2dkkqyPOx1EZDToeTDhJTo7JZJKcMWq32kRDlrjE+TLisvPH9ZxImEdRSn4mEq9R7+k6yUuXgVNTU6m4lYxC7REWbygYtru7m/qgfcza8+9GeI531S59fxVRZhOL6Yf7iHOOKxrn4/E4nbaj/fWzs7OxsLCQsiR07vRN6MaGLYHzaDSKWq0WzWYz1tbW4lvf+lYhbTAXEeTAuRLMKTkNlowtVWAm4ylvXrn6+pxgyvfn5RQBo1Dqq37nvFI5YrtyBgtBoQSsj636e3Z2fobf3NxcdLvdS2PHFAguCI4bx5cgiYtZnxFMaVxZSVfXOnhi/xyYOLjkOHEuXDlTkKkdLM1/W+SLvGzR5z7PfeaC0q89PT1NWRAExQT8JBqOOQAssKtrc+uQaT+6141ZGrRam1w74mPyrO6jAcH2kc/cEUUwmeM7/X2doaW99jc1bG86j68COr4MQHkdwA3b4PPhY+oyjvylZ2l+eQ2NYgJM3eNpTHRe+HYItpeOSgFpKXF36HGtCKTI4eLH5DANkzI4Z8D7OHLNcMwom9keBxEuj9lnpqC64ctortoowJEr9qNCfmU/nF/vbw4A8nMCYGIF6bSIcz2+u7t7685N8lO/34/hcJi26GhblMbODZgyo1bzIYNJ+k7RiRy/MQJTRrresyAmk0nhfFbJXBEdKQLVipisra3F7Oxs3L17N+7evZui6dvb29Hr9WI4HKZsOo/YOF/5Olfb+H62Sfyqok0yZmXctFqtWFtbi/n5+YKhzTXqjipPoeb7ZAhpLDk2jgtpcF1Hr4Mc/zIk/lS9HToKhBkjIgUklpaWUuaH9P9kcuFcfOutt1KaujCGtj1MTU2lc5anp6dTRoRkmlLmXQ/JwTI3Nxftdjul/2rfqYxD4hbeyzXhGQ5u17ihKEcKHTTid11DW0qyQkTZzAwN1xXMoplMJukITlWZ9qOsytYW+81rr+PTWq1WcO6QxBNae3QC61rpSM2NriXWrNVqcffu3ZSCzGNgr6NXMmzVaXkjVNhApb21b+kqpe6g0793QKIJZSobryMYoAGpe5xxyIS5NpX1WwZF7js+15ldQN/fw374QiHAoHdRzyBIdEeAv5seFI+Y0CihgOLCUp/Y3lz/r/r/ukXChcX3EzDelKG/TnSVw8S9W36fyOcyF73KGYW6puwZnn5M45T8wuvYJvaD1/n6dmcL04+1dnzN+/ixXzlgHXGRXulC/GdFX3cAcxXlQLs7qHQd/y77KVsHjHzyPQTNDmgcaPi9U1MXmQw8xsr5Qtfpt8tUPlNAmevMZXpuDNlu/u1GooBcznAvczTmorQ+DgRYXMe5tU6A58Z02bx6P3Nr4ia6V9782ya2/+joKFUP1ukQV11/3XOpc3N7F31+fXxzupayk2uJKZll8ya+l4HH6r86bmh+fr6wD1vOdsclEcWjYHxbkxuWObxGp8zs7Gx0u91YWlpKlaIbjUY6LpJYh2Omzzwlv0wfeptcNvHzq/j3m0TM2PC1T76UcaVq9D5O4iWdK6ygmFL6pfubzWZKiVewRzwk4zmHw7We/HxUzxC4DoczY5PyMofzeZ+wNPWFxk/Xu35g4TR3XnEMFXiQ8arAnwx/Zsj42DhPco1cpafYZl3vW0z0OXEj9VBuTeWwI8e73W5Ht9uNlZWVK/e+O01Ncr2pqKKKKqqooooqqqiiiiqqqKKvCX1zKvJUVFFFFVVUUUUVVVRRRRVV9P8lVYZtRRVVVFFFFVVUUUUVVVRRRV9rqgzbiiqqqKKKKqqooooqqqiiir7WVBm2FVVUUUUVVVRRRRVVVFFFFX2tqTJsK6qooooqqqiiiiqqqKKKKvpaU2XYVlRRRRVVVFFFFVVUUUUVVfS1psqwraiiiiqqqKKKKqqooooqquhrTZVhW1FFFVVUUUUVVVRRRRVVVNHXmirDtqKKKqqooooqqqiiiiqqqKKvNf0/YOOq++NNZRAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_image_with_keypoints(img, keypoints):\n", " plt.imshow(img.squeeze(), cmap='gray')\n", " xs = keypoints[0::2] * 48 + 48\n", " ys = keypoints[1::2] * 48 + 48\n", " plt.scatter(xs, ys, c='red', s=20)\n", " plt.axis('off')\n", "\n", "plt.figure(figsize=(12,5))\n", "for i in range(5):\n", " plt.subplot(1,5,i+1)\n", " plot_image_with_keypoints(x_c[i], y_c[i])\n", "plt.suptitle('Images with facial keypoints')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "d9d55473-5d43-4848-9ff9-e654199f3e08", "metadata": {}, "source": [ "The red dots confirm that the labeled keypoints are well aligned with facial features such as eyes, nose, and mouth" ] }, { "cell_type": "code", "execution_count": 44, "id": "fce2dba5-c4b8-45a7-8689-b388092446ba", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGzCAYAAADOnwhmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPTlJREFUeJzt3XlU1GX///HXgGyKA2ECmRvmimImppJb5UKG3Vr6Lc1yNzPcoNy+X3PtzrLMNLfKFLur21za1BRJS28VJRfKyC3FG0sBTQGXRIHP7w9/zGkCjVFg0M/zcc6c41zX9bnm/cEzw4vrs4zFMAxDAAAAJubi7AIAAACcjUAEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEQJJ07NgxWSwWvfnmm8U253fffSeLxaLvvvuu2OYsS2JiYmSxWHTs2DFnlwLgJhGIgFtY/i/kXbt2ObsUOOjrr7/W5MmTnV0GgP+PQAQATvD1119rypQpzi4DwP9HIAIAAKZHIAJuc5cvX9bEiRMVGhoqHx8fVahQQW3atNG33357zW1mzZqlGjVqyMvLS+3atdNPP/1UYMyBAwfUo0cP+fn5ydPTU82aNdNXX311w3X+9ttvGjhwoKpUqSIPDw8FBQVp6NChunz5sm3M0aNH9T//8z/y8/NT+fLl1bJlS61du9ZunvzzlpYvX64pU6bo7rvvVsWKFdWjRw9lZmYqOztbo0aNkr+/v7y9vdW/f39lZ2fbzWGxWDRs2DB9/PHHqlevnjw9PRUaGqotW7YUaV/WrVunNm3aqEKFCqpYsaIiIiKUlJRk6+/Xr5/mzZtne638R768vDy9/fbbatiwoTw9PRUQEKAhQ4bo7Nmzdq9Ts2ZNdenSRVu3blXz5s3l6empWrVq6cMPPyxQU0ZGhkaNGqVq1arJw8NDtWvX1uuvv668vDy7ccuWLVNoaKgqVqwoq9WqkJAQzZ4929Z/5coVTZkyRXXq1JGnp6cqVaqk1q1bKy4urkg/G6CsKufsAgCUrKysLC1atEi9evXS4MGDde7cOX3wwQcKDw9XQkKCmjRpYjf+ww8/1Llz5xQZGalLly5p9uzZevjhh7Vv3z4FBARIkpKSktSqVSvdfffdGjdunCpUqKDly5erW7duWrVqlR5//HGHajxx4oSaN2+ujIwMPffcc6pfv75+++03rVy5UhcvXpS7u7vS0tL0wAMP6OLFixoxYoQqVaqkpUuX6h//+IdWrlxZ4DWnT58uLy8vjRs3Tr/88oveeecdubm5ycXFRWfPntXkyZO1Y8cOxcTEKCgoSBMnTrTbfvPmzfr00081YsQIeXh4aP78+XrkkUeUkJCgRo0aXXNf/vWvf6lv374KDw/X66+/rosXL2rBggVq3bq19u7dq5o1a2rIkCE6ceKE4uLi9K9//avAHEOGDFFMTIz69++vESNGKDk5WXPnztXevXu1bds2ubm52cb+8ssv6tGjhwYOHKi+fftq8eLF6tevn0JDQ9WwYUNJ0sWLF9WuXTv99ttvGjJkiKpXr67t27dr/PjxOnnypN5++21JUlxcnHr16qX27dvr9ddflyTt379f27Zt08iRIyVJkydP1vTp0zVo0CA1b95cWVlZ2rVrl/bs2aOOHTs69P8OlCkGgFvWkiVLDEnG999/f80xOTk5RnZ2tl3b2bNnjYCAAGPAgAG2tuTkZEOS4eXlZfz666+29p07dxqSjKioKFtb+/btjZCQEOPSpUu2try8POOBBx4w6tSpY2v79ttvDUnGt99+e9396NOnj+Hi4lLofuTl5RmGYRijRo0yJBn/+c9/bH3nzp0zgoKCjJo1axq5ubl2r9moUSPj8uXLtrG9evUyLBaL0blzZ7v5w8LCjBo1ati1STIkGbt27bK1/fe//zU8PT2Nxx9/3NaW//NPTk621ePr62sMHjzYbr7U1FTDx8fHrj0yMtIo7CP4P//5jyHJ+Pjjj+3a169fX6C9Ro0ahiRjy5Yttrb09HTDw8PDePHFF21t06ZNMypUqGAcOnTIbs5x48YZrq6uRkpKimEYhjFy5EjDarUaOTk5BerKd++99xoRERHX7AduVRwyA25zrq6ucnd3l3T1UMyZM2eUk5OjZs2aac+ePQXGd+vWTXfffbftefPmzdWiRQt9/fXXkqQzZ85o06ZNevLJJ3Xu3DmdPn1ap0+f1u+//67w8HAdPnxYv/32W5Hry8vL0xdffKHHHntMzZo1K9Cffyjp66+/VvPmzdW6dWtbn7e3t5577jkdO3ZMP//8s912ffr0sVtJadGihQzD0IABA+zGtWjRQsePH1dOTo5de1hYmEJDQ23Pq1evrq5duyo2Nla5ubmF7ktcXJwyMjLUq1cv28/l9OnTcnV1VYsWLa57mDLfihUr5OPjo44dO9rNERoaKm9v7wJzBAcHq02bNrbnlStXVr169XT06FG7Odu0aaM77rjDbs4OHTooNzfXdijQ19dXFy5cuO7hL19fXyUlJenw4cN/uy/ArYRDZoAJLF26VDNnztSBAwd05coVW3tQUFCBsXXq1CnQVrduXS1fvlzS1UM0hmHo5Zdf1ssvv1zo66Wnp9uFqus5deqUsrKyrnsYSpL++9//qkWLFgXaGzRoYOv/8xzVq1e3G+fj4yNJqlatWoH2vLw8ZWZmqlKlSrb2a/0cLl68qFOnTikwMLBAf35IePjhhwvdB6vVWmj7X+fIzMyUv79/of3p6el2z/+6n5J0xx132J1vdPjwYf3444+qXLnyded84YUXtHz5cnXu3Fl33323OnXqpCeffFKPPPKIbezUqVPVtWtX1a1bV40aNdIjjzyiZ599Vo0bN/7bfQPKMgIRcJv76KOP1K9fP3Xr1k2jR4+Wv7+/XF1dNX36dB05csTh+fJPwn3ppZcUHh5e6JjatWvfVM3FwdXV1aF2wzBu+jXzfzb/+te/Cg1M5cr9/UduXl6e/P399fHHHxfa/9dQU5T9ycvLU8eOHTVmzJhCx9atW1eS5O/vr8TERMXGxmrdunVat26dlixZoj59+mjp0qWSpLZt2+rIkSP68ssvtWHDBi1atEizZs3SwoULNWjQoL/dP6CsIhABt7mVK1eqVq1a+uyzz+yuZJo0aVKh4ws7FHLo0CHVrFlTklSrVi1Jkpubmzp06HDT9VWuXFlWq7XQK9n+rEaNGjp48GCB9gMHDtj6i9O1fg7ly5e/5krLPffcI+lqsPi7n82f/y/+Osc333yjVq1aycvLy8GqC3fPPffo/PnzRfr/cnd312OPPabHHntMeXl5euGFF/Tuu+/q5ZdftgVdPz8/9e/fX/3799f58+fVtm1bTZ48mUCEWxrnEAG3ufwVhD+vGOzcuVPx8fGFjv/iiy/szgFKSEjQzp071blzZ0lXf9k/+OCDevfdd3Xy5MkC2586dcqh+lxcXNStWzetXr260Dtu59f96KOPKiEhwa7uCxcu6L333lPNmjUVHBzs0Ov+nfj4eLtzrI4fP64vv/xSnTp1uuaqTHh4uKxWq1599VW7Q5P5/vyzqVChgqSrl8P/2ZNPPqnc3FxNmzatwPY5OTkFxhfFk08+qfj4eMXGxhboy8jIsJ0/9fvvv9v1ubi42A6F5d+a4K9jvL29Vbt27QK3LgBuNawQAbeBxYsXa/369QXaR44cqS5duuizzz7T448/roiICCUnJ2vhwoUKDg7W+fPnC2xTu3ZttW7dWkOHDlV2drbefvttVapUye5wy7x589S6dWuFhIRo8ODBqlWrltLS0hQfH69ff/1VP/zwg0P1v/rqq9qwYYPatWun5557Tg0aNNDJkye1YsUKbd26Vb6+vho3bpz+/e9/q3PnzhoxYoT8/Py0dOlSJScna9WqVXJxKd6/7xo1aqTw8HC7y+4lXffu0larVQsWLNCzzz6rpk2bqmfPnqpcubJSUlK0du1atWrVSnPnzpUk2wnbI0aMUHh4uFxdXdWzZ0+1a9dOQ4YM0fTp05WYmKhOnTrJzc1Nhw8f1ooVKzR79mz16NHDoX0ZPXq0vvrqK3Xp0sV2Sf6FCxe0b98+rVy5UseOHdOdd96pQYMG6cyZM3r44YdVtWpV/fe//9U777yjJk2a2M7VCg4O1oMPPqjQ0FD5+flp165dWrlypYYNG3YjP2ag7HDmJW4Abk7+Zd/Xehw/ftzIy8szXn31VaNGjRqGh4eHcd999xlr1qwx+vbta3e5ef5l92+88YYxc+ZMo1q1aoaHh4fRpk0b44cffijw2keOHDH69OljBAYGGm5ubsbdd99tdOnSxVi5cqVtTFEvuzeMq5e19+nTx6hcubLh4eFh1KpVy4iMjLS7ZcCRI0eMHj16GL6+voanp6fRvHlzY82aNXbz5L/mihUrCv1Z/fXS/kmTJhmSjFOnTtnaJBmRkZHGRx99ZNSpU8f2c/vrfvz1svs/1xAeHm74+PgYnp6exj333GP069fP7jL+nJwcY/jw4UblypUNi8VS4BL89957zwgNDTW8vLyMihUrGiEhIcaYMWOMEydO2MbUqFGj0Evg27VrZ7Rr186u7dy5c8b48eON2rVrG+7u7sadd95pPPDAA8abb75puz3BypUrjU6dOhn+/v6Gu7u7Ub16dWPIkCHGyZMnbfO88sorRvPmzQ1fX1/Dy8vLqF+/vvHPf/7T7hYHwK3IYhjFcCYhANxGLBaLIiMjbas5AG5/nEMEAABMj0AEAABMj0AEAABMj6vMAOAvOLUSMB9WiAAAgOkRiAAAgOlxyKwI8vLydOLECVWsWPGat9sHAABli2EYOnfunKpUqfK3N28lEBXBiRMnCnxDNgAAuDUcP35cVatWve4YAlERVKxYUdLVH6jVanVyNQAAoCiysrJUrVo12+/x6yEQFUH+YTKr1UogAgDgFlOU0104qRoAAJgegQgAAJgegQgAAJgegQgAAJieUwPR5MmTZbFY7B7169e39V+6dEmRkZGqVKmSvL291b17d6WlpdnNkZKSooiICJUvX17+/v4aPXq0cnJy7MZ89913atq0qTw8PFS7dm3FxMSUxu4BAIBbhNNXiBo2bKiTJ0/aHlu3brX1RUVFafXq1VqxYoU2b96sEydO6IknnrD15+bmKiIiQpcvX9b27du1dOlSxcTEaOLEibYxycnJioiI0EMPPaTExESNGjVKgwYNUmxsbKnuJwAAKLsshhO/xXDy5Mn64osvlJiYWKAvMzNTlStX1ieffKIePXpIkg4cOKAGDRooPj5eLVu21Lp169SlSxedOHFCAQEBkqSFCxdq7NixOnXqlNzd3TV27FitXbtWP/30k23unj17KiMjQ+vXry9SnVlZWfLx8VFmZiaX3QMAcItw5Pe301eIDh8+rCpVqqhWrVrq3bu3UlJSJEm7d+/WlStX1KFDB9vY+vXrq3r16oqPj5ckxcfHKyQkxBaGJCk8PFxZWVlKSkqyjfnzHPlj8ucoTHZ2trKysuweAADg9uXUQNSiRQvFxMRo/fr1WrBggZKTk9WmTRudO3dOqampcnd3l6+vr902AQEBSk1NlSSlpqbahaH8/vy+643JysrSH3/8UWhd06dPl4+Pj+3B13YAAHB7c+qdqjt37mz7d+PGjdWiRQvVqFFDy5cvl5eXl9PqGj9+vKKjo23P82/9DQAAbk9OP2T2Z76+vqpbt65++eUXBQYG6vLly8rIyLAbk5aWpsDAQElSYGBggavO8p//3Rir1XrN0OXh4WH7mg6+rgMAgNtfmQpE58+f15EjR3TXXXcpNDRUbm5u2rhxo63/4MGDSklJUVhYmCQpLCxM+/btU3p6um1MXFycrFargoODbWP+PEf+mPw5AAAAnBqIXnrpJW3evFnHjh3T9u3b9fjjj8vV1VW9evWSj4+PBg4cqOjoaH377bfavXu3+vfvr7CwMLVs2VKS1KlTJwUHB+vZZ5/VDz/8oNjYWE2YMEGRkZHy8PCQJD3//PM6evSoxowZowMHDmj+/Plavny5oqKinLnrAACgDHHqOUS//vqrevXqpd9//12VK1dW69attWPHDlWuXFmSNGvWLLm4uKh79+7Kzs5WeHi45s+fb9ve1dVVa9as0dChQxUWFqYKFSqob9++mjp1qm1MUFCQ1q5dq6ioKM2ePVtVq1bVokWLFB4eXur7CwAAyian3ofoVsF9iADcrJrj1jq7BKBMO/ZaRLHPeUvdhwgAAMDZCEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0ykwgeu2112SxWDRq1Chb26VLlxQZGalKlSrJ29tb3bt3V1pamt12KSkpioiIUPny5eXv76/Ro0crJyfHbsx3332npk2bysPDQ7Vr11ZMTEwp7BEAALhVlIlA9P333+vdd99V48aN7dqjoqK0evVqrVixQps3b9aJEyf0xBNP2Ppzc3MVERGhy5cva/v27Vq6dKliYmI0ceJE25jk5GRFRETooYceUmJiokaNGqVBgwYpNja21PYPAACUbU4PROfPn1fv3r31/vvv64477rC1Z2Zm6oMPPtBbb72lhx9+WKGhoVqyZIm2b9+uHTt2SJI2bNign3/+WR999JGaNGmizp07a9q0aZo3b54uX74sSVq4cKGCgoI0c+ZMNWjQQMOGDVOPHj00a9asa9aUnZ2trKwsuwcAALh9OT0QRUZGKiIiQh06dLBr3717t65cuWLXXr9+fVWvXl3x8fGSpPj4eIWEhCggIMA2Jjw8XFlZWUpKSrKN+evc4eHhtjkKM336dPn4+Nge1apVu+n9BAAAZZdTA9GyZcu0Z88eTZ8+vUBfamqq3N3d5evra9ceEBCg1NRU25g/h6H8/vy+643JysrSH3/8UWhd48ePV2Zmpu1x/PjxG9o/AABwayjnrBc+fvy4Ro4cqbi4OHl6ejqrjEJ5eHjIw8PD2WUAAIBS4rQVot27dys9PV1NmzZVuXLlVK5cOW3evFlz5sxRuXLlFBAQoMuXLysjI8Nuu7S0NAUGBkqSAgMDC1x1lv/878ZYrVZ5eXmV0N4BAIBbidMCUfv27bVv3z4lJibaHs2aNVPv3r1t/3Zzc9PGjRtt2xw8eFApKSkKCwuTJIWFhWnfvn1KT0+3jYmLi5PValVwcLBtzJ/nyB+TPwcAAIDTDplVrFhRjRo1smurUKGCKlWqZGsfOHCgoqOj5efnJ6vVquHDhyssLEwtW7aUJHXq1EnBwcF69tlnNWPGDKWmpmrChAmKjIy0HfJ6/vnnNXfuXI0ZM0YDBgzQpk2btHz5cq1du7Z0dxgAAJRZTgtERTFr1iy5uLioe/fuys7OVnh4uObPn2/rd3V11Zo1azR06FCFhYWpQoUK6tu3r6ZOnWobExQUpLVr1yoqKkqzZ89W1apVtWjRIoWHhztjlwAAQBlkMQzDcHYRZV1WVpZ8fHyUmZkpq9Xq7HIA3IJqjmNVGrieY69FFPucjvz+dvp9iAAAAJyNQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEzP4UC0fv16bd261fZ83rx5atKkiZ5++mmdPXu2WIsDAAAoDQ4HotGjRysrK0uStG/fPr344ot69NFHlZycrOjo6GIvEAAAoKSVc3SD5ORkBQcHS5JWrVqlLl266NVXX9WePXv06KOPFnuBAAAAJc3hFSJ3d3ddvHhRkvTNN9+oU6dOkiQ/Pz/byhEAAMCtxOEVotatWys6OlqtWrVSQkKCPv30U0nSoUOHVLVq1WIvEAAAoKQ5vEI0d+5clStXTitXrtSCBQt09913S5LWrVunRx55pNgLBAAAKGkOrxBVr15da9asKdA+a9asYikIAACgtN3QfYiOHDmiCRMmqFevXkpPT5d0dYUoKSmpWIsDAAAoDQ4Hos2bNyskJEQ7d+7UZ599pvPnz0uSfvjhB02aNKnYCwQAAChpDgeicePG6ZVXXlFcXJzc3d1t7Q8//LB27NhRrMUBAACUBocD0b59+/T4448XaPf399fp06eLpSgAAIDS5HAg8vX11cmTJwu0792713bFGQAAwK3E4UDUs2dPjR07VqmpqbJYLMrLy9O2bdv00ksvqU+fPiVRIwAAQIlyOBC9+uqrql+/vqpVq6bz588rODhYbdu21QMPPKAJEyaURI0AAAAlyuH7ELm7u+v999/Xyy+/rJ9++knnz5/Xfffdpzp16pREfQAAACXO4UCUr3r16qpevXpx1gIAAOAUDgei6OjoQtstFos8PT1Vu3Ztde3aVX5+fjddHAAAQGlwOBDt3btXe/bsUW5ururVqyfp6he7urq6qn79+po/f75efPFFbd26VcHBwcVeMAAAQHFz+KTqrl27qkOHDjpx4oR2796t3bt369dff1XHjh3Vq1cv/fbbb2rbtq2ioqJKol4AAIBiZzEMw3Bkg7vvvltxcXEFVn+SkpLUqVMn/fbbb9qzZ486dep029yoMSsrSz4+PsrMzJTVanV2OQBuQTXHrXV2CUCZduy1iGKf05Hf3w6vEGVmZtq+0PXPTp06paysLElXb954+fJlR6cGAABwihs6ZDZgwAB9/vnn+vXXX/Xrr7/q888/18CBA9WtWzdJUkJCgurWrVvctQIAAJQIh0+qfvfddxUVFaWePXsqJyfn6iTlyqlv376aNWuWJKl+/fpatGhR8VYKAABQQhwORN7e3nr//fc1a9YsHT16VJJUq1YteXt728Y0adKk2AoEAAAoaTd8Y0Zvb281bty4OGsBAABwihsKRLt27dLy5cuVkpJS4OTpzz77rFgKAwAAKC0On1S9bNkyPfDAA9q/f78+//xzXblyRUlJSdq0aZN8fHxKokYAAIASdUPfdj9r1iytXr1a7u7umj17tg4cOKAnn3yS7zYDAAC3JIcD0ZEjRxQRcfXmSe7u7rpw4YIsFouioqL03nvvOTTXggUL1LhxY1mtVlmtVoWFhWndunW2/kuXLikyMlKVKlWSt7e3unfvrrS0NLs5UlJSFBERofLly8vf31+jR4+2Xf2W77vvvlPTpk3l4eGh2rVrKyYmxtHdBgAAtzGHA9Edd9yhc+fOSbp61+qffvpJkpSRkaGLFy86NFfVqlX12muvaffu3dq1a5cefvhhde3aVUlJSZKkqKgorV69WitWrNDmzZt14sQJPfHEE7btc3NzFRERocuXL2v79u1aunSpYmJiNHHiRNuY5ORkRURE6KGHHlJiYqJGjRqlQYMGKTY21tFdBwAAtymHv7rj6aefVrNmzRQdHa1p06bpnXfeUdeuXRUXF6emTZve9EnVfn5+euONN9SjRw9VrlxZn3zyiXr06CFJOnDggBo0aKD4+Hi1bNlS69atU5cuXXTixAkFBARIkhYuXKixY8fq1KlTcnd319ixY7V27VpbcJOknj17KiMjQ+vXry9STXx1B4CbxVd3ANd3y311x9y5c9WzZ09J0v/93/8pOjpaaWlp6t69uz744IMbq1hXV3uWLVumCxcuKCwsTLt379aVK1fUoUMH25j69eurevXqio+PlyTFx8crJCTEFoYkKTw8XFlZWbZVpvj4eLs58sfkz1GY7OxsZWVl2T0AAMDty+HL7v38/Gz/dnFx0bhx426qgH379iksLEyXLl2St7e3Pv/8cwUHBysxMVHu7u7y9fW1Gx8QEKDU1FRJUmpqql0Yyu/P77vemKysLP3xxx/y8vIqUNP06dM1ZcqUm9ovAABw67jhGzOmp6crPT1deXl5du2O3qyxXr16SkxMVGZmplauXKm+fftq8+bNN1pWsRg/fryio6Ntz7OyslStWjUnVgQAAEqSw4Fo9+7d6tu3r/bv36+/nn5ksViUm5vr0Hzu7u6qXbu2JCk0NFTff/+9Zs+eraeeekqXL19WRkaG3SpRWlqaAgMDJUmBgYFKSEiwmy//KrQ/j/nrlWlpaWmyWq2Frg5JkoeHhzw8PBzaDwAAcOty+ByiAQMGqG7dutq+fbuOHj2q5ORk2yP/u81uRl5enrKzsxUaGio3Nzdt3LjR1nfw4EGlpKQoLCxMkhQWFqZ9+/YpPT3dNiYuLk5Wq1XBwcG2MX+eI39M/hwAAAAOrxAdPXpUq1atsq3q3Izx48erc+fOql69us6dO6dPPvlE3333nWJjY+Xj46OBAwcqOjpafn5+slqtGj58uMLCwtSyZUtJUqdOnRQcHKxnn31WM2bMUGpqqiZMmKDIyEjbCs/zzz+vuXPnasyYMRowYIA2bdqk5cuXa+1arvgAAABXORyI2rdvrx9++KFYAlF6err69OmjkydPysfHR40bN1ZsbKw6duwoSZo1a5ZcXFzUvXt3ZWdnKzw8XPPnz7dt7+rqqjVr1mjo0KEKCwtThQoV1LdvX02dOtU2JigoSGvXrlVUVJRmz56tqlWratGiRQoPD7/p+gEAwO3B4fsQnT59Wn379lXz5s3VqFEjubm52fX/4x//KNYCywLuQwTgZnEfIuD6nH0fIodXiOLj47Vt2za7r9jIdyMnVQMAADibwydVDx8+XM8884xOnjypvLw8uwdhCAAA3IocDkS///67oqKiCtzsEAAA4FblcCB64okn9O2335ZELQAAAE7h8DlEdevW1fjx47V161aFhIQUOKl6xIgRxVYcAABAaXD4KrOgoKBrT2axFMvNGcsarjIDcLO4ygy4vlvuKrPk5OQbLgwAAKAscvgcIgAAgNtNkVaIoqOjNW3aNFWoUMHuW+AL89ZbbxVLYQAAAKWlSIFo7969unLliu3f12KxWIqnKgAAgFJUpED058vsueQeAADcbjiHCAAAmB6BCAAAmB6BCAAAmB6BCAAAmF6RAlHTpk119uxZSdLUqVN18eLFEi0KAACgNBUpEO3fv18XLlyQJE2ZMkXnz58v0aIAAABKU5Euu2/SpIn69++v1q1byzAMvfnmm/L29i507MSJE4u1QAAAgJJWpEAUExOjSZMmac2aNbJYLFq3bp3KlSu4qcViIRABAIBbTpECUb169bRs2TJJkouLizZu3Ch/f/8SLQwAAKC0OPxt93l5eSVRBwAAgNM4HIgk6ciRI3r77be1f/9+SVJwcLBGjhype+65p1iLAwAAKA0O34coNjZWwcHBSkhIUOPGjdW4cWPt3LlTDRs2VFxcXEnUCAAAUKIcXiEaN26coqKi9NprrxVoHzt2rDp27FhsxQEAAJQGh1eI9u/fr4EDBxZoHzBggH7++ediKQoAAKA0ORyIKleurMTExALtiYmJXHkGAABuSQ4fMhs8eLCee+45HT16VA888IAkadu2bXr99dcVHR1d7AUCAACUNIcD0csvv6yKFStq5syZGj9+vCSpSpUqmjx5skaMGFHsBQIAAJQ0hwORxWJRVFSUoqKidO7cOUlSxYoVi70wAACA0nJD9yHKRxACAAC3A4dPqgYAALjdEIgAAIDpEYgAAIDpORSIrly5ovbt2+vw4cMlVQ8AAECpcygQubm56ccffyypWgAAAJzC4UNmzzzzjD744IOSqAUAAMApHL7sPicnR4sXL9Y333yj0NBQVahQwa7/rbfeKrbiAAAASoPDgeinn35S06ZNJUmHDh2y67NYLMVTFQAAQClyOBB9++23JVEHAACA09zwZfe//PKLYmNj9ccff0iSDMMotqIAAABKk8OB6Pfff1f79u1Vt25dPfroozp58qQkaeDAgXrxxReLvUAAAICS5nAgioqKkpubm1JSUlS+fHlb+1NPPaX169cXa3EAAAClweFziDZs2KDY2FhVrVrVrr1OnTr673//W2yFAQAAlBaHV4guXLhgtzKU78yZM/Lw8CiWogAAAEqTw4GoTZs2+vDDD23PLRaL8vLyNGPGDD300EPFWhwAAEBpcPiQ2YwZM9S+fXvt2rVLly9f1pgxY5SUlKQzZ85o27ZtJVEjAABAiXJ4hahRo0Y6dOiQWrdura5du+rChQt64okntHfvXt1zzz0lUSMAAECJcniFSJJ8fHz0f//3f8VdCwAAgFPcUCA6e/asPvjgA+3fv1+SFBwcrP79+8vPz69YiwMAACgNDh8y27Jli2rWrKk5c+bo7NmzOnv2rObMmaOgoCBt2bKlJGoEAAAoUQ6vEEVGRuqpp57SggUL5OrqKknKzc3VCy+8oMjISO3bt6/YiwQAAChJDq8Q/fLLL3rxxRdtYUiSXF1dFR0drV9++aVYiwMAACgNDgeipk2b2s4d+rP9+/fr3nvvLZaiAAAASlORDpn9+OOPtn+PGDFCI0eO1C+//KKWLVtKknbs2KF58+bptddeK5kqAQAASpDFMAzj7wa5uLjIYrHo74ZaLBbl5uYWW3FlRVZWlnx8fJSZmSmr1erscgDcgmqOW+vsEoAy7dhrEcU+pyO/v4u0QpScnFwshaFwfFAC11YSH5IA8FdFCkQ1atQo6ToAAACc5oZuzHjixAlt3bpV6enpysvLs+sbMWJEsRQGAABQWhwORDExMRoyZIjc3d1VqVIlWSwWW5/FYiEQAQCAW47Dgejll1/WxIkTNX78eLm4OHzVPgAAQJnjcKK5ePGievbsSRgCAAC3DYdTzcCBA7VixYpiefHp06fr/vvvV8WKFeXv769u3brp4MGDdmMuXbqkyMhIVapUSd7e3urevbvS0tLsxqSkpCgiIkLly5eXv7+/Ro8erZycHLsx3333nZo2bSoPDw/Vrl1bMTExxbIPAADg1ufwIbPp06erS5cuWr9+vUJCQuTm5mbX/9ZbbxV5rs2bNysyMlL333+/cnJy9L//+7/q1KmTfv75Z1WoUEGSFBUVpbVr12rFihXy8fHRsGHD9MQTT2jbtm2Srn6PWkREhAIDA7V9+3adPHlSffr0kZubm1599VVJV28bEBERoeeff14ff/yxNm7cqEGDBumuu+5SeHi4oz8CAABwm7mhQBQbG6t69epJUoGTqh2xfv16u+cxMTHy9/fX7t271bZtW2VmZuqDDz7QJ598oocffliStGTJEjVo0EA7duxQy5YttWHDBv3888/65ptvFBAQoCZNmmjatGkaO3asJk+eLHd3dy1cuFBBQUGaOXOmJKlBgwbaunWrZs2aRSACAACOB6KZM2dq8eLF6tevX7EXk5mZKUny8/OTJO3evVtXrlxRhw4dbGPq16+v6tWrKz4+Xi1btlR8fLxCQkIUEBBgGxMeHq6hQ4cqKSlJ9913n+Lj4+3myB8zatSoQuvIzs5Wdna27XlWVlZx7SIAACiDHD6HyMPDQ61atSr2QvLy8jRq1Ci1atVKjRo1kiSlpqbK3d1dvr6+dmMDAgKUmppqG/PnMJTfn993vTFZWVn6448/CtQyffp0+fj42B7VqlUrln0EAABlk8OBaOTIkXrnnXeKvZDIyEj99NNPWrZsWbHP7ajx48crMzPT9jh+/LizSwIAACXI4UNmCQkJ2rRpk9asWaOGDRsWOKn6s88+c7iIYcOGac2aNdqyZYuqVq1qaw8MDNTly5eVkZFht0qUlpamwMBA25iEhAS7+fKvQvvzmL9emZaWliar1SovL68C9Xh4eMjDw8Ph/QAAALcmh1eIfH199cQTT6hdu3a688477Q4t+fj4ODSXYRgaNmyYPv/8c23atElBQUF2/aGhoXJzc9PGjRttbQcPHlRKSorCwsIkSWFhYdq3b5/S09NtY+Li4mS1WhUcHGwb8+c58sfkzwEAAMzN4RWiJUuWFNuLR0ZG6pNPPtGXX36pihUr2s758fHxkZeXl3x8fDRw4EBFR0fLz89PVqtVw4cPV1hYmFq2bClJ6tSpk4KDg/Xss89qxowZSk1N1YQJExQZGWlb5Xn++ec1d+5cjRkzRgMGDNCmTZu0fPlyrV3Lt8wDAIAbWCEqTgsWLFBmZqYefPBB3XXXXbbHp59+ahsza9YsdenSRd27d1fbtm0VGBhod1jO1dVVa9askaurq8LCwvTMM8+oT58+mjp1qm1MUFCQ1q5dq7i4ON17772aOXOmFi1axCX3AABAkmQxDMNwZIOgoKDr3m/o6NGjN11UWZOVlSUfHx9lZmbKarUW+/w1x7FSBVzLsdcinF1CseB9DlxfSbzXHfn97fAhs7/eu+fKlSvau3ev1q9fr9GjRzs6HQAAgNM5HIhGjhxZaPu8efO0a9eumy4IAACgtBXbOUSdO3fWqlWrims6AACAUlNsgWjlypW2r9wAAAC4lTh8yOy+++6zO6naMAylpqbq1KlTmj9/frEWBwAAUBocDkTdunWze+7i4qLKlSvrwQcfVP369YurLgAAgFLjcCCaNGlSSdQBAADgNE69MSMAAEBZUOQVIhcXl+vekFGSLBaLcnJybrooAACA0lTkQPT5559fsy8+Pl5z5sxRXl5esRQFAABQmoociLp27Vqg7eDBgxo3bpxWr16t3r17231/GAAAwK3ihs4hOnHihAYPHqyQkBDl5OQoMTFRS5cuVY0aNYq7PgAAgBLnUCDKzMzU2LFjVbt2bSUlJWnjxo1avXq1GjVqVFL1AQAAlLgiHzKbMWOGXn/9dQUGBurf//53oYfQAAAAbkVFDkTjxo2Tl5eXateuraVLl2rp0qWFjvvss8+KrTgAAIDSUORA1KdPn7+97B4AAOBWVORAFBMTU4JlAAAAOA93qgYAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKbn1EC0ZcsWPfbYY6pSpYosFou++OILu37DMDRx4kTddddd8vLyUocOHXT48GG7MWfOnFHv3r1ltVrl6+urgQMH6vz583ZjfvzxR7Vp00aenp6qVq2aZsyYUdK7BgAAbiFODUQXLlzQvffeq3nz5hXaP2PGDM2ZM0cLFy7Uzp07VaFCBYWHh+vSpUu2Mb1791ZSUpLi4uK0Zs0abdmyRc8995ytPysrS506dVKNGjW0e/duvfHGG5o8ebLee++9Et8/AABwayjnzBfv3LmzOnfuXGifYRh6++23NWHCBHXt2lWS9OGHHyogIEBffPGFevbsqf3792v9+vX6/vvv1axZM0nSO++8o0cffVRvvvmmqlSpoo8//liXL1/W4sWL5e7uroYNGyoxMVFvvfWWXXACAADmVWbPIUpOTlZqaqo6dOhga/Px8VGLFi0UHx8vSYqPj5evr68tDElShw4d5OLiop07d9rGtG3bVu7u7rYx4eHhOnjwoM6ePVvoa2dnZysrK8vuAQAAbl9lNhClpqZKkgICAuzaAwICbH2pqany9/e36y9Xrpz8/PzsxhQ2x59f46+mT58uHx8f26NatWo3v0MAAKDMKrOByJnGjx+vzMxM2+P48ePOLgkAAJSgMhuIAgMDJUlpaWl27Wlpaba+wMBApaen2/Xn5OTozJkzdmMKm+PPr/FXHh4eslqtdg8AAHD7KrOBKCgoSIGBgdq4caOtLSsrSzt37lRYWJgkKSwsTBkZGdq9e7dtzKZNm5SXl6cWLVrYxmzZskVXrlyxjYmLi1O9evV0xx13lNLeAACAssypgej8+fNKTExUYmKipKsnUicmJiolJUUWi0WjRo3SK6+8oq+++kr79u1Tnz59VKVKFXXr1k2S1KBBAz3yyCMaPHiwEhIStG3bNg0bNkw9e/ZUlSpVJElPP/203N3dNXDgQCUlJenTTz/V7NmzFR0d7aS9BgAAZY1TL7vftWuXHnroIdvz/JDSt29fxcTEaMyYMbpw4YKee+45ZWRkqHXr1lq/fr08PT1t23z88ccaNmyY2rdvLxcXF3Xv3l1z5syx9fv4+GjDhg2KjIxUaGio7rzzTk2cOJFL7gEAgI3FMAzD2UWUdVlZWfLx8VFmZmaJnE9Uc9zaYp8TuF0cey3C2SUUC97nwPWVxHvdkd/fZfYcIgAAgNJCIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZnqkA0b9481axZU56enmrRooUSEhKcXRIAACgDTBOIPv30U0VHR2vSpEnas2eP7r33XoWHhys9Pd3ZpQEAACczTSB66623NHjwYPXv31/BwcFauHChypcvr8WLFzu7NAAA4GTlnF1Aabh8+bJ2796t8ePH29pcXFzUoUMHxcfHFxifnZ2t7Oxs2/PMzExJUlZWVonUl5d9sUTmBW4HJfW+K228z4HrK4n3ev6chmH87VhTBKLTp08rNzdXAQEBdu0BAQE6cOBAgfHTp0/XlClTCrRXq1atxGoEUDift51dAYDSUJLv9XPnzsnHx+e6Y0wRiBw1fvx4RUdH257n5eXpzJkzqlSpkiwWixMrQ0nLyspStWrVdPz4cVmtVmeXA6CE8F43B8MwdO7cOVWpUuVvx5oiEN15551ydXVVWlqaXXtaWpoCAwMLjPfw8JCHh4ddm6+vb0mWiDLGarXyIQmYAO/129/frQzlM8VJ1e7u7goNDdXGjRttbXl5edq4caPCwsKcWBkAACgLTLFCJEnR0dHq27evmjVrpubNm+vtt9/WhQsX1L9/f2eXBgAAnMw0geipp57SqVOnNHHiRKWmpqpJkyZav359gROtYW4eHh6aNGlSgUOmAG4vvNfxVxajKNeiAQAA3MZMcQ4RAADA9RCIAACA6RGIAACA6RGIAACA6RGIAAccO3ZMFotFiYmJzi4FQCmbPHmymjRp4uwyUEIIRCiTUlNTNXz4cNWqVUseHh6qVq2aHnvsMbuba94qHnzwQY0aNcrZZQBO069fP3Xr1s3ZZZQ6/oC6tZjmPkS4dRw7dkytWrWSr6+v3njjDYWEhOjKlSuKjY1VZGRkoV/ICwDAzWCFCGXOCy+8IIvFooSEBHXv3l1169ZVw4YNFR0drR07dkiSUlJS1LVrV3l7e8tqterJJ5+0+666/KXtxYsXq3r16vL29tYLL7yg3NxczZgxQ4GBgfL399c///lPu9e2WCxasGCBOnfuLC8vL9WqVUsrV668br0//fSTOnfuLG9vbwUEBOjZZ5/V6dOnJV39y3jz5s2aPXu2LBaLLBaLjh079rfbAberBx98UCNGjNCYMWPk5+enwMBATZ482W5MRkaGhgwZooCAAHl6eqpRo0Zas2aNrX/VqlVq2LChPDw8VLNmTc2cOdNu+5o1a+qVV15Rnz595O3trRo1auirr77SqVOnbJ8bjRs31q5du2zbxMTEyNfXV1988YXq1KkjT09PhYeH6/jx49fdn0WLFqlBgwby9PRU/fr1NX/+fFtfUFCQJOm+++6TxWLRgw8+WKTt4CQGUIb8/vvvhsViMV599dVrjsnNzTWaNGlitG7d2ti1a5exY8cOIzQ01GjXrp1tzKRJkwxvb2+jR48eRlJSkvHVV18Z7u7uRnh4uDF8+HDjwIEDxuLFiw1Jxo4dO2zbSTIqVapkvP/++8bBgweNCRMmGK6ursbPP/9sGIZhJCcnG5KMvXv3GoZhGGfPnjUqV65sjB8/3ti/f7+xZ88eo2PHjsZDDz1kGIZhZGRkGGFhYcbgwYONkydPGidPnjRycnL+djvgdtK3b1+ja9euhmEYRrt27Qyr1WpMnjzZOHTokLF06VLDYrEYGzZsMAzj6vu7ZcuWRsOGDY0NGzYYR44cMVavXm18/fXXhmEYxq5duwwXFxdj6tSpxsGDB40lS5YYXl5expIlS2yvV6NGDcPPz89YuHChcejQIWPo0KGG1Wo1HnnkEWP58uXGwYMHjW7duhkNGjQw8vLyDMMwjCVLlhhubm5Gs2bNjO3btxu7du0ymjdvbjzwwAO2eSdNmmTce++9tucfffSRcddddxmrVq0yjh49aqxatcrw8/MzYmJiDMMwjISEBEOS8c033xgnT540fv/99yJtB+cgEKFM2blzpyHJ+Oyzz645ZsOGDYarq6uRkpJia0tKSjIkGQkJCYZhXP3gKl++vJGVlWUbEx4ebtSsWdPIzc21tdWrV8+YPn267bkk4/nnn7d7vRYtWhhDhw41DKNgIJo2bZrRqVMnu/HHjx83JBkHDx40DOPqL4CRI0fajSnKdsDt4q+BqHXr1nb9999/vzF27FjDMAwjNjbWcHFxueb74OmnnzY6duxo1zZ69GgjODjY9rxGjRrGM888Y3t+8uRJQ5Lx8ssv29ri4+MNScbJkycNw7gaiP76B9L+/fsNScbOnTsNwygYiO655x7jk08+satl2rRpRlhYmGEYBT8virodnINziFCmGEX4Jpn9+/erWrVqqlatmq0tODhYvr6+2r9/v+6//35JV5fNK1asaBsTEBAgV1dXubi42LWlp6fbzR8WFlbg+bVOivzhhx/07bffytvbu0DfkSNHVLdu3WLdDrgdNG7c2O75XXfdZXsfJiYmqmrVqtd8D+zfv19du3a1a2vVqpXefvtt5ebmytXVtcBr5H9nZUhISIG29PR0BQYGSpLKlStn+/yQpPr169s+V5o3b273mhcuXNCRI0c0cOBADR482Naek5MjHx+fa+77jW6HkkcgQplSp04dWSyWYjlx2s3Nze65xWIptC0vL++GX+P8+fN67LHH9Prrrxfou+uuu4p9O+B2cL33oZeXV7G/hsViuWbbjb7/z58/L0l6//331aJFC7u+/FBWnNuh5BGIUKb4+fkpPDxc8+bN04gRI1ShQgW7/oyMDDVo0EDHjx/X8ePHbatEP//8szIyMhQcHHzTNezYsUN9+vSxe37fffcVOrZp06ZatWqVatasqXLlCn87ubu7Kzc31+HtADNq3Lixfv31Vx06dKjQVaIGDRpo27Ztdm3btm1T3bp1bzpQ5OTkaNeuXbbVoIMHD9o+c/4qICBAVapU0dGjR9W7d+9C53N3d5cku/d/UbaDc3CVGcqcefPmKTc3V82bN9eqVat0+PBh7d+/X3PmzFFYWJg6dOigkJAQ9e7dW3v27FFCQoL69Omjdu3aqVmzZjf9+itWrNDixYt16NAhTZo0SQkJCRo2bFihYyMjI3XmzBn16tVL33//vY4cOaLY2Fj179/f9iFYs2ZN7dy5U8eOHdPp06eVl5dXpO0AM2rXrp3atm2r7t27Ky4uTsnJyVq3bp3Wr18vSXrxxRe1ceNGTZs2TYcOHdLSpUs1d+5cvfTSSzf92m5ubho+fLh27typ3bt3q1+/fmrZsmWBw2X5pkyZounTp2vOnDk6dOiQ9u3bpyVLluitt96SJPn7+8vLy0vr169XWlqaMjMzi7QdnINAhDKnVq1a2rNnjx566CG9+OKLatSokTp27KiNGzdqwYIFslgs+vLLL3XHHXeobdu26tChg2rVqqVPP/20WF5/ypQpWrZsmRo3bqwPP/xQ//73v6+58lSlShVt27ZNubm56tSpk0JCQjRq1Cj5+vrazlV66aWX5OrqquDgYFWuXFkpKSlF2g4wq1WrVun+++9Xr169FBwcrDFjxtj+UGjatKmWL1+uZcuWqVGjRpo4caKmTp2qfv363fTrli9fXmPHjtXTTz+tVq1aydvb+7qfK4MGDdKiRYu0ZMkShYSEqF27doqJibFdbl+uXDnNmTNH7777rqpUqWI79+nvtoNzWIyinMUKmITFYtHnn39uyrvqAmYWExOjUaNGKSMjw9mlwEn4UxQAAJgegQgAAJgeh8wAAIDpsUIEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABM7/8BEj7IjD3kOqkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "complete = (~np.isnan(y).any(axis=1)).sum()\n", "incomplete = y.shape[0] - complete\n", "\n", "plt.bar(['Complete', 'Incomplete'], [complete, incomplete])\n", "plt.title('Label completeness')\n", "plt.ylabel('Number of images')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "10a9b589-59a1-40ce-92a1-376f1a19274e", "metadata": {}, "source": [ "Only a small portion of images contains all keypoints, while most images have missing labels." ] }, { "cell_type": "markdown", "id": "67117194-1905-4950-80ba-25e6d030eb15", "metadata": {}, "source": [ "### Data Preprocessing & Normalization" ] }, { "cell_type": "code", "execution_count": 34, "id": "b7cdeae0-5ac5-463e-b502-c9b787065683", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x: (7049, 96, 96, 1) float32\n", "y: (7049, 30) float32\n" ] } ], "source": [ "def parse_image(img_str):\n", " pixels = np.fromstring(img_str, sep=' ', dtype=np.float32)\n", " return pixels.reshape(96, 96, 1)\n", "\n", "train_df=train_df.dropna(subset=['Image']).reset_index(drop=True)\n", "\n", "x=np.stack(train_df['Image'].apply(parse_image).values)\n", "y=train_df[target_cols].values.astype(np.float32)\n", "\n", "print('x:', x.shape, x.dtype)\n", "print('y:', y.shape, y.dtype)" ] }, { "cell_type": "code", "execution_count": 35, "id": "d941b24f-b435-4b5d-8cd5-6a1f96df1ff8", "metadata": {}, "outputs": [], "source": [ "x=x / 255.0\n", "y=(y - 48.0) / 48.0 " ] }, { "cell_type": "code", "execution_count": 36, "id": "007edbb9-619c-4073-9728-89f286ea9fc3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "complete: 2140 / 7049\n" ] } ], "source": [ "mask= ~np.isnan(y).any(axis=1)\n", "x_c=x[mask]\n", "y_c=y[mask]\n", "\n", "print('complete:', x_c.shape[0], '/', x.shape[0])" ] }, { "cell_type": "code", "execution_count": 37, "id": "16133092-8aab-430a-8b09-510859300347", "metadata": {}, "outputs": [], "source": [ "def rmse(y_true, y_pred):\n", " return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))" ] }, { "cell_type": "markdown", "id": "33e439f8-256e-4593-9e57-775744889263", "metadata": {}, "source": [ "### CNN Model Architecture" ] }, { "cell_type": "code", "execution_count": 45, "id": "f3f4482f-18d5-4656-acb5-01b4ac8eb01d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " conv2d (Conv2D) (None, 96, 96, 64) 640 \n", " \n", " batch_normalization (Batch (None, 96, 96, 64) 256 \n", " Normalization) \n", " \n", " max_pooling2d (MaxPooling2 (None, 48, 48, 64) 0 \n", " D) \n", " \n", " conv2d_1 (Conv2D) (None, 48, 48, 128) 73856 \n", " \n", " batch_normalization_1 (Bat (None, 48, 48, 128) 512 \n", " chNormalization) \n", " \n", " max_pooling2d_1 (MaxPoolin (None, 24, 24, 128) 0 \n", " g2D) \n", " \n", " conv2d_2 (Conv2D) (None, 24, 24, 256) 295168 \n", " \n", " batch_normalization_2 (Bat (None, 24, 24, 256) 1024 \n", " chNormalization) \n", " \n", " max_pooling2d_2 (MaxPoolin (None, 12, 12, 256) 0 \n", " g2D) \n", " \n", " conv2d_3 (Conv2D) (None, 12, 12, 512) 1180160 \n", " \n", " batch_normalization_3 (Bat (None, 12, 12, 512) 2048 \n", " chNormalization) \n", " \n", " global_average_pooling2d ( (None, 512) 0 \n", " GlobalAveragePooling2D) \n", " \n", " dense (Dense) (None, 256) 131328 \n", " \n", " dropout (Dropout) (None, 256) 0 \n", " \n", " dense_1 (Dense) (None, 30) 7710 \n", " \n", "=================================================================\n", "Total params: 1692702 (6.46 MB)\n", "Trainable params: 1690782 (6.45 MB)\n", "Non-trainable params: 1920 (7.50 KB)\n", "_________________________________________________________________\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1766942272.095973 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942272.413039 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942272.413097 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942272.417885 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942272.417922 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942272.417929 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942273.657884 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "I0000 00:00:1766942273.657982 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "2025-12-28 17:17:53.658111: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2112] Could not identify NUMA node of platform GPU id 0, defaulting to 0. Your kernel may not have been built with NUMA support.\n", "I0000 00:00:1766942273.658338 262 cuda_executor.cc:1001] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node\n", "Your kernel may have been built without NUMA support.\n", "2025-12-28 17:17:53.658716: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10861 MB memory: -> device: 0, name: NVIDIA GeForce RTX 5080 Laptop GPU, pci bus id: 0000:02:00.0, compute capability: 12.0\n" ] } ], "source": [ "model=Sequential()\n", "\n", "model.add(Input(shape=(96, 96, 1)))\n", "model.add(Conv2D(64, (3,3), padding='same', activation='relu'))\n", "model.add(BatchNormalization())\n", "model.add(MaxPooling2D((2,2)))\n", "\n", "model.add(Conv2D(128, (3,3), padding='same', activation='relu'))\n", "model.add(BatchNormalization())\n", "model.add(MaxPooling2D((2,2)))\n", "\n", "model.add(Conv2D(256, (3,3), padding='same', activation='relu'))\n", "model.add(BatchNormalization())\n", "model.add(MaxPooling2D((2,2)))\n", "\n", "model.add(Conv2D(512, (3,3), padding='same', activation='relu'))\n", "model.add(BatchNormalization())\n", "\n", "model.add(GlobalAveragePooling2D())\n", "model.add(Dense(256, activation='relu', kernel_regularizer=regularizers.l2(1e-4)))\n", "model.add(Dropout(0.3))\n", "model.add(Dense(30, activation='linear'))\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 46, "id": "8d50952b-3434-4c0e-ab07-8fd3d383f7d3", "metadata": {}, "outputs": [], "source": [ "model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),loss=tf.keras.losses.MSE,metrics=[rmse, tf.keras.metrics.MAE])" ] }, { "cell_type": "code", "execution_count": 47, "id": "9693b947-fc3f-462a-a067-09a701f9434c", "metadata": {}, "outputs": [], "source": [ "early_stop=EarlyStopping(monitor='val_rmse',patience=12,restore_best_weights=True,mode='min',verbose=1)\n", "reduce_lr=ReduceLROnPlateau(monitor='val_rmse',factor=0.5,patience=5,min_lr=1e-6,mode='min',verbose=1)\n", "checkpoint=ModelCheckpoint('best_keypoints_cnn.keras',monitor='val_rmse',save_best_only=True,mode='min',verbose=1)" ] }, { "cell_type": "markdown", "id": "35d53bd7-9028-4cdb-bc48-3e89783f930c", "metadata": {}, "source": [ "### Model Training" ] }, { "cell_type": "code", "execution_count": 48, "id": "f191785c-e8b1-4e4d-9d40-394e4e2391a8", "metadata": {}, "outputs": [], "source": [ "x_train,x_val,y_train,y_val=train_test_split(x_c, y_c,test_size=0.2,random_state=42)" ] }, { "cell_type": "code", "execution_count": 49, "id": "490a1c0a-34e8-4672-b394-5ed2ddd5d4b6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/200\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2025-12-28 17:18:05.257897: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:531] Loaded cuDNN version 90701\n", "W0000 00:00:1766942285.491868 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.520221 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.524678 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.529056 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.533661 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.553431 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.576901 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.597642 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.616229 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.624752 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.643032 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.671709 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.778764 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.779572 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.780595 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.781235 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.783189 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.784457 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.785898 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.786946 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.788189 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.797192 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.798454 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.799733 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.800952 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.802708 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.810600 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.811484 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.812304 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.813593 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.814243 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.815508 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.816588 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.819570 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.820959 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.821826 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.822403 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.823432 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.824968 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.826108 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.827348 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.830214 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.831096 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.831745 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.832484 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.833221 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.833862 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.834965 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.836295 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.837642 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.838608 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.840125 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.841448 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.842746 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.845536 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942285.846908 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1766942286.679631 537 service.cc:146] XLA service 0x72c8b8c6e9a0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1766942286.679720 537 service.cc:154] StreamExecutor device (0): NVIDIA GeForce RTX 5080 Laptop GPU, Compute Capability 12.0\n", "2025-12-28 17:18:06.694371: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "I0000 00:00:1766942286.776590 537 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "W0000 00:00:1766942287.010499 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.014272 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.017131 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.017948 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.018916 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.019824 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.020735 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.022578 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.027395 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.028632 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.030773 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.032107 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.033649 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.034971 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.041647 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.043117 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.044484 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.060635 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.061329 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.061888 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.064714 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.065366 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.066175 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.066746 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.067855 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.068607 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.082448 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.087001 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.092284 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.093486 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "W0000 00:00:1766942287.277267 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.280910 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.282355 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.283966 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.285471 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.287326 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.288993 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.290566 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.292142 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.294549 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.295306 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.296180 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.307816 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.310583 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.312699 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.314888 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.316760 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.318827 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.323104 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.325576 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.326430 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.327845 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.330325 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.332361 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.335351 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.337480 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.340364 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.343654 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.344834 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "W0000 00:00:1766942287.484567 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.488811 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.493210 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.501166 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.505221 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.509609 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.518461 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.522341 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.526787 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.529672 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.531943 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.544166 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.546920 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.551356 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.557693 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.563211 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.566986 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.572109 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.577902 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.581738 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.586827 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.590954 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.595035 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.600456 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.607345 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.616183 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.621849 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.625603 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.635747 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.656306 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "W0000 00:00:1766942287.795178 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.795710 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.796375 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.797351 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.798700 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.810522 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.811328 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.812065 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.813159 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.814388 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.816067 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 1/54 [..............................] - ETA: 3:37 - loss: 0.3203 - rmse: 0.5350 - mean_absolute_error: 0.4375" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942287.817709 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.829562 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.848183 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "W0000 00:00:1766942287.927459 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.929501 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.931884 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.934142 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.936535 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.939178 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.950893 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.962287 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.966846 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.970660 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.972568 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942287.985166 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.014361 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.029674 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.036529 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.038963 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.045959 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.053059 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.056282 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.058796 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.061152 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.073670 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.075746 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.077252 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.078757 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.085660 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.104766 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.105296 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.105899 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.106847 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.107245 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.108193 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.108927 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.109408 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.110410 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.111320 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.111767 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.112518 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.113591 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.114436 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.115403 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.117593 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.118270 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.118739 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.119220 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.119811 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.120277 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.121051 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.122026 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.123038 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.123748 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.124792 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.125681 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.126896 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.127982 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.129095 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.136000 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.136463 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.137170 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.137761 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.138364 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.139175 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.140000 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.140853 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.141944 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.142970 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.144151 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.145367 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.146539 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.147690 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.148982 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.150379 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.151663 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.154442 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.155049 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.155592 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.156204 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.156796 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.157561 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.158112 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.158932 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.159648 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.160628 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.161875 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.163148 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.164408 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.168392 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.169020 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.169587 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.170190 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.170745 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.171318 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.172077 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.172724 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.173411 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.174636 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.175609 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.176655 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.177526 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.180098 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.181142 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.182078 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.182759 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.183661 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.184136 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.185072 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.186053 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.187023 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.188262 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.189555 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.191044 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.192370 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.194081 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.195677 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.197247 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.200624 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.201458 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.202155 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.203401 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.204785 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.205706 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.206348 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.207095 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.208015 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.209286 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.210401 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.211282 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.212572 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.216296 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.217574 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.218569 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.219545 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.220425 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.221420 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.222738 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.224584 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.226113 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.227637 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.229007 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 2/54 [>.............................] - ETA: 19s - loss: 0.2639 - rmse: 0.4758 - mean_absolute_error: 0.3868 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942288.230640 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.231373 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.233071 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.234861 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.237498 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.239616 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.248968 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.249535 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.250013 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.250462 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.251230 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.251801 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.252421 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.253015 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.253730 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.254586 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.255686 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.256916 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.266323 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.287973 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.294949 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.295368 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.295632 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.296001 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.296318 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.296978 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.297776 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.298630 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.299204 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.299683 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.300492 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.301336 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.304818 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.305629 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.306367 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.306845 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.307714 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.308720 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.309795 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.310615 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.311605 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.312533 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.313528 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.314530 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.315474 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.316976 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.320546 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.321266 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.321970 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.323048 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.323496 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.324537 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.325426 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.325990 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.327075 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.327947 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.328455 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.329361 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.330617 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.331535 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.332576 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.338300 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.344753 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.345501 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.346133 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.346768 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.347622 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.348527 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.349428 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.350608 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.351690 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.352927 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.354149 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.355398 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.356581 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.357898 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.359343 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.360687 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.363265 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.363882 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.364438 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.365089 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.365707 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.366515 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.367070 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.367899 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.368664 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.369702 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.370990 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.372294 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.373619 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.377731 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.378192 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.378769 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.379403 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.379972 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.380568 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.381369 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.382038 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.382733 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.383980 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.384942 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.386003 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.386887 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.389520 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.390479 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.391400 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.392079 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.392999 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.393484 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.394455 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.395451 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.396422 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.397657 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.398876 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.400312 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.401618 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.403305 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.404856 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.406372 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.409396 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.410076 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.410819 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.412104 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.413317 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.414079 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.414716 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.415466 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.416392 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.417668 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.418766 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.419649 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.420946 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.425063 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.426382 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.427413 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.428435 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.429287 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.430290 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 3/54 [>.............................] - ETA: 14s - loss: 0.2420 - rmse: 0.4523 - mean_absolute_error: 0.3649" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942288.431694 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.433587 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.435143 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.436704 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.438103 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.439805 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.440528 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.442260 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.444103 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.446717 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.448764 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.456311 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.457921 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.458362 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.458819 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.459570 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.460134 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.460743 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.461330 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.462053 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.462908 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.464086 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.465432 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.475662 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.500038 538 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.506470 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.506886 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.507110 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.507424 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.507700 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.508233 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.509008 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.509816 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.510407 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.510870 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.511540 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.512373 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.516163 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.516991 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.517726 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.518201 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.519090 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.520111 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.521198 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.522051 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.523037 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.523926 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.524888 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.525877 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.526798 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.528108 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.531697 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.532347 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.532966 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.534168 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.534610 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.535804 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.536802 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.537446 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.538633 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.539501 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.540063 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.540997 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.542405 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.543362 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.544498 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.549293 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.549951 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.550627 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.551180 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.551758 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.552522 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.553311 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.554116 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.555165 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.556138 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.557286 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.558361 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.559472 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.560585 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.561843 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.563187 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.564440 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.566793 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.567246 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.567781 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.568395 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.568990 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.569765 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.570309 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.571115 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.571861 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.572841 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.574090 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.575348 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.576641 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.580720 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.581269 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.581923 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.582562 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.583131 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.583744 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.584539 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.585203 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.585922 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.587177 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.588140 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.589191 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.590058 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.592578 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.593563 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.594544 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.595218 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.596121 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.596602 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.597536 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.598530 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.599508 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.600729 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.601964 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.603389 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.604727 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.606428 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.607960 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.609440 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.612412 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.613086 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.613789 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.615015 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.616190 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.616949 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.617589 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.618336 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.619289 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.620587 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.621706 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.622592 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.623916 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.627717 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.628951 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.629967 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.630961 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.631866 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "12/54 [=====>........................] - ETA: 3s - loss: 0.1686 - rmse: 0.3611 - mean_absolute_error: 0.2888 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942288.632922 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.634289 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.636163 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.637754 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.639422 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.641135 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.642839 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.643545 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.645316 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.647185 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.649784 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.651929 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.660148 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.661813 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.662262 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.662733 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.663539 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.664149 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.664802 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.665431 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.666224 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.667150 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.668435 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.669897 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.681061 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942288.704599 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "54/54 [==============================] - ETA: 0s - loss: 0.1118 - rmse: 0.2717 - mean_absolute_error: 0.2166" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942289.357903 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.358139 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.358312 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.358568 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.358780 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.359220 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.359567 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.359967 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.360220 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.360475 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.360946 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.361361 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.364017 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.364471 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.365035 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.365519 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.365842 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.366386 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.366992 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.367613 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.367992 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.368651 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.369434 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.370288 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.370845 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.371446 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.372158 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.375460 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.375754 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.376196 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.376870 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.377329 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.377671 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.378309 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.378980 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.379344 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.380103 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.380667 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.381522 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.382022 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.382620 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.383259 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.385525 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.385924 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.386266 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.386636 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.387057 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.387479 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.388093 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.388749 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.389457 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.390116 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.390876 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.391506 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.392227 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.393198 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.393956 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.408327 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.408678 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.409066 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.409407 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.409739 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.410186 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.410678 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.411137 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.411752 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.412316 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.412937 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.413542 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.414256 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.414914 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.415739 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.416837 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.417491 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.418500 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.430402 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.430746 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.431084 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.431423 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.431847 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.432260 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.432601 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.433024 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.433460 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.433973 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.434638 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.435399 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.436084 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.439874 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.440155 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.440467 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.440774 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.441109 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.441462 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.441862 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.442282 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.442733 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.443419 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.443933 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.444472 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.445226 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.447066 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.447510 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.447992 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.448447 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.448787 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.449025 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.449542 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.450076 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.450576 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.451204 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.451841 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.452580 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.453266 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.454105 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.455101 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.455919 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.456760 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.468186 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.468552 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.468916 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.469499 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.470059 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.470439 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.470745 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.471147 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.471601 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.472220 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.472785 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.473404 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.474040 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.476309 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.476845 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.477349 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.477850 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.478437 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.478933 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.479611 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.480517 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.481296 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.482031 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.482675 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.483476 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.483839 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.484845 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.485639 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.486842 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.487928 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.490872 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.502669 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.502944 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.503072 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.503263 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.503564 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.503943 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.504322 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.504600 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.505220 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.505775 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.506440 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.507087 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.511724 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.522524 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Epoch 1: val_rmse improved from inf to 0.25469, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 6s 39ms/step - loss: 0.1118 - rmse: 0.2717 - mean_absolute_error: 0.2166 - val_loss: 0.0986 - val_rmse: 0.2547 - val_mean_absolute_error: 0.2126 - lr: 1.0000e-04\n", "Epoch 2/200\n", " 1/54 [..............................] - ETA: 0s - loss: 0.0714 - rmse: 0.1938 - mean_absolute_error: 0.1543" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942289.813703 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.813919 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.814062 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.814245 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.814419 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.814802 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.814997 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.815256 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.815455 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.815649 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.815995 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.816391 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.818768 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.819137 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.819418 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.819727 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.819970 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.820377 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.820829 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.821283 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.821594 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.822108 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.822687 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.823275 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.823742 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.824211 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.824757 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.827592 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.827926 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.828255 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.828768 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.829044 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.829317 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.829781 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.830264 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.830505 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.831084 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.831522 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.832318 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.832648 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.833146 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.833604 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.836073 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.836445 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.836707 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.837055 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.837429 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.837673 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.838070 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.838585 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.839096 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.839456 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.840011 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.840470 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.841057 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.841955 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942289.842577 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "54/54 [==============================] - ETA: 0s - loss: 0.0723 - rmse: 0.1961 - mean_absolute_error: 0.1556" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942290.638222 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.638460 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.638635 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.638877 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.639101 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.639528 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.639829 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.640160 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.640391 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.640634 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.641128 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.641501 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.643980 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.644313 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.644708 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.645176 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.645523 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.646096 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.646728 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.647411 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.647861 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.648557 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.649218 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.650053 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.650627 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.651249 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.652016 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.655046 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.655329 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.655828 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.656555 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.656944 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.657299 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.657959 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.658650 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.659023 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.659817 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.660412 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.661282 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.661790 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.662373 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.663030 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.665171 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.665547 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.665909 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.666312 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.666761 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.667238 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.667884 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.668577 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.669282 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.669922 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.670708 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.671368 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.672147 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.673177 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.673935 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.679614 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.679980 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.680368 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.680703 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.681067 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.681536 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.682012 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.682490 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.683132 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.683702 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.684328 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.684948 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.685598 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.686233 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.686929 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.687689 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.688379 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.689422 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.702399 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.702768 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.703145 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.703525 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.703986 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.704451 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.704868 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.705392 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.705923 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.706539 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.707276 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.708105 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.708842 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.712628 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.712898 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.713255 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.713602 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.713988 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.714389 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.714829 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.715290 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.715780 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.716472 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.716998 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.717569 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.718289 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.720257 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.720726 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.721212 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.721682 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.722043 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.722288 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.722825 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.723373 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.723901 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.724562 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.725220 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.726000 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.726704 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.727607 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.728583 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.729405 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.730256 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.743807 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.744227 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.744594 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.745223 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.745837 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.746231 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.746538 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.746976 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.747473 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.748171 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.748774 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.749351 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.750052 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.752685 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.753266 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.753799 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.754347 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.754992 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.755517 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.756272 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.757228 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.758084 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.758896 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.759600 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.760575 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.760954 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.762024 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.762897 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.764210 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.765244 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.768432 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.781402 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.781693 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.781826 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.782088 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.782401 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.782796 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.783214 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.783490 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.784180 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.784819 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.785573 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.786287 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.791481 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.804774 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Epoch 2: val_rmse improved from 0.25469 to 0.19306, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 19ms/step - loss: 0.0723 - rmse: 0.1961 - mean_absolute_error: 0.1556 - val_loss: 0.0708 - val_rmse: 0.1931 - val_mean_absolute_error: 0.1522 - lr: 1.0000e-04\n", "Epoch 3/200\n", " 1/54 [..............................] - ETA: 0s - loss: 0.0654 - rmse: 0.1782 - mean_absolute_error: 0.1425" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942290.887094 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.887349 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.887572 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.887817 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.888042 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.888477 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.888692 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.888959 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.889229 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.889482 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.889967 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.890373 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.892597 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.892969 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.893375 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.893824 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.894165 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.894740 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.895383 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.896034 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.896449 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.897170 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.898025 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.898865 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.899564 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.900225 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.901013 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.904241 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.904607 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.905018 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.905754 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.906198 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.906573 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.907221 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.907894 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.908383 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.909257 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.909851 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.910941 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.911411 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.912133 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.913064 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.915454 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.915924 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.916275 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.916697 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.917127 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.917452 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.918061 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.918857 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.919660 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.920279 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.921213 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.921968 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.922971 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.924353 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942290.925269 537 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "54/54 [==============================] - ETA: 0s - loss: 0.0633 - rmse: 0.1726 - mean_absolute_error: 0.1365\n", "Epoch 3: val_rmse improved from 0.19306 to 0.18631, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0633 - rmse: 0.1726 - mean_absolute_error: 0.1365 - val_loss: 0.0681 - val_rmse: 0.1863 - val_mean_absolute_error: 0.1574 - lr: 1.0000e-04\n", "Epoch 4/200\n", " 1/54 [..............................] - ETA: 0s - loss: 0.0598 - rmse: 0.1625 - mean_absolute_error: 0.1308" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942291.669159 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.669532 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.669918 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.670371 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.670694 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.671216 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.671798 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.672394 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.672769 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.673402 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.674034 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.674796 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.675352 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.675936 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.676622 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.759561 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.759770 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.759913 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.760171 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.760345 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.760714 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.760909 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.761126 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.761331 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.761511 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.761899 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.762284 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.764469 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.764756 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.765100 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.765652 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.765950 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.766245 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.766730 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.767233 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.767490 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.768179 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.768647 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.769478 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.769813 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.770356 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942291.770848 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "52/54 [===========================>..] - ETA: 0s - loss: 0.0583 - rmse: 0.1582 - mean_absolute_error: 0.1250\n", "Epoch 4: val_rmse did not improve from 0.18631\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0583 - rmse: 0.1580 - mean_absolute_error: 0.1248 - val_loss: 0.0968 - val_rmse: 0.2520 - val_mean_absolute_error: 0.2197 - lr: 1.0000e-04\n", "Epoch 5/200\n", " 5/54 [=>............................] - ETA: 0s - loss: 0.0558 - rmse: 0.1505 - mean_absolute_error: 0.1193" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766942292.520258 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.520648 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.521046 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.521474 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.521798 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.522333 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.522946 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.523555 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.523942 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.524566 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.525150 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.525914 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.526552 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.527144 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.527855 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.609114 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.609344 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.609474 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.609714 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.609869 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.610219 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.610410 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.610622 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.610818 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.611059 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.611404 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.611812 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.614005 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.614285 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.614577 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.615079 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.615341 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.615602 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.616061 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.616540 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.616771 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.617285 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.617680 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.618461 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.618777 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.619291 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766942292.619754 535 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "53/54 [============================>.] - ETA: 0s - loss: 0.0544 - rmse: 0.1462 - mean_absolute_error: 0.1157\n", "Epoch 5: val_rmse did not improve from 0.18631\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0545 - rmse: 0.1465 - mean_absolute_error: 0.1158 - val_loss: 0.1064 - val_rmse: 0.2710 - val_mean_absolute_error: 0.2337 - lr: 1.0000e-04\n", "Epoch 6/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0518 - rmse: 0.1378 - mean_absolute_error: 0.1087\n", "Epoch 6: val_rmse did not improve from 0.18631\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0518 - rmse: 0.1380 - mean_absolute_error: 0.1088 - val_loss: 0.1279 - val_rmse: 0.3086 - val_mean_absolute_error: 0.2694 - lr: 1.0000e-04\n", "Epoch 7/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0496 - rmse: 0.1310 - mean_absolute_error: 0.1034\n", "Epoch 7: val_rmse did not improve from 0.18631\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0497 - rmse: 0.1311 - mean_absolute_error: 0.1034 - val_loss: 0.0945 - val_rmse: 0.2497 - val_mean_absolute_error: 0.2056 - lr: 1.0000e-04\n", "Epoch 8/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0476 - rmse: 0.1239 - mean_absolute_error: 0.0979\n", "Epoch 8: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.\n", "\n", "Epoch 8: val_rmse did not improve from 0.18631\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0476 - rmse: 0.1239 - mean_absolute_error: 0.0979 - val_loss: 0.0822 - val_rmse: 0.2239 - val_mean_absolute_error: 0.1881 - lr: 1.0000e-04\n", "Epoch 9/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0456 - rmse: 0.1167 - mean_absolute_error: 0.0920\n", "Epoch 9: val_rmse improved from 0.18631 to 0.17065, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0456 - rmse: 0.1168 - mean_absolute_error: 0.0920 - val_loss: 0.0611 - val_rmse: 0.1707 - val_mean_absolute_error: 0.1375 - lr: 5.0000e-05\n", "Epoch 10/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0447 - rmse: 0.1136 - mean_absolute_error: 0.0896\n", "Epoch 10: val_rmse improved from 0.17065 to 0.12472, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0447 - rmse: 0.1134 - mean_absolute_error: 0.0894 - val_loss: 0.0474 - val_rmse: 0.1247 - val_mean_absolute_error: 0.1002 - lr: 5.0000e-05\n", "Epoch 11/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0439 - rmse: 0.1106 - mean_absolute_error: 0.0872\n", "Epoch 11: val_rmse improved from 0.12472 to 0.10339, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0440 - rmse: 0.1109 - mean_absolute_error: 0.0873 - val_loss: 0.0424 - val_rmse: 0.1034 - val_mean_absolute_error: 0.0816 - lr: 5.0000e-05\n", "Epoch 12/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0437 - rmse: 0.1101 - mean_absolute_error: 0.0867\n", "Epoch 12: val_rmse improved from 0.10339 to 0.08721, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0437 - rmse: 0.1100 - mean_absolute_error: 0.0867 - val_loss: 0.0391 - val_rmse: 0.0872 - val_mean_absolute_error: 0.0682 - lr: 5.0000e-05\n", "Epoch 13/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0428 - rmse: 0.1071 - mean_absolute_error: 0.0844\n", "Epoch 13: val_rmse improved from 0.08721 to 0.07650, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0428 - rmse: 0.1071 - mean_absolute_error: 0.0844 - val_loss: 0.0372 - val_rmse: 0.0765 - val_mean_absolute_error: 0.0594 - lr: 5.0000e-05\n", "Epoch 14/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0424 - rmse: 0.1059 - mean_absolute_error: 0.0835\n", "Epoch 14: val_rmse improved from 0.07650 to 0.07223, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0424 - rmse: 0.1060 - mean_absolute_error: 0.0836 - val_loss: 0.0364 - val_rmse: 0.0722 - val_mean_absolute_error: 0.0552 - lr: 5.0000e-05\n", "Epoch 15/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0418 - rmse: 0.1035 - mean_absolute_error: 0.0814\n", "Epoch 15: val_rmse improved from 0.07223 to 0.06907, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0418 - rmse: 0.1035 - mean_absolute_error: 0.0814 - val_loss: 0.0358 - val_rmse: 0.0691 - val_mean_absolute_error: 0.0528 - lr: 5.0000e-05\n", "Epoch 16/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0411 - rmse: 0.1013 - mean_absolute_error: 0.0798\n", "Epoch 16: val_rmse improved from 0.06907 to 0.06762, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0412 - rmse: 0.1015 - mean_absolute_error: 0.0799 - val_loss: 0.0354 - val_rmse: 0.0676 - val_mean_absolute_error: 0.0520 - lr: 5.0000e-05\n", "Epoch 17/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0405 - rmse: 0.0991 - mean_absolute_error: 0.0779\n", "Epoch 17: val_rmse did not improve from 0.06762\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0405 - rmse: 0.0992 - mean_absolute_error: 0.0779 - val_loss: 0.0354 - val_rmse: 0.0692 - val_mean_absolute_error: 0.0527 - lr: 5.0000e-05\n", "Epoch 18/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0402 - rmse: 0.0983 - mean_absolute_error: 0.0773\n", "Epoch 18: val_rmse did not improve from 0.06762\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0401 - rmse: 0.0982 - mean_absolute_error: 0.0772 - val_loss: 0.0366 - val_rmse: 0.0779 - val_mean_absolute_error: 0.0589 - lr: 5.0000e-05\n", "Epoch 19/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0395 - rmse: 0.0958 - mean_absolute_error: 0.0755\n", "Epoch 19: val_rmse did not improve from 0.06762\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0395 - rmse: 0.0958 - mean_absolute_error: 0.0754 - val_loss: 0.0358 - val_rmse: 0.0741 - val_mean_absolute_error: 0.0570 - lr: 5.0000e-05\n", "Epoch 20/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0392 - rmse: 0.0950 - mean_absolute_error: 0.0750\n", "Epoch 20: val_rmse did not improve from 0.06762\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0392 - rmse: 0.0953 - mean_absolute_error: 0.0752 - val_loss: 0.0351 - val_rmse: 0.0711 - val_mean_absolute_error: 0.0543 - lr: 5.0000e-05\n", "Epoch 21/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0388 - rmse: 0.0943 - mean_absolute_error: 0.0741\n", "Epoch 21: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.\n", "\n", "Epoch 21: val_rmse did not improve from 0.06762\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0388 - rmse: 0.0943 - mean_absolute_error: 0.0741 - val_loss: 0.0346 - val_rmse: 0.0690 - val_mean_absolute_error: 0.0519 - lr: 5.0000e-05\n", "Epoch 22/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0381 - rmse: 0.0912 - mean_absolute_error: 0.0718\n", "Epoch 22: val_rmse improved from 0.06762 to 0.06167, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0381 - rmse: 0.0908 - mean_absolute_error: 0.0716 - val_loss: 0.0336 - val_rmse: 0.0617 - val_mean_absolute_error: 0.0468 - lr: 2.5000e-05\n", "Epoch 23/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0377 - rmse: 0.0892 - mean_absolute_error: 0.0703\n", "Epoch 23: val_rmse did not improve from 0.06167\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0376 - rmse: 0.0892 - mean_absolute_error: 0.0703 - val_loss: 0.0335 - val_rmse: 0.0618 - val_mean_absolute_error: 0.0468 - lr: 2.5000e-05\n", "Epoch 24/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0373 - rmse: 0.0877 - mean_absolute_error: 0.0691\n", "Epoch 24: val_rmse improved from 0.06167 to 0.05951, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0373 - rmse: 0.0881 - mean_absolute_error: 0.0692 - val_loss: 0.0331 - val_rmse: 0.0595 - val_mean_absolute_error: 0.0453 - lr: 2.5000e-05\n", "Epoch 25/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0371 - rmse: 0.0874 - mean_absolute_error: 0.0686\n", "Epoch 25: val_rmse did not improve from 0.05951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0371 - rmse: 0.0874 - mean_absolute_error: 0.0686 - val_loss: 0.0332 - val_rmse: 0.0607 - val_mean_absolute_error: 0.0457 - lr: 2.5000e-05\n", "Epoch 26/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0369 - rmse: 0.0865 - mean_absolute_error: 0.0681\n", "Epoch 26: val_rmse improved from 0.05951 to 0.05862, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0369 - rmse: 0.0866 - mean_absolute_error: 0.0681 - val_loss: 0.0328 - val_rmse: 0.0586 - val_mean_absolute_error: 0.0444 - lr: 2.5000e-05\n", "Epoch 27/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0365 - rmse: 0.0852 - mean_absolute_error: 0.0670\n", "Epoch 27: val_rmse did not improve from 0.05862\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0365 - rmse: 0.0851 - mean_absolute_error: 0.0669 - val_loss: 0.0329 - val_rmse: 0.0601 - val_mean_absolute_error: 0.0453 - lr: 2.5000e-05\n", "Epoch 28/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0366 - rmse: 0.0860 - mean_absolute_error: 0.0677\n", "Epoch 28: val_rmse did not improve from 0.05862\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0366 - rmse: 0.0862 - mean_absolute_error: 0.0677 - val_loss: 0.0329 - val_rmse: 0.0608 - val_mean_absolute_error: 0.0463 - lr: 2.5000e-05\n", "Epoch 29/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0363 - rmse: 0.0849 - mean_absolute_error: 0.0667\n", "Epoch 29: val_rmse improved from 0.05862 to 0.05849, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0363 - rmse: 0.0848 - mean_absolute_error: 0.0667 - val_loss: 0.0325 - val_rmse: 0.0585 - val_mean_absolute_error: 0.0441 - lr: 2.5000e-05\n", "Epoch 30/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0361 - rmse: 0.0846 - mean_absolute_error: 0.0663\n", "Epoch 30: val_rmse improved from 0.05849 to 0.05803, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0361 - rmse: 0.0845 - mean_absolute_error: 0.0663 - val_loss: 0.0323 - val_rmse: 0.0580 - val_mean_absolute_error: 0.0436 - lr: 2.5000e-05\n", "Epoch 31/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0358 - rmse: 0.0834 - mean_absolute_error: 0.0655\n", "Epoch 31: val_rmse did not improve from 0.05803\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0358 - rmse: 0.0835 - mean_absolute_error: 0.0655 - val_loss: 0.0323 - val_rmse: 0.0589 - val_mean_absolute_error: 0.0442 - lr: 2.5000e-05\n", "Epoch 32/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0355 - rmse: 0.0825 - mean_absolute_error: 0.0649\n", "Epoch 32: val_rmse improved from 0.05803 to 0.05743, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0355 - rmse: 0.0825 - mean_absolute_error: 0.0649 - val_loss: 0.0320 - val_rmse: 0.0574 - val_mean_absolute_error: 0.0435 - lr: 2.5000e-05\n", "Epoch 33/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0353 - rmse: 0.0817 - mean_absolute_error: 0.0643\n", "Epoch 33: val_rmse did not improve from 0.05743\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0353 - rmse: 0.0817 - mean_absolute_error: 0.0643 - val_loss: 0.0325 - val_rmse: 0.0627 - val_mean_absolute_error: 0.0483 - lr: 2.5000e-05\n", "Epoch 34/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0353 - rmse: 0.0826 - mean_absolute_error: 0.0648\n", "Epoch 34: val_rmse did not improve from 0.05743\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0353 - rmse: 0.0827 - mean_absolute_error: 0.0648 - val_loss: 0.0320 - val_rmse: 0.0589 - val_mean_absolute_error: 0.0451 - lr: 2.5000e-05\n", "Epoch 35/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0351 - rmse: 0.0820 - mean_absolute_error: 0.0642\n", "Epoch 35: val_rmse did not improve from 0.05743\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0351 - rmse: 0.0817 - mean_absolute_error: 0.0640 - val_loss: 0.0317 - val_rmse: 0.0579 - val_mean_absolute_error: 0.0440 - lr: 2.5000e-05\n", "Epoch 36/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0347 - rmse: 0.0804 - mean_absolute_error: 0.0631\n", "Epoch 36: val_rmse improved from 0.05743 to 0.05700, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0347 - rmse: 0.0804 - mean_absolute_error: 0.0631 - val_loss: 0.0315 - val_rmse: 0.0570 - val_mean_absolute_error: 0.0428 - lr: 2.5000e-05\n", "Epoch 37/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0345 - rmse: 0.0798 - mean_absolute_error: 0.0627\n", "Epoch 37: val_rmse did not improve from 0.05700\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0345 - rmse: 0.0798 - mean_absolute_error: 0.0627 - val_loss: 0.0320 - val_rmse: 0.0626 - val_mean_absolute_error: 0.0477 - lr: 2.5000e-05\n", "Epoch 38/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0342 - rmse: 0.0789 - mean_absolute_error: 0.0619\n", "Epoch 38: val_rmse did not improve from 0.05700\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0342 - rmse: 0.0789 - mean_absolute_error: 0.0619 - val_loss: 0.0318 - val_rmse: 0.0615 - val_mean_absolute_error: 0.0467 - lr: 2.5000e-05\n", "Epoch 39/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0341 - rmse: 0.0786 - mean_absolute_error: 0.0615\n", "Epoch 39: val_rmse improved from 0.05700 to 0.05515, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0341 - rmse: 0.0789 - mean_absolute_error: 0.0618 - val_loss: 0.0309 - val_rmse: 0.0551 - val_mean_absolute_error: 0.0415 - lr: 2.5000e-05\n", "Epoch 40/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0339 - rmse: 0.0783 - mean_absolute_error: 0.0614\n", "Epoch 40: val_rmse did not improve from 0.05515\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0339 - rmse: 0.0782 - mean_absolute_error: 0.0614 - val_loss: 0.0311 - val_rmse: 0.0577 - val_mean_absolute_error: 0.0438 - lr: 2.5000e-05\n", "Epoch 41/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0334 - rmse: 0.0759 - mean_absolute_error: 0.0596\n", "Epoch 41: val_rmse did not improve from 0.05515\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0334 - rmse: 0.0759 - mean_absolute_error: 0.0596 - val_loss: 0.0307 - val_rmse: 0.0557 - val_mean_absolute_error: 0.0419 - lr: 2.5000e-05\n", "Epoch 42/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0334 - rmse: 0.0764 - mean_absolute_error: 0.0599\n", "Epoch 42: val_rmse did not improve from 0.05515\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0334 - rmse: 0.0764 - mean_absolute_error: 0.0599 - val_loss: 0.0308 - val_rmse: 0.0576 - val_mean_absolute_error: 0.0434 - lr: 2.5000e-05\n", "Epoch 43/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0332 - rmse: 0.0760 - mean_absolute_error: 0.0598\n", "Epoch 43: val_rmse did not improve from 0.05515\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0332 - rmse: 0.0761 - mean_absolute_error: 0.0599 - val_loss: 0.0305 - val_rmse: 0.0561 - val_mean_absolute_error: 0.0420 - lr: 2.5000e-05\n", "Epoch 44/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0330 - rmse: 0.0758 - mean_absolute_error: 0.0595\n", "Epoch 44: val_rmse improved from 0.05515 to 0.05421, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0330 - rmse: 0.0758 - mean_absolute_error: 0.0595 - val_loss: 0.0302 - val_rmse: 0.0542 - val_mean_absolute_error: 0.0408 - lr: 2.5000e-05\n", "Epoch 45/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0328 - rmse: 0.0754 - mean_absolute_error: 0.0590\n", "Epoch 45: val_rmse did not improve from 0.05421\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0328 - rmse: 0.0752 - mean_absolute_error: 0.0590 - val_loss: 0.0305 - val_rmse: 0.0578 - val_mean_absolute_error: 0.0434 - lr: 2.5000e-05\n", "Epoch 46/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0326 - rmse: 0.0748 - mean_absolute_error: 0.0586\n", "Epoch 46: val_rmse did not improve from 0.05421\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0326 - rmse: 0.0748 - mean_absolute_error: 0.0586 - val_loss: 0.0302 - val_rmse: 0.0574 - val_mean_absolute_error: 0.0432 - lr: 2.5000e-05\n", "Epoch 47/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0322 - rmse: 0.0729 - mean_absolute_error: 0.0573\n", "Epoch 47: val_rmse did not improve from 0.05421\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0322 - rmse: 0.0731 - mean_absolute_error: 0.0573 - val_loss: 0.0308 - val_rmse: 0.0623 - val_mean_absolute_error: 0.0471 - lr: 2.5000e-05\n", "Epoch 48/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0321 - rmse: 0.0736 - mean_absolute_error: 0.0578\n", "Epoch 48: val_rmse did not improve from 0.05421\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0321 - rmse: 0.0737 - mean_absolute_error: 0.0578 - val_loss: 0.0297 - val_rmse: 0.0549 - val_mean_absolute_error: 0.0414 - lr: 2.5000e-05\n", "Epoch 49/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0318 - rmse: 0.0722 - mean_absolute_error: 0.0565\n", "Epoch 49: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.\n", "\n", "Epoch 49: val_rmse did not improve from 0.05421\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0318 - rmse: 0.0722 - mean_absolute_error: 0.0566 - val_loss: 0.0301 - val_rmse: 0.0599 - val_mean_absolute_error: 0.0449 - lr: 2.5000e-05\n", "Epoch 50/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0316 - rmse: 0.0717 - mean_absolute_error: 0.0562\n", "Epoch 50: val_rmse improved from 0.05421 to 0.05363, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0316 - rmse: 0.0717 - mean_absolute_error: 0.0562 - val_loss: 0.0294 - val_rmse: 0.0536 - val_mean_absolute_error: 0.0402 - lr: 1.2500e-05\n", "Epoch 51/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0315 - rmse: 0.0717 - mean_absolute_error: 0.0563\n", "Epoch 51: val_rmse improved from 0.05363 to 0.05135, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0316 - rmse: 0.0719 - mean_absolute_error: 0.0564 - val_loss: 0.0291 - val_rmse: 0.0513 - val_mean_absolute_error: 0.0383 - lr: 1.2500e-05\n", "Epoch 52/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0313 - rmse: 0.0707 - mean_absolute_error: 0.0553\n", "Epoch 52: val_rmse did not improve from 0.05135\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0313 - rmse: 0.0708 - mean_absolute_error: 0.0553 - val_loss: 0.0292 - val_rmse: 0.0530 - val_mean_absolute_error: 0.0396 - lr: 1.2500e-05\n", "Epoch 53/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0312 - rmse: 0.0701 - mean_absolute_error: 0.0550\n", "Epoch 53: val_rmse did not improve from 0.05135\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0312 - rmse: 0.0702 - mean_absolute_error: 0.0551 - val_loss: 0.0291 - val_rmse: 0.0532 - val_mean_absolute_error: 0.0397 - lr: 1.2500e-05\n", "Epoch 54/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0310 - rmse: 0.0693 - mean_absolute_error: 0.0543\n", "Epoch 54: val_rmse did not improve from 0.05135\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0310 - rmse: 0.0693 - mean_absolute_error: 0.0543 - val_loss: 0.0293 - val_rmse: 0.0557 - val_mean_absolute_error: 0.0418 - lr: 1.2500e-05\n", "Epoch 55/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0310 - rmse: 0.0697 - mean_absolute_error: 0.0547\n", "Epoch 55: val_rmse did not improve from 0.05135\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0310 - rmse: 0.0697 - mean_absolute_error: 0.0547 - val_loss: 0.0288 - val_rmse: 0.0517 - val_mean_absolute_error: 0.0389 - lr: 1.2500e-05\n", "Epoch 56/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0309 - rmse: 0.0697 - mean_absolute_error: 0.0545\n", "Epoch 56: ReduceLROnPlateau reducing learning rate to 6.24999984211172e-06.\n", "\n", "Epoch 56: val_rmse did not improve from 0.05135\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0309 - rmse: 0.0697 - mean_absolute_error: 0.0545 - val_loss: 0.0288 - val_rmse: 0.0518 - val_mean_absolute_error: 0.0390 - lr: 1.2500e-05\n", "Epoch 57/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0308 - rmse: 0.0691 - mean_absolute_error: 0.0541\n", "Epoch 57: val_rmse improved from 0.05135 to 0.05046, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0308 - rmse: 0.0690 - mean_absolute_error: 0.0540 - val_loss: 0.0286 - val_rmse: 0.0505 - val_mean_absolute_error: 0.0376 - lr: 6.2500e-06\n", "Epoch 58/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0307 - rmse: 0.0686 - mean_absolute_error: 0.0538\n", "Epoch 58: val_rmse did not improve from 0.05046\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0306 - rmse: 0.0684 - mean_absolute_error: 0.0537 - val_loss: 0.0287 - val_rmse: 0.0519 - val_mean_absolute_error: 0.0386 - lr: 6.2500e-06\n", "Epoch 59/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0306 - rmse: 0.0683 - mean_absolute_error: 0.0536\n", "Epoch 59: val_rmse improved from 0.05046 to 0.05036, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0306 - rmse: 0.0684 - mean_absolute_error: 0.0536 - val_loss: 0.0285 - val_rmse: 0.0504 - val_mean_absolute_error: 0.0375 - lr: 6.2500e-06\n", "Epoch 60/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0305 - rmse: 0.0683 - mean_absolute_error: 0.0535\n", "Epoch 60: val_rmse did not improve from 0.05036\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0305 - rmse: 0.0684 - mean_absolute_error: 0.0535 - val_loss: 0.0285 - val_rmse: 0.0512 - val_mean_absolute_error: 0.0380 - lr: 6.2500e-06\n", "Epoch 61/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0305 - rmse: 0.0682 - mean_absolute_error: 0.0535\n", "Epoch 61: val_rmse improved from 0.05036 to 0.04975, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0305 - rmse: 0.0683 - mean_absolute_error: 0.0535 - val_loss: 0.0284 - val_rmse: 0.0498 - val_mean_absolute_error: 0.0368 - lr: 6.2500e-06\n", "Epoch 62/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0304 - rmse: 0.0675 - mean_absolute_error: 0.0529\n", "Epoch 62: val_rmse did not improve from 0.04975\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0304 - rmse: 0.0675 - mean_absolute_error: 0.0529 - val_loss: 0.0284 - val_rmse: 0.0504 - val_mean_absolute_error: 0.0374 - lr: 6.2500e-06\n", "Epoch 63/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0303 - rmse: 0.0677 - mean_absolute_error: 0.0530\n", "Epoch 63: val_rmse improved from 0.04975 to 0.04951, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0303 - rmse: 0.0677 - mean_absolute_error: 0.0530 - val_loss: 0.0283 - val_rmse: 0.0495 - val_mean_absolute_error: 0.0368 - lr: 6.2500e-06\n", "Epoch 64/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0302 - rmse: 0.0672 - mean_absolute_error: 0.0527\n", "Epoch 64: val_rmse did not improve from 0.04951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0303 - rmse: 0.0676 - mean_absolute_error: 0.0528 - val_loss: 0.0283 - val_rmse: 0.0500 - val_mean_absolute_error: 0.0369 - lr: 6.2500e-06\n", "Epoch 65/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0302 - rmse: 0.0674 - mean_absolute_error: 0.0529\n", "Epoch 65: val_rmse did not improve from 0.04951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0302 - rmse: 0.0675 - mean_absolute_error: 0.0530 - val_loss: 0.0283 - val_rmse: 0.0505 - val_mean_absolute_error: 0.0374 - lr: 6.2500e-06\n", "Epoch 66/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0301 - rmse: 0.0665 - mean_absolute_error: 0.0522\n", "Epoch 66: val_rmse did not improve from 0.04951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0300 - rmse: 0.0664 - mean_absolute_error: 0.0521 - val_loss: 0.0282 - val_rmse: 0.0501 - val_mean_absolute_error: 0.0371 - lr: 6.2500e-06\n", "Epoch 67/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0301 - rmse: 0.0670 - mean_absolute_error: 0.0526\n", "Epoch 67: val_rmse did not improve from 0.04951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0301 - rmse: 0.0671 - mean_absolute_error: 0.0527 - val_loss: 0.0282 - val_rmse: 0.0509 - val_mean_absolute_error: 0.0377 - lr: 6.2500e-06\n", "Epoch 68/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0301 - rmse: 0.0676 - mean_absolute_error: 0.0529\n", "Epoch 68: ReduceLROnPlateau reducing learning rate to 3.12499992105586e-06.\n", "\n", "Epoch 68: val_rmse did not improve from 0.04951\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0301 - rmse: 0.0675 - mean_absolute_error: 0.0528 - val_loss: 0.0283 - val_rmse: 0.0518 - val_mean_absolute_error: 0.0386 - lr: 6.2500e-06\n", "Epoch 69/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0300 - rmse: 0.0670 - mean_absolute_error: 0.0523\n", "Epoch 69: val_rmse improved from 0.04951 to 0.04927, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0300 - rmse: 0.0670 - mean_absolute_error: 0.0522 - val_loss: 0.0280 - val_rmse: 0.0493 - val_mean_absolute_error: 0.0364 - lr: 3.1250e-06\n", "Epoch 70/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0299 - rmse: 0.0667 - mean_absolute_error: 0.0523\n", "Epoch 70: val_rmse did not improve from 0.04927\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0299 - rmse: 0.0665 - mean_absolute_error: 0.0522 - val_loss: 0.0281 - val_rmse: 0.0506 - val_mean_absolute_error: 0.0375 - lr: 3.1250e-06\n", "Epoch 71/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0299 - rmse: 0.0663 - mean_absolute_error: 0.0521\n", "Epoch 71: val_rmse improved from 0.04927 to 0.04913, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0299 - rmse: 0.0663 - mean_absolute_error: 0.0520 - val_loss: 0.0279 - val_rmse: 0.0491 - val_mean_absolute_error: 0.0364 - lr: 3.1250e-06\n", "Epoch 72/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0299 - rmse: 0.0668 - mean_absolute_error: 0.0522\n", "Epoch 72: val_rmse did not improve from 0.04913\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0299 - rmse: 0.0668 - mean_absolute_error: 0.0522 - val_loss: 0.0280 - val_rmse: 0.0496 - val_mean_absolute_error: 0.0368 - lr: 3.1250e-06\n", "Epoch 73/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0298 - rmse: 0.0662 - mean_absolute_error: 0.0518\n", "Epoch 73: val_rmse did not improve from 0.04913\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0298 - rmse: 0.0664 - mean_absolute_error: 0.0518 - val_loss: 0.0280 - val_rmse: 0.0505 - val_mean_absolute_error: 0.0375 - lr: 3.1250e-06\n", "Epoch 74/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0299 - rmse: 0.0669 - mean_absolute_error: 0.0525\n", "Epoch 74: val_rmse improved from 0.04913 to 0.04902, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0299 - rmse: 0.0667 - mean_absolute_error: 0.0523 - val_loss: 0.0279 - val_rmse: 0.0490 - val_mean_absolute_error: 0.0362 - lr: 3.1250e-06\n", "Epoch 75/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0297 - rmse: 0.0660 - mean_absolute_error: 0.0517\n", "Epoch 75: val_rmse did not improve from 0.04902\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0297 - rmse: 0.0660 - mean_absolute_error: 0.0518 - val_loss: 0.0279 - val_rmse: 0.0493 - val_mean_absolute_error: 0.0365 - lr: 3.1250e-06\n", "Epoch 76/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0298 - rmse: 0.0665 - mean_absolute_error: 0.0522\n", "Epoch 76: val_rmse did not improve from 0.04902\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0298 - rmse: 0.0665 - mean_absolute_error: 0.0522 - val_loss: 0.0279 - val_rmse: 0.0497 - val_mean_absolute_error: 0.0369 - lr: 3.1250e-06\n", "Epoch 77/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0298 - rmse: 0.0666 - mean_absolute_error: 0.0521\n", "Epoch 77: val_rmse did not improve from 0.04902\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0298 - rmse: 0.0666 - mean_absolute_error: 0.0521 - val_loss: 0.0278 - val_rmse: 0.0496 - val_mean_absolute_error: 0.0368 - lr: 3.1250e-06\n", "Epoch 78/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0297 - rmse: 0.0660 - mean_absolute_error: 0.0516\n", "Epoch 78: val_rmse did not improve from 0.04902\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0297 - rmse: 0.0661 - mean_absolute_error: 0.0517 - val_loss: 0.0279 - val_rmse: 0.0501 - val_mean_absolute_error: 0.0372 - lr: 3.1250e-06\n", "Epoch 79/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0297 - rmse: 0.0663 - mean_absolute_error: 0.0519\n", "Epoch 79: val_rmse improved from 0.04902 to 0.04882, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0297 - rmse: 0.0661 - mean_absolute_error: 0.0518 - val_loss: 0.0277 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0360 - lr: 3.1250e-06\n", "Epoch 80/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0296 - rmse: 0.0658 - mean_absolute_error: 0.0515\n", "Epoch 80: val_rmse did not improve from 0.04882\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0296 - rmse: 0.0660 - mean_absolute_error: 0.0516 - val_loss: 0.0277 - val_rmse: 0.0493 - val_mean_absolute_error: 0.0364 - lr: 3.1250e-06\n", "Epoch 81/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0295 - rmse: 0.0654 - mean_absolute_error: 0.0513\n", "Epoch 81: val_rmse improved from 0.04882 to 0.04875, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0295 - rmse: 0.0655 - mean_absolute_error: 0.0513 - val_loss: 0.0277 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0361 - lr: 3.1250e-06\n", "Epoch 82/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0295 - rmse: 0.0655 - mean_absolute_error: 0.0514\n", "Epoch 82: val_rmse did not improve from 0.04875\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0295 - rmse: 0.0655 - mean_absolute_error: 0.0514 - val_loss: 0.0277 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0361 - lr: 3.1250e-06\n", "Epoch 83/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0296 - rmse: 0.0661 - mean_absolute_error: 0.0518\n", "Epoch 83: val_rmse did not improve from 0.04875\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0296 - rmse: 0.0661 - mean_absolute_error: 0.0518 - val_loss: 0.0276 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0360 - lr: 3.1250e-06\n", "Epoch 84/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0295 - rmse: 0.0657 - mean_absolute_error: 0.0515\n", "Epoch 84: ReduceLROnPlateau reducing learning rate to 1.56249996052793e-06.\n", "\n", "Epoch 84: val_rmse did not improve from 0.04875\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0295 - rmse: 0.0657 - mean_absolute_error: 0.0515 - val_loss: 0.0276 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0360 - lr: 3.1250e-06\n", "Epoch 85/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0294 - rmse: 0.0654 - mean_absolute_error: 0.0512\n", "Epoch 85: val_rmse improved from 0.04875 to 0.04872, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0294 - rmse: 0.0654 - mean_absolute_error: 0.0512 - val_loss: 0.0276 - val_rmse: 0.0487 - val_mean_absolute_error: 0.0360 - lr: 1.5625e-06\n", "Epoch 86/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0294 - rmse: 0.0651 - mean_absolute_error: 0.0509\n", "Epoch 86: val_rmse did not improve from 0.04872\n", "54/54 [==============================] - 1s 13ms/step - loss: 0.0294 - rmse: 0.0650 - mean_absolute_error: 0.0509 - val_loss: 0.0277 - val_rmse: 0.0501 - val_mean_absolute_error: 0.0372 - lr: 1.5625e-06\n", "Epoch 87/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0294 - rmse: 0.0653 - mean_absolute_error: 0.0511\n", "Epoch 87: val_rmse did not improve from 0.04872\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0294 - rmse: 0.0655 - mean_absolute_error: 0.0511 - val_loss: 0.0276 - val_rmse: 0.0491 - val_mean_absolute_error: 0.0364 - lr: 1.5625e-06\n", "Epoch 88/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0294 - rmse: 0.0652 - mean_absolute_error: 0.0511\n", "Epoch 88: val_rmse did not improve from 0.04872\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0294 - rmse: 0.0652 - mean_absolute_error: 0.0511 - val_loss: 0.0276 - val_rmse: 0.0498 - val_mean_absolute_error: 0.0370 - lr: 1.5625e-06\n", "Epoch 89/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0294 - rmse: 0.0652 - mean_absolute_error: 0.0511\n", "Epoch 89: ReduceLROnPlateau reducing learning rate to 1e-06.\n", "\n", "Epoch 89: val_rmse did not improve from 0.04872\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0293 - rmse: 0.0652 - mean_absolute_error: 0.0510 - val_loss: 0.0276 - val_rmse: 0.0492 - val_mean_absolute_error: 0.0365 - lr: 1.5625e-06\n", "Epoch 90/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0294 - rmse: 0.0654 - mean_absolute_error: 0.0512\n", "Epoch 90: val_rmse did not improve from 0.04872\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0294 - rmse: 0.0653 - mean_absolute_error: 0.0511 - val_loss: 0.0275 - val_rmse: 0.0489 - val_mean_absolute_error: 0.0361 - lr: 1.0000e-06\n", "Epoch 91/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510\n", "Epoch 91: val_rmse improved from 0.04872 to 0.04847, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510 - val_loss: 0.0275 - val_rmse: 0.0485 - val_mean_absolute_error: 0.0357 - lr: 1.0000e-06\n", "Epoch 92/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0293 - rmse: 0.0647 - mean_absolute_error: 0.0508\n", "Epoch 92: val_rmse did not improve from 0.04847\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0293 - rmse: 0.0647 - mean_absolute_error: 0.0508 - val_loss: 0.0275 - val_rmse: 0.0490 - val_mean_absolute_error: 0.0362 - lr: 1.0000e-06\n", "Epoch 93/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510\n", "Epoch 93: val_rmse did not improve from 0.04847\n", "54/54 [==============================] - 1s 15ms/step - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510 - val_loss: 0.0275 - val_rmse: 0.0488 - val_mean_absolute_error: 0.0361 - lr: 1.0000e-06\n", "Epoch 94/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0293 - rmse: 0.0649 - mean_absolute_error: 0.0507\n", "Epoch 94: val_rmse improved from 0.04847 to 0.04842, saving model to best_keypoints_cnn.keras\n", "54/54 [==============================] - 1s 16ms/step - loss: 0.0293 - rmse: 0.0650 - mean_absolute_error: 0.0508 - val_loss: 0.0275 - val_rmse: 0.0484 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 95/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510\n", "Epoch 95: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0293 - rmse: 0.0652 - mean_absolute_error: 0.0510 - val_loss: 0.0275 - val_rmse: 0.0486 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 96/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0293 - rmse: 0.0650 - mean_absolute_error: 0.0510\n", "Epoch 96: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0293 - rmse: 0.0651 - mean_absolute_error: 0.0510 - val_loss: 0.0275 - val_rmse: 0.0493 - val_mean_absolute_error: 0.0364 - lr: 1.0000e-06\n", "Epoch 97/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0292 - rmse: 0.0647 - mean_absolute_error: 0.0508\n", "Epoch 97: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0647 - mean_absolute_error: 0.0507 - val_loss: 0.0275 - val_rmse: 0.0486 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 98/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0292 - rmse: 0.0648 - mean_absolute_error: 0.0506\n", "Epoch 98: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0648 - mean_absolute_error: 0.0506 - val_loss: 0.0275 - val_rmse: 0.0487 - val_mean_absolute_error: 0.0360 - lr: 1.0000e-06\n", "Epoch 99/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0292 - rmse: 0.0649 - mean_absolute_error: 0.0509\n", "Epoch 99: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0648 - mean_absolute_error: 0.0509 - val_loss: 0.0274 - val_rmse: 0.0485 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 100/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0292 - rmse: 0.0646 - mean_absolute_error: 0.0505\n", "Epoch 100: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0645 - mean_absolute_error: 0.0505 - val_loss: 0.0274 - val_rmse: 0.0486 - val_mean_absolute_error: 0.0359 - lr: 1.0000e-06\n", "Epoch 101/200\n", "53/54 [============================>.] - ETA: 0s - loss: 0.0292 - rmse: 0.0649 - mean_absolute_error: 0.0508\n", "Epoch 101: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0649 - mean_absolute_error: 0.0508 - val_loss: 0.0274 - val_rmse: 0.0485 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 102/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0292 - rmse: 0.0648 - mean_absolute_error: 0.0508\n", "Epoch 102: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0648 - mean_absolute_error: 0.0509 - val_loss: 0.0275 - val_rmse: 0.0491 - val_mean_absolute_error: 0.0363 - lr: 1.0000e-06\n", "Epoch 103/200\n", "50/54 [==========================>...] - ETA: 0s - loss: 0.0291 - rmse: 0.0644 - mean_absolute_error: 0.0504\n", "Epoch 103: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0291 - rmse: 0.0645 - mean_absolute_error: 0.0505 - val_loss: 0.0275 - val_rmse: 0.0492 - val_mean_absolute_error: 0.0364 - lr: 1.0000e-06\n", "Epoch 104/200\n", "52/54 [===========================>..] - ETA: 0s - loss: 0.0292 - rmse: 0.0652 - mean_absolute_error: 0.0512\n", "Epoch 104: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0292 - rmse: 0.0652 - mean_absolute_error: 0.0511 - val_loss: 0.0274 - val_rmse: 0.0485 - val_mean_absolute_error: 0.0358 - lr: 1.0000e-06\n", "Epoch 105/200\n", "51/54 [===========================>..] - ETA: 0s - loss: 0.0291 - rmse: 0.0645 - mean_absolute_error: 0.0506\n", "Epoch 105: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0291 - rmse: 0.0645 - mean_absolute_error: 0.0506 - val_loss: 0.0274 - val_rmse: 0.0491 - val_mean_absolute_error: 0.0362 - lr: 1.0000e-06\n", "Epoch 106/200\n", "54/54 [==============================] - ETA: 0s - loss: 0.0291 - rmse: 0.0649 - mean_absolute_error: 0.0508\n", "Epoch 106: val_rmse did not improve from 0.04842\n", "54/54 [==============================] - 1s 14ms/step - loss: 0.0291 - rmse: 0.0649 - mean_absolute_error: 0.0508 - val_loss: 0.0274 - val_rmse: 0.0487 - val_mean_absolute_error: 0.0360 - lr: 1.0000e-06\n", "Epoch 106: early stopping\n", "Restoring model weights from the end of the best epoch: 94.\n" ] } ], "source": [ "history=model.fit(x_train, y_train,validation_data=(x_val, y_val),epochs=200,batch_size=32,callbacks=[early_stop, reduce_lr, checkpoint],verbose=1)" ] }, { "cell_type": "code", "execution_count": 50, "id": "bc7b792c-fc48-49fb-920a-d5f3190b660f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAF2CAYAAACYvUCBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsOBJREFUeJzs3Xd4VFX6B/DvnZ7JpJJGQiAhlFAD0hUENRjAhoI0FQQFVxddfoiFXRewLSCIWFBsFFdEBMtaQY0EQRAUjChNWgikJ5A2k0y9vz/uzJAhPZlkksz38zzzzOTOuWfOHXY98973FEEURRFERERERERE1CRknm4AERERERERUVvGwJuIiIiIiIioCTHwJiIiIiIiImpCDLyJiIiIiIiImhADbyIiIiIiIqImxMCbiIiIiIiIqAkx8CYiIiIiIiJqQgy8iYiIiIiIiJoQA28iIiIiIiKiJsTAm4i8miAImDt3rqebQURERG4watQo9O7d29PNIKqEgTd5hQ0bNkAQBOdDoVAgKioK9957LzIyMiqVHzVqFARBQNeuXaus77vvvnPWtW3bNpf3/vjjD0ycOBGdOnWCRqNBVFQURo8ejVdffdWlXExMjEubKj7GjBnjvosnIiLyYhV/A+zZs6fS+6IoIjo6GoIg4Oabb66yjsLCQmg0GgiCgGPHjlVZ5t577622X9doNG69JiJqfRSebgBRc3rmmWcQGxuL8vJy/Pzzz9iwYQP27NmDP//8s1KnqNFocOrUKRw4cACDBw92eW/Tpk3QaDQoLy93Ob53715cd9116NixI2bPno2IiAicP38eP//8M15++WU8/PDDLuX79euHRx99tFI7IyMj3XTFREREBEj9+gcffIDhw4e7HN+1axcuXLgAtVpd7blbt26FIAiIiIjApk2b8Nxzz1VZTq1W45133ql0XC6XN67xRNTqMfAmrzJ27FgMHDgQAHD//fcjJCQEy5cvx+eff45Jkya5lI2Li4PFYsHmzZtdAu/y8nJ8+umnuOmmm/Dxxx+7nPP8888jICAAv/zyCwIDA13ey83NrdSeqKgo3H333W66Os+wWCyw2WxQqVSebgoREVG1xo0bh61bt+KVV16BQnH5J/AHH3yAAQMGID8/v9pz33//fYwbNw6dOnXCBx98UG3grVAoWn2/LooiysvL4ePj4+mmELUpHGpOXm3EiBEAgNOnT1f5/tSpU7FlyxbYbDbnsS+++AIGg6FSoO6op1evXpWCbgAICwtzT6Ptzpw5gzvvvBPBwcHQarUYOnQovvrqK+f7OTk5UCgUePrppyude+LECQiCgNdee815rLCwEPPmzUN0dDTUajW6dOmC5cuXu1x7WloaBEHAypUrsXr1asTFxUGtVuPo0aM1tvX999/HgAED4OPjg+DgYEyZMgXnz593KeOYk3Xw4EFcffXV8PHxQWxsLNauXVupvtzcXNx3330IDw+HRqNBQkICNm7cWKmczWbDyy+/jD59+kCj0SA0NBRjxozBr7/+WqnsZ599ht69e0OtVqNXr17Yvn27y/slJSWYN28eYmJioFarERYWhtGjR+PQoUM1XjsREbUMU6dORUFBAb777jvnMZPJhG3btmHatGnVnpeeno7du3djypQpmDJlCs6ePYu9e/e6vX16vR6PPvqosx/u3r07Vq5cCVEUnWV69+6N6667rtK5NpsNUVFRmDhxosux1atXo1evXtBoNAgPD8cDDzyAS5cuuZwbExODm2++GTt27MDAgQPh4+ODN998s8a27t+/H2PGjEFAQAC0Wi1GjhyJn376yaXMkiVLIAgCjh8/jkmTJsHf3x/t2rXDP/7xj0ojBi0WC5599lnn74qYmBj885//hNForPTZ33zzDUaOHAk/Pz/4+/tj0KBB+OCDDyqVO3r0KK677jpotVpERUXhhRdeqFTm1VdfRa9evaDVahEUFISBAwdWWReROzDwJq+WlpYGAAgKCqry/WnTpiErKwspKSnOYx988AFuuOGGKgPpTp064eDBg/jzzz/r9Plmsxn5+fmVHmVlZTWel5OTg6uvvho7duzAQw89hOeffx7l5eW49dZb8emnnwIAwsPDMXLkSHz00UeVzt+yZQvkcjnuvPNOAIDBYMDIkSPx/vvvY/r06XjllVdwzTXXYOHChZg/f36l89evX49XX30Vc+bMwYsvvojg4OBq2/r8889j+vTp6Nq1K1atWoV58+YhOTkZ1157LQoLC13KXrp0CePGjcOAAQPwwgsvoEOHDnjwwQexbt06Z5mysjKMGjUK//3vf3HXXXdhxYoVCAgIwL333ouXX37Zpb777rvPeTNh+fLlePLJJ6HRaPDzzz+7lNuzZw8eeughTJkyBS+88ALKy8sxYcIEFBQUOMv87W9/wxtvvIEJEybg9ddfx4IFC+Dj41PtXD8iImpZYmJiMGzYMGzevNl57JtvvkFRURGmTJlS7XmbN2+Gr68vbr75ZgwePBhxcXHYtGlTteWr6teLi4trbJsoirj11lvx0ksvYcyYMVi1ahW6d++Oxx57zKUfnjx5Mn788UdkZ2e7nL9nzx5kZma6XMcDDzyAxx57DNdccw1efvllzJw5E5s2bUJSUhLMZrPL+SdOnMDUqVMxevRovPzyy+jXr1+1bf3hhx9w7bXXori4GIsXL8Z//vMfFBYW4vrrr8eBAwcqlZ80aRLKy8uxdOlSjBs3Dq+88grmzJnjUub+++/HokWLcNVVV+Gll17CyJEjsXTp0kr/Lhs2bMBNN92EixcvYuHChVi2bBn69etX6Wb5pUuXMGbMGCQkJODFF19EfHw8nnjiCXzzzTfOMm+//TYeeeQR9OzZE6tXr8bTTz+Nfv36Yf/+/dVeO1GjiEReYP369SIA8fvvvxfz8vLE8+fPi9u2bRNDQ0NFtVotnj9/3qX8yJEjxV69eomiKIoDBw4U77vvPlEURfHSpUuiSqUSN27cKO7cuVMEIG7dutV53rfffivK5XJRLpeLw4YNEx9//HFxx44doslkqtSmTp06iQCqfCxdurTG65k3b54IQNy9e7fzWElJiRgbGyvGxMSIVqtVFEVRfPPNN0UA4h9//OFyfs+ePcXrr7/e+fezzz4r+vr6in/99ZdLuSeffFKUy+Vienq6KIqiePbsWRGA6O/vL+bm5tbYRlEUxbS0NFEul4vPP/+8y/E//vhDVCgULsdHjhwpAhBffPFF5zGj0Sj269dPDAsLc36Hq1evFgGI77//vrOcyWQShw0bJup0OrG4uFgURVH84YcfRADiI488UqldNpvN+RqAqFKpxFOnTjmP/f777yIA8dVXX3UeCwgIEP/+97/Xes1ERNSyOH4D/PLLL+Jrr70m+vn5iQaDQRRFUbzzzjvF6667ThRFqV++6aabKp3fp08f8a677nL+/c9//lMMCQkRzWazS7kZM2ZU268nJSXV2MbPPvtMBCA+99xzLscnTpwoCoLg7KNOnDhRqX8SRVF86KGHRJ1O57yu3bt3iwDETZs2uZTbvn17peOO3yPbt2+vsY2iKPWfXbt2FZOSklz6UoPBIMbGxoqjR492Hlu8eLEIQLz11lsrtRWA+Pvvv4uiKIqpqakiAPH+++93KbdgwQIRgPjDDz+IoiiKhYWFop+fnzhkyBCxrKysUrscHL8n3nvvPecxo9EoRkREiBMmTHAeu+2225y/9YiaAzPe5FUSExMRGhqK6OhoTJw4Eb6+vvj888/RoUOHas+ZNm0aPvnkE+dwNLlcjttvv73KsqNHj8a+fftw66234vfff8cLL7yApKQkREVF4fPPP69UfsiQIfjuu+8qPaZOnVrjdXz99dcYPHiwywIxOp0Oc+bMQVpamnPo9x133AGFQoEtW7Y4y/355584evQoJk+e7Dy2detWjBgxAkFBQS536BMTE2G1WvHjjz+6fP6ECRMQGhpaYxsB4JNPPoHNZsOkSZNc6o2IiEDXrl2xc+dOl/IKhQIPPPCA82+VSoUHHngAubm5OHjwoPPaIyIiXL4jpVKJRx55BKWlpdi1axcA4OOPP4YgCFi8eHGldgmC4PJ3YmIi4uLinH/37dsX/v7+OHPmjPNYYGAg9u/fj8zMzFqvm4iIWqZJkyahrKwMX375JUpKSvDll1/WOMz88OHD+OOPP1z6nKlTpyI/Px87duyoVF6j0VTZry9btqzGdn399deQy+V45JFHXI4/+uijEEXRmant1q0b+vXr59KvW61WbNu2DbfccotzXvbWrVsREBCA0aNHu/S/AwYMgE6nq9T/xsbGIikpqcY2AkBqaipOnjyJadOmoaCgwFmvXq/HDTfcgB9//NFlihoA/P3vf3f527HQ7Ndff+3yfOUIO8fis45pdN999x1KSkqco9cqurJf1+l0LnPtVSoVBg8eXKlfv3DhAn755Zdar5vIHbi4GnmVNWvWoFu3bigqKsK6devw448/1riKKQBMmTIFCxYswDfffINNmzbh5ptvhp+fX7XlBw0a5AzUf//9d3z66ad46aWXMHHiRKSmpqJnz57OsiEhIUhMTKz3dZw7dw5DhgypdLxHjx7O93v37o2QkBDccMMN+Oijj/Dss88CkIaZKxQK3HHHHc7zTp48icOHD1cbTF+5MFxsbGyd2nny5EmIoljttmxKpdLl78jISPj6+roc69atGwBpWsDQoUNx7tw5dO3aFTKZ633DitcOSPPtIyMjaxwG79CxY8dKx4KCglzmwb3wwguYMWMGoqOjMWDAAIwbNw7Tp09H586da62fiIhahtDQUCQmJuKDDz6AwWCA1Wp1mRd9pffffx++vr7o3LkzTp06BUAKrmNiYrBp0ybcdNNNLuXlcnmD+/XIyMhKvy+u7NsAabj5P//5T2RkZCAqKgopKSnIzc11uaF+8uRJFBUVVbu+TGP6dQCYMWNGtWWKiopcpvBd+RsgLi4OMpnMOd3v3LlzkMlk6NKli0u5iIgIBAYGuvTrAOq0R3eHDh0qBeNBQUE4fPiw8+8nnngC33//PQYPHowuXbrgxhtvxLRp03DNNdfUWj9RQzDwJq8yePBg56rm48ePx/DhwzFt2jScOHECOp2uynPat2+PUaNG4cUXX8RPP/1UaSXz6qhUKgwaNAiDBg1Ct27dMHPmTGzdurXKDGxTmjJlCmbOnInU1FT069cPH330EW644QaEhIQ4y9hsNowePRqPP/54lXU4gl+Huq50arPZIAgCvvnmmyq3UqnuO29u1W3zIlZY0GbSpEkYMWIEPv30U3z77bdYsWIFli9fjk8++QRjx45trqYSEVEjTZs2DbNnz0Z2djbGjh1b5YKogNQHbN68GXq93uWmuUNubi5KS0ubvS+bPHkyFi5ciK1bt2LevHn46KOPEBAQgDFjxjjL2Gw2hIWFVTsX/cob7fXp1wFgxYoV1c4Dr+37uDIgru14Q9SlX+/RowdOnDiBL7/8Etu3b8fHH3+M119/HYsWLapyYVqixmLgTV5LLpdj6dKluO666/Daa6/hySefrLbstGnTcP/99yMwMBDjxo2r92c5gv2srKwGt7eiTp064cSJE5WOHz9+3Pm+w/jx4/HAAw84h6X99ddfWLhwoct5cXFxKC0tbdBd+prExcVBFEXExsZWCt6rkpmZCb1e75L1/uuvvwBIi+IA0rUdPnwYNpvNJet95bXHxcVhx44duHjxYp2y3nXRvn17PPTQQ3jooYeQm5uLq666Cs8//zwDbyKiVuT222/HAw88gJ9//tllyPaVHPt7P/PMM87Ms8OlS5cwZ84cfPbZZ27ZPqxTp074/vvvUVJS4pL1rqpfj42NxeDBg7FlyxbMnTsXn3zyCcaPH+8ygi8uLg7ff/89rrnmGrduC+aYluXv71/n3wwnT550yaifOnUKNpvNpV+32Ww4efKky/eck5ODwsJCl34dkKbMXZkdbyhfX19MnjwZkydPhslkwh133IHnn38eCxcurDScnaixOMebvNqoUaMwePBgrF69utLWFhVNnDgRixcvxuuvv17jftU7d+50uZvq4Ji/1L1798Y3GtJepAcOHMC+ffucx/R6Pd566y3ExMS43JkPDAxEUlISPvroI3z44YdQqVQYP368S32TJk3Cvn37qpyvVlhYCIvF0qB23nHHHZDL5Xj66acrfS+iKLqsGg5I24lU3MLEZDLhzTffRGhoKAYMGOC89uzsbJcfSxaLBa+++ip0Oh1GjhwJQJqHLopilXetq/o3qonVakVRUZHLsbCwMERGRla51QkREbVcOp0Ob7zxBpYsWYJbbrml2nKOYeaPPfYYJk6c6PKYPXs2unbtWuPq5vUxbtw4WK1Wl20+AeCll16CIAiVbvBOnjwZP//8M9atW4f8/HyXYeaA1K9brVbnNLOKLBZLpV1F6mrAgAGIi4vDypUrUVpaWun9vLy8SsfWrFnj8verr74KAM5rciQ0Vq9e7VJu1apVAOAczn/jjTfCz88PS5curfSbrb79OoBKv0FUKhV69uwJURQrrfpO5A7MeJPXe+yxx3DnnXdiw4YN+Nvf/lZlmYCAACxZsqTWuh5++GEYDAbcfvvtiI+Ph8lkwt69e7FlyxbExMRg5syZLuUzMjLw/vvvV6pHp9NVCo4revLJJ7F582aMHTsWjzzyCIKDg7Fx40acPXsWH3/8caX5z5MnT8bdd9+N119/HUlJSZWG1T322GP4/PPPcfPNN+Pee+/FgAEDoNfr8ccff2Dbtm1IS0tzGZpeV3FxcXjuueewcOFCpKWlYfz48fDz88PZs2fx6aefYs6cOViwYIGzfGRkJJYvX460tDR069YNW7ZsQWpqKt566y3nfPA5c+bgzTffxL333ouDBw8iJiYG27Ztw08//YTVq1c7MwXXXXcd7rnnHrzyyis4efIkxowZA5vNht27d+O6667D3Llz63wdJSUl6NChAyZOnIiEhATodDp8//33+OWXX/Diiy/W+3shIiLPqmmOMgAYjUZ8/PHHGD16dLWZz1tvvRUvv/wycnNznXOpLRZLlf06IGXar1zHxOGWW27Bddddh3/9619IS0tDQkICvv32W/zvf//DvHnzXBYABaTAesGCBViwYAGCg4MrZZ9HjhyJBx54AEuXLkVqaipuvPFGKJVKnDx5Elu3bsXLL79c49z26shkMrzzzjsYO3YsevXqhZkzZyIqKgoZGRnYuXMn/P398cUXX7icc/bsWdx6660YM2YM9u3bh/fffx/Tpk1DQkICACAhIQEzZszAW2+9hcLCQowcORIHDhzAxo0bMX78eOe+5f7+/njppZdw//33Y9CgQZg2bRqCgoLw+++/w2AwYOPGjfW6lhtvvBERERG45pprEB4ejmPHjuG1117DTTfdVONaPkQN5pG11ImaWcWtRK5ktVrFuLg4MS4uTrRYLKIoum4nVp2qthP75ptvxFmzZonx8fGiTqcTVSqV2KVLF/Hhhx8Wc3JyXM6vaTuxTp061XpNp0+fFidOnCgGBgaKGo1GHDx4sPjll19WWba4uFj08fGptA1XRSUlJeLChQvFLl26iCqVSgwJCRGvvvpqceXKlc6tvBzbia1YsaLW9lX08ccfi8OHDxd9fX1FX19fMT4+Xvz73/8unjhxwlnG8Z3/+uuv4rBhw0SNRiN26tRJfO211yrVl5OTI86cOVMMCQkRVSqV2KdPH3H9+vWVylksFnHFihVifHy8qFKpxNDQUHHs2LHiwYMHnWUAVLlNWKdOncQZM2aIoihtQ/LYY4+JCQkJop+fn+jr6ysmJCSIr7/+er2+ByIian41/QaoqOJ2Yh9//LEIQHz33XerLZ+SkiICEF9++WVRFGveTgyAePbs2Ro/v6SkRPy///s/MTIyUlQqlWLXrl3FFStWuGyVVdE111xT5TZcFb311lvigAEDRB8fH9HPz0/s06eP+Pjjj4uZmZlVXndd/fbbb+Idd9whtmvXTlSr1WKnTp3ESZMmicnJyc4yju3Ejh49Kk6cOFH08/MTg4KCxLlz51baDsxsNotPP/20GBsbKyqVSjE6OlpcuHChWF5eXumzP//8c/Hqq68WfXx8RH9/f3Hw4MHi5s2bne9X9xtuxowZLr+v3nzzTfHaa691XkNcXJz42GOPiUVFRfX6LojqShDFBozNICJys1GjRiE/Px9//vmnp5tCREREjbRkyRI8/fTTyMvLa9CoOaK2hnO8iYiIiIiIiJoQA28iIiIiIiKiJsTAm4iIiIiIiKgJcY43ERERERERURNixpuIiIiIiIioCTHwJiIiIiIiImpCCk83wB1sNhsyMzPh5+cHQRA83RwiIiKIooiSkhJERkZCJuN9bndgf09ERC1Jffr6NhF4Z2ZmIjo62tPNICIiquT8+fPo0KGDp5vRJrC/JyKilqgufX2bCLz9/PwASBfs7+/v4dYQEREBxcXFiI6OdvZR1Hjs74mIqCWpT1/fJgJvx3Azf39/dsRERNSicEi0+7C/JyKilqgufT0nnRERERERERE1IQbeRERERERERE2IgTcRERERERFRE2oTc7yJiFoKq9UKs9ns6WZQM1AqlZDL5Z5uBhERtUD8PdB2uKu/Z+BNROQGoigiOzsbhYWFnm4KNaPAwEBERERwATUiIgLA3wNtlTv6ewbeRERu4Ohkw8LCoNVqGYi1caIowmAwIDc3FwDQvn17D7eIiIhaAv4eaFvc2d8z8CYiaiSr1ersZNu1a+fp5lAz8fHxAQDk5uYiLCyMw86JiLwcfw+0Te7q77m4GhFRIznmcGm1Wg+3hJqb49+c8/iIiIi/B9oud/T3DLyJiNyEw8m8D//NiYjoSuwb2h53/Jsy8CYiIiIiIiJqQgy8m9IPzwEpyz3dCiKiZhUTE4PVq1d7uhlEzePYF8DH9wMmvadbQkTUovD3gCsG3k1FXwD8uAJI+Q9gMni6NURElQiCUONjyZIlDar3l19+wZw5cxrVtlGjRjnbodFo0K1bNyxduhSiKDrLpKWlQRAEyOVyZGRkuJyflZUFhUIBQRCQlpbmPP7pp59i6NChCAgIgJ+fH3r16oV58+Y539+wYUOV34VGo2nU9VAb9uMK4I+twJldnm4JEVGDtIbfA8uWLav03k033VRt+zZv3gy5XI6///3vld5LSUmp9lqzs7Mb1d6aMPBuKqU5l1+XF3muHURE1cjKynI+Vq9eDX9/f5djCxYscJYVRREWi6VO9YaGhrplYZnZs2cjKysLJ06cwMKFC7Fo0SKsXbu2UrmoqCi89957Lsc2btyIqKgol2PJycmYPHkyJkyYgAMHDuDgwYN4/vnnKy2UcuX3kJWVhXPnzjX6eqiNKs2Tno0lnm0HEVEDtfTfA9HR0diwYYPLsYyMDCQnJ1e7vde7776Lxx9/HJs3b0Z5eXmVZU6cOFGpvw8LC2t0e6vDwLupVAy8jcWeawcRUTUiIiKcj4CAAAiC4Pz7+PHj8PPzwzfffIMBAwZArVZjz549OH36NG677TaEh4dDp9Nh0KBB+P77713qvXJomSAIeOedd3D77bdDq9Wia9eu+Pzzz2ttn1arRUREBDp16oSZM2eib9+++O677yqVmzFjBtavX+9ybP369ZgxY4bLsS+++ALXXHMNHnvsMXTv3h3dunXD+PHjsWbNGpdyFb8HxyM8PLzW9pIXEkVAbw+8TaWebQsRUQO19N8DN998M/Lz8/HTTz85j23cuBE33nhjlYHy2bNnsXfvXjz55JPo1q0bPvnkkyrrDQsLq9Tfy2RNFx4z8G4qjo4Y4F1wIi8kiiIMJotHHhWHYzfWk08+iWXLluHYsWPo27cvSktLMW7cOCQnJ+O3337DmDFjcMsttyA9Pb3Gep5++mlMmjQJhw8fxrhx43DXXXfh4sWLdWqDKIrYvXs3jh8/DpVKVen9W2+9FZcuXcKePXsAAHv27MGlS5dwyy23uJSLiIjAkSNH8Oeff9bx6olqUV4E2OwjJhh4E1EV+HvAVUN+D6hUKtx1110uN9k3bNiAWbNmVVl+/fr1uOmmmxAQEIC7774b7777bv0vuAkoPN2ANqs09/JrDjUn8jplZit6Ltrhkc8++kwStCr3/Of9mWeewejRo51/BwcHIyEhwfn3s88+i08//RSff/455s6dW2099957L6ZOnQoA+M9//oNXXnkFBw4cwJgxY6o95/XXX8c777wDk8kEs9kMjUaDRx55pFI5pVKJu+++G+vWrcPw4cOxbt063H333VAqlS7lHn74YezevRt9+vRBp06dMHToUNx444246667oFarneWKioqg0+lczh0xYgS++eabattKXkqff/k1F1cjoirw94CrhvweAIBZs2ZhxIgRePnll3Hw4EEUFRXh5ptvrjS/22azYcOGDXj11VcBAFOmTMGjjz6Ks2fPIjY21qVshw4dXP7u1KkTjhw5UmM7GqNBGe81a9YgJiYGGo0GQ4YMwYEDB6ot+8knn2DgwIEIDAyEr68v+vXrh//+978uZURRxKJFi9C+fXv4+PggMTERJ0+ebEjTWg59hcCbQ82JqJUaOHCgy9+lpaVYsGABevTogcDAQOh0Ohw7dqzWO9x9+/Z1vvb19YW/vz9yc3NrOAO46667kJqaip9++gljx47Fv/71L1x99dVVlp01axa2bt2K7OxsbN26tcq74L6+vvjqq69w6tQpPPXUU9DpdHj00UcxePBgGAyXF8H08/NDamqqy+Odd96psa3kpSqObmPgTURtmCd/DwBAQkICunbtim3btmHdunW45557oFBUvqnw3XffQa/XY9y4cQCAkJAQjB49GuvWratUdvfu3S59/ddff11rOxqj3rdAtmzZgvnz52Pt2rUYMmQIVq9ejaSkJJw4caLKMfbBwcH417/+hfj4eKhUKnz55ZeYOXMmwsLCkJSUBAB44YUX8Morr2Djxo2IjY3Fv//9byQlJeHo0aOtdyXZ0gqdcTkDbyJv46OU4+gzSR77bHfx9fV1+XvBggX47rvvsHLlSnTp0gU+Pj6YOHEiTCZTjfVcmX0WBAE2m63GcwICAtClSxcAwEcffYQuXbpg6NChSExMrFS2T58+iI+Px9SpU9GjRw/07t0bqampVdYbFxeHuLg43H///fjXv/6Fbt26YcuWLZg5cyYAQCaTOT+XqEYugTeHmhNRZfw94KohvwccZs2ahTVr1uDo0aPVJn7fffddXLx4ET4+Ps5jNpsNhw8fxtNPP+0yhzs2NhaBgYF1+mx3qHfgvWrVKsyePdv5A2Xt2rX46quvsG7dOjz55JOVyo8aNcrl73/84x/YuHEj9uzZg6SkJIiiiNWrV+Opp57CbbfdBgB47733EB4ejs8++wxTpkxpwGW1AMx4E3k1QRDcNryrJfnpp59w77334vbbbwcg3fGuuF1XU9HpdPjHP/6BBQsW4LfffoMgCJXKzJo1Cw899BDeeOONOtcbExMDrVYLvZ7ZSmoAl/VcGHgTUWX8PeA+06ZNw4IFC5CQkICePXtWer+goAD/+9//8OGHH6JXr17O41arFcOHD8e3335b65D2plSv/xWYTCYcPHgQCxcudB6TyWRITEzEvn37aj1fFEX88MMPOHHiBJYvXw5AWnUuOzvbJYMREBCAIUOGYN++fa038K44x5uLqxFRG9G1a1d88sknuOWWWyAIAv7973/X+U51Yz3wwAN49tln8fHHH2PixImV3p89ezbuvPPOau9eL1myBAaDAePGjUOnTp1QWFiIV155BWaz2WXemiiKVe7jGRYW1qSrnVIrxDneROSlPPF7ICgoCFlZWZWy5g7//e9/0a5dO0yaNKnSDfpx48bh3XffdQm8c3NzK2011q5du2rrb6x6Bd75+fmwWq2VtlUJDw/H8ePHqz2vqKgIUVFRMBqNkMvleP31150/chw/bqqqs7oNzI1GI4xGo/Pv4uIWmFHWc6g5EbU9q1atwqxZs3D11VcjJCQETzzxRLP9Nzg4OBjTp0/HkiVLcMcdd1R6X6FQICQkpNrzR44ciTVr1mD69OnIyclBUFAQ+vfvj2+//Rbdu3d3lisuLq5yX9CsrCxERES452KobeBQcyLyUp76PVDT0PB169bh9ttvr3JU3IQJE3DPPfcgP//yDdOKfb/Dvn37MHToULe09UqCWI915jMzMxEVFYW9e/di2LBhzuOPP/44du3ahf3791d5ns1mw5kzZ1BaWork5GQ8++yz+OyzzzBq1Cjs3bsX11xzDTIzM11+6DjuVGzZsqVSfUuWLMHTTz9d6XhRURH8/f3rejlNx2YDng0BRKv0d7+7gPGve7ZNRNRkysvLnatlttp1KahBavq3Ly4uRkBAQMvpm9qAFvedbr0XOPKp9DqyPzAnxZOtISIP4++Btqu6f9v69Ev1GjMXEhICuVyOnJwcl+M5OTk1ZgEcC9X069cPjz76KCZOnIilS5cCgPO8+tS5cOFCFBUVOR/nz5+vz2U0vbJLl4NugNuJERERtUUcak5ERHVUr8BbpVJhwIABSE5Odh6z2WxITk52yYDXxmazOYeKx8bGIiIiwqXO4uJi7N+/v9o61Wo1/P39XR4tiv6KJfE5x5uIiKjt4XZiRERUR/VeYm/+/PmYMWMGBg4ciMGDB2P16tXQ6/XOVc6nT5+OqKgoZ0Z76dKlGDhwIOLi4mA0GvH111/jv//9r3PVWUEQMG/ePDz33HPo2rWrczuxyMhIjB8/3n1X2pxKrwy8OcebiIiozeEcbyIiqqN6B96TJ09GXl4eFi1ahOzsbPTr1w/bt293Lo6Wnp7usuqrXq/HQw89hAsXLsDHxwfx8fF4//33MXnyZGeZxx9/HHq9HnPmzEFhYSGGDx+O7du3t965EY6OWK4CrCYurkZERNTWWC2A4eLlv42lgCgCVSzqQ0RE1KBN5ebOnYu5c+dW+V5KSorL38899xyee+65GusTBAHPPPMMnnnmmYY0p+VxZLyDYoH8E8x4ExERtTVlFwFUWJ9WtAIWI6BspUkDIiJqUtyQtCk45ni36yI9M+NNRETUtjhGt2kCLx/jPG8iIqoGA++m4Mh4t4uTnq1G6S44ERERtQ2OwNuvPaDwkV5znjcREVWDgXdTcATewZ0vH+PK5kRERG2HYysx3xBA5Su9ZuBNRETVYODdFBxDzf3aAyqd9Jp7eRMRUSuyZs0axMTEQKPRYMiQIThw4EC1Zd9++22MGDECQUFBCAoKQmJiYqXy9957LwRBcHmMGTOmqS+j6Tgy3r6hFQJvDjUnIqKqMfBuCqX2zlgXBqjte4xzgTUiaqNGjRqFefPmeboZ5EZbtmzB/PnzsXjxYhw6dAgJCQlISkpCbm5uleVTUlIwdepU7Ny5E/v27UN0dDRuvPFGZGRkuJQbM2YMsrKynI/Nmzc3x+U0DWfgHXL5Jjsz3kTkxfh7oGYMvN1NFC93xrowQO0nveZQcyJqYW655ZZqM467d++GIAg4fPhwoz9nw4YNzgynTCZD+/btMXnyZKSnp7uUGzVqFARBwLJlyyrVcdNNN0EQBCxZssR57OzZs5g2bRoiIyOh0WjQoUMH3HbbbTh+/LizzJUZVsfjww8/bPR1tWWrVq3C7NmzMXPmTPTs2RNr166FVqvFunXrqiy/adMmPPTQQ+jXrx/i4+PxzjvvwGazITk52aWcWq1GRESE8xEUFNQcl9M0nEPNQwG1I/BmxpuIWp/m/j3Qo0ePSu9t3boVgiAgJiam0ntlZWUIDg5GSEgIjMbK62bFxMRU2ddX9XvCkxh4u1vZJcBmll77hgIae8abK5sTUQtz33334bvvvsOFCxcqvbd+/XoMHDgQffv2dctn+fv7IysrCxkZGfj4449x4sQJ3HnnnZXKRUdHY8OGDS7HMjIykJycjPbt2zuPmc1mjB49GkVFRfjkk09w4sQJbNmyBX369EFhYWGla6mYZc3KysL48ePdcl1tkclkwsGDB5GYmOg8JpPJkJiYiH379tWpDoPBALPZjODgYJfjKSkpCAsLQ/fu3fHggw+ioKCgxnqMRiOKi4tdHi1GVXO8jcx4E1Hr05y/B3x9fZGbm1upP3n33XfRsWPHKs/5+OOP0atXL8THx+Ozzz6rsswzzzxTqa9/+OGH3dJmd2Hg7W7O7UUCAIWaQ82JqMW6+eabERoaWinQLS0txdatW3HfffehoKAAU6dORVRUFLRaLfr06dOg4cGCICAiIgLt27fH1Vdfjfvuuw8HDhyoFEjdfPPNyM/Px08//eQ8tnHjRtx4440ICwtzHjty5AhOnz6N119/HUOHDkWnTp1wzTXX4LnnnsPQoUNd6gwMDHTJskZERECj4V7L1cnPz4fVakV4eLjL8fDwcGRnZ9epjieeeAKRkZEuwfuYMWPw3nvvITk5GcuXL8euXbswduxYWK3WautZunQpAgICnI/o6OiGXVRTqHKONwNvImp9mvP3gEKhwLRp01xGUF24cAEpKSmYNm1alee8++67uPvuu3H33Xfj3XffrbKMn59fpb7e19e33u1rSgy83a00R3r2tf9AZMabyDuJojTs1BMPUaxTExUKBaZPn44NGzZArHDO1q1bYbVaMXXqVJSXl2PAgAH46quv8Oeff2LOnDm45557alxoqza5ubn49NNPIZfLIZfLXd5TqVS46667sH79euexDRs2YNasWS7lQkNDIZPJsG3bthoDN2p+y5Ytw4cffohPP/3U5QbHlClTcOutt6JPnz4YP348vvzyS/zyyy9ISUmptq6FCxeiqKjI+Th//nwzXEEduQTeHGpORNXg74FKZs2ahY8++ggGgwGA1M+PGTOm0g1fADh9+jT27duHSZMmYdKkSdi9ezfOnTtX789sCRSebkCb49hKTGcPvJnxJvJOZgPwn0jPfPY/My9n4Goxa9YsrFixArt27cKoUaMASMPKJkyY4MwyLliwwFn+4Ycfxo4dO/DRRx9h8ODBdW5SUVERdDodRFF0drSPPPJIlXejZ82ahREjRuDll1/GwYMHUVRUhJtvvtllfndUVBReeeUVPP7443j66acxcOBAXHfddbjrrrvQuXNnl/qmTp1aKcA/evRotUPavF1ISAjkcjlycnJcjufk5CAiIqLGc1euXIlly5bh+++/r3VYYufOnRESEoJTp07hhhtuqLKMWq2GWq2u3wU0l4pzvBl4E1F1+Hugkv79+6Nz587Ytm0b7rnnHmzYsAGrVq3CmTNnKpVdt24dxo4d61wTJCkpCevXr3f5TQBII62eeuopl2PffPMNRowYUa+2NSVmvN2t4h1woMLiagy8iajliY+Px9VXX+0c8nXq1Cns3r0b9913HwDAarXi2WefRZ8+fRAcHAydTocdO3ZUWhitNn5+fkhNTcWvv/6KF198EVdddRWef/75KssmJCSga9eu2LZtG9atW4d77rkHCkXl+8R///vfkZ2djU2bNmHYsGHYunUrevXqhe+++86l3EsvvYTU1FSXR2Skh34EtQIqlQoDBgxwWRjNsVDasGHDqj3vhRdewLPPPovt27dj4MCBtX7OhQsXUFBQ4DJ3v9UwlwEm+6Kp3MebiNqA5vo94DBr1iysX78eu3btgl6vx7hx4yqVsVqt2LhxI+6++27nsbvvvhsbNmyAzWZzKfvYY49V6uvr0hc1J2a83c2Z8bYPldAESM8cak7kXZRa6U6zpz67Hu677z48/PDDWLNmDdavX4+4uDiMHDkSALBixQq8/PLLWL16Nfr06QNfX1/MmzcPJpOpXp8hk8nQpUsXAECPHj1w+vRpPPjgg/jvf/9bZflZs2ZhzZo1OHr0aI3D2Pz8/HDLLbfglltuwXPPPYekpCQ899xzGD16tLNMRESE87OpbubPn48ZM2Zg4MCBGDx4MFavXg29Xo+ZM2cCAKZPn46oqCgsXboUALB8+XIsWrQIH3zwAWJiYpxzwXU6HXQ6HUpLS/H0009jwoQJiIiIwOnTp/H444+jS5cuSEpK8th1Npgj2y1XSSPbuJ0YEVWHvweqdNddd+Hxxx/HkiVLqr3BvmPHDmRkZGDy5Mkux61WK5KTk136+pCQkBbf1zPj7W56R+DtyHhzqDmRVxIEKQvmiYcg1KupkyZNgkwmwwcffID33nsPs2bNgmCv46effsJtt92Gu+++GwkJCejcuTP++uuvRn89Tz75JLZs2YJDhw5V+f60adPwxx9/oHfv3ujZs2ed6hQEAfHx8dDrOdy3sSZPnoyVK1di0aJF6NevH1JTU7F9+3bn/Lv09HRkZWU5y7/xxhswmUyYOHEi2rdv73ysXLkSACCXy3H48GHceuut6NatG+677z4MGDAAu3fvbrlDyWtScXSb4//rAIeaE1Fl/D1QpeDgYNx6663YtWtXpXVcHN59911MmTKlUiZ7ypQp1S6y1pIx4+1upY7OmIurEVHroNPpMHnyZCxcuBDFxcW49957ne85hnzv3bsXQUFBWLVqFXJycuocDFcnOjoat99+OxYtWoQvv/yy0vtBQUHIysqCUqms8vzU1FQsXrwY99xzD3r27AmVSoVdu3Zh3bp1eOKJJ1zKFhYWVlqN28/Pr8WtdtrSzJ07F3Pnzq3yvSsXREtLS6uxLh8fH+zYscNNLWsBHBlvbTvpmft4E1Eb0Ny/BzZs2IDXX38d7dq1q/ReXl4evvjiC3z++efo3bu3y3vTp0/H7bffjosXLzq3rSwpKanU12u1Wvj7+ze4fe7GjLe76a9cXI1zvImo5bvvvvtw6dIlJCUlucx/fuqpp3DVVVchKSkJo0aNQkREhNv2wP6///s/fPXVV9UOJQ8MDKw2OO7QoQNiYmLw9NNPY8iQIbjqqqvw8ssv4+mnn8a//vUvl7IzZ850ycK2b98er776qluugbzUleu5cB9vImojmvP3gI+PT5VBNwC899578PX1rXLxzRtuuAE+Pj54//33nccWLVpUqa9//PHHG9U+dxNEsY7rzLdgxcXFCAgIQFFRkefvaqzqCRRnAPf/AHQYAJzZBbx3KxAaD/x9v2fbRkRNory8HGfPnkVsbCz3h/YyNf3bt6i+qY1oMd/pntXA94uBvlOAO94E/toBfDAJaN8PeGCX59pFRB7F3wNtV3X/tvXpl5jxdidRvHwX3DHHm0PNiYiI2haDYyuxEOmZc7yJiKgWDLzdqbwQsNpX9vPlPt5ERERtUsU9vAHu401ERLVi4O1OjoXV1AGA0j4EwbGdmKkUsFk90y4iIiJyn0pzvLmdGBER1YyBtztduZUYcHlxNQAwljRve4iIiMj9qltczVQqTTsjIiK6AgNvdyq1B96OYeYAoFADcvsepRxuTkRE1Prpr5jj7dhOTLQBlnLPtImIiFo0Bt7udOXCag5cYI3IK9hsNk83gZoZ/829UMWFVB0Zb6X28vuc503k9dg3tD3u+DdVuKEdbYooijBZbbBYRfiq6/n1VJXxBqQF1vR5zHgTtVEqlQoymQyZmZkIDQ2FSqWCIAiebhY1IVEUYTKZkJeXB5lMBpVK5ekmUXMxFldYSNWe8ZbJpeDbbJCmlTmOE5FX4e+Btsed/T0D7ytsO3gBj207jOvjw7Du3kH1O7k0R3rWXRF4M+NN1KbJZDLExsYiKysLmZmZnm4ONSOtVouOHTtCJuMAMq/hGGau0gFKn8vHVb5S4M2MN5HX4u+Btssd/T0D7yv4qOQAAL3RUv+TnRnvK4aaOxZY4+JqRG2WSqVCx44dYbFYYLVyBwNvIJfLoVAomM3wNs5h5ldktVU66T0G3kRejb8H2h539fcMvK/gq5K+kjJzA/6Pkn9Cem4X53rcuZd3USNaRkQtnSAIUCqVUCqVnm4KETWVK+d3O3BLMSKy4+8BqgrHxl2hwRlvYwlwKU16HdbL9T3HXt4cak5ERNS6VRt4V9hSjIiI6AoMvK/gyHgbTPXMeOcek5792gO+7Vzfc2a8GXgTERG1ann20W0B0a7HnYE3h5oTEVFlDLyv4Mh41zvwzjkiPYf1rPyeY3E1zvEmIiJq3S78Kj13uGIBVsde3gy8iYioCgy8r+CrdgTe9Rxq7gi8w3tVfs+xuBqHmhMREbVeFiOQfVh63WGg63uc401ERDVg4H0FrVIaam62ijBZ6rFRujPw7l35PQ41JyIiav2yDkt7eGtDgKAY1/ccQ82NDLyJiKgyBt5XcAw1B4Cyug43F0Ug1xF41zDUnBlvIiKi1uvCL9Jzh0HAldvKcI43ERHVgIH3FVQKGZRyqTM1mOs43Lw4AygvAmQKIKRb5feZ8SYiImr9nIH3wMrvcag5ERHVgIF3FbT2lc31xjpmvB3DzEO6AQp15fcd24kx8CYiImq9qltYDagQeDPjTURElTHwroLWPty8zkPNc/6UnqtaWA3g4mpEREStXUk2UJQOQACirqr8PvfxJiKiGjDwroIj8NbXdWXznKPSc1VbiQEVhpqXSPPBiYiIqHVxZLvDel6+oV4R53gTEVENGHhXwTHUvO4Z7xpWNAcuL64mWtkhExERtUbO+d0Dqn7fEYwz401ERFVg4F2FemW8LUYg/y/pdXVDzZVaQLCvlm4scUMLiYiIqFnVNL8bYMabiIhqxMC7Co7A21CXjHfeCSmTrQkE/COrLiMIl++Ec4E1IiKi1sVqATIPSa9rC7y5jzcREVWBgXcVtGppqLnBWIeMd659fnd4r8p7elbEvbyJiIhap7xjgNkgrdkS0r3qMlzVnIiIasDAuwpapT3jba5Dxru2Fc0d1I4txYoa0TIiIiJqdo753VFXAbJqfjpV3MebC6kSEdEVFJ5uQItzeidmn1+OToowGIz/qr28c2G1WgJvZryJiIhap9rmdwOXh5pDBMxlgErb5M0iIqLWgxnvKxkK0K14H/oLp+o2x9u5lVhtGe8KW4oRERFR6+Fc0byGwFtZIdDmyuZERHSFBgXea9asQUxMDDQaDYYMGYIDBw5UW/btt9/GiBEjEBQUhKCgICQmJlYqf++990IQBJfHmDFjGtK0xrMvgqYTymCobVVzfT5Qmi29DutRp3q5uBoREVErUl58efeSqIHVl5PJAKVjZXMG3kRE5KregfeWLVswf/58LF68GIcOHUJCQgKSkpKQm5tbZfmUlBRMnToVO3fuxL59+xAdHY0bb7wRGRkZLuXGjBmDrKws52Pz5s0Nu6LGcgTeKKs94+0YZh4UC6h1NZflUHMiIqLWR58nPat0gG+7msuqucAaERFVrd6B96pVqzB79mzMnDkTPXv2xNq1a6HVarFu3boqy2/atAkPPfQQ+vXrh/j4eLzzzjuw2WxITk52KadWqxEREeF8BAUFNeyKGsseePvVJeN9KU16Dulah3odQ80ZeBMREbUajuy1qpYb7AD38iYiomrVK/A2mUw4ePAgEhMTL1cgkyExMRH79u2rUx0GgwFmsxnBwcEux1NSUhAWFobu3bvjwQcfREFBQbV1GI1GFBcXuzzcpkLGW2+sJePtmK+tCai9Xma8iYiIWoTicjNWfXsCS785VnthRxDtXDytBtzLm4iIqlGvwDs/Px9WqxXh4eEux8PDw5GdnV2nOp544glERka6BO9jxozBe++9h+TkZCxfvhy7du3C2LFjYbVWHfguXboUAQEBzkd0dHR9LqNm9sy0VjCi3GSquWx97oI7Mt7lhQ1vGxERETWayWLDKz+cwpu7zsBmq2XrL0cQXduUMgBQ2ddz4RxvIiK6QrNuJ7Zs2TJ8+OGHSElJgUajcR6fMmWK83WfPn3Qt29fxMXFISUlBTfccEOlehYuXIj58+c7/y4uLnZf8O1YBA2ofQVyx/t16YwDOkjPRecb1i4iIiJyC1/V5Z8/epMFfhpl9YU51JyIiNygXhnvkJAQyOVy5OTkuBzPyclBREREjeeuXLkSy5Ytw7fffou+ffvWWLZz584ICQnBqVOnqnxfrVbD39/f5eE2ciVscummgGCqa+Bdh88PipGeL50DxFrurhMREVGT0ShlkAnS61oXUmXgTUREblCvwFulUmHAgAEuC6M5FkobNmxYtee98MILePbZZ7F9+3YMHFjDVhx2Fy5cQEFBAdq3b1+f5rmNzT5UTFFb4F2fzjiwo/RsLAbKLjWidURERNQYgiDAVy1lvUuNtSykWq853o5VzWv5/UBERF6n3quaz58/H2+//TY2btyIY8eO4cEHH4Rer8fMmTMBANOnT8fChQud5ZcvX45///vfWLduHWJiYpCdnY3s7GyUlkpBa2lpKR577DH8/PPPSEtLQ3JyMm677TZ06dIFSUlJbrrM+hHtw80V5lrmaNVn3pfSB9DZRwU4VkMnIiKi5leah/eEJfhEtQj62gLv+vT13E6MiIiqUe853pMnT0ZeXh4WLVqE7Oxs9OvXD9u3b3cuuJaeng6Z7HI8/8Ybb8BkMmHixIku9SxevBhLliyBXC7H4cOHsXHjRhQWFiIyMhI33ngjnn32WajV6kZeXsMI9sBbZdPDahMhd4xHu1J9Mt6ANNy8NFsKvKOuanQ7iYiIqAFkcvQXjwIyYG9Zec1lOdSciIjcoEGLq82dOxdz586t8r2UlBSXv9PS0mqsy8fHBzt27GhIM5qMYN/6yw/SXt7VLrri2JO7LnO8ASnwPv8zM95ERESeVCGINuqLAdSwTk2DAm+uak5ERK7qPdTcG8g09r28hbKaF12pz/AzoMICa2kNbhsRERE1kkIFM6Sb6mZDUc1l67WdmM71HCIiIjsG3lUQNAEAAB1qCbzrPdS8k/RceK4RrSMiIqLGKpf5AABMhuKaCzr7+vosrsah5kRE5IqBd1XUlzPeNS664rwL7ld9mYqY8SYiImoRzHItAMBSVtfAuw59Ped4ExFRNRh4V8UeSPvDgDJzNRlvqwWwlLmUr5Uj8C48L51PREREHmFyBN7ltQwLb9B2YhxqTkRErhh4V8WR8UYNGe+Ke3TWdai5LgKQqwHRChRfaGQjiYiIqKEsCimQFstr2XO7XnO8ubgaERFVjYF3VSoMNS+rbo63oyOWqwCFqm71ymRAYEfp9SXO8yYiIvIUqz3whrGWwNuZ8eY+3kRE1HAMvKti3x5MhzLoqwu8TfWc3+3Aed5EREQeZ7MH0mJtQbJjhFt9thMrLwZEsRGtIyKitoaBd1XswbSfUIYyUzVDzY316IgrYuBNRETkefYgWVbbsPD6zPH27wDIFNIaMMWZjWwgERG1JQy8q1Jxjne1Q81LXMrWmWNLMQbeREREnmPvv2XmGjLeFhNgNdnL1+FGu0IFtOsivc492sgGEhFRW8LAuyqOoeZCGQzVLq5Wzz28HZwrm3OONxERtVxr1qxBTEwMNBoNhgwZggMHDlRb9u2338aIESMQFBSEoKAgJCYmVioviiIWLVqE9u3bw8fHB4mJiTh58mRTX0a1BHvgrbDUEHhXzIbXtb8P6yk95xxpYMuIiKgtYuBdFcdQcxhgqG1xNc7xJiKiNmbLli2YP38+Fi9ejEOHDiEhIQFJSUnIzc2tsnxKSgqmTp2KnTt3Yt++fYiOjsaNN96IjIwMZ5kXXngBr7zyCtauXYv9+/fD19cXSUlJKC8vb67LciHXSP230lqHwFuuBuTKulUcbg+8mfEmIqIKGHhXxZ7x9hWMMBhNVZdxDjWvZ8Y70D7U3FBQ+0qqREREHrBq1SrMnj0bM2fORM+ePbF27VpotVqsW7euyvKbNm3CQw89hH79+iE+Ph7vvPMObDYbkpOTAUjZ7tWrV+Opp57Cbbfdhr59++K9995DZmYmPvvss2a8sssUPlLgrbIaqi9Un63EHMIYeBMRUWUMvKtSoYMVy4urLlOfVU4r0vgDPsHSa24pRkRELYzJZMLBgweRmJjoPCaTyZCYmIh9+/bVqQ6DwQCz2YzgYKm/O3v2LLKzs13qDAgIwJAhQ2qs02g0ori42OXhLkof6Sa72lZD4F2fhdUcHIF33l+AtZrpakRE5HUYeFdFoYZVJu3NbasuK93QoeYAh5sTEVGLlZ+fD6vVivDwcJfj4eHhyM7OrlMdTzzxBCIjI52BtuO8+ta5dOlSBAQEOB/R0dH1uZQaqXylwNtHLIPNVs3WX86b7PXo6wM7AUpfwGoELp5uZCuJiKitYOBdDYtCymQL1QXeDd3HG2DgTUREbdayZcvw4Ycf4tNPP4VGo2lUXQsXLkRRUZHzcf78eTe1ElBrAwAAviiHvrqtQxuS8ZbJgLAe0msusEZERHYMvKthVdqHkJuqy3g3cKg5wMCbiIharJCQEMjlcuTk5Lgcz8nJQURERI3nrly5EsuWLcO3336Lvn37Oo87zqtvnWq1Gv7+/i4Pd1FpK+xgUutCqvXs6x2Bd+6xBraOiIjaGgbe1bDZM9nyiluJVNTQzhi4vJc3txQjIqIWRqVSYcCAAc6F0QA4F0obNmxYtee98MILePbZZ7F9+3YMHDjQ5b3Y2FhERES41FlcXIz9+/fXWGdTEuz9ty/KUVrr1qH1yHgDQHgv6ZkLrBERkZ3C0w1oqUT7fC65uZrA25EJVzfg7jsz3kRE1ILNnz8fM2bMwMCBAzF48GCsXr0aer0eM2fOBABMnz4dUVFRWLp0KQBg+fLlWLRoET744APExMQ4523rdDrodDoIgoB58+bhueeeQ9euXREbG4t///vfiIyMxPjx4z1zkSpH4F2G87UG3vWcVsa9vImI6AoMvKtj399TZallcbVGDTU/B9hs0nwwIiKiFmLy5MnIy8vDokWLkJ2djX79+mH79u3OxdHS09Mhq9B3vfHGGzCZTJg4caJLPYsXL8aSJUsAAI8//jj0ej3mzJmDwsJCDB8+HNu3b2/0PPAGs2e8VYIVeoMeQGDlMg0d3ebIeF9Kk+aJ1zdjTkREbQ4D72rI7JlspUVfdYGG7uMNAP4dAEEurXhamg34RzawlURERE1j7ty5mDt3bpXvpaSkuPydlpZWa32CIOCZZ57BM88844bWuUGFLLZRXwwgqnKZhiyuBgC+IYBvKKDPA/KOA1EDGt5OIiJqE5hqrYbMvr+nxmaoepsRUyMy3nIFENBBes29vImIiJqfXAETpK1DTYbqdjBpxEKqzuHmnOdNREQMvKulsAfeOpShzFzFaqeN2ccbAAI7Ss9F7tsahYiIiOquXKYFAJjLiqou4Mx4NyDw5gJrRERUAQPvash9pP09dahimxGbrXH7eAOANlh6Lq+msyciIqImZZJLgbelrJb1XBoyrYx7eRMRUQUMvKsh0zj29zTAYLpitVOzHoB9+HlD7oIDgEYK7FFW2LDziYiIqFHMtQXeDZ3jDQBhjow39/ImIiIG3tWzL67mV1XG23EHXJABSp+G1e8IvMsLG3Y+ERERNYpFIQXUYnltc7wbMLotLB6AAOhzAX1+wxpIRERtBgPv6tiHkPsJZZUz3hWHmQtCw+rXBErPHGpORETkEValPZNtaoKMt8r38vahHG5OROT1GHhXxx5461AGvfHKjHcj7oA7MONNRETkUTbHdDFTdVuHNmKON3B5ZXMONyci8noMvKvjCLyFqoaaN2IPbwdmvImIiDzLHnjLHCPZrtSYrUMBINweeOcx8CYi8nYMvKtTIeNd7VDzhnbEAOATKD0z8CYiIvIM+w10mbmKjLfNCpgN0uuG9ve6cOnZUNCw84mIqM1g4F0dx+JqQhkMRrPre43dwxvgquZEREQeJrMH1ApLFYF3xeHnDR3h5pxWVtyw84mIqM1g4F2dCkG1ueyKDtPkjqHmjs6YGW8iIiJPkPlIfb3KWkPgLcgAhaZhH2C/iQ8jA28iIm/HwLs6Sg0sghIAYL0y8HbL4mqB9rqKAZut4fUQERFRgyh8pMBYaTVUftM5rawxO5jwJjsREUkYeNfAKJe2D7FVCrwbucopcLkzFm3Vb2NCRERETUZlD7w1tpoC7wZsJeagsWe8OdSciMjrMfCugVkhdbbilUPETG6Y463UAHK19Jp3womIiJqdylcKjH3EMthsouub7rjJ7hhqXl4EiGLNZYmIqE1j4F0Di8Le2ZZfkZE2umFVc4ArmxMREXmQxlcafaZFOfSVdjCxz/FuVMbbPrrNZgYs5Q2vh4iIWj0G3jWwKqXAWrhyKLgjA96YjDfAlc2JiIg8SGkfau4rlMNgsrq+6Y6tQ1U6APb54bzJTkTk1Rh418Bm72xlVwbe7hhqDnDRFSIiIg8S7P24DmUoNV6R8XYspNqYvl4m4zxvIiICwMC7RqJ91XKF+YptRtw11NyxsjkDbyIiouZnn7/ti3Loy82u77ljqDkAqHmTnYiIGHjXSLTfpZZbSl3fMLlhwRWgQsa7sHH1EBERUf3Zb6ArBBsMhitusrtjqDlwua83MvAmIvJmDLxrILOvRqq+MvB2xz7eAIeaExEReVKFoLpcX80OJo3NeHOoORERgYF3jWT2RVdU1iuHmrth3hdweVVzLq5GRETU/GQylAsaAIC57Iqb4Eau50JERO7DwLsGcnvgrbFVCLxFsQmGmrMzJiIi8oRymRYAYDZcmfF21xxve8bbyIw3EZE3Y+BdA5VWCox9RANEUZQOWsoBm33lU3fN+2LgTURE5BFmmQ8AwFJW3VBz9vVERNR4DQq816xZg5iYGGg0GgwZMgQHDhyotuzbb7+NESNGICgoCEFBQUhMTKxUXhRFLFq0CO3bt4ePjw8SExNx8uTJhjTNrZT2wFuHMhgtNumgscJ8b7etal7YuHqIiIioQcwKKaNtLatmIdVG9/Wc401ERA0IvLds2YL58+dj8eLFOHToEBISEpCUlITc3Nwqy6ekpGDq1KnYuXMn9u3bh+joaNx4443IyMhwlnnhhRfwyiuvYO3atdi/fz98fX2RlJSE8vLyhl+ZG6h8Lwfeesf+no49vVU6aX/OxuBdcCIiIo+y2ANvm2P9Fgejm6aVOYaas68nIvJq9Y4cV61ahdmzZ2PmzJno2bMn1q5dC61Wi3Xr1lVZftOmTXjooYfQr18/xMfH45133oHNZkNycjIAKdu9evVqPPXUU7jtttvQt29fvPfee8jMzMRnn33WqItrLLmPPfAWymAwWaWD7trDG2DgTURE5GFWpX0O95WBt9u3E2PGm4jIm9Ur8DaZTDh48CASExMvVyCTITExEfv27atTHQaDAWazGcHBwQCAs2fPIjs726XOgIAADBkypNo6jUYjiouLXR5Nwn6X2g8VA2/HiuZuCLy5qjkREZFH2ZRSfy6YrtzH202Lq2mY8SYionoG3vn5+bBarQgPD3c5Hh4ejuzs7DrV8cQTTyAyMtIZaDvOq0+dS5cuRUBAgPMRHR1dn8uoO/sWItJQc5N0zF13wIHLc7zNesBqbnx9REREVD/2wFowXzHH2+3biTHjTUTkzZp1VfNly5bhww8/xKeffgqNRtPgehYuXIiioiLn4/z5825sZQX2zlYmiDAZ7Jlud+3hDVye9wWwQyYiIvIER19vrmbr0EZvJ8ah5kREVM/AOyQkBHK5HDk5OS7Hc3JyEBERUeO5K1euxLJly/Dtt9+ib9++zuOO8+pTp1qthr+/v8ujSSg0sEAOADDq7UPETG66Aw4AcgWgstfDlc2JiIianUwj9cMKS4XA21IOiPYpZtxOjIiI3KBegbdKpcKAAQOcC6MBcC6UNmzYsGrPe+GFF/Dss89i+/btGDhwoMt7sbGxiIiIcKmzuLgY+/fvr7HOZiEIKBO0AABLmb3DNFZY1dwdnB1yoXvqIyIiojqT2wNvldVw+WDF+d7umuNtLAFstsbVRURErZaivifMnz8fM2bMwMCBAzF48GCsXr0aer0eM2fOBABMnz4dUVFRWLp0KQBg+fLlWLRoET744APExMQ4523rdDrodDoIgoB58+bhueeeQ9euXREbG4t///vfiIyMxPjx4913pQ1klPvCz1ICQ0mh/YAbM96AFHgXX+CdcCIiIg9Q+FQReDtusiu1gEzeuA9wTisTpeHmjoVViYjIq9Q78J48eTLy8vKwaNEiZGdno1+/fti+fbtzcbT09HTIKuxv/cYbb8BkMmHixIku9SxevBhLliwBADz++OPQ6/WYM2cOCgsLMXz4cGzfvr1R88DdxarUARbg0sUC6YDJTft6OnBlcyIiIo9RaqXAWG2rIuPd2Gw3ACg1gFwNWI0MvImIvFi9A28AmDt3LubOnVvleykpKS5/p6Wl1VqfIAh45pln8MwzzzSkOU1K0PgDZUBR4UXpgHOouRsz3gAz3kRERB6g0kr9sI9YBptNhEwmuHcHE0Dq6/W57OuJiLxYs65q3hopfIMAAJqi09IBd+7jDTDwJiIi8iCNr9QP61AGvckiHTS6eXSbcy9vrmxOROStGHjXQt7jZgDA7aYvYC4rce+q5sDlvby5uBoREVGzU2ml/txXKIfBZF/J3N0Zb8c8b95kJyLyWgy8a+E/5G6ki+EIEYpRvPvNy3fB3b6qOTtjIiKi5ibYp475ohylRnvGuymGmgPcy5uIyIsx8K6FoFBhq3YKAMDv4Bqg1L7fOIeaExERtX72/twX5dCXm6Vj7lxcDagw1Jx9PRGRt2LgXQdnIm9Gmi0cKuNF4KJ9rre7FlfjquZERESeY89qywQRBr09I91k67kw401E5K0YeNdBx1B/vGK53fWgO/fxBngXnIiIyBNUvrBBAAAYHYG3M+Pt5jneRvb1RETeioF3HcS288X/bNcgSxF1+aDb74IXuqc+IiIiqjtBQLngAwAwlzkCb3fP8Q6UnnmTnYjIazHwroOYEF9YIcfbwsTLB9kZExERtQlGmRR4mwxXZrzdPcebQ82JiLwVA+86iAnRAgDeKx0Ea49bgT53Aj5B7qm84lBzUXRPnURERFRnJrkUYFvL7HO7nXO8Oa2MiIjcQ+HpBrQGoTo1fFVy6E3A2eteR5cwN3XEwOXO2GoCzGWASuu+uomIiKhWZrnU91rK7QF3U+3jze3EiIi8FjPedSAIAmJCpLvhZ/MN7q1c7QcI9n8G3gknIiJqdhal1MeL5SVStjv7D+kNbbB7PoAZbyIir8fAu44uB96l7q1YENghExEReZBNYZ/LbSoFflwB6POA4M5A51Hu+QDO8SYi8nocal5Hse2aKOMNSIF32SWubE5EROQBNvuQ8tCS48C+7dLBMcsAhdo9H+AYas4b7EREXosZ7zpyZLzT8vXur5wrmxMREXmMWisFxtcUfwnYzECX0UC3JPd9gHM9FyNgMbqvXiIiajUYeNdRrCPwLmiKwJtDzYmIiDzFL0DaqUQGEaJMCYxZ6t4PqLg6OoebExF5JQbedeQIvLOKylFmsrq3ckfgXVbo3nqJiIgaaM2aNYiJiYFGo8GQIUNw4MCBasseOXIEEyZMQExMDARBwOrVqyuVWbJkCQRBcHnEx8c34RXUnZ9/oPN1Sb/7gZCu7v0AmZzDzYmIvBwD7zoK0irhr5GmxJ+76Oast0+g9MzOmIiIWoAtW7Zg/vz5WLx4MQ4dOoSEhAQkJSUhNze3yvIGgwGdO3fGsmXLEBERUW29vXr1QlZWlvOxZ8+eprqEepHb++E8MQCpsbOb5kOcW4qxryci8kYMvOtIEITLw83dPc/bOdS80L31EhERNcCqVaswe/ZszJw5Ez179sTatWuh1Wqxbt26KssPGjQIK1aswJQpU6BWV78gmUKhQEREhPMREhLSVJdQP71ux0HdKMw1PYITl4Sm+QxOKyMi8moMvOuhyfbyZuBNREQthMlkwsGDB5GYmOg8JpPJkJiYiH379jWq7pMnTyIyMhKdO3fGXXfdhfT09BrLG41GFBcXuzyahF84diWswH6xB07lunnbUAduKUZE5NUYeNdDTLumyngHSs+8C05ERB6Wn58Pq9WK8PBwl+Ph4eHIzs5ucL1DhgzBhg0bsH37drzxxhs4e/YsRowYgZKSkmrPWbp0KQICApyP6OjoBn9+bbqESVuKncprqsCbGW8iIm/GwLseHEPNz7p7ZXMG3kRE1MaNHTsWd955J/r27YukpCR8/fXXKCwsxEcffVTtOQsXLkRRUZHzcf78+SZrX5dQe+CdWwpRFN3/Ac453sx4ExF5I4WnG9CaNNle3lzVnIiIWoiQkBDI5XLk5OS4HM/Jyalx4bT6CgwMRLdu3XDq1Klqy6jV6hrnjLtT51BfCAJQVGZGfqkJoX5u/lxmvImIvBoz3vUQax9qnltiRFGZ2X0Vc1VzIiJqIVQqFQYMGIDk5GTnMZvNhuTkZAwbNsxtn1NaWorTp0+jffv2bquzMTRKOaKDtADQNPO8OcebiMirMfCuhwCtEp3aSZ3yb+mX3Fcx74ITEVELMn/+fLz99tvYuHEjjh07hgcffBB6vR4zZ84EAEyfPh0LFy50ljeZTEhNTUVqaipMJhMyMjKQmprqks1esGABdu3ahbS0NOzduxe333475HI5pk6d2uzXV50mneft6Os51JyIyCtxqHk9DegUhHMFBvyadgmjuoe5p9KKgbfNBsh4P4SIiDxn8uTJyMvLw6JFi5CdnY1+/fph+/btzgXX0tPTIavQV2VmZqJ///7Ov1euXImVK1di5MiRSElJAQBcuHABU6dORUFBAUJDQzF8+HD8/PPPCA0NbdZrq0mXMB1+OJ6LUznVL/jWYI453rzJTkTklRh419OgmGB8cigDv5676L5KfYLsL0RpSzFtsPvqJiIiaoC5c+di7ty5Vb7nCKYdYmJial2Q7MMPP3RX05qMc4G1Jsl4c6g5EZE3Y2q1ngZ2koLk1POFMFtt7qlUoQaU0vxxlLlxCDsRERHVWVzY5ZXN3Y7TyoiIvBoD73qKC9UhwEeJcrMNRzLdeNfakeU2uDGTTkRERHXmmOOdU2xEcbkbF1EFALVjjjcDbyIib8TAu55kMsGZ9f41rQmGmzPjTURE5BEBPkqE2bcRO+3urDcz3kREXo2BdwMMiJGC5IPn3BgkOzLeZcx4ExEReUqXphpu7pjjbSyRFlIlIiKvwsC7AQZ2koLkX9Iu1bqYTJ35cKg5ERGRpzXZlmKOjLdoA0xNMIeciIhaNAbeDdC3QwBUchnyS41Iv2hwT6XMeBMREXmcI/B2+1BzhQaQKaXX3MubiMjrMPBuAI1Sjt5R0pCxX9PcNNycGW8iIiKPc24p5u7AWxAqzPNm4E1E5G0YeDfQwBgpUHbbft7MeBMREXmcI+OdftGAcrPVvZU79/LmAmtERN6GgXcDXV7ZnBlvIiKitiLUTw0/jQI2EUgr0Lu3ck2g9Fxe6N56iYioxWPg3UAD7IH3ydxSFBpMja+QGW8iIiKPEwQB3cL9AABHMtw8JFzbTnrW57u3XiIiavEYeDdQO50anUN8AbhpWzFnxpv7eBMREXnSIPt0sn1nCtxbsW+I9Gxg4E1E5G0YeDfCQPt+3r+6JfAOlJ6Z8SYiIvKoq+OkzPS+0wXu2zYUYMabiMiLMfBuBMcCa3tPu+GOuGOoudkAmMsbXx8RERE1yKCYYCjlAjIKy3CuwE3bhgIVMt5uzqQTEVGLx8C7Ea7tGgoAOHyhEPmlxsZVpg4ABPs/B7PeREREHuOjkqN/R2lUm1turjto7YE3M95ERF6HgXcjRARo0DvKH6IIpJzIa1xlMhngI3XyXNmciIjIs66Jk4Lkn067MUjmHG8iIq/FwLuRru8eBgD44XhO4yvz4crmRERELcHVXaT52D+fLoDN5qZ53s6MN4eaExF5GwbejXR9j3AAwI9/5cNksTWuMi338iYiImoJEjoEQquSo0BvwomcEvdU6mtfXI0ZbyIir9OgwHvNmjWIiYmBRqPBkCFDcODAgWrLHjlyBBMmTEBMTAwEQcDq1asrlVmyZAkEQXB5xMfHN6Rpza5vVABCdCqUGi34Na2RATMz3kRERC2CSiFzbivmtnnejoy32QCY3LhoGxERtXj1Dry3bNmC+fPnY/HixTh06BASEhKQlJSE3NzcKssbDAZ07twZy5YtQ0RERLX19urVC1lZWc7Hnj176ts0j5DJBIyyDzdPPl71d1BnzHgTERG1GNfYh5vvPeWmDLXaD5CrpNfMehMReZV6B96rVq3C7NmzMXPmTPTs2RNr166FVqvFunXrqiw/aNAgrFixAlOmTIFara62XoVCgYiICOcjJCSkvk3zmBvipcB7Z2MDb8fiamVu2BeciIiIGuVq+wJr+89ehMXayOlkACAIXNmciMhL1SvwNplMOHjwIBITEy9XIJMhMTER+/bta1RDTp48icjISHTu3Bl33XUX0tPTqy1rNBpRXFzs8vCk4V1DoJQLOJOvx5m80oZXxIw3ERFRi9GzvT8CfJQoNVpwOKPIPZVqHfO8ucAaEZE3qVfgnZ+fD6vVivDwcJfj4eHhyM7ObnAjhgwZgg0bNmD79u144403cPbsWYwYMQIlJVUvZrJ06VIEBAQ4H9HR0Q3+bHfw0ygxOFYKmn9oTNabc7yJiIhaDJlMwLDObh5u7lhgjRlvIiKv0iJWNR87dizuvPNO9O3bF0lJSfj6669RWFiIjz76qMryCxcuRFFRkfNx/vz5Zm5xZdfHSzcjdp5oRODNjDcREVGL4pzn7e4F1pjxJiLyKvUKvENCQiCXy5GT47pndU5OTo0Lp9VXYGAgunXrhlOnTlX5vlqthr+/v8vD0xzzvPefuYiScnPDKmHGm4iIqEUZZp/n/eu5Sw3v3yvydQTezHgTEXmTegXeKpUKAwYMQHJysvOYzWZDcnIyhg0b5rZGlZaW4vTp02jfvr3b6mxqMSG+6BziC4tNbPhwc0fGm4urERERtQhxob7oHOoLk8WG74/l1H5Cbbi4GhGRV6r3UPP58+fj7bffxsaNG3Hs2DE8+OCD0Ov1mDlzJgBg+vTpWLhwobO8yWRCamoqUlNTYTKZkJGRgdTUVJds9oIFC7Br1y6kpaVh7969uP322yGXyzF16lQ3XGLzuamvdKNgyy8NHPruUyHwtrlh9VQiIiJqFEEQcHPfSADAl79nNb5CXy6uRkTkjeodeE+ePBkrV67EokWL0K9fP6SmpmL79u3OBdfS09ORlXW5Y8rMzET//v3Rv39/ZGVlYeXKlejfvz/uv/9+Z5kLFy5g6tSp6N69OyZNmoR27drh559/RmhoqBsusflMHhQNQZDmgZ3N19e/AkfGW7QBRjetnkpERESNcov9xvqPJ/NQZGjkcHNmvImIvJKiISfNnTsXc+fOrfK9lJQUl79jYmIgimKN9X344YcNaUaL0yFIi1HdQrHzRB42H0jHP8f1qF8FCjWg9AXMemmBNce+3kREROQxXcP90D3cDydySrDjaDYmDWzEbiqc401E5JVaxKrmbcm0IZ0AANsOXoDRYq1/BZznTURE1OLckiBlvb883Mjh5s6MN4eaExF5EwbebnZd91BE+GtwUW/C9j8bsLe5I8vNLcWIiIhaDMc8759O5eOi3tTwihwZb2MRYGlEPURE1Kow8HYzhVyGyYOkIWgf7E+vfwVabilGRETU0sSE+KJ3lD+sNrFhN9YdNIGAIJdec4E1IiKvwcC7CUwZHA2ZAOw/exGnckvrd7JjZXNmvImIiFoUR9b7i98zG16JTHb5JjvneRMReQ0G3k2gfYAPro8PAwBsPlDPrDcz3kRERC3STX2ked77zxYgt6S84RVxZXMiIq/DwLuJTBvSEYC0yJrBZKn7icx4ExERtUjRwVr0iw6ETQS++aMRw82dK5tzqDkRkbdg4N1ERnYLQ6d2WhSVmfH+z+fqfqJjcTVmvImIiFqcWxOk4eabD6TXul1qtbTtpGdmvImIvAYD7yYilwn4+3VdAABv/XgGZaY6bi2mZcabiIiopZpwVQf4KOU4nl2CfWcamLHmXt5ERF6HgXcTur1/FDoE+SC/1IQP6jrX24dzvImIiFqqAK0SEwd0AACs25PWsEo4x5uIyOsw8G5CSrnMmfVeu+s0ys11yHo7M96XmrBlRERE1FD3XhMDAEg+noO0fH39K2DGm4jI6zDwbmITruqAyAAN8kqM2PLL+dpP4BxvIiKiFi0uVIfruodCFIENe9PqX4HjJruei6sREXkLBt5NTKWQ4UF71vuNlNMwWmrJejs6Y7MBMDdiqxIiIiJqMrOGxwIAtv56HsXl5vqdrGXGm4jI2zDwbgaTBnZAhL8G2cXl+OjXCzUXVgcAgv2fhVlvIiKiFml4lxB0DdNBb7Lio7qMaKvIl3O8iYi8DQPvZqBWyPG3kZ0BAGtTTsNstVVfWCa7PNycK5sTERG1SIIgOLPeG/amwWqrx9Zijox32SXAVsddT4iIqFVj4N1MJg/qiHa+KmQUluHLw5k1F+bK5kRERC3e7f2jEKRV4sKlMnz+e0bdT3RMK4MoBd9ERNTmMfBuJj4qufPO+Bspp2Gr6c449/ImIiJq8TRKOe4fIY1oW7H9BMpMdcxey5WAJlB6zeHmRERegYF3M7p7aCfo1Ar8lVOK5OO51RdkxpuIiKhVuG94LKICfZBZVI5395yp+4ncUoyIyKsw8G5GAT5K3D20EwDg9ZRTEMVqst7MeBMREbUKGqUcj4/pDgB4PeU0covruCOJlgusERF5EwbezWzW8BioFDL8ll6In89UE1g79/LmvC8iIqKW7taESPTvGAiDyYoXv/2rbicx401E5FUYeDezMD8NJg3sAEDKelfJkfFm4E1ERNTiCYKAp27qCQD46OB5HMksqv0kbTvpWV/QhC0jIqKWgoG3BzxwbRzkMgG7T+bjjwtVdM66cOm5qJY9v4mIiKhFGNApCLckREIUgee+PFb9dDIHZryJiLwKA28PiA7W4taESADAmp1VZL1DuknP+XUcrkZERORma9asQUxMDDQaDYYMGYIDBw5UW/bIkSOYMGECYmJiIAgCVq9e3eg6W6MnxnSHSiHDvjMF2HmihkVUAc7xJiLyMgy8PeTBUXEAgO1HsnEyp8T1TUfgXZIFlNdhuBoREZEbbdmyBfPnz8fixYtx6NAhJCQkICkpCbm5VQeTBoMBnTt3xrJlyxAREeGWOlujDkFazLwmBgCw9OvjsFht1RdmxpuIyKsw8PaQbuF+GNNL+nHyespp1zd9Ai8PN88/2bwNIyIir7dq1SrMnj0bM2fORM+ePbF27VpotVqsW7euyvKDBg3CihUrMGXKFKjVarfU2Vo9NKoLgrRKnMwtxdaDNUwZ4xxvIiKvwsDbg/5+XRcAwP9SM3CuQO/6JoebExGRB5hMJhw8eBCJiYnOYzKZDImJidi3b1+z1mk0GlFcXOzyaOkCfJR4+PquAIBV3/0FvdFSdUFmvImIvAoDbw/q0yEAI7uFwiYCa3ddkfUOlfYERd6J5m8YERF5rfz8fFitVoSHh7scDw8PR3Z2drPWuXTpUgQEBDgf0dHRDfr85nb30E7o1E6LvBIj3t59pupC/tIOJyjNBUz6qssQEVGbwcDbw+ZeL2W9tx28gKyisstvMONNRERebuHChSgqKnI+zp8/7+km1YlKIcPjSfEAgLd+PIPckvLKhXzb2RdYEzmtjIjICzDw9rBBMcEYHBsMs1XEWz9WuCvuCLyZ8SYiomYUEhICuVyOnJwcl+M5OTnVLpzWVHWq1Wr4+/u7PFqLcX0i0L9jIAwmK1Z/X01gHSoF5+zriYjaPgbeLcDD9qz3+z+fww/H7T9KHEPNL50FLEYPtYyIiLyNSqXCgAEDkJyc7Dxms9mQnJyMYcOGtZg6WzpBELBwbA8AwEe/nEdafhXDyZ3Tyo43Y8uIiMgTGHi3AMO7hODWhEiYrSL+9t9D2PVXHuDXHlD5AaINKDhdeyVERERuMn/+fLz99tvYuHEjjh07hgcffBB6vR4zZ84EAEyfPh0LFy50ljeZTEhNTUVqaipMJhMyMjKQmpqKU6dO1bnOtmhwbDBGdQ+FxSZi9fdVTB1jxpuIyGsoPN0Aku6KvzgpAUaLFTuO5GDOe79i3b2DcE1oNyDjoDTPO7ynp5tJREReYvLkycjLy8OiRYuQnZ2Nfv36Yfv27c7F0dLT0yGTXb53n5mZif79+zv/XrlyJVauXImRI0ciJSWlTnW2VQtu7I6UE3n43++Z+NuoOMRHVBguz4w3EZHXEERRFD3diMYqLi5GQEAAioqKWtX8ryuZLDY8tOkgvj+WC41ShpQuHyHi7CfAdf8CRj7u6eYREVE9tJW+qSVprd/p3zcdwld/ZGF0z3C8PX3g5TdKcoAXuwGCDPhnFqDUeK6RRERUb/XplzjUvAVRKWRYc9dVGNktFOVmGzaeVAEArLm8E05ERNRa/d/obpAJwHdHc3Ao/dLlN3RhgCbQPq3sVLXnExFR68fAu4VRK+R4854BmDq4I07ZIgEA547/VvWiLERERNTidQnTYcJV0r7dK3dUmM8tCBXmefMmOxFRW8bAuwXSKOVYekcf3HPLaABAe8sFjFmdgnve3Y83Uk7j9/OFsNpa/QwBIiIir/GPxK5QyWXYe7oAq7//C86Zfs553lxgjYioLWPg3YJdO3gwRLkKPoIJIdY87D6Zj+Xbj+O2NT9hzOofmQUnIiJqJToEafF/o7sBAFZ/fxKPbTsMk8XGjDcRkZdg4N2SyRUQguMAAJtvD8LiW3pidM9w+KkVOJlbivGv/4T9Zwo83EgiIiKqiwdHxeH523tDJgDbDl7AzA0HoA/oIr3JjDcRUZvGwLulC5XujkdbzmPmNbF4e/pAJC8YiYToQBQazLj73f34+OAFDzeSiIiI6uKuIZ3w7oxB0Krk+OlUAe79slh64+JpwGLybOOIiKjJMPBu6ULsc7/yL98JD/PTYMucobipT3uYrSIe3fo7Zq4/gM9+y4DeaPFQQ4mIiKgurosPw0cPDEOEvwa/XNSgRPQBbBYYc096umlERNREFJ5uANUiRMp4I+8vl8MapRyvTu2PmBAt1uw8jZ0n8rDzRB40ShmSekXgybHxaB/g44EGExERUW16RwVgx7xr8fSXR3Dqzyj0F05h2X//h8hhPugV5Y9ekQEI8FF6uplEROQmDLxbOvtQc+SfAERR2nrETiYT8FhSPG7v3wGfp2bg898zkVZgwP9SM5FyIg/LJ/TBmN7tPdRwIiIiqkmAVolVk/ohw5AApJ2CX/FpPP/1Mef78RF+WHpHH/TvGOTBVhIRkTtwqHlL164rAAEouwQYql5IrUuYDvNv7I6dC0bh04euRp+oABSVmfG39w9h4SeHYTBx+DkREVFLFdW1HwDglshijOkVgQ5B0oi149klmPTmPqz/6ezl7ceIiKhValDgvWbNGsTExECj0WDIkCE4cOBAtWWPHDmCCRMmICYmBoIgYPXq1Y2u06uotEBgtPS6lhVPBUFA/45B+PjBq/HAyM4QBGDzgfMY+/JuJB/LaYbGEhERUb3ZtxTrKmRg7T0DsOeJ6/HrU4kY1ycCZquIp784irkf/IaScrOHG0pERA1V78B7y5YtmD9/PhYvXoxDhw4hISEBSUlJyM3NrbK8wWBA586dsWzZMkRERLilTq8T1lN6zv6jTsVVChkWju2BTfcNQYS/BucKDLhv46+Yuf4AznLvbyIiopYl1L6QasFJwCqNUgvRqbFm2lVYdHNPKGQCvvojC0P+k4xZG37Bhp/O4kxeqQcbTERE9VXvwHvVqlWYPXs2Zs6ciZ49e2Lt2rXQarVYt25dleUHDRqEFStWYMqUKVCr1W6p0+tEXiU9Zxys12lXdwnB94+OxAMjO0MpF7DzRB6SXvoRL39/EmarrQkaSkRERPUWEA0otYDVBFxKcx4WBAGzhsfio78NQ8dgLQwmK344noslXxzF9S/uwsObf0NRGbPgREStQb0Cb5PJhIMHDyIxMfFyBTIZEhMTsW/fvgY1oCnqbHOiBkjP9Qy8AUCnVmDh2B7YPu9ajOwWCpPVhpe+/wsT3tiLU7klbm4oERER1ZtMVmEXk+OV3r6qYxBSFozCV48Mx5Nj43FNl3aQywR88Xsmxr28GwfOXmzmBhMRUX3VK/DOz8+H1WpFeHi4y/Hw8HBkZ2c3qAENqdNoNKK4uNjl0aZF2TPeF09Li6w1QFyoDhtmDsLLU/ohwEeJwxeKMO6VPVi76zTySoxubCwRERHVm32ed1WBNyDtZNIrMgB/GxmHTfcPxTZ7FjyjsAxT3tqHlTtOcDFVIqIWrFWuar506VIEBAQ4H9HR0Z5uUtPSBgNBsdLrzN8aXI0gCLitXxS+/T979ttiw7JvjmPQ89/jpld2Y/n24zie3cZvYhAREbVEYT2k56zf61S8f8cgfP2PEZhwVQfYROC1nacwfPlOvJFyGnojA3AiopamXoF3SEgI5HI5cnJcV8jOycmpduG0pqhz4cKFKCoqcj7Onz/foM9uVaIaNs+7KuH+GmyYOQjL7uiD3lH+AIAjmcV4I+U0bn5lD15POQWbjduWEBERNZsOg6TnC78Addw6TKdW4MVJCXj9rqvQqZ0WF/UmLN9+HMOX/4C3fzzD9VyIiFqQegXeKpUKAwYMQHJysvOYzWZDcnIyhg0b1qAGNKROtVoNf39/l0eb55znfcgt1QmCgCmDO+LLh0fgl38l4qXJCbiueygsNhEvbD+Bu9/dj5zicrd8FhEREdUisj8gUwAlWUBher1OHdenPZLnj8SLdyYgNsQXlwxmPP/1Mdz62k9IPV/YNO0lIqJ6UdT3hPnz52PGjBkYOHAgBg8ejNWrV0Ov12PmzJkAgOnTpyMqKgpLly4FIC2edvToUefrjIwMpKamQqfToUuXLnWqk3A58L7wq3QnXBDcVnWonxq39++A8f2isPXXC1j8+RHsPV2AMat/xI09IxAb6ouYdr7oHuGHmHZaCG78bCIiIgKg0gIRfYHMQ8D5A0BQp3qdrpDLMGFAB9zWLxIfH7qApd8cx7GsYtz++k+YPrQTpg3phK5hOshk7MOJiDyh3oH35MmTkZeXh0WLFiE7Oxv9+vXD9u3bnYujpaenQya7nEjPzMxE//79nX+vXLkSK1euxMiRI5GSklKnOglSZyzIAX0uUJwBBHRw+0cIgoBJg6IxICYIj2z+DUcyi7HlV9dh/B2DtbihRxhuiA/HkM7BUMpb5TIBRERELU/HofbAez/Q984GVaGQyzB5UEck9gjHc18dw6e/ZWDjvnPYuO8c/DUKDIwJxvAuIZg2pCM0SrmbL4CIiKojiGIdJxK1YMXFxQgICEBRUVHbHna+djiQ/Qcw6b9Az1ub9KOMFiu+P5qLv3JKkFagx9l8PY5nlcBUYb5YfIQf3r9/CEJ0Ve/PTkTkzbymb2pGbf47PfIpsPVeIKIP8Lc9bqly98k8vLnrDA6eu4Qys9V5PDrYB4tu7oXEHmEcyUZE1ED16ZfqnfEmD4q8Sgq8Mw42eeCtVshxU9/2uAntncf0Rgv2nMrHD8dysf1INo5nl+Cut/dj85yhCPZVNWl7iIiI2rzoIdJzzhHAWAKo/Rpd5YiuoRjRNRRmqw3Hsopx4OxFvLvnLM5fLMPs937FqO6hmD6sE0J0agT7qhCiUzMTTkTUBJjxbk0ObgS+eASIGQHc+6VHm3I2X4/Jb+5DbokRPdr744P7hyCIwTcRkZPX9E3NyCu+05f6AEXpwD2fAXHXNclH6I0WrNl5Cm/vPgOz1fVnoCAAg2OCcUtCJMb2jkA7jmojIqpWffolTtBtTRwLrGWmAjZrjUWbWmyILzbPGYoQnRrHsopx97v7kVdi9GibiIiIWr3owdLz+QNN9hG+agUeHxOPHfOuxfh+kegV6Y/2ARqoFDKIIrD/7EU89dmfGPyfZMx+71fklnCXEyKixuJQ89YkNB5QagFTCZB/EgiL92hz4kJ12Dx7CKa89TOOZBbj2hd24q4hHTHn2s4I89d4tG1EREStUsehwJ/bpAXWmljnUB1WT7m8AK4oisgoLMPXf2Thi9+z8EdGEb47moMjGUV4e8ZA9IoMaPI2ERG1Vcx4tyZyBdC+n/Q646BHm+LQNdwPm+cMRd8OASgzW/HOnrMY/sJOLPzkD+w9lQ9zhcXYiIiIqBaOjPeFX5p9dJsgCOgQpMWca+PwxcPDsX3eCHQO9UVmUTkmvrEP2//Matb2EBG1JQy8W5uoq6TnzEOebUcF3cL98L+/X4ONswZjYKcgmCw2bD6Qjmnv7MfA577HvA9/w9Zfz+N4djEsDMSJiIiqF9YLUPoCxmIg77hHmxIf4Y9PH7oGI7qGoMxsxd/eP4SnvziCC5cMHm0XEVFrxKHmrY0j8G4hGW8HQRAwslsoru0agv1nL+Ljgxfww/FcFOhN+Cw1E5+lZgIA1AoZekb6Y1BMMIbEBmNQbDD8NUoPt56IiKiFkCuADgOBs7uA9J+B8F4ebU6AjxLr7x2E5746hg1707D+pzRs3JuG0T3DMePqGAzr3I7bkRER1QED79bGscBa9h9AeRGgaVnzrQRBwNDO7TC0cztYbSJ+S7+E747l4Lf0QhzNLEap0YLf0gvxW3oh3vrxDGQCkBAdiGmDO+KWhEjnFiaiKOJ0Xin+zCjGoNhgRAX6ePjKiIiImkn0ECnwPn8AGHSfp1sDhVyGJbf2wshuoXh3z1nsOZWPHUdysONIDqICfXBz3/a4uW8kekf5MwgnIqoGtxNrjV4dCBScBCa8C/SZ6OnW1JnNJiKtQI/fLxRi/5mL+PlMAdIKLg9XC9IqMXlQR4iiiG+P5uBsvh6AtLXJqG6hmDq4I66PD4NCzhkSRNTyeV3f1Ay85js99T3w/gQgKBb4R6qnW1PJyZwSbNyXhk8PZUBvujwPPTJAg74dAtEr0h+9owLQo70/wv3VDMaJqM2qT7/EwLs1+n4JsOcloOd4YNJGT7emUbKKyvDZb5l4/+dzyCgsc3lPJZehc6gvjmeXOI/5quQID9AgVKdGmL8GvSP9kdgzHHGhuuZuOhFRjbyub2oGXvOdlhUCy2MAiMCCk4AuzMMNqlq52Yqdx3Px5eEsJB/PQbm58jou/hoFukf4IT7CH2N7R2Bo53aQyVwD8ZJyM3yUct5YJ6JWh4F3W5dxEHj7emnxlcdPA8rWPwzbYrXh+2O5+OTQBWhVcozuGYFru4XAT6PE2Xw9PvwlHdt+vYACvanK8zuH+mJ0j3Ak9gxH/+hAdt5E5HFe1zc1A6/6Tt+4Bsj5Exj/BtBvmqdbUyu90YLDF4pwJLMIf2YU4c/MYpzN18Nqc/2ZGR3sgzsHRKNbuA4/n7mIfacLcCKnBEFaJW7sGYFxfdvj6rh2ULIfJ6JWgIF3WyeKwEu9gOIMYOqHQPexnm5RszBbbThXYEBeiRF5pUZkFZZhz6l8/HymAGbr5f8ZB2qVuK57GEZ1D8XAGNf54ecvGqQ9STOLkRAdgOvjw9AhSOuJyyGiNs7r+qZm4FXfacoyIGUpEHcDcM8nnm5NgxgtVpzJ0+OvnBLsP3sRX6RmosRoqfU8P40CXcN0iAnxRUw7X3QL12FwbDsE+6qaodVERHXHwNsbfP0YcOAtoN/dwPg1nm6NR5WUm7Hrrzx8fzQHO0/koajM7PJ++wAN+ncMxJk8vcuwdYf4CD/c2DMcdw6MRnQwg3Aicg+v7JuamFd9p/mngNcGAIIcWPAX4Bvi6RY1WpnJiu1HsrDt4AXkl5gwKDYI18SFYGBMME7mlODrP7Ow/c9s5JdWPbotPsIPQzu3w4BOQUjoEIjoYB/OHycij2Lg7Q3O/ghsvAXwCZbmf8m5QD0gDVk/lF6I5GM52Hu6AEezil2GuckEYFBMMPp3DMLBcxdx8NwlON4WBGBE11BMGxyNUd3DnCusExE1hFf2TU3M677TN0cCWanAuJXA4Nmebk2zsNpEHM8uRlq+AWkFepzN1+OPC0U4kVP5xnmQVom+HQKR0CEAfToEom+HAGhVcvyVU4q/ckpwJq8U4f4aDI4NRs/2/pyGRkRuV59+idFaa9XxainoLrsIpO8FYq/1dItaBIVchsGxwRgcGwxAmnP2+/lC/H6hCGF+alwfH4agCkPVLupNSDmRi09/y8Duk/n48a88/PhXHgQB6BisRdcwHbqF+2FgTBAGxnDPcSIiakZ97pQC7z+2eU3gLZcJ6BUZgF6Rrtul5pcaceCstCPK7+cLcTSrGJcM0oi3XX/l1Vqvr0qOqzoF4fr4MCT2COcINyJqdsx4t2afPQSkbgIGPwCMe8HTrWn1zhXoseWX8/j40AXkFBsrvS8TgJ6R/ugR4Q+lQgalTIBSLkNUkA96tvdHfHt/BPgwMCciidf2TU3I677T4kxgVU8AIjDvTyAw2tMtajGMFiuOZZXg8IVC/HGhCH9kFOGvnBLYRCDCX4NuEX7oHOKL9IsG/Jp2EcXlrnPL4yP8cHVcCOLCfBEb4ovOITpufUZE9cah5t7i+NfAh1MB/yjg/45IY6Ub489PAJ8gIO4697SvlRJFEQV6E/7KKcHJnFIcySzCgbMXXfYcr05MOy3mJXbDbf0i2XkTeTmv7ZuakFd+p+tvAs7tARKfBobP83RrWrQykxVmm63S6DSbTcSJnBL8dCof3x/LwS9plyqttg4A4f5qDOvcDsPi2mFAp2AEapXQquTQKOSVtkAjIgIYeHu6Oc3HXAa8EAeY9cDsH4CoAQ2vK+MQ8PZ1gCADJr8PxN/kvna2ETnF5fj5TAEuXCqDxSrCbLXBaLHibL4ex7JKXPYhT+oVjudv74MQndqDLSYiT/LavqkJeeV3+ut64Mt5QHgf4ME9nm5Nm3BJb0LKX7n4M0Pa8uxsvh7pFw1VBuMO/hoFIgI0CPfXoH2ABjf1jcTIbqHN2GoiaokYeHuTj6YDR//X+OHmX8wDDq6XXis0wPT/AR2HuqWJ3qLQYMJ7+87hleSTsNhEBPuqcNeQjsgtNjo7dbVShhCdGqE6NUL8VAjz0yDUT40wPzWignzQOUQHlYKLvxC1BV7dNzURr/xODReBlV0BmwV4aD8QFu/pFrVJ5WYrDqVfws+nC7D3dAGOZBajzGyt8ZzRPcOx6OaenC9O5MUYeHuTE9uBzZOl11O3AN3H1L8Okx5Y2R0wlQBhPYHco4AmELjvWyC0u1ub6w2OZBbh0Y9+r3Lrstoo5QLiQnXoHuGHjsFahPlrEO6nRsd2WnQP9+PwdaJWxKv7pibitd/pB5OBv7YD1z4GXP+Up1vjNWw2EeUWKwwmKy7pTcguLkd2UTl+v1CIzQfOw2oToVbIMH1YJ2iUcuSXmlBQakSZ2QpBECBAWh8m2FeNyEAN2gf4ICrIB/ERfgjz43xyoraAgbe3+WoB8MvbgNofmL0TCOlSv/N/2wT87yEguDPwtz3Ae7cBF34B/DtIwXdAVNO0uw0zWWxY99NZnMguQcdgLTqH+qJjsBYWm4j8EiPySo3IK5EeuSVG5JaU41y+ASVGS7V1DugUhP9L7IZrurRjZ03UCnh939QEvPY7PbwV+OR+aU2Xh34GNI249vSfgczfgP53A2o/97XRy/yVU4LF/zuCfWcKGnR+sK8KPdv7o2u4Dh2Dtc5HXKiO88mJWhEG3t7GYgLeuxVI3weExgP3f1+/znTdGOncGxYBIx4F9AXAuiSg4CQQ0BG45xMgpGvTtZ8ASIu6ZRSW4UR2CY5nlyCrqAw5xUbkFpfjeHYJjBYbAGBQTBBu6BGOcwV6nMotxfmLZegdFYDpwzpheJcQdthELYTX901NwGu/U5MBWDMEKEoH+k4G7nirYfWUFQKr+wLGIsCvPTBmGdDztsYvzuqlRFHE139k4/tjOdCpFWinU6GdTg2tUi69DylrnldqRFZRGbIKy3HuogFn8kpR3XTy6GAfTBvcCXcO7OBcJ6bcbEVagR6BPipEBGia6eqIqC4YeHujkhzgrZFASRbQ4xbgzvcAWR3mCuf9BawZBAhyaWV0//bS8cJ04L3xwMXT0n7h0z4Cogc16SVQ9XKLy/HGrtPYtD8dJnsAXpXYEF9MHRyNvh0C0TnUF6E6DmUj8hT2Te7n1d9p+s/A+rGAaANufxNImFL/Ona9AOx83vVYl0Rg3EogONY97aRalZutOJFdgmNZxc41YNIvGnAmT++cV66UCxjYKRjZxeU4V6CHTZTuj1zbNRR3DemI6+PDoJBzTRgiT2Pg7a3O/yJ1yjYz0O9u4JaXAbmi5nO+fQrY+yrQfRwwdbPre/p8YNOdQOYhQOED3LmhYXPIyW2yi8qx7qezyCgsQ1yIL+LCdAjz02DHkWxsO3gBpVcMVdepFQjwUaLcbEWZ2QqTxYZekf4Y07s9xvaOQEyIr4euhKjtY9/kfl7/nToCZ5UOeOBHoF1c3c8tLwZW9wHKC4HbXgcupQE/rQasJmldl6kfAp2GNU27qU7KTFZ8eTgTm/anI/V8oct7fmqFy3S0cH81ruoYhMhAH0QG+iDYVwmDyQq90YLScgvaB/pgbO8IBGpVzXwVRN6Fgbc3O7wV+PQBQLRKme8J7wKKara0spiAVT0AQz4wZTMQP65yGZMe+GgGcOo7aauxwXOA6/7VuPll1CT0Rgs+/S0D3x3Nwdl8PS5cMlQ7lM2hW7gOvSID0CVMh65hOvSKCkBUoE/zNJiojWPf5H5e/53arMDGW4BzPwGRVwGzdgCKOgZWu1cByU8D7boCf98PyORA/knpN0PGQUCuBia8LQ09J4/7M6MIf2QUoWOwFl3DdAj1U+NcgQGbf0nH1l8v4KLeVGsdSrmAUd3DcFu/SMRH+CNIq0SgVgU5p6QRuQ0Db2937Etg20zpLnbsSGDKB4BaV7nc0c+Bj+4BdBHSMPPqsuNWM/D1AuDgBulvXQQwdhnQczznhbVgRosV6QUGlBot0KoU8FHKIULE7pP52P5nNvadKahyz9JO7bS4Oq4dhsS2g00UkVUkreJ60WCCAEAhEyCTCQjVqdErKgC9I/0R086Xc8uJrsC+yf34nQIougC8cY2Uue5xK3D7WkBVy+glk17KdhsKKg9TNxmAj+8DTnwNQJDmfQ/9W1NeATWS0WLF3tMFOJevR2ZROTIKy3BJb4KvWgE/tQI+Kjl+Sy/E0aziSucKAhCqU6N/x0AMignGoJhg+GkUyCwsR2ZhGXKKy6GQy6BTy+GrViDIV4Vu4X6IDNBw6hpRFRh4E3BmF/DhNMBUCrTrAgx9SFqQRa2TOuBD/5WGmJVkAcPnA4mLa6/z9A/AV48CF89If/e7Gxi/pkkvg5rOJb0J+89exOm8UpzMKcFfOaU4kVNSZTBeG51agW7hOnQN83Ou0CoTBDhqkgmAXCZAKZdBIROgUsigUcqhVsgQ4KNEO101ozKIWjH2Te7H79TuxDfAlnukqWVhvYApm2qeo733VWlqWVAsMPfXyjfabVbg68eAX9+V/h48B0j6DyBXNt01UJM7kV2Cz1KlkXC5xeUoLq9+55Ta+KkV6Bbhh07BWoT4qRGiUyFEp4ZOrZBu7qvk0Krkzr5dY19gzmKzwWIVIQKI8Ncw205tDgNvkmQcBDZNkoaSA9J2Y92SgFPfA2WXpGMB0dKWYf6RdavTXA7seQn4cYU0nH32D0DUgKZpPzW7knIzfkm7iJ9OFeBQ+iVoVXJE+PugfYAGwb7ScEabKMJiE5FxqQx/ZBThWFaxc8X1hooM0KBvh0AkRAcizE8No8UGo8UKo8XmDNRVchmUchlkMkAmCJDLBMSG+KJne/9q78IbLVacv1iG8xcN0Cjl6BauY5BPzYZ9k/vxO60g/Wcp+NbnAj5BwB3vAF1uqDwSzVwmrWSuzwVufQ246p6q6xNFqX9Pflr6u+PVwKSNgC6saa+Dmo3ZakOhwYy0Aj1+TbuEX9Mu4tdzl2C22hBlnyse4a+BxSZKc8WNFuSWlONMnh6WBtyUv5JOrUCfqAD0jQ5AXKgOov33hMUqQi4T4KO8HLg79k8vM1nho5JjRNcQtA+oPBWuyGBGidEMg0kqr5QLiAvVOQN/oqbGwJsuKy8CUjcDB96SVih3CIoFrnkESJgKKBswp/fTvwG/b5bmgk16z33tpVbHYrXhdJ4ef+WU4GSulD3PLCyT3hQECJC2VLFYpbveZpsNRrNNCq7NVpSaLGjMf4U6h/ji5oRI3NgzHHmlRvx+vhCHLxTheFYxsorLK9XdzleFruE6dAr2RVSQD6ICfdA+UIN2vmoE+6oQpFWiqMyMM/l6nM4txYVLZQjwUSI8QIP2ARr4qhQoNJhw0WDCJYMZQVolekUGoFOw1jnc3mix4sKlMuSVGJ3XabTYEKRVIS7MFxH+HLLnDVp737RmzRqsWLEC2dnZSEhIwKuvvorBgwdXW37r1q3497//jbS0NHTt2hXLly/HuHGX1w659957sXHjRpdzkpKSsH379jq3qbV/p25XnAlsuVu60Q5IW4TFXgvEjJBGt6XvkwL00mxpe9BHDtWexT7+tTTv21gM+EUCk98HOvAGe1smimKNfZLJYsPZfD1O2Pv3/BIj8kuNyC81QW+yoMxkdT47+neTVbohLwiAUiZz3rRvjPgIP1wfHwaZIODPzCIcySxGXomxUjm5TEBcqC96tPdHmJ8aSrlMuoGvkEGnVjgfcpmAknILisvNKC4zw1etQGSg9LsgyFeFc/nSb5u/ckthNNvQo70ferb3R3x7fxgtVpzN0+NsgR6ZhWWQy2RQ25ME/j4KRAVq0SFI+n2hVshhtYkwW22w2kT4KOX1np4niiJEEZzW1wIx8KbKbDbgzA/AqR+kbcF63CotrNJQOUeBN4YBEICHD9ZvZVWiCkqNFvyZUYTfzxfi9wuFKCm3QK2QQ6OUOklHZ2Wy2GCyirDZRNhE6djhC0W1Ztt9VXJEB2thMFmRftHQZNfhq5Kjc6gOBaXGKgP+irQqOToGa6FSXN4KRhAEqORSdl+tkCPcX4MuYTrEhfoipp0v5DLB2WnnlRhxLLsEx7OK8VduKdRyGaKCfNAhSMpYhOrUaGcfBhjqp67yzr/VJuKSwQStSg4fpZw3AppAa+6btmzZgunTp2Pt2rUYMmQIVq9eja1bt+LEiRMIC6ucAd27dy+uvfZaLF26FDfffDM++OADLF++HIcOHULv3r0BSIF3Tk4O1q9f7zxPrVYjKCiozu1qzd9pkzGXAzsWAr9tAqyVgxAA9p1J1gPdx9atzvyT0nS1/L8AhQaYkwKE9XBbk6nts9mDbEegaLHacCqv1N7XFyHjUhkUMgEKuQCFTAaLzYYysw3l9hvVaoUMWvvw9eyicvx2vrDafvVyWQX0JgsKDebmusw6kQlwWexWEKTsv79GiUCtEqF+aoT5qRGiU0Mhl0mJCpsIg8mCzMJynL9owIVLZTBZbQjSKhHsq0Kwrwrh/hpE+GsQESA9h/mrEeanQaj9ZsMlgwmX9FKSAJBuSChk0ohBx2uZTIAowvk7y2y1QaOU5vfr1Ar4aRRQK2SVfiPYbCIMZis0Clmlbe1sNhHF5WYYLTbnCEW5TICfWtFsNw5EUcT5i2UQBCAq0KdJP5eBNzWPTZOAkzuAAfdKW5cRNbNSowXfH83BF79n4qfT+YgM9EFCh0AkdAhA76gAxIT4op2vytlhGEwWnMotxckcKZOdUWhARmGZtHic3oTCMjNE+16pUYE+iAvVITrYB8VlFmQXS4vMGUwWBGlVCNKqEKBVIre4HMezSyrdANCq5IgI0MDHPmxOKZchr9SI9AKDW4bs1UeIToWoIC2iAjUoKbfg/EXpus1WqR0KmQB/HyW0KrlzWL9aIYPJKkpb0ZmsMFlt8FHK4etYcEerQvsAjXNoYpnZitzicuQUG3HRYIJcECCXSx27Y9iiNHRRGgqoUcihUcnhq5IjzE+NcPsPB51aAYv9ZovFKsJis8Fslf4WAIT4ST8swv3VEEUgs7AMmUXlyCkuhyiKzvb7qOT2HzPSj5FCgxmp6YVIvVCI41nFCPfXoHdUAPp2CEBMO18U6E3ILpL+t1BYZsa8xG6N/t5bc980ZMgQDBo0CK+99hoAwGazITo6Gg8//DCefPLJSuUnT54MvV6PL7/80nls6NCh6NevH9auXQtACrwLCwvx2WefNbhdrfk7bXLmMuD8AeDsj8C5vYBKC3QcCnQcJq2ArtLWr77yYin4TtsNdBoO3PslF1Qlj7moN2HXX7nYfTIfSpkMvaP80TMyAD3a+0GrurxmgSiKyC4ux7GsYhzLKkFxudkZUBrNNuhNFpSUS8PorTYR/hol/H2kILOk3ILMwjJkFJbjksGE6CAfdAnzQ7dwHdQKOY5nF+NoVjHOFRigkAmIDtYiNsQXHYJ8IIrSyACjxYpLBjMyCstw4ZIB5ebGTcVrKEFAo0YTVqSQCfDTKOCnUUKEiOIyC0rKzc6bCX5qBQK0SmiUchTaRwNWtV6QTACCtCr76EIV1Eop0aBWymA025w3CorKzAjUKhEZKCUU/H2UKCg1Ia/EiNwSIwwmi/P3gU2UFguMDvZxJjT+yCjG4QuFzhswPko5uoTp0DnU1znd4pLBjCKDCaun9Mfg2OBGfT8MvKl5nNsr7RsuVwPz/gD8wj3dIqJGsdpEFBpMzoVi6spiteFMvh5n8vQI9VOjUzutS8BfkdlqQ/pFA9IvGlDxP79W2+U7zuVmaaj66bxSnMotxflLBggQnNkBfx8l4iP8EB/hj+4Rfs459xmFBmQWlqPAPgQwv9TY6Pn33urEc2OgVjRujmBr7ZtMJhO0Wi22bduG8ePHO4/PmDEDhYWF+N///lfpnI4dO2L+/PmYN2+e89jixYvx2Wef4ffffwcgBd6fffYZVCoVgoKCcP311+O5555Du3btqm2L0WiE0Xg5i1tcXIzo6OhW9522WpfOAWuGAJYyaQ553zs93SKiZlHT8HuDyQKlfd2Z2uq4qDfBahOl8goZZIKUNCgplx6X9FJAmVdqRF6JETZRdC5Gq5LLEBnog+hgH0QHaeGjkqOg1ISLehMK9EbkFhulnWeKpZvGufbA1FSh3w/wUSJIq4RMJsBqn09vsdlgtdnX7LHapBF39pvWCrmAcrMVeqMVpcaGL8YHSBn2hizY6y4q+7+PY9pDVd646yqM7dO+UZ9Tn76+mv2jiOqg4zCgw2DgwgFg/xtA4hJPt6h6FlPd9zolryWXCQ1afE0hl6FbuB+6hfvVWlYplyEuVIe40Cq2+HMzURRRVGa2Z/fLkFlYBl+1Ah2DtegYrEW4vwblZqt9fpsFepPFmRkwWWxQ2jPHPkopE24wWZ0L7hSUmpBVJNWbU1wOH6UC4f5qhPtrEORYiM8mzemTC3AOW9OqFbDZRJTZM+mlRgtyisuRXSxlrfVGq7PzV8hlUDpWw5dLw+HySozIKZHKChDQPlCDKHvWXS4TpIyD1QaD0YK8UiNyio0oKDVCrZCjT4cA9I8ORM9If+QUl/9/e3ce3nSV9g38m6VJ9502tFBaoArKKthSQFFBQFBE0FFelLrOqDiCzDOM4sqjCOqjg+KCOiPiCKI4WIVRHCiLIlD2TdaWfWmBlu57ct4/7jRp2rRJoW0K/X6uKxf0l1+Sk8Nyn/us2HVSzsk9nVuCcH+jw7S98krLJSfel6vz58/DbDYjMtKxMzUyMhL79+93+prMzEyn92dmZtp+Hj58OMaMGYO4uDhkZGRg2rRpuO2227BhwwbodM7reubMmZg+ffolfiO6aCEdgBv/Aqx6Dfjv88BVQwHvIE+XiqjJ1bf8qvoIu6v3cNam8DXoEeG6ueBUZKB3vc9Xxf0Ks0KIr1etaeANYbEoFJVXVusokBHkIB8vBHp7wd9bj9IKC3KLZcZgabkZwb4GhPnLiHbVcjqLRfb3ySuuQHaRdBzkFleg3Cx7ApRWmOGl1yLMOhIe6OOFC0XlOGltt+SVVNiWzkUEGBHgrYdeq4VOq4FGA2Tll+JETgmO5xSjuLwS10QFoVe7YFxtCoBWAxzLKcahrEIczS6Cj5cOwdbz7IN9vBDXxsVRjI2MiTddPI0GGDhZpqJt/ifQ92E5kqS8SHZYDYr2dAlF1l7gi1FAZDc507wh0+22zgd+fh6Ivg7ocjvQZQQQ1K7pyupWmT6Xc1f7PcFpf1QvjUYjwcXXgG7RzhvLfkY9/Ix6tL3M2tKuNgOqrqpHn8fYeNZ999nPju7evTt69OiBTp06Yc2aNRg8eLDT1zz33HOYMmWK7eeqEW9qRv2fBnYuArLTgTWzgOEzPV0i55QCfpoqG86NmgP4NnD6aOFZOf3Fq/7Ehqglq4r7jUGr1SDA2wsB3l51thF8DbCdelPf+xi1OkQE6hDhouPgYlwbVX8DprkGO9xx8d0gRABw1W1A+NWy++ns7sB7vYC5A4C/XysJa0Xppb2/5RKnyZorge8nAkXngMOrgW8fkmvuyDsJLH8OKC8AjqwFfvqrfK8v75bE1xP2/wgsnSQb6Rz7zTNlIGoBGrIZnF6nZdLdAOHh4dDpdMjKynK4npWVBZPJ5PQ1JpOpQfcDQMeOHREeHo709PQ67zEajQgMDHR4UDPTG4Hb3pTfp30su6QXnZdjSStKPFu26nYslBNc9i8DFtwDlBW6/9r0VODtLsBbneXUlkMrALOHN+jKOwXsWnzp7SAiajGYeNOl0WqBwS8CGus0Qb0P4BsOQAEb3gc+GQSc3iHB+ffvgEXjgb93l4S2NN/xvZQCTmwGfnsX+CZZ7psRCfzwdO173ZX2EXB6m/Ri672Bg8uBZZPc23Fi+XNARZFMpx86Q8401WiB9BXApo8vrjyXovAc8MOf7T+vm137HqXsZ7QTEV0Eg8GAPn36IDU11XbNYrEgNTUVSUlJTl+TlJTkcD8ArFixos77AeDkyZPIzs5G27aXtr6OmkHnwXJ8qDIDnw0D3uoEvBELzGgrZ4mf2XXx712cA+xZAmRnuL63LoXnZCo8IO2RU1uAr8cDlXXs8l5deTGwbLJ8t/ICOSp1wd3AO9dI+8UTSi7IHjpLHgU2fuiZMhBRo+PmatQ4KsvleLKqI8oO/CQJc9FZQKuXpLe8Ru+zvwkYNkOON9m9GNj0KZC1x/n7B7YD7pwDdLrF/TJlZwAfDZBNYUa9D/iGSSBWFuCGvwCDX6r7tYdWSODV6IA//QKY5Dgc7FgIpDwha9wm7ZQp9c1BKZnSf+BHILQTcOGIfI/Hf7OXDQCWPSNT0e9b6P6xMUTUJC7n2PT1118jOTkZH3/8MRISEjB79mx888032L9/PyIjIzFhwgRER0dj5kyZdrx+/XoMGjQIs2bNwsiRI7Fo0SK8/vrrtuPECgsLMX36dIwdOxYmkwkZGRmYOnUqCgoKsHv3bhiN7u2tcDnX6WUv7xTw+Qgg97jEn5quug3oNhYozJJ78k8BbboAfZKB4BjHe/NPSzth3w/AkV8l6dV7A8Nel2VrDV1G9e/HgN3fAKbuwIi3gX/dJR3nXe8A7v4c0NWzsnLlK8C6v0s7Y/SHMmL++3cyU65tT+Cx1Zd2/GpDWSzAV/fJqTEA4BMq7Q1v/n0naom4qzm1DEXZ0ou87wf5OSgG6DZG1lqveR3IOSzXdUb72aNevtKzHt1Hjj+xVAL/mQJcOCrPdxsLRPcFQuMkkF84JlOuj60HcjIkMb/+Mdn47YtRcgxK3CBgwvcSyLfOB5Y+Le8V1RuIHwbED5Xfa60TQCpKgA/7yWcmPSWdA1UsZmDuQODsXmDAZODWZtr0Z9sXMtqtM0gj4Je3gL0pQI97gTGfyD37fwQWjZPfh3YEJm4CdF7NUz4iquVyj03vv/8+3nrrLWRmZqJXr1547733kJiYCAC46aabEBsbi88//9x2/+LFi/HCCy/g6NGjiI+Px5tvvokRI0YAAEpKSjB69Ghs374dubm5iIqKwtChQ/Hqq6/W2pStPpd7nV4xLBZJls8fBH59B/h9ifNkHJCZYvFDgWvvAjJ3AxmrJIZW5x8pCTsg+6k0ZI12+krgy7HyOY+ulPbD4TUy3dxcLj/3uBfoOgoIrDG7Imsv8PEN0ta47yvZxwWQEfQ5fYCyPOD22UDfh9ytmUu39i1g9WvSEeHXBsg7AQz6G3DzNPs9F45KO6DXeKBD/+YrGxHVwsSbWg6lZH20ly/Q7np7L3ZFqUwp//VtSbpDYiVh7j2+9ihyWaH0SG/+1P3PDWovwcrLF3hivSTqVdb9HVg5HUC1v/q+YZKgd7oZOLsf2PgBENAWeGozYKyx9eSBn6Q3Wu8NPL0dCIyS6wd/lg1oet8vnQfV5RwGti+QDed63Ff/Bm9ZvwNL/ih1FdpR6mbzP2XGwK2vAgOeBk5tAz69WUbkJ+0AvPyks6DorP19RvwfkPCY+3VGRI2KsanxsU5bqPPpwG+zJREPaicd434RsrzryFonL9BIQtz1DnmExMnSsBUvA5YKmREXPwQIv0r2kdFogTM7gTM7JGn3ayOd8O36SDzPPQb0e9Jx47d9S4FvH5bku+ozY5KknXHtXbI0bt5w4ESaJPv3LXAs4saPgOXPyojz09vsbZPKchlQiOoNhHVq3HpMT5VOBCjgzg+k/fHNBMDgDzy9A/BvI1Pz/3mrbHbnEwI8mcbjXIk8iIk3XT5yT0jPbYf+rqdyHd8oU60vHAVyjkig9WsDdBgAxA6UYL9zEbDrG5leDgDDZgJJT9Z+r4JM6SU/+DOQsVrWddV0z+cSnGtSCvhsOHBiI9DnIdl0ZuUrkqxXuWo4MPQ1Cdi/vCmJs8W6UYtvmHQyJDwG+IU7vnd2hrx39QS6SoeBQPIP9nqafwdw5Bcg8QmgMFOmxrXpAvR+QNa6+bWRQG1sGTs5ErU2jE2Nj3V6GTp/CNjyGXB0HWDqAXS+Beh4s/MR7TM7gW8fAbIPNewzgtoDT26sHe/yTgF7v5cZYifS7NeNgTIYkJEqSe3EtNonlpgrZIbbuf1Awh+BEW/JFPrFD8kacp0BGDgFGPiM7IRuscjnbPhA4v31j8pIu76OZRS5x2Ujt8w9snzNO0jaNWX5wHXJwKj3pL3x6c3A6e0S64e8AvxrNHB8g/19uo4C7v1Xw+qLiBoNE29q3UouADu/BipLgf5/dp3QmyuAk1tk1/PDa+T3XUYCf/ii7nVmxzZIT7lGB0ReC2RaN5bpdIskw5ZKWdvu5StBFABib5CgmntcftZ7A4l/kqDtEyINhM+GA3nHZTr+zdNkKn3OYRntHvySfXQdsPaMj5EyKLP8+liqvPaDBHndTc8BNz3b8DrMPyMzDLrcLkepEVGDMTY1PtZpK1BeLOubzx2Qx/mDElNNPWTNtambdJ6f3CyP/NPAmE9lxlp98k5Kx/y2L2SflCrDXgeSJjp/zeE1wBd3yoj7rf8r07tL8wCtl70zPayzrEvf9oUk6dUFtJWjP69LBnyC7ddPbJalYUXnan9mVG/goeX2Y80yVkuyrTNIh8Whn6XjYOQ7QMrjUjf3zAeuHV3/96+LxSy/Nuc6dqIrCBNvokthrpCk2dXmLgv+YN/8xDsYGP2RrA87dxD47wv25yK7A0P/V5Jyc6VMUVv/nvRgV7124GTZuO38QZle/vDPgH9E/Z+vlKxNy9wtPw96Frj5Ofn9798Bix+UKeiTdrh+r+rSVwJL/gQUn5fg/sgKIKKL+68nIgCMTU2BdUqXzGKR/V92LJDO8RH/V//ma18/YN+rBpAp8nfPkxNTfvqbfW06IKPW/Z6U9934IVBwRq7rjEDX22VNdnGOHHNqLpP2wah3ZeVbaS5QXgTE3VB7yV3VDDdA2if3/xvoeBOwaobMqvNrI1PO/cIaVhf7/wMsnSwz8cYvBoLbN+z1RMTEm6hZnN0PzL9dpneP/qh2wDryq4y+dxlZuydZKZnmvvIV4Nw++/XAaODh5bV3gK3L7ynA4mQZBXg01b6ZmlLAp7dIw+D6R4GRb7t+L3MlsHoGsO4d+VlnkLVxwTHAo6tkbRkRuY2xqfGxTqnZXTgme6hUFAP9Jsp0b71BnivNA1JflWNGe42XWWzeQfJcZbnstL7hg9qbyQHA1SNkpN6d5WAntwL/sJ7qMvojoNf/s35GGfDxIGlHdP8DMNbNvXDKi4Cfp8kpKFWCYmQ5W/U9cYjIpSZPvD/44APbTqc9e/bEnDlzkJCQUOf9ixcvxosvvmjb6fSNN96w7XQKAA8++CDmz5/v8Jphw4Zh+fLlbpWHgZg8xmK+tOlZFrOcGbr6dfn5gRSgzVUNe4/jaTIiXRXsqxz5VToGAJnmNvQ1+3EkFSUyLe7gcqCsQDawK862ry3v+4gcufb5CFlT3y4BSF5qn/pGRC4xNjU+1il5xLmDknhH9Wr4a5WSTeG2L5CjU0tzgf5PSwLfkPbDniUy5b3mlPJTW4F/DJFd5XvfL5uwVl8/X5ovM9lKc2Vj28oSmWGXnQ5AI50Fh1bIyTABUZJ8h8c3/HsStVJNmnh//fXXmDBhAubOnYvExETMnj0bixcvxoEDBxARUXs66/r163HjjTdi5syZuP3227Fw4UK88cYbtrM9AUm8s7KyMG/ePNvrjEYjQkLcOyOZgZgue0rJOq3GPv5r5XT7CHZQexn5zk6XHeWrT4+rYgwE7nhXjn0DpLHxzyHSq9/1DqDrnTIKbi6TkfCONzs2HCwWOSomO12m1dXcrMYTCs/Kpj5hnYG2PTxdGmpFGJsaH+uULmuVZRJ73Z3V5q5f3wFSrceb+oRKR3tEFxnR3v1vOdO8poAo4K65QMdBsmb+iztljbpfhCybKy+Sh5ePbCQbO9BxCZ7FLBvdBsfYZwB4Wmm+lLHmaTRETahJE+/ExERcf/31eP/99wEAFosF7du3x5///Gc8+2ztTZzuvfdeFBUVYdmyZbZr/fr1Q69evTB37lwAknjn5uYiJSWlIUWxYSAmqseRX2U9We4xx+tB7WXTl5BYwOAHGALkaJTqG8AAwOG1sombpbL2ewe2A657ALh2jGxCs+ljay86ZB1at7vl+LOQONkE59hvclxadB8ZhW/oejR3lBfJCMDhtTL978xO6xMa4Ma/ymZzNTsLlJlnnlOjY2xqfKxTojoc3wgse8b5tPaweKDN1bKpq95bzjPv96TjyHjReeCL0UDWbufv3z5RdnH3DpR9ZPZ+L50IPqFA97uBnuNkY7j80xLnz+2TzeW63iHJe1OwWOT7pq8ADq2U02aUAgZNBW74n/rX7hM1kiZLvMvLy+Hr64tvv/0Wo0ePtl1PTk5Gbm4uvv/++1qviYmJwZQpUzB58mTbtZdffhkpKSnYuVMaxA8++CBSUlJgMBgQEhKCW265Ba+99hrCwtxrlDMQE7lQVgisfBnY/A8guANw4//IeeLu9lLv/1GSakDWfmv1cpxJyYXa9xoDZZraqa32a1p97cRdZwS6jQWuvk02lTu9HTizSwJ0p5uBToOB2AGSSGdnyDS4nMPVHkekZzuovYys+4ZJsM/cLYl0dWGd7R0CsTcAY/8p0wa3fykb7BSdA665E0h83PG8eaVkc5xj62XU/NhvsuNuz3tlOn5QtPP6MlcC+adkGr8xwPoIlPc6t18aCvlngLgbgfihzdM4uHBUGko+IVK31cuulOz4W1EiHTEtZfTiMsfY1PhYp0T1MFfImvI1s2Tq+TV3An0elCNbXW0YC0hM3/YviQUGP1l/fmanTJM3l9W+X6OVz6ni5SuxtTpjENDjD3K0WlmexOjM3TKTLvJa2aOmbS+JTRXF8tml+RLzq3a1L82Vs90DoySZzz8lbYbTO5wfBwtIB/+YT6WNkL4C2PW17CbfIQm4bgIQeyOg1drvL82XY+KOp0n75sJR4KphMkAR2rHuOisrlGV6Wi/5/l7e8h2yrW2W3OPSJrp6RPMs1ysrlM0AS3KlDRXZ3f49LWZpC+WdkO8UHOtYB3RRmizxPn36NKKjo7F+/XokJSXZrk+dOhVr165FWlpardcYDAbMnz8f48aNs1378MMPMX36dGRlyVTXRYsWwdfXF3FxccjIyMC0adPg7++PDRs2QKervf6lrKwMZWX2/wDy8/PRvn17BmIiVwrPSXBrjESvohTYtxTYNl92iA2Ll7ViPe+TRPPUVuC39yQAKItMa4sdAER0Bfb+IGvemkpgOyAmEeg8RB7+EcCuxcDSSTLlzuAvR7Q5E9Vbvkt2ugTOsjzn92l00pNv6ib1WnRWprXnnpBGQc3kvy7+kTJSEHejjBRcOCqzEwx+Uo7weJkxoNFYp/lX2I+P0+rsDR9LpQRVi1nOjfXykZGN09tluuHh1Y6fG3GNdDJcOCrH4VV1omh0QEgHIPwq6dDwj5T684+UKYXBHeybARVly6jG+UNSDp8QefiGSgPJO9h5Yy//jDRwTm2V+mrTReo9qrfMgrCYpcOlokS+izHAvbWQVY2d7EPS2KkosT+8g6SBF9VLNjGsLJMG3bn9Ms3SL1y+Y4BJGni+oe41VOvBJLHxsU6J3FCcY/0/Obhx3q8gUxL6LZ9JjOgyUpakxQ6UDukdXwH7l8kxrhqdxI82V8sGr1VHqDYVL1/pUI+/VeL9yS3Af/4isdvLV+JgSU7t1wV3ADoMkHibnQEUZtbxARr5vl1GSozPPyUd1XknJH6V5rpXTu9gmRlwzWhpf1w4Jp9dWSbxMjBafjX4SezRaKUuNVp5VMV7aKzPa6ztAL088k4C278Adn/r2L7xCZWOl+IcifXVn/Pylfjb5mqpj5AO8mtwjHRwVLUVlZL2yfmD9uUHXr7yq18baSM4mzVYWSbn1J/eJgMOAW2tHS09JdYqZd1nKF++l0+wvG/12KuUPKp3EFjMUv85R6QOS/Otsb5I6sTUTTpzQjvKe5Xmyb15J6XMVW0VnxBpGzRjrG8RiXdNhw8fRqdOnbBy5UoMHjy41vOvvPIKpk+fXus6AzGRh5QXS3Bz1nNakCn/+QbHOI4kn9wiZ4Vn7pG1aFWJV3EOkJEKpK+SM82hkR3jQzvJVPjQjvIIse68mndS7is8B4R3lulwda0tP3dQdoE/u1fet9PNQO8HJNhs/kw2vqnZq6/RAqbuQIeB0nFgqQQ2fSqdDfXRGSTQlhXIZjaABMeweOtmeMHScVF83r06bgxxg2RE4eQWyPk11Wh0EpDq6pCozjdc/iydnUFbnZefjKwbA6xBsVjqozi77tfovaXxVpPBX8pnLpfdgqv+nPQ+kpzrvKRRVPN7OeMdJOWoPlJT09QjjtMwLwKTxMbHOiXyIItZ4rezzvvSPCDvlMTnqpFdiwU4sgbYOl82eAtoK/HU1F2SrMzdMmqd9bv8n64zyP/zBn+J8eHxksT7hkpbouCMPHxCgejrZFQ7/Ora5ck7CXz3uD1O+0cC3e+RGHhwuSSnzjrVg2KAmH7Sce9vkoGFQ/91XS9evtI2MJfbrwW2A8I6SkJ95Fcg/6QbFdxIQq1tpeMbasd0L19pI1045nwWQxWNztqBHiRJq7N9Auw3SwLuG1ZtIKBCOtmrzruvyeAvbYKacVjrJcsZlEXajpWl8nutl3WphEES7bretzpjkHRYOOt4qXL3PPu+RhepIXGpQcNe4eHh0Ol0tRLmrKwsmEwmp68xmUwNuh8AOnbsiPDwcKSnpztNvJ977jlMmTLF9nPViDcReYjBt+7nApz8W9dogPbXy8OZa0ZJcC/MkgS1vulZDTljvM1VcuzaoZ+B6L6OR8BF9wFunS7Jd0Wx42hzzc+/5k7pMNj+LwlqfhHS4+vXxjoqHCPXqjoizBWS6Bn8Hadx3/amNAJ2LJAe9+AYmeod0kECS/Yh4Lx1WphGI40SnUE6AyxmGfm2mOVnnZe9R7yyXL5DZakEwp7jZC1+SKx8bnGObIKXuVuCc9seQJuuksAWZFo/95D8vjBLEtqC0xKoS3MdOwuCO0hvuUYro+Yl1ueLsyVQnz9Y+89Bo5UR9+jrpExn98nIfHa686QbkHp21ilQUeTYIPAOkoZYSKyMzOt95M+vIEtmWZzdJw1EQP5uRXSVhlHxebmnMFM6kmqeo0tE1NrVN/PIO6j26SpaLdDpFnnUx2xditZYy66C2gETfgD2fS9lihtkL/tVQ2Xzuf3LJKEMjbN26jvZ46br7TLdPW2uxMSAtvLeQdH2ZW5B7ezf22KWTmat3rHdYDEDR9bKlP1j6+V41qoRZr23jCbnn5JfK0uto7wWa5y37kOjLNKRAWV/3pbkVkr87nqHdWnBAOssuQqJrSfSpC0Q1Vs6MrQ6qfOcw8DZ36X9kXvMPgqfd0oS27wT8gAkEQ+Nsy4JKLUuCyiWDnhLpcz6qzoZp7qqTpLIbtJpcmandeS8WjzXesn3qkrYnXXOWyqA8gqgqm9DZ7C2l2KlTF4+0tlfUSwj+5l7HDtX/NrIn5m53NpWuSD3XmIHe0Nd1OZqCQkJmDNnDgDZXC0mJgZPPfVUnZurFRcXY+nSpbZr/fv3R48ePWybq9V08uRJxMTEICUlBaNGjXJZJvaAExE1k5JcCczKIgHc4Of8vooSaUTknZBE1uBrnZrmK8Hb2etK8+Th5Sf3670lSJYVyPWKEgm2eoPsEQBII6WyTHruA6Jkynh908YqSqVjoaqzxNm9leWNss6dsanxsU6JiJxQ6pKnTNtYLNLpnndCYn5VgussLloskigXnJFkVmud/q7R2TsYaparvEhGw40BMrqt97ZfL82VgQetXj5P7y3vVXWiTmWZDGIERtXfEWSukE4TKGtHvJOd7itK5T0ucXPdJhvxBoApU6YgOTkZffv2RUJCAmbPno2ioiI89NBDAIAJEyYgOjoaM2fOBABMmjQJgwYNwttvv42RI0di0aJF2LJlCz755BMAQGFhIaZPn46xY8fCZDIhIyMDU6dORefOnTFs2LCGFo+IiJqST7B76wa9fGQUIayT++/tbMREb5SHX3hDSllPubxlmmN9uLkcERFdThor6QZkpkJgW3m4c69/G3m4y+AnSwNrMvrLI6j2Uw2m85K13vVpjs3uamhw4n3vvffi3LlzeOmll5CZmYlevXph+fLliIyMBAAcP34c2mrrPPv374+FCxfihRdewLRp0xAfH4+UlBTbGd46nQ67du3C/PnzkZubi6ioKAwdOhSvvvoqjEZjI31NIiIiIiIiIs9o8FTzlohTz4iIqKVhbGp8rFMiImpJGhKXeHgbERERERERURNi4k1ERERERETUhJh4ExERERERETUhJt5ERERERERETYiJNxEREREREVETYuJNRERERERE1ISYeBMRERERERE1ISbeRERERERERE1I7+kCNAalFAA5wJyIiKglqIpJVTGKLh3jPRERtSQNifVXROJdUFAAAGjfvr2HS0JEROSooKAAQUFBni7GFYHxnoiIWiJ3Yr1GXQFd8RaLBadPn0ZAQAA0Gs0lv19+fj7at2+PEydOIDAwsBFKeOVhHbnGOnKNdeQa68g9LbGelFIoKChAVFQUtFqu7GoMjRnvW+LfmZaGdeQa68g9rCfXWEeutcQ6akisvyJGvLVaLdq1a9fo7xsYGNhi/lBbKtaRa6wj11hHrrGO3NPS6okj3Y2rKeJ9S/s70xKxjlxjHbmH9eQa68i1llZH7sZ6dsETERERERERNSEm3kRERERERERNiIm3E0ajES+//DKMRqOni9JisY5cYx25xjpyjXXkHtYTNRT/zrjGOnKNdeQe1pNrrCPXLvc6uiI2VyMiIiIiIiJqqTjiTURERERERNSEmHgTERERERERNSEm3kRERERERERNiIk3ERERERERURNi4l3DBx98gNjYWHh7eyMxMRGbNm3ydJE8ZubMmbj++usREBCAiIgIjB49GgcOHHC4p7S0FBMnTkRYWBj8/f0xduxYZGVleajEnjdr1ixoNBpMnjzZdo11BJw6dQr3338/wsLC4OPjg+7du2PLli2255VSeOmll9C2bVv4+PhgyJAhOHTokAdL3PzMZjNefPFFxMXFwcfHB506dcKrr76K6vtftrZ6+uWXX3DHHXcgKioKGo0GKSkpDs+7Ux85OTkYP348AgMDERwcjEceeQSFhYXN+C2oJWKst2OsbzjG+rox3tePsb62VhXrFdksWrRIGQwG9dlnn6nff/9dPfbYYyo4OFhlZWV5umgeMWzYMDVv3jy1Z88etWPHDjVixAgVExOjCgsLbfc8/vjjqn379io1NVVt2bJF9evXT/Xv39+DpfacTZs2qdjYWNWjRw81adIk2/XWXkc5OTmqQ4cO6sEHH1RpaWnq8OHD6ueff1bp6em2e2bNmqWCgoJUSkqK2rlzpxo1apSKi4tTJSUlHix585oxY4YKCwtTy5YtU0eOHFGLFy9W/v7+6t1337Xd09rq6ccff1TPP/+8WrJkiQKgvvvuO4fn3amP4cOHq549e6qNGzeqX3/9VXXu3FmNGzeumb8JtSSM9Y4Y6xuGsb5ujPeuMdbX1ppiPRPvahISEtTEiRNtP5vNZhUVFaVmzpzpwVK1HGfPnlUA1Nq1a5VSSuXm5iovLy+1ePFi2z379u1TANSGDRs8VUyPKCgoUPHx8WrFihVq0KBBtmDMOlLqb3/7mxo4cGCdz1ssFmUymdRbb71lu5abm6uMRqP66quvmqOILcLIkSPVww8/7HBtzJgxavz48Uop1lPNYOxOfezdu1cBUJs3b7bd89NPPymNRqNOnTrVbGWnloWxvn6M9XVjrK8f471rjPX1u9JjPaeaW5WXl2Pr1q0YMmSI7ZpWq8WQIUOwYcMGD5as5cjLywMAhIaGAgC2bt2KiooKhzrr0qULYmJiWl2dTZw4ESNHjnSoC4B1BAA//PAD+vbti3vuuQcRERHo3bs3Pv30U9vzR44cQWZmpkMdBQUFITExsdXUEQD0798fqampOHjwIABg586dWLduHW677TYArKea3KmPDRs2IDg4GH379rXdM2TIEGi1WqSlpTV7mcnzGOtdY6yvG2N9/RjvXWOsb5grLdbrPV2AluL8+fMwm82IjIx0uB4ZGYn9+/d7qFQth8ViweTJkzFgwAB069YNAJCZmQmDwYDg4GCHeyMjI5GZmemBUnrGokWLsG3bNmzevLnWc6wj4PDhw/joo48wZcoUTJs2DZs3b8bTTz8Ng8GA5ORkWz04+7fXWuoIAJ599lnk5+ejS5cu0Ol0MJvNmDFjBsaPHw8ArKca3KmPzMxMREREODyv1+sRGhraKuuMGOtdYayvG2O9a4z3rjHWN8yVFuuZeJNbJk6ciD179mDdunWeLkqLcuLECUyaNAkrVqyAt7e3p4vTIlksFvTt2xevv/46AKB3797Ys2cP5s6di+TkZA+XruX45ptvsGDBAixcuBDXXnstduzYgcmTJyMqKor1RETNgrHeOcZ69zDeu8ZY37pxqrlVeHg4dDpdrR0os7KyYDKZPFSqluGpp57CsmXLsHr1arRr18523WQyoby8HLm5uQ73t6Y627p1K86ePYvrrrsOer0eer0ea9euxXvvvQe9Xo/IyMhWX0dt27bFNddc43Cta9euOH78OADY6qG1/9v761//imeffRb33XcfunfvjgceeADPPPMMZs6cCYD1VJM79WEymXD27FmH5ysrK5GTk9Mq64wY6+vDWF83xnr3MN67xljfMFdarGfibWUwGNCnTx+kpqbarlksFqSmpiIpKcmDJfMcpRSeeuopfPfdd1i1ahXi4uIcnu/Tpw+8vLwc6uzAgQM4fvx4q6mzwYMHY/fu3dixY4ft0bdvX4wfP972+9ZeRwMGDKh1NM3BgwfRoUMHAEBcXBxMJpNDHeXn5yMtLa3V1BEAFBcXQ6t1/C9Zp9PBYrEAYD3V5E59JCUlITc3F1u3brXds2rVKlgsFiQmJjZ7mcnzGOtrY6x3jbHePYz3rjHWN8wVF+s9vbtbS7Jo0SJlNBrV559/rvbu3av++Mc/quDgYJWZmenponnEE088oYKCgtSaNWvUmTNnbI/i4mLbPY8//riKiYlRq1atUlu2bFFJSUkqKSnJg6X2vOo7nSrFOtq0aZPS6/VqxowZ6tChQ2rBggXK19dXffnll7Z7Zs2apYKDg9X333+vdu3ape68884r+ugMZ5KTk1V0dLTtiJElS5ao8PBwNXXqVNs9ra2eCgoK1Pbt29X27dsVAPXOO++o7du3q2PHjiml3KuP4cOHq969e6u0tDS1bt06FR8f3yKPGKHmw1jviLH+4jDW18Z47xpjfW2tKdYz8a5hzpw5KiYmRhkMBpWQkKA2btzo6SJ5DACnj3nz5tnuKSkpUU8++aQKCQlRvr6+6q677lJnzpzxXKFbgJrBmHWk1NKlS1W3bt2U0WhUXbp0UZ988onD8xaLRb344osqMjJSGY1GNXjwYHXgwAEPldYz8vPz1aRJk1RMTIzy9vZWHTt2VM8//7wqKyuz3dPa6mn16tVO/w9KTk5WSrlXH9nZ2WrcuHHK399fBQYGqoceekgVFBR44NtQS8JYb8dYf3EY651jvK8fY31trSnWa5RSqvnG14mIiIiIiIhaF67xJiIiIiIiImpCTLyJiIiIiIiImhATbyIiIiIiIqImxMSbiIiIiIiIqAkx8SYiIiIiIiJqQky8iYiIiIiIiJoQE28iIiIiIiKiJsTEm4iIiIiIiKgJMfEmIiIiIiIiakJMvImIiIiIiIiaEBNvIiIiIiIioibExJuIiIiIiIioCf1/5YsgqQp7w8kAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(12,4))\n", "\n", "plt.subplot(1,2,1)\n", "plt.plot(history.history['rmse'], label='Train RMSE')\n", "plt.plot(history.history['val_rmse'], label='Val RMSE')\n", "plt.legend()\n", "plt.title('RMSE over epochs')\n", "\n", "plt.subplot(1,2,2)\n", "plt.plot(history.history['mean_absolute_error'], label='Train MAE')\n", "plt.plot(history.history['val_mean_absolute_error'], label='Val MAE')\n", "plt.legend()\n", "plt.title('MAE over epochs')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 51, "id": "3668ea16-0ab7-48a5-8f47-012120593554", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "14/14 [==============================] - 0s 22ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAFWCAYAAABdIQEzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXl0ZFd5Lb6rSkMNmqdWt9tut20MxsMzGAzBGGMwOAbCEGYSwEzh8QADDwJ5rAQCIfAjkGBCIAEeCUMSAnbASQgvYIYQJkPAxuABaA/tnlutWapJUtX9/dG9j3Z9OldSA7ZaybfXqiXVrXvP+J1vPudmkiRJ4HA4HA6Hw+FwOBwOxyZFdqMb4HA4HA6Hw+FwOBwOxy8DN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh+OXwKmnnoorr7wyfP/3f/93ZDIZ/Pu///uGtcnCtjEN8/PzeOlLX4rR0VFkMhm89rWv3bC2WOzevRuZTAYf//jHV73v4x//ODKZDH7wgx/8Yg08QcB+7N69e6ObEtBsNnHOOefgj//4j++1OmL9fvSjH41HP/rRaz57b629TCaDP/zDP/yVlmnx8Ic/HG984xvv1TocDofjvzrcsHU4HJsWVIL5yefzOPPMM/GqV70Khw8f3ujmHRe++MUv3uvK81p45zvfiY9//ON4xStegU996lN4/vOfv6HtcfxiuO222/CHf/iHv3Kj+NOf/jT27t2LV73qVb/Sck8EbPT6e9Ob3oQPfvCDOHTo0Ia1weFwODY72ja6AQ6Hw/HL4u1vfzt27tyJWq2Gb33rW/jLv/xLfPGLX8Qtt9yCYrF4n7blUY96FKrVKjo6Oo7ruS9+8Yv44Ac/uKHK9de+9jU8/OEPx1vf+tZ7rY6f/exnyGbdp7oWnv/85+M5z3kOOjs7j/vZ2267DW9729vw6Ec/GqeeeuqvrE3vec978JznPAe9vb2/sjLXgy9/+cv3eh2rrb9qtYq2tntXXXrKU56Cnp4efOhDH8Lb3/72e7Uuh8Ph+K8K1y4cDsemxxVXXIHf/u3fxktf+lJ8/OMfx2tf+1rcfffd+Kd/+qfUZ8rl8r3Slmw2i3w+vymNt7GxMfT19d2rdXR2dqK9vf1ereO/AnK5HPL5PDKZzEY3BQBw00034eabb8aznvWs+7zujo6O43YU/SqRz+fvdcM2m83iGc94Bj75yU8iSZJ7tS6Hw+H4r4rNp3k5HA7HGnjMYx4DALj77rsBAFdeeSW6urpw55134glPeAK6u7vxW7/1WwCO7hu8+uqrcfbZZyOfz2PLli14+ctfjqmpqZYykyTBO97xDmzfvh3FYhGXXnopbr311hV1p+3z+973vocnPOEJ6O/vR6lUwnnnnYf3v//9oX0f/OAHAaAltZr4Vbcxrc133303/vVf/zXUv3v3biwsLOAtb3kLLrjgAvT29qJUKuHiiy/G17/+9RXlNJtNvP/978e5556LfD6P4eFh/Pqv/3rLfle7x3ZychJveMMbcO6556Krqws9PT244oorcPPNN6/Z7vViamoKF154IbZv346f/exnAIB6vY63vvWtOOOMM9DZ2YmTTz4Zb3zjG1Gv18Nzl1xyCf7H//gf0TLvf//74/LLLwewvP/3ve99L973vvdhx44dKBQKuOSSS3DLLbesePZrX/saLr74YpRKJfT19eEpT3kKbr/99pZ7YntNTz31VDzpSU/Ct771LVx44YXI5/M47bTT8MlPfrLluWc+85kAgEsvvTTMJenxBz/4AS6//HIMDQ2hUChg586dePGLX7zmGF533XXo6OjAox71qHDt2muvRSaTwTe+8Y0V93/4wx9GJpMJ/f/xj3+MK6+8Eqeddhry+TxGR0fx4he/GBMTE2vWHdtju2/fPjz1qU9FqVTCyMgIXve617XMHfHNb34Tz3zmM3HKKaeEeX7d616HarUa7llr/cX22N5000244oor0NPTg66uLjz2sY/FDTfc0HIP5/Db3/42/vf//t8YHh5GqVTC0572NBw5cmRFWx/3uMfhnnvuwY9+9KM1x8ThcDgcK+GpyA6H478c7rzzTgDA4OBguLa0tITLL78cj3zkI/He9743pCi//OUvx8c//nG86EUvwlVXXYW7774bf/EXf4GbbroJ3/72t0N08S1veQve8Y534AlPeAKe8IQn4MYbb8TjH/94LCwsrNme66+/Hk960pOwdetWvOY1r8Ho6Chuv/12fOELX8BrXvMavPzlL8eBAwdw/fXX41Of+tSK5+/tNp511ln41Kc+hde97nXYvn07Xv/61wMAhoeHMTs7i//7f/8vnvvc5+JlL3sZ5ubm8LGPfQyXX345vv/97+P8888P5bzkJS/Bxz/+cVxxxRV46UtfiqWlJXzzm9/EDTfcgIc85CHRuu+66y5cd911eOYzn4mdO3fi8OHD+PCHP4xLLrkEt912G7Zt27bm+K6G8fFxPO5xj8Pk5CS+8Y1v4PTTT0ez2cSTn/xkfOtb38Lv/M7v4KyzzsJPfvITvO9978PPf/5zXHfddQCOpgO/7GUvwy233IJzzjknlPmf//mf+PnPf47f//3fb6nrk5/8JObm5vDKV74StVoN73//+/GYxzwGP/nJT7BlyxYAwFe+8hVcccUVOO200/CHf/iHqFar+MAHPoCLLroIN95445qpw3fccQee8Yxn4CUveQle+MIX4q//+q9x5ZVX4oILLsDZZ5+NRz3qUbjqqqvw53/+53jzm9+Ms846C8DROR4bG8PjH/94DA8P4/d+7/fQ19eH3bt343Of+9ya4/id73wH55xzTku0/YlPfCK6urrw2c9+FpdccknL/Z/5zGdw9tlnh3G7/vrrcdddd+FFL3oRRkdHceutt+IjH/kIbr31Vtxwww3HFZmuVqt47GMfiz179uCqq67Ctm3b8KlPfQpf+9rXVtx7zTXXoFKp4BWveAUGBwfx/e9/Hx/4wAewb98+XHPNNQCw5vqzuPXWW3HxxRejp6cHb3zjG9He3o4Pf/jDePSjH41vfOMbeNjDHtZy/6tf/Wr09/fjrW99K3bv3o2rr74ar3rVq/CZz3ym5b4LLrgAAPDtb38bD3rQg9Y9Hg6Hw+E4hsThcDg2Kf7mb/4mAZB85StfSY4cOZLs3bs3+Yd/+IdkcHAwKRQKyb59+5IkSZIXvvCFCYDk937v91qe/+Y3v5kASP7u7/6u5fq//du/tVwfGxtLOjo6kic+8YlJs9kM9735zW9OACQvfOELw7Wvf/3rCYDk61//epIkSbK0tJTs3Lkz2bFjRzI1NdVSj5b1yle+Momx5HujjWnYsWNH8sQnPrHl2tLSUlKv11uuTU1NJVu2bEle/OIXh2tf+9rXEgDJVVddtaJcbc+OHTta2lKr1ZJGo9Fy/9133510dnYmb3/721uuAUj+5m/+ZtU+kCb+8z//Mzl48GBy9tlnJ6eddlqye/fucM+nPvWpJJvNJt/85jdbnv2rv/qrBEDy7W9/O0mSJJmenk7y+Xzypje9qeW+q666KimVSsn8/HxL25TmkiRJvve97yUAkte97nXh2vnnn5+MjIwkExMT4drNN9+cZLPZ5AUveMGKftx9990tYwcg+Y//+I9wbWxsLOns7Exe//rXh2vXXHNNCw0Sn//858PYHC+2b9+ePP3pT19x/bnPfW4yMjKSLC0thWsHDx5Mstlsy/xVKpUVz376059e0Z9Yvy+55JLkkksuCd+vvvrqBEDy2c9+Nlwrl8vJGWecsaLfsXrf9a53JZlMJrnnnnvCtbT1lyRJAiB561vfGr4/9alPTTo6OpI777wzXDtw4EDS3d2dPOpRj1rRl8suu6xlDbzuda9LcrlcMj09vaKujo6O5BWveEW0HQ6Hw+FYHZ6K7HA4Nj0uu+wyDA8P4+STT8ZznvMcdHV14fOf/zxOOumklvte8YpXtHy/5ppr0Nvbi8c97nEYHx8PnwsuuABdXV0h3fYrX/kKFhYW8OpXv7olsrSe1+HcdNNNuPvuu/Ha1752xf7V9USp7os2roZcLhf2NzabTUxOTmJpaQkPechDcOONN4b7/vEf/xGZTCZ68NRq/ezs7Az7kRuNBiYmJtDV1YX73//+LeUfL/bt24dLLrkEi4uL+I//+A/s2LEj/HbNNdfgrLPOwgMe8ICWMWUKO8e0t7cXT3nKU/DpT3867HtsNBr4zGc+E9JgFU996lNbaO7CCy/Ewx72MHzxi18EABw8eBA/+tGPcOWVV2JgYCDcd9555+Fxj3tcuG81PPCBD8TFF18cvg8PD+P+978/7rrrrjWfJf194QtfwOLi4pr3KyYmJtDf37/i+rOf/WyMjY21pN5fe+21aDabePaznx2uFQqF8H+tVsP4+Dge/vCHA8Bxz/MXv/hFbN26Fc94xjPCtWKxiN/5nd9Zca/WWy6XMT4+jkc84hFIkgQ33XTTcdULHJ3/L3/5y3jqU5+K0047LVzfunUrnve85+Fb3/oWZmdnW575nd/5nZY1cPHFF6PRaOCee+5ZUX5/fz/Gx8ePu10Oh8Ph8D22DofjvwA++MEP4vrrr8fXv/513HbbbbjrrrvC/keira0N27dvb7m2a9cuzMzMYGRkBMPDwy2f+fl5jI2NAUBQQO93v/u1PD88PBxV9hVMi9ZU1uPBfdHGtfCJT3wC5513HvL5PAYHBzE8PIx//dd/xczMTLjnzjvvxLZt21oMtvWg2Wzife97H+53v/uhs7MTQ0NDGB4exo9//OOW8o8Xz3/+8zE2NoZvfOMbKxwcu3btwq233rpiPM8880wACGMKAC94wQuwZ88efPOb3wRw1IFw+PDh6KuQ7NgDwJlnnhn2yXKO7n//+6+476yzzsL4+Piah5qdcsopK6719/ev2G8dwyWXXIKnP/3peNvb3oahoSE85SlPwd/8zd9E96bGkEQONfr1X/919Pb2tqTVfuYzn8H5558fxhM4upf6Na95DbZs2YJCoYDh4WHs3LkTAI57nu+55x6cccYZKxwmsXHds2dPcCR0dXVheHg4pE3/IvR15MgRVCqV1DlsNpvYu3dvy3U7Z1yPsTlLkuSEOTDM4XA4Nht8j63D4dj0uPDCC1P3cBIaGSSazSZGRkbwd3/3d9FnhoeHf2Vt/EWx0W3827/9W1x55ZV46lOfit/93d/FyMgIcrkc3vWudwWj/ZfBO9/5TvzBH/wBXvziF+OP/uiPMDAwgGw2i9e+9rVoNpu/cLm/+Zu/iU9+8pN4//vfj3e9610tvzWbTZx77rn4sz/7s+izJ598cvj/8ssvx5YtW/C3f/u3eNSjHoW//du/xejoKC677LJfuG2/DHK5XPR6zOi0yGQyuPbaa3HDDTfgX/7lX/ClL30JL37xi/Gnf/qnuOGGG9DV1ZX67ODgYNQQ6+zsxFOf+lR8/vOfx4c+9CEcPnwY3/72t/HOd76z5b5nPetZ+M53voPf/d3fxfnnn4+uri40m038+q//+i81z6uh0WiE/dVvetOb8IAHPAClUgn79+/HlVdeea/Va3E8czY9PY2hoaF7u0kOh8PxXxJu2Docjv+2OP300/GVr3wFF110UUvKogXTWHft2tWSfnjkyJE1I2Wnn346AOCWW25Z1RhKi9LcF21cDddeey1OO+00fO5zn2tpo005Pv300/GlL30Jk5OTxxW1vfbaa3HppZfiYx/7WMv1X1bBf/WrX40zzjgDb3nLW9Db24vf+73fa2nrzTffjMc+9rFrRsdyuRye97zn4eMf/zje/e5347rrrsPLXvayqLGya9euFdd+/vOfhwOhOEc8mVnx05/+FENDQyvSm38RrNWnhz/84Xj4wx+OP/7jP8bf//3f47d+67fwD//wD3jpS1+a+swDHvCAcMq4xbOf/Wx84hOfwFe/+lXcfvvtSJKkJQ15amoKX/3qV/G2t70Nb3nLW8L12HitBzt27MAtt9yyIrppx/UnP/kJfv7zn+MTn/gEXvCCF4Tr119//Yoy1xslHR4eRrFYTJ3DbDbb4hg5Huzfvx8LCwvhwC+Hw+FwHB88FdnhcPy3xbOe9Sw0Gg380R/90YrflpaWMD09DeDoHt729nZ84AMfaImyXH311WvW8eAHPxg7d+7E1VdfHcojtCwaNPae+6KNq4EGnJb5ve99D9/97ndb7nv605+OJEnwtre9bUUZq0UTc7ncit+vueYa7N+//5dpNgDgD/7gD/CGN7wB/+f//B/85V/+Zbj+rGc9C/v378dHP/rRFc9Uq9UV6cDPf/7zMTU1hZe//OWYn5/Hb//2b0fru+6661ra/f3vfx/f+973cMUVVwA4ug/z/PPPxyc+8YmWeb7lllvw5S9/GU94whN+me4GpNHS1NTUirHmqdZrpSP/2q/9Gm655ZbofZdddhkGBgbwmc98Bp/5zGdw4YUXhjRjIE5DwC9Om094whNw4MABXHvtteFapVLBRz7ykZb7YvUmSRJes6VIGzOLXC6Hxz/+8finf/qnllcxHT58GH//93+PRz7ykejp6TneLgEAfvjDHwIAHvGIR/xCzzscDsd/d3jE1uFw/LfFJZdcgpe//OV417vehR/96Ed4/OMfj/b2duzatQvXXHMN3v/+9+MZz3gGhoeH8YY3vAHvete78KQnPQlPeMITcNNNN+H//b//t2ZUMZvN4i//8i/xG7/xGzj//PPxohe9CFu3bsVPf/pT3HrrrfjSl74EYPlVH1dddRUuv/xy5HI5POc5z7lP2rganvSkJ+Fzn/scnva0p+GJT3wi7r77bvzVX/0VHvjAB2J+fj7cd+mll+L5z38+/vzP/xy7du0KKabf/OY3cemll+JVr3pVavlvf/vb8aIXvQiPeMQj8JOf/AR/93d/1xJ1/mXwnve8BzMzM3jlK1+J7u5u/PZv/zae//zn47Of/Sz+5//8n/j617+Oiy66CI1GAz/96U/x2c9+Fl/60pdaUtsf9KAH4ZxzzgmHTj34wQ+O1nXGGWfgkY98JF7xilegXq/j6quvxuDgIN74xje2tOeKK67Ar/3ar+ElL3lJeN1Pb2/vinel/qI4//zzkcvl8O53vxszMzPo7OzEYx7zGPz93/89PvShD+FpT3saTj/9dMzNzeGjH/0oenp61jSqn/KUp+CP/uiP8I1vfAOPf/zjW35rb2/Hb/7mb+If/uEfUC6X8d73vrfl956eHjzqUY/Cn/zJn2BxcREnnXQSvvzlL6dGgNfCy172MvzFX/wFXvCCF+CHP/whtm7dik996lPhFV7EAx7wAJx++ul4wxvegP3796Onpwf/+I//GM1gSFt/MbzjHe/A9ddfj0c+8pH4X//rf6GtrQ0f/vCHUa/X8Sd/8ie/UJ+Ao5HkU045xV/143A4HL8o7uNTmB0Oh+NXBn21y2p44QtfmJRKpdTfP/KRjyQXXHBBUigUku7u7uTcc89N3vjGNyYHDhwI9zQajeRtb3tbsnXr1qRQKCSPfvSjk1tuuWXF62vs636Ib33rW8njHve4pLu7OymVSsl5552XfOADHwi/Ly0tJa9+9auT4eHhJJPJrHj1yK+yjWmIve6n2Wwm73znO5MdO3YknZ2dyYMe9KDkC1/4QvLCF74w2bFjR8u9S0tLyXve857kAQ94QNLR0ZEMDw8nV1xxRfLDH/6wpQ77up/Xv/71oc0XXXRR8t3vfnfFK15+kdf96Lg897nPTdra2pLrrrsuSZIkWVhYSN797ncnZ599dtLZ2Zn09/cnF1xwQfK2t70tmZmZWVHun/zJnyQAkne+850rfmPb3vOe9yR/+qd/mpx88slJZ2dncvHFFyc333zzivu/8pWvJBdddFFSKBSSnp6e5Dd+4zeS2267LdoP+7ofOz9JsvJ1OEmSJB/96EeT0047LcnlcoEeb7zxxuS5z31ucsoppySdnZ3JyMhI8qQnPSn5wQ9+sOqYEuedd17ykpe8JPrb9ddfnwBIMplMsnfv3hW/79u3L3na056W9PX1Jb29vckzn/nM5MCBAytepbOe1/0kSZLcc889yZOf/OSkWCwmQ0NDyWte85rwCixde7fddlty2WWXJV1dXcnQ0FDyspe9LLn55ptX0NJq68+2MUmS5MYbb0wuv/zypKurKykWi8mll16afOc732m5J40/xXhEo9FItm7dmvz+7/9+dHwdDofDsTYySbKOEyccDofD4fhvjPe///143eteh927d6845Xb37t3YuXMn3vOe9+ANb3jDBrXw3senPvUpvPKVr8SePXtWvLrK8cvhuuuuw/Oe9zzceeed2Lp160Y3x+FwODYlfI+tw+FwOByrIEkSfOxjH8Mll1wSfd3Ofxf81m/9Fk455RR88IMf3Oim/JfDu9/9brzqVa9yo9bhcDh+CfgeW4fD4XA4IiiXy/jnf/5nfP3rX8dPfvIT/NM//dNGN2lDkc1mccstt2x0M/5Lwh7G5nA4HI7jhxu2DofD4XBEcOTIETzvec9DX18f3vzmN+PJT37yRjfJ4XA4HA5HCnyPrcPhcDgcDofD4XA4NjV8j63D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh8PhcDgcDofDsanhhq3D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh8PhcDgcDofDsanhhq3D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh8PhcDgcDofDsanhhq3D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh8PhcDgcDofDsanhhq3D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTQ03bB0Oh8PhcDgcDofDsanhhq3D4XA4HA6Hw+FwODY13LB1OBwOh8PhcDgcDsemhhu2DofD4XA4HA6Hw+HY1HDD1uFwOBwOh8PhcDgcmxpu2DocDofD4XA4HA6HY1PDDVuHw+FwOBwOh8PhcGxquGHrcDgcDofD4XA4HI5NDTdsHQ6Hw+FwOBwOh8OxqeGGrcPhcDgcDofD4XA4NjXcsHU4HA6Hw+FwOBwOx6aGG7YOh8PhcDgcDofD4djUcMPW4XA4HA6Hw+FwOBybGm7YOhwOh8PhcDgcDodjU8MNW4fD4XA4HA6Hw+FwbGq4YetwOBwOh8PhcDgcjk0NN2wdDofD4XA4HA6Hw7Gp4Yatw+FwOBwOh8PhcDg2NdywdTgcDofD4XA4HA7HpoYbtg6Hw+FwOBwOh8Ph2NRww9bhcDgcDofD4XA4HJsabtg6HA6Hw+FwOBwOh2NTww1bh8PhcDgcDofD4XBsarhh63A4HA6Hw+FwOByOTY229d544403YnFxEZVKBQcPHsTU1BTuueceHDp0CLfffnu4r9FooF6vY3p6GvV6HUtLS0iSBACQyWSQzWaRyWTQaDTQbDaxtLSEUqmEUqmEU089FT09PRgcHEQ+n0dnZyfa29uRyWSQyWRCGQCQJAmazWbLNa2jra0NuVwO2WwW7e3tod729nbkcrmWa0SSJMhms+E5flhXe3s72trawrO5XC7c29HRgVwuh7a2tlDu0tJSS7vYNtZF8NrCwkK4vrS0hGaz2fJhOxqNBpIkQZIkYRz1mt7Lv4uLi2g0Gi3t4bP8bWFhITwDIJRbq9VQr9cxPz+PSqWCI0eOYHx8HOPj46hUKmg0GmGekyQJY9TT04NisYju7m40Gg00Gg3Mz8+Hccjn82H8arUa5ufnUS6Xsbi42DKXvGdsbGy95Porx5YtW1AsFjE4OBjo89ChQ5iensa+ffvCuOm8koZPP/109Pb2YsuWLahWq2E8FxYWMDs7i8XFRSwtLQU6IF0DwPDwMEqlEgYHB9HX14eBgQGUSiVks1ksLCygWq2iUqlgYWEBANDd3Y1yuYypqSlMTk6i0Whg69atyOVyyGQyqNfrAIDBwcGwRrhOSaOZTAYdHR1oa2tDW9syi1hYWMDi4iKmp6exuLgY6IXrmCA9sV/VajU8q7QVo22OIccik8mEdbW4uNjyTKPRCOs5l8uFMrimtVxdz6R5XS/A0XW4tLQU1p6dT/6vY0L+sLS0hPb29sAjkiRBrVYL48mxzufzYVxrtVoYT7Yhl8uFsda2AUCtVvsFKPdXh8suuwxTU1O4++67A+/geCsvVR6iNEXovCgsT+SH35X/ct7z+Tw6OjrQ2dkZaLazs3MFHyf9AwjXeY11xH7j3PE+bbPtW6PRCPezrXyWtJQkyQoZpjS7tLQUeCXvX1hYCNf4HPkt155dF7VaLdAyy6nX62ENaf0sj2UtLi6G9a28XedJv+uYkA7sR8dY69Uy+ImB5c7Pz0d/vy/w+c9/Pug9Y2NjmJubw+LiIrLZbKC5ZrOJvXv3olKpYHZ2tkUfyefzGBwcxM6dO7F9+3accsopaG9vx8LCQqC54eFhdHR0AADGxsZw+PBhHDx4EPV6HY1GA9VqFfPz86jVamENsnzWRf2EayGTyaBSqaBWq6FcLmNsbAyVSiXUk8lksLCwgIWFBczMzCCXy6FQKASaHBsbQ71eR7VaDWOhvFP5r51b0rvSga47pX+u5/b2dnR2dmJxcRGZTAZdXV1hLZGOFhcXMTg4iFNOOQVDQ0MolUooFotYXFxEuVwO8mZqagrz8/MYHx/HoUOHMDMzE+ha14L2i7yku7sb+XwePT09YZxGRkbQaDSwb9++sCYpP5eWltDR0RHmOZ/Po1QqhbYXi8UwT3Nzc5icnAzzqHyqu7sbuVwOMzMzQYby2S9/+cv3LpGvgauvvjqM8dTUFKrVKnK5HLq6unDSSSehv78/9Jn0Sp4KHJ23ubm5UJ7yQur74+PjKJfLGB8fD3TM/gMI/FXXHOdCeRv1fOWfKheAZd6l7SC/5nf7O79bGae/q86hfVX9JkmSoOtybNgXyx8tr9QygGW5RfnDsQGWZQppqdlsBt2N1zkvLLdcLqNarWJubg7FYhFnnnlmmJ8DBw5gaWkJ+XweXV1dKJVKoV3UUbieyRvVflM7jPoO+6gywPIN9vsP/uAPViPRozSy5h3HkM1mUSgUUCqVMD8/j/n5eezbtw+HDx/GzMwMOjs7g/JJpsIBtQqAMj8uiqGhIfT19aFUKrUoBdb4VMKNTboqDgp7ne3hwNJIjClcVkhbJZTjo0Kd11iuPst67ZiQ8FXZ56SqUpTL5VoEgr3HKlDaLh0r7R8ZiCpQbCMFYL1eR2dnJ7q6uoKSRKahZXMcY0YbDatsNhueY1n1en2F4qjjupHggldmSmUgZgQBCEJxYGAA+Xw+rJtyuYxyuYylpSUsLCwEJs2xrNfrgQF3dHSgq6sL27dvR5IkqFQqQdGsVCqYnp7G+Pg4du7cia6urmBIzszMoK2tDaVSCTt27MDMzAzuueceTE5OBgWmVCqhr68PxWIRxWIRhUJhBbMBENrCcejo6AhrnH2nIcZ5XVpaCgZ8W1sbKpUKgFambBVZS/e81tHRgVKpFPgJlVt17MSMEBqYNNpZHn/T+q0AU4cRr6vyxd/JtKngUviStyn9NptNVKvV4PAYGBgIfa/VaqhWq+Hezs5OLC0toV6vR9fsRmBsbAzlcrlF8Fqj1TocY7/HDDzto657K7wpF+gooIC0jsYY37DlAssGsyogvJdlqSNDlXLbfpZLWaiKuNKRKlVW0Yk5NLmm1LDleuM4WkdDR0dHaKMdc3VC2TVn72efuPZsf6wiyD7acdHyWaYa7/ZZRYy3bgQmJycxNzcX1qQ6zovFIhYWFgK/42908iVJgnK5jEqlgoGBAWzduhXbtm0LTt+JiQlMT08HQ4cORxqy5XIZtVpthTNpcXExrAMq/AMDA2FO6vU66vV6cELPzs4G466rqyvQCGUPnc2dnZ3o7e1FR0cHqtUqkiTB/Pz8CscFYWVgzLHFNllHia6lxcXF4LhivY1GIzivKpUKms0m+vv7kcvlMDk5iYmJieAUoI5KOdDZ2YlGo4FSqYRCoRAcypa3KzhmHOPu7u6g/NOpW6lUWvgS9R3O18LCAgqFAoaHh9Hf34+enh60t7cDQJD92WwWQ0NDob8E9YJarRbkQpIkyOfzv2qSPm7QGUu6pnzu6OhAoVAIgSj9XQ0sOs5ID+oM1HVSrVaDAUTnZUyfpVylgaago47lWuMqpg/rPfyrtGwd6NomYCWft3LFGnL822w2g77S3t7ewpetfWN1JJVHygcsr6AcU9nC8UuSBIVCoaVNuVwOjUYDnZ2doe3UVdva2tDR0RHkL8tiH3QMrf3D8vVenbOY/aUyeD1Y992ZTAa1Wg1zc3PYvXs39uzZg71796JaraKrqwtdXV3o7OzE7OxsiIjEvK8cRDLvUqmEnp4e9Pb2Bm+dKgTWQxITcDEFSxcUn7cErQQKLC8YVX5UaVJFS9vFazppVqGy7bXRUx0b21/tnxrH2i/bTyoOhC487Tu/A8uLjnVYI1MVx0KhgL6+PlQqFWSz2RCJ1T6SBhhNZP0Wek29afxNlcGNQrFYDAyWQmdychLlcrllnKjIkbnQ8zozMxOEFI17jqk6gzjuPT096OvrCxHb+fn5MF80qKemptDe3o5SqRSE7t69e0NZo6OjKBaL2LNnD+bn5zE1NRWM7b6+PnR3d2NoaAj9/f0oFovBqURlQNexftra2kK0mIq4XVMa6adCUqlUWrIDbERJjUIVKFSsSRulUqlFkeezKkio3Nvogf6uQoJtVgFg1yUVkGKx2GJoAGgRvNVqNRj36hTgffR4Z7NHMz22bduG2dlZHDlyJIwP+9Le3p7KS+9rzM7OtjifYjwXQMsYx2ANH8uDrZNQo91qwFojVxVkfVbL4vxqPVSCbX+UF+nztm9ap83a4fVYhhCAoOjR2NRnlRZsJgHHTx07qqyQ1nWsta2Wt9vnqNTYvqqxGot26O+6hq1M5FwrzVDRtY4PrXsjUSwW0Ww20dXVFQxNZstQ3yCdNpvNwO84j6TbmZkZHDlyBHNzc2hra0OhUAg6xNTUVOjrxMQEpqamUKvVsLCwEJyapAOCzsyenp5glJJO5+fnUa1Wg5OTfIoGIstRIyRJkmBMUR6wjXZOlI/qnFsDQRFTZkkLlI2UM9RjaOxQl2g2m8HooWymMk7+3Gw2kc/nUa/X0dvbi2KxiOnpaRw6dAiVSgVzc3Mt0SxgORjB+UuSBEeOHAkZeTMzMyFTiHKWRimdpTRMs9mjkS+VW8BRByF5AjOwurq6Qr/ID/r7+wONMSq80dA1ziyEnp6eoP+T7jQqTh6mMl95nBq5qje2t7cH48k6oNXZx7qUnq2eDiDICRuQYrmWp6fp+oR1TFo+yP9jdojq3JbPqkORY6Lt1OCAtpN9jPFR60y1GUxqaFo+xt+pj9B5ocE51VeUR1EP433UHzTjSMfTjhPrID2s1w5Yt2HLNJaJiQkcOnQIBw8exOzsLLLZbEg/aG9vR6VSQSaTSV2E2plsNhsYU7FYbPG+x4SaFXjWm2KVrJg3WO+zDNkatvq/Kj+rCfyY0meVC7aPsEZ8rN/a35gSpvVY4RIz/O1c8DldAFZJ1HGh0cDoldbJNluhYedMjWpVWO38aFs2CkxPoiFar9eDchNTwrQf8/PzIdJIRYdpk2RsauSRqTCVm95rMvLZ2VnUajVMTU0FA5VR78OHDwehSSV7bGwsKAW9vb3o6upCd3d3MHCHhobQ3d0d1nChUAjtYUqjerkppJSJtbe3B0Vbo5kUyKQdTXtWZZZjBrR6MpWelP5IF6qQWSOyvb29pT26ligMVLkmHdMDyTZo/Yyis0/kcyoEdS4BrFgbqry0t7eju7sbzWYzKFoxnnQigLQQ40FpgjwNnEPLn2P9JR3rthR1stlIrS1PHXYxp6U1pLUfqjToPVb28PdYeWpgW4NQDUoALUY6y9Q61Ftv143eZ9cOsMxvuf7UoNB6dGy0nblcLtB7bAzsurXXYjSgMkaj0/a+EwHMqiEdanZNJpMJkQx1zqvTDFg2Qufm5lqCAuwjo3mLi4uYmZlBuVxuyWiiTLUKfLPZDIa30kC9Xg9bIhhl4fahcrncMj/8n/xJjXHSg/JCAEHXUxqy6yKm/yiUx6osZUquZs9wHNXBSv2MY6Kyt6OjA41GA8ViEZlMJsi2+fl5JEmyIuuKdAgcNc4ymQxmZ2dDxJcGP7PYdNxoALB9Gnktl8thPczNzQUneaFQQHd3N/r7+0PdNABLpRLq9ToqlQomJiZaUsE3CipHOc7MQNJtF9RplFaZTq8RVMpcXlfZqY5LNYQ0OAa0btuz/IjrwfJ+ne+YDaEGozVsY3q/6iWKmG5o9Xhto22LjrXtm+0P0GpLpMknayhrObyPRi6zyLT/auhq2eQxpBNdj/yd2S42CMj5jNkaWsd6I7frNmz/7d/+DfV6HTMzM7jrrrswNTWFbdu2YevWrXjwgx8c9l3+9Kc/xdTUVEuEJTbY9FRSqdY87DRlLjZZlkhihmzMi0NismF0eh1UgbKErEYusLwXlZPN/22UF0DLoibYvpiRqQw/FrXRBWUXhS4MNVrTQOKy9Whf+Z0Kfm9vb0g1tRE4lqnt1LpU4SRsytuJAnok29raMDMzE/ZXxeaMbVcPM9C67wM4mnZVq9VaFnE+n8fo6CgGBgbQ39+P8fHxoGBwP+3MzAwAYHR0NKSKHThwAJVKJXjYS6USpqamMDU1hXq9HtKZBwcH0dXVhYGBAfT29mJ0dBRDQ0Ohf5wLKjbVahWLi4shNYiCmW1X4cX7dQ6pDHd2dqJYLIYoBpU17nW1hmpMoFinF5V0PmdpnOPd1dUV1p2uP61HI2O6HknryoB1b7HeS+GczR5NR9X1b412AGEvGJ0Qo6OjOHjwYLiufT8RoGnRlj8rD14PrJMhZliy7/Tac91kMq2OG1W+LY3YsikcrZDkPcrv1+oL69c+WYNWz2OwUFnD+wqFQsvvzWYzKOdck6o0Kt2ql173Uyntkpa0DJVVBJVNKujqOVeZQvmp/F4VNZW/VqaqDFCDQOVlmjG0ESgUCiHz5fDhw5icnAwOLkZMOX/kExxzRi2azaPbEZi2uri4GPbE5fN5TE1NYXZ2Fvv37w9pszMzMyE9tlQqobe3N0SKZ2dnUSwWgxxeXFzEnj17guOVqbOUC4wMqp6iegLTaGnAJcnRFEXOC2mK/C2Xy4X9u6sZrjF9R0EjhTRPp6p1SpHm6/V6cK6zLQyqZDIZ9PX1oVAooLe3NxjqhUIBtVotZMgcOHAgOBhmZ2dRLpdx+PDhUF8mczRF+/DhwyEqzN/onO7u7g4GZ1dXV6B/0jadIWNjY9i3bx+SJAlytqOjA+VyGe3t7di6dSsKhUKIKjPbqdlsoq+vD/39/SdExHZ2dhbAsh6czWbD2Oj8kP9oNJVp9kyf5zrnOKszPZPJhJRyNbQY4eX/Wq46uJXmdMsA0Gp0raYbWxkVM2gJjaISlv/xOepzfI7tU4c/y2abuVbVgaRrgzYJv2t7NYCk42G3inZ0dIQ6yKO7u7tb6tKgHueBe8vJD9hmlRFqPJMGrFzULWNMf2bfmJ0Rk6MxrNuwnZycRL1eDwy50Whgy5Yt2LJlC3p7e3Ho0KGQ9qLKvEIHl2kGNBas14Cd0uf0eWvAptWlAtaWZxWYNMVsNQVHBbJes21W41SVwLSyY4oj/6oioR6YmGBRw1gXu45BzJBIU2B5jXOl6SJqoKynT7G2xqKzaUb9fQl1INCjbmEVW9tm0rZGaZQZU7lhFJzCloyQwoL75zR6zPZoxIeffD6Pvr4+jI6OBsO2v78f3d3dIeLLyDCwUsmwiiaVMRqtqmQDy3tpSFdMJSJTpxeWqVx6aIJGS2Njq3NBKCOOKcW8bqOwKlx0vmJ/dZ7UocXyVluv1vGmvEAVONKA0pcaZBsN2xe9zr/KOwCs+G6ddKvxQI43aU2vacqvNYrTeKtet8/EntPvtg98XulNr9ktLFqmCnydWxpAWgdpRCPl+pzSNZ+zGQw6b9bJoh8dX10f2keuT83Sic21NW6VPux463xral6MnjYSExMTmJycDNtKNKqpypyOpV5TGcKILA8kJA/jfPMQRe7bJZ/n/NBBSOOBjmX+TuOU7VQnBrfD6BkJ5M26h1LbzX4QlpfG5sl+T1vnVu/gRw+8JB9Qx7veS0cND7nMZrPBCGKkulgsBuWdEVEaVNxf2N3dHYxK7St1Wt1DanUmXSfqICWdsy+U8dzyU6lUcOjQoZC9yHnR9Gge3LPR0LG3W0BIS+rkVQca55O8zMo0y+fS9HaVIbYudUJbXqk0amlaaS/G16ytYP9X3pZ2v0VMtqhcUh6stGaDKWnlptk1nCvVEUm7Oh7ka1qvOlesLaJ1kZfb9lkbz+pCuo5Uxq3XoCXWbdhyrwe9h+3t7TjnnHPQ39+Pjo4OTExM4M477wynIduOshPsHL1TVKjVsl8LVnimpTDyYxUgbZd+V+JXJcJClX1Vcimc2AZVmJVoCO1vzDiNLWzuKWC/VDFiG3hNPTXWaLQKqv6uSr6OmVV+6JGk15TtW00ZoSIWE4J28VqBsJHgGFN4Wg+1XYix67oHh9Df9DRwHvKhgoPK/MjISEgDnpmZwdTUVNinwxRn9aTSoD3ppJMwODgYvP6M7FLgA2gRqBx/RstUqbCeWQrjfD7fYqxmMkej0DEjgUrb/Px8EGo6JvzLMbcMPeb1VEWe46/7b0jbus9HaZ/38j6mQWlanj14SmkkSZYjNTqGundSFYAkOXroCCPa3MtGL7SWe6LAeoMVMaeE5ZF2bKyCwDqYFUJvMIAV1/Q8Bq1LlRpbrjWGYx/tJ2lK160araQ3lWPqvVZjVsvVvdx2X64qkDRw+J110ahRJVGjRaQ1jZJYpUYVCa4jjpWmFhI2cqtjrt9VflhjmvVbWawKlt3eciLglltuwczMDPbv3x/2qC4sLLRsU2HbkyQJZwuQn+ZyubAXdGFhAXv27MHCwgL6+vpC5J38l/sq+WHWTLVaxcTERKCHQqGAubk5zM7Otpw0ynknHyGfBRCMOT0LgDyOfFb1CNXnALRcU/6m/ApID0Twu51Xq6tovXSik65Up+P9jA6Wy+UwHl1dXejr68PJJ58cDsviidDFYjGc0FssFgMP3r9/f4jCsg7KtO7ubiTJ0YMbuXeZ0XLFwsJCyym+zLrIZDLhkCseOMaT5qlP8Q0MfLZQKASedyKA9GFT7jU6y6wm8ig9HJS0aelEHRkx2rAGFuvSg6qUF3ItWL1D9YuYbql0aB2ThMqFmMyLrQF9Vv9nO1Q+aDlWJqSVa2UMy9G+q35E54QGHbRe1e+p4+k8UCeyEWHVG2Pyg7KUbeVc6rYCba/K2fXaAus2bE8++eSQJsMFy2Pn5+fnsWvXLuzfv3/FHhwOuA68GraqiOsHWHkAlJal/+t9SjSqfFrFRSdXiZe/WQUoRmzWI2v7q3WrYqVCXJVWu0BiHiprkCqskWqVHHpyLWNQ5cYSYkwR1f8ZfeMhNzp/6nnXsdM+WfB5jQBbpXIjQE8vlQzdu2mh85XJZELqERm6OmS4dyefz4e9P/r6F92LS2bTbDbDums2myiVSuE1Mjzoo6urCyMjI+ju7sbJJ5+M/v5+jI6OhgNEeFAb/yp929RbXbekJ2B5nxMNDDI6HjpAAy2TyQThpgYx9zdxzyodNvbDtGcVnGrE6lrUPTzkU+pM0TXEueJYcxzUEI4p71qGOq3YDtJubJ2qQcN6merJaHYmkwnRBKtUbjSskqCIeZItD1vLQNdsAzVgycNs6rF1WKos0Pkj7apDw/J0ayBbHq1bUDSdVuefxqwtz8oSNdoozGOGvmYN6Mmh1nDlPaoYqsJC5VxTzzievFcdPszGUKNTx1TnV5UpK8ssL+Q13Tqga4XzCiCaFbORKBaLQQYwO218fDzQlTr9NA0TQMt+QW7ZmJ2dRS6Xw09/+tNgODFLB1hWnsn/uAd/aWkpnDLPfajqGKFs133+pVIpjLGN2NoMG6VRwuo4et0ipqNZnmGVe8vHrc7Ae0j39pDRZrOJ+fn5lnMr1BnGcynoKGV9zDhjGnN3dze6urpCtFvXFICW0/05ZjMzMyucqqR3buEBEA4G4+v7uru7MTo6ira2NszNzYUDrbgVRTPhqFttNJS/cK2yv7rXVR0ldKToK+zSeB1loOXrur70XnWqqz6vjgaVDVb/V6gNoM/q3MaCMrwvzZGjzs+YXRRzkusaJJ9m33SMVU9TucRyWY+V2+q0ZJ/Im1T2qUOSskcj7uqQszxf28+ymHWgzrdY/zm3vCfN5knDug3b4eHhFfvYmC6zd+9eHDhwILw308IytGz2aGoF05DVq6KGk31Wy7NEpExXn40xY1tGjJFre9K8y7Yeba8u4DSiVYadpvTZcrUM+z1mCAOth/LwuhKUdQrEBJodE+0HGUlsHrUcZT62T1ax4f4ZewDBRoGKnj2BL01Rt7QFoOU5TT1lahL3XJXL5bA+KMBVkee4VKvVcNgTDQB6nXt7ezEyMoL+/n6cdNJJ4YRlWx6fi82pzqMqoPq/Ok1sxgWVcWZ40OPHSIIetMKU3JhwoSePShtTzGw7WTbH2J5urP9bBUqVfGXUdj+MrjOrqLM9NoMkTVCyDj15mv1kBgQN27UMwvsCaUqt5cXrEUBp9+gYkj5UyNoUXzUW11O35Y2rtc96vW2GjC3TroOYYaseaTUitS9Kz6RFS1dq/FHpiqWt2fVh5STbSKVGZbyVgXZcVNbH6rDyyCqY/M2WoQZymjG0EWDET/kPjRWVbap4ahRJDQEat21tbeE9tXqSrPZb+T3vo/ELIOyfBY6OF6O0Sl8azeWBRsor7WF3VgeI/Z92ba17YvMY49FEzBFkI2l09pJn6BkvbW1tISCTzS4fYMiyyYvplKWj2b5SC0DL2QecRzqA1Jhi3XrKM6PDs7OzIbNJX7XHrEgaELpONcK5kdA50HlRnZLjQmeNZgRYx5jKY+231a9Vb+KcaApymv6ssEEcrZ9tsM5N/uUzMeetfl9NX7eGLe+zOrbWaevnOGUymRWZdVb3Xs1moKzQjDQrr1QX4vhZvTd2jXWrzLP8T4MNsXmzQSCN8K4H6zZsR0dHw4Z9Eusdd9yBubk53HXXXZidnV2RqsUOaoPIhJkmaVNKgLiAY1nAygOYlInp/sOYV53Ko6YWatlkhDqxVoGOEbQq0bFFQ9h0zlh/VDHQML+2RRc70Lq5W/cqaJusQaYplnaMtXwbCdD0A/ad7xlliq6NkLFcG5UjKHyZTqsGE08T3kgwwsgshdXaw3bTMNWUGf2NxvLc3FzwNre1tWHLli0h/VfHjnPKfbc8VZHpxHw3Kt+du3PnTvT392NkZCS8LF6NWOvMYds5v5x3MiL+znnX9W5TWtTjxvfbUTkD0DI2enKl0kuSLHuqyTcYrWD5NID4igfuj2Ld7CP7ToWC/EoNSh4OkiRJ8DLrAVlUFHUfLNP5gOW1x/Fiv9vb21tOg9bURQDhtRLlcjm0k8+wHSeCYQu0CuIYb7ZrO0ZfagTxd1VC6XBhtgKv2XfWWq++Go4x5cEKfcsfVakiP9d77NohVjOqrYGoz1NW2eiCKowAggOYh/hwjem7Nmngauof6VodNHQYknbZb/ZHT/xVhw7vsTJpvQ7HNOVN5RflBddMNpsN/TkR8KAHPSi8D/zAgQPIZrMYGRkJypc9VBJo3aLEV7N1dXWhVCqhu7sbhUIBbW1tmJ+fx+zsbDjLpFartdStY1GtVgMt0gmaJEngMUoXHPeZmZmw9YR8zJ7or3qH7QMQDzb8Is6GtLWiv5PeuO7UeGKb2A7KYyr7PFkaOBplP3jwIH72s5+Fcezu7g7yhM5knTcesJXJLL/f1xpROg4xRw3na3JyMrSdfPzOO+/E7t27ceONN2Lnzp0YGhrCGWecgWKxiDPPPDPIoYmJiRCpV3mxkbD8u9lcTgHX8WDQS/VB5V1AKx2ofqlzoRFZ/s4yKJtV11TnunUgq47MOmKHLlmjmn8t/9KMANav7bNlWJnCsaIssNmumczyoYJK/7G9yCo/Ywa49tGud41w6xiqUavP6nyq/FEZoeXzRHKVaWynzjszG3X81QG1Ft9QrNuwZWe18Onp6aCUq5fRKhXW662nXFovSUyBS2O+aUI1pkjEyktTclSBsQpcjOED6UaCVfBYni5um16m9+lHy7LtWi16GOuHbUuaImrv175qeRoFtJH9WEpyrC41arhIafycCEw95hwgLM3pPFqBaMeOYFpUsVgMY6n1cGyYFk1PrypJQ0ND6OnpweDgIPr6+tDT09NiSMXmbjWkMUWuE7ZL7+c1VYj1kyTL70xTYaNRIxsB0Xp174Y1qMik7VxodJjCRPdyqEGkDJ+MXmlQnV8aYUlT9pVZ67rg987OzpZDwDgu/Ng0rI2G9tUKMbumY2s+jU9a76719MYim7aMmGJu22fnI62PWpatS+u042HXg3WSajuU56eVzWeU72QyR41POoy03brOlN4I7tWzThOrVNg2Aa3vQ+f9MXpPk7uxfqb9zvUXk3cbAc1y4Yfyif1QBZx9UGcM34Pd09MTtoXo+JGf6AnkSZK0OOHIKy0sPerzbKN1+vB3u46PR4nkc78I0uqx61TLt/yR17gONHhgo+C6bvR1dCofqIjzHbTcMqM652r91flkm2w/KecmJiawuLiIzs5O9PT0oL+/H4ODg8EJwW1DHJONBufEpqgCywEaXtMDy1SWW36hMj5Gm3q/lmGd4NrGNN0hTc9VOyQtMm55qeVdMT4e+646Ulo9ts02yKSBpZhsUadWrD8cU5WxSturyUX7XfmLnReVfbZ/2m691+rP1v5ZD9Zt2HIwVIk7fPgw5ufnw6EEadCGFgqF8H5OvssrpiDYTul1DpKeGmeVlTRFwv6m9bCtKtyVmGxk0y44Gz2wY6D3av44GYMessP7tA0xB4AuYNsHHTvWE4uCs35VKGNMRj1fto0UDEw5BZY9WsrM0oiT7WMEjIYyI1gbvccWaGWqMZq0HxsZ0XnhGOm7D/v6+oJAU6PQ1t3V1YW2trbwegmerFkqlTAyMhIMWx4QRYENrFQotR6uQZ0r1q9eUfaXBjZpSJUieqhJtyxfD5tgv/SkSk1fIq3xOumT40clxbaLEQz9kNdoGhqNfXsaNIBwUIka2/zUarUQTQSWlSeuHXqpud6WlpbCy+vtGs5ms+jp6UG5XEalUsH8/DxyuRx6e3vRaDSC0Rvb4rGRsIInDTEHEJ8jOK+avcPvdITa31mGpS8KV5Zr+aQqZsrPrWGs3mjl65YvWhliebXWZxUWe2CUbYeVGaQpVdYILT8WUVUZyddocI3pXlo9BEj7qPOlSpblhaspH6rsWMXH3sO2AK2npW4k5ubmwnYJZp3p+QTW4UkjmH2hUTs8PIyRkREMDAyg2WyGfbr6hghG3XWOYumclLnMZiCvVHnPtjSbR/ehMlOODru1eItdR4pfdk5iCr91CMR0Ijpr6RhIkqQldVhTgRk51PvIJzgv27ZtC1uCisViGEfyZNYfW1uxCJd1+ig/4MFQzWYTU1NTOHLkCO6++2709PRgZGQE55xzDkZHR7Fjx46Qqjw7O3tCnLegvJljqFFTYPkUaXuoE3+zUUAgbkxZ3Z86gjq/rW6p5dmAjf1oWqzSmq5ny5tijr/YGlAep3IlZvCupkvyd65/Zg5a54A621VP0jpsMI33alRYnRF8lvfZuSQ0G0HPxtE5ZBt1vNhmlqFjElvz94phu2vXLhw8eDCkYvIdakx7SWN46jnWV/xQ2Y4ZUHw+Rtj6uzVmY2UAcaJWA1e9f9oXe5/+pkSa5pGwbdbrVHhV+FDBsCnUts8sSyN6aihzAWrajip9ygysx12VM2ss2/ZTOdI6yCDYFqWB1YQjr1E4FYvFlv0mG63U0OBilEOVAZ0rZQo2jVwPEGEKWqFQCEJaPbRWWddnKdD7+/tDxJaHUA0NDYUILlMdgbjnSxkclQHOv6W7mPCwQonfaTAwvYYpw4TSKWmVTgCuJUZWte0UVFQWrUFtGbI1Kpim12w2gxOJ7dHyVfDx9Qvsh6YnN5vNltcwkC7YdrZH05jJ95T30bBvNI6+4kkjBIVCIbzYfqMR40dpfH+19boevszxt/vLLT+2SgDL55wyKq/lcqxtVNiWEXOKWugzln/bslYzkC1UqdJxVkcrgHBgnCrOVDJ0HNTYYjvsYS86N7puuC61XVbhYd1ETP5ZGrDRFPs769B3wG4kRkZGMDMzg3K5jGazGbYK0LFF45KvcWE/+H8ulwsH+/X29mJwcDDwpEajEbYk8Dn+po4zHvanBydxDui0U8dAbMxID9xSoQah1QVidLpeWbwaDVhdhn9jjittEx2UzNpR+maf+RuA4IhgZF3pO5/Ph/f93nPPPSiVSti6dWswcHt6eoKsnZycDHtiOfdWniqPV12R0WG+8WBoaCh8p7HAU5T1vfTNZjO8wSAWad8IJEkSdCHyZT3ckvdYfmWdfVqe/q8OdN2CoPfxHq43TSVXns222kysGI9nu3TerN5qbYDY2MSuxerQLCzVFWL36Zhrlg3p3Rrl2lfth+r/1tbROhUx+ad8QmWI2lDAsv4be2dtzFlGh5POk/6vPG8trNuw3bNnDyYnJ1GpVMJR9NzrRsXUNtQqwVwEeoCNDqAizbC1E6aKhEWa0LRtUgWHfdFFaCd8NcUsVp8+p8JIlQQ1Mkig2mcLXSyqmNOI0HK1vdbAsYtZBVws2qJjbxXBmFJnx9waVraPesAQmVva/N6XUMPGClvCGoAcP93/QCO2WCyG7xR4PASKRq8eVqP3sIzBwUEUi8VgEPMa72ObVjOKbHQrjd7Srlso7eoL0fmbjpGlRfs8x5AGN+tXL5/ynpgXU/cVMiUtk8m0RHU16muNJiopsXXSaDRCmhgVSxpTrMsKdtsHMmxifn4ejUYjKJt6KvZGwyq9ljco1hL+VoDbD/mLRjXt73qfVWjSZBHngHNilaGYsNfnFVpm7Lqtn+1cj9Ef+z8mE5lxkMksv6qK9EeaVzmj/S0UCi2OOo0EqiISiz5Y/m/vs+OX1ldd+7H7uT7W4mP3Bbq6ukLUTE915+nlzKThOSSWFslPGBXs6elBo9HA/Px8y2FQKoP13ArqTpotwnmjgWr33sX4IqFRN+tAtjQak9/6fT2yIQarN9mylUbo5Mjn81HnP/kFeTINUF5XmUwZwCDNzMwMqtVq2H/LQ6RI54za8vUnNsWW9Kn7FXWNdnR0hPTzbdu2BecG1xj3BS8sLGB6ejocdlWtVrG0tBSyrzYapKfFxcWQ1cQ5s1uTeG8sy0TpydIcr6nBGtNhdT9pGh+P8UzVra3OnsavlO8pDVleF+Pfdu0oHQKtp9nbABmj0xqxVb3S2j+2LmvH2Os2smtBnk7nmY6lOpXYB5XXdmtATIbbMWEbVefTdRTbghHDug3b7373u+E9thSEeoAOG2cjWfq/pquqhwdoJWr1dsaMLmtg2YGyAxFjniQIVVy1PYze2HfD2ciVehhtG1WB51/erxFr/q6pEyxTJ5uwhp4SHwnQCjObvqHQha594P8kYFVmVOnk/yp0rRISY2QxUEjzXXOFQiHan/sa1Wq15URkYCV9W+ZKQ7W7u7vFCaMKI4V1V1cXtm3bFg4X0VRslsFrNGz7+vqCAazRAht9SjOKrIKvEX5L67yfTFYVJruelPHqXjxdR/aIfjJFjZqy7RRwZHZk8krr1Wq1JdKrHxWQGl21a02NjjRBwTHm3PF9ltlsNpyaytMtuWa4XpvNo6+GoAe/q6srKFeMEDSbR0/PnJqaaonQnAip+ECcRwCrO0bSlORYtJQ0RBpP49+2PGvcqsGrdcWe1WvWq2x5nv0NaE1JBNASzeC9Knd0XPjdrjVVfnRsLP/mOgMQDt/QMbH8W5UzRkKZiqZ7O1Vx4ppTpUjXtJ1X/r+WsaNKIstJUyytvrARuP766zE5OYk77rgjGEIq57q7u9Hf3x8OfqLsAhDGd3JyElu2bEGj0cDQ0FBITybfnJiYaNGByNvtnFcqlZYMFP1dDStVwgnyvu7u7iCneACTZpnYZ9OU+TTYehVrXdf1QH2JkdqYw5H9ULrP5XLo7+9HvV7H3NxcoDfOGzNuisUipqensbS0hNtvvx3Dw8Po6+sLfHdubi7IJ8oSHlaoUWC+o9gq/3x1EJ0UfX19IfLM8zS4/ajRaODcc88N0XS2ne8q3mgwTdvqvtxGpgYY+6t0pPNrdX7qk6RDm1FjeRv/57hruTFjV6PeWrfysjQerf3Uugg1HDUDBljeZ21tgrR1pn0gTTCrI0mSsAZU14s5ePm/6llWRlvZymdYvx0z6n+WH1EHojzhlkQ67gC0nKtE/qVbTMjnGNDSelWWrgfrNmzn5uZW7H+LeSQIqwxY5TbG2HSyY2WmCUo7ObHr9vmYgqTPr6ZIpbUh1lZrJFqistGotL7Zz1r3WkMwRsy6AICVCzVNQbWKoyqMdlGpt0fLXg1UpMjk0iKk9yWUAVmmqFAGTlrXEw1jdE0HTLFYDC+UJxOgYdvT0xOYGBV+7j/W/YcxBTAtkqLM2ApjFdoxxmi9lnrNGpY6JmpocCyss4BjByA65qp4ax81KmoNLTWm0nhXmqCydK9KlQonnXMVOKpskbYzmUxI0WEKIuexUChgdna2xaBZr6fyvkCMlmLX7TP2fv1u10wsUhsT3rFPzBCN1Wev2batxnfTZB7Qmq6rHvH1jlea3EpTRnQ96JYFrodYmyiD+c5pRiJj+6g45upkjRnraWNq15Dlm6oYrWUMbyT279+PmZmZkLnG9FGbecO0ZD380DpC1HHe19eHvr4+zMzMIJ/Ph3eqAq3RW5WhNspuDQc+GwPv4xrjliJ1bKrynqar2TLT6NxC16Wln1g5pGt9p7VuUeBzel4LyyOdVqvVQGOM9C0tLQVHJ/cG1mo1VCoVZLNH96KzLZxjOi1Ur7VGWrPZeg4J6ywUCigUCsFBValUwvkbfFsA28wtMHQ2rVcPvbdBHUPlkfbdvt5HoTzIynT9ax2FMdg5jsn5ND11LVmha8/qR5Y32mdsm7Q/drz4v7ULlM9aHUptqNVSc9PoJVaftjlNJ7TtsQE36kHU26nzJ0nSst9a9b5YHVauqnG/mn5hsW5tye53tMLKKouqZFMQ0uMWOzSDnWGERQWBwl6LKR5WWdVnVAmIKSrafiX4NCMmTWGzE2CJPLbILVNXYrZt4X0xg8vWyXbpWChj1vmLGSEa6eXY8a8eIMQ67Z44ZQppzNn2nfuFNvo1PwQXl41mxhakHUP1BpLh6zMcx97eXvT392N4eDgIQUbsenp6WgwdLTfmiUxrG7DSM6cMm8xJGRGvWzrQedcUbe4LI88gdJ3qGFjaV4WFSgE9fRp90jZoerJlzMCyoCM92XGil1X5FueL9WmESg1/elR5fgCjunoSJ0+iZSSXB5osLS1hdnY2pL8NDAygu7s7HHpC5etEUGpiWMuDmiaMLM/m2DIyo6d4628xJ1pMiKcJ9WazGbIbeM0+E2ubdeDF+kUa1NdT6F7AmOyy/MIqxFTAeb+uC21rTEHL5XIhPVUdR+QXjPC2t7cHI439tNkp7DN5ArMx+D/vi0U2rNIZGztVZmOyMU2hvC/xs5/9DPV6HfPz8yE61dPTg3w+Hw7ty+fzWFpaCimzKi+ZgUSHbb1eR6FQwOjoaIhQjY2NodFoYHx8PPBRGji6B5d0QMMMQOpYWd2GMkMjPqQTdWBogIHlazlpMi92rz5j116a/kZa1G046kjgNcsTKDP4fLlcDlFajbyWy+Xw7lvK2SRZNm7pYO7s7AxvHThy5EhYjxxHrhONnmvqc6lUQl9fH0455RR0dXUFo3Xfvn3Yu3cvZmZmMDY2FozfkZERlEolZDJHo+qMIDPFeqNBXd7qnpRreiaEZn1YB49CdVTVi9IMNJ1v3aqgjn1r1OpasbKFvFb5tNbLrUF2HCzNqs6nBpm9h9A1q3yP0LVMGahZC3btWWdmGmwGGNeM6rW8zxq21Gusc4NGrNaRyWRQqVTQ3t4eMhhZn/bPji3nXvVRZkKtB+s2bCmsrXKrjSNU0OogrWWtx4SXnWhVMrUefjR1zXp+rPGksARima3+psTIflkDmISt/U9DzPCLGRBWUUgT9nYh6QKORU51MVoj23ojtZ1arjIwLVvHKU05Z736vBobJ4JSTyNDU2iBld49epK5kPkuUwAhtUg30zcaDWzZsgUDAwPo7e1FT09P2E/DD8uya0HngNDx03bpWlXoOrGHa/B5y3jojVPmqJF1emxt+aSbNLpNoxPSF9c+maMal2rcq5eP5XEMNJIVU770gK4kSVreCRnjCZxHGgmazaJMmDRQKBQCk+bc8L2JzWYzKMzd3d1BmVVDaSMRo4XjeRaIR0SpWGi02yq6ad9jyoXyqZgD1dafZnhbrGbEaznafipculZifWGb1eETu0/H0/JbK/Sz2WwwjqwjjuPMg+q4J5/Kg64Pm96vZZDO7TxoxoUdS36nImplqo6fjuFGG7Y7duwI6ZWzs7PBccc9n8oLFhcXW947zH41m0dPJp6cnMS+ffuCsZrJZDAwMIAzzzwTAwMDaGtrw8GDB3Hw4MEWpdrKGx0TqyvoWtU5UAcSnTwLCwvIZrMhcmjXjtUBFPYeW59+Z5tjBos1dCk7S6VS2Jeshy/SsNV1p89TWQeA3t7eEGXPZDLBeabp19ns0e0kdOpQVuvhaSxbUyW5LnTLi64vHu5YqVRQq9UwPz+Per2OarUaXpXJ59X45hiMjY1hYGDghDBslZ45j8Bylp0NkADpW3wsLZDeNDLPe61+DrQehGc/+ps6OaxOzGvWqLQGp7VVVuPH9qO6lO0Pr2sd9r3K7KuVB8qHdRyA1vcCK+/XNtn/V9Mldd5ja1vbr9vEMplMWEMaGNX5t8atde7yf+rP68FxGbYUMBqxYsctwa7mldHnrDEXm9BYOaxDJ9QavDoZsQmzhGkFgT6jAtcqTpYhxwjfjpO2wxqP9pq9X8duLWGv46LGtrZXF4idW1uHFV42kmUVcCsI05iUNTRU0VsrKnRfQA+PsnOlc0pFQQ+g4Ljqce06H0xH6+7uRldXF7q6uoLSQcNWD46IzSHbo8qO0lLsu8LSv0Ze9B6tU8ulQKYSb9OQdM5jytFqTJO0Sd6jHlo6CdSwtemUGlGiELBKOvkGM0rokebhIzq+VkDSmaFRbRVorDeTWT60St/7zb14tVotRHGHh4eDgsX9wxuN1XhN7DdLUxYcS83wiKXSx3ip8h57HViWJWllpX3SlG5bvvbZPqsHgykfs21WGooJfS0nNg4xHqr1Kr3RuFUa5pqhAt5sNsMpslwjpHXStpW11tOvc7Pa3Fs5a3mU9nM158R9iW3btqHZPLr/a3JyEuVyGTMzMyu2gdBoZPSWY8d5rlQqmJqawsGDB1Gr1YKsKJVKOPnkk9HT0xPkDPfbx4xGO74xpVp/U4NAXxPE+kknqg/o86r7WTlu2xCLetl2W4Vf78tms+F04u7u7mDYKn9mBJx0Teeh0hDTkzUDgby4WCyGVzgBy6+K04iunupvlWwdYzpSVR5oijpPO67Vati/fz9qtRqq1WroK2VAo9FAuVwO48q5mZqaCs6njQZpQUH9xmZqACv5lv2ftMb/GZFUGuJ4q7GrsiKmyyqfUx1V+X1MtivPtoZt2nhYI037r9FgXQPK85R/ajqv9lXlAMectKa/pfEFPsO1p/No7Sdt/2o8Re/RQJ9mCanDJk335DjbfrM9MZpbDes2bGkpr2VIxRoc2zelRK8EQQJUAyumwOh1G12yzId7XvRF12REGuHVvlnllMoon7ftihGxEjknlb9b4j1ekNjtQT6qaMS8Z2Q8VshYBs2/sUURI3SdC3uogrZ5Pf1ieUTM4LmvwVQm7bMyGApcPRSCz/FeTcGi4trX14eRkRFs374dQ0ND6OrqCu+ZJM1a544qKGmGoMIyzTQjxCrXWqamVtkyY8Y06cAqrPq7OgvUgWEFIumK1xmxXVpaCrQeU5Rjjhor0Ki0A8uHG9Bw5hjHxo5l6CmZVJ5iyo9GwfhhKhwVzc7OzpaDSlTorzcF595ETLlO+z1GY/YZdYpZ+bCaccnyVcnW59L4jqUn9eSzHdZQjAl6276YscfvLDNtP1Sa/Iopf9oWRkv1fqsAUD5wLVLZUKWbY9jf3x+MYG0LaZs0ahV6baOm91k+kaY3aMZF7H418jfauTMwMIByuYxyuRzazcN/9L2qTPFltgVTMxuNBubm5jAzMwMAuPPOO8P2g8HBQQwMDOCBD3wghoaGsHXrVgwMDKC9vR3j4+Mtxo7yEKvs2TVj9Swae3SUsgz2ge/PVgcdjUM62WJZAJYm1PjV+hX6iimeG8H3uDNllwcr0klMOqAhq6nIll51nVOeViqVMJZtbW0hxZjGLaPB2WwWfX19WFpaakljpkxRnVXrYr/m5ubCmhgfHw9jorKVdKKGG3VOncfFxUWMjY39QjT7qwb5jt2WSMcsU9rZfs0AUR5NUF6qIUr+pOnOmvaq8lthDUCde8tneZ/K1ZiDRmmWz7Mfqleo00THB2jNRFO9nFH6NH3MZk3EDPGYzLD6mN1SkAaOvb4aS9upslbrt28KsboedaNarRbaSR7CYI+VO8rvtQ3rNW7XbdjGLG1LCPb/mBGg19M+sbpi9cTaovVY76L+rm20BKN/bWSaZayleMXabNtujQh7X0yRjCmHavit5rmJKX7aj7R5S6s77ZoyfdvHmICLjc1qfd4I2ChgGnS89BkqZ7ovkx5nHv1fLBaRz+cDM9ZIFsu2dQHrWxOr0b+FXcuWjvi/FRS2fH0uTcFJo5E0g91+bD9VqY4JgbQy9XkKICoZtv360SwO23fbP9tv1sF9tzREmO6odKD7g04UrMe4TRtz+321T1odVqDbdsV+s4bzWrxtPW2KXddravBa5U7lXVq71VDWazH5wDHneqSSwtR6vV9T/JnSaV8BZPeYc33F+IY6KWgA0KjW+bLQ9Wn5U0yp2yjwsB/dHkDlWQ+L4hgVi8WwnzKTyYQME44rT/+vVCqYn5/H7Ows+vr6MDAwgJGREbS3t6O3tzfsTaOTVLGa3LT3cfxoQOobHxippKNQnZL6nm3Wx/m1RnBMTsTap7w2k8mEPa5M22WUltfsflo6k5m2ymuaGaG0w9Ons9nlU3cpkzOZ5VeT0Kgi36XSzvliCrLqUmm8Xf/XbAfNxIjJS6srr0fvuK+gbdY5t07/teS66vpqKFkewnttZNYGhdJ4elrdsX4RMf03pjOn6bKKmE4fCxCRfrUtlo5jfbLtXa0d2t4Y3cbqUPpdzUm5WrmkD57jkMlkVhwyFhunmA653nWwbsPWVmKJSJVdywTtYtA9eLE61rPgWS5hvevqobbeHk5wLEps26OvGtG6LNHRuNT7LEPi77ogY/1N80rY1CAdc5t6aRki+8i6ta8aZdbydVxtdFyhY8FybMTa3m+JNbaItX2x6/clrGFr26NCnpF93XNCuqfAXFxcRGdnJwYHB7FlyxZs3bq15TRku9cwbQzS2qPQ+SVj0XliOZbJxj66tpUe9RVPmn4Xi5amCYTVaMz2WQUjhaOOtY3yr2UkqeLMdU/eoDwFaI2W8TrnWrMVbHp+TBA1m01MT08jn8+3RH1nZmZQKBTCgTQnwjsMCWtkrCboVnte59oK8xiP1bJVMdXIKKH8LqYwafR8rfZq5If3WrrRMSHt6UejFnof+UVHR0dqtNpGhLS9MYVMI7VdXV3hkBFgOfOKyr5GSpgdogYv39PKZ7jn3EaftMyOjo6Q0mrlQExxt2Om960mD+9r3HbbbVhcXAwn2cYMMhpPnE++qm1mZgYLCwvhNRdMSWZa8+HDh5HL5bB3714MDAzgnHPOQZIk6O3txZYtW9BsHn0NWNq867W1aJkn7/P1ZEpb5HsxxbRer7ccNMY+1Go11Ot1VCoVAOnbqNg+1sexowGvacfcX9vW1hZoWFONm81my/vg6TjgPjyVQVx/PT096O7uRrPZDNs+2G/NVlC+QUOXOiuj79yfmyRJiy5rs+R07dv3TXO8LWKBCjpMNhrKm1UXYH/IT/TMDTVM+b9mBOp13ftNPqK8Qek1Zo8oLes8xgwnoDXt19oFLINgfRq51Wtr6airpeNq+epYsfZFzFCP8dfVxtv2UedJ7aFcbvnwwdgp7Npn1sF6OK5sw8LCQnhXdyZz9JRy+4Yd1Zk4FzYCv9418Au/Q0IFD7/r5KiHKmbUWsOW92n43XbCGomEMgJVlKiIMM3FKkuWGK033dYV8xpZo9sSDdvH52KL0T6rBkdsX4CWxzLteOgC1HrVANE67Zja60qk1hiyBl9MgbdzuJbRsR6D7b5EzKi1fdOUDd2Xw2eYbkth2d3dHVKQmX6sKTKajmpp1dJdbJzsbzF6t8onv1vFXOlSBQDL53dl3kozds1oG7UstiumHCnT1NOlub9Vx0XpUveR6LxZ5c0aw7GxtmtY+xGLaKXNi44F+0WjloLAbik4EWDXqo532lrnc2uVqfQZ4yd6v66Tte6xhiVhozqx8lRR0MiC1hMTuDGHYKyN2m/9kI7sfTq2MV6r40Zer8q0lsuUd26hoDHLKC0NOCofLJP0aeeJ/9MJYPmIyg3LC3iv8ssTQZFXzM3NATjaft16UigU0Nvbi76+PpRKpcCbaIx1d3ejVCoF44/OgnK5HIxFzk+lUkGj0cCPf/zjwP95wBSdX1ZJBeKGLqE0rsZDqVRaQbuMzmodmorONgBH6Sefz4dDlsrlcjhDItYOTTFlyi+vlUqllnf6co8yx5iyUfvE+3QNkD4ZqNBDT/k83x/Od8VSpvAvy1J6Jg3zkEBrfFp9L7Yu7Yn8+ttq+k8s8LBRUD6i65p0ommpurY5NyqvdcyUT+pc53K5lmwTe+6Ajp/yWeWNlp8SVu/WdWB5cUzOxXif6lEWMTuAbYjJeDXq9BWDVq+yekysjZbmYvdbvcXKY+uMUGgZ/NhMiljEVh07sbHTIF1a3TEct2GrA5m2IDmB1lBUxVTzvvWebDYbmJAl0BiUoLSNZHyZTCbqDbflxq6v9nuaILFGQkyJt9d0fNSojSk9tj6WaduqC1WV7ZixG1uINuoVU2Z5X0zArkUndkHasYwxjY1ErA0xGtBN81QWlbZp2FLhOemkkzAwMBCUDGXQNmUpbR3Yubf0EVMQlZb0YAaNxMTWLhkWsLw/hnXatDT2xyq42gYVjLZdlm7IWzR9hf1Tz7FlsspPYkxd+xgbYzsm9vm0ObJrx44r28N2arREvZnKEzYSMV7wizzP/2PKh+VxaeMac07qXKoSYJUeIiYTYvvWrQFs20WjWemE6zxN2dJ+WNqK3ZvmdLVKF8F+0JnG9ZnJZMJeJ9K73eNMY2BmZgbNZjMcoMa1bxV3lSU61mn9VqVH16p1HKfJ2I3C/Px8ULS5J54pst3d3SEKSuOUhx8tLCwEA5DGbL1eD9fa2tpC1JPG75EjR8JeWDoYeNqyHs4XM2wtrLJK+UPD0tIueaam7OrayGQy4Tee8r60tBT6yvZaWc49yDReNbWYspKpxXpeRWdnZ2g3+0GHjGZR6DioY0VPNs5mj76fllFXOhPZBxrp6vxXemRb9GyTmF7HNll5pOBY22van7RrGwV7zoSVYdY5oH/1GZXFek2jhTrPLFPPvyDI4zQzM+a0jKWps30x+a73qo4DpL9KxxqolsepzsN2xgw2rjfew35rGVaXse3Q6zH+oLrXaoatnWN93o6h3sfnqRdqKr8GKFT/srqj/navGLY2JG//pi1EVcz0o8Qfi9BahUMJP3aQREzJtMZxTBmJ3Q+sTIu0SoatVyfSRqXsK2t0gejYcnEpA7fpFLaPsQXG+zTlTgmF7ScRqWeFhg73/SkjUUJjHSRaTbHQsTsehdzSUUwYbBTWs6DSGBqhaX5bt27Fjh07cOaZZ2J4eDikC2az2eDRVrpQpqx1WIYVU5DTPL7aPs6VPqvzxzXLSDQZDe9Xj7euJSv4NQqgirClUctDtH+qXOuzyszVUGT7tD28P2Z0K5PW6/aQBPU8W4OGfdY1GIsq61wwgpbJZEKKHw8hWU1xvS8RE6r623rWiVVgYjxOZYsVstqOWNtUcWE9dG6q/GC9dk/7anVYA1nLifF0vT+mULHemGKs7dCxsONAnqBpdVoXt0Bks0fTP6vVastaoeNHD1oplUrhtTZMK6YCqRFZC0YE9TwBy4difUzDavR2X+PQoUPhMCM1vrq6utDf3x8M2/b29vCeah64RSNqfn4+vJuWB6jMzc2hXC6HPbx8zRffmcs9vboVIs1RtxbsmtO9jAotS/moXSOUA4zIqAM0pmxTT8rljp7ETbrQtwlwbHm4khoseuJwzHBRXYV10AnB+/SkexqpqqNZ+uV9PCCM64mnHPO1Txwn7bvV6VSWs1w77toHKxc2GhoB1/XNOSGPIG9QWtB9zPqsGmw2ywY4Og6MzMeMLKVlQmVJzDFtaVP5pjUGtQwbjbZtiunlGrGOOalVfmQymZZDLGP2j/bLImabKN3ouuU8xu7nh44clcOcR7WNOPdq+FsHKCO0mUymhZ8pb7HyTYN8x2MLrNuwVSbChthonR1EO2CW0MjkrIEcIz7b4Vi7LAHEPPJp7QJavTyxZ9dS5rTt+owlNv5VpT+mTFmCXE1wxcZ9tWsxBSlWb0zhski7JzZuMWEc65vSwImg1BCrzYOdr5jXkNd5QAb3FqmBFtsbomtlrXnVa7F5teuR15Tp2nv0XnVQWcauazg2TpYHWMXXOkRiSjw/GmGOjUeMjldTrNOiYrHxTHPaWOHI5yzNWwWG46rjyX1tJ8KJsED6mP6i5Vj6TJsjfS723a4165BUhckafna9aXvS1q+lg1h7VvvYPqTRkpU9KjNU0WUbNMph266KpSqmsTHkqeNMq6Uyr28FSOMtVvbG+pS2XtOw2m/3JWJnBqgSquPP+9VwpAODxi73qwKtNJvLLR8iB8TXhZUFa+kHymtiupEaeryPn/b29hblnI4NlhvLOInpVhpppqHIOtRg5V/uK1X+oA4oXQ8Wum4svaryrYaZBicIG/nSOdS08ExmOTCgcilWZmz9pMkxHd8TZR0A6To9/4+lzPNjHR+WTmJBJQ1EWRshTW7ba7Hxs/qUnQMrt2PP2z6kjZVtm8IaiSqf7P1Wb7Bt07GJyWxtk36PtU0dv3bOYo5KO9dWttu1on2xsiTWzvXiuFKRVenUhsWUtFgnVaBqB1l2GmOxii/LUo8OmaCmf+n/lmFbbwKAqAJpFR29n79bw1WVKMtYNWKtXiotS+ukcFPlRv+Pjbm2V4mJiybmwdIxzuVyLa+CUMal46BCPtaWmCFmlTSd45hyaRfAiYqYsKLX2Xp+M5kMent7MTg4iOHh4ZZUKzKSmMCz85amSANxB4r1GlshpO8w1HWqkQIqKDGGo3WTxtOEge6tYJ32/XVUINheKhVal50DjmOSJCv2i5G/EKqcWYGikWWWzfJ0fHQOdB0DR09R1f7ExkHXs+4ZBhD2rfEglY1GTHkA4ilnq4E0bg1KlmF5RqwNOu4aebL82NZl5YNGr2IKqCr82l47pzbyrwaApREdp1ibtW7+1XdoZ7PZEO1SmmZ9esgO72G9yldUtqi3nCfmMpNkfn4+GC6a0qkywxoJVIZivD+mgNq/li5OBMdOd3d3eB0N02R5YnGSJCESqPTEcaEhVCwWQ8SWr0dhSjMdCvV6vSWiogfocH0ojzxe+ahp52wvx5rpyRr9sgaFlSWE3YaSzWYDn9dXt7BM3Teo61h1Pa0jSZb3aaqBtFokh/SjUWa+X5hrR8dZ6VP1NU2npCxiRJn9VIeEpiprpFrpmWskSZJw8JbOLb9bWbORUCcH28XDupjGzZRT/q7RXMsvVLchXaljg/dYPgogrAu7FojVZK/Vk4DWrVVs01pIktbDw7TMmO7MulWH5neuST0o0jp2tO3UX2JGotpKVt9W/U+f17KVTskXOCf1er1FD1IHnAYkWCYdPerYsmOvY6O/Ly4uhnE5Hh63bsNWw+I2qhODMkEdWPvR+5VZ8Tn7vzJ2ZYLKHK1hq9dtCnJsUK3iZO+1XoYY4aUpgGkGnC1Px9aOn96vi1p/U6IGWg+h4n32nYSqeJGBqWFjlU+7aNK8jnYMdCxsv+24pKXpbSTs3FqmpXOoY6fOl56eHvT09IQUSaXptHJ5jfSjcxpT+K3BERtvoHX/rF2Hdq2S5qyCag1pfT+Ztj3mFNNy2TcybXXEqBfY/q9jpX3Q8bMGT2y96xjH5j2TyYQIluUrOu66hqzRo8Ldzi2vqeKY5iA4EbDe9Z421jEenMYTYx+lmRg/jtXL+bFp0PY+/mUanN0iYtuu7bDGssqetOhsGrRuK0Ns/y0P0fr0oB1NvVSeos+VSiU0m0309fWFvZP2Hm2HGi0xwzbW3zSepG1abWzuSxSLRXR2dqJYLKKrqyt8uFdUHZNq4AHLyqSOF+dSDSEqclTYub8wm82GQ6dogAEr5bzVD1i3XrNOIHtIoXXyxNaX0mNMx0jj48oLY6mWWp9FzPFknZ1WD1pNzqihSmeQyhNVplkXDXTVTdVJoIfi2ECO7UeaIaBtT+ObGwWrfwPL76JmijHHrdk8uj9f04hVPsYCLCzbGqUx/q0yPSZTY3Ld8ncbhOJ1oNWhE5Nzdu3FjFhbTqwMu/a0z3ZtxWSHlSl2DWgfYnqSnQ/lLTpuvK76l35IA3xGg3eW1mPjY51amczyfn/S23r1oOMybAklTksMMaOPnbKDYcvQgVNisxPFDtoT0qxwVyOWDNwqJHYBKFOOKWCW2eiA64LTMdLn0hQo+z1m+Os1Nex1zDQSbdvI6xoptUo3CZMMXD1LCl0IMQK3fbQLyv4eE54nAiNPgxVEMWam46se6ra2NvT29qKnpydcU4bO8uz6SjMCtU0xAaCOqBjNWYPTGrpWAKkhrjRPWMNW08bsulf60/5Q6dH1GzvBUg+S0rVGRdKWy7+xfWWxMY7doxExq1ipgKRSSm9+jMfYetkXKoLa3xMBOteWb6/1/1rrW+naypUYYrw6xrOBVmWS7VEFf7W50ZRInVs+p84I26Y0A9Tyi7X6qelgdqysMRJT9pIkCREmRnDZdjunbGOpVEImk8HAwADK5TJmZ2dXzB/rtQplmmEb62caTdjv61Vq7i2USqVw+FFXVxe6u7vR1dW14jVJ1ogjLK/jWNMI4v+M4jFCwsO+6IzQAwqVB1sF1PJlnS91vKgepTRk51nXik1FtnUoH2c7Y3IkJvNYjl6z97FMGqiKTCbTIr8sn+J6TpLld4irYUvjlPeoE5NRWWYukD+Qn7S1tWFxcTHIK6Vhq9hb+ojNGYAVPGojoX3g+tbsJo3KM5qbyaw8bZ6yjf/rfCt92vVP+rbjpPxPDSx9VqPChNWLrSy3em+a4RyzU3hNI6u2HLWrYvOshm2s3zH60r7aMbB6pa4R/d+OkwYPdKsF59G2s9lstmT3aF9i7Ve+FOMtnIv1roHjSkVWhTHmOdCG8n/13miaRiwKpNa9rVfrV8XHTrYlXkuAyqD44cvJlZlbIosxcBUOMQNWCYjPaJuVKGj4aBtZhzIBJQQ77lZAqFGlgiWmvLO9MSFlPUm2T1qvjfrZeYopJ1b4x+o/kaDzqNfs4uN4MCqby+WCUnTyySdj27Zt6OjoWGFUWoOR5Vmlg3XE/o/NrW0zf1NmpHSmyheVYDV69Zr1VLK/Gm3VdCqlldi4qqEXS4tWPqS/MfKRVo+l50xmOcVY6VXXgxU2zeby+4Ct8cnUK37nKYD2JPhcLtei0BLcc6frnvzhREIaPenvOpZKl8rDYgqCfUZhebOuBRWOOs527KwhqPVpqiPL51YBvY/fOd8qD5T3x+paDTQ6tY/8rk4wVQCt7LL18D51VtLZQiWe5arCTkN4+/btWFhYCIcZ6T0xOaROmZgsX2scYnObpm/cl+AraJiKzBRinn7M/5mpoWOjjjn+ptk67OfCwkK4Fzg6Xv39/WE7AqNifAWQXS9php7+VYNWo4065qRDPpckR1/xRBonLervtj6g9RA1LdcqtNpm5aP2mirQVqnX8aZyTHmg69Q6AjgWLM/un+W7a2M6K9cS9VvbTuuA1bbxfy3H6nlct2n88L6GOpHVwUwDjunB1Wo1ZBZwS5byTI6JNfqUh8b0LGClk1JTgWOyJvZbTK9UHq+wBqFtm+oOqitZPc46fI5nTnXc0/i8RZrxqgawjq3qgTpOfF7tJpbLD+dAsxl0q4vVuaw8pB5mHaUqv+8Vw1ajfGlGymqV6qDGlFo+r4zHPp9W11r3r6Y46YmYsYVg/08rN3Zv7Dd93hqgWqYVeGkKn/WCrNZ+K4jsArHKUewT64fCMoE0wzbWttXKPxGYumI1pqlKLrCcLdDZ2Ymuri709vait7cXXV1d6zZY0pS9GBNOa2fab1puzMGk9Gih6zpmqKYpPWlrPe278gytxzLsGF+xSrEaBjoGNDyt8LJjqGOm+/KVgVNBUkdArG123lRxUt5wIij2RFof1vo9Rm8xAZ1m/KxHmNuyrQKjdB4r295rHSH6PBWatDXEcu3fNN5n15uWSwOW99FA5W9WcdD1ocoWjVmgVZbzd0v3bW1H3zHKD/dYxWSfnd8Yb7M8PiZzbFm2TxsFHhSlp9Zr+rFNP1cF0s4TnwEQIrM8qKvZbIaTlSk3AATnAk9YVvrjHOrfNKTpEqutudUcFFY2rFbOWms4zYiI6XixZy1NqjxbrSxdZ9onjT6qEccorXVk2/5TF1B+bnl82pidiNAoqxryauBo8MryT9KsjY7yb0wWrKYzpunIMcTkj9axHvmS1k62xQaAYn2L8TaOqX639K912fuAlSnJMahcsNds29Qg5ydJlrPU0uR4mu5Pekgb5xh/sGWuVw9at2GrJ97ZvZnaAIUqa5lM64E0TPWwnrbYoCjsQLN8lmOZiAoQYPm1JCps1AtB2IVnGaIlKn3PlP4em2zrQdE6rOJEb6BVerSd+jw9umqccM5syibvt9eo0Ghk3iokdr7svCsDXwtWqLBf62U09wWUMbO9jLBrW6mAFgqFcB/3ZY2OjmLLli0YGRkJ76+1CmnaOFsajNFijClwLvU+LVvpiREdoPUVD+w/+0naIE3R08z/NVOA42MjZ6RT3s/72C81GKzQpFdY+6Ltscq6vgZFIwM8zVQPsrLjmWbQaxn8XelBIzMsjyls+tqkTCaTehiX5Z8nCiyNxcZnNeOWa8Qq+paO9XqawLMRoEwm0xJNUseDRj057pr6ZOu1bbOC3maXWP6t17XNdg+sevZ5TRViPXWXbbB7JK0M0+wKrlmVRTyV1yok2Ww2KKX83tXVheHhYTQaDRw+fBhLS0thv63tG/m4ZiesBus00Cih0svxyJN7C729vcE5yWi20jPngdC1wT7yOfI+9o33qPPBZvFYvaFer6NWq0V1FSDdSWgDDMoTla6UZ9vUUD6v2QUxfmXljF5X54xeszoNx8bSE9tg9Rhdp7bdrEONBsoJAC3rjHPT2dnZkoGjr/upVqstckzpP0mSENXv7OzE5OQkqtUqKpVKaDOdRHYetK08lGy9TvB7E3ooFg+NqtVq4TA0RmqZBcKD6LLZ5YPE9MwI65yzerbSP79bWa5OxhidqI5OWOcT77MGrtVj1Fi1ZVmbxNZvdW2FpXU+p+neygutbqi6BHUe1qV0Y9dlDORhunYpR9W20Cw863TV/jSbR9OSFxYWQtYJ+6myj/JY26An8du+rIbjjthyYmMTrLBWul6LGUI6iGkWv/1dFUdrIOhfbbOeLGkFZaw/yvxiype91yopabDERoIAWvP+08bVKpRapxoKaSky2tbYQlYDXNtshQSxWsTMzh2vxebajs+JotBr262iHaORJElCelqxWESxWER3dzf6+/sxMDCAYrG4IsUoNh5WmVDlhs8ogyA4f/zfCkZbho6zCpvYWoy1wypN1ktu+6b0GPPi8X/17qoSok4yftfytW2aYqN95HPKyG07+Kzto+2XFQZJ0np4FJ/RtE8VmlquHYONVuiJtLVo18Zqgjtt7QBYMc5WSSXs9dg6tOVaZV+FsUJ5nF0zes2ud8sDYgq2tiW2Nli/lmMNDFV+9B6rJKiyw3rVYKAxxleu6Gmvdr1lMhnk83n09PSgUCigXC6nji3HlQbaeni7Kiw6H/bZjZYF5NlMN7ZndtC5Ric3sJLPqnNC+RM/jN7qKcJUFJVfNpvN8D5i3fPJetJkMH9XKL3Ze4GVmVwxWDrmtZjTkvdYJ6SOEcclVibLs3WrvLNjH9N17FrnX+XXugb5rDrCONfccqJzrecrqBPPpljbcTyRwT7G9lUy64A0SVidQeWnzr/l2bGgiuU1Sg8qCywtx2SEwuq5aX1PM5wtzVmbJybvYuXburRNVmboOFpHqtJiGg9Wfcbqk/oc+6PyLPbR+6gTkW/xRP0kSVrkjo5hzBi3W+PWuz6O27DVgWGDLFYbUB1Iy/S1LqvcWMLVBaKMw060rZcLj0qnZUYWVoGJ9dfeG9tbZMdDGSl/i7342D4fYwY6Zsrc1QCw+/liXnASqI2WKrGpt0zLUwVexyPmXbLzznLsHFvmt9GwCqdVMpVO6Ont6elBV1cXisUient70d/fj8HBwaAkabmECjuWp/No50PvBZbnXk/P1MgU70lTflS5UDrStWiNW/ubNUgsT1CD1a5dXZd6n9KnjRSrMqLtYV80mmuVI/2uiqrlI6xDmTj7ZJ0A2Wy25XUFrIseen2eZdCwsEoYf9toxNai5Z86vpZH8Z7VhHuaUqplKqyw0zVon9F5sPzXti2mIPAeGznVtliHkL2mvFUV95jilc22ni6s/dT2a9QMaFXyyOdt5o/SZy6XC68bAVrf18p6adjyZGA7R9oulcdK/2spl/a7fWajwVTsfD4fDFD2U3mSlckxvmoNA9IJ50Rft8dIFIBQPwDMz8+HedNTrmOyO7ZuLa1ZXhdbf3xW/9prWo+t267FmD5k22PHUctJ081sfUqL1gGka1H1Iqtjcj3yGg05YPkVTayTMqdcLq/YU6yHi9l1Znmn4kTQgUjrGnVVPka6pu6hc6f7L1WWq65g9WGb6UVYnmnv4RwrL7Q82+rT6+0/69S/LEMPDIvZFbad1Heszs0+sVwrZ5R+9bAl/qbjZNef1Vd4Xdtk9Y4Yr4gZtpqBYqPwmglk163aZtTDgGVdOCavV8NxHR6lHY8RwmrKyno+ymSsh8LugeU1m4KVxowJRsl4YFRau9V44YDGopGsUz18lihZh06kTQsGWt9pZQ1EMspYJEyNKRs11b7F6lOFn/227/dkGVRa7LjEPDxpzCImcHUMOc9qhKXN0X2NXC7X4mmiEmONwHw+j9HRUfT394d9tMViMXznOxCpGCn9sx7OY6VSCQqTpv4Cy2lT9tAxpQdg+bAjTT20xghp0gpcFQZ8hvQSi6ayTKBVuPAv04iVyakBQKhizvKo4Ou79HgPPedKT0rXOr6WLu13XVuMlmj7aIAqDXNvnBqglobVgFChobwlti7U0DhRsB5FQGlMjTD+pkqj3mf5pi1T+YTyW+591Prss5bfsA6mWml6MturfNnuDwOWI276jKW71T7WmUda04Nl9DfLe206qDVy2Ua2J5a5oyc/qwOI5fOdrf39/ajX6yElWedHZQ/bZGk3xqMsbfMQkfWmM99X4B5bTT1WnsL2Ui5YGWjnWHUb6iXkheST5JXkpZwHypRGo4HZ2VnMzMygVqsF3sSxZRtiTr/V5DTbqXIEWHnyt8p+5ft2T6rSu46BXS+xtWt1LyvD7OvQtO9qRLGdOl8s3/Igq79ZvUnTLTkftVotbDNRnpQkScur72gQK31bY4VjzbrXw2/vCzD9mPu9tR9cEwACLXKsSMOqS3A7BLAyM03lAqHzwu9Aa1YVwfm2tkGMn9i6VhtrXUe6FrhW7d5rKydi7bT0HLumadb86JYbbbtdC+z3av23aznWb7aNY6U6T4xX0+mjgRGmqVerVXR0dLS8gk7lEmmJW/rYX0sTafiFDFvCDuBqQmgto1YHPcYEY4qAVTjXWvx6/1rP2TpjfYw9t5oCzTJsWco8VeGyv8WuxRij9TiqwaJ12/rSxnctxcyO02qwC037pIIoNq4bCQqpnp6esDhpYKryywXY29uLYrGIfD6PTOZoxKNQKIQ9Jza90DJrCl5GJfVkRU3ZsNEVVRYIvcemd2l9qyk9quRa+okZhtov/SgjVGUl1p6YIIvRmgpLq4yokNHn0gzF2H1sQ4wfKMPXedO50P3qa/Gq2PpPc6jd17BtWE0hXq29loeuxtti96bRZmzO+LtGvdThYtsbo2mr1Go/dL1ZuaL3x/i+0lNMsbb90nrtfRZpip41djgWaqRpNo7SMI0qvt4mjU/bda3y3cqU2NzadZ/GZ+5rqCNdHby2jbF2Kw8hYrxVy9bvnCOW19nZiSRJUCqVWvY5xmSqIm2t2fak6TmxeyyPBVrPGeD9/Gv1Fp1rXrM8RJ/Xv6xrNXkWG48Y/9C6+BudaJY+ec3ShN0Sw7piKZV23do2qfy087BRsNt/qAcpT7Wy1QZbALSMZRoviM01v8dow0LHUMu18vV4xtfS2Wp1xmQYy4jpMLG1tVpfY2s0bc3YdsfGNm3N2++ca5V3MVtAAyt8nrTD09/1BPm1ZMVaeoXiuA3bNEJYzahRZmcFgEaI1lKW2Un7egNtF8tUbxDQGgFSBd0+pxNlYY1hZVbHM37AsifJRr1oyChjtcqS7a+O78LCQhBymvrBe6nAWM+HXWz8XdMp2VbLxBk11EhBbOwIlq3tItKY0UajWCxieHgYD3zgA3HHHXfgyJEj0ehyLpdDb28vTj755GCIMh25p6cnvCqC0aUYk0uSox7eer2Oer2OJEmCZ0sVHdJ5tVpdsTascs0oQ6FQCIYW0MpEbdqQVeJZPlOpdJ3oKYh2nbNsFYg89KTZbIbsCRsNsKBDwWYYcNy1LtKlOnVI/zHjMlYv58HuxdSD4lTpIW+xB4lkMpngsSbt8zvrUcZ/ItB7DMcjWBRpPF1/tw4CFWwxBwjpVz3F3Mejxpgaa7yumRI24sk0WwAtGTIxB4vWo5EHlSH6yoPVlKFYurGuuVgWBaEONmDlacdsq3rHm83lAz24L5T8RMed48V+DgwMoF6vo1AohH2F2l7lR7ptQhUhXWua4ZAky6l8muKrY7iRKBQKQdaRf8d4leWL5KecC+vY49hyzJRWY4Zts9kMczk0NNRynVHD2FqzfJn16J7gGNIMEqBVf9H1pifjWvrWMmz9MX1OaVL5g96XZqzwfn3Vku2TVaBtH3nAoL4/OJ/Pt6Qfk3fYrKRardZCF3SCc12x7eqUYD+55k8kmaD6q9JAvV4Pck/5NfkmeYxdK5T7dpsQwe8qK8kfYvaHTWHlfMaMa30OQMt6VMNPaS02FrH5IU3ZNpC2uH5jvJr3NxqN6KvcrA2m/8eycViP6hyr9U1lasyw5hirQ0dff6jrVm07zUQsl8thjjo6OpDL5YLDVA+iYoabjud6cNzvsY1hNaFtn1/tE7vP1mGjifaZtJQbMhPrRVRPPifMehCtYE4bC21zzOi2Y6aKboxYLcPWeqyyR+YyPz8fTqYjg9VFTiLS01xV2bB9SPPGaFtYhh0fO4a6WHScY0IpLaK2UeBpxtu2bcPevXvD4u/o6EB/f39QVux+KJ6IyHfjAa3vrrPrRmlYlXN10lgPmL4jzwpKMhhVILR+MhvSkP1f19pqtEFYpZTXYgpLjEZ4v0LXOtumTpu0yJvep+WqEAHi+935u6ZoKv3GMgtUMJLXKC3b9cN2xQw32/8TCTHezOsxWPrg35jcsIYP50KVcV1nTB1WRYffOXfAsmHLNamppKRVGhX8TVOLtc3ZbDZsSVBevBrdps2h5auxyJE1/lSe6Vyk7cNW+aZKc5IkwSjW8bbZJLqGNPNElVu2iVkmNJRjiGU5WFmuvytv20jY6JyeRq1jFuM3Sh/WwKTSqVtOrB6hSi2wbCTxvbo8lTaTyWB+fj48a2VsTKeybYyNsxrZLDNNNmjdsT5YPcD+z/pYptJtTG5YJ1JM19B26Bhavqv3x+SBVdrtOBLkLdxrqnJB66UeoQ5S1hlz/G802G+blaTGKdB65ouOnZW5hPIfIkaTMfqJ8Q7+b3UaO0+6LmIyLabvr7ZW0vR8q9PGeLrVnbUe1UF0K5gtQzMGYkbsWjI6rV9WxuvaV/mr86oywW5z060KlCPqKNXMQMt71oN1G7axBbaWwmUHSzurHhTLrGJeDJZnFR/eT2VTF5Je13sVNjWT93AANZyelt8de9a23TJO9kE9HSrAreDTOkgU9LgzAlatVjEzM4NyuYyFhQVUq9WWk/my2Ww40ZGRu7a2NnR1dbUcc28ZkBphVulMY9rKoGMMg2XHxjCNCW0kTj75ZGzZsgWnnHIKbr755uBFLhQKGBkZCR7Lubm5MI6MzHKsFxYWACx7KS0TsOtA79FnVDCTbhh5oUNDD1Zi2geFjyr3pL0kSVqEMBkkn1MlHmg1YPndKufca2YVszSBnSbELc3FGKUtxxr3LEedBmxTLL2a46sOIIXOg65p7nFLkuV9VTY6buvSMYnR/ImyDtYSjDH5EFP6lE4s/agQA1oPECLP4+svbB2kA/I1zSKhwdrR0YFisRhOteWzNMaY6cM98PoKF81W4RYDpUGVDzGlC4gbZ2nOWt4fO5DEZgAozVqlkTSmkVfl881ms+VVVdbRqXtpC4VC2GKhzjZtKxWUNKdsLF0zhpjhsZFQQ1adH/aAL6uDWPlt5SPpmvLcphSn8YRcLodCoRC+V6tVAAinVlsDQOsHVr5uwyrs+j2XO3q+BOlT3y7BMpWHKS3H1j//Wjplu/QeNWxjr5rUNmm2jlXsCRrAmvkU01esYcty1Amm5Wsd5D36LnOVwVoW5bsagzG5diLIAdKmjqHVoalLWHqwumJM3yQ4DsoDgFZeCcRpyK4tHVcbfLFjzXbG1o/lRWoUs126b9vKeh0De1CspT9bV8xgVP1KjffYMzGsR5ZbXVPHXG0Y9ludSxxX+1YW/mbT2lVfZT08qI/7cX/lhu1qA6ITp/dYBh+L+qxWh01psEaWVViB1vdsqWdYjUgyEuu95/fu7u4VjJUKrjW42EYqCzb1LKbYWYWW96tCoWm+rKNSqWBxcTGchjg7O4vZ2VnUajWUy2XU63WUy+XA4Lm5X9PzmELFgzDa29vR09MT3s9H4V0sFld4pWNCSGnAGgy2r8ByGqdVfNToAVZGzzdasbnooovCq3tKpRJKpRKSJEFfXx9OOeWUcJjCrl27Qt95P8eFr4rghniglWEArakelgYJpRNVbnVt2PQgjmG5XA4ODraHiO3dZfusEm/pVpULba8aovTQ8cPnWacqI+yHevio/BG8bmlDDQ11GFmw3dbYjdGw5UW8zms6PzzUQT2QLM+mcMX4gC17o2k/hjRDFoi/Gi52X4w/cq7ooOE1zr91hlp6AJYdQvZwH/JxGmWa+sT10N3dHYxfygZGZ226u/aXDiPrEOU9fFb5nq4dlqd0pAfOxIwDricV9iyPkT8e4rKwsNDyDlXSHGUEFYeuri5Uq1XU6/UVBxplMpnwe09PD2ZmZlYY5c3m0XRYyjCV1aoPsK3qOOZv7Bfn3o7lRsHqIFYfAVYeLKS8UhU6/UtjVlNuNUKh1ygPOb4LCwuBbgcHB9HZ2YnFxUVUKhXMzc2FepU/cz2tppcAy/SpdL2a7qZKvb1PjQryR+X5NhVV15p9NYjSBL9TB2OdNmKoY2qNLMoo7QN1RI6Z6pJU1gn2h++7XVhYCHpOoVAIY14oFNBsNjE3NxecGFZvZd2Wb2407RNzc3OB7tRoJO8i36WTMHawlzrkOf52GwXvVd7Ca8DKYBn/avqrHeOYkW3LAJblh40aqpzW9ilv1/v5vHVsKWK8LZahottR6FSxa0B1nUwms0I2WKjdZvUOpT+dK31Wnf66RtT+sryOMplOMm6dtEa5BnL4Xd9zuxZ+6cOjdHB0IizRKDGt5imIXVPhoR8tjwOnB+xQEQKWX3eiiy+Xy7WcTtvZ2YlCoRAWmjL2WISNf22/rcdE2x6bfGsU2kXEBVur1VCr1TA9PY25uTlMTk5ienoa1WoV8/PzIR1JPTpUCG2/1Ziv1+vo7OxErVYLxm6j0QjRRmsYxObPelljtGJpQec4No52njcS27dvDwu0UCiE9K9CoYCenp4W5ZFCjTTFBW1THNMcBVbhTxuHmMCwxq4qVsr0SFNK62pokVHpnhWl2dic8Hdr+Olz+qxV2GN9tgqjMnMtOxbdiSlYq40rFR27zq0xE6NFqwzacmwftc7VyltNkdwIaPtXW5tp7U+bB97L+SXvVoOWhi6wTNd6jW2xvJog/+PWAH1tS6FQCCeY5vP5sAb0lTi6l95Gfaxio9ditGnHQGnM9tE+x3p5XdcIr9E4LZfLIcpN3q+vAeOaIq9fWlpCvV7HwsICSqXSCmNKD5Gyp3JSvtntETo39v7YmKzFZzYKVv9I49/aZvt/TNlTvmv1Ha1Xnby8xr2L2ezRU5KT5OiBUs1mM2RsWRrRsWX5q/XRRrnsM2m8zM4bn4n1TX9fD6/QOtgXNUT097RxVN3Lrlk7b3Z89BrlrU1NT5KkZY0weqsH5ljHNus4UWjeQnVKfYVkTP9bTVbGaDAmK3l/7HdbFuWB6v88o8S2Qx0Vtk4bzMlkVqaKW1pi/9W5omNg14fVh+1YqW5DvpqmR8XGU8dmLdj1ZcuN/W71HOUROsa6PoHWU9Vpr6mhbvmcBkWORwc6LsM2ZpBYxBibnSDLUNIYGD3sNCxVYWHHGSmbmZlBvV4PByfxunp/M5lMSwour7GOYrGIQqGA3t5elEoldHZ2Bi/29u3bWxiWKtRpQk4nQyNpsTFgW9Sz2Gg0UKlUgvd1fHwc8/PzOHToEGZmZsJ39XpYQmK59j132u7x8fEQtaCi19vbi0KhELzA+sJ4y5A4T7GN7lZIKPHa6IaltZjis1HYsWNHGPstW7ZgYWEBExMTGBgYQH9/f4h8TkxMBCO3vb09RP+ZNkZHitKDjk2MecWUEgDhPbiqMJGxk64bjQampqaC95R1T01NBccOaV29YWnve6bDxLaRa00Fn2W+2ldVANgm5RPab40+21Q0toHPa4oPPzGFWmmPdfI5XeMafdHUNRVsWq6mmjFFJ5dbflWXFY7atjQF8USE0mTa7zH5YK/bvnOcVEFRg80aZCpkld+o4cBn1Omjjj5GK9vb29HX1xecVZQTQ0NDgQfqIWfMcqGAVnmgvNgKZbt3l4IbQIjyq6wk3auDsqOjo+W1G4uLi6hWqyiXy5iamsLExATK5TJmZmZaTnAHWg+bYn/o1B0YGAjycGRkBF1dXRgZGWmRSblcDkNDQzhy5EhLFhTXGt/VbPut92lUh3OrtMB+p8m0jYA18Cyfi+kyVklUJc7SMHUSywOUVliOZj7p/UxNnpqaQpIkmJ6eRr1ebylXdSNV3q2yqvwZQHQOOA42esQxUIOH865jqJEtNSz5fJIkYe8wy9b1pjKIdK39sVkbSdJ6CJdGbDk/Os5sN8ulU8i2l/Kda5Lo6elBtVptkX18TYoeTKhtUJo40eSB6nu6L5xjrXpNLFVb9QdgmSZYJtNNeR1Y6RQjDyRf5Lky5XIZ1Wo1BHi4xjj2ut6UfkiD1GH5+ibNnNNAGOun3sJnScc2xT1Gs8r7dcwI3ke9XeWc0oLSLMeKbeYYq0zUKCjbSui6jNko2k7L5zQop3oXdTfViTKZDGq1Gur1OqrVamizvkpNeZWu29Ui0Ip1G7bWqLXQhbjaPdbgsgahZeaqSKiiQKOvVquhUqkEA0/fs6WExbKpHKhAJkFzX2q9Xg/KfqFQwOLiIrq6ukK7rDKnHgYdKzvp/C3mJbKpFlTqqtUq5ubmgrLCSC3TkWu1WthfGVOMrZFpGbI1HnO5XFAoyCRKpVLw0K82h2nKrM6vGi46VrHxW4+36b7C3NwcZmZmcOTIkbCHmQu8o6MDfX194XVAXKyqOOsYEbbP9roKOWsYKePSe6nEkibIzBYWFjA/P98y1mzb4uJii8FtGbpty2oRB70XWGbQ9hnSvO6fIlTQq3eY361jxTJqpU/OgaXzWPRDlUct2ypG2k4L/m6Vnpjxaudb+UZMgTxRYMdyrfvWuqY0o3OuypEdV10LVtjb9HRbp9KWltNoNEKaIGmfEV7yQa4nGgt0CKoyo+3UOmO0oW20sorty95xB7oOHMDU4CAmhocDP1hYWAiOz4WFBZTLZVQqFUxPT2N2dhbVahXVajWMK6GKoxrK7Cdf6ZMkSUg95Gnu5XI5KJK695d9sBEGHX+VhxZpXn+dr42WB2lObLZPlTv9zc5rjL8DK2WAKopKOzQ4gdbtDHSuFgoF1Ov1kDbO9QSsdI6uJru1TqtUx3SA2Jqzhq3qTyoHbN3W4avX1aGgclF5BWmb69VG39hGNYp1LHWM7LxZvmcN987OzhaFnLxEaTimi9mouMqmE4X/W3nOcbc6pjXQlXZiZ2/YtPuYQ9quJW7Dm5ycDHaAPTDV6kb8rpmdhDr5rH5CG0HfaKFGuL6TlcEhOxbW0OT/MXmqMi6TybTwWisrbSYe54lg+SxPdTw1XnW8dR5W0+m1/Jher3Rg+aHlfyo72CfLc+4Vw5Z/07yn9rqdMKuYpxlc7BA9ONZbWa1WUavVQsRydna25d2inGyrUDYajeD9U685/69Wq2hra8PMzEwQ7hQOjGjZSK8Sm1VO1fNplTDtr41Ec8HRGJmensbhw4dx6NAhzM3NYWJiIkSn9f11sTlZbaw1asWxZZu5T2piYgI9PT3o7u7G8PBwS19iZceEv6URqwyxnVY55biul5jvTRw+fBhTU1PYs2cPJiYmQup3khx9p+Dw8DC6u7vR19eHbDYbDmxqa2tDsVgEgJZN8dpfOy8AVjAudVzY8VBmn8lkgoOGa6G9vR3lchmzs7Oh3WTOnZ2dqFQqQbHlNWXeWr4VbLqPRpkW0Hq4laYnKg3YfU+kIdan2RfWuGUdyjOozKgQYR84VrF1YjMISMfqNSbs/MX+2jZZOldeGSv7RFJmFGkKLBA3dK1ywmfseGyvVHBSrYY7ANyZzbYIPq0nNn6kJ/5uHSdar2YGWKFLnpvP59FoNELKcjZ7NM2TdDk6O4ttu3djfnQUlR07giff0r8dG9al9KDrnmuEn+z0NB78p3+K0R/9KJRz15ln4h+f/nQcPHauwszMDObm5sI5C7VarUUe2nZkMhmUSqWwtgkqY+VyGT09PSgWi5iZmUE+n8f8/DyGhobQ19cXeMj09HTgcXY+bWqtlQv8X+dWDVvLD1UR3UikyTY1gGKGqEaNrOGUtmYArKBhNaCUrrVMzi+zd+io0QOpYrLbRoXtetJID6+xTTGequXyOd1Pa5VXNXqtYaL947OaIcRnaNQ0m82Qfcb99PpKOX40MkQHQCazHG1U41T7rHOh40UDR+lVI1VpzmnWa8c3ZtRtNDSyrQ4KQh0udn3zXp75QoezRj/VyFW6I51pivH+/fsxOzuLQ4cOhVcjku5YntKUnujM+dHIruokHHvVg9rb20OQh0Ev3sdrfMbqaTrn6tyxvJBYjT+wPNWHrD6d5jCzQTa7Rq1sp76v61ahPMQ+z++6z1qdIVwbLFOz7ZTfq873K99jaxl6bNCt0mN/Vwamp03q82rQMgWG4Wym3E5NTaFWq7WkWdlIjvUM2vZZYlcDl8ox68vlcjhy5EhQBKgEAEBx/350Hz6M8tatqJx0Uug3DYrVxpLt5SZvMsVGoxH20e7btw9TU1M4cuRI8Ewp8ycBWI/XavMXUwytkaWoVquYnp5Go9EIp2LGFoCeRGoFYQy62FcT8DHl+L7G+Pg4pqamMD4+jpmZGVQqlRX0WigU0N/fj0zm6CsX1LsHHB1njZKoAkQjyo4DFzf3vtk9IxrZJy2Q/tSxAhxNi+JamZ6eDt7J+fn5kEpFJSCfz6OzsxONRqPFGwksH2oTM7pVieOBB7yHz2Wz2XB4gNKs0h6f02wEjpMqG1Zp13G1xrYqFXq/ptzFoigqjNQ4soapKmQ6N2pgxCIBihNFgUnDetoWM/ytUcN56llawp/s349Ljp3oCgBfaWvDS4pFzGSWU8+s44e8WumIdaucsYawygSuJauYJUkS+D7TyBcXF5GZmsKV//7vOHvv3nD/3fe/P77x8pejkllOfdT1nTF9sEY4QeOjUqmENj/sve/FyE9+0jK2O3btwmUf+xhef/bZIZWL7y7lWomtF+U17BsPjdJTLavVKjKZo6dEd3Z2hgyoer0ejNpKpYKxsTHMzMyEw6lOXVjASbUadre1YfexNEXWm7ZGdd5iBrI6qU6ENaH0S1gepI4N5TvKl61TRfkB0yvVIFLHh9bJ5+n4Y5R+amoKlUolROuVf6mjUeW0nYvYfPA3rZsyTU/11Wir1RmB1m0ENHSswaS/k8ZI29YhZaM/fCaXO3oIJvWSYrHYcroq260BCz1wh1t5NPuPY6/77Wlkc6x5iNTi4mLY487D8LhOdZ6tk1PlCcfwRKB/YJmmtQ+6zS227sl71BnBQFHaVkPr3GJ24oEDB0KWCjPn+E5U3U+uznPSozoqCE0L1/XEdlOP4oFgnMt8Pr/C4dNsNlte62j14JjTLmZTqQHOZ22mAu0TXROcH+Wx7L8a7NR5VD+k/aG2Ga+r/NQPsHJbo+VV7J8NNnL90Ii165m/2XOS1rsOjjtiq52x1jsRY2r6bExA6G866Fz4TKuqVCpBoFYqlRZmFhOAVgGOGXhKmHovDV9GwCqVStgnmZuZwQV/9VcYuemmUNfEQx6CH/+f/4MlY/hZYrBjEyMc7hmYmZkJCgXTjq3CqN4vjYDFxlaFiY6DCittM++t1Wro6uoKho4dU7tIdJztmKsxq0w7TWE4EZi6MlMuNt1XwU8+n0c+n29RjJXBWw+XXVe8j3QZM/RU0JPRsl1qROmhaOr1olJPpse5I/Pmac4UPnzeetzturMGhP1flSxrjLDfhEar7bq29KDPqzMltq70fuVFaghZRcLOWdq8pa15u67sPbFn9NpGO3VisIYTYb9bPsG//Lz3wAH8mhi1APDopSV8rFLBs47tT1fvO59nBKZQKIR1pkqnzqc6MJUm7evQtC6rYC4tLeEl3/wmHnDwYEtbd/z857j0Ix/BV3/3d1syA3QslHZ0Teu96mgFgO6DB7H15ptXjHsuSfCgsTEU+/pw8NiaZd/s/nIdZxs90OgIM49UDuoJlIwGA0e3ZFAW1mo1FGs1/MWBAy2Oia93duL1W7diJqKkrraWYjKL7bXrYiOQ1n7bPnWepPHBGF9KUxpJjzT0NfpLmcBzOHSvIc/dsG1mW9LmJE1Hs7Rkdau0PhBq+Or/mUwm0HG9Xl8xZpVKJXrIDD8xvUXbT4NE76Ucs/Or426z02zgJAbWySBIbC2m6an61/4f+74RUDpWo0r7Zp2MhBryQOt2Q+sI5PMcK+peExMTgf/EosIxp7Fda9peNTq1b+TdSm+kK8oKZpOqzks6Y1BrNd7GMrVd1tGjKcOMVHMc9a0nyhPsuKphq2uCbeB93FLDjD07J5bv2b5Y/mJp2WZoqO5sgwJ2rjTCux4c9+FROiFW8Gg0QgfDKjfaIe2ICloS6fT0NGq1Go4cORI81PoaBNataSg6aIyosW5OFNurhKsRKHr2gOX3J3K/a6PRwLP++q8x9POft4xP/4034tx3vhM//OM/jkYtdSFa74P2gRG4+fl5zM3NYW5uDvPz8ys8RI1GI7xPkQoevZOqrFthxFcGqRdI+65eSiWmAwcOhLRaEj/LZr367ker5MXoabOAysPMzEyIavLwmCRJwv7VfD6PYrEYoqBURixjAeKRLRXKatwq8z948CAmJyexZ8+eQCO6Z4RriwelJUkS5ocpWuowoqHOdcNTYtm/fD6P7u5udHd3B+bHOmIpduwP61DhR4ZKzzjXJ8eK9KjeSGtIK4MkVHmwio4eKqKvmtBngfT0HRspidXLfZcxps6yrWCPwdKD1nsiwI4dEH/9keXt+jzn/dSFBVxcqayoow3AZUtLeFBXF/Yfe2eq7m/igX6aPm8P7wBa07k0NZDrRE8MVi8526kp8sNTUzj3wIEVbc0mCXb89KfI3XUXKve7X5AZ6nEnf7Q8WeWn7gcEgK7Dh1edh1OXlrDv2KuJOAe6xql0KS2qB54fpmpSRiqNkhd0d3cjm80GA5dO5lqthvfv24eLarWWtl1cr+N9hw/jxVu3Bl6jslcVS64XdSqpcqq0tNGKPcfPHpLItmmknP1SWOd7TNklf9R7ub6UL/LwlSNHjmB6ehqTk5Mhk00P0GQZnAdtnyqY+tFoZswJST5KurVpt3ZsuBbUEGIaKLdUzc3NoV6vt8gy0odGdHTMNOJn28t+0kHT0dGBSqWCXC7X8povbjfQjCS7TjVdNeZgYf28p9FohEPlCoVCiNZyDyi3DjA7gvoWy7d0daI4doDlU5GBZZnGbWvMslTeSb5CPgugRVdkZpjOoepHPNtk//79wRGZy+XQ29vbQgvMeLEHW5KPcUwZGLCOTsIGidgOGwFlsEt1PGZpsmzqyHp2CeeRZWu2G7db0WjX7AGuFT1TgdvKbMo86V3T74HWvee6xYzjyKAMtx7y1ZZ8Xnl0zJBV+tfAi0bx1UakEV0qlULZevAXwXYq7a2FdRu2yqzSlK80WC/MatFaXueA6CEYery4Qpm/ZdK6yPi7GoYLCwvhGpUjNc65ALPZbEgt6Rsbw46f/nTlGDWbGPrhD1Hcvx/V7dtblFxV/C3UEFDFngY8CVHz3ckE2OZ8Pt+i3FghpUJG95HR80OCY718H646DOhRnZubC+3QfcY2Ymvn1RryJ4qyvh7Mzs62eAnZdnoRkyRBsVgMBxoo/cWMV/0/Zihw3nW98C+Zs2YxkFmr8NWTjrkOyOzUOCONss3cD0RG29HR0fIKECoGepiYMizWp4LDrnulF2sEdR88iC0HD2Kivx/j/f0rohyxyKrlH9oO7avWb4WazisZqEaN1SmmQsR6FNPaomOdBhUW1im40dD2sA82ErieMvg5RU5zjOGs9naU+/qCYatGbLFYbElj0xRg8knlvZrWquuETkwVyEpTLG+biSpbdB06hKlTT12hEFk6sNf4P9vMVLby6Oiq9S2ccgq2l0rBGFKnJpVFTTGmLLNrgYqXnnyrCgT7r6lkVKxGpqfxaGPUAkeVikuqVZy6uIifiWxQaBRElSWuM3U6nyiKvRp4Mf1HeaB18vC7Osm0XPs/t0XwPi2XjulyuYwjR45gbm4uBADo7OY7yqlHMcVdaZqIja+lT4v1Oh3s+NC4XVxcDFt6NK2UfbBrkc+zPTzgR8tVQ92OuzpG+Vsud/SgTDqqNdJljZCB8XH0TUxgrKcHR/r6ojxQjRzKqPb29mBwdXR0hKyoarWK9vb2sJY4N4z42bnYaNonrNGo46rGDbBSxqosizlUVDdvNpvBkCuXyyv0E92TSz5O3ZX0oPPHcsnvNBBgnS7Kk2N8Wh10/I30xzRmu5+bsM9qFp06iGgDcNzosCqXy2GtaCaDjjGdTfagXNXP9TA5PktjXTMB6bBQxw/nW3VNq8PpWreBCY6Z1d1UvquDQu9f7zr4pQzbmIK+mhKmkSs1tKwxBCBM5NjYWPBAKmEBy5uNOZlq1GnkUA07JTgq7xw4QhmWKlBMBd4a8dwrigcOoHbyyWEy6RWhAqyGuIKLk0YLX/3ACIXdv5DJZILH3Z7QpmOhh4SQaGmk0bDl3HFvzuTkZMt7EEmktVoNExMT2F6p4P5tbZgeGsLhnp4wXqpgrodBx8Y9ds9GM/axsbGgHHCvCI363bt3Y3p6GoVCAeVyOcwZx4F0CqyeIgu0MlBVeFkWmRL326ojgl5fG7mlsOWhDblc694jlq3Cnca5pjP39/eju7sb/f394fAEzrMVCkDrARKWHmxUIJPJoH1uDpd95CM45bbbwnjceb/74ZqnPQ0VEZKxiJzyD6tU6t5l5TtWEDebzdAe9ehyjDmnKkhiQst+FCrILO1b/qpM/URATEGJCbS09cr+kcb2Cl+KobJtG0YHB4MjRQ1X8juWZ6MsWp86Q9TIpYKhAloVIhX6R47xuDSM9fSgeYyPsm5ds7E1zv9VIacSXD7pJBw47zyM3nILsuIwamYyuHPnTvQ99KEYPLY+KQNovHIrgY2WqlMrJivYLt0/R97CE5dpJGUyGQzv37/qmJy6tISfyxjo2lOjBGg9pZxjFdtPuZHQyIf2hX+V38UMP+U1LI9zo+teaYYKIkEdYWJiAjMzM9izZ09wbtLR3NfXF8rmgWLkWarssl10WMTkNQD0HzmCvokJTA8NYe6YwyWmv8T6rPNGhZ2Zd2NjYyEjjQ50jiWz1prNZsvBbNQX9eRaHXOuAa49fQ0i+6qHOFJPjB2cmMlkkK9U8Oxrr8UZd9wR+nn7jh34uyc+EeVj7eJYWkOIUGOFulelUsHs7Cymp6fDWxQ0iGDn4ESRASq/qGfoetUT5WNrl3SjuqIGbkiDi4uL4XT3ubm5wKOoM2h0l+3QbRn6Chxrb6gOp4fO6oF79jltvzow2G/ex2ij8lnqcNQZ6SjUMVSjVrc/8h6umbm5uaDrMSClbQaWZQ//59hqJqfKIJVz2WwWMzMz6O3tRVdXF9ra2sIbYlSeKr+zegrbZN/OEXNyqC7V29sbxpYOH30d0PGsgeNKRVYGYb1gMcG9mtcvJqg4aPRGqjDlvRo50YgP9772HfPwMw3TKrwKEraWzY9GRPkh0c0MDa06TtNDQ8Ezx3I5BjHPBe8hQdPQpAFC7ysZnyp4ZMi6kNTzYSMY/PB1DlxwHAt6Z7j4Ozo6wiuQarUaepaWcPU99+BRkkL4o9FRvO+hD8WCnB7H9qQpI0ojaUqLzstGY3Z2Fs1mE8VicUXaCxXS7u7uFiOLr6FSYazCwHqs+D+Alrkk/SXJ8umNemAA3zvMdcDTvHt6etBsNnHLLbcEhYdR3rvuugtJkrSkk7Muvs+5o6MD3d3dgZb0IBn+RiVA1yShmRFk3gBChoGuqyRJ8OiPfhQnmUyInXfcgd+89lr836c/vSWKZAUl+YCuMW2H0joNGBUkZNQUPJYvcOxVmbJGkZ6+qdC1F3NmpEH7eaIoNmk8ezWHVUwWZLNZ7Mnn8a1SCQ8vl1sEUQPAj4aHMTU0hA5RUi2vtM4SFbT6se1QeWAFvc4d+5XJZDCVz+PH27bh7IMHkZO+NjMZ3HXaaZgaGkLhGM3QwOCaZbmaGaTjQMcQaYhKyE/e/Gbk/r//D1vkVOT9Z52Fb73kJdhqDGMAQXZUq1XMzs4GBYfl6UnoTO1m/VzDmpap8ktfrVepVI6emlwuA3LGhMWejg7ksDJKodEwC6UbVfxOBBmgRql14q1nTVs9SBVf0qquedKzph/PzMxgbGwMe/bswczMDCYnJ0NZQ0NDKJVKGB4eDvUwKjo3NxfaTRlN/kd+pnQIAPlKBU/+zGew82c/C22+56yz8JWXvAQLxeIKnkRlWo1y1S2oz7FPujY0ZZVygm3Ue3j2w+DgYKArKviaVsy1pgfiqFJtHZrqFGakqrOzE8/57Gdx2t13t/TzzD178PwvfhEfe+YzW3Q5jdBZpy6dTNQDVB61tbUFA1yjiMrbYjr0RkDnlPNi16y+zsc6Hciv2tqW3x+u85XJZEJgZ3p6GkmSBJ2GRqxGONVxyfcIW/1W+Y/Kakuf1FHUULR6mXU8qUwZnZ3FyePjmB4aQr2np+U+OkD0fh03tak0YktaYMBJM1f5nEJ1av7OrFQ6ciyv4pyo4ctDAqvVKorFIrZs2RJOhFaZozKM8682DteWOvOt7KM+NjMzE5yyPcfGj0Y8jfz1Yt2GrQ6EVdBiXr4Y7ETG0Gw2gwAdmpzE2fPz4aRFOyCamtDT04NCoYChoSEUCgV0dXVFjVoddBKQRlbVA6J1kFkBwPTICO484wzsvOuuVm96Nouxc8/F7JYtyDUa0fqVgK0HZGlpCYV9+9C7Zw8WOztRLZVWeFlodLPfVFY03UC98HzWKtY2PbnRaATi4WJQry6J7+qDB/EIsy/u3MOH8drvfx9vvfDClvGyQp+MIA2rGbcbjUqlEsZbFyNw9EAVOlL0JG/d/8B5i3kx07yyFBx0clAh4f5e7qvWdMyenh7sXFzEqY0GkuFhTA4OYs+ePSgWi9i6dSsmJycxPT3dcpIjwbRMa4iwbGVSvI9pb0OTk+ifnERl2zbMbtkSnrU0roYo6RYASvv34+Rbb10x7tkkwZl33YWBiQmM9fau+N0KCv3E+JT1kurhC/zOw0ZUcHFOCc6jpvEzvZ+RbCD9QKm1wDFLc8ptNOxaXo+hYgV6JpPBm3bswLvvuQePPHY4EQDcNDiI91944QrHpNaVJkDVcaSpjEDr3jl1xGiKrqVZbfuHL7kE//Mb32jZa3vHzp343NOfHviBVb74rDojNZLLNrAuKly5XA7J4CBufOc7gV27UDp4EHNbtmBmZATtzSZKxwwEVc64dUD3XJFnMC2V61j3muu61GgIDd9cLhfejcrT3hcWFjB5+un40ZYtOOfw4RZFYgnAdwoF7OnsROZY1hGw7KC00T7L/5TmrfNoI2Gd0au1J+2emGGrSrKNXNNQ4Bkf8/PzmJmZCdGser0ezkTg3rieY9kFuhZoJOpedN3Hp7TAdfWkT38aOyRSCQAn/+xneNzHPoYvvOpVoQ/sF/uWzS6/rk31LH3tEGlOI3EnlcsYPqbv3XWsveoM6uzsDOc8dHd3hz6qU1K3YdksD0L1Ld2/q23OZrMYmZ7G/e66a8Xc5pIE99+9G8PT0xjv72+R4yorlc75G/UAffsA1yP7S6PxRIXVXZR/Ua9V+rX3qnHLuVe+q6/4o6OChq1GANkWlq0ZFdpOy39onCp9MoNTg13WcGUZVraX6nW87jvfwflyLsLPdu7E55/5TCSFQkvf1Ykak2ts09DkJHqOHMG+fB77JZiijqc0vYe/sUzOia4nBceOMgFYzgxhhoFmDmoQIQ1av93OpY40bSMPNKXMYqYp1wTnZz1Yt2Fr0ymB9e8X0w7ZtBsdoBCSP3IE7961C4+cnw9l/XtnJ167ZQvqxWJLFLNYLKKrqwt9fX0oFovo7+8Pg6KEwvaQcdOgVSVEmS6vq3eCynx7ezv++XnPw29ecw123H57aOPBs8/Gf77mNS0CwqZhad/Z/3q9jtzMDC76i7/A9ltuCeXtOv10fOLyyzEnBwBx4u1hQDYlkoxDnQAE+6peMuv9AtCy/ziXy+GUWq0lUkvkkgQPOnwY26tV7JYUcKvUKv3EFBVr6On1jWb0U1NTyOfz6Du2v0bTBpm6QeOGC5eLkWkxlUoFpVIpnC5tvZ3af/5Pw7bRaATnTbFYRLlcxqFDh8Ia7OrqQrFWw7nvehd6b7ghlDn/yEfizrPOQtLXh+3bt2NychLz8/MraAJAOOSCqT9cQwMDA9ixY8dymfPzwTDuazbxtH/5F5xx553h971nn41vvPzlqB3z7lHQk7Z03wmv9Y6Przr+/RMTONzT07J+ALQYCbrWs9lsEAT2dQ1Mc9M9ObpelfmrUaIpNWSyjKBTYaFzgcyZwoB9PR7mbOniRMNqxkZMobeftrY21Ds68LqzzsKpi4vYsbiI8b4+jPX2In8s2gegRdEjP2b2AN/ZqgdAqQKle7Eg5Wm6vqZbdXd3t6RxEc1mE9OZDN51ySUYnZvD9loNE/39mBsdRT5J0HFsDy7pU8vX1GlNu9NUPBrlpEluM0iSBHNbtmC8v/9oH49ljjBzolKpYHx8HOVyGdPT00GGcgwoIwcGBtDV1YXOzk5MTU2FOSCd9vb2BoOheOzALkauNKIIHOVJ3d3d6O3txSevuALP+ed/xoXHIocA8K18Hm/avj3wLqs7aPt0TtZyYpzoiPFyuw5UsVUFUaPjdFIw+s6o64EDB3DkyBEcOnQIU1NTWFxcRD6fx8DAAEZHR7Ft2zYUCoUg36nIdnR0hPcwq67FqD7bwntpZJ6+a9eKPmabTZxy++3oOXwY5W3bgiMmFsFmP3RPO39vb2/HwMDAUR1jZgavvuEGPEgMg/8cGMA7zj4b88cMQCreXM8qW2n46oFCXFuM3JHnqiFG+lQ9UXn8WjJpcGoKEwMDLbLC0oLyIm6pmJ+fD+uqWCwil8uFc0vq9fqKrTZp0bmNgKbgWqOW0HRvfqd8JE9mpJap36qLknaLxSJGZ2cxMjaG6aEhTAwMtDyvgSjlM+pgAZbllM638mnew2dt/+w1gmX87+98B+eMjbWMwf1278YzP/c5fO53fqcla8bKQL3WaDSQr1TwvOuuwwP37All/XB4GG+7//1RMXyC/NsatdSH2C91vlMP4ppSfYxBGT7XbDbDIYF79+4N20OHhoYC71K9STNcbWCL69VmX1H/4/oAlk/hbzQaQWa1t7eHbZHrwS8UsY0ZJLFFt5pBogTGiaAS+o5du/AwMWoB4JH1Oj4wPo5X3+9+4cRWCuGurq5weisZs6Y7qZdIDVZdFLxPFVdl2Ipms4lKRwc+97KXYWBiAv0TE+E9tsV8Hm2N+DHyNgKgRvTFf/EX2Cp7CwHgtLvuwm994Qv40JOfDGD53Y1q2Op+EtZhjWnbBvXiaJ/4rHrrNf9/5xrKxdZyGXuPpQhZr5Dtt/X62XaqcbfRRi2AIECZMkRmoH1R7xSVcU1h5x5tdQilCauYFw44yrToxNFDENra2nDma16Dnv/8z5ZySt/9Ll526BA+9oxnYN++fSiXyy0e4hjz1kjB1NQUkuTowVislyc+NptNPPuaa1akap10++245K/+Cv/vmJOHdSgjtQ6uuZGRVcf/yDHHgdKFjpWuJeuR53wkSdISnaVjQiNC5BFq3HCcrIJBhYp0oJEBtkXHUwVLrB9a9lr0sRFQ5fV42xfz8KqSv79YxCGmqKOVT5GXqHOCKVk85M6mj/E+PZuBoAzQeyqVSnD2MZpi28z7D5RKGOvtRVtbGwriINToqUaD+LGKhKYnU+lTutFoF41YGsBMS+OpoaoMsC5VdMh3MplM2Euvyp2+xkwPJGE7da5VIVwolfDWCy9E96FD6D58GLvb2nBPRwc62tqQkXnn+OgcxaJ9+l3H4URaB8BKWW5/U/mmepDyW/tXn9W9qNxnyH21POuBTrT+/n709/eH7SM8m0P5bmdnZ4vBWzt26BcNAtIky7jfGkZd9+HDmN2yJdCGtl/5g+oVdPSR35J3vvKrX8UDjWHw4KkpvOX22/EHD31oMJ7owALQYqTQONBXGOoaiAUX7Hiro5QYj2QIKSaOvbNe59E6WpVG7Eeju8yoUMNR926u5kS8L6E6WRrdq6wEVhropIXY63JYdqlex29/7nO4v+gWPz/tNHz6N34jOMxV1sfGR2UIy7X6mkbrVT7b/lqwrVvn5vA/zCvggKOZZqffcQcGJiYwNzq6gtfZOvh51nXX4XR5TzoAnD8+jt9vNPCm884DsOxcUN1K6coGEDX1nRFyPZMnxodi41Kv1zEzMxOcEpreH/qdjWeq6f/WUUmnJv/ymm71K5VKANDiMFkN94phm0bwab9TsNdqNQxPTeEiY9SyoRdXKnhALof5nh4Ui0UMDg6iUCgEb7vuNWU9dtJIFAxvqwFGJsNBVe+3GoJ6OvOBUgkHj22ybj8WCWOqqApvNZJ5jeUX9+3DSRKpJXJJgrP27EH/+DgmBgaCIatprzYyqkaXXtPIrCpgSshsnx46pYtwcmBgRRsVh4/tx7QR29UcHwplbPr3RAAjlEmShIWtjJBMgIYvU7yKxWKgJyqgMWeJwjp8ALQIy8Kx9JahoaHlV2Ddeit6v/vdFWVlGg2ccYzB/stPfxqisHyJPI1cOjFIP2RABw4cwNTUFMrlMh74wAeir68P/f39aDQa6LznHpwZSdXKNps4+bbbUDpwALNbtoS+qBNGGW+z2cT0yAj2nHUWtv/sZy3p/Y1MBj8/+WQc7ulBIg4jFawUco1GAwPj4xiYmsLh7m7cfWxfk6ax6Luv9ZCcWJmn1GrYXq9jb2cn9slBWSqMOzs7V455ZqU3WI1svYdzrd9PVFilZr1RtJiDBlh52ErMcOJ3/k6Ff2pqKqTeck7U808lfnFxESdXqzi10cD+QgH75R3jXE+NRgPzx2QOU8l7e3sDvSo09ZHyQx2zNCJJK/yfKe6UdbpVRA1Q0gqwnA7Gd5My9bRer2NiYgLz8/OYmpoKfIhjxnIY2c7lcsGQ6ejowODgYFBweNo7o3dzc3NHsz+KRTSby/sxrdJDPkajaby/H7eTnzRb32Vp55/zpRECpS/r9DrRorVqqNrrSsMxwwZofX+nKqPA8uuW9HV/hw8fxvT0NPbt2xf2vTEauW3bNgwODmJ0dDTQqqYXsx6+po9rginNTHFmm3p7e9HZ2YmfriF7x/v6Ak1r/9lXOwbqlNc9gtsrFZwbOYQslyS4YHwcO5eWsLu9PRyqydcUatYe62Mmkup8i4uL4bV1Mf6jkWTdGpMkCcb6+nD7KafgzL17W/bVNzIZ7NqxAxMDA8iZCLwGGawCb50NlL2ZTAbd3d0tfIiG+okmD3SN2uvUJ63+Zh265BmlUqnljA6W09bWhqd//vPYuXt3Sx2n3303nn3ddfjosa0fqnuR/1l9TFPNtU2xtWnvjfXVrv2RY3vX0zA4NYXq9u0t8k31HuXdA+PjONMECYCja+HCyUnsWFjAgWMGHsuxRi3HMi1dWPUv7VPMGUf+TllKOcT1NzQ0tKL8tXR+6r66TYjjoQcgMjJbr9fDNgvyjvXguA6P0oaz8fb/1RR2S/T8n4p/pVLB0MzMqvWf3dmJOwYHwyZjPR1TDQrNBVevOAkpdqw6PRD0WjOVRhUZLhgq/2qAaPQmk1l+STeVQKussZ6eNU6X3FouY37r1nDgjh51rxFATX8jgagSwbYxVcQqVGp408ChIZ3JZDCTJPjh8DDOP3IEqu41Mhn8eGQEh7q7kWkup3PaeU7zqlka4V9V/DcaqjQDK/ecz83NHU1f6u1FR0dHSBkulUrhFFEg7rFLGyPOlfU68hrTFZeWllBY46Tu/1Eq4Ybh4eAZY/S4Xq+3RGzb29tRKpUCvTJFanJyEnfffTfK5TLOPfdclEqlNSP4fePjmN2ypcXAU6ZLcK392wtfiMf9zd+0HFay65RT8InLL1+x74hjwP4UazU87wtfwAPuuSfc86MtW/CnD3kIpiTSqy811wMjgGWFs6/ZxDt378avzc6Gsv5zcBDvedCDUJaUUlVklLdwTVIxUSG2lpPPCt4TgfYJ8gflcUDc0Qm0GjXWO6zXY/epUkRDla84mJ+fx8j0NE6q1XCwVMK+Y/yJzifOcalex9VHjuDSY1Ee4OiWllcPDWFWeKI6XOj4yGazwWG6dW4Ow7OzOFAsYu+xPXGEerQpe0hT6llXmlclzzo1WJ4dd+CofJqfn0e1WsXExEToJ9cPeZDKGcqB/fv3Y9euXcjn89ixYweGhoZwxhlnoK+vD6Ojo6EsrolKpYL9+/eHg3qYDsYUaL5eTI0nOsvUYUwFXedU09hiqWnqGDoRo7UAWuaP32N0T6g8jEVIqFTzcC6+m3ZychL79u0Lh7kkSRLSj0ulEkZHR1EqlVq2eyh9af2U6zy5X/cU8vdGo4GOjg7cXCrh+wMDuGBqKnpY2lhvL9qP6RBpDgg6/kiT6pzlmhkWHhvDSdUq9hUKgf93d3cjk8m0GLSalUNefOrCArZWKhjr6cFYby+q1WpwuDP9N5aNwP/J6z55xRV4wb/9G84SubJrxw78w5Of3CIDLO8ifauTgfTMgAF/pxzj1jKOl/JZKzM3ClZnTzMcY21V48tmG6ozfWhyEqebvd3AUQPvAffcg/7xcRw+djCm8l4eUEbnJ6HGHqE0q7yXhjWjmrbtfJZY67T82ZGRVPqwY7RW6vtJ1SoOioNGsyHUYUK61gNlbV2W5wKtskyNeo4vHcn6SstCoRACbRxr5TWqt8ZoWOWVHihH1Ov1YJfRObceHJdhGzM60ixzFVD2eVumEubd2XgKKzE9NBQMWj2WnXXageT/VnmKQdMIyeTVyNWFQAJQhY2GJolK74mlOHBSJ/v7V+3zRH9/SyRUIw16chqZDevRfV2MaJPB2iPvtW86ZoyE0Gnw5w9/OK664QZccORIaN+Ph4fx5w9/+ApldTVYB4l+t8+eCMZtmlELICjVwPKYM2rPiF6achYzbJTZKgO2ShTnvNlsonHqqau2v3DuudhyLNpDL9gptRqGKhXsLxSw99hepM7OTvT09ASFmVFNvuap0WjgzDPPRKlUWrPO2WPpxWlGPMF1sJDP49qXvASlAwdQPHAAYz09OHysLYmkoKhTiGvrJV/4Au4n+1IA4NyxMbzme9/D6x/4wECTFMb63l8yVjLnd+zejYcaT+yDJyfxez/+Mf74kY8MwlmNIj1llPWokRJT/CxidH+iY7U2Wr5rBXrMuI0JXI5dvV5H+9wc3nPrrbhI5ue7PT34gzPOwKFjtDo/P4+lpSV8eHISFy+1vgrhkfU63nf4MJ7Z1RVkCF9CT6OUp34PZjL439/8Zkuq2U1btuC9D34w5o85DdXpqd53a5RZnmgNW15TZ54aveTF6j2nQ4ZrgW8Q0O01rJuKs54+Ozo6iu7u7nDqKMugclipVAKv4HzpISZW1mr0jn2yDg3rEFE5Y5VN9eqfCFivsymm3Mfo3uotmn7MCP3U1BSmp6fD3NKx3dvbi56enhDJoL6S5gxQ+qPjTbfN0ChUh9ybTz0V70wSXDg1FcrZdeqpuPapTw3ZM2osKD3wrzoxOP8a0Zzo61t1LI/09rbwB2YPUL9SfaetrQ29jQZ+78c/xoNFP7l561a8/2EPQ/nYK7BU6R+emsLg9DQm+vsxcSwjTfW6erGIjz3jGRiensbQ9DSO9PYejdTmcmgTY8LyMdK21RE1/VidP/xNsyOURlT/2GhoEEXH32ZpAFihU1rjy/IGAOibmFi1/qHpaRwolVr0c0b05+bmguNN9VfLnyyv4XpIkiRk461mhBKHenrwk23b8MDIafn3nHkm5kZHkcusdODGeMBaRvKBYyeR6/pJA/uujhfSIxCXR3xO+bIeXsox46tCeaAq947zvpgMj40jf2Ob6CilDUV5zHlmPevBcRm2qqTxuzVsYwNEaKd1odMgq9Vq2JXJ4D8KBTyiWm19BUQmg1tGRzE9PIyiGHis03oENaJDpso6GK3h4mSb9fU42m6m0LBce7IfFw+9cWwbjUfdS0CFQA//mOzsxM9POw2n3333ipSX2086CYd7epBPll83wve+cV8VD/3RiJFGrvV0ZBIM9zjwCH2OpabLKTOgMFgqlfBnj3scRufmMDo/j8mBAYz19mKhVkPGHEOuDgGlCfs/keb4OFFAelEmpYcsLS0toVwuo1gsYtu2bSF6Sy880Lq3zELXktIXx8p64jWlpHH66ag+6lHIf/vbyGhmQC4HPPaxeOBTnoJXPPSh+OpXv4p9P/4xrrrpppYDX77f348PXXwxlo4purVaDfV6HZ2dncvpzouLmJiYwJ133olyuYyes8/G4fPPx/CPf7zidPCDZ5+NxVNPRf5YWh37pqnwHEMqVoFh9vWhduyE4WRp+RVBuj9WnxmdnW3xqBO5JMFDxsdR3L8f9xybI/XyqrLU1taGQqGA05aWWowmLevBY2M4uVbDkb6+lvXBedDoHNcY16kqAqrU6HyTPoCVQutEWgdA+vpNi1ypkOW42f1V1qMNHB0Xzvv8/DzefdttuNDMz0NnZ/H7t92GK7dsCTx6R72OxxqjFjgq8C5bWsIp9TruPhYVyefzGDz2vtzx8XEkx3jtVT/6Ec4xStZ5Y2N4/Q9+gLc+7GGBh7MPNDBsdJ50r05Y8g72W99JmMlkgtGtJxmrQ4upfJ2dnTh8+HA42INOGvJ8fY3J/e53P4yOjobXxHz/+99HPp9HPp/H+eefj76+PgwMDGBochLt+/ZhT0cHJgYGcPDgQXR3d4f3Gqoya2W5Zv1wTLgXOuYYtFkASZKEyADH5ESBdThYA90qr+wTgBY5qDRBnsQ90zMzMyH9eGxsDPk9e/CQyUnsbmvDoWMHdg0MDGDr1q3hkC866shbVLexxibbEku7ZBupN421teFVZ5yBMzMZnNZsorx1K6rbt6MIIF+rBaU31m9C5Zd19CVJgsO9vanpvrdu3YqJgQEsHTvnIZfLBd2H7+etVqstWXufGh/HeccOciPOOXQIV91wA95x0UUhxbun0cDrvv99nCdOq5/v3Il/eMpTUD9mQGg0d+rY4UUAkJU+qqGghpP2XwMNXCMsV7enUGZouii/87CfjQb3+ZfL5ZaDwWjgKN2TFoFlfkdHoh4IZg3OtV6nefjYaxVp0E5OTqJcLofsMmD5oFcALW3gX9KL7jW1+jNfa8bXh9o1Tnr+80c8Aq/+zndwnmTN3X3GGfjS85/fortZ/mjl55H+/tS1cNPAAA51dyMrfdCIstomapNQb1cZrLRqA1o2iKJ9LpVK4WwXZpfQjmAWhKaWs0z2W3U+/q5jQIcpT0dOkqPZKfV6HXNzc6H968FxpyJbRex4EPNWqLcEODoIbzz5ZPzZoUN4hKSp3DI6io9eemnLkdTKtHUvrLbVeoi5MPU0VJahLzKOnVirnmSdKDVU+C5YFRIsH2hN+9U9VJ/89V/Hs//pn1r2m9y6dSv++jGPaUmJts+poc42MRqlSgOJk8ShJ9MxlUmNXbu/llFIKllTnZ2YHh5GPp9Hp4yJpkKnzcFqdGGvnyjgWFombD2Sur+4Xq9jdnYWMzMzqMqpqTHDNjYuqhirsqzMgXOZJAmO/PmfY+iqq1D8j/8IZSw86lFY+tjH0NbWhpGREZxxxhl42kc+gu3ihQeAC6an8YYbb8QHn/SklhQo7hlmyjIAlMvl8K7p77z61bjogx/EyI03hrLGzjsPP3jNa8J7e60A5xrieKixqZ5TgnTAaJQecpMkCQanp1edu+21Gu7ItKa2qxeTJ4t3dHRgu7x2JobR+XmMH8uwsPNi9/io59LOnzJ26wCM9f1EANu5mnNqNcT4vzWMrAeftLO0tITR2dkWmUC0AXh0rYZz83ns6ezE9PQ0Tj+2pzQNpzWbuBsIqYlDQ0Po6uoKvHR0dhYXRFLDckmCBx85gtG5ORw6ti9Ovco2EqbzHsvy4biqs8Ua+hrl4Jjw4MS+vr6wrYDKGYBwyvH09DQWFxexvVLBY+p1ZDo6cOeWLWGvLaOze/bsQXX/fjziH/8xnPdwEYC9D3wgvnTllWiWSmH7jjWatJ3WOaF8PY3P8zcdixM5DRlo3VIS65+Vgfavyg7Kc43WNsfH8ZbvfAcPFefjDb29+LOHPhSdx84Y4ZYk8kLSnP5vaVDHXt9hbhVZjd7edWxvejeAXjEeGP1XJ1VMhlMuss8Wn7ziCvz2F7+Is+XQnFu3bsWHHvnIlu1fTFWkYk4djTrHjnodlxijFji6Zs8/dAiDk5PYd+xwrKtuuAFnmwOrTt+9G8++7jp8/DnPWbE27dilzbfl4zHnh3Xi2L3WyhtsPRsNfW2TZjup083qytpvjZjTALK0Nzs6irvPPBM7du1C1hh4Pzt23kbjmDOHryCjzktwq52V0WpsZbPZEAW0+j6wnAnD1w7F2pskCSodHfiTSy/FtnIZOxYXMTsygsZpp6FYKCAPRPmhlfus6/9edhme/6//2vLqoJsGBvDu889f8SzHXe0Y1flpTGtgix89aM3SltKh2i0AMDI9jZ4jR3CgWMSeY/qdnlGymhxne/WvnSN+5/zRsWuz69bCcRu2bFRM+dJrlhHYRctOKwMmc2zk8/8/dX8eJXl2lYeiX0wZ85BzVmUNXV1drR7VkhCSWmoJWRbCxma0wUa+LAaBr8wT5j0bbC4YP67xhQt6LGMwksEMAmO42JhrwzVeYEtYSLTQjIZutaqqu6trzDEyY47IGH7vj4zv5PfbcX6RWULqTJ+1cmVmxG84Z5999v72cPbBD58+jUsALsViqM7NYXdxcT+qIp4GPWvVgsrRaOSYXT2YLMChwJr9YVVlpjpreXlGllWJ6EZmjebpcUOWRuyvGqf1eh2tXg8//vrXY6lWw1K9jq1KBZuVCtLJJDBWeDRimWqnKWEcE6NYVJQKppSRtYBJqVSaOOqBnhl61phPT+ajAGOamnq7lLmt8td2EgT1UVu/33e8QT7gub90irBIB6MU29vbqNfruHXr1r4BNj8fEqKH0UUVhaYXUhDRyROP71drHhSL2Pi1X0Nw+TKCK1fQXFlB79w5LI9GyPX7qFQqeOPp0yjIEVVsiSDAIzdv4uJohNvjOU0kEiEeove4Xq8jmUxiY2MDiVOn8OSP/Aju6feRu30bzZUV1JeXkd3bQ2pskMzMzLj9wHTA2HRJ0lHTywhi+H4+Q5VqPB7HDfFc+toL4zRhzbAg38bj+1WmCcpuH2IQ3RnvP+b8sR+a+sQ5VK8o5YMqCp8Bf1KBPJs6Ao+6fq2xpp5jC3is04fz3u/3cb+nqKC2V83NYebUKVy5cgVrgwEwpV7Dc+N38+zzS5cuYWFhAfF4HNVqFasG9Nq2VK+79H0Ce+6r5Z7FpBQvU8eNZsRYo4R8Q17itUEQoHjnDlLPPotryST2zp/H4uIizp8/7/TCnXH0KRaLuX2065/7HH7kmWf2j8770IeAD30I117yEjz5vd+LC694BZ5++mlcu3YNH/7wh/Hjn/gEVsSQAoDVZ57BX/n1X8d7v//7XdVWRgjZX43Cq/4F/HtPLW+QL6yDS+XdSVkX04x0a8SzWYNO/6fTmingu7u72NnZwds/8AG8wjgfv7xex488/TR+5ZFHkM/nXaSf4Js8pHhHDRGNxMTjcRSLRafjFR9wfrn2iKU6nY7r68LCgtNzmUzG4QTVXercI29Y3BUEAXq5HH7h678es1tbKG9uui0o3W4Xg3G0bW9vD/V63Rn0uVzOFdHi0W2nPUattrlqFZdnZ3HvYBA6WoiN59NWNjexu7gI4GCbDPvLZh1U1qFjdZsatoopqQ91m5ktYqW/j7tRB5PvKP+ICel8YFO60cjSbVoq81WO/MG3fiu+6td+DffJXtvLZ8/iV7/yKx32rtfraLVaqI5llhqJlE+8VtfFcDgMZWlxbzPrCBAbAHB4Q6Pm1jnNtXynUEBtzJ+VcYCL9NExEueQV4h5ut0uOkGAH33Na5wdcDuXw51CYZ+/jPMPOLAjLH+oXLVRaZ0X2io2skse5XPzvR7e9r73hZxPn1hawr9+wxvQG2+3U92uhW01O2Sa3agylVttmAWg2UtHaV9QxPaoRq39jNdbbwAnisTkcT5buRy6hcL+YjBgn40Cncc1UMgxz55CnY1E9oEqKplut+sMWzKzpruQ2TXFgQIwlUq5+xlS17OqlB4ENap8bmQyeGFcfCgp4JkpjYxe2OgVo8SkR7/fRyqVwsOpFB7N5fD03h6eHu+botJjWhkXbrVadQuc6SKlsXc4m806plXjLp/Ph4T53t6ecwjQ06I8oc0HBHwL9CQ0ptuUy2VHM62ArEcO9Ho9l6oDAFtbW4jH9yska+q7jyf4264d9YzyPs1y4Nrp9Xronj6NVrmMRqOBwbh6KitIVj70IRSmjDP1wguorqy4tbO7u4tut4t2ux2KbNLoJeBpnTuH4b337r+jf3B+LNOzyTsK5DXCpb8BTIBc4KBqOXmKBuXnhkM8WSziVY1GSKANAHwgncbT4gDimtfKnIymD4dDPBcE/q0QAD4+O4un+33M1GpOfmhmBiPn6oHXiIwe/G49tnbeTwrf+5qNUrH5ojHaopw4VIIEdqSDyri9vT1cOyQNqX36NObn5tBoNLARj+O9m5v4in5/gif+JJXC9XQa+fH5rufOnUNuXC2ZP4c5S25lsyEZrmlg3JbiW+d2/oHJIxKssVgaDPDKf/EvcOapp9z7nzp7Fv/1W78ViUQCc3NzaLfbuHr1qnvvnTt3sLOzg3d+7nN4jclCOHflCorveQ963/ANSKVSOH36NBaqVbzyv/23iXHGRyOc+exnUd7YwN758yGHLPWONWyVD2zUVYGufs71qddHrZPjaof1wfbVOtstHVT+ka67u7vI3byJVxujFtg3vB69fRuLu7tojAEf1wZrJ9gMAsUqmgoYi+1nquTzeVQqFdeXZrOJIAhCWz+ox2KxGJrNJjKZjNtyU6lUXEVfBcIWIFsjwEZeBoMBNspl8OTc2DhiQ95iZtnp06eRz+cxGAzcWb687nqnA0jRINvWxoV3lg9xkC3WaqiPtzWQV30RLGuA8nrqOY5Xx2EjVVo7xUY0VW7cTRrml7LZ/fVAWO7b9Hc7Ns0KJO1IH43c7WWz+I2/83dQWl9HaWMDa4UCNsrlfTnb6bjq4MTYvI/4ZHZ21q0ppq/TKbe3t4dLAO7d28OtRALXYzFXNJDOZzvftCF0+xGbrmubbu9zBKvzT53e6oC6nc/j1rhYUkKwBOnNvvIZvqiwbolSI1plDotA0XAn/Rjt5X3f+d734gFT5PaxzU1875NP4l/99b8+4cjimG2Ggm2KZ7VRPjADlnNwVD1wV8f93I3XSAW8FehRP1wEyvjWAOaEkDEo1It37uD07i6uBAFuAi7CqamxyhyadqzHOlBgMRpMA3A4HDrPBhlQK8qyKRijh8F6nn0MasE+aUWAp1VcNWJFWnAPABdGsd/HL9VqeKMI+j/JZvEdmQy2RwfpnlRcpE86ncb9AF6STGKtUED11CnHZCyyQnqNRiOXDkUjg4skSgBEebgPa8cNbLhoc7lcKC3XAjkCXDV6G40Gksmk83JGPZ+/7TrTz5SXCCYoPPg9+YKGZ61Wc/PRTKdxcco4ryWTTmnoXhoKmLOdDh4OAjTG+yzIuzQa6fRQY06NPz02SQWsTZlT4a9pKvQ68j4qt7+/uIifHgxCqWh/kkrh7+bz7p36DFXAur8xHo/jbbkcfnE0ClXTfTKfxz85cwbdeh3Z8dE/NGyB8P58bXaMUXNsmxp4yh/H2axi5me+floDPWr9qvLTaDflmtLuuWQS789m8TqP0+EzKytonjqFXGL/yJJOp4O/v7CAn93awl8Wx+b/SCbxXWMnXTabRaFQwOzsLOLxeKgQ3+1MBk+WSnhVvT5R6+GT8/O4lcshJvzJfjKzxxoz1olrDV+fQ480ec3P/RyWTJbFAzdvYua3fxsffvBBZLNZF31j/3d3d3Gh38cTntT6+GiE+Y99DN3tbWBsKCQOMeTLm5vYuXjRAVsCPcp4l201PChCpOAt9P4xb/toEuUcOSnGLTBZK0Kb5X8dk36mznDKUMrblUOqoy7V6y6iSFyge/lVltKwJWbQMTBSVSwWXR9YC4L9pB7h81hdOAgC59SmLCQWIKBWDKA8oljI0lTTGtUoYl/n5uZcccMg2K/WT/pez2Tw/sEAT3S7E6c2fHZ5GVuzs0j2elg3x0zZVp2bm8CLvjRUjlObz3Fj8acaNL7UTU3rttHM424+Z411WPBvn6PD/lja2J+t2VncKRT2ncKjg9R9zd5io6MgnU7joWQSS50Onksk8OlxZe5YLIbZIMC/bDbxJt5Xq+F/pNN4x/w89sb8xnWic8v3qNxj8zmnfc4sfm+vs3JAjb2oZ3NtWh3j+9E+8HqNZmughNsL1FBdqdfxyM2bE7xAR9tyvY7B/HyoD/q3YiWLIXwyXfmJcovz/kU3bJVAUUJ92r36ty5gGpYkIgVkLpcLHecD4CA6NAbbrVYL8d1d/LOrV/EGAbT/LR7Hd2Qy2I3FkMvl8MQTT6Df72NnZwc3btxw5aqZdsA0Qn7GlAQaI0xBJXDhnqZWq+WMcI6LzMKUnSAI3PNYOZXKSL1fNAxUIY1GI5xptzG3s7NfPGK8oBmmJxBPJpOYn58PVdv7hUYDTxgj6rWdDn5xMMDfGKcZ6xFAQRCgsLeHX7BA8Pnn8U/vu8+lghcKBZRKpZDxCoTPpKRnjopJeUCZ2cc/PpB3EpqmSpLO6gzRfZ+j0ciBhX6/j2q16jxnPJJDPWjAJC10nagwUoFmwUMqlUKxWHT9md/eRuLatX0Hxfw8er0eXuh0cO4lL8H5y5dD+1dGsRieOXsWvXPnUBkLEPIuABT29vCTV6+G9jhee+ABfPB7vgfpcQo/55zrgWBNU+DIu8oPCux8RhMzMajMtra2XLEIOgtGoxG+qVDAhUwG5/t9PBeP49l4HMFwiJHws64z0pcOqFKphE6ng81eD183M4OLySTuj8fxfCKB5xIJZKpVzMzMuCMnKKu4V90eXE45oeBTjR5fI09FRXpOajvMCPd5wTWFz/cs3UYSBPsR8R9YXcVP3byJN0rK+EfKZbzzgQcws7kZKgRVLpfx959/HnPb2zjdbuO5eBzPj9dKZmYGZ86cQalUQrVaxXPPPYdWq+WO0el2u/jHZ8/iJ2/cCPH8pxcX8VMvfWlovVKmq2Hrc95wrFpUUMfMxtS04XCIzI0bWPnzP5+gZyIIcOnZZ/Ge3/s97CwsYDgcYmFhAbVaDdvb2wiCAGemRK8AYO/pp3H74kWsra2hKucj+lr79GnnBGX0g+ucBYwoF0kPNfotwFVDlrJM+cemrp0Eo9any7TZ/zULxTroyd/cWlSr1bCzs4N6vX5oZkJ1bs7JFmIZ7pW2fMdtSVrAj2Not9tIp9OhtVav10PnVVKOWVnU6XSQzWbdWbtzc3MOCxC3qTHITAbKWxp1pAH7rLgwk8kAgLuW1aAvDoc40+/jmWIRu3NzTg+mUin88NIS3nnrFh6XbQhXzp3Dv/vKr8Q9460Dw9EIT509iwdu3pw8n/bcuf0iPWNHLvWZyinlU/ZN9TV5hYYWr9WodRCEz4v3Gc08S5qy7yQYtjaTSvGcbk3QPavWKNcoNWnLZgNd5DnKExZZY7E8ZibSoL1QLuMffuIToUJOf1os4h1zc9gaDvGz29t4fT98FuoTvR5+fmcHP3LxIiqVCvL5PDqdDjY2NjAcDnG208HZvT2sF4vYjh1EPdWBo0YcaUHa0FC2W5PUCUWZ2Td9s3iATibykxqoxIa0P/guXquOIgb2qINGoxG2t7ddcIvbEvP5/KFn9S43GriFyaxc1fk6btLFykTqSKWnS9EeF861mR5R7a6P+/F52/jdYc0XLreGLgXgzMyMA41BEDhhu7u7i2az6Qzbdz3/PF5r9lb8pdEIv9rt4hvH1X55zlK73Xbv8HlE7B4nFeRkBMDvlbGeEAosjQRpFMansLVPpcEA3/fkk3jZ2pr7/sOVCn743nvRlwVCIaLM/pJYLLIi6F/u9/FIOo1rYniyD798+zZeZxd9t4ufuHYN/2i854WVXvl+7s9h/xWsWk+kz0vL5xzWjhvcs/8aldBCZhwnU37z+TxqtZrLGqCx6fOeRRn4eg3/1ii99Sjz/2S9jvu/7/tQevJJ97zbjz6K//62t6EdBPjPf+tv4a//5m+G9q9cuece/Nu3vCUkkDS98Cdv3cKrTOGec5cv402/9Ev42I/9mFur6mnmGNLptDMeGVWyEe+oaA0BF9OhWdKfhSMYoeI7b2azuDaOJsfkc4363jca4b4gwAupFF4YO3iYdt9qtZysuTYa4Ro7IsYJQXwsFgul3avzQ5WVRgJ98zyNt4+b77V9MZyb1pvr+9yOWeVuO53Gd62u4vzeHu4ZDLBeLGK9VEJ2OESx0QiBZK7DzeEQz4/nKz9W8NQvwH4xNGYp8H0zMzPoJ5P4xy99KR7L5XCm28VmuYznxo7NmOFV9aSrUabGHbczWH63OkHvy3k85drKm5tYKxYBwJ0/TUfPZioFTIn+3c7lsL6+ju3tbewsLHgLtozicWy//OXApUtIyd53lfW2EMxhhp+VgbZZHXFSjNuo9ENtKpenGb6U5QShlGdBEGCtVMLHFhbw8u3tCcPr8rlzWC+V0BsXzOGRTDQWbXqj7om0OqPX62FxZwcP9vu4OS68RoOZGWoqyzR7gs4NrZ3ArB41eOwaJ8+oQ1eBLGUx99bxulQqhTkA3/U7v+POKv8aAF+5soL/76VL2ACQyWQQJBL4oaUlvDSbxYXhEO3Tp7GzsIBEIoG80P23vuZr8L/8wR/ggWvXHH2vnDuH3/76r3d6XbdHqJPZ54S2WFJ5xvI9dSrHrfxtjVul1UnQBVZOqUNC55zXWKPfYsQouvFeaxhpdheNYt02+A8//nE8LJgZAF7daOBfDof4J8ViKAuLLQngKzod3BcE2BsfoZVKpRBsb+N/+9zn8BopTvnRuTn8/77sy7AnAQVr2Or6V0zjk3+Wppx3Nh8O1PWojkOb/anORcppxakaCNM5I+ais2DtEKfnzvz8VJnvw/z6nY7d/q846ksSsfV1jP8fxdC16ShKCAJo7mflHs98Pu82Da+vr2NtbQ23bt1yOfPnul1vFbwkgK8cjfBQKoW1seFFsDIzM4MH4nFcBHArmcSdsceSDKgRMQUJ9nwxnweWAl8VDKOv9j7rzdD/E4kEvu8jH8GjpsDBK2s1/MS1a/iBRx91zMfndSWC8eAhaWUvLxbRLpXcvalUCvfs7eErnn3WS8vXNZs4NfbMUohpupNuFNeN6OqZ8zG08orP2L8bw/fFaBQOw+HQeVRpuNDAWVxcxPz8PC5cuICnn356f5+rpLMDB97cqDHzbwXJ5EVGAHmfCjgaXUvf933IfvjDob6vPPUUvvJXfgW/9z3fgw6Af/8d34Hi2hqK6+tYKxSwNi6hH0haMb3mF/r9kAfc0WM0wulPfxqLu7soPfIIMpmMS2WhgyiRSDjAPRwO98FHELhjqiiwKIzVATQcDt3xDPV6Hdvb2/vHY1WrIYChXshsNuvAVrfbdUK82+0i1+3il7pdvFmcPv8jk8GPPfgggkoFS0tLaDQaaLVauHnzpjNw2TgPw+H+cSvZbNadI6k/VDT2SC7dX61zPk12Hmb4HlfzKenDHJ+UdTZyy3s0IqZperrnh9ffTqVwG+PqlmMHBx1vekTD7OxsqLgNDVoCocFggK2tLSfX8vl8yDBOpVLYmpnB5hhU7Y2L6uiYfGBGQQi96DZNmfLARjX1nsb4LOiotlEqOS//7OwsCoUC5sYRvV6/j4/s7uLLdnbCZyzG47jz0EN4340bzklcLpfx/re/HV/1nvfg1Kc/7a6tv+pVaL3rXVgZjbC7uxtK/aSMSKfTThf5IlvW2NWUfNvUKaCO4OM2aoEDua0ZKNp0/vR/m5Gg0ZdOp4NGo+GqzFNm/sIb34jv+9CH8Ijsa7t89ize85a3oNfroVarod1uY3d310sjRtc1uqX0ngPwC9VqKDvrw5UKvm1mBu0xJpudnUUul8PW1pYzjinL7L7Avb09FzggKFZDR9eE/lbMk0qlUCgUUCgUUKlUsLOz45xN6XQa/+8nn8QlKV4DAI+ur+N/DwL80CteEcoY6pRKeHZcoCgjZ7M752K5jP/wnd+Jxd1dzO/sYKtSQXV+HokgQB7hqBMwKavtflnle+pPXqfpucRI1qizmJD6U51cUduYjrNxPSsPUhbaIJIGOzTbzyc3rQFs8XUsFkOxWEQikUChUEAikcCZdjt0fBNbEsAb2m08Ps4AiGr3x+PYXF7G/Pw86vU6/sEf/REeNScuvKJaxQ988pP4Z48/Hso4tcE5NT6tA0DHpzTUqKoamYrxYrGDTDhiE+VVzebTbQT3jUa4LxbDs7EYnh2/N5VKIZ/PIzuuFK4ZEnSEpVIp3MhmvWf1DmMxXD57FrWlJVcDSedT+628wWvI0/zcZjDoNSwU5wt++NpdpSKr8j7MkJ3mhdEKcGRwu1meA2IYenNz001kYVwE4NW9HnD9emSfXz0/j4+MmRQASoMBfn1jI3Tg+Efm5vDPH3oIjfEiUyHLviUSCZzrdnGm1cL2zAyu5XKh8Lilh/WeqHdeU0s0NUAF4WqrFYrUsiWCAF9ereLlhQJujM93Uqbg8/dyOeDKlYn7Xf8uXsSFMQ15r08gaLsUi+FTYwZjdI7Aj/2nc4IAP5PJOM+uj2ci+yeLgELiuME909YrlYoTsM1mMySQstksLl686MAxjRouXjUYSTOfF4rjV8Vqo0AUeBRkDrhfu4bcBz4w0f/4aIRTn/405qtVbI7H0Dp9Gluzs/sp82PDS3mW4z5novi2LdXrrqK4zjXHQOFPzyrTh1QBjEajkAxg5KDZbLp0N4I0lUFKOxqxp06dQiqVwtWrV906HY1G+OVOB19hwMET3S5++s4dvOuVr0SpVMLOzg5qtRparZajqQUmakRzHrUqqBoqTKWZFq1Vrz7n3yr5k9CmrUWmRfmaNdT52+ckJC00I4L0UHmnVV4tANLK28wuYeVrWwVSgaNVmrwOOJgT219+p3+rQmezKXxcu3o/n83/k8kkehcuYOPlL8fCpz4VOiuaZ5zvLi4i7XGaMlPklxcWkHvyyZCBdOuBB/C+t70NqVQK5XIZwH76aDKZxJP/9J+isrmJ0sYGkg88gOG99yIZizmgkxmfL63n0mYyGWe4W8Bu0xXViQyEz7a36Xk+njnOZiML065hs4ad8gcdcJoBlBufoRrLZvHur/s6nGo2sVirYbNcdpWCO7u7LmVeaWaLS6rs0ahOPB7Hv+n18BVmvX7Z7i7elUrhrXNzyOVyKJVKKBaLoYgscCBn6dyj4wgI6ymlicpPfmbleDx+UDiU65OnNpxqNPCQB+slggAvW1/HJQCd5eWJAkU83YFp0Go0BEGA7bk5bM3OhuSIdchw/jT9VNPuld/ZlKdtlFrpoxhTMx9IC8qxZrPp6H8SWiwWc9l6ms5K7KBZVKQPeYZFKC3d1CCm7rTOT95LxyWdIaPRCOc9gRltdLpHtfrSkiv+Ore1FTpyhy0B4JVbWzi/t4eObOmzetHnyFMdx+/0x0ZVY7FYyCFO3MnP7huNcBHA7sICNsplBMF+0UDKhUQigcVEAu9qNkMOrPfNzODvLyygMz79BADOtNs4V6vhZiaDtfFWK+BgT/G/et3r8I4nnwwdR/r5s2fxW1/zNaEth2rLWFkfpQN8Rj7/1oKhNk17Wrsrw9b3vwoJH4DRa3QQOnm6T9AOvtVquf109ARSaHWSyamGbffMGSyON57H43H84099Co8ZD8yX7ezgn125gv/j9a93/YvFYs7wrIxG+K4//uPQ5unPrK7iX7761WgkJs9tU6BE8GKFPRev/mg0Y/WQI0cuBgEalYoDelwQDgDOzeEzq6t46PbtCQ/LM2fOILjvPpwy3sK95HRW2JmfRxAc7MXhHGgEXoUz54lMb0Gcr1nAYBn+OBtBMaOPBHLqiUylUlhaWsLMzIw7VqrT6bgURCu8otYIm/XokoeYAaAFB2gYZp5/fuo4Kltb2F1cnKjgCyAEklTxbo3Bb1RLPvBAyFhXXidf6J5u5RmNSqsRMRgMUNnYwPLNm7gKYG2csmeLRfAd+q6FhQUUi0Wsra1hOByi0WjgUhBEpue/bG0ND8/MoLOw4PpO5xn7olE3TWXVuVcwr2lCNLTsHFsPt5UROraT0BToTftedYHvWqsnrHNC14k1DIAD2lABaiSA60LnIBaLucJ3ur+Iz1Ie1Dkhv2oGj8okbTp/Kv/tZ+qdt44ACwTJV5/5oR/CIz/+41j+5CfdtZ8/exbvefObQ9ECyltW5Oda/pVv/macajZxqtVCY3kZw3vv3c/GkH3xLPwDAPGXvASjl78cQSoFjHUw5Tej3EpvrgVN22Sz86Z01LljUw//SWuW/6zBrr/5t+UVdUwy2qmOHGCfJplMBvF4HNX5eWzPze3zzTgDpF6vO/3C+eBeXa2sqrRUHrxvNMJXepxQSQBv6vdxcbR/Tj2Lq1U2NrDc7+PZeByfGVcDJ89oPRKfQTsNFwLh4lo0krQQH/8+fcjxW/cMBlibnZ0wDnksEteTxZdqsMZisdC2LmvYcp4oR7RZhx3fSV5X2WizEnTdaASb2T+UaSfFsOX4GMBgEbHRaOSKTrJujdJFnQ5aWNSuIWsfqOOD/AHAZUvl8/l9J/jy8tR+f3p2Fh9sNvGaVmuiUv6nFxdRX15GeZxef2Z7e+qzznS7uDEO7HB7lWYEWD6jY8NuZ9S/bVCN44/HD+oyDAYD5Hs9/PPnn8frZO/rZ1ZX8a4nnkC1WnVOrng8jn/daEzsKX7D3h7etbuL77lwAafSafzo5ct4rTzrQ+UyfuzBB9EdjysWi6GeTuOn3/xmnOl0sNJsYqtSQW2MdWeS4eOMlPd9mMb3GZs1evk/se5R8dBdVUUGJosAqTESBcaUSVVpq0FEIame206ng52dHXS7XeTzeczOzrrqv/F4HMNMBp+5ccNrwF05fx5zr3415sfvW6hW8Yo/+IOJcdHj9/JCAbfGm/W1Uth3/9f/OlHm+qHbt/E9H/wg/umXf/kEGFLATgOEBzyTRgpuMpmMK77BaruHGRK3x/3UiC8FOH/+0zd/M7K///uhfZTX778f73vrW3E+k5kAWsPZWVy+cAEXr13zGsMzDz+MM52O8wLzfio1gjgtaEXPq+Uha7wqTynTs39q+B9Xo1ey1Wq5cVpgMxwOUa1W0ev1cPnyZWxsbDgeUJro2b+817dgrXKl4LMGRhAELnsgcUjq4u7CgjvUXPd/kl99zpibuRw+ubyMl25shHgjSCTQed3rkHvssQlFpQ4sPptKTfd+UKBz7fT7fSRqNbz9938/VADiA7kc3jE/j57QTekOwCnTzc1N9Ho9zM3NuXl7tNMBzB5hbef29nB57CHlge9BEKBSqYQKQsVisVBWAudEeZc01CMJbJ+16dxbUB/FG8fROKc6VmvEWseG7xk+/iUAJJBTZ4EaiVxHrL1A+aDeeBuJVQMjCAK3H9H2xTrWrIGsoMUa4+qkAQ6iF5qWyb1ClImahqXPU1Abj8cxmp/HJ3/8xxF/9lkMP/95rBUKeC6RQLLfR17kkNKLMpNAcLi0hEa5jHw+7yooa3Vv8rFGVGq1mtsqQDqz2NDc3Jz7jk6gQqHgZCP7QWeUzoXyAueE9LFR85Nk4OqWInViAZMGrTpfFOSRBzTjgHohHj+ow0CZQtoPBvvH22xtbWFzcxO7u7sOp/CoH6YVnjlzxs0/M182NzfdntyLh9D0gWQSH0ulUBmN8MMf+AAek+yxDxYK+MfnzqEzloGlUgmj0X6aOo1zxXG6vYD0UuOQuEf1AI044od+v4+dubmpfe6eOYN8Pu+MJzVimUbNphFGLU6qzhYr1zTDkH1UfeCTAXwXP+Nzo1J3yTN06GXGOI3O1JOiB2ZmZlAoFLC8vIxyuYzZ2VkEwX6G2ubmJmq1mtuyoDzB6L7W4uBvXT8cqzoIS6XShCzQPa6pVArN06fxzPnzuHT9+gSG/dzp00g/8gjefeECMh/9KF4ptQeeWlnBr7/lLQiCwNVFOaz1z5/H/Py842+mzFvnpDozVA8oxlWjP5FIOPnLH0ZpSY//45ln8ApT0Omh27fxvR/6EN5x8aIrwnmh34/cU/yGdhsvzWbxj27cwKPm+Ksvr9XwT55+Gt//8MPOxqBsXisW3Z71lHHCAv590fpjsaV1ctp7GZRMp9NOlh6l3ZVhG/XQwz73gRl+bj1VqhiBg4lnugsLQXGxv+ctb8Hb3vveUJrK8/fei9/7pm9CkQcbx+M460nt1bZUr7t9hnz30u4uHo4oc/2KjQ2sttu4NT7/UBlaJ80aJzp23mOPNlorlfCpU6fwyNraxAL97MoKbmazgESfSDP1VPZyOfz77/gOLO7uYrFWQ21xEbWlpf0FNhYWFoT+h2/8RnzT//1/4/7nnnPPfmZ1Fb/+V/6KUwA0XLXyrfUIW8+b5Q8ryNhoBHFMllbH2Sh0dG+RRoQ4pnq97vaBatosgafuoYgycNQB4FtD3Gvgcwo0T59G7fHHUfrIRxATr/woHsfmY4+hc+YMUp1OaF50/dmoFPvys695Df4/H/lIKGW9/drXov7udyNjjFo7dwqco/hB1/u3/cEf4CUmNf7xdhs/Oxrhf1lYcO/Qd1Fh7O3toVarhRwP+Xwe2+k0MEUGbJRKqNVqaDab6Izpo5kHTGUj/VWpWmNPI+lawn/a3CotfOD/JDTt72GGKzC5xzJqHZPnCISAcBTW7k3nMykrdL8WQYLKIwBOXvmAh/Y1alzWaWvH4VvP+pnP8JnGAxy/6rrePfegWiqh12ohW6060MOmBeTYCPo0ZVS3kmgNBBrCuq3FGqN8HvdjEXjzs16vFzIqrNdem4I+1ZtR1x+3kauRRR8vR/XZjsmOT+fbRrg164NFztrtNk43mzi7t3dQsX1sMLByMOeZxfDo+Oz3+7gWsWWA7fa4qvE/+tSn8IiJXD3ebOKnb93CD77sZS7Vl5EqXyo6m+p2X1PHtYJ/8sXm7CyePncOL7lxw1tQa2dhAbnRQQos79Voj40C0phm9pLOoZ0jdb4CCOlfO17Om48WnGs6L6xMYr81Kmz/P85GeuXzebcfmg6tZDLptgwx8k15bLO2fDJYaUH68CQRpYVia+sQ+62v/Vp8y+/9niswBuzvTf/VN78ZucEA/VQKP/nGN2K5XsepVgvVuTlUx1X0Ic9cL5cjMfjnz5xBfXkZpbFO0cwba8/4MJp1ZHBcvF6LUdIQ5Pfnez18ebU6MS+JIMBD16/jwvnz+NzYIXRhynoDgFe2Wt506ySA19brWG23sWPOd9d58vG/zqFiPSsHfbpR5audW6vPD2t3VTzKTobP+PAJBH6vYJkDV88EhVCr1XKDoFGbyWTc4i6VSgcpI7EYfuWbvglnOh0s1etorqygvryMVCKBnJRp3zt7durY1ovF0Pmwo9EIsx4G0nam28Xt8X5Km1uuXhlNvVCjj4CFEdtGo+G+/1evex3e8ad/iscE4P/5wgJ+6tFHMWi1QoxETy/3/VGA9Ho9rJdKqC0t7V8vxwFY5RkEAfqFAn7zW78Vs1tbKKytYb1YxJ1CYX9+YjHMjvei6Hm63PecGKdwKCP6FngU4FFPDZlX7znuiC0LmQ2HQxeJ43FO6mG8ceMGWq0WNjc33b00bLhJ36Zt+Yw9a7gpLZn2Z88mDIL9okxP/5N/god+7MdQ/rM/c981XvUqfP4HfxDl2H7qII+AGAwGDvQzmsC5U+DdT6fxy9/0Tbg4GuEvnT2LzCOPoPzKVyIdURxMf9MbqWmT6rUHDkB0ZWMDD5kCIcC4cmG3i3v6fVyJTxaV4ZrrdDq4fv064vE4KpUKstks5ufngXIZf767i0fX18OFdGIxXLnnHny608HtZ59Fo9FAu912mSH0tDLaDMApWl//GZ3WSqeMzkwD+Bbkn8RmZY7PMWPnRL+zyg8IF+vTqIgesaGgXx0wbKpLVI7ou+z+KtsHyn3222eI6titHItyyKlMs8DAGst6P6O26kyMx+Mol8suTZU8Zt8FHEQz1Dmjxg+P1ONnvFf3furxMeybpodzHobD/fMPZ2dn3Rq0ESzlC23WQRfVou5/MRsjpCq7fLyubZpzw+pHIAzqmD3GOgFbW1tAtYpfvH4df0kcGv8jk8FPPPootsZbXpaWllCpVLC4uIitrS1XwHB3dxfD4RAv9Hr4b3t7+EvD4URK5p/l89iem8NDyWQoqsWWAPCaWg2vKBaxPT7ih8eu5PN55/DQdUJ6KVBVvqJDhXThuAG4qP9oNMJ73vIWfMcf/REelCDG5XPn8Ftf8zUAgGazGQLVFm9pho06vHR/MNPsiXM0M40yKQgOIklcx5QdCr65XlQ+xGKxUPSJMk8zntSwU3lw2B7RF6MxWkseKxQKyI7T0+Px/X3BrMPC4Indj61BHJ9OsAa/Zv1RTuv+cdUFg3wev/7Wt2K+WsXC7i6qc3O4lcth0O8jPTa4U6kUmvk8ruCAT7UwFw3LX3nzm/Hd73tfqD7BlfPn8R++/usdBrNOGPZXt+FxXJqhwzVgxw3AZSrQqNdModOeYrnaLsViuF0uo9vtYn04BKak8OcOqXZ8ptvFltSCYFNdw/Wk82jTqRUb+TCQT66Trjr+L4lha5VvlAGr11qmVaGjwpvpKGTg9PhAZX0ePT9aWEC9+vVSCc1Tp/YXzFghUzjGYjHU83k8d+kS7rl6NXScgZbQjw0OzlEC9o3daW2jVPKOS5lWDV5V4uy/jXCyddJpvPNNb8KZTgeLtRru5PN4fuzBwWAwwVAcry4aAnCmOCvw1Hcp0w0GA9zO59FdXQUApBIH+2a1yAW9tUxH415SFeA+3iD/aLNeLd5jjeHjbOVy2XnQbJETKrB4PO48lpo2oQaeeist4NHxRhlAShf1ZqqDopPJ4JM/8RMob2wgf+cO9s6dQ+v0aQTdLmbG5xmWSiXnMOKREbFYbKJ6KwF2LpfDuXPnsLy8jOSDDyI93rNoFZQaZgrWNNXGrgm2wWCAOSns5msXhkM8J2mopJ8F2wBChVM6nQ5+6J578GPDIb5MnA6fWlrCT166hJ2rV9Fut908cT2rl1lTKtWgUbCk/KFHZ9h51PnWFmX8noRmDVfAv4/usGdMW9MKDpS3FJj65Cbv8QFqC46cs0bSQcmXPq8yAYnPELHjUJ632wasrtB+avSZTfmOcp0ZS4PBIHQcns6B6hfdrqL7FzmX6gknmNBUWZ+e5zgU0FFm8F46p9vttnOW6fusY0R1hHUknJTGaLSmhVrdZZ0cUeNQXlCeUOc6f7S68c/cuIHXmb2WT3S7+PFr1/B999/vjC6btseTJngm+PdlMvj5nZ1QquIH02n80wsXMDMzg3sPqcB7ptvFbuKgYAx1hf2xDlwawhrNi8UOMr8Uh9hsgXY6jXd/3ddhqVbDwu4utioVbFYq+7wz5lfFb0pXNTZoICoGU9ziw2O6XjhmXbvWeNU1Yp9FPaGOEuUdrisNEDCl+bgbnWGpVMplAzQaDZexwTnVdHBub6C8Utnnw6OkMbGNyhqrc3kdG2m2NTvrioLFxphGq2brPNp16gzRYhE/99f+GhZ2drDSbGJ7dha1cYGp5Fi/c70pP/Mdavz5MJ3qKKbck/fZGMgoj43V2sLC1Pm5k88jPTODubk5tAoF/Fm1ii/f3YXG+ocAnjp1CtfPnwc+9rHIZ+3Mzzt7y+eEsME8HZPqSH6ujhrlZSsjfWvRytbD2pENW1VE07zZ0xS+KkW7kLUYj/VM8VrrCWHalHrgdLO9KuYgCPB/fd3X4W/+7u+GUm2vnDuH97zlLSEBRBCxXirhz5eX8ajZW8iU4I1yGbHxvj5NSaSgtONl2pYuyijlzvFsjsvQx+NxzNRqCILAGewqwCks+T71PiptFTha+moKJe/RfH+dBwVMTJOyqbnKE9bIUx7x8Yz29SS0/Ni7xTHyh/9TkHG/E+efjXytwoDNLmxLqyhHgM6DRpucV3x+HrWlpf29OuJoYcEFRm7Ij1rZlIqEntaFhQXcc889WF1dxezs7EREzfbTzrumVVonENtoNMJmqTR1Hl4Y09A611TYsu8EiXS81JNJ/K/nzuHc8jLOdLu4PjOD6+k0+uO9vPF43EUd1JiiYFfDVueJ96pDiYBUjSe9hzTzGYlqpNyN0fhiNJVnQJh3pxnk1piNMu6VpywA0nRile3WiNUfjdLYd6sBQvmoz7VRVp9hG+WI8MkuqwN91+haoszVTAGue2ZaKL+rg0dTmPlOddJo/3XMtjL6NNljdW4QBE7+ZbNZVxHfGrF27U5rJ4n/OR5dA1GYRgG4XeM+o1b5mvJDax/0ej2cajQijzf8ss1NXLj3XlwbV53XLUJcO5lMxh2Rsre3h7dlszi/t4fz/T6uJZO4nk5jLp1GaWYGu4fU+dienXUyT/GP/bEyWnnBh5uA8N52O/9BEGCjXHZnN8eERzUzwKbxanon59C3ZUGbnTu+H0BoDU2bW+2PrjHOL99jHT9KDzpYj7JevtRNz6un0yoejyOXy+1nRuEgQ4tygRFbzVy0egQ44A/FkBYr6OdqKAFhWabP92Fe8hbpGhWVHI1GzkiOx+OYEdyn88l7NANVdXyUflTDltdoX/jMXC6HeDyOncXFSJvkM0tLWCsWkRqNUCwWMRqN8DOvehW+/+MfxytlS8FnlpfxG3/1r6KbzeKpM2fwwK1b3mfVlpaQliwpSx/fGuC1VsdYfaf8bufLl7X2JTNsORjbITWKlBGtMALCFbN0QNwDxPOoKMy5fyiRSKBYLDqG6Y3PLez3+67sN5nfGh7ax248jl/8hm/AfLWK+Z0dbJRKWC+V9pl0NHIpKcpc73r96/GOJ58MFbJ5+tQp/OvXvx4xHOxr4kRamnB/jF2EANw4GdlRoU+Dg0JCCykwEqWGiPZdgRPf4ZsTVQg0hHkd00a4X4dFf1h9kcYbwSaPuGGRBoJKRgl6ZhO7ZVwVVnQA+K47rsbKe41GI+RV1wqUNA5tdTyCVKbtMPrN730LXpsCbl1j+pkCIgtSG1JoQKOJNurMOdP9eMvLy/vHLZw65c7JVOEV5Y1UQML1ocBCr1NwsVGp4LNnzuBBI2wHAJ7M5XAjk3H7y31GUSx2UMyDY1Iw2ul08HkAV3im3ViGhI7aGPM/6dpqtULZH2pg8dmcd+WHzrjYWlTTNanK0tdOyjpgs4Y6m1U+vn4r7TSiSllnHSAEoASovuIb1lBQ2amyWY1ZZgbpM3T9cE55v3UOKt/a9Wc/U9qQJ7WgIOlkDd8gCNxRPJQvmomTTqdD+/1JX9JAHVd8Bp2VjPZqyjH7otsrrBMDONDljCTp8V3JZNKlhdZqtVD1fjtefbZ1Jkzjs+Nozz//PDKZDCqVituaojzHZiO2do2r4UK9SxzAo8k0A4R8eOGQqriz29u4urDgIuVra2vY3d11fMJtT8Xxtqter4f6cIhP8Cz24MBpXV1YwFNnz+KBmzcni0muru4fLzIKn/wQZaxY3MH1rOuYRoeN/PP57BefpeDfpvOqYUEdEOUE5m/to8olrg+fUe7DuPyOfKG6juNhqj9xLPkhkUi4ta64kWv4JERsuSWQWZbEEcwKVCcKac9jo1jcLMopwGbTi0kb1Zcqqzmnyk82Y075U+WaZpPY+VRZ5Msy00gx+YtVwu2JIWyK2TgOrkvyg9Uho9HIfReLxfCvv+Ir8Pc+8IHQNsXPLi/j5594wq0R2kQA8HN/7a9hpdHAcqOBrUoFW+Pq4RiN8Kvj9H6tJfS51VW8501vwsJ4yxr7Yp1XOifkc6Uz9a/Fr5w71Y1KY9Wzuo4tX0xrd5WKbL0j9n/7twoBIKy0fcSx79OBatqBevL0rEKCeTVq9f38myX0R6MRYp7KlAqIh6USfu6rvxqr7TZmt7dxO5fD1uzs/r3jkto+uljA7uuL0tVOmBp6mkpGuhFw2QWrgJFNwZsFEnyXMhEBiy1qpQDJlzZhwZ/2Xelqm9JelYKPXsfVuL/WZ0BycepitZ6oWCwWqgbI720EIKr5vvMZwPZ7Cm/g4KxRNZCpiPgszj2N8FOnTqFQKGBubs5FeXm/Oh90rL6+6pq3Hmr9AYBfetOb8O1/+IehwgYfKZXwA8vLobM8feO268DKGK4D9aZy7zOPcgIOKuuqPLFGh09Rkg/secC+/tp7fU4Nve4kNNLuMAUzzUD3/dhIjzVWeS8VrMpXfqfzrLLT53xRsGTTNn1AiDxrdYXKb0YvtG82c4jP9+nPKBmo9Sc4Xq3sCkyeI6z61f7YdeibI65tG3XTtU860Kna7/fd3jo6x5T+dp0qPyhd7DVR/7/YjeeWq7PERmZss7wSNQYasVYWKCC8Mz5zMqrdGtfXUKzkw1E0nKjHFbArGP/Vr/xKvO2978WDUojnc6ur+KU3vSnE176xTtNXlibAZICATf+3/KNOGJXzNmLkw5dRslabGsY6Lt+zoprVi5YGFitRFxPbUhaclIgtmw0eAQcylYYa/2dmmN2K5WtKJx9vUQ/z2XSUaJ/s/VGf+RywPjnFd+h3Vj/o2rLyNop/LaZWOe/TH7yvm83ip9/8ZizVavtFbwuF/a2UsRgSEXZVLZtFY2UFwL7Rx/f3cjm8++u+Dgs7O5jf2cFmuYztuTnEYjFkYgeZBnSm2mxNXXNWP+r3qrt8uI9zCxxkLfG5ANw2SJ/94Gt3FbFls4ou6nMFHewoCaNn7pEoLIRBr6+mStKDxb24JHKn00G9Xg+9g0xLolLYq5GmYESJTm8hFTYjN41xdJdeNDb7PI6dE8XnqRFDmlCQRSl2IFx4StNAqAjr9brL8WeBEBv90/7pIiGj0EuolV+Vieg95XelUslVWqzVak7Zk2b00NNzxef6mk/AW746CY1GD40dTUtVj7UKJKug9WByu/fGCtSo8evnajhRAPGwcDXCLV/G4+HD3wmS9fDz+fl5FItFzI69eyrAfGBUBY5PMdFgpsNkmmHbyWTw4294Ayqbm5irVnEjncb1dBqdWg0JOTrHKgor9LjudfsCx6BRVz3+hB5TG3lXpWUdPrb1ej1XYExpY+nB+3Vfrm3TwPBxNKWzz7j16QO7xlW+WONL6WL5TSM2VP5aWMmm+uu7tf/8jrrCGibUNdo/dW5Y5wz1SLfbxWAwcBExFmDS/arAQRERRjminH12rWn0WAEGvfn0risY9+k+pZHqJCu3fE5bC/I5fkbSeV9prCv1yDcFPzrOk8Tf0xqPAlGsUBynxPrkOOll9bFPjipOYCNtKXO25ubwkbk5fNnOzkQ2y0fLZTRPncJsJoNcLuciR7NjJzwjwRqtZOSw1Wq5yBuzVwBgNxbDz3zVV2G5Xsf8zg5uZjK4nc9jNOYz8hLHRL5So0fXrDqM7DpXHETDmxkFvgirykot6gSE5ZKez0w6W3ls58w6P62TQXnY4mB+r+n5PmOd7yWd6BwiL1H/kE6aRnucTfWhblfSPbSaDRKL7WfzcW+uYlg2S2s2xanqyOC1fA7pFYvFQlF+nQudQ5XF6hSxekbnjPylGaHkO46XmZXWALS006bjJg7j8Ve6jtSYJ2+tl0ruJBc+Qx0kKu8BfyVv8mB1fh7VcSp5KkKXspFmGmjT9ae2jdaJ0DVhm85TLBYLBdYoq6jPjtLuOhX5boAN/1dFaQU9wbV6BbRAFIU9iaUpQNYTbsGt9d5ZRgUOIjNBcBDZIoOSOZhqwWcoCLWAnp9Zz7iljXonOFaOgddaI0knnc/XCrd8rgVLPuNBwZGe/6bvV3AFHBhSnBMyLgCXmqxKzqYWss9WGdh36mf27+NqrVYLzWYTjUbDVYFUw4c0V4HKuaVXXBWcRkSASaPHjlnnXwWwKk5eY4W4fY7PsFDHST6fR6lUCq21KM+jPlf7yWaNC6bAscAJ15f2jWt9s1LB82MvZlKUvz0XVpvSQvmQY1UFxM+YHk6DezQaue0BPmNBn61rnnNBo8amU1la6XN983XS1oCNWivgOKzxet3jxs99kXU1ePWdlmYKTHzRwaj72Oxas/Nkx6oyzOdR5zMsMNHryfc0VJWHbNRV36lbGAhS6OVXnWz1oa5fq3t5nV5v9arSVH/YNDWaz81ms6FCMwRQUbxi9ZPOwUlpLCCo+/KsY8SHM3w8qD/8zka/OPfkmVgshne+/OX44aeewsvk6LJPLy7il554AmfGtQ8Irm2mlI0GKQCOx+PunF4gvG1svVTCnUJh34Ht0Sd8Jq9nFhffo84hH16z+kt53jZ1Luu6pFHD+9UJyft8ESFdm+yT4lIf3/L9Pkxlx83/iW/1PpUtyWQyVPSL82fvOwnNGiE07IgjOSekqc8J7JMlmp0QJW9UBpIezD4ADmQo+Y1/87lWxqjjRe0U20feo3ysc8cADrG5GpbK19pv+w6fw0vpoQEti+mtIU8dE4tFnwhgx8axa/SZslvnT3W0T3da/W3lH+no0zc28k3srO88SrtrN5A+nMpVm06gb8BRylX/tt5oekfoGaJng+dl6fsssLVMosqa/dDoFiM8hUIB6XQ6tP+FY7B7KO14lUl1UrTp4tD9I7oAVejayIR6yfb29lCtVl36o9I4ChjQkOGZZKoEVFnpfHLBMGpOw3Y0Grk9VcrUHJdNQbGCzDYrAHw0frEbDdtmsxna90RFxDHbinbqYVNlbRfoYYCOAkAXOEGtFf4Kqq0SVd4EDo4VYYZEJpNBqVRCoVAIRZjV86h9jpo/nyEHIBTJsvJD14kKN/abXmAqNwsqfD92HVL5cK8P+Z7vo4KgYauFISz91UjS+eQYLeCxf/s8qJa+x833tlmZAISNx2lN14DOtQI537ypbCRv2+uijFoLLn0gVvttQZOdZ75Hq7j6gK81aq1hSxlraWvltq4HBbtq2PqcI7b/lmdtFodvnn3zZsENsF8pNZHYLyZDXZXNZl2KvzoyLL1983NSW2mc7mdxgwV0dm2obIiSTXyezoeCWQLVXi6Hn/2rfxWzW1tYbjSwu7CA3cVFVCT1m7LKPksdMdawtc5zHQv5VKOG5CNer7Jc15Aa1fyM77dg3kcjS1ObOcH1oOBeMRXxiXUYqBFOmlhsa51I2riO9T6bbWZlgs3K0TFy3tRRTuygfTzuprKM46NhywJHFt9FOcXt3FrZbO0FACH5p8aRyig1bDW937cOrTxlP2z/FMMpDaifFA8TS+i7+NvyhJWzKg+0P7reVB/pGqT8UB3Dd1q8GYWXgLBxq+OJ0qc+7Bpl/6he4nWK5RT3Uc9yrjn/R2lf8Dm2nFA2643TRkJp2rFd1IlEIlQkQ48ASiQO0jjVw63eBC2vzbSeKABjJ4S/6XFiQSoKRZ10jVj6BLJGDjQVQRetXk/AzgIJFqwzJU4XiyotpnnMzMyg2+2i2Wx6Iz82gsxFSIOGC9PSSxcKQUoQBC7yxnnl3ioL5Di+VCoVMrx9Cv+o3pjjaBsbG2i32+h2uy5ia6P2KmTogKFgyOfzqFQqoVRhYBIssNk1QvpYsKLX27VnjQAq/1gsXACJP1EgzSeYbPMJWjmXGzMAAOT3SURBVO1nr9dDq9XC7u6uO6/ZCnLtK51XWpRJ1yQLV1jFwOeSb8n7mg4/Gu0XVLMp0TwKo9vtOpCugN5GQWyjIuX5tT6DwTdfKqyVl3xK5yQ1VfT2c8AP8Pi9gkE1SFWRaqYHcFAwRo1gy6OqnO16YtMCX7yOMtMCSL2PY6VuUpBNeUqeIiBlKrJ6nhXos++MatCJq0BG+cSmYzNaYceg/GIdo3yGjlPBJ5+r4EaryvKZ7BszPXgudqfTQWEc4SuXy6jX6w7A8F7lBdLUOqssPx13y2az7m/SS7ekUI9qWikwuaeU47NGSxAETmfkcjk0Gg3UajXEYvtbfBYWFpDP5/ed7israKVSKGYyKBl9oNspuC649YS0Ho1Grm4EZSPxA/tm8ZaCW/KnZh/wf02pJqZRRx9ppmtCUzgtBuJvXesqM1XekJa8VnWaygw1itVwIX8rnaw+4/fUr9Sl6uTW6+18a/SV+k1/SFvisah1cRxN6UT6McOLae/Um+QFdVCrXgYmjXvSbtpY1ehnX3QNsp8+I9zXLE7SrAarg1TuaYYp8R6LNpH3VJ/Q2Fb5Z/mTMkCdAuwjf1PHKJ/xueQhRv/VXlEbRO0BDWzQ/uG47fFMdq0pbqccsLqbcmY4PChayj7oFki7LmljaIbdUdsXVBVZ/7d/+8CMtd71HlW2JLYuYiWQVXCahmaNLgUFuqB8fVdDVMPv6mH3eeatwtLFab+Poifv4bst4ytDkpFUCBIE8YgS31ENlr4KxJR2Uccs8W8uMl86CPvB9DqNaNsFaB0Cvjk5CUJcG/chqSJSI9MKUBXYdJTQo+7joShj1Uenoyo57Qv/1qwIn+Fs58sHyLTZz5Vf9H5G+hmttQazPk/7QaCjiofGrTqvLK3YL/tjgT+fMxwOQxXK1Yji89RpFcXDqlym0cneY4Ec/z6Jhq2P1vyt4zxM9lk+s3zoA5OWR33P0L5YvQSE93pGAVZff/m96gQ+D0AI7CmvkR9UvvNzGqSkG3nLB2Y5Xh/gIX/yOXZMqvs0OmHpo+tG16D+8BkKvgjI2C86OzXrQ/ujfyswmybXjnsN6NwCB8YPcJAC6dP9ui4U89jvNVLCzBJmj8ViMVQqFXf2eC6Xc+mPQBhwK4/YCC77qkA4Ftt3PGr6ok+PKY/ZSFeUPFSjjtcTn2jE05cZFCUbfPzDcVna65j5nbYoGas00/Vg9Yq+g9hGP6fxY3GC9t8aQDYb5CREatk4HiDslLP41ZeRBURH+izOiIqg6hqyUXb7HN5r5YrOj5V1ymM00DVTRvuitocac1G6Xt9njTSVC9a5rX3WZvsbBAfZbAwO6lyoA023Z1lD1AbBphmUUetJ77WYycoXq8u5btSppDQ5Srvrc2zt5CrhFXjoZxTAup9DGUOLRAVBECpzTk8en6eeZD1jVQW4Tg77ToHKvtP4pZeHxh4QBrvtdnsC8OpzlT7qDY+iExv7SEOa6VsKinUSFRABcPv/uA+Se5l8xz8ACEVCSHuN2KoX1Cpufscje1iQIR6Po1arYTQaueJKo9FBWrJNReb8kCZsJw24+9rW1paLRlBJA2HFrU0X5cLCAhYXF1EsFh0Q8SltX/PxwDQnixWE+tuCUfKees2Z3k7BN8241vf6FIiuj729PXdMlEYDuAeZfVOQw7/JqzSKScMgCEK8bgWqNUYAoDuuZK7ygUV/NKrA/qsjRqMpVoEyCkwDnhFba+D7nFZKT58APylrw8enPiWlY7L36NpRpanA2Sp3C+zIDz6Z6gMVlv4qv6cBSOUn7T8jsNR3CgjUSBsOh672QavVCsnEWCwW4lv2X8dMI5LP1fVAJ6IalnwmjSwrJ9hfjXTYdH9dN3R25vP5CfCh/eRnzKjg38Ph0G1p8AF7fZbPqFW+OglN+6qZRzaF2GZARRlASnM90o9Rk1jsoIBlKpVCcVwo5jCgzrmlfo/FwhV22V9iDcorOl90TRLTaCP/2X6og554g/2lbKRDx3evBbJWFmif+Gx1UtpoL6+3wFh50Mpdpak+S6/3zaf+VhqzX9SziUQidAQc16juryXWtNvdphkYL1YjBmRkkryrjh2NTKrhrtkJXAM+Jxv/9mUDabSPvML3WQym9+j86d+atcM16cvK0udzPlibQwsd+Qwzfa+VaWoz2L3pShvVTT5ZrfLZvo9rnXU/VC/r2tb1ZrODfM2n10k/u+dYnb+Kq/i5Orys3aI686jtyIatMqkSk9/ZgeoEanTQAiF7BAqv56BVefKdfJZNW1MmoLGmykejmVZYq4Gi+wB1PyDf7yOwzyuhHghrIKhApeDTQj3TFD2ZgOBZK44BYUGqikCNBr6X9LPj8jkxlBn5OQGMLhY921CBmNLmMGPWfndUT82L0dRQUloABx5NetV1rxnvtQLPNzYfEOS1URkEvn6yT773AuG9e+pssfxs+cEK6Glj0GioyhFrbKts8HkvqczUicT/NUJqn6dKgn+zIi2AkMC33koFara6so6d76HhPg2URzkhfEaZgszjbr4x6RgUoETxt47dzrVvzfuMVCtj9bm2WTrrfT4DQeUlP9NrCc71WpWJukbtjwV6lsfZKN/pVKSBZB1NfL/Oi8p6AhpdD1HzaUFNEASuBoOe12rnXJ9lIzfaD3UeTJNtlld0Xo67aXEl9rPb7boMJfZfTyYAwjyofGKdIjaLhrqD//tSCvl8Pps6XnkYCG/bIi9q1gALf9XrdQAHKacq/3UsUQCaTedTZbFNVWbfNcJnneB6naUjEC4MZde2rnl+r4V2dAz82/KnPsM3Vn231Qn6Q8ypvKJzxjWoRkgqtX8mrI79OJvyH8ergSQ6/ba3t52MKxQKoRM3rIMegFe+6N8+Wc17tC/WOWnxq5UvNr1eeRsIz5XyptVZ+pm1k6L6wr+tHrH04P96vbYoTK06jPaSXRM+TG7HF6VXNYptMaLKN3WgKm7md+pos/OjOsmHj6LaXRu2bNbA0WaJR8NWhSQ7rftuORjd/8fn6UBtJJB/20nS1GYKVE254TOp/Bmx0cqtTD3ViBAZRplTF4gyu4+JdeJ4r9KIQMiO3VY+Y6NSIC00jYn0YrMAJop5FYzw/eppZr8YZabS5/xRKGs0wC4+C+isEjpJTfvuM/D4N3krnU67/VA8foHXKMCzSoLv4m81StkISnzA3wJE9sn21xoVvvQT61Gz4/W914IgXXu6J9YaCTr3Kh9U0Nq0YE1TVoVrlaXSmN93u11HZ4I4Kmh1rOnapBNOacVnE0zR026F/VF42gpuH78dZ/Otf/u3Nl+/fevIByiinqHgwvKIvd6n7HUufPfp8+za1IgTm8pQ5UWuUf62hq3KU+0b6UxFbzOPLD0VxPM61Xv6rigZo+tfDS1mSykotXOjf6su1rRWHZOui8PAn/4+CY31LqjfNPKkPMF5Y7O8zfusUUuHAK/n3mXKlL29vdAzVIYr4NYoB2WRyiyNjKhhyz4Bkxk5fKeuVTv//O3TQaoLiGOUPxTDcEy6nizQt/2KWvM++Wtliq+v+lx10kTdb2WR6iFeT4yqskD1jDVsAbh9myelWTqpzKBh2263Ua1WXYCJjh6uAcoGykZ9rspe+15Lc3Wu+HSKdUr4dIPOmcpaNouBrf63ukSx7TT9p3iO19pnWrvIJ0f0GVH4Sf+3jZ9bR5UPr/vus85KbWq8+rJoibWA6H3kmgl1N+0LPsfWprr6GhnBpqVQ0GqqQSwWmyCAFdhKDGvYEnRaDwyAEEDQPSkE3JwcBdqq0HmvjQTpxNsFomPh+DlOIFx8i2lCttouFQ+frwBD32EFuSpc9fgBmLhex8L7de4orKgAOU+8TwsnqKDyGUWqEDVioUDHAuco0Pxit+XlZZdOy/R060En32QyGczOzuLMmTOhgh/KK7o3y+eNUpDr+9F51giu8jVT5+3ecmtIsF/KpwQgmp7Pa7V//CxKiAdB4Pqh4FYLcNlUIb2f4Ex5hKnwmqVAvrI8Rloo6GPj+qTitaBeAQflgQpjOwcskKV7dDlenQOf0mazylppftzNAkALYKOUoAXhFgxYOaBg1IIFPT7Mp3x99x3FKWCjixa4cQ65BUSBKMfIMSm9rONVv1N5yf6qnNU9uBy/Orq4PsjfOgaVpzo+NqtDtEiInkU5Ddxoo/wgkGXKv9JTeccCRp/8sO0o8/ilbFtbW65qPGlHI20wGDi9wIwlW3iFTY0ZyjPyFSN1zChRhz0zudQxT5mtmVcq36PmX41aysAgCFwGFq9RPa0BB/IhMQx5U3UR+ZPPUp1jjVF+zjRd8n0stp+ObeWM9pFrlVXz1RC1fKsGkaUH17g1hhXvWkOJzyEPkGYKyHUONGo7HA5dynmv10O/33dzEYvFXFGmhYWFibNfj6tpBgqdvtls1jnutXiiNTCVP7RGCeeTfEu5oDYDm+pxX4TPBnGAsNPSGm6+gBTvsQYtm7VN9B3arE6jI177Ns0po8/Q9/Iz5VWffLf4TiOs+jn/tmvWYlKljb5D58wXkc1kMqFtN7yG/KNnD7Of1K2qNy2Wnda+aKc+RwFeC1osmNFrrVGrzOP7XoEoiah7r3weHTaCYiu8+Vz2ST1rlnl9jBg1Nksrvsd6btVw0cYx6ITbvH59tr5DF7tdwHYs9t06HvZP+6HzaYG4FRT8zILiw4DNSQD2PBJJ077VqKEgZGQvl8uhUqlgYWHBgT4L5IDJI1+sceszYq0xzWv1cwsyeI06k6Lore9S5eATdNP+9/VTxxXF59p84ETlgI/n7HtJYzVWdI34CicoYLQ/Kgt0LHYfy7RxaZ+njTXq3uNodo1a5W+bVfrTaBBlQOnn1lOuPyrreZ+C42nGtz5D1yPn2SpWgjpLG58eUMPW8pDtszVIbdqz0lPpxn76aKu60N7v42vtswXSUUCH31kDaxowmsYTJ7Uxy4OOBAVdarAxHVMdb8BkiqUPx/AadVQq/2u0i3rFZ9Tq+xSYWxmozmriCbYovKPf+dafBc8+HWCxwTSnhy8i5OMh7ZvKdx+v+fStfXYUftH/9TMF3daoVbrrXOj80zGUz+eRTqdRLBZRKBRQLBbd/uvjbjqXikPVaPQ5sqyuVLzpw9nAJFbks6LmRelt+xyFt5RP7NxG8avVPT6dYsegz7DyO6rZ8VjsomuL/Gb1l0+/2rFE0ZDPi+qbb7yWRsojdEZwjsn3vF8dsbaviuOO0o68UpQRdWDsvE8Ba8fZOQpRVZw6cI26WjCjRp1GaTUqqhGZKOYJgsCdS6tKHtgXTlqeul6vO5Bvz1TS8SuN2A9lPI2A0SvOyI4qNdtnVXD0pGtFRP6tjMAx6REUvkVlWzweD+1D5mcE+uwPDZ5UKuWKCSg40v05ught80XpLHOzD8fdZmdn0W630e/33QIlgAEOPG88qHxxcRHnzp3DmTNn8Nxzz6HX67njMHQuNGJjPXxRhip/26rAGlHSCKkqG84F+U4Bh0Z7dUxWAdhmFZl+HhWts5FabWpM6DN4PWXBzMyMS6Gzz/f1S+WJZn3YqCyzHPg8BewWEHFdc35brVZIFrL5QJT1RHPsR1F6x918yh+YNFSVTpoS77vWgm37N6PoFixybqxhaKMFUbqLjffpc/mM0WjkInKDwSAURVL+Jm8SpGaz2dCWBEY3eK06B1R5B0Hg1qEeocAURR0vdYdmCVhwo/JZj/ziPloaRhoRV1rpnEUZo5qyz/oP6mXXta9A9rDmMyaOo7FGAABUKhUXjaBOJm9ogR273xbAxLywgrQWJdO0d76DR/bQiQYgpPuBSQPMp3/Jd5ptRccrM9qowy14ZlO9pDJLjUKuHWazcM71yDv2V/mT79dMHZtBoLpN6RplAFkHr/KSGmtKP/bfZ2wRA6me0mfxWh/2YaRedRvT/jOZDJaWlhCLxdzxk+SPkxCxpSwC9sdB+ZFIJEJHduk1nC8aNZq27yv+qA4e65wHDoxT5R+Lu9WpxHuJd/QYLOVVnX9iKasjfIamOqaAyS0l2nw4yX6nwQdf8Ij00a1Y7D91hl6n/KeZRqoXOWf6PF3/ls4Wl/rGRb1MXanYk8/SOVJsbPWjyqOjtLs+x1YnwHqctelEWNDm81Jao86CnSiPMj+3Hk/7PCvIrAeTk2VTXBiF6XQ6IePFgk/LfMoQPsPC3sP++6KB/A0c7E/gGDTthc9UmvjooXPmAy7Wy2nn3c6RZX42q6x8/bD84wP104zxF7NxjDRqFQjyKJ8zZ85gZWUFjz32GObn591eZ10vvkVqecV+btONlT98Rq/Ond3jpwpSBRwAVyFTzzZTg49tGti0AssaNHyvrhUFK1E8piDCOlw0LVzvVQMHOOBJBfBq5Gqk1soe3xg5TqZ+c5++zq0qUB9PHfbZSeB9YHrk9TCjwydPor6zstonM/iZzRyxYJfNBzI08mWBjj6LZ++Rx/SdCmi1yrwey8IiQFqMyRrNPjlLOaFGQZQTSe9TGmnkiD80YrWapzqNrYMoqlm9Shmi9PHpmaP0nffYdXScjVWJu90uarUaut0uCoWCM0A4n9QNPlAOTGIj4hnOBa8n2FO+0DkEwse2KaDm9QoU9TOltc5XKpUK8bo2y1tWBtpoPe/Rd/qMPtLAZuFon9Uw0kCKYkrbrB7Uvtu1FsWfig2jrvMBe5Urup45h3ZtqC4iLewWmZPg4FccoLjTYg/KHZ7WYY0hpaMNDCmdrQPDN59Ka4utfM9S5yivUaNKHeW2Kd/ofFL2ReFl33N0/jnPKi8UCyu+V363skQdnvx+mry1upbjtvjOh1X1/dNShK0dZ59DfKrjA8KZgzwp56g64MiGbZSh4xuodtCCDqtkrRK1ysxep0JQwacyq77X9o9NDWoVXIyCsWADC0m1Wi33bBUydlH6xmSFsE+xKFgnYFKjhd4w9R7OzMyEhH2UkqC3VY15FQBRBtdhYETf6+MP67zQOeZvFTyWdyyPHXcj3WjEqHHF6Md9992Hc+fO4eUvfzl6vR663W7IsLVCVMenzhRgMmpP2qqxyP4or+g8EBBYHgLCUTQ11gnOGYngnjEFItPmQ6/hs210XtcQeVDH6JMj5CPdOkAPrY5ThTzBFpWuzfYgwOdnFkiojPEBb/I/eYJ7iyyNfPzvA7xW0ZwEMMPmm3MFrLavdizK4/Y6n04hz/maT3/oHEW9Q2WOT76R5grE+Jt74PTdVt6pYZvL5ZDP55HP511ldI2+0DGp2UBKH8oBPWLMZjlEARPOje6BtMYt13iUc/iwZt+tgJDPicrI8M1PVDtM3rxYrVwuo9PpYGdnx8l/GoOaFcWjnTSCZWWBzoU1bNW5rsYxeVPTjhXHqLz1vROYxGo0Qvg8YgrfOtVIjo6Dz7T7zvV+dUrqZyrb1QljMQDXn+5T5PPI43ZcdvyWr6OusVFgOht4rV1/PueFyi6dF5+jXx20sdjBSSGMngOTe6SPq+m51ConlQ7Kp5lMxulXxSPKs+Qha7BF6QTKTPKJ4gHgoH6N1UvWqWKfSRqrPPcFGvgM3zpVGRwls3zyT+WB9lNpzXt9hq0+R7Md7LitrvUFWab1XZ/ne39UU9tE+6n7a/V57KfFs0fFQ3cVsVVDiZ0ADvfAWqKpl5HX6kTo91boUQnYTcW8x0YptX8WqAAIFYJhGu7e3h7a7TZarRZ2d3fR6XTQbrdDIFlBko0G8UdBNP/WPpFxOXaNJhEgKx0ZDWq322i32+h0Ou7Qdp5nq6lJFK4a8bVGpRocvN4qChstVINKF5o1xFRoq3BRkOkzYKbx1XG2wWCARqMRSvWdmZlBoVDA3NwcyuUyZmdnAQBXrlwJFWPqdrtYX1/H0tISVldXJ4AfFTT5gIvdLnBgMoprjVgaWXo+K+eEc6aVf8mf8XgcmUwGlUoFc3NzE8d8qDLxOSHYOLfkOy0UoUWtWJTMFoHQ59rtBuQr61zStDXer7TSLA8WvCC/MdquQIL0UE+pKhcdm62irgDIGrT6o8+yMssnu05C88kMa9TwO22aNeADguRnC1yVPj5j1ufhVrnJ79STrcatBRI6d5xfOiy43jVjB0Aoa4Ppx9wfVygUnFHLKrdaVMgCGgVHpFm73Q45pXTs+plNPbN6V52Qqm98kTalv88BYBv1hoLD0WiETqfjaKcA0LcGTgqPR7VyuRyKQCWTSSwsLDjnH8ejzvGoPbBWz6bTaYxGI1dESPUs6Uce9sk2vkOBodLUyhPlEcUzjErX63X3fo2y6DOAfcxDGc6UZjpuaNzrtbomgclqruQTBddqgFt5o89QuazGidIEmJTLlDt2/fPZarxpqi31qZV9dr1oNoRdk7lczl2nAJ8gnj/WoXVcLZ/Ph2SxlRekP+Wdrhl+b9e64v8ou0FxDr8nbiCP6hYKmyVmDSYtGqv94LtsU8eiOgd99hCf5VtzVudYY1uxu+J21YH8P8oR5NOh2j9LR3UK2Puss9jKaJUzun6t7KEdYJ0QrFdgsb+VlRY3Hdbuao8tf1vjyF7nI4B2LMojN+0+6+HUVK6j9F0nU5lOAYVGaDudDjqdTuiwbF0Yugisx8ROiAUVUYvX0om0UcaiwmSfeTYVFaeOzT7DF1Xh974+2GuUYWlE2UVr32mZ8jDeOKlNo4XWI6aGFqtjAvt7rFKplKukvL29jVarNXEchFXkwGSGhPK5FR5WoJCP+UOHCFM6OHfsuxp82h9N91cwbfksqmnf1KBQ8KH85JMx+r9GXdkXgh3NevD1Q2WHz6jgOK2wt55S/s3fSm+NTOu774avfdeeFMBvZZd+7vtb/7cyPkr+RT1H3+97NpuVQWzWa2/lVlSfgXA1RssXXD9az4DGK6MVthCZ8pyVjeqh5nrWCIc9Ns+O28f/lE96XZR+ipoLn67X73xynkYZ9YQFtFHPjHrHcTeCMx7fRqem3futvKY/Vi+TByi/yCcKuHX+9YQEfY+d9yisBkzSknKefEcnJ6/1zY9v3nQ9KY9rRMjyh95ncY4F3r61rOO2+tLyme23/vbRyY5L/1fArzxtaWvlnI5d6cTPqJOtDvHJs+NqUQWsLO1paKrTXGWvxeGKp30Y1toHiiXsnEfpF58doI5y33j0f58hHMVvtp/aF/JtlN7UMbN/UdjG0kllC5+rjhn7Lt/zbPDJ0sPqdMVw9jP2RX+4fuzc23Vo5+5u2l2XWbO50CSETyBYg1QLtWjE1XpwKehVgKnnkylUqpjV0LVC1Ne4oXk4HKLVaqHT6aBWq7kzuKrVqvvcRgwIsC3o1T16nLh4PB4q1U4PBe9TcKwMpZ5CNj6DEWUCBxauKJVKofQyRqA4TvXyWAHM57MvCuTYNOVVS7qzv9Z4V++8Kn5tVimzL/Q62RSP42qlUgndbhfJZNJt0Afg+GcwGKBarWJ9fd0Vj2L0/Nq1a45Wm5ubaDabLkqowp7PVRBqjdcgCNxZzLqvlHtj1THDYleaVq+eXz6TvLa8vIxkMon5+XlUKhUUi0XkcrkJQ9auVza75gjK9GxXvld5zCo6jT5oX3XdaRSDvxU4cGy2fxpJ0Ggw38mmRj2fZ/e78Tndbhc7OzuucJS+T5tPwdnrThKI8TWfsrff+8CgTbkFoj3Ilh7qNIpyXFCBU1fwnTaKZbdz+MYEhCPBNM58KbvxeNwVCaKRw2itpiCrPuCYeMSKrm2bksz1w3Ogc7lcKGNJ9aiuIaUnr1M5rzzv0wlH4QMf+KEe7Pf7Lm231WqF9IoPLGk7CUasrzWbTczMzGBubg6VSsXNBRB2cKuhqHPK78lH5FnggO94bAojSpQxFmMwKqqZCKStjRxauazyWTNT+v0+crkcut1uKPLu090+OWUdhWowEDfxHusY92XI+KJumsavBlOU08xGU4FwNM/H91Y++DLW+LniEwYa9Nghdeqw33yHzXCgjtY9/aqvjhLE+VI36/TQjCw6d4MgCB39pfzOe0lLDRapnPYZihavaADJF3Gc1uz9zJJTvKHZBton+7nNpADCATOOgX334RRrCDILgs9RWcFrdLyUFUpH7c9odJBdoH2w2Zk6bq5BnTO9TvvOuWedEeKzWCyGbDYbsn9If7uFjuNSxxj7ofQ+SruriK0FAJb5SED9zGeBkyCcbF3clsk5CT6jTIWuTpbttzK/9rvf76PVaqFWq6HT6bjIGg0CgiBNJdEFwecrk+kE8XplAu2PTqr16FoFARxU06NR3u120W63EQRBaB9ksVh06XA2RUnfTzorfaxnzM4/hbXuz+Ri0PN3VXHY99rme5d973EDfVbKZaoWgBBIs+eyNRoN13emqe7t7aHRaKDRaGBubi5k2AKTC9h6w9QBokCRSlCFihq65GX+1ueNRiOXKqRVXBltssLFAlnb7BisoWBlhl0P1jli07HJfz5lQOGv3/n4Tfndyg9+75MnugYs/elsUBpYmel7lu1T1HfHzf9s2hffb/0+ip99INEnI23jd3ZfkKWNGnA2kqXpjD5eVr5RWUcAYyP+aiTqHlpG9BjFTSaTyN64gfzaGoKLF4FLl0L7MjX9lHJYARPXghrm1kHA3xod8fGy9jlqfVha+mhs5bK+kwUXWUla14Zdlz5+OYktn887PaAGKfnKGnOqH9l0rngd9TrnXAEt5Qz5gs8jX2sKtOUH+z79bQ07Bbr8ocy1GIF/q9GoqdbqxFEHpV3jbD7ZFgWkldZRQQwrh6zeUecjmzVA7PWqh3VueQ9ppZlDahgABxhB51vXgqaE816l2UloWplbHQvsJ/EGgyqapeLL3FBD0mdjWJlgI31WPtlAivKFpbfiYDuX+rfFXWw6hxqIilrzysO+aywOocy3xrBeq8/X5tOjahj7MLXie9+a4ni1/0oXxcW6T9/if9XDPCkkCIKJoCDHaWl0lPYXOhjLegksU/g6poxijR8llp7RynfZZ/P9mp7FppNmGQOAMzZ2dnaws7ODdruNbreLbreLVqvl0jc1+qnMpIBawTgnSb3h1qPIZqNoykhcKFpMgsKC3hHdfxWLxVz/Wa2R+750P6UqHc6BBTgW9CntyLT84dzYY2aigJVP6dqxRy2642ykZalUciCUR0aRlro/hgCFn/f7fTSbTdRqNezs7ODs2bMAovla14L+bb1cWrSIYLLb7brfOlcKnnWetFAU9wUy3Y7jmSb4o5rygQpBH6ji9aQnr9O9MKSFOlGsDKFyUT7zeXOtYcJrdH34Ih98jhq2jJLT6GCzCseuJ9s/+7nv3cfZdGx2jVpgYufY0swqROVxfZfKVuAAlFpHoJVfGv3RflLWWaeIzxFCD7QqXptxpDxEo5Z7bfmT7XRw/w/+IMp/9mfu2e03vAG9X/1VxOfnEY/HnRzX9cKMDIJCyn11eFqgY8Gej5fZf1vrYlrzGaN2/pWmPPqq1Wo5OaQ8wd9Hles+kPtit3K57OaZcoYOd42+acEuwL+Pjt9bcK3ReAuqgYMooWYM6PrS5/Kd+tuuTzb2Q4tYKTC1YFONMY5TZakGIbSPdguPlRNsPkNSsZU6hW2Ex/KlvkufaXUtaWfvV4NMP7f87AtS6Ls0Cq+6XZu9PhYLO3yPu+VyOTcXim+Bg5MBWOQLCDs9mLWmMs7SdJoOUZlu9YbFknZ98Ds+z36umZT6PspkW1DN6hBez3fouKwNY+feYn6VCcT2ajRHBfKs0WyxNm0Jpb+1Ryhv7POtfOd4bNaC0lMzVaz8YISc2Y7Ur75gg6XPUdpdG7ZRi8tOpF3sFuT3ej23r4RgxTKjMqJOuHrB7CJQQ5JMzj0wsVjMGbCbm5uo1+vY2tpyitd6ZeLxg7MTFcjou62HQceuk8j7VGmxz1xUlmnIxG6yxvcWi0UAcGBahT9TlOv1OtrtNvL5fCh1KpPJhJjfRvB0P5kasmR2Ll4F9cPhfmqyFgOy6Tu8R2mnysTyldLiqODrS9kI0IIgQDabRTKZdIWigH0gxxRxGpacO9Kp1WphfX0dzz//PC5dujSRsqYLX4WMgnqdDy0Sxfc2Gg2XiqyRWs4BeT2RSCCdTqNQKGB2dhbFYhGlUimUNsJmlY0qF2v86RyrcFOHiE1vsQqCz6HDRI13LTalQEV5SSNddg1aocl7fJ5CVTDsGxUMn2HTvtl8wFF/+9pRQf5JaL5x+KIKFrgrQLB8z2dYQxiYnCP7Djun9v02uqPbPHwGAteMpk7p8Tg6Xh1LPB53hi0NoEs/+qMofeQjoX5l//RPkfru70brP/5HF/HXiI49xkrlq45XwZQPjOhc8XrrGY+aTzbLl0cxcuv1OnZ2dpxc9K0HyrmopnryuOU/cKB/2WKxg+J2mtKnvMzx0SFB/QuEnTd8Hrd+UN6p/Fd5p/rX8r7iJr7fnmXP71U2a8QwlUqFcJFdo4oD+D5rlKtjJZVKTeAcdc6wKX3VicUfVqNOJA6KVpGfdX0ryLY6gGtf9ZDKfcVG1mGtsot/E5Brn+jw4A+3R6gR5ZNznLOjOPuPo2kQifzDc5uVJupMt04H4kxrvCi+tw4J8pumAVvZzs/0PfqZOi/J0z5j1BppNqDAPtMxaDN5lHdIC+BAntktTRbr6nY3jk0NTnV4Ko2s0csW5ZBRfKlzx899hrPSR/Ebv1espjYMZWQ6nfbaWfZdFqfRFova423bXRm2Vghps0qUn1nwqgAHCFer9D1D322Z1ueh02tVoLHvjGrV63U0Gg1nCKpCsoJWDW4ypy4kC4T1XvuZNXx9wkvp5huXFighaFBgxigDgQNTTJm2xDFwUdt50vfaz+z8qpJV48Uatdbb42uWFlbgHWej4ZJMJt2ZlKqEgf3+U2h1u92Qg4YAodlsolqtTqQFs1mho8DP0lodRYyY80eNSnU08DejScVi0e0J5DmblkejjDQf6LS844vOWS+5T2lbY9hXDIu8bPtF/qYBrkpH1yrfrWP1KVqrZJU+2jcV8L5medmnNKbde9ztbg0MSysqfDv/0+73yUF+B0ymUkbpKDvfUfMOwBmPquDpMNEohU9uWgM6/cILqEik1vVnOETqfe9DcPkyhvfeG9pTBcCB4Vgs5taz0vCw9ePjM64B68TRaw5rPj61Oms0GoWcPb7IlO+Z7EcUnx33GvA5x9ThbecECANTH8+y8fuZmRkMh0OX8eN7FoE55aNmXCnQtyDWrg01rCz+UueN9t3ynHUqKg45TIfHYmFHoV2/+g41FKYFURTf6Ge+/ul4bNM5s4aO9s0aUKq3yDMcJ7EBDRSNwlk9r2vAGrnH2ey6V6Pc0oR04J5jYDJKbjG//dx+r3Mf5cjTv2knTFsLh8ky5T+ttcB+2aCXOlOs7ONzde3Z5sMFPjytNhDv89kUuh59c2Rp41tfOgYdk16vWFOvUb1Dnqc+o9OLY/HpJK4fFiM7SjuyYUvm8Bk4thMcJIVKv98PAWYVAKPRKFSoxQJLS2DgwPvJVEklinoH9JiZvb09tFot3Lp1C7u7u1hbW3Pgn2dz0Zs2DXjpZ3YzN/9nX5XZ+b1NBVCaKZC3ab1kGo4tk8mgXC6j0WhgOBwil8u5/VxMa6PHnMC73W47r4l6PyhY9f1Ka1VSHIcWaAmCfa8lmZqeZv5tPc++pjSzn9u9csfRnnvuORSLRaysrDhPXb1eRyKRQKFQQKPRcAXIWq0Wtra23PmTXIzJZBLb29u4evUq6vU6stmse74qNwUuqsyZ6aApxozWcp94q9Vy15G/NdLJPbTLy8solUpYXFxEuVx20XxGDHTPmE8J+dZnEIQjcpx7Rm2Ul7nvzgIR6/ElDUejkROK5PnBYBAqJqJASUGVevOtkUvacwy6x0ybjSxRfnHPtDrHfOCR77E00/f72kkBNLZFOarsZ9Zbr9sorKLV660xTJ6wclYjr7Z/1C3WwWQjBcBkNI7OEz4jFouFjnrRI2x4bafTQSKRCGUZBFevTqVj97OfRWtuznnhtSYCZTSdVQrQCI6UZqq3uC70M0ad7bEjd2PUko56pq/OE89839rawvb2tttDZXkjivd1jUxbF8fR9KgTPWuUvKSGi4I98r3lW5WvNJKHw/00YxatJBZQgK38rLrY7vtV8K3RTwt8rRM1mUwin8+HToUYjUYhx7iNZhKg6vGJ7J8aM3NbW8ivrWFrdha7CwshOgAHBSrJY3Qc+owKIFzwUs+W57itQarzZLEsZQwbr1EcxucT71BHKf11vHa9WV3GZ6s80Qi0jcofd2s2mwCiM3bIXyyC1Wq1JgoxWue31ZnWsOT6sEEm4gd9rj6L31E++7ABm8U5mhFns00BOBnAooFck91udwJzWOzgo52V68ov/I4yh+NWA9o6t0hbxR4aKeaa2tvbc9f75kf7ZteSzjnXCYvKqn5QO4P06/V6iMfjKJfLoaw+33uZXcjaL0dpX9Ae22mKx6eo7H3aaSUYiUoBpZUc9R6dfOuFVsuezErvca1WQ61WQ6PRcPsj9ZgGFZzqqbBj0jC9AnN7HRnAtwfEMqGO33qK9DcXCp+h1aL5Q+XCBdnpdNBoNADAVeosFouu7wqSVCGqx1I9M+qEsPOi+w0pDFSQWKCv9/M77YsVesfVFLgRdLBKKc+iI88RVLZaLbeACZBHoxGazSZ2d3fdnlaf8aieLwU4fD8NVu6p1kJRTE/mPNBRwWhzPp9HpVJx5+4Wi0UXreVvzq9v/VrD1rfmnUK+ehWlZ57BcH4ezdnZCcNFha8+l/0mmEgmk6Eq3Mqb5FnLw+pU0ufzeTpOG8nSZpUg1yMrvzJFnWPn31QUUXLEvoN8Mu3dx92sg8OOyQdS9G+b1aFz6eMj9bgrbQh2NC2eTQGMglcfn1naRoEqghWCNPZfQTerpvd6PafMq7JdwdfWi0VsXbvmAMbs7KwDSpTjHJP+H0UXYDKNS40MXxZRVFN6KW2m6XjSgQ4fuzeN/dP77Lzo31G8dBxNizDqnlr2TfWkXffqqOTYbCZYIpFwjnWm7Kke1XVCR4gtPGXlKzAJ2n16WPtsgbKm49toqI+vdEyc63Srhbf8wi/g/DPPuH5dvXgR//lv/20MxlgkClRrVoyCZTseq48US3AO+NtepzpC6eyTBxqY0HervFd8pIa6Ylc1mnXefI49Xn/cTR0ZqrN8/E/DicWkfPLEN+8+fam6AAhH4n33KabV+fJhT32+HYdv/XF+mTWpzhzLkzaDwfKOderb79RJRqNWC7spPX3rwD5b6an91M9sPyx9lGaagWXn386fXkMeIt7UObNrKp1OO6z8RY/YKiGmXeO7R5slohppJAi96hxw1I9VMhqpZUpPv993acdbW1uoVqtoNpvo9XqhkuRkFt5vU+b0nQqW7H4rHRvvV0NQ77UMqUYs79cjXdTTSKZmJJyeQUZkFfQ0m03EYvspbclk0hlTTE/2KTQVHBTAjmnEs6zjpALifjA6KSxwsdEFn7GrtPEpvBe7UcgwfX1vb8/xG6PlzEzo9/uYnZ3Fzs4Oms2mi05SODYaDWxubiKbzaJUKk1Er9Q7SJ5g9JP7d7lnl0YsP9M9t4x2kj9yuRxKpRJKpRIWFhZQLpexuLjoztuNxWKuGrKN1nIufEaBnbvRaITR1hZWvud7UPzTP3U0XH/Zy/Df3/Y2dOXZmhGgCl1TjsnTGkVTWgEHxgznymeg8jt1fml6qUb3ouQWx0nHAumsNPKBLV/ERJ9pHV/2nSfBuLVr9W7u428CBVsEzUZe1XDTzzj/vF51BO9Rw9b+AIcbtrpWgTDPcI/t3t4eAITS4rk/nZXqB4MBOuUybr/0pVj57GcRVx0Rj2P3la/Es/E4bn/uc2i1WkilUrh06ZIrzMLsCfZhZmYmpAMUfHH9UB9aflLnJ2lg50c/t6DEfm7XF+lLuVStVrGzsxOio75D17FtUYb3ca8Bykh1cChvKRDmfNjvuL9SDSkazCoPs9msu8/W0uBvjbASy1CuKdawa8CCbV7D/ljDjIatrdKthq0awrxWHeR/6d/8G6xevhyi573PPYdv+Pf/Hv/p7W9311nZSZ6iU5drkc5j9tknP4GwE4VYSsfJphjIBhX4vfIrDQzVNWpsK38w6kcMRQd4LHZQUIqVtpWn7Fo/CRFb5V/FigAmaDYcHhwLqRmbPh2rMsKO0+JDxY3E41yTOk++gJPylU+3qI6yWYz6XGIS1lOwtT90jbOpg8K+W2modNCsCDpUqfP4OZ9p5YpiDztefYe1yaLwthqlVt5ZGvp+7PVcx9pXa88xuzSfz39p9thaj4oaeD7goL85IDK4gg893JwDVuGiwth6BfkOFXQUyDRCOp0Otre3XaGoWq2Gvb29UNVKjkXTTGx0SBeELlybIqJMyyqZhUJhQmhR4ClYU0HL8athy3eSqbvdbmhfJD+PxWKh4iOaosp9ubFYLFQsyC5ITQ/QH37W6XRciimjtFQ+NLjYX6tQVCgpP/mUjQKF42xMi+p0OqhUKlhYWMDFixfdGZZra2totVqYHUclgyBAsVh0qTuDwQDNZhP1eh29Xg+3bt3CzMwMzp07N2GsKe/re2nckr58FlN+aGhp0YaZmRmXwlEoFDA/P+8MWz1rk0paD1RXRQT4DVtep86YwWCA+Xe8A1mzt3Dx05/GG979bvzu3/27E1EKC2gUYKmzBoBzxljwraBbFa/ymWY1KEAlSCK/+bI29B3dbhe7u7uuqJj2Q+ll5Yc29tOuDdtOQio+mxo5tvk+J80U+FJZaxaK8r0+K8qQ0gg7gAmZzHv1HXyuRnwsj6uM4/X8noCC21q63a47Io4OpVKphHg8jnw+79L7//Dbvg1/5dd/Hac+9SnX/51XvhKf+P7vx507d3D58mXU63W3r/L06dMYDoeYm5vDzMxM6Og51Y0+gMSxaREfC/zvdn59/3O9AHDRNMq47e1t7OzsoF6vh4wVjeJpOvr/LM1GwgH/HjiLGzgPmi6r9NOsEYJ0/gbgHB2tViskh4ipqM/5HMpwm5Gia9EH+i1+U/kMhAsHcczsv01BVl4rr6/j7NNPT9IzCHDvlSso3LmDzUrFjYn8pAUQbbTbFuzxzQnHoqBasSTp7JPPli/V6CXOsnpCHdH8jk47RvhisViI9zlvNvqmcs/WvTjOpnyrfSXfMaKmx1Axw40Yndf4HBHAZAotcODE8eGEKAPW51BT3lW9oOvYYl11StDW0PPJicHowPDRSbFSPB5H8c4dFNbXsTM/j52FhRD+1nu4JshLFp9YnaljVAeJb76Unpbu/N/Oi64jpbl+rmNlHxnw4pom7dUpps5jGrF6Xremgh/W/kKpyFFATK8Bwta9MolVtFawWsDP7ywzqtIkIWkMtNttd+wADYLh8OA4IU1ls54WVU4qsH3KTAGWGuM6OXoNDVCfV0MZSFN5tagJ6UhPnzKnGgVkNhoPnU4HsdjBfrFYLBY61sXOmfZJ02Kj9h9oyXf2x+cxOoqQVuF23ABIvbGsNH327FmXwr6xseGcIVRGTFFWBUcaMS3+MHCnnn6NztLAVcOWhdHYT6bYM12ahaKKxaID3VrpVaM91jmla9UaixodGI1GiF+9itwHPjAxlvhohLNPP43i2hp2x3sllA/sMxWAKIhRo8Smuts+WiGrKYSqaOxatPLLCnJWwOYaUFloZRTlg5WXCmaVzlahHNUoebHaYWtRaanjouxUGWfHamltlTSfrz/2O5UbKg8tT2t/9XpV8L53WZ1Eg6XT6TgDBBBdkMngvd///Viq1bCwu4vBhQvorK6i12yGwEoQBGg2m2g2m2i1WsjlchO0sGO2fGn7zP+tY+ALbXy30kwjG0xDbrfbrloq7/Ft87FzwHa3uuLFaFZesPnmwMe/qkMtf6lTHdg/L1T3cI5GB1tZLCBXJ2gsFnPRRBrEBIa83vfb9lv7ZiNxUfjLR4sgCFDc2JhK18LaGm5kMiHMo84S1ZHUBz45buWOb737+qd4Tscd9cPGuSBtdS2zrwBc8IFzq05g3zxq0yDQcWMgwE9LNtXTmUzG8aQ6dHgf4Nd1vufaOdP14vte7ztq3/UzX5CBThU6izSYpBkFfI/lFcq/mWYTT7z73Vj9zGfcd9cfegh/+G3fhsGYZlF8a/uln/N6G7k9Cl18ssA3B2oP+NbQNHqrzXIYZlPMx+/JQ1xbh7UvyLBVZrRCMIoY/J/C10YKOdB4PO5SIzkgAlhNjxyNRi4dlMqVnxPo12o1tNttVKtVNBoN7O7uOm+AHmui6XFafZKeBioKm07Mfg8G+5Xf+Pne3p7z5qRSKRcRUw9so9GYMBK5X5JHt9gKsBw7I0QazbKLgHOiEeherxdKZ+v3+8jlcqhUKqGz65Rxbao4PantdjvUT36mxap0Iag3k80HWHRhs6kz4bjaxYsXXZrXmTNnMD8/jwsXLrh53tjYwPXr1/GJT3wCmUwGq6ur7l4u1Lm5OaRSKZTLZaytrSEWi2FnZ8c5GThGPc+LhWPq9TpqtRp2d3fdHvHt7W3HP6SrFgej8To3N+eO9Zmbm3NGLq9TJw95VJWP8gEQrvqngtallV67NpWW+Tt3MDh71hmaGlUjSOH6p4eXBdPYNyvkbZSWfeZ4FDj6jGler9EUq+j4Wb/fd1sbWPRDmzVs7We+65QWlCnsty1sdFKaDyT6GsemvKR75rj1hN/pfTpuRrGsN5jX8rcPtGr/qDd8xh4jYLodhsZCt9tFJpNxVdEHg0FIDgL7/Fqv19HpdDAzM+OyImZmZpCYm8OAMmO4X/DvoYcewkte8hLUajWXcZHJZNBut9FsNp1uIR9wzLo1xBpKdLTYfX5WRxzFYJx2na57euSr1Spu3LiBer0eOuebER1Ga7VFORx81xxn861hIGzEqiHCeaBjEzjYo0hwbLNjeEwUUxwzmYwzUFXGqpHNbRG6VUPXTiwW3qrEd1o5x3t1fmKxmHOKc63ZCJnOn8WAAFBfXJxK16sAbt686TACG9+jBXkqlYqrE8Ex2Ig06WvXtwYWbJ/ZNMWYEV3SQIugUW6pIUv5ReM8Fou5zDUGDyhTlJ6KZdl3a0xb2hxX07nlWKmrY7GYyw7jdr52u+14irrSRm0VT9t3qGHJ/304nNcRO+na43s0VZn95W+lsa4D3V6XSqWcLOdWx9FoFHJw2+wqq5fe+PM/j1Of+1yIpmeeeQZv/uVfxu9813e5vip21+AQaWANb117HKtdr/ocDTZxHBplVrr6DH7epzxqMYquT+UXrhvV4ew35SK3wym2upsMn7vaYztNsGvzXaMMSkJaD52mzvAeClUKd30H36MRUAIQRmr5m/szyJRKbK16F2WIqzKxhqOmDo1GI5fu2+12HdAp3rmDmbU19M6eRfPUKZfKRoNT9+vRSKQHXOmvgF33uKpwtfPBPWFBEDiv0szMjDuShpFGMhnpOY2ROHamIbN4kS4Y3XMwzaPj4ytdJL57X+xGZ0sul3P8w32ruVwOi4uLWFpawrVr11Cv1x0/s2AT+ZoCkAB2Y2MDi4uLyIw91nacnG8WKWJEpNPphCoUcu0wCssUeFbPzufzDmTT4PUVTyIPUHH4sip888G+x2Ix9M+dm0rL2uLiBOCw4Fb7Q15XUGb7qcKX91sFo0DPGpUqnH1OIrbhcOjkiu6t1ff4+DmK9wmSOD5VVEqDk9TuZi1aulpHSMghIkCSis86WvhMNp17S3c1ylSmK18o/1Df+AoejUb7R9jwb6ZKZbNZJwvYZ/Ion6dHcFGfWN7jHiJ1alE3Ma0vKg3QB2B8xo3PoXOU+YtqCnBo3GpxO2twa391zvT7k8br2nzOJZWHFg8oPvHps2l6UWuFUI/YqCuvJW8QuCt+UjCswJHXW2NUgW5UP3UO+Wz90TYcDlFdWMD1hx7CmWeeCe0zH8ZieGZ1FVdjMXRbrYkUR8VoesQhQa/KzSi+4edWjtj1pJ/rvPkMeF6v1+q6o0znOyjP1IHH6xQLA5OFDqfxyXE33/wD4X2SHDsxpcp9fQb/9uEKvVYxsN6nmEDnxjeflkft3OmPTx8T2xJLq4ODdoL2iT+F27dx5qmnJugYH41w4fJl5G/fRnV+3jlNomSn/m1lPL9Te2AahlOaq9Hr03/2/T6sqjadvteube2fGrbUnRrV5dh8cxfV7jpi6yPStCicMgc9GmpIDgYDZ3SxiJMyIoEGBTuFhnocVYnyWJtWq4VGo4FWq4Xd3V0A+5EwekJ1gagRZ3/U6PPRQlN96Ili/+r1OuK7u3jkJ34CZz77WXffnccewx9/93ejnU67Yhs8KkajoRqNUxrTcOFCnua9V6NnMBig1Wq5DeikXzqdxmg0culLBCnW0OczNR2IQIapZ0pHeittv7RvUcBGlc5J8FRmMhlnJNIAoQdvYWEB99xzD7rdLt73vvehWq3ihRdeQKFQcBFxLVIEANvb2xiNRnjhhReQyWSwuLgYmkcVrNy7Rhpzb2etVnORWe71LRaLLu2pVCohl8thfn7eVcLmvmpmEdi9Sny3RuptnwjgrZFC4dQ+fx71174WxT/7M8SEb0fxOG7cfz/qy8tICJCxEXmucTZdY/whT1ivH+eFfKreT2voWoOWSovf67XAgQONUXPueeP7VcnY53D9qjeezjAFrrrfWD22J6H5aMP/FfTa73wGp3VsctuEpbsWO4oCPQqE1Si2fKWgRw0P1QN6NJZmEjD6MBgMQlkOzJAYjcKF8nivHtHV7XaRzWbdM/k7kUi4QlG5XC70bhu517FYZc//CSpUph7VQeKjcxSgtkCG6djUMVbmc16Urj4Zw37Ydx230RuFfayxRJyijl5d98CBQ53P9Tnh6Cyho5yRMTUOOM86v4oL1HnEdUKnTCaTCclINp07C/J1jXHcCuwt8CZ++0/f/M346t/4Ddwnx189deoUfvrlL8f29vYEn+gapiNZt86oPrBZOqqblL7Kbyqrtb8WjGvQgIBb5bHFs3yvNboJ1JXWo9EolPGjhqI6SKKcBsfVrDzQLATSl/NSKBQcjq3Vao4nfGPRObOGpTadE3VQaKRW55dyM2p/pg22+QxbxbyU9ZT3aoRqP9QRDwD5tbWpdM3fuYObkkmq9FBdpThMeVuvUTpYA9bSV+9R2uq1PlvA6nzVBRoQJP9r03fpGIMgCBXTY20VxXhHaXdl2PoATdR1Pkubk62pj+qt10GrgUOi0/tNwaZMRcZU5Vqv19Fut51xl8vlHJFVaPF/AA6IUCAzwqaFnjguFaxM9dGzdWdmZvB1v/3bOP3ssyH6LH/mM3jdv/pX+J3v+i70+33s7u6i3W5je3vb7aFksSebVkZmYX8JfKlMdaM4FyIN4Xg87vZiNhoNB/xSqZQbJxle/+bzGHXQqsccK8GMKlBVwNbY1gVnvZQ2unPSGot1kMapVArFYhHz8/M4e/Yskskk1tbWnKHf6/VCTgbOVbvdxuc+9zlUKhWcOXMmJJh0DSWTSczPzztAvb6+HjIIyUM0aIvFIs6cOYNisejOplUD2KalRaVlcj0Bk4BX+2gNvyAIcOOnfgqn/sE/wNxHPuLuufXgg/gv3/ItIR7hffoOBSSkL8GYBQv6N/lNZY9NV9MCKL4x69jYN3XUtFotbGxsuK0E1llj/54GRkj/TCYzYfxp5sq0iMRxNJ+RQcVjG2mka0Zlg/5YgGfBpo1IqhOBOkD7Q52i/KD9VgCtOsFndNPpR9ncarWc3Nfn0kjlGuM1CsrplKQBTTmh/Mm1bB29pL1m61iZGpVpE2U0+q6xc+1zXCgwIkinw437odT4U4Ne1/z/LM3yka4DSyd+ZkGhFq/TyKqdM+pbOikUIPsApg8EU9/YvujWJ+IDNa7Jl0A4fZcYyG4ho8HAtFMao6w/0e/30U4m8Rt/5++gtL6O5LVruD4zg8+PRkjE48il06E1rPzMtcBILfugBqgaHlHRKaWrzXxQ4Mxxq0yyWWjqpFSHAudFjSDdyqDXWFnIMSge4jFyJw0HRRlMqlvVMUdaaqp8Pp8PjVX5U3GBNWJ9WRNKf8VlauBZRybngCnR+m5bsIz2ia4PNdBV73DuNXhEmmwUi1PpejuXc1mUSgN1FGhfrTGra1N1qcoFHz7X+61xz2YNasXuzE5ihqkW0aLsUj2hNhflmzqubOE7vlMxwmHtyIbtNKPWCnT93i5eZaooK1yFmwpWEsV6DclkXDz0jjPVl8RNjyOkCmA0OgkcHDNCo5JGbbfbDXma+UwyHI3LWCzm3pm7eTPkoWSLj0Y4/8wzyNy8idq4cq7u1dLqYVxUFJRkIuAgxZifkQ5qRAEIRWdJS1ZUTiQS6Ha7oYXPayyw1D0H/Fvp7/NcqrETBWIUFPgU00lr6m1X5cv9rO12GxsbGw4MqKeQgDWdTqPX62FtbQ3VahWtVsulNVpBTs8nBbX1/iv9qQzz+TzK5bITFjMzMyGjlsLERmvZLJC1AE6v0/l26SzFIj77znci/uyzwNWr2J6dxdbsLLq1GkZjL7UKzyhjSb2e/NHiURR8PqPJ50yxHs7DQL7yMeVAo9GY2Ftrn+PjW32nOp7oUVawr/30AbbjboetS6uYWaWbSs6nSA/z4tvPVDZZXaJGsM6zAjJ9nxq2Vl8p76i3nspYM4ho6NKYtY5cNV7ZR7unVzN/FDjrGlE9YPnYAnl771GaBTW+3+q4JF0YnbZRP6W1rqtpffLhiuNsSvtp1+j4fEanb76sUwcIO16ijAn97ZPZuj5UH6vREQRBSMYo7+u9qsesg4iGuEZY1cDh781KBTcXFvb3JTabLnNI15rqJeoArgvtt86Hb6zKe2rAqjFlcSbXlW/+7Oc2I0Sfp3Syc63R6CgeoE7nM304+Tibz9mlOMKOhbzMa8kPvu0VbCqHVY5FXevTE3yXjZTrM+zaUh2gc81rOBZ7DBdwcBQm36/p/huVCp69dAkXrl5FXNd5LIYr587hTqGAYIzfdUzKu9qo/1QPWrorX1k+8vGc1X+2Lxy/8oDSRB0/1rj2rSf2XXGOlXcqs77ohm1Uo+DxWdPsFCOzquxU2BEAWEDPSbNCQNO8qPwJ7OlNZ1pvEAQol8tuAZFI3Adk8+NZ7ZRH2RB00GAAJvdl8X9GRqnY0/X6dOI//zzWl5ddXxuNhgPPBM42WhMEQSiiDMBtbGc/SRMWOQEQigQwXVtTJmyEls160DRqQWOcxjSLSCldDhNAysBUhJZ/TopAjxKe5KPRaIRLly5hZmYGt27dCkXBSQddoN1uFzs7O5idncXMzAwef/xxFAoFl/4OwEXa6fnt9Xoucmv7sbe3h1u3bgEA8vk8FhcX3ZEhNLytkecz7qzysAaIKiMKI13P6q3tLi+jmc/vR+zG3nYLiO1eJ1UIum2AdNCjf9hPNWD4fBbw4bP0HgU3OlYfLTi/GxsbqFar2N7enkjX8fGKVXjsA+UEjReuXRo3/Izj1oqa/7M1dRhqJMd6btWotA5NIFywhopUjX9rOPgUPWnLuVOHgt2CYftB3uN9dAa22+1QFE4zOMrlcihLiGPQffrcysG+0wDWIz6sYa48qnxvQYGCEkYQvlgOEj1Xm5Ha9fV1bG9vo1arebey+IwwjkmbzxFxN0b5l7IpeGe/7LhsFpg65RSs6Th5j/KxOgpU5+tZojrHxAx6NqR1hgNwBiJ1d32MUwgura6is1VrCmgRPmIxZplRF2nGAbPCmO0VBIE7Govj57sYRebzfY49OoxV9jOdX521monH9amnQKjxoECb9LAgnd9xvzzlGp1ZfK46tHWvNABXNT0IAjdXlCej0cjt3Wy3264fPix1XI1zxOg5P9NMMMUCquvZ+B2d1Gr0WgNIPwMwIdvUkKSM47yQ1xW3KJ9rxqd9n46VfdYous0SI34lrrYBg1gsht/46q/G3/rP/xkPSIHNz589i19+05tCNgabbm3U7Ap9HzG8lQc+mqpxbnGd0lFlmV5j54B04BYe6i7SizRU41WdvbRxdF2p3NG+3Q3/35VhqwbLUZsV/ApsKXiBsIdd/1ajSi19fqaGLdNkNVKrzKX5351Ox/2vYXE+Q6tjamoO36sMpAuI3w+HQ9wcC9CodjOTccWi9J2av0/aKC107w6FCKt08sgJVQa60PRepgcyVVbBlC8VWcGo0trSyQol5R/lBVUg/Mzn4fQ968Vu5CedYx0vsE/nQqGAUqmEUqmEer0eSqtnUyE/Go2wubmJZ599Fg8//LATXAp+KNRUQWolQo3s0APebrdRr9eRzWaxsrISMvAsWCR9rQfZBz6D4MBzbwG2FYD6Q97xKS2fwFJDUD12eo+ub46fYEbfSVBvjXoLUm2/eD+zOOr1OhqNhnu+yjY+w+dRVEXEebSFgqxxTpooUDvuZg2Mw9ZkFFDxecRVN1hZT9poCmSUVxgIOzp8fWDjOlODNirS7+M3zokCaa5FZkhwTy1lpGYH+UAA+2Xfr5/rWrV8oevbjteCG14/bY7tXJK2BDSa1sqtPzRc9D779920KKfTi92UrsBkyrz+HSU7Ldi33ylf07C1GWTqDLQp9CrLLdDlb72GvKuGiDoI2X81yH3OZuIJguNer+dwCNcYneFRUR1iEN0zq8/XdF5dj7xXMZ+vboQ6ESzOsI41O69KB6WjNX6to40Zd/psLRLo2xPq070nAQMBYb2s/KAOSosdfXrR8rttVs+z+WSAXUc6h1aG2s+szrHfW2yva40RW3XicF1ZxxX71gbw7q/9WsxXq1jY3cVGqYT1Uml/7QnG4XvZ7HrWFqWT1RmsNOdasjrXp0utzvbhROvcICa1elyDOkojzUwh1lW9r+M/Kg6664itZRxLTEsYn+DWfHsF2+rhtIrCl9rU6/UckKDwZ1pvp9NBoVBw0R2+k55mAlQFHQQ46iFV4GMXhzKv7v0D9hfbtZkZ/PnyMh7d2EBCaDSMxfD06dN4LpFAZ3xuIb3eeiYWx2kZWlN/gmDfU5vNZp3BrumNuk/XNhqlPC+RBlMikXCLFghH5TTllUW6CGw4Bzr3PoCjQiQKmFlwdtxCvdlshhYaPdj0klNhlctltFotrKysuMi4NqsMh8Mhrl+/jlqthle96lUunVnXGRc0j6liSrGCARZFW1hYQCwWQ7PZxJ07dzAajXD+/PlQCjLgNwh0LlTAAuF1rOf16nq0AMt6A1X56Tt9gEH365DfrHGrwt8Kb8urTBnVdBebfsf5sAY4eX1zcxP1ej2kSNkU+Cm9VDFzDrnvWUGQGjykqxpKquSOs1nDSFvU53qv5Q3VCfwNHBSP41pRRWgVLa/T6/k+e401GpVPNGPIGrP8XB2y+j3XIZ1PuVzOVSXv9/uoVquO38jHsdjB8S7kO033tOBWx8jvFHTpuuCaswDL0svOj31v1DyTbnRutlotbG5uumOLFLD6gHqUkWqBqMUax9lId83WUH62nwGT5zczyywej4cyaKzBSyc1sQzprNuTADhaW2AKHGQk2PXG+eAzMmMHO+uLsN86Bh2nRlf5PQCXedBsNkP74/gcRp8pX4kVgiBwDttsNuvoSANJU5XZSAPVaRpR1v3tpIHOHe/ld5phoHrHZ8Rrs3TRfbXsp9ZJYU0F1oLheqdBwAKC2g91Jh13S0uwJggOspni8YOjCa1RFmUzkN6K9/gdm8+Q0ef5DDlLO8XPnAfF6Za2qn9t8S8N4BCvdzqd0EkTPlwChI9ce2FmBtfGp0PExjyg2ULE8GpM+pxV+pmVsRynjc6SV3m96j6lr/1fMaHSj/zN7Z7UY1xv7Xbb4WXKL8Vdqi+IU+08M1p9VBz0BRWPsiCOndCmjKxMDEwKTRJABbz19mlahhbsUGOUURVb+KBWqzkBwzNA+ZkKanocua9W96JwwXLsBDLsB8F+o9EIGYg/+/jj+Acf+xgeuXnT0ebpU6fwM696FZrNJjqdjjv3sFarhbyyFlz50vWYhtButx0jsK/9ft8xBGnHBcMD4AGgXq9jOBy689VUGWiqnaZlk0EZKWcqAhAukGBT1NXbZwUdla31CJ2EdvPmTXfeLwFpq9VCcVwQgEp0ZmYGxWIRq6uraDabzvBXYaHgknuc+/0+PvWpT6HdbuP1r3/9hGFEYZfJZJDP55HP553BwwrI+Xweq6urroJzp9PB1tYWLl++jLm5OaysrIQErwX91ptnQbD1sFLQ23GRRxhtIKDhHnL12FsvHNcYx6xbBpQebOyTAnyfscxIEqta63piU7mmtGg2m9jd3UWz2XRnKmqbppTZDy0UxWgt71OBr+MiT5HOJ6H5jKtp11m6+JQmZTDTBX1OLQWQ1oj1GUpWP1nnoAJXnW/lAUYkLWAg4OFzrWHL86FZw8DqERrSCp7YdJxRTh99bxRg5LVMD9P1oe+726brgx568i+LINo0ZB+w9TXf9yfFqLXNx89WdmgmjY2QDIdD55inLNLsMcpMHuvGlHVex4rsNDoHg4ErsKeFVyyQteuC/GUL/yiGIpikvPRlw2mxHvaThjwwWQAvCIKJ55AOXGOko27RYGO2mRq3qq/4Lh6XyP4zw42yWNeY6jl9jnXKKsAnBgPggh+khXWEsP96LjWxgeo0xYDxeNyb1XFcjfqIcnc0OkjP5ZY4ygV1IANhI5XynnOgabDTnG4q78knGoHnZ1x3Fq9YI5d90jkg3bWWB+eeAS9Wee50OtjZ2XHrbmVlxeEvxRBcg2po80ePgwuC/dNhKD+0ArhmIVjMYXlDx2qNWnWAqfMmag6snlcaU1/zuYp1qe/q9boLOFo5pHJSC2RxffMzzXA7Srvr4lE+Y8ReY5sVqApc+L1a/sqgvI5KQA81Bw48YgTQ9NqpUCFBmQ5DT6gKKU4KGdDuv2XOvoIJZVIK8E6n456ZyWTQSqfxc1/91Vjc3cX8zg7Wi0XcyuVCkU49u5bvAw72dVFQalRHPXlcaLpQuRgZzWYj4OJeWwLreDyOfD4fYi4+m/Sh8arpzApKFciwn+oNU+XhWzjWkPIZV8fVdnZ2AMAZRtxXwHnXhc6oKyM26hFTAU1+omOAR/8o6GWjoCVwpnOH781msygUCqhUKi4d+vr16+h0OtjY2EAsFsPs7GzIIWObFXDsr/ZZ51jvURClAF6ri5N/NJXXKhdd97omlY+ULlZe2PXB55A/LfjQ5+h4+U56ZLn/XQ1Mn2Gnss0qWq1ErWPWdEJ9NgW7elePs01bg9NoYa/z/VgD0xoOPmNX5177Zo1gfqdRX3udfZ/2yY7JRn25jnX/EH+UDzWyQYCoz1EetsaH9hcIR7QtnX30Vf72RUkOm0urq/lMGszMTtEj33zP8Ml/26K+O24dYPWU0heYjP4oCFX5r5iC0QvdDkXHoG+LEr8nzuBRU8Ph0BkTmpli9bDFbEA4usPrNcuL8phbvijjqZMUp2lkhnI/Fos5o1v3/Pr0APWij+7sK9eS9tc6eXy8rcaFGi82uuibd47ZygtdRz65ZbGQ6tYoA87y0bTrX+xGY0+DGMTG5FGlqW4RoqxQvWxlNxDeV++Ta7zmsB82q1etc1TnUD9XZ6DynQZziNs51nK5HLqXfGMNW40a0+lvI/uKh2zE1tIsSk+S15VvlUejHF5RdCct+FsDkMTEKt/slkWdEz5XHcN2juzRXl90w5adj1p0bFbpWwbiMzTlj4JaFQINMDU+NQ2MgI+pu7VazR2ZMzMzg0Kh4M7NYvpgEATOq8wIpyoVPdqESkf3C7DP6qlTRuPEKrjhdc8lEni6UEAykcBoXJiKDE1AYOlK2lCpKADmOznZLBOuqd3q1eRzi8ViyDAlk+3t7TkvE738ahSoJ5Y0YJo3vXZqlAAHaZ36LgVYUaBMlZ7ec5xtZ2cHrVYLOzs7WFhYwNzcXChdG9jvJ1NMg2A/SphIJPDUU0+FgIIF8sA+z3/qU5/C7u4uHnnkEaysrGBhYSF0vEF6fCxCoVBAPp8PpWaUy2UsLCxgdnYWlUoFCwsLmJmZQbPZdMcDDYdDrKysuD3Auj5VyPF/ACFlTj5gupp62RSQ1Wo11Gq1UKoOf9Ro5w8zBAjcVDiSrxXwq5yw0S7+1mvoxNnb23PyoVwuh/bFkHc11ajf76PRaGBtbQ0bGxveM62tIU3a8X+N4NkouTrR1AOuwj4ej+9XEBWlcFzNZzx+IWvT50HWNa8ywIIO64CwjjwFj6p7VCFaI81mKFAX6LzweuvxVyOCqZTFYtGtUY4tFou57JxkMolisegcYcyUAcLnHJNWug2GOsVnoNi5UiNHn0dHJnnyKGBBgY+V3c1m06151RGWrn+RdhJ0gOURlePKM+RbO5eUZ7yWEUu7d5zOeKYhUxbt7Oy47T9amInRR1bAt5EdIHxupG7HUOd1EATu/lgs5rJrNNpKsBoEgUu71+CC0mA0GoWOoCNIJQ24/9w6BpTXg+AgLXNmZsZdo5iGutVmD6k+5vMBuAKbPAKSjn41mPkM1XuWnzWLKJFIIJ/Ph+Za+6b6m3OqxZdYUIrPY4E90vyLtY7+oi2bzYaKgLFvzNggTmSBPNKf8pE0VR608pk84JNzlq/JH3qv6nN1AOpv3usz+tSxznWmOJzvIf4lX/J+4m5r2Oq4+D2dVswsYDYl/yZv2m1TVh+qo5xNU5DVWFRbRo1ZS2/FhGpgq5xSmwOAk0+tVsuNnXKEz1SjW51Kmtmkx/5Q51kn1LT2BeUkTTNS2KZ5YnweFOultiCWA2aKDsE0AStD3QSf3KtADyLv575INWKVoGzTFLM1BnQRKjOpwUzm5eLWaJaCcNKStLDpidof9c7o9crs2i8ADnjoQlfgpWlrNnKnAl6j2boQrJFqf47CS3acJ6HRiUIDTVNSVJlTgBcKBczNzaHT6eCFF15AEATOIFRjXo0DVkm+evUqkskk5ubmQkKfgoBVdbXQRjabRT6fd5WwCSYolOno2NnZCSl2BdXWq68/Cty0sJlmUNBBwn3sjNpaI0EVDvmKCkEzJaL4ysodghyNBLAvKpBp/FBeKBDhOlDjiGk0lCtsti/2f50vjebZveqqYDgWjlWzNCg/TmKz4z+s+da2ynlr1NKp42tWCVudEWUM2//tj32GPkuVv32O6ijOGY0ZOjFZ1Xw4HKJSqbiImwV3loem0d/n/baOZW02e0Tp6fvcR2uNLtrKvVEy3AcufePh7yi9e1xN59ln2FqgaO8FDgzieDw+gR3YVNZqtosalNls1v3WKqP6LJ1/yw+KF9SBr2m01ohQ3qKBbGljf6yRbZ3vHKOV9YoHLd+p8cuxBMFBFJH94/is05DXECsOBgNks9kQFlLa2OCKlRO26r7yADEB++9zviqOtI4Q9vWkYCHyimYP8nOmJJNXKdvUCUMa7O3thSKiwKSe188sTuR39n82DRjoteqIjnqnz1jkPu+ZmZlQsIuOa8VD5HfbrI5Xuc/sHhqzrMWhhl2U/IuS11F2FXAgh3y0tnOiv32OAWI7zrutEWRlgqW/z7mg2bmaCfUlMWxtpyzT2L95rV30/X7feSV04fN6K9jUW8hIaywWC6UEbG1tuRQY/jC8Dxzs+6P3QIGi7vmzAIn9Vyawe04sgFJlwX7Q+6qb0QkISEuNkirj+xSG0kWFpTZVJppCxNL76gXq9/vuaApdmArkdC+ARrbUIaB0VJpN+98aF8prJ6lReKtx2+123V7pXq/nvNiVSgXnzp1DPp/HCy+8gFgshvX19UiwSfpub2/j/e9/P1KpFO65555QihjnhsWHWHwkkUigWCxidnYWxWLRnYdbLpdRLpexuLiIWq2G9fV1Z2Qnk0mXssz3q2CxgM2XXtzr9dy+4nK5jNFoFOJ1rkc94oHgi0V1er2eW6e+lFz2Tfd88TOCKwWH7PNgsL+fntczTY97AJvNpgOYuu74fjrB1tfXUa/XXeVwBU0WNLJZTyojDurt5bpXhxrneTQauUgy92lrUaHjaj4j3vd51L2A33miMpT/a4r/NIWroFXlNr+3itDqKqtUfc+wIAk4iNbofQQ8Ozs7oSPsms0mqtWqc752u12Uy2UX1S0UCiEFTiVuAZKCDJUH6ghSA4ffk678rYZtFCjSOdPPOGbdO99oNNBoNNwReRqhsEZWFDizOIGfWTxxnE3loQJD6+jV65X/1CAGJvehU5aPRiNHy35//xgdOg6YjVYsFp3sVWe01av80eixdb7TYcvoLEGlZsSwr3wOi2Cx+QxNXm/XIME614saCrxf8Z86AZjZpnytqY80DkhnrY3CZ2otlU6ng0wm47YY+Y4e0YgpeVv/Zpq1OlYVs3Jdq07VtcxncZ74Oft+ko56Ix/yeCLyFPkU2OeFfD6PTCaDSqXiMgnISzq/jORbzA/A+5nqA5/xaLGDrke937Yo/c2mx0/FYjGH8zhnxNLkT5UT6rjh/ewXt5WRlslkEqVSyWEz4haliTaV6z66+ZxDlgd991jd7pPfuvaIf7XQHefDvgc4yADmuiWduJ+W58CTztls1hUAPUo7smHrU1JsqpBslJMMaAGzVkVm42Rr2qG+nyC50+k445DG1s7OTqhCrTWQGTHVaI4Smn8rgNLIkvUqsk+8TieMyoHpuQSpiUTC0Uf3Y2rExjoNfJ4lpbcqfn6ugldBP3CQ1sKxafol930Nh0PHVEw90UgE54JC30YANOplBbjyjF2kvs/US3ycTY0STSPiXPKHxlYul8Py8jLK5TIuXryIdDqNnZ2dCcEBhCOPw+EQN27cwOXLl7G8vIz7778fmUwGjUYDwH56Si6Xc4qDfKkCwO6hZbXmXC6HO3fuoNFo4POf/zwKhQJWVlZQKBRC5+wBCBmaatiSDwgKWMSk2WwCQIhH1PFDkET+ajQaE1kLlld4H2ljhWIikXDGc71ed95C5WvShUbCzMyMu45jI99pCtHW1hbq9bp77mHeUu2rVUS6FnQN838FPXyGFmejIj3uZg1SYLpRO+1zC8L1c9UXVm+oUafv8PWNPKJKWeUJaUwAqc+x/VUZpPLfR4dms4mtra2Qvmo0Gm7rCkGwRuTo4NW9t3puLvnXppzxvbomrM5Qgwk4OBtboyi2cR5886XRSjqJWODI1lpQ/cQW5SCxf9t7o/jpxWpqDGokkOvU4gE1VgheKTe1OrA68DmPxDLqOGbNBmbl8LmWvmr0kYY09gA4+cdtWUwhjcViOHPmjAOVlPdWHpMvBoMB2u126ExKG+HkurFAm+Mlj/O5mUzGfU+MqAYsjUkt/KTzY41Dfh4EAU41m1huNLBeLOJOoeD6qxkxashb/qWOsHKF/KDOR5U5QRA4WaBrzod/FKupgX0SMBBwcH6wdQKTt2jA5nI5JBKJUHYkcBAcqFQqzunOiCexKxCWXdPkBTBpzPJ78qLFED58wfu4nu31apQDCBX+Ag5ODlGMo+tnOByGHNyqh8ifXEdc52ow892qc5RPdL1Z7K343GdX+eRqFL0V26jcYzYSDVx1bqojkO9W55raP0xfZ+CG2DSbzXrXTFQ7smGrD40Ki9vPfIqJg6Mg1UWrA+T1vmdTgGiaTqvVmkgXJDNSkNMgVuWs41EFrimEuugskLILg8yYSqVCgpjKRfcn0rClsUnDxqfoFcjoZ7ro7Xf6LBXyZEi+k4ZIo9EIlSxXkO5jUPVeKk2UafXzKIDo4xMLRqel470YTcE26edLryVvcm6LxSJWVlacZ1idLxbU0zO9s7ODO3fu4Nq1a7hw4YI7jonv0VRk9kdTi20Fylhsf69RKpVyafnPPvss2u22e2c+nw8dQaMeR+t91C0AmpLNd06L2pCPmDmh0X5LD71P518LM3AuuP673a7zoOu9vF+dSyro1dM+Go2cUatVNe1c+eZQZYEaYlwL6njzOcb4t0Yh7qZowpeyWYWqf0cZIFGGov1cP1Ojyn5nZbY1kKP+Zh9V/liwHQU4+SyfztN3cW6pjwCEUnQJ5AlurEy1KZsKntUgZt+1zwpsfPSyji7VW1F62hoGvt+j0citO63d4FsXSnufQR2l244KZr7UzcoKCySByVoio9EoBE4BuAipGgi8Twux6HqIxWLOqKXRoI53Np1La0SyX3ROUsZtbm5OGJm6x1ONeIsJ7D5hn8y3fWBTnuaa0BMZFIv5jHfSgHNBOqquBoB8r4e3f+ADeOzOHXf/p0+fxs++5jXojrfqMFrk4zXlQ9JCAw86Xl3DxHy81+7T1DlTell9qbQ/7qZOC2DSeUZHMh0u6uggbmg0GqG1A4QDGD65ECUDpn0+DUOovOT3h/Eqg1baX65f4n5+TycmjTx1PDIjR2XdaHQQ+ScGVwM4asw+eR+lEy0WIR30Gt/zfTThs4gJuf2Mus7aCtbZqbKU79PiqEzFZqBmZmYmtCf9sPZFOcfWLmyfkcKm3gN6f3QhcKLa7XZIOJRKpVCKFr0ErEpGj7EuMAoSpjqq0qVhHQXIuBAs4+v/6n1RDyoLORSLRaTTaVQqlYmUBGVIVmpeX19Hq9VyaZK2qWKxTBolEEhzm5pmDU8Wp2BqExWbRl+p+GyRH2DfU0cQZ5lY+eYwIe0DolGOlBezKb0Z/a/X62i1Wo6X6LVmf2lMXrhwAYlEAltbW7h16xY2Nzfd+HQOdNE+//zzaDQaOHfuHM6dO4diseiUA1ORS6WSWwNWoXId8Nnc9/vwww+79N+NjQ188IMfxOrqKmZnZ533lB4zTYckH2hqse6nrVarIeNNQYBGR5nypkBQsyLYdO2zDzTYaTjs7u6iWq2Goh/AwT5zevtIA75Lvavci88+12o1dwYwMy4sSNem31Ou6FpTeUPlqE4hAKF0IypGvlvT3E5C84GwaQafT77q+DUFSSPo+i4FlXymTTGL6qfKHd7L56vTkp+pw8L2XdMayZvWgaERUwCoVCqIx+NYWlpy9zI7Qs9Y13spjwmY+DwbuVWaWIPTfm8ds9p8wEnv1c/sloHRaOSi0uqpt3zim5+7bcetA3xOOjo4WT/DGrGMBpLnGSFlBJ8GJeUSx6jZVpoWTHmghRstP/uiN9zjzXe3223cuHHDfX7mzBnMz89jbm7OYTHFWurEVcNZdY868EkjfpdKpdwxdewjs2u0Wjy3Q8VisZAhyHdSfyh/08nL96o8jsfj+J4PfhAPra2F5vLhO3fwjiefxE+84Q2IxWLOgcmIsQY2FLxrBI7fa4YSx6H4kp+RZvq3bo2bmZlBPp93tGZwhCeCHDf/syUSCRcxZzQNODD+ogwyZngxyyMWi4W2KFlHYyJxcFSa4iSVf0C0fFGZBRycfWwNKvs87bvKZAAhPmPhNK0EzW1gXBvdbtfxlFbJ1wCCYjbaEuqMV/2ln+nY+bnNntTfOm7roKO8sDiU2EzxpaUv76F809NC2EeOTemuQZh4PO6yEPmbBi2AqdX2fe2uIrb2fzXO7DVRXhbrLbBAQ4FCEAQhprDCi8QkcNZna1qDVba+ftrvfB4cMo8yF4UWizhoVcxCoYB0Ou2MEgsUyFzpdNotAi52G/XUPkWBFFVqdj44X9bjotfRaGm328jlchM0ZdMUVX2nBZF2UWlf9Lflo2kequNqVGgqfBmpoGJTgaVAYH5+Hr1eD8vLy6jX6y71S8GHtng8jk6ng2q1iuvXryOZTOLBBx8EcJC+lU6nUSgUQkYT71VBqU6Mvb095HI5ZLNZrK6uAgC2t7fR7Xaxu7uL+fn5kPHJSpR8rnrJ7dqwfKB/z29vY7ZaxUaphBvjfcHafPNOWtqKnMPh0BV0UnCox16ociV99ExRGhe6jgkgWOFVnTbWOWObAj0+S51Kuj9YFQrnxxexUYP/pIAaXeOH9SfKIWBlbdQPr7XOO/1t+2Y/j3KgWfnv8+T75BHnw/dM7afWILBFL3SeyRcE73yOXWME0eo0UUBDOqlsnzZm/q86/DCZa3mf72RWgeqsKD07jWd8+lb54CTwvwWGmsFCo0abyl7NcqFc0foA1rDl/eQVGhE2K8fnOCLtKdNYb4AVS+mQZSFJpv/l8/nQ8YK6Lux7fGMDJivVa4SKURjea/eV06Gu/Ex9p2tB14rOjZUXo9EIK/U6Hr19e2IuE0GAl62tYalWw8b4iBbFIfp+i0/su+18WYzlWzv6vTrDLcawa+i4m83IUPlpxw5gwhiiM4j7xTVbxSffFfMehgNVnvF/29cofK/N4ieOA0DI/tB1oM4Z6nk6Jvgc3Tbgy7zR9a58p/S0/bTjt/oz6v/DdK9vHnz0VmypeFgzzWzmkTouuO4TiYQ76YPp7HRC8D13g4O+oOJRR1GchxGCylr/pwCjwhgO90vCU/BywOoh29vbcxFZn7DhQtI+WCPPZyRawKMKRhcqo7OlUgnZbNbtG+A5pkwb1eeo0uEPKxJvbGw4DzCNdu2zL/2IfVGPRtSitkpBr+deRSppbuLWY1GCIAhVvNU0E58xbvuim8b1e+vc0PtsevZxNN1PwcboOveLBsGB57HT6Th+vXDhAkqlEnZ2dpzhxP222lQZkCc+/OEPY3t7Gw8++KAzLrPZLIbDIRYWFtzip+C3njU+j+lv8XgcuVwOr3jFK7C8vIwgCPD8889jY2MDDz74IBKJhCsEMxwOsby8HEoJAQ4iq/RUjkYjt4dM0++znQ6+8Xd+B/c9+6zry+fOn8evfdVXYXd8H2UCcHBGHpUCPcMEzxpNpfHAYlnZbNaNUTMpRqORc9TkcjnU63XnHWTfgX1jpFqtYm1tDdVqdWqxpiglDGCCr3U86sRQRccCIzZy6wMKx9l8cnJai1LMFripoaB6Qdc9+dsHOnxAS+Wkz0jTPtpoAd/N/ukzta98L40bOk0UqM7PzzsvtAI78iX7aQtmWDBvDVE+X9MnLZj0AXJtNBJsNoDvHh8457rUFDTSQXnF6lLLI74f8slJ4Hs21W8aqbW8wqZZCKQPs8oYeeV4KbOsAclnUhYSTyhv2/XE/u3t7bnCU5ubmw54bm5uuoKH2WzWHQ83Pz/vZBDXoRp5aqixn4xkAnDZXlollkCVhrNm0TADQo16GsnUpxbo6xFB6tC1Bi0xSWV7e+qcLtXrWC+VXB9IU7YoxwGzTPhOGvR8juIiNitDFLMyAmp5TB3mJyFrR7ObbBYkZYLKX5XR5Eme+0pcovJS5ZbyIJsvUyfKaeCTWWwWQ6tDEZjcAuijP+eLzhc6cPgdnTTpdBqLOztY2trC7sICdhYWQn1ks/osyuD0Xcu/bWBLZYLqWt8zFY/qeKNsOd4zGAxcnYV6ve50ADEjszAsPdVhxxRsrh/yDqsrA3Dy7yjtrgzbo3hRFWTrZ0CYKblY1btHIaBAV9NctNgHgb9WX1UBbI0lqwDYB75PPXQ+AaIeRr2Ohi29D8Vi0W181v7zfVqd2DISFUBpLGg1Eq3RI+sZV5oqja3xag0pgjB+TzpRaeuZiTRYKJi0QrICPdLG9y6fJ479s8BGx+VLa3mxm+7fYX/a7Tbq9Tqq1aqba4JOgtNEYr9icSwWw/nz57GxseGKdvDsZo7XLv5EIoEbN25gNBrhmWeewfLyMhYXFx29eRwQgNA6srRW5c9UoPn5eczOzuLhhx9GPB7H9va268OpRgPJF15AY3kZ2/U6arVa6LlcL/Sw8/mF27dR3NjAzvw8dhYW8A2/9Vs49/zzITref/06vv0P/xDv+tqvnViPCvQ4xu3tbRdlaDabTgYwta1QKIQO9tb+0HCw53VyfvieWq2Ger2OW7duod1uTzhSoowDnTd1fKkXWg02XqMRZZUP6jxRGTTNOHkx21H7YNe17zmUJzwWIgqcWIXMRn5Xr66+3xpJVrZYw0vfoWDSAgdNyVfQoHxMoD+7uYnS9etonz6NvUuXJoxNriHeR8OYWz007dRG9BQMWkNWv/PNixonPmCk10Y1Altuy6CBp2A3ai4O46MovjnuprqbhqruwVde1bUOwBmz2WzW6X5Nw2PTOeF8ULeoHFMHNZ9HfdxoNNy8cItWq9WacJDQ2Vculx1e4fzbdaV8oviHmGEwGIROVVDHN1NP2cdsNuvwEp9L2afZYHwXCxMSm/B7daRqMIAOhOFwiCueYIe2zXI5FLBQw5PrXTPXSEM1jKwBDkwejWTxFGUI79WxaPSWTo+Tsh3FGrU6VzpmzZgiL2iFf43w9Xo9FAoFrzPOOu8om/k+fgb49aTKHpvtot8pD6izgs9ls7JJnVLW+ZpKpZDrdvG1v/3buO/qVXfP8y95Cf6ft74V3bGTRp9l9ZyP9ta+sfLC6jc+m7/VIJ8mi/UdypNMN+a55Z1OBzs7O6EiiLo9QGWhje5b3KQObX5HhwGdvkdpRzZsj2LU8jtVjjpZUYBRmZb/c0BkFgpvpmRp4Sjd16nvVK+2CnXbP4IS6zWy/dQJplHOPHBOnBZf4r2c7MrGBrK3b2N7dhab4323aqQy9ZPKDwhX41X6+ph/GpOqYWYBhjVsdV8DaakKRA9i1z0n9v2+haV/299Rzc7HcTQfUONe1Xq97irZ8RpNp+AZeSsrK1hcXMT8/Dxu3rzpaMh72JQXt7e3EYvFcO3aNWQyGZw+fdql8BSLRTcvvjQ4/Ztzz9S0ubk55PN5nD17FrVabX+91et46U/9FOY/+lF379pjj+H9b387avGD4gmaHhyLxZDtdPCXf/7ncfapp9x9t++9F6efe26CjokgwAMvvIDleh0b5bITaEBYMZLPdnZ2nPOA4IeeQBa80gqFNrOAGQdqQKpDbTjcr9Bso+hRINy3xih3VPir4aDyxWeM0ADWvcdaHfSkGbZ/kbWoMli3M/joPM2wVVnvkyM+mUFaa2EeC1p8gMDXZ1scTe/Ndbv4hx/8IF6xseGe8+ylS/h/3vpWDMZOLp9R6duKwwjdNJ3Ez9VIjpKZVo/7aA6EQZ0FX2zkWZu9Y50GUXPha7puDrv2xW6cc40qsigYdaf2Ww1QNXBV3+v6V7opD2iargX1ih+sMcs9jcRJfD9/E2uwnoIaEOyTbRYgq3FBkK9rTA1vNRQZyeEzrMHqW5c0jLn++Dn1qBYkpD54LpPBR+fn8YpqFQl55jAWw2eWl7E53gPPMem6VMPNGvhKB8vr9nv2l3zCeaMRqxiXe23tlpST4NwHJrMudWzaP+UL8iX34esasvsx+Q5tFtP7Ptd1o+/nddaotd9Z52BUX6zMVZ7X5/P9X/8f/gPukYw1ADh/5Qr++m/+Jn73u797gr52PPouvj8K+6tRe1iWoxrwvmZ5WJ/F7YrVahWtVssd8ch30i6i3OIziB8tna1DgfYSn8UsEN2Keli76+JRR2lqzFFAKmNqRFeP3VErnUJXzzhiWstotL+/cWdnx3mKlfiqEFT4anELfReBAz9XgOETagTTnCiCVgDunExGueLxOMrDIb79j/4ID16/7mj02TNn8ItvfCMayaQTECzKw/ED+wCXgkSFPxCubulbjGRyexSBnRdgEjyoV1kjs5p6xoqI+i4L1vhjFaBdrOyDfn8SBLk2RvrIv0xFbjabLsWK80fFnc/nEYvtV7Q8f/48Njc30el0cPv2bcRiMVSrVS8t9P96vY73ve99GAwGWF1ddd4rRvZ5tqFN01AlTD6nl+3OnTsoFAqYn5/HAw88gNOnT6P0t/4WZj/xidAzlj/7WfzVf/tv8V/e8Q5sbm6iVqu5g9gJjv6Xf/fvsCoeSQBYMZFa24rr67g+TtGnsNvb23NGJs+lZhG5ZHL/yCI9uJwy4nSzicr2Nm5mMriWSmF3dzeU8jc3N+f2NKpgZWrztWvXJs7lizImo9aLKgI9bN0CIT6TqWzkK9KBqYAs3kbQ5kvBOq6m45l2jTaVUZRnnA+NVvgMRd2TGPUe33yoM08VvZUvFsjaPhBME4ApuFBakH/+4cc/jse2tkL9uefqVfyVX/91/Nrf/tuuHoPPAcpMjlqt5pxjPKqrWCyiPI4wsa/9fj/kwNUomo5tmqzXOYqaS9/cEbC2Wi1XRE+jW3ymdfhENcUAfNdJapQR1IE0otSA1fVO+ahNec+OVfGGOsJo6Oj+PupvGrGUmSykSWOWafDJZNLxlWaWcRsH5aKm02r0nfPI74jbiMfYd/aX/GYxy2AwQK1WczpRMxFWGg2cbbVwJ5/H7Xw+FBUnrdlIG3UoUN5ns1m3X69YLOLf338/Cv/9v+PBF15w9z+zuopfeeMbkRvPD9cSs9U0+0DT6xkxYpppEAQhh4Nm4qnRo5hOI7VcG/a4IeUBdVgdd+Nc6skHpAMNXDrQ1ahlBD0ej4eqeuu+zKg0Y6tvFNNbp4KN+ul11DV0IvqMXa4tnz5RWeprat/E43GU1tZw7+XLE9fFRyNc+PznMV+tYntubuIZ/K12jcoU5TuOVXWlYgx1FPJ760Qj/dQu077we67TZrOJnZ0d3Lhxw60XtafYSCfyO+fOlyHB/vIzBiS0roA+87D2BRm204C4fqbMwE4pkdW7oAPVFDAb7aDAjQJ8vonRiVRhQgOEwkfz5S1gomCiUaEphRpdVgOQ9/+//viPcb8pYPDgrVt423vfi//zK75iIr0NOBBwuVxuwrAlaNeFa6MZOnaO2xqVPiOKn2nqsQp2XRgKlqxRa+d/Gp/4Prc8dtxGrvXsUUgoD1LJKk9odJMFn8rlMsrlMrrdLmq1mpdGKshGo/1zVTc3N7GxsYFTp065Z5Mfp6UqKe0IinmmHlNBZzc3Mfuxj03eOxyi9OSTmPuWb8FeuYxUKoV6ve5S0gu3b+PilSsT98WnAFhgPwWM/aJzqtPpuOJafMdoNHIOLZaB5zqcA/C973tfqDjIR+fn8b+dP4/mYOCKoahCIyBkeh7T9ihULd2OasRx7lQmaNqMNdL0mSrgbSTX7s09zvbFWocq1+2Pyn1da9bhFaVjVLZZw9XXD1X4jCJYAKBnd/tkp/bpdLOJV4yrnmtLBAFe8vzzKK6toXv2rAO9libahsODQjm6h195lZ/ZPdqWjkpP9lnlhQIP61hQWutc0RiwEVtLm2lt2vdRTovjatbgsdkGFq/4+BWIjiDpnOpWBTpAND2YgJIFoVgMSo+T0+rJNMRZF4G6wx4rEuXY882pXk8eowxTh5XihCAInBFHWVjs9/EDn/xkaN18fHER/+dLX4qOGNFqKJIeXENqeCeTSeTzeacvEI/jV77pm1De2MBctYrNchkb5TKGwyGSwmOKR23NEN96t/OqfKCf6Y+d8yjaqnF8FKfQi9V8Thk2GwiifNBgEo0W/q1Zf1FNZbnP6LQyX7PA7PqM6r+V6/a+aevB1xcAh+7vrmxtoTo/P/EOlXu61vhbjUGVOfYZdgxHafZ9Vk5ppF51gU/v+GSe/th3qszTvw/T4752V6nIBFjWW+JrVlH7OkXPrxKRA1FPtBq08Xgc7XZ74ogPNeT4LPUY6N4I9YTSe0RvDyNbKtj4GUG1euHUwwnA7bkhvU43m3j01q0J+iSCAI/duYPZrS3cHOfa6yJn+mo+nw8x03A4dHtO+B4qCxWeSmOeAeVzAlgwReNsb28vpICBg0IRupj4HFswRJ/v65fOmTW2TwqQ0eYzVCm06cTQ6o6apq5GT6lUwtLSEk6fPg1gvyqxrzw6G50sGxsbePbZZ/HJT34Ss7OzmJ2ddcAFODgY3dJRAazu89nZ2XEOpdnZWRQlbdLXlup1LDz+OLLZLNbX11GtVnH58mWUPR5JbSMAam4PYzF8dmUF1fl5pMa8dfv2bdTrdWxvb7uIA8dTKpVc5JuZEvH4/h6Ov/8nf4IH5WxCAHjF9jZ+tNfD/3ruHAqFgjuKQL24g8EA1WoVGxsbqNVqjg6kWxSIm6YoFIgwVZql/2OxmCtwpwYE50cjt/yec0Un2klZE3e7PqPoaWWaNZhs9Fw97QSzPmOf19o9cPoMa0zT0cPogjVerCNPx29T2FbG59dGteL6OmpLSwAQKiqoURw2ytp6vY50Ou0ylBhhIw1YYLFYLDpdpI4Uu79cdSrpo+PRqKzqVQX+ml7IdDQbsfVFMrXpWC3o1H6dFN5n1IkGoq556kD+zzWraXY+oMdmU5aB8PEpbKQ9z9je2tpyDrpms4nhcBiSOzwDfWtry6UQVioVl9pnf9RRPr+9jcr2Nu7k87gzrsCvutzKMvIGcHCUh2Z+AQeRKE3l/qFnnsFLG40QrR/b3MQ/+OhH8Q8ffthlPxUKBRSLRecw1IACac7PuB+ZTsu9vT1sz81ho1zed1AF4Ugrx0QMpnvoLd/acVt5RcNKcRG/Z/9UtvhwVhAcpKpzHCfBuakOWN0mp/iVTeUrEDZc+Bm3tWmLWu90bFjcqrpZU1/5meJeOnI0EBDlpLC6ws6TjlPXPJ9VNdFY2+rjI+CsY5d9su9SvgMOsgOiHGw+rKI8anG8XmN1BueMthRwoL+0z/aZyvN6rJlmWnCcWkvCGrSk81HbXe+xVfCloC/qpXbB+8LdNuIFHAhwrTamHnQqGStUVGmrx5+LQhmaqYxqTGs1YC4UggZ7bIOW+FYDk31KJpM4axatbfeORqiN90oyFRmAA7QqNEiffD4f2jejTEwv2Gg0wvleD+f6fVxLJnFFSqursNG5UxDH6ATpEARBKFVHjVr+VoET5V1RYaJNQZh97jT+erGa7qPmnDNaEYyVJIuG0WOtaWgaac/lclheXsZoNML29jaq1SpqtdrEGNXTHYvFsLm5iU9/+tN46KGHXBU5rin2iU3Xg64PCl/u02UqdGFlBeUp439mMMBqq4W5uTnce++9WFpaQiaTQScIgN/93cj7ri4v4/719YPnrK7iPX/5LyMWizlAxvOb6UzhfuVUKoViseiitRxjJpPB6WYTj9y8OfG+BIAnmk08mExiMN47RoU7HA5ddIOpzlam+Zw9Pj623l5r8Piu1wisrgMV9urdto63425fiFELTDqu1Hi3kT79TaWvcl0NrqgMBdtXBRt8pxYA4n5EW6zPgnjrqGXT+bx+SHGL27mcc+ZyzZM36RRRUMMfdaDRycp7KXeYfaGppSrb2W/qkaj0duuIVL3Afuzt7aHT6aDZbDpHszo3dc4tQNE50e+ot60T6STwPnCQiqzRWtJYHZN6ZI1e49N5OtfqjAcOMJdmtHB7Rr1eR6/XQ71ed3qZsnFp7DgJggA7OzvO6ZBIJByOUZykhm0ymUSm3cY3/s7v4H7ZTvLUmTP4+SeeQAeTUSNNgScA5t/cnsMtOonEfs0J6q5TjQZea4xaYB+YPl6v48srFeyOz1cnXzMzjrqY/eB3jBbr2tIgCGmjqZ56r35um+Ibym46pRQbKu5ULKpGjBaKUsPKOpE0o/G4W07kl24jtE4GygzdbqLOZer4crmMbDbrdRpbPWn5jk2NKDY13CzmVFmuwQA2lZXq3CDP2IijBuS07zsLC3ju/vtxz5UroQy2UTyOmw88gMbKCiBpulZmqDyw47e6VftoDU3F+qrX7PhsdJbzyvERO/F0D8o8LRKlDgAGeWg7jEYjd6SpygzaOuyrvlf7czdr4K7PsbWeDTY7qVaIKJPyM1WeUcAyk8lMeE4sIFIPvQpsCz4paMkw941GeLDTwa1sFjfHgIKGLAnKPX2zs7OhyC6FISNLANweKQKnmZkZ7BzBa5PP50OKMggCN9l87mAwCKUVMW0TONigzz6VBgP85O3beMO4rDoAvD+bxffOz2MHB/skfPOknn71XKpHzkZhpxkFvmaVhjWOdaFG8duL3dSTxN9q5DO6xqiJVVico3g87viJ1Yl5fqrPGaAOC55/u7m56Y5oUK+aevZ1vangUjBDYDQzM4Pg1Clk3/QmpN7/fsQE8I7icbxw6RI+NxhgdlxleGlpCeVxKvGdTAa3X/pSrHzmMyHhPYzFcOX8efzqN38zVhoNrDSbaJ06hWeGQwx6PQwH+yXit7a2sLu7i26369anHu/FKK16+9LpNE4dEmG+GAS4Nl4vmkLIyAYjtSqDKBesoau/fYLVyjadO5V9dg50TwnPeaRxRdlDx9s0I+6421EMXp+cJ+hRw9bKep0LnzPNB0Dt99o0WsTqjjwSRffQ6jrUyISVVdqHeDyOF9JpfGx+Hi/3FatZWsKtXA6zY8N8MBg4Y4U6jHtoNfvDesvpfOVnPNA+kUiEHCG6N4/ghrynwH4a7eycUHewWA+NWnuW/FEdPRagWZlldfhxNjoxbfSVdOE2DwBe+kbJCcC/b5A0IH13d3ddXQdu1dCiUDyhYXZ2FsB+FsD6+joajYbrH2s+sC/kB3X6/83f/V1cuHYt1L8Hbt3C3/uTP8E/f+IJAOGqybzfGmhqZFK+U/9R1l86JMPhgWQS11ZWnOFN+pPHKT+C4KCmCmWrZoTYNW0NANUv6nSxPOjTB9ag0ObDOrqOSCefsaFr7qToADrQdPyU01qkkbJK5T6dEbFYDKVSCaVSCYVCYaIqPhvpYtc9ZZvFiNawtVFWnQsrp3T+fIYyP7f4luONiq7+/rd8C77mN38T98p2rVsPPID//p3fOXG9zr8vYmnXl/ZBg1a2+Qxn+7mlrx0fsC//eLwlnWVc44zeqrNUA5nUGepQ4JrWYml2DDpvnPejtLs2bPm3/u9TjhYIUpHzf8tkyky2silwcB4aDz3WKIwCRp+XR3P6k8kkKqMR/sXWFt44fjYAfHRuDj/6kpegOfZmktgUxHp4Oc8D5bm1NEz7/b4rez0YDFAoFJCcmcGzn/0sLjz7bNhrE4vhuXvvRfalL8U940XP4g+tVsv1WQFfpVIJGSRkrNFo5KqSdbtd/MubN/FaMWoB4HWdDt61s4O333MP9vb2QsBemwIOGmPqffOlD1rwE8UnnGu7aNVD6uMtn7f7xW7sA/ur4wfgjDAWIpvW4vE4VlZWkE6nXVr5cDjE1tZWyPNPmnJOmPr38Y9/HM1mE1/91V+NWCwWShnUd/NeBbd07PB8WBrK1WoV9X/2z7D6Az+A8oc+5J6x9sgj+MB3fify3S5u3LiBer2O1dVVAHCFsz7w9/4eXv0zP4N7Pv95d9/Nl7wEH/zO78SFcYSgOeafW3/yJ9jY2HBjZWYAo0405ngkhCpznmOWSCSwVZ4WXwZap0458MV1yaIHw+HQrWUFEdz+oErmqE4VBaUaUaSyp+C3xmw8vn+mLtdEJpNxMpCfaYrg/6zNR0vKTO77Y3QdQGhftIIXNXZ9ekbfx6wZ0o7yrtPpoNvtYnt72zkINcVKvc0qD3Wdqczju3nPj1y6hB+7ehWvlAJSn5ibw08/9hj64sBi6j3PEyXAY4aCnu/H6DLPcGYKX6/XQ7lcRrFYxEMPPYTzvR5m+33077sPe/fd5/TD3t6eW082g8MHouycqXxm9kmj0cDW1pY7E9VuR4kybq3hYEEp5aoFWMfddO2q84DOcOU1pTEwvf9BEIT2cTObgMcoNRoN5/zkGfKUH6dOnXLOd85lKpVCs9l0VUv7/b6L0qo+pbylwTgYDLBcq4XOHWdLBAEevX0bp1st3BgHGxRnWcMSOAC51rhgymE6nUZrZWUqzffOnXPHCCmvMBtKMaRWqFagT360afF0GpDm7BPxm50zGvFs6sjR8bI/nFdr/Gh2Fa9TbKVj4jtOSsT21KlTbn2SF3mUlA00kf6UC5Rri4uLWF5extzcnMM77XY7JHOB6VsddW2Rv3Qu9G+uC7tVS3lG71FaWx6YJtP4Dp3PvXQa/9e3fzvmq1UsNxpoLC+jeerUfh9G4RRkdcCQniqz+R4b1bWZmNNwi8on0kGDIyqbdS3TxuApFcrXxFH2Xr7DOiGIecgPnAe143SuuKZLpVJo+860dtfn2EYtLp93wTafMWw9Xz4PmIJA9eb7+qOE1QnjBCQSCfzL9XW8VoxaAHjFzg5+9PJl/PArXgEALvUxCAIXaudeJr4nl8uhUqlgdnbWAaZer+f2lszOziKdTuP9b387Ur/yKzj39NPufdcuXcJ7v+M7sDA/77xZjLpqdJYLLx6Po1QqIZVKOUXHI0HcItrbw+lmMxSpZUsCeKLVwr3DIa5MER7Wi6TCyno/7Tz5FpQypz7XXmcBlfVOHdXA+FI1y2sW9CnYmQYS+Vk6nUY+n8f8/Dzq9ToajQbq9bqjs69xPjY2NlAqldDpdJy33AoWXz+BsPBm5Nadf5jP4+mf/mngyhWkb9xAfWkJ66UShu02UmOnifaNZd47nQ4+8zf/Jiqbm1jY3UVndRW9c+f26TJWXEyh293dRa1WQ6vVcn1j2jGBlhbDUmGn+83Wy2V8ZnUVD92+HY6MAfjU4iK25+YQA1wKHyMdTJ+yc6UGjG/ulZ7T+MInv3zX6HgU9Fj5pf8fdzsKsPLRL2qtqzK2StknW7QPalj6QJ/vOQQcdKgs7e5ioVbDlSDAs/GD4jcqfxSg+Yw8nR8Cs246jR999atxYTDAwu4ubmWzuDXOQEgJuKbTIggCl55Jg1aPqWIfqBtYuI3O3Xa7jXyvh6/6F/8CF2TPe+3xx3Hrne/EqFKZADJWVkzLOLDyg3PFdGQaAj6e1/kizfT9R3mnT4ccR9N59hUx0jRqYHLfsDpnAIT4nXPJIk90YvI38QHlPPllbm7OAUQ6KhlVYaRWIyfAAYClM0mjrbPV6lQarDSbLruNY+RvvkezuywG49+kWXVhAc/ccw/uf+GFScf/xYtonjqFJMJOXgXjyi/qDLHr1QY79B6NnmpVZG06b7xfs94s77txmH5w/MpTfLZGZ9UJ0e/3nU487kYnA3BAK0Zx+T/5mHzAfqfTaeRyOayurmJubg7FYhHr6+uhQqvT9JzKAaWx1dtRWNHqDp1DnceoSLG+x2ICH49p21lYQHt1dV/nj/koKgPIN5YoLDkti8jaVpaGvjH5fkgnbtvhO6P0iE+++9a+rmFd2zpftP14Ckgul/POrW13XTzKWuP2e+0o/9bm+98SW69hBCeXyzlFyvRYX/haAQlBsCqgi8Mh3tDpTIwvEQT48u1t3B+L4c44/59pLgQZ8/PzqFQq2Bp74rPZLC5cuICzZ88ilUqF9rMEQYDz588jn88jm83is+98Jz5/7RoGzzyD3YUFDO+9F6fLZVQqFcRi+2eiJhIJbG5uYjAYoFQqIR6Po9PpuIldGafk3Lhxw3nMqAQJ3B/Y3Z06j/cMBnhu7DFllEK9ZHYerfLV/9XbBExG3n0MrtdqhN0uYPWu+tIrXuym0UMdOwGCjS6yKS9rGh8dJwSvsVgMu7u7zjMGYGIeCISvXr3qjgwiT+o5rnyejaDHYgd7X2ZmZpywqFarjm9jsRhip0+jtrS072ltNBCP75fo5566F154wXlqG40GWq2WK3Bz5swZZPp9zNy4ERL4Gxsb2NjYcEfraNE1HlXEiHcmk3FeXip1ZkwQ3A8GA/zc44/ju9/3Pny5gLFPLS7i3W94A9LptIt6bG5uYnt722VC6DySLuqZtGn6NnrkAzEWNFqDWfmGsoiRC1UGbAQECqBPUvMp/mngwifbCeJ0j6BNw1Owx+f45BMQLmLDa3QfG43C+O4u/tGTT4aqsD5ZKuEfnz2LqvRP6U7+0LXOvmjBODqL0uk0aqkUtsZOz1lThTYIgpARS3nAyJvSAoC7l/s8mf5Fx9Tf/eM/xvm1tRDNSx/+MPD9349nf/7nnc7WfquMJW01Gq605W8FOMyAoHFrIx7K+6oX1KmkqbsW2LG/dt6Pq0VVoffhF+sg8R0Jw33JjMwy5ZiGAaPyfBcL0iWTSSwvL6NYLGJ5edk9d3t7G7VaDVeuXHFOR8pT4GDuKH+YJaN8edjWqfVi0fGI1css6tTtdvczgOp1h1k0TZXOARrVv/31X4+/8/u/H4oUP3/fffgvb32rqwXBdymPsQ+abaFAPAgOzob2RV91K5HiVY2esr90iPkMY41Q27WldVAUE/FdNnCg8orRrF6vh0qlgmKxOHVuXozGopVae4WYnNHvfr/vjtyjzp2ZmcG5c+dQqVRw7tw5R2fyKjOV9CQBbT4saY0qpaPKEc6TFrZiUwxn9X1gdMG0pg5IGn0ayQQQ2tbHZnG0xdD6215vf1Tm+IxG218rb22kmv8HQeC2PzJb1VZUVyxv8YrqRi0QRd5mn3ULKPuVTqdRLBYxPz+PCxcuoFKpTJ0HtiMbttbLpPt3LLNpI9CwTRc6m2/PD6/lPqh2ux2q8OsDnKpQVMEmEgmcG1ctjmpz1Sq2xouXC5gCmD88WDyfz2Nubg4LCwtOQXDv5Gg0wuLiIorFIkql0r6SWlrClfH3c5WKu3c0GqHT6WB+ft554ClAaDAUCgUUCgU3FwRQVIj0pNxMpwHPAma7MU53I43IdOr9seCTtLUp4HZBTvP8aLNeGfKSXfAnqen4CSzpkNA91z4ByDnSM2ABuD1Py8vLCIL9ypXpdBo3b96coAdbLBZDp9PBzs4Orly5giAIHA/p/OmcECCqsGOfCaoJsOx8aOo5FQ+VmhqnTP/a2tqaOGInCAI0m020Wi0H4NXZxBRj7ifVVBsavUzxVoBdDQL84MtehsXdXdwzGGB7dhat06f3hXa/71I9u92uE6h0OqmSI3/qHmqrYOy6sPdGeSn5PN0Hxvfo3FgPqHo2rZI97naYUQtMr8Wg9yigU2BnDR0FGwog7XrTzyzoAfbn5B0f+QgeMefMvrpexztv3cL33X+/u9eXGmedgExD1eI7uXHRskQi4YAt+Zw8DsClxCtAsAUJOWbSKZVKOUBOQ6d45w5eaqqDA0BsNEL5z/4Mieeew+DCBfc8gnGfs8HKcgsQ6RygU0uPy1K+sMBI50MNav3egrwoZ9FxNd0TRkONelD3HfJv8gudN2pMkY6Uu74Kp5lMBoVCwaXtcXtGIpFwldcZye12u7hz5w7q9brbh10oFBwf8bkqw1nHQOV4dWEBVy5exMXnnpuomfD06dPYmp1FwqTpcs0xU213d9elvq+uriKZTOLWrVsOyFK+Uh73Ewn84jd+I+6/dg33rK/j5pkzuHbp0v58j+s6qLNFszxIyyAIXPYD5YjyD9+l9VnoyGVEkX/z+Vy73P5meZIyi85Sri3eDxxUt1edF7XebF9isZg7a/i+++7D3CFOhxejlUolAGE5TmNUnVb1et2dm8xMlFOnTrkzhukQbzabbv+1b2scn6sGo40Uqi6g40Z5RuUoMJmmDITlnOI5fqdNDUB1VqhDRXlA6aU8zL7Y52uftVlDVjG4T25aHWllrX2/NWxVX9DRpun+qqN4vRq6/KGMUaeFbvvRe9hPjdLOzc1hdXUVCwsLR3bu/IXOsfUtUp1AnyLyKTP9bRmGTMKUx2azGaocynvtRKnnQol/wxyYbts1AZ7xeNwBcU4aAQqNkmKxiEql4kLkpVLJCc7Z2VmUy2W3l6DX6+H27dvo9XoolUqYnZ3F/Pw89vb2MDMzg9nZWXS7XdTrdWfYUsEVi0W3L9IuZHp6gyDAjWwW/2M4xBPdbmhyhwA+VqngejoNjI0rBdDWsCVtdXFqxNEupigjzMcDPrCjPMB5VB447sZxqkKNx+Mhw9Z6Y4H98XGOmAqrgiSbzWJ+fh7JZBI3b95EEOwf7aNAydKKRvLzzz+Pubk5N4eqAKxxawUe54sgp9/vu/2+BEJWaBK8qGGrP4PBALVaza0fCz6Gw2Foj4SuJwoyXk8lRiOB4EL5jcBjrVhEa7w+ipmMi3TQa8wIeTabRaPRCFWhjXLC+NLuFYCwWbBu5Zca/QBCIFKBPOdOIxqadXIS1sBhDirbfM4Auz50Takjxce3wGTRD/KyyjMFBvaalXodj3mMwASA1+zu4hIQKiQ4TdkT/GjklRX0NcpGAyefz4f2U+saUvromlIdOBqN3Lnm9H7ncjksHpI+OnP9Onrnzk0Avqj5UrluP6dhwFoQjUYjdP66pZNtpCvnXXmC82vB3nEbtGw+w5aRanX28jM6QLn+aSzRoCVOILC3jppsNuvwBTEA6cp3MSpWr9dddXm+l0DSAnxmFDDyrFsiAOA//o2/sV8V+bnnXF8+f/YsfvmNb0RCnHBsatj2+33U63XHx6vj9MuNjQ23T9xmFxX29vDtf/zHeOjGDffMyxcu4Le+9mvRlQrfwEG0W/lRnbS8Rg154GDPvhbEVL3Npmteq/4q3fkZ9Zr2j04OdV7ZLA/KDtXXpCPXBgCn/5aXl3HPPfe4atfH2QqFgqMjx0BZRXk0MzPj9t1vbW0543x+ft5hVqbMc/sedb+1IdgsFrLOS9JO593qAqvLAUzoV35n+Vv7YfW9zrViHr2ejfxjMwx8xqxP3/oyJn26Up2XUc/00VTxi96r8o3XWb2lxqxGaSlnZmZm3HM0c0QL+vJZlFHFYhGzs7NuT/YXPRXZp2i0I9O8LWrI2GfZglIEA/xMvZl8n3rV7POUqZhmq4S9EY/jA/k8Hm+1QoMfAPiTmRl8cH0di///9t41NNYtPQ98qkqXkkpVqlLptnW29u349O5uHx+7cxwTYowJON3G88MTHJyYxOTHmEwg5MfAkBBIBgwTTxwmwwzGDGZ+JZM/MTE4HZgEJ4b0NJhum2PmtLtPH+9z21t7a2tvqUqqi1QXbalqfkjP0vM9Wl9JOnYf6UC9UKj01fetb13e9b7Pe1lrDQbhDMxqtRqEDbco73a7wTNPzyvD6IzYHh8fhzIo1CYnJ7G6uoqjoyMsLi6iVCqFFIzhcBie7ff7iehsq9XC9vY2VldXkcvlsL+/j52dHWxsbKDRaIT60JP7D8tl/MutLfyU7Dj4R+Uy/qcf+iF0TyPfTLNh5FcFvY6trpPR9WnODyqQOSY+tiyX7+X/DiCdjzS6cF1EnuJYEVQwRYMGlK+zcsPOHQeDU14rFAr4yle+gpWVFTSbTdTrdezt7YV3kgiSj4+P8Sd/8icol8t4+PAhCoVCSC/XKDyfUaGnoBJA4N1msxlSDBWYAwh8qSCWgocKDTgzVjU9i04pOmB0HhMouiIpl8shXZr1VXDB+nPND+dLt9sNO4H2ej3Mzs7izp075zz1dBKpvIhFTNUzr+BT71PlRoHPeaWp5ir09X4lB1pq7H6eKE0XuFE1HJ4dI8bx8TRA7WufP/ouVfhpRtXS6U7yafT6cIi9QiExZ2JLNXQs2S6OqzqCmGmgeo37JwBI6AbOW77HIxPA2TmMiePHHj4c2abu6WZv3lcKsDkHODfVeKEsp1HS6XRCer86jxT0qPGuwIkfNzycXxzs8/t1kkZMOcYafeRxGC9fvkS320W73Q7t0OgGx1k3UdIdjSm7uYletVoNG6txOdbGxkbIYqMOouwvlUrhHRwbRkpnZmZQqVQSWQVqeA0GA3TzefzrX/olVGo1VOp1vJibw4tiEf1+H9lTPKBZJzT0Dw8P0W638fz5c9y+fRtra2v4mZ/5mbDJ5ve//308evQo1IlR3b//zW/ioRwJBwCvP36MX/id38FvnG6QGDNOSOQj3bhH9S/1h0bLgeQ5nOw/TRfVuchx5w7m6vjiOwGcw0cqk9hvlAlaBp/RaOHa2hpu376NL3/5y1haWkKhUPgBcvflqFqtAji/PIdznjzNHY/nTzd5HA6HIUq7tbWFWq2Gvb29gC8VIzkWcP3qsljtBcUdeq/zjBpsLNvlLaPtGp3U+6iv6Ehn9gUdWOQZrYdmJbG/mJEWk/duvMba4ob8RU7wi+aT962uwy8UCqjX62GeeJ0V0/mZwXTuEsN529hfU1NTWF5eRrlcxuuvv45qtYrV1dUgsy5DV47YjlIuMdDB6/rX749dc8OAGyulATw3btUbpyAkl8vhH62v49efPk0Yft+YmMB/l8+jd7rBDQWhphwtLy+j3++j2WyGwWOKJYBw1I9GGz3iqGupHPSqp57CcDgchnfSQOdutM1mM7yTzDc1NYVONou//+ABXh8McO/oCC+LRTw+TVuicHcPkQrvTCaTUAhsjzKj97uCIB8Xd2ykjV0MrPpEvy5yQ0YFpqZHucCJCVMlBcRcK7t8ur5V+UnvJ081Gg3UajVsb2/j9u3bgW+Ud9LAvtaNY881PVTy2j73EupzGnUiH6qCiZ1VCiDwqyoNFW66YZw7C3ivzrOjo7PjU5jyPTExgUKhEM4QZpk0qHyNpo6TZjOobFNlRX5ge1kvddTo+DkYiPFFmgK7aTRK1pNic1+vkR/UoI15oV0J6/NpskH5nmN+0W7aO/Pz584hjXnv3UmhRri2V5X60t4eFptN9G7fxv6tW4nnCAJUcbtDJJtNpnXxt1evv476X/yLqLzzDrLCa4NsFo0f/3H01tfDBjzaJxqZ0LnpYFDHh7qY59fqZiLeRz7m7qBxuZ/23HXLfpKOr4NrXne+jckYBYq+zIK4AkCQqdTXuplUq9UK2Wssn84OOstZP627Zhg4D3s/1xcWsFMun6QfChhX414BqTowc7mTM3O5SdDdu3exvb2dOH95MBhgpdnEj9nacOBkz5M3nz1DpVbD9unRcopL3EGuzhnXwXxGAyQaPVXdrY4dHduYnFO5otf93Zw3qiO8LP4lD8zMzGBxcRHVahWVSiWsrb5u0uM3gfN43bOcgLNNpsizzWYzRGtp0KtzTOeT93+ajOBfjoeOi+pfJ+Wl4XCIxd1dLOztYa9axW61mpBbjvkYdOPu9MzMoxNQdYMa0hpU0o3KYvtpuFzxPnccd1Ef8ftl5SoN2/n5+ZCNND09Hdbwax8SB2n2EjEe5Rxl08HBQdgDRXEVl1zMn+4/xLXldJhcVhd8ql2RY4zN3924HWXU6ndnGpZFoMN1chSMTg7iKSDUYCRw6GWz+Ht37+JOv487h4f4OJvFh5kMWs0mBqfreNvtNvL5POr1ehCK9Bh88MEHyGZPjmxhtGtychKdTgdPnz4Nm12xPpywuiEMjVQ1Fihoj4+Pw3E8r169Cl7Qvb09ZDIZ7O7uYnt7G1tbWwEQMf1N13vUpqbAlWSHp1FFbs2ufUYPkq5/pGdSlbKuDdDn3dCLgRy9xjI0EkwBop5jBw/XSfSosX8UGFK4vXr1KnHcD9usG2WwrS7AB4MBFhYWMD09jbfffhulUgmZTAabm5vBKAOSEb1arYZHjx6hVCrh537u51Aqlc6NlSsdN7g0Sl+tVsMmUtxsSd/rxqkaIEzb0jpSoZP/AQSjgd/1GArgRHEy+qtyRqMkNLpV2DGVemdnJ3hNKS+4ecpwOAwpT9lsNiijqampc+3x/ub7WRf3VOqY87s6hUgxb3RsPSUVrY7PTSLvo8s+E7um0UACQBpSCgZVxvuSjNg4aLoXy3lRKuG7t2/jS5ub0XNma5UKfLGKAwjgzKniES81bGmIzh0e4r/9t/8W9+U4rM0338Qf/IN/gKPT/Rp0B2S2QfWXOpDcCJmYmMDjX/s1ZP/JP0Hl298O1xs//uP44Fd/NeF0VKOCpBFU8h6vcb5RvnU6nZD22mg0grxQeab10zHR1GrHCWkOkJtECi7Vecd6arSBso/HjNVqtQSo5ZjMzs5ibm4u7NxeLpfD70zzfvnyZcAEnCvEB1y3zU0qOW7U9TQqCC4ZBSZOcMygxoBGsjQLR3mDOGtiYgKNRgN7e3vo9/uYnZ3F6uoq8vk8yuUyfuInfiJEs58+fYp+v4/JyUksnGYlpVG5VsNziVRy6Q+XlzA1FkDilACNqjFirfxEXtfNumikk4jt2B+a5aS8q45eNbapF1UOqaGTyWSCQae4tVwuo1qt4q233kKlUkHxdMMuff91EZdCsF360bXlvMaNTbvdLhqNRiI7ZzAYoNFohLHkmkpigpjTmd9dzquDWW0HlzUqx9Ugm+318De+/nW8IRuYffTGG/h//vbfxrEd4UijXDPc1E5xnU+HhNpMbIdma8zPz4clU44nNAV/cXcX1UYDtXIZL0ulc86YmJ7l+1QX+H3u5AQQ9hF64403Qp++//772N3dxePHjxPONjoUGJSgA61SqWBxcRErKysoFAo4OjrCo0ePUK/Xw74u2Ww2RPkrlQru3r2LhYUFrK+vB9kVc76l0aUNW/VyAWfr9NywSXuxdnhMgamg4D0xMMHJo5549R6yPC+L1wlij4+PsZnL4dnMzEnKwfExZmZmwgT19jFSyjRH7tbXarXw4sWLIGy5uyfPznz16hWKxWKoc+908yoCAh7fw3WT3W4Xx8fHCaXEvt/d3Q2pYIeHh0FB0QurEV81EDUFk8Ai1tex7wr23RutfetGlI6t9mVsTGJj5c+nReo/K3JvvdZbvbKajsz71bhzIA6c58/V1dWQ3kzHxr6cf6l1arfb+Pjjj1Gv10P6rs4PILmeQ9+p0VcFbKVSKawNIrjijofaTl1LRr5SY9mV32AwOGcQ6MYaei3NiaJ9pWPC/gIQlIVu4MO66EYgNCg1MqbENGoqYlJMxrnjJjbOMedPGu/HQNhNoZj88D6JKVn/X2UH5S7X3ijPcLzUKBqlbxTYxO75rZ/+afzd//pf8SObm+Had1dX8Zt/+S+fA1Du+ef7lXfc0aHty2az+Pnf/m3c/fDDRB1uvfcefvI3fxP/7z/+x+cAlwJgGhQO5lQO5XI5YGEBH/7Gb2DqyRNMP32KztoaeuvrJ2WZ00TTgGNjp7Lao7Vcz1mv17G/vx8AKsuJGbWxMff2uqM85qhIA2yfFenaSU8t5rKJbDYbUkYzmZMlEtwZViMUNKIGg0HYe+HVq1dhjSJlrEb6aJxls9kAfrmJFI0w8j2xCPWOpjxqpov2szqA1Lns4xmTmdzAiss86PCl4VYoFLC8vIz79+9ja2sLnU4Hk5OTeHFBeu2z0zOcnV80o4fX1RBiPdW56DykxoLqarbNDVnywCj5o/rP+Z5zOmbgUN9ms1msra1hdXUV5XI5jPNNwEDAmUOPqfGaWaZnAmsKPDGC3s/oPu8jZu73++dOLlDHQYx3VVZqPWP2Ccvx7Lpf/N3fxeuPHyfaev/DD/Hf/Jt/g3/3K78S5hXP7+50OkH+EbMPBme7/PI9rAtwfjkbMZLKBUbEdU6z3TPdLv7G17+OL0o9v3/nDv7Vz/4sOqdp9eqM0jnqfeB4IoY3FKepYfngwQOsrq5iZWUl7LVQr9fR7/fR6XSCLGT6/OrqKubm5kKwptvtBhmgS94qlQpKpVLIVJg/zZ5yZ8Vl6EoRW1csqqSUya6qgBwEKYjVazRsY+9UZe1CQMuhQiLQJdimstBF8XyOns39/X1kMplwBudgMEC73cb29jY6nU5QNFQszWYzpCSQyMA0XKempoJBSwOXgLrf7wdBmM1mQwoHPXw8HkU9+UxFYjSY3nZdt6Z9Eou8K2mqThovKMOlCRI34tJ+cyDsAOe6icJSvV8K/HSNDNtCga6KLAaCgRP+XFpaCkYtN2Oi8FTgR8N2Y2MDu7u7WFlZCWtgSASN3v/a12o45HInx++QVw4ODsJGD5omSiHPctWwZVuV7/gc0+X4V9ea0VPrhrk6V7RdTBM+Pj5OpE9zczd+CLgYAcxkMgEw0mvK9+u46kZflBPsOwcwacYdKeZtjPF1zGiMlX1dFNMBDuL0t9h89+scQxq2jNiyjzUyluYU0PLT3s/n9ycn8b/91b+K1XYby60WXhaLeF4onMhZUfgalQPOQKsbtm7QKS3u7uKBnC1Lyg4GWPvOdzC3tYWDtbVz+k4NZuVJtksjqwr2jh88wP69e+fawueA5LoyLcf1Hj8xw3Zvby/IBpWJMZl9kZHqbQ99ZHW6btL0QiA5p+kwp2OOMo7njWez2RDtZn+yzbpWlplBurcIZSUBIKM6TFnVeqgBoWnKusGZL+HQsUlbo+hjqQY+5y3lPY0xLg159eoVCoUClpaWcPfuXfzRH/1R4Jnnc3N4Z2kJP1arnTuP/P9bXMSTqSnkTo2FwWCQWHKlhq3rCO0P/h9zwrpe0fs9tZmGL/tJ71W9lZZ2rIat6g9+qAtv3bqF9fX1kIWnY3XdpPxCrEreVWOV+Jb7z0xMTAQZwuVCvFcdm3SWa1vZz97+2FxkX1GH8DcdQ/7l98XdXXzhk0/Ot3U4xIMPPkBhaws78/NhCUar1Qpz1o13xQxuE/lxUZlMJiwjpFOex3txfmu//9J/+A94/cmTRB2/8PQp/s5/+k/4P3/+5xO8pM5Q7RvPSKPc5ne3B2j76LIxZklwnPf39/H06dOQMUf59ODBA5TLZdy+fTs82+v10G63USwW0Wq1ggE/PT2NSqWCcrmMpaWlkKlAu0b54DJ0pXNsRxUeM0hiQiZNQbmio2DmoHBiHB4eJgwKfUdMWXLSqPKl8Uem5P1MU+TmVGqwMR/+8PAQhUIhbAxFhUEjdXV1NbS/VquFLftnnj5FfnMTmJ7G/mkKc7/fP0kje/w4pH0OBgPkT3d2VQDRbreDcUOmzeVyibUXGrkFTlJzuKCdwoIRK422sV80SkalqoaJ80Osv4HRZ375YnrnB76HRstNId9giOB2OBwGL16z2cTc3Nw5gAicgXf2ORVWrI0TExNYWFgI49xoNPD06VO8fPkSW1tbiTUZ/X4fOzs7+P73vw8A+Kmf+qngkWRdqYQ9cqvjMBgMQjoJjUqu85mdnUUulwueSl1PQv5Rw51EIU/hODs7i2KxmABYCswVRDvYIEgjuCFxQyo995HnM7Kt9IjSacWyCYx0rTvrxPFl2+mFBBDSj7iWLAYAte7q7NH7Y4ate59VZt1U0valOcicnPc5vyjfCQJIvr6G8kEdFKyL1idtXIbDIWqVCnbK5ROZI950IH70AXWQOkjcmAPO1pUPh8MTmT+CZjY30VpZSTgmNUrrkVrOM9ZBN7iJgTb+r/JAQXKM/zQyrenI3W4X29vbIQ2Z+oXP6Vp5BUY+7upII6mR4PVR+XCdRPlJgJ7JZM7JMc1sUx3NLCw62rhnCInn1jNKUzpNMRwOh4m1ampIs8/Jk5TLutxodnY27DOg6eyaQq9zS+cSHYVsC9/F+zKZk8gd06ipM2ZnZ0N05tGjR2g0Grh79y6y2Szu37+PlZWVEJ3LZDL4X//CX8D/+Md/jLflXOk/rlbxz3/kRxLHt1AOT05OhnZxeY/qL84Rfqfc1VRwzmfqcOoqxXzcVFM351R9p2NB/lSnAt9LZwf1imJOto0Rrnv37uHBgwdYXFxM6CQdl+sk5YVSqRRS6YmNiQ+YkcgNNg8PD/HixYuQls/0ZE8b39/fx9zcXFRuAMlTOtTgjWUVsu9ULqrjndcuSoef+OQTvFhdDThPsQbnnqa085outVKjl3OaPMnsT8oILnvsdrvB6Z5mfOeGQ3xpYwOr7TbqCwsJfef6g33l/RGz3YgXOZ48M10zVbhT+/HxMUqlEg4ODoLNw928Z2ZmwrpaystisYg33ngjpChTl62uroaIbaFQSOAy1v2ydCXDVhnmonv1HvVQeCcC59fhuhFFxvUUjzRD2T3AauSqwnUAyQHlJNP7qdx7vV5gRHqYyOja5uFwiF6vh8l2G/f+xb/A/Le+BQC4A2D7K1/BR//sn2FQqeD4+Dikmio463a7wcOritCjs5rKySNT2DeaNsp+dOCh7dP60wDTTwxcxMBsGo9wsvH7qHQI/f8ifvssSHmP9dFdGJUPODbuuYuB/libKfgKhQIWFxcxPT0d0oC5/pvgkOO8s7MTjpXytV+x93tb2EZ3BJHHpqengyAn4NE0YwpMF5ZULuqZ052QlSc86g+cyQIFvvouXd+s3nSmSilY0YyFNJ5y2UFgwjEhCGKd0iKxo96RZtS6zCTdFG/9RTTK8Ij95saY8pOnsCv/xmQ7v6ujTt+T9m6fkz5n/Bk1Zj3i5eM6GAywc3ruYxo1FhfPlR+rr8vXtL7w313Hen+43tO5pfKAuo66yndI9/ZrXXw+KCCN6Q5SWgT4ukkdBayvywHllVwuF/YN4IYrLIfP+3nG1B/D4dnZ19NyBj0NSx0f3RySWIGObi9b/2r/sk2j5BqQdFBTxs/MzAQ5yeMJ2+12qDvry3W+NPAOpqbwq3/pL+HW/j5uHRxgc2YGT0430MoiuXbV17OrwU3DUx325D++W/VarG2xeaaRXsdPwNnSE3XKOs87blV+zmROzqstl8tYWVkJZ7erjImNx3USx1z7lrx2eHiI6enpEFRhJJe8RSOQQRzFvZ6V5hST/S7nXC56OX7/zgUbCj6dng4GrS4R1F38KQ91o0wa0Rx7xSOKv1S/05HCenP+z9u5605LzSb2TnVJjPe07Zch2g7EViwnluUxHA7DmdnMMOHafz0BADjbPI+7ZasTe2FhIXFu90U6fBRdeZs19/y6UtWKuKAfZRyxDDK3ThgHLq48XZG6waagiROMZTByy3dy4DigTDPQ41w8LZkeK57XRa9iu93Gz/zWb6H4/vuJ9i6++y4y//Sf4ju//uvI5XJh04VOpxMU1fPnz7G/v49GoxHaSE+WCmUKegrDmZkZdDqdIFAYqaLXT1O5Yx+OhW54pX0ZG7eY4HAgpV5hVT7KKzppPA3vuoU6jRk6WaisyRtcc1Gr1cKCewUQbugqICIp2CZQWF9fx6tXr1CpVLC0tISlpSV897vfDRET4ARkPHr0CN1uFz/5kz8ZjpFyxe4KJGb46voYjfZz7Ve5XEar1UpsKKNrb/VZjhsNWU+Fc75yHnOwoe0gmOPmFK1WK2Ri0EvYbDYTqWcxHme5BEgqxDkO9FLSWFZQH1PCKvscOLI+l/HAK6C7yRFbp5iMvwwNBoPEWiOWxf533uBc1Heynz3NT0GYgggHQDpeqo/0ujqOPJqikbvBYIAXpRL+9N49vPHkCbLSJ4NMBk+/+EU0lpYwA0Rlnes7d8rEwLhT7DdN9VPAxX5ju3UtPbOGtra2QuSFa+o888LL0X7lO3m/3qfjyO/XLfeVWBdGaHTZie40rAYMcNLe+fn5wNPNZjMcfaJtVUe17j7rmSYAgvxh1Jz6mvwyPT2NQqGQWKqkMkmjw0DSUPX+V4OQ13UvB2bIUOfNzs5iaWkJCwsLwRH70UcfYXZ2NmCkhYUF7J6ev8z59KJYxIti8US/Hp1tKKnnB7OPKbvZX8xcIGZj3XSHaB0T9kNMB/o81Oc1VdujhNw/hTyhZaiDjrqGGylOTU1hfX0d9+7dw8OHD4P80PXQN2UuOLZTPspms2EZE/m21+uF3ZC5eRTX1E5OTmJxcRHD4RB7e3sJuawyKoYvY995rxrI/pvKKeBkXLbn5/HenTt4+PTpuQ0F311awruna4I1IqvZjAxouAHIvXB4zTfKJA+zzYrtuSETN6x9csGO2LVy+Vxb9bvrlFhQUPE5U8Xb7TZKpdJJkE6CaFpvZiDm83ksinFNOanHWwEnc6harYY0ZV3eQ7ylWaKfhvevHLFVcuMl7Tf+H6uoT5S05x3A6HvdyPayyYSMplFY6ro6B02aYhQDGIy0DgaDoKB0I4fJyUlMPX6M9ffeO9e27GCApXfewd4f/iE6r72G3d3dMPk10prNZsM5nZoypIqT7VFjkd4kPWuK93tacWws3OOV5gEbNf6jxj5tzNOeuaj8z4LUENS1G+QPGllMhxoOhwFYOGBQciGtYFAFMMHC5OmxTbVaDR9//HEwKvf391Gv17GxsYG1tTW89tpriQ2r3LDV/lUlrfNF+UlT0xWE8TsBLgWaz3UK7FhETYG0OjxIDozJ26pkCBa4vlYVnG5sorvPqnfdU119bFh3zk0F7KMiqmpsaTvSDGLlKZ+bN4HS5qG3Re+P1V0NUT4PnK3/JD/RC6wgUusRk8/6Du3vtDHQ+2NtUN5zwEu+cwBKfsjlcvjtv/bX8Etf/zp+SHbc/PjBA/yXX/5lZCUyrc9q5Ezld4yXtP+0Xmwz54FGq2Iynu9Qg54fro1qNBpoNpvndnvVNqcZSF5+rO6uY5Suew6oc4n9SYOKaaveD2wvjRjdx4N6g3JPDTJgdCabGr28rhFNrnPj/7FjpGIpyPru2DixfRqBVccODVtuBKPRfT2iiGXwHZraz//50agzdY4ajhwXpiWrXNesKspujpm2jWWwbrFoPOV/bK7wN52vPv/4nC4fKBaLKJVKWF9fR7VajTo9rxv7KKUFp1ReqLwmlqYzA0DYfJXj2el0sLu7e04e8V36XscwXhftZ+dfzRQhcdz/1de+hl/+j/8Rbz57Fn57d2kJ//ytt4KRx/bpu7hTvG705hFKICkLtM8UU7G+fBfn9sTEBD6emcF31tbww1tb54zvR+vr2J6fR3aQzLp0+co6xJzBXifPhFM5o/eyjSobNaChMsZ5Rp3BrI/q1hhGuKwOuLRhO0rh8Hf9bWCdrEwWA7VpZfvvbvCwQx1YemeosKPw0RQdV/S8RmClE4b10HV2NGiZMz8xMYGHkZx4pc53voPHr16hXq+Hs+nUQKUHjHUluQGgQpdGLZny+Pg4IfAV4JDcU+aCif3o46J9PUr4phnSPgkdALFdNyFiS4WnPKCRNHrzuFkGI0+8d9S8iQFMB8eMmM7PzyObzaJSqeDly5chKn9wcIDd3V188sknmJqawmuvvRbGmqBG6+AKSJW0Kmt1CvkcJrhQheEGgyooAgwF5TreuvOwkoIwlkHDlkYm16AxtYnvJyinYUvQxDFzPnPFye86x+gwYr1issfH2yNy2pc+JzTCrH14k8jbd5EhkmbgOpE/Dg8Pg1wlYOQYKb9qXzroSpMzMScGf3P5o7yqf7UsdZB6O3O5HAb5PP7dr/wKSi9folyroVYuo7G0hLnpacwYGKScUaCgoE4N7DReYt08Mq3lOE9pOQq41LBttVpoNBpotVpRw9YNWi1beVqdrRcZtS6brpO0zhplyGSSexro/glqYAFn54BSJ+t6RKbkUY+7wyCmg1X2kheZNcZoJaNqfIblqjPGneba3yrjea+mkObz+RC1o64qlUrhaA/N5qHxnsmcZMtp6rRH02IbDZLvPWtCx0Adz7oGWaOm2kYdH11DqA4DBfzOs7osyGWA9qNG6Fj3ubk5VKtV3L59O5GR5zLqunmfFHMgAkkjzeUN8Ue1Wg1ZT3Nzc5idnUWr1UoYtd53wPksDv7mH9bPHQ4+f1QWcWw709P437/2NSzU6yjXaiEdvtvtBse4y2FiFt0VmfOMfaROlFhgSTNFVdZRHtCwPT4+xr98+238D3/4h/ixly/D8++/9hr+9de+dq6tfKf3HftH9YT2PfuQhq1vQhfjSc5Bfldnb8z56riAz+rvMRvxKhjoSsf9AIgqRa2AdqR710eBCTdgHYyw/LQonoMQ4Cy9RlNxNXWMzzAPPCa8mHLD9lApqSeRwIbCl/fWLT3A6fnsbFiDMjMzE1JQNCrEdjDC5B5Vkgrzg4MDHBwchDQIZRwV8GnEfvSoW0yx+piljXHsOymN+WMg/7pIhSX5h2lV9DxTELCfG40Ger1eSM9JA+QOTL2tg8FJVgCFEs+1e+utt1Cv17G9vY29vT30ej18+9vfxmAwwN27d8ORNypU1TjUa8B548tBsnrtGGHQdSZ8jysXnZsx0OuOFifWibso6s6iVJzFYjE4l4bDYVAKKqS5YRqNEL6f9XRvPOusG39otFbT5bX+2n8sI9avQFzIa/QiLRJ8k8jle8xYuSxxvA4ODgAk1zirfAWSR5I4wHEA5EYJn+c71RghYGHaY+zDsWfUwY9c4fupW7LZLI5mZ/Hyzh1ks1ks5M52r9c0UfKAAgM1ctk+9okalw4QdC6mASiX2zpvOceYIbKxsYFarRZ2+9fx0ewmfbfKszSvf2z+6/ipjLpO8kwd4KSdlCvUBZ6arniEuydnMhlUKpWwYzDTGdkXOl4e9RgMzo5NY4YKeZHvcH5Vw5bPepSF7eE7NUJFHmGkjZtREbtMnx43wo2qdC+FwWCAUqkUTo7gkis91k3HX1Oy1dBT41aPbVScwg3/eJ3reKkj+Az7gpu8aUo868LfWLYazTH8pGPky1wymUyYMwxYLC8v44tf/CJWVlZQqVRCqrUaRWmY6rpIeTFWL46RymQ6L3hE5cLCQkix/c53vpPAuSoL9R3sR+C8s5zXOI7urHfsReI48ffJyUk0l5fRWFpCJpPBnVwOBwcHYbNI6hGW1Ww2Q2CL+EKXMJKHndSJzv1LdC2q4gYG3zKZDA6mpvC//PRPY73Xw62DA+wuLKC+sHDi+InwySh7S/vA7Qi2+ejoKGwExewPv1/rquNE+RLDBOwD/U4c6PX7tA79K62xTQPeSrHfYgbRRRTzDrhnwe91Ya31VaDohrRG3hS4u+LnNSoQXb+iR4Xw/t3FRby3vo6Hz56dSx/44M4d7JTLgEUkKXg9EqYGnoNdnbSehqxt9aicl+FCIsbEF1EMtGs/XkRp/HPdwl3bAiCMP3lAgUEmkwlrL+gIYYTD+yQG9EjaZwSY6uEulUqJdR+Hh4fY29tDrVZDrVbDyspKSJHzsVQjVPnP54kCeZ8TCppV4etHy4zxXawP0ogbdBEg67xWgK0KjU4izVhw72KaIc9xZrmMWrvDh9993NzAjSns2FgD8SOhbhK5AXkZSlNy/E2NIt1dlGOm/Mpy9BNzpKbpEf09Zlg5oFUDQ8E25b8aqDqffHMUGiVqgHgas77T52Zan6tcUbmvTiZvP3WJ9732KeVYu93G7u5uiGCoHFBeHeVgUJng7YjpGR/f654Lmi5OUkcIcYFG3Z2vVFbRCAbOOw81YusAUR0rui5NnevOR1qGynaW6bJJgapeZ2YM687oLVOTqRc1ky6bzYbNhOhsB872B/HxZjnqOHSnEstXI5XP+k7h2g80tKi3OH6xjDyX8yxDeTimV1UfugOV9eM+HAsLC6hUKudwhL73uvleaZQMchnmMoWGHveDUf7TeRHTfcojOj4ud9So9SCQyz4A5xwj6vShk0EdlnRukJfJUzx/lzuSazCN76MO4yavvnbc9Ucmk0ksreL1l6USapXKyXyPjFFsPmubY3Ja7Qo67zlvnTf5jOumNMxzWXsv9v9lno3RpQ1bn3AXvVAblRbdvSzpBPHJrko7k8mECJVGVpSBeD+3kVdByrRjKif3hvO9GqXVrfgdpExNTeF3/vpfx9/89/8eb3z8cWjPJw8e4Hd/4RdQON18iJ5atocKi0LSlbum5rB/GT3T7dXZ/0xN1hRmBxgq4FXQp4GKy45fzKj9sxjL10U6Pjw/uFwuY35+PnHsE/tbz+TkLsbtdjtx3AIQB5duMPHeZrOJnZ2dxDE6lUoFlUolHHr+6NEjPH78GL//+7+Pr371q7h9+3YCTCi4cYOXgkmNYR5VwdRQ3RSKXn3WXRU6/+e7VOm4UvJ0XuUZpuxxjRaPCOA7PQsDODs3mMf8cMv64+PjoKQUVGlkwA0KzsVsNhs2y+G4ErjqWLmh7MaJkkf/NB1QlUTa89dFyquuLLUvFITEnk/TI8PhMJznR4ABILGmW9+lAAZAtM/Jb/yuspXPUFcof3i0SOcIjRPlGV7j+NPhqWDbAYzWV3k5BuzVmeR9qinNDma0b6n7PE3O9Q3Xj21tbeHJkyf46KOP0G63ExvpabRW68fyeE0jI7H57saB6nzVw9dJCmSdyI+UVcQEbKuOi6atc6kQjwzkWOimjb7pDHA+EkyD0oElx0U3+NE6q5zWa3yH6gkAIc14bm4uyCvqP60ndQb1BY//GQwGIa0zn88nlnYwyqn9xL7x+RTDgFpvYiPFNh5AiBlEaoj6d76f8sbXHnL8VX+pQ5fYbXl5Gffv38ebb76JtbU1zM3NhYi30k2U/Spb3HhSeaJyhP3D1PjZ2dmwbItLhLhTNjcii+2t4GNCvo3JB50/rJMavCzXz50FkAhW0Z7QaD9PKSEemp+fD9iHS9F0QynaFFxO5sfm0FHEPXpozGoafafTSeBxd/L6uKicitlh6tRxo5QyKZc72eSJ2QReJvWwY3x1Ijl5Xzv+1PHUZ2J2xCj6VMf9XNa6HtWwtGtuALmC9tQYvc+9aSrEKED1WQpTfYZKgN4VClsFH7oBjf/1z6vJSfzff+tvobq7i4XdXTQWF8O23FmJOnmbYn1EA0c9OG4s6HoVFe6q0Lzf3evpXvvY+KTVUydY7HrstxgIu0nCnOQglI4NrmnytBN1oqjDAEieF+ggX+ca/+cul9ylmwKR0QIqC3oEmT6zv78fAIcbzjFFr795qi2VFz+DwSAYntydU8/oU7ngzhQgfkSGGxrAybmxjUYDnU4nkR6mYEWNWt2On9/piCKI4Pm0qig120PryDZotFw/Ti6oY+2KzUc1+PQTk5nXQaPmZMxQdQM27Td9nt+Hw7MdumlQaORWAaMqaCVN53QgzPdoXWLRTeBsrvp4OH/rGm5X7npNQY0aJ2rA+jsVrMT0XIxH3BDyOcm+oC70PqAM2draCinImmLpskL7wudALCquY+2ySX9P0ymfNW1uboaNkTQ7hET5rsuIdF0ocL7f+BxlNP/XsmORHO1vHQPlG/2rmEUNWo6Lyyp1krAesWM8hsNhQiewThw3zZLh+bNcVsN5DZydmRuLNuv/sUgc66F11r4muWNfeV3bHTMm1Zj1LCAdbx0fl3s88/XevXtYW1tDpVIJRgwppptvAu9fRDFDhcQxVsdHrI10YmjmA3Aen5JchrkTwTGsY+U0I0uXV6ljiuWSl6mjOKcGg0E4ClRTk8mjNNi9H9hu2h2sC8vRgIG23TE/cKZHNLsk1gc6bjEswzEoFAphmaTzYUx2x747n8Swgo6Dj6/rg8vQlY/7YefEKsLfP62Bop0bmyDeiS7cfQ0q71PQoSF1XRuowFMjoe7R0QhOLF2GTM8F8yx7b3Ex5O67UnPBncYQFPquQNhGClneozsh0kvvfenv8j6JjYGPlZfpbVQwpQJf26b3efk3AdgreFCwQE8b0zVYZ1XCet4jeZRl6ZpsbacK0kzmxMtJXiGoyufzwfNJ7/jCwgLa7Tbq9TparRaazSaWTvmO7VAlwKirj6uCawpVGrPcXRhA2DBtOEyuMValoxEbUkxQ+vs5pzudDmq1Wkjt1j7S8xlVofi5jhyj+fn5ANA4j9VZpoBH+4mygBu8KH8r6Rxw/nde0vudVOmn3fNZ0ygFM0opxe4ddY3f6cTo9/thnBRwUPnzfQqCOX9430X96QaeyiwF2No+N7pYL5/XatBqyrK2WVPwVM7EjEd1kHnbfDxUjrrD0nWlGgeMPrRaLTx79gzb29toNBrRHcE5/9Rgcp6I6eUYOZj3sbhOevLkCSqVCmZnZ0O71Xmi46JGFnWx6zfKAPKDjq8aoPo7//K7ym5NS3bDlqCZm/eovuH7SBxDymz+Pj09nThOjc96FhLrpNFY8n+hUAjrFfv9fmgn57pueKW8q/Oa/ey6QvkvNl+pn/SaYxbnXTeOmPmjH93PgX3hjiQAKBQKqFar+MIXvoDFxcWQguwZKO7U0vpcN6U5ZJUcp7u+jMk4AAkDz41JkkYp+S53fOkz/D0m+2LPDYdn66OZXszIKeuu9Vasz/oR7zCLks+5c4n9ybmhe3mQtxjRdjzCueDjoP2m8kTb59FdHycAYa5zky/lSd6vfRrTN3xnjF9cpsfsCR1Dfd9l6MqGrb7QKZvNJgTHVcpzBh5FMWDCZ7vd7jnhHwM1mtPOwdYUQzVc3cjz1EHvA/U8uYHmkSUF+2mpcS7keC8Vj0YEWT+mxXKCEGhxBzdtk07aUYZs7HrsdxdsPkZejvaBA76bRByPfD6fOCeWYMIjo56mpKTeY/eyAeedFuRNChoqUJ4T1mg0wn0TExOoVqs4Pj7ZCGBlZQWZTCaROhWLoGo7+XEgq+2jUiYP6v0EK7xf5xGJ847CWBUeZcnLly/DTqxq2PNZ8jUVCQ9S182xgOTaNnWIkf8U5LG+BISMGvKg+Rjw0jbFwDm/qyzyyIqS9sdNpVEy+6I5fJHyA852yuYRWnq2rToT/X065zindA+E2PtU6dNpxTLVK6/gQqNO5Eu+n/ynaZTKD0ByszZ1ijmIiEXh1HBSYK59x3fo+1zuxwAf5UStVsPz58/x0UcfYXd3NyHPYksAqGscMCog8Sic84SO7U2j9957D/Pz82g0GiHiNj8/fy4K6oYN5Yu2Vx3ojM6y38hz7DflEzd21BDke2MRXvKzjpXjCf7le1V+TkxMhBRkbiQDIKG/dIzZNq5F7HQ6Yb0eN/pjpo/zpRoe7nQlOU+xnYp99F7lczWKqbfpBNX0UY6ZRt051ppqquPLunPcBoMB5ubmMD8/jx/90R/F6uoq1tbWwgZbbizExvqmGbdppPg4Vld1xtHRUiqV0O12EzxFUuelyvSYoaP9Dpwfc/1dvzveIm4hPo8d++nZN9OnSwpZR+oFOrNWWy2s7O+jVi5ju1hMvA84k4lM0Wdf0VEPIFoPkvIQnTrEk+RD1z3al/yduo/L62ZnZwOfKsVkcywSrHxxEZ73eRn7/Sp0peN+VMCkGZax50aBn4vu8d/S6uDGaVodHTyrMALOlH+aQQwkDds0b7ka1+qh0bqq4NK68R1aBxX+rngcoLAMPqOpCloH/XgbY+MQGzcfJ+33mEJKA5VphrM/f12kfKPn6aWNsyom997qOCrp+MUEtr9Lo0MqnAhk+v0+Dg4OEutS1ZvO8vX9bKuOpY+PzyPWWdN2vBzen2ZMe9kU6vv7+2Hdivel1p3GNdeYk+cVcFxGuOr46ZiqI+rTetP1/thHfxslE6+TLtOHMXkYozTj1+eJbiTlEVEtX0HNKHmn98YUsMpQldVAcod5ziOdm5flM627Alle83mjPBfTiVrn2LtiMjgG+DiPDg8Pw/E+3N1d567rK5ajzrpYWy/D0z4nLtOnnwUxYs3oZSaTCWtLdcfQGF/H5IZiDe9L/lXg6U4c1wce2XWDL21OaEQnZgzQuNO2ahti46pZbcPhEL1eL9SDgJ+GLkG7r8vUeRebl3rd+0d/03bpsy43dH6pzvVxJe6iTlBcSFIdODs7i2q1itXVVaysrKQatY45STdRDwCjZf1FdeZYMUigG47FcHvsfT6eMcyUhrtiukB/pxwcDs/28QBOHOi6x44H0IAzI2+218Pf/cY38CObm6HO3719G//XX/kr2JfTKshX1HHEP7oBLPtB+TGGg7RMl9cx/eCyNpfLBYN2bm4ubHKl/TOKtC+viunTnom18yK6csTWhXZMwKRV4KKGxe7j/24wkeFIuhaW95Mxh8NhSD/UzTwcpJApdL2HKwsAQal5vwBn3np9Rrfk7/V65yKzGl11JedpPQryCOA1akslNBwOE55HPe6EdfSJ7X0eG4fL0GXGdhTY9fsvC4h+kMQIPNdnFotFFAoFFAqFsCkA15uSOI4cX/fCA0gIM01FAc6EFHmA3m+CKz3yQHmYjo7NzU28ePEipCPfv38/4QlnHfmJHW+gv2v9eZ+/P+ZR1LHz5QNqQOr/29vbaLfbqNVqieM02EceCeeZ0jSCCST5Hs4VRryZiqzGqzqImH7DMd3f3w/14GZG3rZRhmrMCRZTNhoBS4vG3TS6jJxwEJl2X+wanRw8JgQ48+ar91yjUBq5opJ3vmS9yE9qRCiR77U8jSKwnOFwGNbdM+qrDid6xDVDRT3xTrpsRp2wDubT2sZ6KSDSa+xvlQmHh4fhuLj3338fm5ub2NnZOSfXVD7weT3blu9SOaNGidclZqjTAFJ9eZ306tUrNBoNtNttdDodLCwsoN/vo1gsolwuBx1AYOnZXgqGY05zjfrEZAz5k2NOXe/OTZUZGr1lGdT/iicUF+ja0ePj46D3isXiOQPEQTHHi5HdXq+H3d1dvHjxImzkV6lUwrEvbN/R0VFwnrBujGRrueQDTevUXVxj2Eadkqp7gbMMNl7j3NXMI9Vx3OeBGwnqDti6kRyXJSwtLeGNN97Am2++ifv376NYLCbOWo9FZ5XXKcfYlptELjPTDBle1/7n92KxiMPDw7BEiOWSVNbomPqaU3dcxDJHOa6eteY6QsdBj4ti2bzGKPPx8XHAh6zD1NQU/t5//s94+Px5og5f2tzEf/+Nb+D/+NmfDTqk1+sFfML3sy56hFesf9Xe0HmoGEltDXcS6FygvTMzM4NyuYxSqYTFxUXMzs4m3ql9H7PpVD95XUlqu6WRz/mrYKArH/dzETDR+7xCMZAWK8/TDpS0zDQDm4KIXkAOMoGPe/z93ZqWoxNXhVAsauOMop4fTdVUBaYKkPXQAVXvIPPtKYxZT43cKqBXQ12PAFIGixmwPo7OsLH7HCxdRtClUcxpcN3AnoKLKRr86NmFrCtwFvEjKX+pMCVv6rgoj2l6C43fGDCi8OMZfhTgw+EQL1++xNHRUVhjynN3lXf5VwGWCka9rjzKjwI4/7Bs5xNNu6ICZ+pps9nEwcFBwligcFcnFt/PM249LV+VFNes5HK5cBawrgvjXKEBks1mg0HV6/USfcV+ifGlyyKP2Kf1Q2wdS8z4vUnEPkjrC+BiozZNTvj/qsh1kzzXFxfpG73fxyYW7eVzrpzdwHOeV96OGSe6o7A6QFi2RwK0/m5MxPo7ZrySH0lqFJP/m80m6vU6tra2UK/XE6Ax1i9admyMY30wSu/E+nHU/ddBlAt7e3vB+BsMBolsHpXdQFJeKI8pH6lsi+lVjYLyPu9bJY63y20dL8UPnFu66Q11nh7RwnqrY5LXcrlcWJ/HI+devHiR2AxOncSHh4cBPOu8dqMmk8kkdlDWne3dCFUnJdvF8jTLgve73GW7qDNoxBKDeaaGjxcjXvfv38f6+jqWl5cTAQ6/P4YlPcX7JvC/O8/SjFrgvK5UY57XCoUCDg8PUa1WAy6ngUus7H3ghlMsAus6QL9rPWLYhuOrRpUvE6OsdN3B/lhttfDlp0/P9UluOMSXNzawUK9ja24ukdLuOlExgfOAt/0yMlbrFyNiyLm5ORSLRZRKpUQw0Ck2FqNkkdpsabJd9VOarXcZutJxP8pAPgijKjHq/9hvsUF0pvU6aMcACJ40AEFAMeKik0ffqUxOQ1Q99bpOhUynAEP7CjjzVtMTqZ5B9Q6pUlCPKeuj61QODw/RbrdDe1knX1PId/BZ3UjHDZbYOLCPY172GCh1wax/PboW4x0X7vr7TTBsmTbFSc+PrzlSJQycj1aqws1kMsGYowIeDs822NJ2c8LTsPW+1cwC3W6+3+/j2bNn2N/fx2AwwMOHD8P6YNY3Nl4q2NWb784U9YDGlATLdbCibeR8mpycDGCRZ2ZmMplwSDjf2e12g4ec7z84ODinIFx+DIcnHndPn2Yfst/o4Wf92u02ut1uor/S5o3/T35wA0T7PAZ2VAnfJMM2zUi9zPxk29KMR6eYMlNHIYBE/8RkhRsGOs+Y2aLvUiDlY0E+0Sikp3iS//mbZiPwd17zo4I4BxQkqCGjc8xBvwNtr4/qlLRMJeqKWq2GjY0NPH36FM1m89xc1j5T403lmstA1yMxQ9jHXh1Mo+79LIkOCTqY6/U6Xr16FdbZcR24tpf8onreDRs30HjNHfDuMOU7HGCSvN9UbnMMNDrLNHQ6ACcmTs4dZVqiG9W8h7qNOm12dhbz8/MhrXFjYwN7e3totVro9/vB+CsWi8hkMtjb2wMAtNvt0MfOP8Q5xETEZNoPbI9u3MPr1J3Ke555oWPHjREPDg4S2UDan2rY63iWy2UsLi7ih3/4h7G2toa1tbXQFjdcYzJLxzmGua+LyMuOf0lpOFKxpOpQjj9T1TOZzDlnOeWpyh3XP2kGE+ugeJb96o4Pde75Bmu0JzQQQSe6ZjZwLiw2myP7cWF3F48nJwNPMQuP9dRsMtU9KvO1zboOXPtc5YL2jd7HMWTgplQqhaMsmdmWpq9j+ijGCzEd6XUlqRPB63hZunLENgbqYpWIGbje4XpdSSNa+h4nV56ucHUSameSWRgJ8s4bDs/SeHmeIjflyeVyYcMDppiSsRzA6+ZUJApi7q53dHQU0h51AwP+zv5gXehB5DWCo5hh2+v1QpoDU1jdeFLBkdbH/BsD8+7B1fa6whhVvtbBAepNEOqFQgH5fB6lUgnVajWc71UoFBL1cwcHx9iFCseByjeXy4WooCp29cjRy80+Vu+2Rh55jSB5YWEBg8EAz549w+TkJJrNJqrVakibUwWiaVbq2fd0NX4nb5E3FbSSNFOC46prlJnC02g0sLe3F8AigERUi+8lzxOkZLPZALo4jzSjATiTMdxht1arBWVAh5eOEyMU3AF0aWkpAQRjWRAca035V3mohirrquBQ01K5qYluPnRT6ap1i+kG/U2NX5U5Kg8Y2dJoUcygA5KONZcxJNU5LFtTgR2Mkpf1f0brfIdj96azPDV8NYobk6OqZ2JlkX99TDiH3aHGcjVTYX9/H8+fP8cHH3yAjz/+GPv7++cygFTW6RyPGZ76rphjPGaoa7s8dfS654D2O8eLvHhwcJAA7urc1pRa1dO+2ZM7+zxac9n0vdjcUl1PIK2Ans+p85LLt0qlEmZnZxNGJOuo/Ehe4QkBPN5nYmICX/rSl/Dhhx/i4OAgsV6eR4ksLi5iYmIiHAVE4xc4OwqIpHNG9RF5WZ337qSl7uV19lWv1zvH3zxtoNFoJJYAqb7NZDKJ9bI01t98802srKzg3r17KBQKCVwYG5uYvOBvbMd1YyAACR6/DOk8jxnxhUIhyE3qzN3d3YBbOS9UH4zChio3VabEZIxiFTVU1dmh7fT5wrlNB0i32w06/JML5uqTU6OWGyOyfL6TWESxky9ZYZ8oX3EOqsPT7RI3QNlXNGyXlpZQqVQwNzeXcLTGSPV1rM/Znpj+YN1ieuPPSp9q86jYb6SLlE+snFEWeZpxq9cVrGiZHHhVwOxk9bz5LoYUjm4sEmTr4cy8X9PGWA/1uClwARBSWliGG7bdbjfV26ogmkzvqcvA2c5qCmp00sc8P7H+12diY+XCKg24jionjQfS3vlZE7c/51l0XKup661d6MYcBvobhSmf4Q54yks6PgqoXWipMPExnpqaQq/Xw8HBQUgtzOfzIb3XDVvd7VFT1HRu8B3kWeUx9oW32xW4CsXj4+Ow6zCP9VEFr2W7d5LX/H26TopEB9H+/n4iCqDKVyPrFPjq6dfzFx3c86/Oba+XGrecv27YMvWdnuLr5v8YjTJQY3QZ/eFlp80flXU6V7RM1QF8NqbQlWe9XL9XZbvyNGW7R2ljYM7L83tiwE0NQDfg+bwbjtpPbpBqO+ksPTg4QK1WQ61WC7sgjwKSMbCSBjL1Nzdstc2uE/y+6yQfb43K+rpUb7fiEMcIKhP5Hr0nxhcsV8n7V6/x/ZRNigtiEUw6RimHYk56rafzgeqe4XCIpaUl7OzsIJ/PJ+YXZXmhUMDR0VFivxF3bsUMG62/p1hrX/jvHgQgHtRn6bBlkGEwGCQ2xWKd1LgvFAqoVCphoyjuAJ1mUMT4K01e3IQ5AFy8HCetnjGcqLqc86fdbp9zZqT1Sdp7roIZlUfcIc3yfH7wd2J3PpfJnDh4nkxN4d1bt/DmixfISX8cZzJ4d3ERT6amMJB9cdL0EH8jvzkm9L6JzX3qCO8jbT/LpjOKG3qpjONfH0PvR39Gf1M95vf4mDhdBQNd2bB1JTmKrgp8FOjGro3qBFfuQPK4FQojbl3d6/WQzWbDWWrq4aCnjl7VTCaDg4ODAFwINnWbbwXG7CfWn+9l6qR7h3guHpWOpkKoV8g3J2BdXfExYqQpc1S+rlxVQahC5nWPyLK/fXx8PNLu5/8XMelVBNlnQUw95nb9i4uLWFhYSCg45VulWLSCu/3W6/UE7+ZyJ1vgF4vFYGApLyhPKnGM1WES8z5+8skn+Oijj7C9vY2FhQXcvn07vJ88r2nrvOZnyAJnBpwavgq+OQ80+qAbZ/C5er2OTqcTjiwCzjZo4zuYOTExMRHAkUaoCL74m0Ym2AZeJ4hX40OjbjReVeCrIaup/ZxrNJC1zz2dKiboWb7zuwIojRzeFHJFHAO9fx7vYPmq6PUoHj9DUo0DB9ksS40JEu+lx5sARdun4EKBKseIhsDc3FzYSEjXJepz3n/6LvK5ygvyj6amufFKOePRK+1Pj3BxDm5ubmJrawvvvPMO6vU69vf3Q521bg76FBBqX8Z0gs8H7feY0eZjeN1E5wV1se4SrHpfl0GpbCCvUMczsgkkQSEBP2mUoRDDZar3tQyONbGH4gReYzbazMxM2CBRlzupUU/+d9CvxxgOBicpwOvr60GHfPTRR+h2u8GQzefzWF1dRbFYxNHRERqNRojaaaqzzgl3WvKa6ztds6yGvc4R7UMas1z6xTHh2OvmoyReLxQKuHv3Ll5//XW8/vrrYT8Lnf/adw70VU86v2sk/TopprcYYNE+8WCSO4I534ll8vl80NWxVHuXMV4W7/PneJ/rYNZHDWiPLPq7dJ6ovlHnqdbp1958E//w6Ahv7+yEcv54YQH/8xe/iHa7DeDMscVytL2qK1TPeCaLtlEdZjEjVKO5LsOZoTY3Nxf41vtQy1LS8WU7Yqn0F9kGer//7xHrUfSpzrGNkVfU/16W0pRi7FoaI/qgaYif15QBXeBrBCfGbK9evTpnrFBoaz3ojeHRKzx31J0DLA9InoHId7owjXkdVRhSCKrBq33jfxVw+O8qgL0sv4//+5jH3p9Go569TuKk56L6UqmUSGNXL64LAB0bj2wqQIilm7AMKu5utxtSwtRgoxGn4MrXgCiQ3dnZCSnHuquzGpIOghR8KRhQYabzSoUvBSqj0iyz3++HdVeHh4cJQa7tp9Hp65lU2bNPKdTpGJicnEwAfW4ConXWNvF7NptNOI7UIFfDQPvCMyTSKObp1GsECxyvm2bYOsVk9Ci6yGM7yimqcyrmmIvxjxqTDoi8bDcY9F4ty68R4NLY8fXw/qzqFLaVhrWSg283bFVX+Id9rHyrwP7g4ACdTgfPnj0LO5Ezi0QpJtcdsIyS/apXYthA++iqmOGzIjoc9OOp5yRvr44Px49/L4qmcBw9Qwc4wwKq79N0vDoi3bGh+oOYxU+OUFnrkTYF1qpDdIfwcrmMtbU1bG9vh3WrDBDMzMwgm81iaWkJ2Ww2scxDs+s0iKB9RP3o80ANYNZTl3KRNFCg2Tac16qbVbfx93w+j1u3bmF1dRVLS0shddvnvBsaei3NMMvlcmEzxdu3b1+GVT8TUuynPM1reo9/J8UwaqyfYsRxSMOXLo+I2WOBBpbnNoXr9TT97jopk8mgn8ngH731Fm53u3it28XG1BQ2ToNhQ8m29PfxuparwY9YP/h9LEf7Jxak0ufJ48SCxIP+zsvadlqH2L0XXePzMX18EV0pYptGaUpQOyBt8saYUpUbJ0ssvK2kk8rLiwl99+px4xhV/LyPQpHeP+b+E3wCJ8eNUCCSwXi/rsFgTj2NVfWecK2he7VYT/WCcrLpESQ6CWkQu1B1w0OFvzKQjpn3q4OPNAaOCadRwEX5RY2XtInxWdLMzAwKhQIWFhawsLCASqUSfqP3Tr3vyl9qKFEwkqeVD9xwU68dcLYumwa1GpsOWHQjJPK3pls9f/4cuVwOm5ubIWWqUqkEvtZDyt3ZonNRAVYa3+i6Qa6xokecwJr1J1jU+arrF9XDyfdperYKQz4PnGVv0JjWtrGuKic6nU5ifIHz6adKCqg8FZHlx+ZDmkGgYPamUGzuXmSIpLVZr112jjsAUWNCedPLi+mPGB8rOOF1NTz0HnVA8TojeUzfpHEQqztwfmzJg0xtixmNGj11sD/KsFWnjsqJRqOBer2OP/3TP0Wj0QibzHGDJO0vNcJjfOvzb5Rx7HpO+8Bxw01x6nCpgI4vo7Yuc5QvndRY02M80nSkjr3qB5al6cMxuUK557xBXlCZSICrhq3iChLngOIIvpf6p9frhf1DcrkcqtUq8vk8NjY2MByeZC1NTEygWCyGEwYYET8+Pg7OV8+CUUNeI7Habm0b+5T8z2PDqDvocOUSFZX3PL+XfaFOJM3ymZubwxtvvBE2iuLaYu0vjVzGDBEfb71ve3sbL168wNtvv/0pOPcHQ6p/+T8Qz76I4UK9X/lS5/wo7HkZu0MxFD/Uz/pOzlnPiPHggAYJdF7o2GoQKpPJ4KNcDh/MzJzwYqeTMCR1jioPky882OHZGFpn1V8uD1y3eZ/yPZx/nP+cP2n97GMRw14Xjb3r/bRyr2IHXNqwdQEd66A0GsWcaYaQ/xZrlDKFKwdVLsqABLOx3fSAszxzXo8phJhhqwKYxN/pAc9msyGyq15A1t/TW8hwrLee8+UeI/e+ujLjvSowPHVn1Bi4oHJKG5vYePi73ClxFd76rIhpWQQiNMJiYE4FNMfdBSdwMsbz8/PBmAPOhIynueRyOfT7fXQ6HXROhSPL1bHmODj4USXO5/r9ftiVb2ZmBs1mMzxDQ1CBixq3JDXKVbCzjwguuJFZs9k8t27U666KgXPt+Pg4HKvEOaPZCjzCKA04c6zy+Tx6vV4Q2LrGWftMv7sgd+NVx96N7NhHjTmlGCCOGQifF/o0OiLWJyrDlEc0S0IBp6Z9KiDQfldFT4Ch74zVhe/Rua91Ux2j9yvoUb7UaJKvq+dc8/LVyFPDVnUV76WRQUNKNw3qdrvY2dnBxsYGdnZ2sLe3F7KK+EwMnKYZsmmgQ9t9kc7XMbkKiPmsiJEMTUHmuKkRpcepxfSgppVqZgx1PHW+G7H6rAJYdagByawg/uab3A0GgxCd1GUm6pjh+/R8TpLOtVgES+ujZU9MTODhw4fY2dnB+++/H9rAuTo3Nxf+n5ycRKvVQq1WC/VkO1Sf0uFLzJTNZkM2ks8F/Z99xbGj3GA5jDZTPijeUz179+5dLC8vY319HaVSKWrQKrlMdyNXie1+55138L3vfQ+/+Iu/eAWO/cGSyh/SKJkR02WKfd040girYp00WyCGi9VIJg+449nrrDhHy9W543VQnnT8xwCXyj/lKfKY6nyto/ZBjJc8e0nfo0ar4hQNDJCYhlypVML9js203Ng7lS4KRrIemmnF53hNgw1XoU+Vipz2oqsoo1HGrYO+WLlXUX7OoGS+2KD4RPDn1XjVTlfFoYKU95H5VNjSgCFDuzGk3kg+M6rvqWgUFHkf+SR2h0XsPu+jWHkqvPy5UcbtKLrq/T9IosJXIK3kAOYynkdP+3DQHhNEun6JAEqNzpjB5IKJ9aVBzIgp362ClUpavZVuhOZyueCZ9zKOjk52DOWn1WolIrNME9a+UxngitGBHskBdEym8PtgMAh9xzmm9zmocSHua2n1nSoz1APrQOYyfH1TeP+qpH1NuoysjvHuqOfdKFU5yd/dOaFjSeNh1DtjbVA94mOvhnWabIzVUeUEdUfMsI3VKQ10sRwaTgTv/X4f7XYb29vb2NnZCZExAijvq9iccl6/iFyX+nzw8fJyb8Jc0BRz3a2dfaQOr1F9w7HXjBFeV5mr79K5obzjPBLjHdUPimF0nwCVdbFMiDRjQt/lPON6hwB7cXERw+EwZLJ5BtPMzAwGgwH29/cxHA7RbrdDmTo/gLMlLf4uN4IVg7Hv2Aadj2oce+YQMRufZwry4uIilpaWwrmfsZTPGP86mHfeZ9Zfq9XCxsYGHj16dK6Mm0CjcNoo7M7f/Tf/6G+x8v2v4milGC/r+LgeiX1idXF7Qcsa9V3tkBiejOmZUX3F57zPPLsojehMIvZRO+Qy+tvrpm256J7YfX8W+X+lc2yB9CNcRoHJq3aKkoPSNHKG8fsp3JWJ+HdmZiZRz1FKSQWrbsyha1iUKclonnLCe3Vd4dHRUWJtli8Ap6COpWbxGstUIcz6UliqQtJ2s32xqID2l16PCfGrkgp1j26o5/o6iUce0BByTxKP6uHxPwQOx8fHgb90x2EKj3w+nzAaHRgAJ31Co3owGIQjEYbDYdh8Yzgcnksh5rs0HZkKnwCKx+RkMhk0Go3QHtZDPYsOktSJsrq6GoxzXmf0p9lshjW0BFC6foqClxHZ4fBsUyDtZ3UAxLzvPvdVIKtxkM1msbi4GO5tNBro9XrhDMVsNhvOKF5ZWUGlUgnrwyYnJ/Hq1Svs7e2F44k6nQ52dnawv7+PdruNTqcTjWJovWJpg8B5J0QaqLwuusj4TJPVl62/yx7KLO8zVegaVVHeYV+SD/w5ILkkRYGGG6Uklkl5pDyvDqLj4+PguGEUKJaKyD6LZUOoEcjv1C/aXp2P+nc4HIZ1+Jo18fjxY+zu7uKTTz4J8kHbETM+vS8uGk/XI9oev8//Vx7TqPx1U7VaDTJRd5VXA5cyC0DCaeJphzp2/X4/HBfErKCZmZlQvjoNVU7wL8vSsVZHhwN1RjOps0icOzSomJ00yomjH9cZ1H+++d3y8jJmZmbQaDTQaDTQbDYTR5vx7/LyctjTgvKe58k+ffo08HOhUAgGcqvVwtbWVjhGqNlshmdXV1dRKpXOrdmljnGe1yih9jf19muvvYbXXnsNDx8+RLlcDmd+AvH10N7XjnlcJuXzeTx//hx/8Ad/gG9961t49913PzXv/nlSmnNAsfVlcaEaeHxO+4HYSMeAz7m94bxJXuR4u+wFkmvFya+K8dMc+WnGpAck+Lv2k7YlJv/UocK/jjepA2JGNf/yd2Z6ar/EIqFsc7/fD9kV1Wo14DRfnhYLnGkdHLvEHA1OvN+DHbHnR9GlDVud+DpQZBI1kmIVvUzZ+vxVjFm/T+uZ1pmaxugpuTpgCkBiXhX+jXnX3Rsbm4wxr4tOQP34ZGDKUqw8bavWzfstNj5qPF+GmRxsOp9c5XnWyQ2UmDH/WZJv6qQKnAJQhQVBCwUFx0/HMC0zILb2QtPVdO2bC1Cti390LbUK4DQBpEDXQUwsSsRnWQ8KUOBMISjY0nUdWh/ONxoEXLvIsn29bwxwe5+ybjQ0dGOfbPZkiQDXdqnSmJiYCEc43Lp1KwAmnkHXbDbR7Xaxu7uLVqsVUue63S4ODg6Cc4Hpciqwvd+d7x1IXjelgYnYfWnGYUwmK6Upwdg9ae9y48EBET8a9eG9MadDjJT/eT8jtbrmSgGGlhczhICz5Suxd3Ne6f9qyOo85zzj2sGDgwM0m03s7++HTaJohGsWiupyfY/P7zRS2ZJWht7Lv9SPsd+uAmh+kETHJuWHLifSNXVsS8xBHNO9ahRynw8ahn6et2MB5XPd6E8NAp0DvE/3EQGS55N6n4+SQ84bKr/VwelG/vT0NJaWljAcDkO2AHeKptzlcWfs6+HwZG+SfD6PbreLTqeDdrsd+Hd/fz+sk6XDVJ3AdJLPzs7i+Phk4zTW25eW+FipE2p6ehrVahXLy8tYXV1NnPHrxlVaIIKUhv+GwyFarRY2Nzfx7rvvol6vR9c7XgddJMNjOI7/+1/Vc45LFE+z3FHY0nWnvgs4nzIdm6OKX/zaYDBIRPT93fpRXOJ2gtoaPu7UF4p7Pdjj+s5lp7cvbbxcF1FHvHz5MrHuPZPJnNtcVPWM4pqYfND6XIRnlBd0TH0sL6IrpSIrwzm4UJDP32IWeRrTpwkTpbQBSoswatkaUlevzHA4DJGkfD4P4CzVcDgchsiaRup0YGIeUc/hTxtwrZNOith6A30X2xuLZGr0Qo2INMZzcqHj45UmWGKpNNrH2pbYGMaAENtyEyK2mg7Geumh4jR0ut1u8OirMepjrcBWlSCQXHNMAUJPNY+iSvMM+mZR6mUjSCIwY11c0Gp0QJXpKP5xpcR2DIfDBOhrt9sJY5dRWhXu+n4CCY2Ec02YKpiY88Z5j3OcEREat/Tic/0ygRbHe2ZmJhi28/PzqFar4VmuUe52u2i1Wmg2m/jwww+xt7eH58+fo91uo9lsYm9vD71eL0RzY2so2f6YkXZTKDbH9XvaHHewof+7PNH7nOccLLC/VPHTuKSnnn2YNmfoZPHoIO+P8RIVvJbFucJ0RHWIevaN9peCKH5PMy5UjnO+c/7qekFeI8/VajU8f/4cu7u7qNVqiaii1+Gi8b8I1KZFarUPY87Ki3TKddP8/HzQzyQabYyKAEkndhqwj+EF5aNerxci/jTumF0Tc4gOBoOwARSPfFP+d1zmckeXkfg7RoHRmIzl/KNTxfsnkzk53uXOnTvIZDLBSD06Okocj6Op2JSB3D15enoarVYL9Xo9ZCdxd/1WqxXepfOFjqeVlZWgT2NRWfKdZsjpfJ2dncX9+/dx9+5drK+vh4i6plRrv7N/HbTzXc7nLOv58+f43ve+h9/7vd/DjhwZc53kARrnb5WZsd9j8lzniq4HVceMG/1p/KgYTcsH4pv1kdeHw7PzaHVfGwa+PNqbZtjqPaq7lR88GKBzkGUzO83LjeFyb7sbxTG+i83Zvb290OaVlRVUq1UsLi6GrEDtKzpNmYlHXKPj4phA+8HHVcnbSPJg4Si6UiqyKqVYZ7Gj9Hus42MUM5pigEb/V09n2n2sL3+LMQTTd3u9XgLMK+Mr+PZ6qAAjU6rAUqNYlRh/03PayER8vxo5XodY2z19w/vQvVY6rvounWysr3uxWIben8YP/tfr4P3JtlLQXXfElmt/SqVSSBMDzozEYrGIfD6PnZ2doBAJgjzSrpNbU2pjAoAGKaN/mUwGpVIpnJtHfvWzj2ngaoozI5L8nXVn6peus2V/cw2sru2Npbix/vTwked1cwTgJFWboIfv1PlCgc46MyWGQIP11/7U/mL9yKPc7EV3Rc5kMigWi2F+csfrlZWVUFeCqmKxiHv37oW0M03dHgwGYe3ws2fPguMhmz1JZb5161ZIaS4WiyHlkJt2MYqru1u7wZY2b66D0sC6G39aZ36UT/hcrGx+5z0xHeD3xaKs/F9BhEfSFNASwOqH0f2Yd93bpPNOz4PWtZgkvaZywOV5TFfx/1g6GOd7v98PgGNnZwetVgsvXrxAq9VCr9cL88L7IY3HYo5sHxOvH/9e5JB0/tYIuNftuucAU165YzTrRXmhslwdzArkHNA6j6u8ZtSRZ3irw0Txg+oK8oSuqVYeIaXhJNW3bnDxfdouzVJyzMP5pxlGfDflbrVaxfHxMZ49exY29VPjmjzK+URjv1gsBv3RaDSCUe86inUdDAbY29vD9PQ0vvrVryKbzWJ9fR2PHz/Gzs5OuEfTlBXAs/0rKytYXFzEvXv3UKlUEin8KgOmp6cTZcRkk46d8vjx8TH29/fxzW9+E++88w5evnwZUrqvm5yPLsLfMSwfI8pTldE6djG84e9ROZ12n7/THQ4acKCcVsd/rM1AUl+7cad10U2ivC5aFmUKr6e1NxZQciIG0/kZM2y5jIpGKnEM66yZJORj2ivEdZ1OJ+DRGCbQvhllT8XoIh5SulIq8mWuXeZeN2AdLDiNAjf6/EXPer0cmHAw1BOvAifNaPPBIFOqcUaBF2MqRn/0SJOY0nMjMEbanlh/qFfS+2TUeMbq4r9fxA8+zrEytB2sZ8xD9lmTOh70fD/+RsBD/gGQWBcbIx0rIJmuob9rFAZI7lypBq0L/lg0MOZx1R2NSZpyQ8Ds9XYBzucYyab3T0EY3+URIlVm+rtuZMC+SAPhMSXCdyr4Yx1YBsd1fn4eMzMzmJ6eDuulpqensbKyguXlZczPz4e5TBDLaO3u7m5Yv8wIxdzcXOjrbPYk3ZlRXraXUfTYWLkyugnkslbncszwjMnMqygopzSlGJNnMX6PlQUkj3Ujr6jx6eBTec3nnK5T5Xs4f7R+DnjdIaD3aRsBJOY8n1enFR21rVYLjUYDu7u7IZLHNVzq1Lyov1mvy4KOq47xRTrm05T550269wWQPHqDvKbjEQO5pJh+B5IAVp3h1CPqZKeDIqbzyYdq7MUoZriOwgTKm1p/d8TxXtUTXtbExARmZmYwPz+P7e3toONi80Bl/3A4DMtTNMIbi0prMIBR2sXFReTzeUxOTqJWq6Fer4cxdfnGecU25vN5zM3NoVwuh2UpvFdlh+oc/4zqR/5/eHiIjY0NbG1t4eDgILFx5U2imHy47LxNw+OKt2N9lCbLY8ZfWn9rHWK6S6OdafaMznHHqIpvvF1p2FvrqsdHanv8r9fPr+l8SMPQnLvMhOv3+1heXg4nvahTjlgUSB5/xjbzfuIab39M5l1Eo8Y9jTLD69YWYxrTmMY0pjGNaUxjGtOYxjSmMf0Z6GacfD6mMY1pTGMa05jGNKYxjWlMYxrTp6SxYTumMY1pTGMa05jGNKYxjWlMY/pc09iwHdOYxjSmMY1pTGMa05jGNKYxfa5pbNiOaUxjGtOYxjSmMY1pTGMa05g+1zQ2bMc0pjGNaUxjGtOYxjSmMY1pTJ9rGhu2YxrTmMY0pjGNaUxjGtOYxjSmzzWNDdsxjWlMYxrTmMY0pjGNaUxjGtPnmsaG7ZjGNKYxjWlMYxrTmMY0pjGN6XNNY8N2TGMa05jGNKYxjWlMYxrTmMb0uab/H5eTIFevSlFlAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y_val_pred = model.predict(x_val)\n", "\n", "plt.figure(figsize=(12,5))\n", "for i in range(5):\n", " plt.subplot(1,5,i+1)\n", " plot_image_with_keypoints(x_val[i], y_val_pred[i])\n", "plt.suptitle('Predicted facial keypoints (validation)')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 52, "id": "979f32ae-2606-48e1-b991-9bd2d9ac1aa0", "metadata": {}, "outputs": [], "source": [ "final_model=tf.keras.models.clone_model(model)" ] }, { "cell_type": "code", "execution_count": 53, "id": "fbc249cf-67ba-4f10-82a9-f2e1d360e2e2", "metadata": {}, "outputs": [], "source": [ "final_model.compile(optimizer=tf.keras.optimizers.Adam(1e-4),loss=tf.keras.losses.MSE,metrics=[rmse, tf.keras.metrics.MAE])" ] }, { "cell_type": "code", "execution_count": 54, "id": "71b352e7-1e36-44e3-9ed5-78daef22dc59", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/94\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " 7/67 [==>...........................] - ETA: 1s - loss: 0.2541 - rmse: 0.4625 - mean_absolute_error: 0.3746 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n", "'+ptx85' is not a recognized feature for this target (ignoring feature)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "66/67 [============================>.] - ETA: 0s - loss: 0.1258 - rmse: 0.2941 - mean_absolute_error: 0.2355" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943644.713228 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.713701 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.714053 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.714615 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.715068 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.716140 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.716880 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.717663 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.718211 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.718761 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.720070 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.720998 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.725245 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.726134 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.727226 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.728068 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.729211 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.730820 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.732826 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.734150 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.735873 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.736902 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.738616 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.740369 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.741948 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.744193 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.749216 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.750156 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.751181 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.752980 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.753633 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.755369 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.756811 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.757992 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.759751 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.761015 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.762061 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.763852 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.766373 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.768009 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.770039 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.773669 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.774576 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.775603 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.776662 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.777815 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.779003 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.780948 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.783009 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.785092 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.786819 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.789201 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.791130 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.793334 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.795151 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.797451 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.805422 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.806210 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.807176 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.807992 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.808836 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.810042 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.811256 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.812450 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.813967 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.815446 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.817080 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.818695 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.820336 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.821710 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.823331 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.825058 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.826676 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.830516 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.831174 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.831894 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.832623 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.833422 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.834488 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.835298 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.836458 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.837420 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.838660 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.840240 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.841861 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.843281 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.847882 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.848418 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.849048 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.849752 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.850468 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.851211 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.852157 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.852960 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.853805 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.855285 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.856405 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.857621 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.858630 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.861640 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.862475 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.863398 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.864102 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.865015 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.865473 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.866459 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.867504 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.868502 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.869775 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.871068 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.872558 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.873931 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.875678 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.877396 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.878997 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.882778 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.883482 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.884173 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.885405 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.886638 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.887362 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.888113 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.888945 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.889940 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.891220 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.892383 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.893239 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.894570 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.898893 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.899955 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.900972 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.902012 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.902863 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.903985 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.905421 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.907333 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.908966 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.910570 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.911958 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.913660 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "67/67 [==============================] - 3s 18ms/step - loss: 0.1253 - rmse: 0.2931 - mean_absolute_error: 0.2347\n", "Epoch 2/94\n", "11/67 [===>..........................] - ETA: 0s - loss: 0.0821 - rmse: 0.2197 - mean_absolute_error: 0.1740" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943644.914361 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.916193 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.918246 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.920891 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.922761 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.931246 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.931650 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.931990 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.932408 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.933132 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.933628 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.934197 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.934987 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.935927 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.936846 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.937979 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.939343 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.948742 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943644.967430 534 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "63/67 [===========================>..] - ETA: 0s - loss: 0.0755 - rmse: 0.2041 - mean_absolute_error: 0.1620" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943645.841340 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.841770 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.842114 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.842592 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.843037 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.843919 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.844677 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.845472 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.846020 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.846780 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.847855 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.848743 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.852513 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.853341 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.854186 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.854965 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.856110 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.857428 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.859196 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.860417 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.861727 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.862642 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.863946 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.865284 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.866477 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.868188 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.872278 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.873006 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.873792 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.875095 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.875735 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.877328 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.878454 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.879372 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.880721 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.881752 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.882440 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.883633 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.885643 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.886859 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.888220 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.891216 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.891868 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.892619 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.893318 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.894157 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.894915 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.896186 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.897849 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.899287 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.900545 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.902249 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.903534 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.905027 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.906293 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.907813 531 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.914744 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.915283 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.916011 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.916612 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.917280 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.918151 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.919026 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.919969 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.921280 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.922473 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.923757 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.924934 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.926210 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.927561 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.929003 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.930539 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.931933 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.935277 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.935851 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.936468 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.937095 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.937901 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.939135 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.939793 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.940746 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.941576 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.942603 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.943920 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.945355 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.946638 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.951047 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.951562 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.952174 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.952783 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.953387 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.954017 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.954810 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.955524 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.956283 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.957551 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.958537 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.959875 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.960794 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.963676 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.964434 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.965266 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.965877 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.966711 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.967188 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.968136 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.969044 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.970049 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.971170 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.972331 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.973651 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.974924 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.976534 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.978083 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.979549 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.983759 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.984453 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.985080 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.986180 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.987244 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.987914 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.988580 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.989315 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.990150 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.991279 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.992302 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.993154 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.994340 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.998527 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943645.999489 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.000420 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.001370 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.002148 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.003492 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.004763 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.006430 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.007808 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.009159 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.010506 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.012000 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.012644 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.014199 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.015864 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.018140 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.019942 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.027588 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.028282 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.028730 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.029123 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.029824 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.030505 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.031109 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.031850 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.032523 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.033333 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.034400 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.035622 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "67/67 [==============================] - 1s 16ms/step - loss: 0.0753 - rmse: 0.2035 - mean_absolute_error: 0.1615\n", "Epoch 3/94\n", "10/67 [===>..........................] - ETA: 0s - loss: 0.0667 - rmse: 0.1821 - mean_absolute_error: 0.1447" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943646.044606 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.065244 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "67/67 [==============================] - 1s 14ms/step - loss: 0.0644 - rmse: 0.1758 - mean_absolute_error: 0.1392\n", "Epoch 4/94\n", " 9/67 [===>..........................] - ETA: 0s - loss: 0.0603 - rmse: 0.1644 - mean_absolute_error: 0.1296" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943646.947074 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.947579 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.948269 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.948860 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.949495 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.950329 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.951185 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.952030 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.953162 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.954180 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.955360 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.956498 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.957660 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.958843 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.960136 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.961508 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.962765 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.965808 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.966619 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.967465 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.968092 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.968909 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.969340 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.970239 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.971178 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.972086 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.973241 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.974428 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.975788 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.977069 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.978667 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.980201 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.981695 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.984686 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.985323 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.985950 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.987071 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.988173 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.988872 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.989528 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.990261 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.991097 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.992286 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.993940 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.994755 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943646.996018 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "67/67 [==============================] - 1s 13ms/step - loss: 0.0585 - rmse: 0.1594 - mean_absolute_error: 0.1260\n", "Epoch 5/94\n", " 9/67 [===>..........................] - ETA: 0s - loss: 0.0551 - rmse: 0.1487 - mean_absolute_error: 0.1167" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766943647.856273 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.856740 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.857411 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.857979 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.858575 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.859356 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.860141 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.860941 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.861986 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.862977 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.864082 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.865144 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.866245 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.867332 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.868597 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.869960 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.871173 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.873899 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.874919 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.875758 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.876365 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.877176 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.877603 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.878473 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.879438 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.880317 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.881456 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.882586 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.883916 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.885213 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.886769 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.888293 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.889711 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.892479 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.893098 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.893732 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.894861 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.895961 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.896643 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.897284 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.898287 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.899179 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.900341 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.901359 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.902180 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766943647.903363 532 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "67/67 [==============================] - 1s 13ms/step - loss: 0.0541 - rmse: 0.1459 - mean_absolute_error: 0.1151\n", "Epoch 6/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0513 - rmse: 0.1374 - mean_absolute_error: 0.1082\n", "Epoch 7/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0486 - rmse: 0.1285 - mean_absolute_error: 0.1013\n", "Epoch 8/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0465 - rmse: 0.1216 - mean_absolute_error: 0.0957\n", "Epoch 9/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0450 - rmse: 0.1167 - mean_absolute_error: 0.0918\n", "Epoch 10/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0432 - rmse: 0.1105 - mean_absolute_error: 0.0872\n", "Epoch 11/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0420 - rmse: 0.1072 - mean_absolute_error: 0.0844\n", "Epoch 12/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0407 - rmse: 0.1029 - mean_absolute_error: 0.0810\n", "Epoch 13/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0396 - rmse: 0.0996 - mean_absolute_error: 0.0779\n", "Epoch 14/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0386 - rmse: 0.0962 - mean_absolute_error: 0.0755\n", "Epoch 15/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0375 - rmse: 0.0927 - mean_absolute_error: 0.0729\n", "Epoch 16/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0366 - rmse: 0.0904 - mean_absolute_error: 0.0709\n", "Epoch 17/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0357 - rmse: 0.0880 - mean_absolute_error: 0.0688\n", "Epoch 18/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0349 - rmse: 0.0859 - mean_absolute_error: 0.0673\n", "Epoch 19/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0340 - rmse: 0.0830 - mean_absolute_error: 0.0651\n", "Epoch 20/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0330 - rmse: 0.0800 - mean_absolute_error: 0.0627\n", "Epoch 21/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0324 - rmse: 0.0789 - mean_absolute_error: 0.0616\n", "Epoch 22/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0315 - rmse: 0.0762 - mean_absolute_error: 0.0596\n", "Epoch 23/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0307 - rmse: 0.0741 - mean_absolute_error: 0.0579\n", "Epoch 24/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0300 - rmse: 0.0727 - mean_absolute_error: 0.0568\n", "Epoch 25/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0294 - rmse: 0.0715 - mean_absolute_error: 0.0557\n", "Epoch 26/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0287 - rmse: 0.0704 - mean_absolute_error: 0.0549\n", "Epoch 27/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0280 - rmse: 0.0684 - mean_absolute_error: 0.0533\n", "Epoch 28/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0276 - rmse: 0.0690 - mean_absolute_error: 0.0536\n", "Epoch 29/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0268 - rmse: 0.0670 - mean_absolute_error: 0.0521\n", "Epoch 30/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0262 - rmse: 0.0663 - mean_absolute_error: 0.0516\n", "Epoch 31/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0254 - rmse: 0.0640 - mean_absolute_error: 0.0498\n", "Epoch 32/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0250 - rmse: 0.0644 - mean_absolute_error: 0.0501\n", "Epoch 33/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0244 - rmse: 0.0636 - mean_absolute_error: 0.0493\n", "Epoch 34/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0237 - rmse: 0.0618 - mean_absolute_error: 0.0481\n", "Epoch 35/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0232 - rmse: 0.0617 - mean_absolute_error: 0.0478\n", "Epoch 36/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0227 - rmse: 0.0612 - mean_absolute_error: 0.0475\n", "Epoch 37/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0220 - rmse: 0.0597 - mean_absolute_error: 0.0463\n", "Epoch 38/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0216 - rmse: 0.0597 - mean_absolute_error: 0.0462\n", "Epoch 39/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0210 - rmse: 0.0588 - mean_absolute_error: 0.0456\n", "Epoch 40/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0204 - rmse: 0.0581 - mean_absolute_error: 0.0450\n", "Epoch 41/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0199 - rmse: 0.0573 - mean_absolute_error: 0.0444\n", "Epoch 42/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0193 - rmse: 0.0567 - mean_absolute_error: 0.0438\n", "Epoch 43/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0189 - rmse: 0.0565 - mean_absolute_error: 0.0437\n", "Epoch 44/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0183 - rmse: 0.0558 - mean_absolute_error: 0.0431\n", "Epoch 45/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0179 - rmse: 0.0555 - mean_absolute_error: 0.0428\n", "Epoch 46/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0174 - rmse: 0.0551 - mean_absolute_error: 0.0425\n", "Epoch 47/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0169 - rmse: 0.0543 - mean_absolute_error: 0.0419\n", "Epoch 48/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0164 - rmse: 0.0537 - mean_absolute_error: 0.0414\n", "Epoch 49/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0160 - rmse: 0.0541 - mean_absolute_error: 0.0418\n", "Epoch 50/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0155 - rmse: 0.0529 - mean_absolute_error: 0.0408\n", "Epoch 51/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0151 - rmse: 0.0537 - mean_absolute_error: 0.0412\n", "Epoch 52/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0146 - rmse: 0.0527 - mean_absolute_error: 0.0407\n", "Epoch 53/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0142 - rmse: 0.0521 - mean_absolute_error: 0.0402\n", "Epoch 54/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0137 - rmse: 0.0509 - mean_absolute_error: 0.0392\n", "Epoch 55/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0133 - rmse: 0.0512 - mean_absolute_error: 0.0394\n", "Epoch 56/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0130 - rmse: 0.0511 - mean_absolute_error: 0.0393\n", "Epoch 57/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0125 - rmse: 0.0504 - mean_absolute_error: 0.0386\n", "Epoch 58/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0122 - rmse: 0.0502 - mean_absolute_error: 0.0386\n", "Epoch 59/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0117 - rmse: 0.0488 - mean_absolute_error: 0.0375\n", "Epoch 60/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0115 - rmse: 0.0496 - mean_absolute_error: 0.0380\n", "Epoch 61/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0110 - rmse: 0.0485 - mean_absolute_error: 0.0373\n", "Epoch 62/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0107 - rmse: 0.0483 - mean_absolute_error: 0.0371\n", "Epoch 63/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0103 - rmse: 0.0469 - mean_absolute_error: 0.0360\n", "Epoch 64/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0100 - rmse: 0.0472 - mean_absolute_error: 0.0362\n", "Epoch 65/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0097 - rmse: 0.0465 - mean_absolute_error: 0.0357\n", "Epoch 66/94\n", "67/67 [==============================] - 1s 12ms/step - loss: 0.0094 - rmse: 0.0471 - mean_absolute_error: 0.0360\n", "Epoch 67/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0091 - rmse: 0.0468 - mean_absolute_error: 0.0358\n", "Epoch 68/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0089 - rmse: 0.0469 - mean_absolute_error: 0.0360\n", "Epoch 69/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0085 - rmse: 0.0455 - mean_absolute_error: 0.0349\n", "Epoch 70/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0083 - rmse: 0.0460 - mean_absolute_error: 0.0352\n", "Epoch 71/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0080 - rmse: 0.0455 - mean_absolute_error: 0.0348\n", "Epoch 72/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0077 - rmse: 0.0444 - mean_absolute_error: 0.0341\n", "Epoch 73/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0076 - rmse: 0.0455 - mean_absolute_error: 0.0348\n", "Epoch 74/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0073 - rmse: 0.0445 - mean_absolute_error: 0.0342\n", "Epoch 75/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0071 - rmse: 0.0440 - mean_absolute_error: 0.0336\n", "Epoch 76/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0069 - rmse: 0.0442 - mean_absolute_error: 0.0337\n", "Epoch 77/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0067 - rmse: 0.0439 - mean_absolute_error: 0.0335\n", "Epoch 78/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0065 - rmse: 0.0437 - mean_absolute_error: 0.0334\n", "Epoch 79/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0063 - rmse: 0.0434 - mean_absolute_error: 0.0330\n", "Epoch 80/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0060 - rmse: 0.0424 - mean_absolute_error: 0.0324\n", "Epoch 81/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0059 - rmse: 0.0429 - mean_absolute_error: 0.0328\n", "Epoch 82/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0057 - rmse: 0.0421 - mean_absolute_error: 0.0322\n", "Epoch 83/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0055 - rmse: 0.0416 - mean_absolute_error: 0.0317\n", "Epoch 84/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0054 - rmse: 0.0419 - mean_absolute_error: 0.0319\n", "Epoch 85/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0052 - rmse: 0.0418 - mean_absolute_error: 0.0320\n", "Epoch 86/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0051 - rmse: 0.0411 - mean_absolute_error: 0.0314\n", "Epoch 87/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0049 - rmse: 0.0412 - mean_absolute_error: 0.0314\n", "Epoch 88/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0048 - rmse: 0.0407 - mean_absolute_error: 0.0311\n", "Epoch 89/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0046 - rmse: 0.0401 - mean_absolute_error: 0.0306\n", "Epoch 90/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0045 - rmse: 0.0401 - mean_absolute_error: 0.0305\n", "Epoch 91/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0044 - rmse: 0.0399 - mean_absolute_error: 0.0305\n", "Epoch 92/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0042 - rmse: 0.0392 - mean_absolute_error: 0.0300\n", "Epoch 93/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0041 - rmse: 0.0395 - mean_absolute_error: 0.0302\n", "Epoch 94/94\n", "67/67 [==============================] - 1s 13ms/step - loss: 0.0041 - rmse: 0.0401 - mean_absolute_error: 0.0305\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_model.fit(x_c, y_c,epochs=94,batch_size=32,verbose=1)" ] }, { "cell_type": "code", "execution_count": 56, "id": "054555d4-cd8d-4bbc-98be-a8b8ed253cb8", "metadata": {}, "outputs": [], "source": [ "final_model.save('final_keypoints_cnn.keras')" ] }, { "cell_type": "code", "execution_count": 57, "id": "c39a48b2-4b1e-455a-852d-a6f3e8574434", "metadata": {}, "outputs": [], "source": [ "with open('target_cols.json', 'w') as f:\n", " json.dump(target_cols, f)" ] }, { "cell_type": "code", "execution_count": 58, "id": "e975b72c-4bcb-482f-9305-dc5a5a1fe85d", "metadata": {}, "outputs": [], "source": [ "preprocess_config={\n", " 'img_size': [96, 96],\n", " 'normalize': 'x / 255.0',\n", " 'target_normalization': '(y - 48) / 48'\n", "}\n", "\n", "with open('preprocess_config.json', 'w') as f:\n", " json.dump(preprocess_config, f)" ] }, { "cell_type": "code", "execution_count": 59, "id": "fabf876b-66cd-444a-ba5e-78b3157054d0", "metadata": {}, "outputs": [], "source": [ "with open('history.pkl', 'wb') as f:\n", " pickle.dump(history.history, f)" ] }, { "cell_type": "code", "execution_count": 60, "id": "ef48b0a3-29be-4c93-8172-f22e2504de66", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfKxJREFUeJzt3Xd4VGXax/HflMxMekJCChAIvTcpEVDRNQp21LVgA/TVtWBjdVdWBdR1wfqyVlZ9lXXXyq64VhRRsICgFBWkt9DSgPRkJpk57x+TDGYJmEAyJ5l8P9d1LpkzZ07ueWDh3vs8z/1YDMMwBAAAAAAAAASR1ewAAAAAAAAA0PpQlAIAAAAAAEDQUZQCAAAAAABA0FGUAgAAAAAAQNBRlAIAAAAAAEDQUZQCAAAAAABA0FGUAgAAAAAAQNBRlAIAAAAAAEDQUZQCAAAAAABA0FGUAtCiTJw4Uenp6cf02RkzZshisTRuQAAAAM0IuRKAloSiFIBGYbFY6nUsXrzY7FBNMXHiREVFRZkdBgAAMAm50tFNnDix1jg4nU716NFD06ZNU0VFxWHX11z3P//zP3Xe79577w1ck5+fX+u9999/X6NHj1ZSUpIiIiLUpUsXXXrppVqwYEHgmh07dhz192nWrFmNOwBAK2UxDMMwOwgALd8///nPWq9fffVVLVy4UP/4xz9qnT/jjDOUnJx8zD+nsrJSPp9PTqezwZ+tqqpSVVWVXC7XMf/8YzVx4kT961//UklJSdB/NgAAMB+50tFNnDhRb775pl566SVJUmFhof7zn/9o4cKFuuKKK/Taa6/Vut5iscjlcsnlciknJ0cOh6PW+126dNG+fftUUVGhvLw8JSYmSpIef/xx3X333Ro9erQuuOACRUREaMuWLfrss880cOBAzZ07V5K/KNW5c2eNHz9eZ5999mHxDh48WH379m2CkQBaF4pSAJrE5MmT9eyzz+rX/oopKytTREREkKIyD0UpAADwS+RKtdWVKxmGoZEjR2r58uXat29frWKdxWLRuHHj9N577+mdd97RBRdcEHhv6dKlGjVqlC6++GL9+9//DhSlqqqqlJCQoIyMDH366aeHxZCbm6ukpCRJh4pSjz32mO66664m/OZA68byPQBBc+qpp6pfv35auXKlTjnlFEVEROhPf/qTJOk///mPzjnnHLVr105Op1Ndu3bVQw89JK/XW+se/90noWZq9eOPP64XXnhBXbt2ldPp1LBhw/Tdd9/V+mxdfRIsFosmT56sd999V/369ZPT6VTfvn1rTd+usXjxYg0dOlQul0tdu3bV3/72t0bvvTBv3jwNGTJE4eHhSkxM1FVXXaU9e/bUuiY7O1uTJk1Shw4d5HQ6lZqaqgsuuEA7duwIXPP9999rzJgxSkxMVHh4uDp37qxrr7220eIEAACNj1ypNovFopNOOkmGYWjbtm2Hvd++fXudcsopev3112udf+2119S/f3/169ev1vn8/HwVFRVp1KhRdf68moIUgOCxmx0AgNZl//79Ouuss3T55ZfrqquuCjzxmjt3rqKiojRlyhRFRUXp888/17Rp01RUVKTHHnvsV+/7+uuvq7i4WL/73e9ksVj06KOP6qKLLtK2bdsUFhZ21M9+/fXXeuedd3TzzTcrOjpaTz31lC6++GJlZWUpISFBkrR69WqNHTtWqampeuCBB+T1evXggw+qbdu2xz8o1ebOnatJkyZp2LBhmjlzpnJycvTXv/5V33zzjVavXq24uDhJ0sUXX6x169bp1ltvVXp6unJzc7Vw4UJlZWUFXp955plq27at7rnnHsXFxWnHjh165513Gi1WAADQNMiVaqt56BYfH1/n+1dccYVuv/12lZSUKCoqSlVVVZo3b56mTJlyWC+qpKQkhYeH6/3339ett96qNm3a/OrPLysrO6wnlSTFxcXJbuf/TgPHzQCAJnDLLbcY//1XzOjRow1Jxpw5cw67vqys7LBzv/vd74yIiAijoqIicG7ChAlGp06dAq+3b99uSDISEhKMAwcOBM7/5z//MSQZ77//fuDc9OnTD4tJkuFwOIwtW7YEzv3www+GJOPpp58OnDvvvPOMiIgIY8+ePYFzmzdvNux2+2H3rMuECROMyMjII77v8XiMpKQko1+/fkZ5eXng/AcffGBIMqZNm2YYhmEcPHjQkGQ89thjR7zX/PnzDUnGd99996txAQAAc5Ar1VaTK+Xl5Rl5eXnGli1bjMcff9ywWCxGv379DJ/Pd1hct9xyi3HgwAHD4XAY//jHPwzDMIwPP/zQsFgsxo4dOwLfJy8vL/C5adOmGZKMyMhI46yzzjIefvhhY+XKlYfFUzNuRzqWLVv2q98JwK9j+R6AoHI6nZo0adJh58PDwwO/Li4uVn5+vk4++WSVlZVpw4YNv3rfyy67rNYTtJNPPlmS6pzq/d8yMzPVtWvXwOsBAwYoJiYm8Fmv16vPPvtM48aNU7t27QLXdevWTWedddav3r8+vv/+e+Xm5urmm2+u1Vz0nHPOUa9evfThhx9K8o+Tw+HQ4sWLdfDgwTrvVTOj6oMPPlBlZWWjxAcAAIKjNedKpaWlatu2rdq2batu3brprrvu0qhRo/Sf//zniEsA4+PjNXbsWL3xxhuS/DPCRo4cqU6dOtV5/QMPPKDXX39dgwcP1ieffKJ7771XQ4YM0QknnKD169cfdv0NN9yghQsXHnb06dOn3t8LwJFRlAIQVO3btz9sdxRJWrdunS688ELFxsYqJiZGbdu21VVXXSXJv/vKr+nYsWOt1zVJ15EKN0f7bM3naz6bm5ur8vJydevW7bDr6jp3LHbu3ClJ6tmz52Hv9erVK/C+0+nUI488oo8//ljJyck65ZRT9Oijjyo7Oztw/ejRo3XxxRfrgQceUGJioi644AK98sorcrvdjRIrAABoOq05V3K5XIGizyuvvKLevXsrNze3VkGuLldccUWglcG7776rK6644qjXjx8/Xl999ZUOHjyoTz/9VFdccYVWr16t884777Alf927d1dmZuZhR0xMTL2/F4AjoygFIKjqSioKCgo0evRo/fDDD3rwwQf1/vvva+HChXrkkUckST6f71fva7PZ6jxv1GOD0eP5rBnuuOMObdq0STNnzpTL5dL999+v3r17a/Xq1ZL8TUH/9a9/admyZZo8ebL27Nmja6+9VkOGDGH3PwAAmrnWnCvZbLZA0WfixIlatGiRsrOz9bvf/e6onzv//PPldDo1YcIEud1uXXrppfX6eTExMTrjjDP02muvacKECdq6dauWL1/eGF8FQD1RlAJgusWLF2v//v2aO3eubr/9dp177rnKzMw8YkPLYEtKSpLL5dKWLVsOe6+uc8eiZor5xo0bD3tv48aNh01B79q1q37/+9/r008/1dq1a+XxePTEE0/UuubEE0/Uww8/rO+//16vvfaa1q1bpzfffLNR4gUAAMHTWnOl1NRU3XnnnXr//ff17bffHvG68PBwjRs3TosXL9YZZ5yhxMTEBv+soUOHSpL27dt3zPECaDiKUgBMV/P07ZdP2zwej5577jmzQqql5qndu+++q7179wbOb9myRR9//HGj/IyhQ4cqKSlJc+bMqbXM7uOPP9b69et1zjnnSPLvAPPf08q7du2q6OjowOcOHjx42JPLQYMGSRJL+AAAaIFac6506623KiIiQrNmzTrqdXfddZemT5+u+++//4jXlJWVadmyZXW+VxNnXa0UADQd9rAEYLqRI0cqPj5eEyZM0G233SaLxaJ//OMfzWr53IwZM/Tpp59q1KhRuummm+T1evXMM8+oX79+WrNmTb3uUVlZqT//+c+HnW/Tpo1uvvlmPfLII5o0aZJGjx6t8ePHKycnR3/961+Vnp6uO++8U5K0adMmnX766br00kvVp08f2e12zZ8/Xzk5Obr88sslSX//+9/13HPP6cILL1TXrl1VXFysF198UTExMTr77LMbbUwAAEBwtJZcqS4JCQmaNGmSnnvuOa1fv169e/eu87qBAwdq4MCBR71XWVmZRo4cqRNPPFFjx45VWlqaCgoK9O677+qrr77SuHHjNHjw4FqfWbVqlf75z38edq+uXbtqxIgRx/y9APhRlAJguoSEBH3wwQf6/e9/r/vuu0/x8fG66qqrdPrpp2vMmDFmhydJGjJkiD7++GPddddduv/++5WWlqYHH3xQ69evr9eON5L/iWZdT++6du2qm2++WRMnTgw8CfzjH/+oyMhIXXjhhXrkkUcCO+qlpaVp/PjxWrRokf7xj3/IbrerV69eevvtt3XxxRdL8jc6X7Fihd58803l5OQoNjZWw4cP12uvvabOnTs32pgAAIDgaC250pFMmTJFc+bM0SOPPKK5c+ce833i4uL04osv6sMPP9Qrr7yi7Oxs2Ww29ezZU4899phuu+22wz7zxhtvBHb2+6UJEyZQlAIagcVoTuV1AGhhxo0bp3Xr1mnz5s1mhwIAANDskCsBOBp6SgFAPZWXl9d6vXnzZn300Uc69dRTzQkIAACgGSFXAtBQzJQCgHpKTU3VxIkT1aVLF+3cuVPPP/+83G63Vq9ere7du5sdHgAAgKnIlQA0FD2lAKCexo4dqzfeeEPZ2dlyOp0aMWKE/vKXv5BkAQAAiFwJQMMxUwoAAAAAAABBR08pAAAAAAAABB1FKQAAAAAAAAQdPaXq4PP5tHfvXkVHR8tisZgdDgAAMJFhGCouLla7du1ktfI872jIoQAAgFT//ImiVB327t2rtLQ0s8MAAADNyK5du9ShQwezw2jWyKEAAMAv/Vr+RFGqDtHR0ZL8gxcTE2NyNAAAwExFRUVKS0sL5Ac4MnIoAAAg1T9/oihVh5rp5jExMSRUAABAkliOVg/kUAAA4Jd+LX+iMQIAAAAAAACCjqIUAAAAAAAAgo6iFAAAAAAAAIKOnlIAABwDr9eryspKs8NAIwgLC5PNZjM7DAAAWjzyo9ajsfInilIAADSAYRjKzs5WQUGB2aGgEcXFxSklJYVm5gAAHAPyo9apMfInilIAADRATcKVlJSkiIgIihgtnGEYKisrU25uriQpNTXV5IgAAGh5yI9al8bMnyhKAQBQT16vN5BwJSQkmB0OGkl4eLgkKTc3V0lJSSzlAwCgAciPWqfGyp9odA4AQD3V9EiIiIgwORI0tprfU/pgAADQMORHrVdj5E8UpQAAaCCmpIcefk8BADg+/Fva+jTG7zlFKQAAAAAAAAQdRakg+7+vt2vUrM/1xKcbzQ4FAIDjkp6ertmzZ5sdBlqBSq9Ppz2+WBl/+UxFFSyxBAA0X+RHDUNRKsjK3FXaU1Cu/BK32aEAAFoJi8Vy1GPGjBnHdN/vvvtON9xww3HFduqpp+qOO+44rnsg9NmtFmUdKFNOkVtlbq/Z4QAAQkBzz49q4nC5XOrRo4dmzpwpwzAC1+zYsUMWi0U2m0179uyp9fl9+/bJbrfLYrFox44dgfPz58/XiSeeqNjYWEVHR6tv37618rC5c+fWORYul+u4vs/RsPtekDnD/HXAikqfyZEAAFqLffv2BX791ltvadq0adq48dCM3aioqMCvDcOQ1+uV3f7rKULbtm0bN1DgCCwWiyIcNhVXVKnMU2V2OACAENDc86Prr79eDz74oNxutz7//HPdcMMNiouL00033VTruvbt2+vVV1/V1KlTA+f+/ve/q3379srKygqcW7RokS677DI9/PDDOv/882WxWPTzzz9r4cKFte4XExNTaxykpu0XxkypIHOF+bdJdFfxlA8AEBwpKSmBIzY2VhaLJfB6w4YNio6O1scff6whQ4bI6XTq66+/1tatW3XBBRcoOTlZUVFRGjZsmD777LNa9/3v6ekWi0UvvfSSLrzwQkVERKh79+567733jiv2f//73+rbt6+cTqfS09P1xBNP1Hr/ueeeU/fu3eVyuZScnKzf/va3gff+9a9/qX///goPD1dCQoIyMzNVWlp6XPHAPBEOfw5V5iGHAgAcv+aeH0VERCglJUWdOnXSpEmTNGDAgMMKSJI0YcIEvfLKK7XOvfLKK5owYUKtc++//75GjRqlu+++Wz179lSPHj00btw4Pfvss7Wu++U41BzJycm/Gu+xoigVZC67P6FiphQAhAbDMFTmqTLl+OUU7uN1zz33aNasWVq/fr0GDBigkpISnX322Vq0aJFWr16tsWPH6rzzzqv1xK0uDzzwgC699FL9+OOPOvvss3XllVfqwIEDxxTTypUrdemll+ryyy/XTz/9pBkzZuj+++/X3LlzJUnff/+9brvtNj344IPauHGjFixYoFNOOUWS/+nn+PHjde2112r9+vVavHixLrrookYdMwRXhMP/dJqiFAA0f2blR43973xzyI8Mw9BXX32lDRs2yOFwHPb++eefr4MHD+rrr7+WJH399dc6ePCgzjvvvFrXpaSkaN26dVq7dm09v31wsHwvyA4t3yOhAoBQUF7pVZ9pn5jys39+cEzg/6gfrwcffFBnnHFG4HWbNm00cODAwOuHHnpI8+fP13vvvafJkycf8T4TJ07U+PHjJUl/+ctf9NRTT2nFihUaO3Zsg2N68skndfrpp+v++++XJPXo0UM///yzHnvsMU2cOFFZWVmKjIzUueeeq+joaHXq1EmDBw+W5C9KVVVV6aKLLlKnTp0kSf37929wDGg+Ds2UYvkeADR3ZuVHjZkbSebmR88995xeeukleTweVVZWyuVy6bbbbjvsurCwMF111VV6+eWXddJJJ+nll1/WVVddpbCwsFrX3Xrrrfrqq6/Uv39/derUSSeeeKLOPPNMXXnllXI6nYHrCgsLay1dlKSTTz5ZH3/88RFjPR7MlAoyp71m+R4zpQAAzcfQoUNrvS4pKdFdd92l3r17Ky4uTlFRUVq/fv2vPgkcMGBA4NeRkZGKiYlRbm7uMcW0fv16jRo1qta5UaNGafPmzfJ6vTrjjDPUqVMndenSRVdffbVee+01lZWVSZIGDhyo008/Xf3799cll1yiF198UQcPHjymONA8sHwPABBsZuZHV155pdasWaNvvvlGZ511lu69916NHDmyzmuvvfZazZs3T9nZ2Zo3b56uvfbaw66JjIzUhx9+qC1btui+++5TVFSUfv/732v48OGB/EmSoqOjtWbNmlrHSy+9dNRYjwczpYLMxUwpAAgp4WE2/fzgGNN+dmOJjIys9fquu+7SwoUL9fjjj6tbt24KDw/Xb3/7W3k8nqPe57+fylksFvl8TfMgJjo6WqtWrdLixYv16aefatq0aZoxY4a+++47xcXFaeHChVq6dKk+/fRTPf3007r33nu1fPlyde7cuUniQdMKZ/keALQYZuVHjZkbSebmR7GxserWrZsk6e2331a3bt104oknKjMz87Br+/fvr169emn8+PHq3bu3+vXrpzVr1tR5365du6pr1676n//5H917773q0aOH3nrrLU2aNEmSZLVaAz83GChKBZkz0FOKhAoAQoF/V7DQ++f0m2++0cSJE3XhhRdK8j8Z/OWWwsHQu3dvffPNN4fF1aNHD9ls/n9P7Xa7MjMzlZmZqenTpysuLk6ff/65LrroIlksFo0aNUqjRo3StGnT1KlTJ82fP19TpkwJ6vdA44isnilVzvI9AGj2yI8aV1RUlG6//XbdddddWr16dZ274V177bW6+eab9fzzz9f7vunp6YqIiDB1I5jQ+1PSzNXMlGL5HgCgOevevbveeecdnXfeebJYLLr//vubbMZTXl7eYU/zUlNT9fvf/17Dhg3TQw89pMsuu0zLli3TM888o+eee06S9MEHH2jbtm065ZRTFB8fr48++kg+n089e/bU8uXLtWjRIp155plKSkrS8uXLlZeXp969ezfJd0DTC68uSpUyUwoAYJJg5kf/7Xe/+50eeugh/fvf/66123CN66+/Xpdcconi4uLq/PyMGTNUVlams88+W506dVJBQYGeeuopVVZW1uqbZRiGsrOzD/t8UlKSrNbG7wBFT6kgc4Wx+x4AoPl78sknFR8fr5EjR+q8887TmDFjdMIJJzTJz3r99dc1ePDgWseLL76oE044QW+//bbefPNN9evXT9OmTdODDz6oiRMnSpLi4uL0zjvv6De/+Y169+6tOXPm6I033lDfvn0VExOjL7/8UmeffbZ69Oih++67T0888YTOOuusJvkOaHqRLN8DAJgsmPnRf2vTpo2uueYazZgxo85CmN1uV2Jiouz2uucejR49Wtu2bdM111yjXr166ayzzlJ2drY+/fRT9ezZM3BdUVGRUlNTDzuOtUfor7EY7I18mKKiIsXGxqqwsFAxMTGNeu9teSX6zRNLFO2066cHzOlBAgA4NhUVFdq+fbs6d+4sl8tldjhoREf7vW3KvCDUNOVYzfxovf725Tb9z0mddd+5fRr13gCAY0d+1Ho1Rv7ETKkgq5kpxfI9AACA+qtZvldGX04AAEIGRakgqylKebw+eX1MUgMAAKiPmuV75SzfAwAgZFCUCjKn/dCQu6tIqgAAAOoj0Ojcze57AACECopSQVYzU0qS3DQ7BwAAqJeI6qJUOcv3AAAIGRSlgsxmtSjMZpEkVTBTCgAAoF4i2H0PAICQQ1HKBE67/0lfBTOlAKBFqmsbXrRs/J42fxEs3wOAZo1/S1ufxvg9tzdCHGggV5hVJW56SgFAS+NwOGS1WrV37161bdtWDodDFovF7LBwHAzDkMfjUV5enqxWqxwOh9kh4QhYvgcAzRP5UevTmPkTRSkTMFMKAFomq9Wqzp07a9++fdq7d6/Z4aARRUREqGPHjrJamUTeXLF8DwCaJ/Kj1qsx8ieKUiZwhvl/wyp40gcALY7D4VDHjh1VVVUlr5e/x0OBzWaT3W7nqW4zVzNTqozlewDQ7JAftT6NlT9RlDKBKzBTiv+xAkBLZLFYFBYWprCwMLNDAVqNCGd1UarSK8MwKCICQDNDfoRjwRx1E7iqZ0q5q1i+BwAAUB81y/cMgxYIAACECopSJnAyUwoAAKBBwsNsgV+XeVjCBwBAKKAoZYLATCme8gEAANSLzWoJ5FA0OwcAIDRQlDKBq/pJn7uKhAoAAKC+2IEPAIDQQlHKBE57ze57zJQCAADH5tlnn1V6erpcLpcyMjK0YsWKI1774osv6uSTT1Z8fLzi4+OVmZl52PUTJ06UxWKpdYwdO7apv0aD1CzhY/keAAChgaKUCWpmStFTCgAAHIu33npLU6ZM0fTp07Vq1SoNHDhQY8aMUW5ubp3XL168WOPHj9cXX3yhZcuWKS0tTWeeeab27NlT67qxY8dq3759geONN94Ixtept8jqHfjKmSkFAEBIoChlgkPL95gpBQAAGu7JJ5/U9ddfr0mTJqlPnz6aM2eOIiIi9PLLL9d5/Wuvvaabb75ZgwYNUq9evfTSSy/J5/Np0aJFta5zOp1KSUkJHPHx8cH4OvUWXr18r5SiFAAAIYGilAkOLd8joQIAAA3j8Xi0cuVKZWZmBs5ZrVZlZmZq2bJl9bpHWVmZKisr1aZNm1rnFy9erKSkJPXs2VM33XST9u/ff9T7uN1uFRUV1TqaUqSD5XsAAIQSilImcNYs36PROQAAaKD8/Hx5vV4lJyfXOp+cnKzs7Ox63eOPf/yj2rVrV6uwNXbsWL366qtatGiRHnnkES1ZskRnnXWWvN4j5yszZ85UbGxs4EhLSzu2L1VPEQ6W7wEAEErsZgfQGtVsZ+ym0TkAAAiyWbNm6c0339TixYvlcrkC5y+//PLAr/v3768BAwaoa9euWrx4sU4//fQ67zV16lRNmTIl8LqoqKhJC1Ms3wMAILQwU8oELnvNTCmKUgAAoGESExNls9mUk5NT63xOTo5SUlKO+tnHH39cs2bN0qeffqoBAwYc9douXbooMTFRW7ZsOeI1TqdTMTExtY6mFBmYKcXyPQAAQgFFKRM4w+gpBQAAjo3D4dCQIUNqNSmvaVo+YsSII37u0Ucf1UMPPaQFCxZo6NChv/pzdu/erf379ys1NbVR4m4M4dVFKWZKAQAQGihKmaBmphS77wEAgGMxZcoUvfjii/r73/+u9evX66abblJpaakmTZokSbrmmms0derUwPWPPPKI7r//fr388stKT09Xdna2srOzVVJSIkkqKSnR3XffrW+//VY7duzQokWLdMEFF6hbt24aM2aMKd+xLvSUAgAgtNBTygSumkbnzJQCAADH4LLLLlNeXp6mTZum7OxsDRo0SAsWLAg0P8/KypLVeujZ4/PPPy+Px6Pf/va3te4zffp0zZgxQzabTT/++KP+/ve/q6CgQO3atdOZZ56phx56SE6nM6jf7WgiqntKsfseAAChwfSZUs8++6zS09PlcrmUkZGhFStWHPHadevW6eKLL1Z6erosFotmz5593Pc0g9Ne0+icohQAADg2kydP1s6dO+V2u7V8+XJlZGQE3lu8eLHmzp0beL1jxw4ZhnHYMWPGDElSeHi4PvnkE+Xm5srj8WjHjh164YUXDtvhz2wRLN8DACCkmFqUeuuttzRlyhRNnz5dq1at0sCBAzVmzBjl5ubWeX1ZWZm6dOmiWbNmHbGRZ0PvaYaamVIs3wMAAKg/lu8BABBaTC1KPfnkk7r++us1adIk9enTR3PmzFFERIRefvnlOq8fNmyYHnvsMV1++eVHnEre0HuawUWjcwAAgAZj+R4AAKHFtKKUx+PRypUrlZmZeSgYq1WZmZlatmxZs7lnU3Daa3pKMVMKAACgvmpmSpUxUwoAgJBgWqPz/Px8eb3ew3oVJCcna8OGDUG9p9vtltvtDrwuKio6pp9fXzUzpdxVJFQAAAD1dWimFDkUAAChwPRG583BzJkzFRsbGzjS0tKa9Ocd2n2PmVIAAAD1RU8pAABCi2lFqcTERNlsNuXk5NQ6n5OTc8Qm5k11z6lTp6qwsDBw7Nq165h+fn3V7L5XUeWVYRhN+rMAAABCxaHd9+gpBQBAKDCtKOVwODRkyBAtWrQocM7n82nRokUaMWJEUO/pdDoVExNT62hKzuqZUoYhVXopSgEAANRHhJPlewAAhBLTekpJ0pQpUzRhwgQNHTpUw4cP1+zZs1VaWqpJkyZJkq655hq1b99eM2fOlORvZP7zzz8Hfr1nzx6tWbNGUVFR6tatW73u2RzU9JSS/LOlHHZWUQIAAPyaiOoHe54qn6q8Ptlt5FAAALRkphalLrvsMuXl5WnatGnKzs7WoEGDtGDBgkCj8qysLFmth5KNvXv3avDgwYHXjz/+uB5//HGNHj1aixcvrtc9mwOHzSqLxT9TqqLSqxhXmNkhAQAANHvh1cv3JKms0qsYilIAALRophalJGny5MmaPHlyne/VFJpqpKen16sH09Hu2RxYLBY57VZVVPrkptk5AABAvTjtVtmsFnl9hso9PNgDAKCl4/GSSWp24HNX0RMBAACgPiwWS2AJX6mbZucAALR0FKVMEtiBj5lSAAAA9VazhI9m5wAAtHwUpUzCTCkAAICGi6zega+8khwKAICWjqKUSVx2f1GKmVIAAAD1F87yPQAAQgZFKZM4w2qW7/GUDwAAoL4inf6iVDnL9wAAaPEoSpmkZqaUu4qZUgAAAPUV7vAv36OnFAAALR9FKZMwUwoAAKDhanbfK/OwfA8AgJaOopRJnPSUAgAAaLAIJ7vvAQAQKihKmcRVPVOK3fcAAADqL8JR3eicohQAAC0eRSmTuMKYKQUAANBQEdU9pcpZvgcAQItHUcokTjs9pQAAABqqZqYUy/cAAGj5KEqZpGamFLvvAQAA1B9FKQAAQgdFKZO42H0PAACgwWqW77H7HgAALR9FKZPU7L5Ho3MAAID6Y6YUAAChg6KUSQK779HoHAAAoN4oSgEAEDooSpkksPseM6UAAADq7dDyPXIoAABaOopSJjm0+x4zpQAAAOqrZqZUOT2lAABo8ShKmeTQ7ns85QMAAKiv8OqiVCkzpQAAaPEoSpmkptE5M6UAAADqL7J6+V45RSkAAFo8ilImcYbVLN8joQIAAKivQ43Oq2QYhsnRAACA40FRyiQue83yPWZKAQAA1FfN8j2fQR4FAEBLR1HKJC5mSgEAADRYze57EjvwAQDQ0lGUMgk9pQAAABrOZrUEdjEudbMDHwAALRlFKZPUzJRi9z0AAICGiXRWNztnxjkAAC0aRSmTuMKqe0oxUwoAAKBBwsNqmp1TlAIAoCWjKGWSmmnnHq9PXh87xwAAANRXYAc+lu8BANCiUZQySc1MKYklfAAAAA0RUb18j5lSAAC0bBSlTFIzU0piCR8AAEBDRNQs36OnFAAALRpFKZPYbVbZrRZJUgUzpQAAAOqN5XsAAIQGilImqlnCV8FMKQAAgHpj+R4AAKGBopSJXGH+4aenFAAAQP3VLN8rZ/keAAAtGkUpEzntzJQCAABoqPDq5XulLN8DAKBFoyhlImf1TKkKnvIBAADUW6SzuqcUy/cAAGjRKEqZyFU9U8pdxUwpAACA+opw1PSUYqYUAAAtGUUpEzFTCgAAoOECu+8xUwoAgBaNopSJXIGeUiRUAAAA9VVTlCqnKAUAQItGUcpEh3bfY/keAABAfYVXL98rZfkeAAAtGkUpE9XsvudmphQAAEC9RTJTCgCAkEBRykSuQE8pZkoBAADUVzg9pQAACAkUpUzkCqvZfY+ECgAAoL4O7b5HDgUAQEtGUcpETjszpQAAABoqMjBTip5SAAC0ZBSlTFQzU4rd9wAAAOqP5XsAAIQGilImcgaW7zFTCgAAoL4iq5fvuat88voMk6MBAADHiqKUiQ4t3+MpHwAAQH3VzJSSWMIHAEBLRlHKRIHle8yUAgAAqDen3Sqrxf9rlvABANByUZQykSvMP/xuZkoBAIAGevbZZ5Weni6Xy6WMjAytWLHiiNe++OKLOvnkkxUfH6/4+HhlZmYedr1hGJo2bZpSU1MVHh6uzMxMbd68uam/xjGxWCyBJXwUpQAAaLkoSpnIaWemFAAAaLi33npLU6ZM0fTp07Vq1SoNHDhQY8aMUW5ubp3XL168WOPHj9cXX3yhZcuWKS0tTWeeeab27NkTuObRRx/VU089pTlz5mj58uWKjIzUmDFjVFFREayv1SDh7MAHAECLR1HKRDUzpegpBQAAGuLJJ5/U9ddfr0mTJqlPnz6aM2eOIiIi9PLLL9d5/Wuvvaabb75ZgwYNUq9evfTSSy/J5/Np0aJFkvyzpGbPnq377rtPF1xwgQYMGKBXX31Ve/fu1bvvvhvEb1Z/EezABwBAi0dRykQuO7vvAQCAhvF4PFq5cqUyMzMD56xWqzIzM7Vs2bJ63aOsrEyVlZVq06aNJGn79u3Kzs6udc/Y2FhlZGTU+57BFsHyPQAAWjy72QG0Zk56SgEAgAbKz8+X1+tVcnJyrfPJycnasGFDve7xxz/+Ue3atQsUobKzswP3+O971rxXF7fbLbfbHXhdVFRUr5/fGGpmSpWzfA8AgBaLmVImCuy+R1EKAAAEyaxZs/Tmm29q/vz5crlcx3WvmTNnKjY2NnCkpaU1UpS/rqanVKmbPAoAgJaKopSJWL4HAAAaKjExUTabTTk5ObXO5+TkKCUl5aifffzxxzVr1ix9+umnGjBgQOB8zecaes+pU6eqsLAwcOzatauhX+eYBXbf4+EeAAAtFkUpEzlpdA4AABrI4XBoyJAhgSblkgJNy0eMGHHEzz366KN66KGHtGDBAg0dOrTWe507d1ZKSkqtexYVFWn58uVHvafT6VRMTEytI1hYvgcAQMtHTykT1cyUqqhkphQAAKi/KVOmaMKECRo6dKiGDx+u2bNnq7S0VJMmTZIkXXPNNWrfvr1mzpwpSXrkkUc0bdo0vf7660pPTw/0iYqKilJUVJQsFovuuOMO/fnPf1b37t3VuXNn3X///WrXrp3GjRtn1tc8qggny/cAAGjpKEqZyFXT6LzKK8MwZLFYTI4IAAC0BJdddpny8vI0bdo0ZWdna9CgQVqwYEGgUXlWVpas1kMT4p9//nl5PB799re/rXWf6dOna8aMGZKkP/zhDyotLdUNN9yggoICnXTSSVqwYMFx951qKod232OmFAAALRVFKRM5q2dK+Qyp0mvIYacoBQAA6mfy5MmaPHlyne8tXry41usdO3b86v0sFosefPBBPfjgg40QXdOLj3BIkvJLPCZHAgAAjpXpPaWeffZZpaeny+VyKSMjQytWrDjq9fPmzVOvXr3kcrnUv39/ffTRR7XeLykp0eTJk9WhQweFh4erT58+mjNnTlN+hWNW01NKkiqqmHoOAABQX+kJEZKk7fmlJkcCAACOlalFqbfeektTpkzR9OnTtWrVKg0cOFBjxoxRbm5undcvXbpU48eP13XXXafVq1dr3LhxGjdunNauXRu4ZsqUKVqwYIH++c9/av369brjjjs0efJkvffee8H6WvXmtB8afjd9pQAAAOotPTFSkrRzP0UpAABaKlOLUk8++aSuv/56TZo0KTCjKSIiQi+//HKd1//1r3/V2LFjdffdd6t379566KGHdMIJJ+iZZ54JXLN06VJNmDBBp556qtLT03XDDTdo4MCBvzoDywwWiyVQmGIHPgAAgPrrVD1T6mBZpQrLKk2OBgAAHAvTilIej0crV65UZmbmoWCsVmVmZmrZsmV1fmbZsmW1rpekMWPG1Lp+5MiReu+997Rnzx4ZhqEvvvhCmzZt0plnntk0X+Q4ucL8faXcLN8DAACotwiHXckxTknSdmZLAQDQIplWlMrPz5fX6w3sElMjOTk5sE3xf8vOzv7V659++mn16dNHHTp0kMPh0NixY/Xss8/qlFNOOWIsbrdbRUVFtY5gqdmBr4LlewAAAA2SnsASPgAAWjLTG503tqefflrffvut3nvvPa1cuVJPPPGEbrnlFn322WdH/MzMmTMVGxsbONLS0oIWb80OfMyUAgAAaJiaohTNzgEAaJnsZv3gxMRE2Ww25eTk1Dqfk5OjlJSUOj+TkpJy1OvLy8v1pz/9SfPnz9c555wjSRowYIDWrFmjxx9//LClfzWmTp2qKVOmBF4XFRUFrTDFTCkAAIBjc6jZeZnJkQAAgGNh2kwph8OhIUOGaNGiRYFzPp9PixYt0ogRI+r8zIgRI2pdL0kLFy4MXF9ZWanKykpZrbW/ls1mk8935KKP0+lUTExMrSNY6CkFAABwbNKrm50zUwoAgJbJtJlSkjRlyhRNmDBBQ4cO1fDhwzV79myVlpZq0qRJkqRrrrlG7du318yZMyVJt99+u0aPHq0nnnhC55xzjt588019//33euGFFyRJMTExGj16tO6++26Fh4erU6dOWrJkiV599VU9+eSTpn3Pozm0+x4zpQAAABqiZqbUDnpKAQDQIplalLrsssuUl5enadOmKTs7W4MGDdKCBQsCzcyzsrJqzXoaOXKkXn/9dd13333605/+pO7du+vdd99Vv379Ate8+eabmjp1qq688kodOHBAnTp10sMPP6wbb7wx6N+vPmpmSlVUMlMKAACgITpVz5QqKKtUQZlHcREOkyMCAAANYWpRSpImT56syZMn1/ne4sWLDzt3ySWX6JJLLjni/VJSUvTKK680VnhN7lCjc2ZKAQAANESEw67kGKdyitzasb9MgyhKAQDQooTc7nstjTPQ6JyZUgAAAA1VswPfTpbwAQDQ4lCUMpnLXrN8j5lSAAAADVVTlKLZOQAALQ9FKZO5qmdKsfseAABAwwWanVOUAgCgxaEoZTInM6UAAACOWXp1s/Md+8tMjgQAADQURSmTuegpBQAAcMwCM6XoKQUAQItDUcpkrjB23wMAADhWnapnShWUVaqgzGNyNAAAoCEoSpnMaa/uKcVMKQAAgAaLcNiVHOOUxBI+AABaGopSJquZKVVBo3MAAIBjUrMDH83OAQBoWShKmexQTymW7wEAAByLQFGKvlIAALQoFKVMVrP7npuZUgAAhKzc3Nyjvl9VVaUVK1YEKZrQE2h2zkwpAABaFIpSJmOmFAAAoS81NbVWYap///7atWtX4PX+/fs1YsQIM0ILCenVzc7pKQUAQMtCUcpkzpqeUjQ6BwAgZBmGUev1jh07VFlZedRrUH+BmVIs3wMAoEWhKGWywO57VcyUAgCgNbNYLGaH0GJ1qp4pVVBWqYIyj8nRAACA+qIoZTIXM6UAAACOS4TDruQYpySW8AEA0JI0qCj16KOPqry8PPD6m2++kdvtDrwuLi7WzTff3HjRtQIue01RiplSAACEKovFouLiYhUVFamwsFAWi0UlJSUqKioKHDg+gR34aHYOAECL0aCi1NSpU1VcXBx4fdZZZ2nPnj2B12VlZfrb3/7WeNG1As6wmuV7zJQCACBUGYahHj16KD4+Xm3atFFJSYkGDx6s+Ph4xcfHq2fPnmaH2OIFilL0lQIAoMWwN+Ti/27ASUPO41ezfM/NTCkAAELWF198YXYIIS/Q7JyZUgAAtBgNKkqh8bmqG517vD55fYZsVpqcAgAQakaPHm12CCEvvbrZ+XZ6SgEA0GJQlDKZs3qmlCR5qnwKd9iOcjUAAGiJqqqq5PV65XQ6A+dycnI0Z84clZaW6vzzz9dJJ51kYoQtX81MqZ0s3wMAoMVocFHqpZdeUlRUlCR/gjV37lwlJiZKUq1+U6if8DCbLBbJMKTiikqKUgAAhKDrr79eDocj0HuzuLhYw4YNU0VFhVJTU/W///u/+s9//qOzzz7b5Ehbrk4JEbJYpIKySuUWVygp2mV2SAAA4Fc0qCjVsWNHvfjii4HXKSkp+sc//nHYNag/m9Wi9nHh2n2wXDv2lykphgQKAIBQ88033+iZZ54JvH711Vfl9Xq1efNmxcbG6o9//KMee+wxilLHIcJhV8/kaG3ILtaqnQc1tl+q2SEBAIBf0aCi1I4dO5oojNatc2Kkdh8s1/b8Eg3v3MbscAAAQCPbs2ePunfvHni9aNEiXXzxxYqNjZUkTZgwQa+88opZ4YWMEzrFa0N2sVZSlAIAoEWwmh0ApC7VPRC2sVsMAAAhyeVyqby8PPD622+/VUZGRq33S0pKzAgtpAztFC9J+n7nQZMjAQAA9dGgotSyZcv0wQcf1Dr36quvqnPnzkpKStINN9wgt9vdqAG2Bl3a+nt0bc+jKAUAQCgaNGhQoOXBV199pZycHP3mN78JvL9161a1a9fOrPBCxpDqotTaPYWqqPSaHA0AAPg1DSpKPfjgg1q3bl3g9U8//aTrrrtOmZmZuueee/T+++9r5syZjR5kqOvMTCkAAELatGnT9Ne//lVdu3bVmDFjNHHiRKWmHlpeNn/+fI0aNcrECENDxzYRSoxyqtJr6Kc9hWaHAwAAfkWDekqtWbNGDz30UOD1m2++qYyMjEDz87S0NE2fPl0zZsxo1CBDXedfbGHs9RmyWS0mRwQAABrT6NGjtXLlSn366adKSUnRJZdcUuv9QYMGafjw4SZFFzosFouGdIrTJ+tytHLnQQ1Lp1cnAADNWYOKUgcPHlRycnLg9ZIlS3TWWWcFXg8bNky7du1qvOhaifZx4XLYrfJU+bTnYLk6JkSYHRIAAGhkvXv3Vu/evet874YbbghyNKFraKc2+mRdjr7fcVAabXY0AADgaBpUlEpOTtb27duVlpYmj8ejVatW6YEHHgi8X1xcrLCwsEYPMtRZrRZ1TojUxpxibc0voSgFAECI+fLLL+t13SmnnNLEkYS+E6r7Sq3KOijDMGSxMAMdAIDmqkFFqbPPPlv33HOPHnnkEb377ruKiIjQySefHHj/xx9/VNeuXRs9yNagc6K/KLU9r1Sn9TQ7GgAA0JhOPfXUQHHEMIw6r7FYLPJ6ac59vPq1j5HDbtWBUo+255cGNpQBAADNT4OKUg899JAuuugijR49WlFRUZo7d64cDkfg/ZdffllnnnlmowfZGnRu6+8rtZ1m5wAAhJz4+HhFR0dr4sSJuvrqq5WYmGh2SCHLabdpQPtYfb/zoFbuPEhRCgCAZqxBRanExER9+eWXKiwsVFRUlGw2W633582bp+jo6EYNsLXokkhRCgCAULVv3z7Nnz9fL7/8sh599FGdffbZuu666zR27FiWlzWBIenxgaLUJUPTzA4HAAAcQYOKUtdee229rnv55ZePKZjWrEv1TKlteSUmRwIAABqbw+HQZZddpssuu0xZWVmaO3euJk+eLLfbrQkTJuiBBx6Q3d6gtAxHMaSjv6/Uyp0HTY4EAAAcjbUhF8+dO1dffPGFCgoKdPDgwSMeaLjOif6p5XsLK1TuoZ8EAAChqmPHjpo2bZo+++wz9ejRQ7NmzVJRUZHZYYWUIdXNzjfnlqigzGNyNAAA4Ega9Ejupptu0htvvKHt27dr0qRJuuqqq9SmTZumiq1ViY8IU2x4mArLK7Vjf6l6p8aYHRIAAGhkbrdb//73v/Xyyy9r2bJlOuecc/Thhx+STzWyhCinOidGant+qVZnFei0XklmhwQAAOrQoJlSzz77rPbt26c//OEPev/995WWlqZLL71Un3zyyRF3kkH9WCyWwBI++koBABBaVqxYoZtuukkpKSl67LHHdP7552vXrl16++23NXbsWLPDC0k1s6W+33nA5EgAAMCRNLh5gdPp1Pjx4zV+/Hjt3LlTc+fO1c0336yqqiqtW7dOUVHscHKsOidGanVWAX2lAAAIMSeeeKI6duyo2267TUOGDJEkff3114ddd/755wc7tJA1pFO8/rVyN32lAABoxo6ro6bVapXFYpFhGPJ66YN0vGp24NvGTCkAAEJOVlaWHnrooSO+b7FYyKca0dDqmVJrdhWo0utTmK1BCwQAAEAQNPhfZ7fbrTfeeENnnHGGevTooZ9++knPPPOMsrKymCV1nLq09Y8fy/cAAAgtPp/vV4/i4mKzwwwpXdtGKcZlV0WlT+v30UgeAIDmqEFFqZtvvlmpqamaNWuWzj33XO3atUvz5s3T2WefLauVp0/Hq3MiPaUAAGht3G63nnzySXXp0sXsUEKK1WoJ9JX6bgdL+AAAaI4atHxvzpw56tixo7p06aIlS5ZoyZIldV73zjvvNEpwrU16gr8oVVBWqQOlHrWJdJgcEQAAaAxut1szZszQwoUL5XA49Ic//EHjxo3Tyy+/rPvuu082m0133nmn2WGGnOGdE/TFxjx9vTlP153U2exwAADAf2lQUeqaa66RxWJpqlhavXCHTe1iXdpbWKHt+SVqE8n20AAAhIJp06bpb3/7mzIzM7V06VJdcsklmjRpkr799ls9+eSTuuSSS2Sz2cwOM+Sc1qutHlmwQUu37ldFpVeuMMYYAIDmpEFFqblz5zZRGKjRpW2U9hZWaFteqYZ0oigFAEAomDdvnl599VWdf/75Wrt2rQYMGKCqqir98MMPPPBrQj2To5Ua69K+wgot27pfp/VKMjskAADwCzSCamboKwUAQOjZvXu3hgwZIknq16+fnE6n7rzzTgpSTcxisQQKUZ9vyDU5GgAA8N8oSjUzNUWpbXkUpQAACBVer1cOx6FekXa7nV2Lg+Q3Pf1FqS825sowDJOjAQAAv9Sg5Xtoel3aMlMKAIBQYxiGJk6cKKfTKUmqqKjQjTfeqMjIyFrXsVlM4xvZLUEOu1W7D5ZrS26JuidHmx0SAACoxkypZqZLov+p6fb9pfL5eJoHAEAomDBhgpKSkhQbG6vY2FhdddVVateuXeB1zdEQzz77rNLT0+VyuZSRkaEVK1Yc8dp169bp4osvVnp6uiwWi2bPnn3YNTNmzJDFYql19OrVq6FftdmJcNh1YpcESSzhAwCguWGmVDPTPj5cYTaLPFU+7S0sV4f4CLNDAgAAx+mVV15p1Pu99dZbmjJliubMmaOMjAzNnj1bY8aM0caNG5WUdHgz77KyMnXp0kWXXHKJ7rzzziPet2/fvvrss88Cr+320EgVf9Ozrb7clKcvNubqd6O7mh0OAACoxkypZsZmtahTAn2lAADAkT355JO6/vrrNWnSJPXp00dz5sxRRESEXn755TqvHzZsmB577DFdfvnlgSWEdbHb7UpJSQkciYmJTfUVgqqm2fn3Ow6qqKLS5GgAAEANilLNUBd24AMAAEfg8Xi0cuVKZWZmBs5ZrVZlZmZq2bJlx3XvzZs3q127durSpYuuvPJKZWVlHW+4zUKnhEh1aRupKp+hrzblmx0OAACoRlGqGeqa5O8r9fPeIpMjAQAAzU1+fr68Xq+Sk5NrnU9OTlZ2dvYx3zcjI0Nz587VggUL9Pzzz2v79u06+eSTVVxcfMTPuN1uFRUV1Tqaq1/uwgcAAJoHilLN0PD0NpKkpdt4kgcAAILjrLPO0iWXXKIBAwZozJgx+uijj1RQUKC33377iJ+ZOXNmrUbtaWlpQYy4YWqW8C3emMtmMgAANBMUpZqh4Z3byG61aNeBcmXtLzM7HAAA0IwkJibKZrMpJyen1vmcnBylpKQ02s+Ji4tTjx49tGXLliNeM3XqVBUWFgaOXbt2NdrPb2zD0tso0mFTfolHa/cWmh0OAAAQRalmKdJp1wkd4yVJX29hthQAADjE4XBoyJAhWrRoUeCcz+fTokWLNGLEiEb7OSUlJdq6datSU1OPeI3T6VRMTEyto7ly2K06qbu/cfvnG1jCBwBAc0BRqpka1c2fNH1DUQoAAPyXKVOm6MUXX9Tf//53rV+/XjfddJNKS0s1adIkSdI111yjqVOnBq73eDxas2aN1qxZI4/Hoz179mjNmjW1ZkHdddddWrJkiXbs2KGlS5fqwgsvlM1m0/jx44P+/ZrKb6qX8H1BUQoAgGbBbnYAqNuobgn638+kpVvz5fMZslotZocEAACaicsuu0x5eXmaNm2asrOzNWjQIC1YsCDQ/DwrK0tW66Fnj3v37tXgwYMDrx9//HE9/vjjGj16tBYvXixJ2r17t8aPH6/9+/erbdu2Oumkk/Ttt9+qbdu2Qf1uTem0nkmyWKQfdhcqa3+ZOiZEmB0SAACtmsUwDDo9/peioiLFxsaqsLDQtGnolV6fBj3wqUo9Xn1w60nq1z7WlDgAAGjtmkNe0FK0hLG6+v+W66vN+brltK66e0wvs8MBACAk1TcnMH353rPPPqv09HS5XC5lZGRoxYoVR71+3rx56tWrl1wul/r376+PPvrosGvWr1+v888/X7GxsYqMjNSwYcOUlZXVVF+hSYTZrDqxS4IklvABAAA0liuGd5Qkvf39blV6fSZHAwBA62ZqUeqtt97SlClTNH36dK1atUoDBw7UmDFjlJtb9zr/pUuXavz48bruuuu0evVqjRs3TuPGjdPatWsD12zdulUnnXSSevXqpcWLF+vHH3/U/fffL5fLFayv1WhGVveVotk5AABA48jsk6zEKKfyit1atJ7eUgAAmMnU5XsZGRkaNmyYnnnmGUn+nWPS0tJ066236p577jns+ssuu0ylpaX64IMPAudOPPFEDRo0SHPmzJEkXX755QoLC9M//vGPY46ruUw935hdrDGzv5QrzKofpp8pp91mWiwAALRWzSUvaAlayljN+niD5izZqlN7ttXcScPNDgcAgJDT7JfveTwerVy5UpmZmYeCsVqVmZmpZcuW1fmZZcuW1bpeksaMGRO43ufz6cMPP1SPHj00ZswYJSUlKSMjQ++++26TfY+m1CM5SolRTlVU+rRqZ4HZ4QAAAISEy4elSZKWbMrT7oNlJkcDAEDrZVpRKj8/X16vN7BLTI3k5GRlZ2fX+Zns7OyjXp+bm6uSkhLNmjVLY8eO1aeffqoLL7xQF110kZYsWXLEWNxut4qKimodzYHFYtFJ3egrBQAA0JjSEyM1smuCDEN6+7tdZocDAECrZXqj88bk8/mbVV5wwQW68847NWjQIN1zzz0699xzA8v76jJz5kzFxsYGjrS0tGCF/KvoKwUAAND4xv+i4XkVDc8BADCFaUWpxMRE2Ww25eTk1Dqfk5OjlJSUOj+TkpJy1OsTExNlt9vVp0+fWtf07t37qLvvTZ06VYWFhYFj167m88RsVHVR6sfdBSosrzQ5GgAAgNBwZt9ktYl0KLuoQos35pkdDgAArZJpRSmHw6EhQ4Zo0aJFgXM+n0+LFi3SiBEj6vzMiBEjal0vSQsXLgxc73A4NGzYMG3cuLHWNZs2bVKnTp2OGIvT6VRMTEyto7loHxeuLomR8hnS8m37zQ4HAAAgJDjtNl18QntJ0hsrjvzwEgAANB1Tl+9NmTJFL774ov7+979r/fr1uummm1RaWqpJkyZJkq655hpNnTo1cP3tt9+uBQsW6IknntCGDRs0Y8YMff/995o8eXLgmrvvvltvvfWWXnzxRW3ZskXPPPOM3n//fd18881B/36NpWa2FH2lAAAAGs/l1Uv4vtiYq32F5SZHAwBA62NqUeqyyy7T448/rmnTpmnQoEFas2aNFixYEGhmnpWVpX379gWuHzlypF5//XW98MILGjhwoP71r3/p3XffVb9+/QLXXHjhhZozZ44effRR9e/fXy+99JL+/e9/66STTgr692sso6qbndNXCgAAoPF0bRuljM5t5DOkf3670+xwAABodSyGYRhmB9HcFBUVKTY2VoWFhc1iKV9hWaVO+PNCeX2GPv/9aHVpG2V2SAAAtBrNLS9ozlriWC1Yu083/nOVop12fX3PbxQbHmZ2SAAAtHj1zQlCave9UBUbERZYwvfeD3tNjgYAACB0nNknRT2So1TsrtKrS3eYHQ4AAK0KRakW4oKB7SRJ763ZKya3AQAANA6r1aJbTusmSfq/b7ar1F1lckQAALQeFKVaiDH9UuS0W7Utv1Rr9xSZHQ4AAEDIOHdAO3VOjFRBWSW9pQAACCKKUi1ElNOuzD7+BvDv/bDH5GgAAABCh81q0c2ndpUkvfjVNlVUek2OCACA1oGiVAsSWML3w155fSzhAwAAaCzjBrdXh/hw5Zd49OaKLLPDAQCgVaAo1YKM7tlWMS67corcWrH9gNnhAAAAhIwwm1U3Vc+W+tuX2+SuYrYUAABNjaJUC+K023R2/1RJLOEDAABobL8d0kHJMU7tK6zQv1eSawEA0NQoSrUw5w/yL+H76KdsnuABAAA0Iqfdpt+d4p8t9fySLary+kyOCACA0EZRqoXJ6Jyg5BinCssr9eWmfLPDAQAACCnjh3dUQqRDuw6U68Of9pkdDgAAIY2iVAtjs1p03gD/bKn/rGFaOQAAQGMKd9g0cWS6JGnOkm0yDDaXAQCgqVCUaoEuGNRekvTZ+hyVuKtMjgYAACC0XD2ikyIcNq3fV6Qlm/LMDgcAgJBFUaoF6tc+Rl0SI1VR6dOCtdlmhwMAABBS4iIcumJ4R0nS84u3mhwNAAChi6JUC2SxWHTxkA6SpBe+3Cqfj2nlAAAAjem6kzsrzGbR8u0HtDrroNnhAAAQkihKtVBXndhJ0S67NuWU0IQTAACgkaXGhgdaJsxZwmwpAACaAkWpFio2PEz/c1IXSdJfF22Wl9lSAAAAjerG0f5c69Ofc7Qlt8TkaAAACD0UpVqwSSelK8Zl15bcEn3w416zwwEAAAgp3ZKidUafZBmGv2UCAABoXBSlWrAYV5iuP9n/BO8pZksBAAA0uhtHd5UkzV+9R9mFFSZHAwBAaKEo1cJNHJWuuIgwbc0r1fs/MFsKAACgMQ3pFK/h6W1U6TX00lfbzA4HAICQQlGqhYv+r9lSVV6fyREBAACElptO88+Wen1Flg6WekyOBgCA0EFRKgRMGJmu+Igwbcsv1XvMlgIAAGhUp/Zoqz6pMSrzeDV36Q6zwwEAIGRQlAoBUU67rj/l0E587iqvyREBAACEDovFopurZ0vNXbpDJe4qkyMCACA0UJQKERNGpKtttFM795fpuS/YHQYAAKAxndUvVZ0TI1VYXqk3lmeZHQ4AACGBolSIiHTaNe3cPpKk5xdv1ZbcEpMjAgAACB02q0U3jvbPTH/p623MTAcAoBFQlAoh5w5I1ak928rj9ene+T/JMAyzQwIAAAgZFw7uoNRYl3KK3Hpn1R6zwwEAoMWjKBVCLBaLHrqgn8LDbFq+/YDmfb/b7JAAAABChsNu1f9U73o8Z8lWdj0GAOA4UZQKMWltInTnGd0lSQ9/tF75JW6TIwIAAAgd44enKT4iTDv3l+mjtdlmhwMAQItGUSoETRrVWb1TY1RYXqmHP1xvdjgAAAAhI8Jh16RRnSVJ/7twkwrKPCZHBABAy0VRKgSF2ayaeVF/WSzS/NV79NXmPLNDAgAACBkTRqQrKdqp7fmluvr/VqiootLskAAAaJEoSoWoQWlxmjAiXZJ07/y1KvewQwwAAEBjiI0I02v/k6E2kQ79tKdQk175TqXuKrPDAgCgxaEoFcLuGtNTqbEuZR0o0+zPNpkdDgAAQMjonhytf1w3XDEuu1buPKjr/v4dDwEBAGggilIhLMpp10MX9JMkvfT1dq3dU2hyRAAAAKGjb7tY/eO6DEU57fp22wHd8I/vVVFJYQoAgPqiKBXiMvsk65z+qfL6DN3zzo9sXQwAANCIBqbF6ZVJwxQeZtNXm/N1wTPfaFNOsdlhAQDQIlCUagWmn99HMS671u4p0ivf7DA7HAAAgJAyLL2N/n7tcCVGObUxp1jnP/O13liRJcMwzA4NAIBmjaJUK5AU7dK95/SWJD25cJN2HSgzOSIAAIDQMrxzG318+8k6uXuiKip9mvrOT5r8+moVlrEzHwAAR0JRqpW4dGiaTuzSRuWVXv1p/k88uQMAAGhkbaOd+vuk4Zp6Vi/ZrRZ9+NM+DfnzQl0yZ6meXLhJy7ftl6eKVgoAANSgKNVKWCwWzbxogJx2q77anK9/frvT7JAAAABCjtVq0e9Gd9W8G0eoR3KUqnyGvttxUE8t2qzLXvhWQ/68UB//tM/sMAEAaBYoSrUinRMjdc9ZvSRJD3+0XlvzSkyOCAAAIDQN7hivT+8crS/vPk0zL+qvcwekKiHSoeKKKt38+iq98OVWZq4DAFo9ilKtzIQR6Tqpm7/XwZ1vrVElu/EBAAA0mY4JERo/vKOeueIELf/T6bpmRCcZhvSXjzbo3nfXsjMyAKBVoyjVylitFj1+yUDFhofpx92FenrRZrNDAgAAaBXsNqseOL+vpp3bRxaL9PryLF339+9VXEEzdABA60RRqhVKiXXpz+P6SZKe+WKLVu48aHJEAAAArYPFYtG1J3XW364aovAwm5ZsytNJj3yhqe/8pG+37ZfPx5I+AEDrQVGqlTpvYDuNG9ROPkOa8vYantABAAAE0Zl9U/T270aoQ3y4Cssr9caKLF3+wrca9cjnemTBBnIzAECrQFGqFXvggn5qF+vSzv1lOu/pr/XDrgKzQwIAAGg1+neI1ZK7T9Pr/5OhS4d2ULTLrn2FFXp+8Vad89TXWp3FbHYAQGijKNWKxYaH6W9XD1W7WJd27C/Txc8v1ZwlW5k2DgAAECQ2q0UjuyXq0d8O1Hf3Zuq5K09Q+7hwZR0o0yVzlum5xVvIzQAAIYuiVCvXv0OsPr79FJ3dP0VVPkOzPt6gq/5vubILK8wODQAAoFVxhdl0dv9UfXT7yTpnQKqqfIYeXbBRV7+8XDlF5GYAgNBDUQqKjQjTs1ecoEcvHqDwMJuWbt2v3zyxWE8u3EQ/AwAAgCCLDQ/TM+MHB3Kzb7bsV+YTS/R/X29XpddndngAADQailKQ5N8J5tJhafrgtpM0uGOcyjxePbVos0Y/tlgvf71d7iqv2SECAIBfePbZZ5Weni6Xy6WMjAytWLHiiNeuW7dOF198sdLT02WxWDR79uzjvieaVk1u9v6tJ2lgh1gVu6v00Ac/69ynvta32/abHR4AAI2CohRq6do2Su/cNFLPX3mCuiRG6kCpRw9+8LNOe2yxpr7zo+Z9v0vb8kpkGPQ2AADALG+99ZamTJmi6dOna9WqVRo4cKDGjBmj3NzcOq8vKytTly5dNGvWLKWkpDTKPREc3ZKiNP/mUZp5UX/FR4RpY06xLn/hW932xmrtL3GbHR4AAMfFYlBdOExRUZFiY2NVWFiomJgYs8MxTZXXp7e/363Zn21SbnHtpKdNpEPnDkjVlDN6KC7CYVKEAAA0veaYF2RkZGjYsGF65plnJEk+n09paWm69dZbdc899xz1s+np6brjjjt0xx13NNo9azTHsQolB0s9evzTjXp9RZYMQ0qMcurR3/bXb3olmx0aAAC11DcnYKYUjshus+qKjI5acvdpeuHqIfrd6C4alh4vh92qA6Uevbpsp37zxBK9/d0udoUBACBIPB6PVq5cqczMzMA5q9WqzMxMLVu2LKj3dLvdKioqqnWg6cRHOvTwhf31n1tGqXtSlPJL3Lp27vea+s5PKnVXmR0eAAANRlEKvyrcYdOZfVM09azemnfjSK2dMUZ/v3a4eiRH6UCpR3/494/67ZylWre30OxQAQAIefn5+fJ6vUpOrj07Jjk5WdnZ2UG958yZMxUbGxs40tLSjunno2EGdIjT+7eepOtO6ixJemNFls5+6iu998NeFZR5TI4OAID6s5sdAFoeh92q0T3aamTXk/XKN9s1+7PNWpVVoHOe+loDO8TqzL4pGtM3Wd2Sos0OFQAANKGpU6dqypQpgddFRUUUpoLEFWbT/ef20em9knTXvB+0c3+ZbntjtawWaVBanEb3SNIZfZLVpx3LKAEAzRdFKRyzMJtVN5zSVecNbKeHP1yvD3/apx92F+qH3YV67JON6tI2UpcMSdM1Izop0skfNQAAGkNiYqJsNptycnJqnc/JyTliE/OmuqfT6ZTT6Tymn4nGMbJboj6+4xTNWbJVi9bnaFNOiVZlFWhVVoH+97NNunZUZ/3xrJ5y2m1mhwoAwGFYvofjlhobrmeuOEHL/3S6/nJhf43u0VZhNou25ZXqkQUbdPKjX2jOkq0q89DrAACA4+VwODRkyBAtWrQocM7n82nRokUaMWJEs7kngic2PEx/HNtLn945Wkvv+Y1mXdRfmb39SzFf/ma7Ln5+qbbnl5ocJQAAh2P6ChpNUrRLV2R01BUZHVVcUamP12bruS+2aMf+Ms36eINe/HKbbjili67I6KhoV5jZ4QIA0GJNmTJFEyZM0NChQzV8+HDNnj1bpaWlmjRpkiTpmmuuUfv27TVz5kxJ/kbmP//8c+DXe/bs0Zo1axQVFaVu3brV655oGdrFhevy4R11+fCO+uznHN39rx+0dk+Rzn3qKz00rp8uOqGD2SECABBgMQyDbdP+C9sZN54qr0/zV+/R059vUdaBMklSlNOuy4alaeLIdKW1iTA5QgAAjq655gXPPPOMHnvsMWVnZ2vQoEF66qmnlJGRIUk69dRTlZ6errlz50qSduzYoc6dOx92j9GjR2vx4sX1umd9NNexas2yCyt0+5urtXz7AUlSWptwdUmMUufESHVpG6meydE6oVO8wmwsoAAANJ765gQUpepAQtX4Kr0+zV+1R3/7cqu25vmnj1st0pi+KbrhlC4a3DHe5AgBAKgbeUH9MVbNk9dn6JnPt+ipzzfL6zs89Y9x2XVqzySd3jtJp/ZIUmwEM9oBAMenvjlBs3gk8uyzzyo9PV0ul0sZGRlasWLFUa+fN2+eevXqJZfLpf79++ujjz464rU33nijLBaLZs+e3chRoyHCbFZdOixNC+8crVcmDdPJ3RPlM6SP12brwueW6sqXvtXSLfmiRgoAANC4bFaLbs/sru/uzdRbN5yoWRf11+9O6aLM3slqE+lQUUWV3vthr25/c41O+PNC/e/CTeRkAICgML2n1FtvvaUpU6Zozpw5ysjI0OzZszVmzBht3LhRSUlJh12/dOlSjR8/XjNnztS5556r119/XePGjdOqVavUr1+/WtfOnz9f3377rdq1axesr4NfYbVadFrPJJ3WM0kbsov04pfb9Z81e/TNlv36Zst+De4YpxtHd9XoHm3lCmOXGAAAgMbSJtKhjC4JyuiSEDjn9Rlas+ugFv6cq0Xrc7Q5t0R/XbRZknTnGT3MChUA0EqYvnwvIyNDw4YN0zPPPCPJv9NLWlqabr31Vt1zzz2HXX/ZZZeptLRUH3zwQeDciSeeqEGDBmnOnDmBc3v27FFGRoY++eQTnXPOObrjjjt0xx131Csmpp4H1+6DZXrhy21687td8lT5JElOu1UZXRI0ukdbje7RVl3bRspisZgcKQCgNSIvqD/GquX7v6+366EP/E3x7x7TU7ec1s3kiAAALVGLWL7n8Xi0cuVKZWZmBs5ZrVZlZmZq2bJldX5m2bJlta6XpDFjxtS63ufz6eqrr9bdd9+tvn37/mocbrdbRUVFtQ4ET4f4CD14QT99/cfT9LvRXZQa65K7yqcvN+XpoQ9+VuaTSzTuuaX6YkMuU8kBAACa0HUnddYfx/aSJD32yUa99NU2kyMCAIQyU4tS+fn58nq9Sk5OrnU+OTlZ2dnZdX4mOzv7V69/5JFHZLfbddttt9UrjpkzZyo2NjZwpKWlNfCboDEkRbs09azeWnrPb/Tpnafo3rN76+TuiXLYrPphV4Emzf1OFzz7jT7fkENxCgAAoIncdGpX3ZnpX7r35w/X65VvtpN7AQCahOk9pRrbypUr9de//lWrVq2q93KvqVOnasqUKYHXRUVFFKZMZLFY1CM5Wj2So3X9KV2UV+zWi19t0z+W7dSPuwt17dzv1SM5SsM7t9GA9nHq1z5W3ZOj2MoYAACgkdx2eje5q7x6bvFWPfD+z/rPmr26/fTuOrVnW1oqAAAajalFqcTERNlsNuXk5NQ6n5OTo5SUlDo/k5KSctTrv/rqK+Xm5qpjx46B971er37/+99r9uzZ2rFjx2H3dDqdcjqdx/lt0FTaRjv1p7N764ZTuujFL7fp1WU7tSmnRJtySiRlSfL3oBrSKV6je7TVKT3aqldKNAkTAADAMbJYLLp7TE+Fh9n07OItWlM9a71/+1jd+ptuyuydLKuVXAsAcHyaRaPz4cOH6+mnn5bk7wfVsWNHTZ48+YiNzsvKyvT+++8Hzo0cOVIDBgzQnDlztH//fu3bt6/WZ8aMGaOrr75akyZNUs+ePX81Jpp0Nm8HSj36Zku+ftpTqJ92F2rtnkIVu6tqXZMU7VRmn2Td9pvuSol1mRQpACAUkBfUH2MVmvKK3XrpK/+DwfJKryR/rnVGn2Sd2TdFI7okyGFnxjoA4JD65gSmF6XeeustTZgwQX/72980fPhwzZ49W2+//bY2bNig5ORkXXPNNWrfvr1mzpwpSVq6dKlGjx6tWbNm6ZxzztGbb76pv/zlL1q1apX69etX589IT09n970Q5vMZ2pZfoq825+vLTXn6dtuBQMIU4bDpltO66bqTOssVZjM5UgBAS0ReUH+MVWjbX+LW/329Xf9YtrPWA8Fop12juiVqQFpsdWuFGMVFOEyMFABgtvrmBKb3lLrsssuUl5enadOmKTs7W4MGDdKCBQsCzcyzsrJktR568jJy5Ei9/vrruu+++/SnP/1J3bt317vvvnvEghRCn9VqUbekaHVLitakUZ3lrvJq+bYDmv3ZJq3KKtBjn2zUW9/t0n3n9NYZfZJZ1gcAAHAMEqKc+sPYXro9s7uWbd2vT3/O0cKfc5RX7NaCddlasO7QxkMd20RoaHq8TuySoBFdEpTWJsLEyAEAzZXpM6WaI57yhQbDMPSfNXs18+P1yilyS5K6JEbqjL7JOrNPsgalxctGLwQAwK8gL6g/xqr18fkMrdldoO+2H9CPe/xtFXbuLzvsuvZx4Tq1Z1tdPaKTeqXU/WejsKxSFqsU4wpr6rABAE2sxSzfa45IqEJLqbtKz36xRS99vV2eKl/gfGKUQ6N7JGlYerxO6BSvbm2jaNgJADgMeUH9MVaQ/MWlH3YXaPn2/Vq2db9+3F2oKt+h/8sxsmuCJo5M1+m9k7W3oFyf/pyjT9Zl6/sdB2SzWnRm3xRdmdFRI7okMMMdAFooilLHgYQqNBVXVGrJpjwt/DlHn2/IVXFF7eboMS67BnWMV++UaHVtG6WuSZHq2jaKnggA0MqRF9QfY4W6lLqrtGLHAc37fpc+WZcjb3WBKjY8TIXllUf8XJfESF02LE29UmPUNsqppBin2kQ4eIgIAC0ARanjQEIV+jxVPq3YfkDLtuVr5c6D+mFXYaA5+n9LjHKqd2q0eqVEq1dKjHqnxqhnSjRL/wCglSAvqD/GCr9mT0G5/vntTr2xIksFZZWyWqRh6W00pm+KzuiTrKKKSr2+PEvvrt6jUs/huZndalG3pCj/zn99UtSvfQyzqQCgGaIodRxIqFqfKq9PG7KLtXpXgbbmlmhrXom25pZob2FFnddHu+w6sUuCRnZN0KhuieqcGKnySq/K3F6VeqpU5TXUOTGS7ZEBIASQF9QfY4X6Kvd49cPuAvVIjlabyMNnpZe6q/TeD3v1ybpsZRdWKK/Yrf2lnsOuS411KbN3ss7ok6yMLm3ktLPbMgA0BxSljgMJFWqUuqu0ObdEG/YVaUN2sdbvK9LPe4tqbYN8JK4wq4Z0ildG5wRldG6jAR3iFO4gUQKAloa8oP4YKzSlSq9PecVuLd++X5+uy9GSTXkq+8VsqkiHTaN7ttXpvZI1umdbJUY567zPtrwSLd6YpwiHTb/plaSkGFewvgIAtBoUpY4DCRWOxusztHZPoZZu3a+lW/P13Y4Dqqj0N1C3WS2KcNgkQ3UWrhKjHGofH6EOceHq0CZc/dvHalBanNrHhTP1HACaKfKC+mOsEEwVlV4t3ZqvhT/n6LP1ucordtd6v0tipIamx2toehulxUfoq815+vTnHG3JLal13cAOsTq9d7Iyeyerd2o0ORkANAKKUseBhAoN4anyqdRdpQinTQ6bVRaLRYZhaHNuiZZv269vtx/Q8m0HlF/iPuI92kY7NSgtToPS4tSvfaz6t4+tcyo7ACD4yAvqj7GCWXw+Qz/tKdRn6/0FqvX7io54rd1q0YldElTirtKaXQW13uvbLkZXZHTUBYPaK8ppb+KoASB0UZQ6DiRUaGyGYaiovEq7DpZpT0G5dh8s1/b8Ev2wq1Dr9xXV2ia5Rvs4/0yqvu1i1Ld9jPqkxio5xsnTOwAIMvKC+mOs0FwUlHm0KuugvttxUN/vOKCsA2Ualt5GZ/RJ1qk9kxQbHiZJyi2u0BcbcrXw51x9uTlPnir/7PdIh00XDG6vMX1T1DM5mhwMABqIotRxIKFCMFVUerV2T6HW7CrQD7sLtXZPobbnl9Z5bUKkQ/GRDrmrvHJX+lRRvWNgj+Ro9Wsfqz7tYtSvXax6JEfJbqPJOgA0BvKC+mOs0JIdLPXo36t26/XlWdr2X7lYtMuuHsnR6pkSreHpbXRilwSlxNKLCgCOhKLUcSChgtmKKiq1bk+R1u4p1Lq9hfp5X5G25JaojglVdYpy2pXRuY1GdkvUqG4J6plMfwQAOFbkBfXHWCEUGIahb7cd0Lzvd+mH3QXasb9M3jqSsPSECJ3YJUEd4sNlt1kVZrMqzGZRpMOuninR6p4cxW6AAFotilLHgYQKzVFFpVcbs4tV5vHKGWaV026VK8ymSq9PG/YVa+2eQq3dW6h1e4tUXFG7yXqbSIe6J0WpS9sodW0bqa5to9QzJVqpsS6KVQDwK8gL6o+xQihyV3m1Pb9Um3JK9NPuAi3ffkBr9xT+6sNCu9WibklR6tMuRhcObq+Tu7cNTsAA0AxQlDoOJFRoyXw+Qz/vK9I3W/L1zdb9+m77AZVXeuu8NiHSob7tY9W/fYx6p8aoXVy4UmJcSop2svwPAKqRF9QfY4XWoqiiUit3HNTy7QdUUOZRpddQlc+nKq+hA6Uerc8uUkFZZa3PjB+epnvP6UMDdQCtAkWp40BChVDirvJqw75ibcsv0ba8Um3LK9WW3BJtzSups8G6JFksUmKUU53aRKhL9cyqLm2j1CslWmltIoL8DQDAXOQF9cdYAX6GYWhfYYXW7S3SFxtz9fryLElSWptwPXHJIA3v3CZwrddnKKeoQg67VW0iHLJamcUOoOWjKHUcSKjQGlRUerUhu1g/7SnU2t2F2pxbrJwit3KKKo5YrJKkAR1iddHg9jpvYDslRDmDGDEAmIO8oP4YK6Buy7bu113zftCegnJZLNL5A9up3ONfFrhzf5k8Xv+ufzarRQmRDrWNdvqPKKeSYpxKivbPZO/SNkpd2kYqjBntAJo5ilLHgYQKrZnPZ2h/qUfZhRXavr9U2/JKtDXP/98N2cWBRp92q0Wn9kxS33YxCnfYFB7mP6JddnWIj1Bam3DFhofRswpAi0deUH+MFXBkxRWVeuiDn/X297sPe89utRz1oeAvOWxWdUuKUq/UaHVP8vcITYpxKiXGpZRYlyIcLA8EYD6KUseBhAqoW36JW+//sFfvrNqjn/YU/ur10S670uIj1LFNhDolRKhjQoQ6tYlUemKE2sWGMz0dQItAXlB/jBXw677clKevt+SrfVy4OidGqnNipNrFhctn+PtR5RW7lVfsVm5xRfV/3cotciu7qEJbcktU4q466v1P6dFWU87ooUFpccH5QgBQB4pSx4GECvh1m3KK9dFP+5Rf4la5x6eKSq/KK706WObRrgPlyi9xH/Xz4WE2dUuKChxdq3cG7JgQwfbJAJoV8oL6Y6yApmUYhnYfLNf6fUXakF2s7fmlyimqUHZRhXIKK1TqObS5TWbvJN15Rg/1bRcrwzC0t9Bf1NpbUK6hneLVPTnaxG8CINRRlDoOJFTA8Sv3eLX7YJmyDviPnfvLtHN/qXYeKNOuA2Wq9Nb9V4/VInWIj1CvlGid1itJp/VMUkqsK8jRA8Ah5AX1x1gB5tq5v1RPf75F76zarZrVgN2TorSnoFxlntq7MY/smqAJI9OV2TtZNmavA2hkFKWOAwkV0LQqvT5lHSjT5hz/LoCbc4q1Ld+/M2BdU9L7tovRb3olKTU2XA671X/YrGob7dSADrE0+wTQpMgL6o+xApqHbXkl+uuizXrvh72q+X97YTaL0hMi1SbSoe92HAgUrdrHhevCwe3VIyVaXRIj1aVt5GF9qaq8PlktFlovAKg3ilLHgYQKMIdhGMorcWtbXqm+33FAizbkas2uAh3tb6lIh03DO7fRqG6JGtE1Qd2TouWwU6QC0HjIC+qPsQKal215JdqeX6r0xEh1bBMReJC3+2CZXluepTdXZOlgWeVhn0uKdspikco8XlVUelXpNRQbHqYz+iTrnP6pGtUtkXwLwFFRlDoOJFRA87G/xK3FG/P0zdZ8FVdUyVPlk6fKJ3eVVzv2l+lAqafW9VaLlBobro5t/A3Wk2OcCnfYFR5mVbjDpgiHXZ0SItS1bZQinexOA+DXkRfUH2MFtCwVlV598OM+Ld+2v3rWekmdRar/Fu2y64zeyRrUMU7dk6LVPTlKCZEOdl0GEEBR6jiQUAEtg89naH12kZZu2a9vtubru+0HajX4/DXt48LVPTlK6QmRahfnUmpsuNrFudQuLlzJ0S6mqAOQRF7QEIwV0PIdLPUo60CZbFaLIhw2hTtsctlt2phTrI9/2qeP12Yrt/jwDW3iI8LUr32sRnRN0KiuierXPrZWryqfz1B+qVvlHq+sFotsVv/htFsVF+EI5lcEEAQUpY4DCRXQMtUs/8vaf6i5+v5StyoqfSqv9KrC41VxRZW25Zf+6u6ATrtVnRIi1CnBv1VzYpRDNqtVYTZ/AhVmtSrCaVOkw65Ip12RTpvaRDqUFO2iWSgQYsgL6o+xAkKfz2doZdZBfbEhV5tyirUpp0S7DpYd1m4hxmXX4I7xKvNUaV9hhXKKKo640U3baKf6t49Vv/axGtA+Vn3axSg11sXMK6AFoyh1HEiogNB3sNSjLXkl2pRTrF0HyrW3oFz7Csu1t8C/rbLXd2x/NdqsFiVHO9UuLlwpsS4lRjmVGOVQQpRTCZEOxYSHKTzMFnjyGB5mkzPMJofNX/Ai+QKaH/KC+mOsgNap3OPVltwSfb/zgL7Zsl/Lt+1XcR2b11gsUkSYTV7DkM8neQ3jiDlXtNOubslR6pEUrc5tI2W3WmQYkiFDhiFZLRbZbRbZbVaFWf3/dYVZ5bTb5AqzyhVmU4f4cKXGhjf11wdQB4pSx4GECmjdKr0+7S0o1/b8Uu3cX6bt+aUqKq9Ulc+fOFV6far0+lTm8arUU6Uyt1cl7iodKPWo6hiLWTUcdqtc9kP9r1xhNkU5bUqKdik5xqXUWJeSY12Kdtpls1pkr07CwmwWRTrtinDYFOX0z95iV0KgcZAX1B9jBUDy79b3055Crd1bpLjwMLWLcyklNlxJ0c7D8pNyj1c/7yvST7sL9NOeIq3dU6iteSXHnVPVSI5xamCHOA3qGKdeKdHy+iR3lVcVlf4epVaLRWG2Q7s7h9n8uwzafrHEsGdytOIj67fEsKLSq90Hy1Tq9qpL20hFu8Ia5XsALQ1FqeNAQgXgWHh9hvJL3NpTUK59BRXaV1iu/aUe7S9xa3+JR/mlHhVXVKrC41VZpVdlHq88Vb4mi8dqkcJs1urDogiHXWltwtU5MVKdEiKVnuDfhaei0qeKSq8qqvzxeKuLb1U+Qz6foUinXQlRDrWJ9B/xEQ5FueyKdNhZqohWgbyg/hgrAI3BU+XTjv2lgeWBuw+UyWcYslgsskiSxb+MsMpnqMprqMrnk8dryF3plbvKn9eUV3q1+2D5Mc9+/yW71aKTuyfq/EHtdEafFEU57ary+rQ5t0RrdhXox92F2pZXoqwDZcouqqi1lLF9XLh6pvibwXdOiFT7+HB1iI9QuziXnHbbEX9mRaVXO/aXqqSiSskxLiXFOA+7vtLr08Eyj8Ks1noXzSR/ywuvz5CdB5hoQhSljgMJFYBg8fkMebw+uX+xq6C7yqdyjz+ZKvN4VVxRqZwit3KKKpRd6F9eWLM9s9fnU5XPkKfKP3OrxF3VpIWu/xYeZlOUy65op93/X5ddUdWztCqq4y+v9D+NDA+zKtoVpmiXXdGuMDntVlX5fKqs8s8+q/IZigm3Vy959B8RDlt1wcyfYHqqfLJY/MlhTZNUV5hNseFhinGFKTbcf/8wu1X26qebNouFpvU4LuQF9cdYAWhOyjxVWrunSGt2HdQPuwq1Lb9UDrtVTrt/eZ/TbpVhSB6vT5VVPv9/vYce0PkMQ+WVXu06UB64p9NuVa+UaG3KKVF5Zd0b7EQ5/bPdf62HaeIvHvolRDoVEx6m7MJybc0rrbNPV0KkQ22jnSqv9OpAqUfFFYeWSKbGutS3XYz6totVj+RoHSzzVPdY9c/8P1DqUUV10c5dnSsmxzjVtW2UurSNVNe2UWob7TwsxppZZM7q/yZEOZUWH16vglZxRaU2ZBdr98EytY1y+ZdT/koxDqGDotRxIKEC0JJVen0qrS5OVfoMVVb5E6yiikrt3F+mHfvLtCO/VDsPlMkwDLnsNjmrey847P6+DDarv6hjtUpFFVU6UOLRgVKP9pd6VFjuOWKj0ubKbrUoPMwmV3Ufr/CaQla4v5AVGx6mcIdVNou/r5fVYpHFosCT1prZZFaLJVB4i3TaFeW0Kdxhr9UjrOa9SKf/1+FhNlV6/cVHT/XvRU1MdqtVNpt/GabDZqV41kyRF9QfYwUgFG3NK9F7a/bq/R/2alt+aeB8lNOuAR1iNaBDnHqmRKlTQqQ6tYlQm0iHLBaLCso82pRToo05xdqcU6xdB8q0+2C59hSUq6weO0ZHu+yKiwhTTpH7iA8dLRYdVrxqag6bVZ0TI9WtevaX1SJV+gxVeX2q9BraU1Cu9fuKtPtg+WGftVik5Gh/O4rESIcSo5xKiPL/t318uNLiI9ShTbhiXGHy+QzlFFdoZ/UmRvtLPIpy2hRT/TAyJtweKC46bP481mqV3JX+h7VlniqVV3rlsFmr87bqw3XsbS4Mw/C38HBXyeP1+fPL6qM5rSAwDEP5JR4lRDpMyy8pSh0HEioAODp3lVelbq9KKqpU7K70/9pdqeKKKhVXVKnS61OEw/8PdE0z9/LqWV8113i83lrLC60WiwrLK5Vf4lZesUf5JW5VVHqr/6GvLprZrDLkn2FW0xy1otKrovIqFZZXqqiisl5JXnNls1oUZvPv7iiLJEMy5E8sLBZLoN+Fw26t9aS3prFrmM2iKq8RSAyrfIYs1fetOSySvEbNsgeffD7JavU/Ca3pUeaw+e8b7rAGki1rdRN+i0WqXjwhyd9wtoa/J5ot8FmrxVJdiDPkqfIG+oPUzHKzWi1y2Cz+wl6YTRFOm5x2m8o81b+f5VUqqqiURVJ8hENxEWGKj3T4E1XjUH83T/Vsu1N6tG2S3xfygvpjrACEMsMwtG5vkbbll6pParS6JEYd0//hNwxDB8sqlV1YUf3Qz60DpR4dLKtUUrRT3ZKi1LVtlBKj/MUtwzBUUFapfYUVyitxK8JhU3yEf4ZVbHiYyjxVWr+vWOv2FmrtniJtzStRQqRDHRMilJ4QqY4JEUqKdgYKOE67TVaLlHWgTFvzSrUtr0Rb80p0sKwy8C98TbGr0uufQeau9M+wyi2uUEVl/Wflp8a61LFNRKDFRX0/G+2yB1YSNDaLRWob5d+YqH315kTllV7lFvlXJOQUuVVUXhmYdW+3+XOaikp/P9kjVVAcdqvaRjmVHONUamy4kmNcig0Pk9fnq1W0q/T6qvM1/+swm6W6f6xTyTEutYl06GCpR3sLK7S3wL8hU4m7Sk67NTBzzWW3KSHKoeQY/+eSYlwqLK/UmqwCrdnlPwrLKxXttPt3tawunsaE2/27YRZWaF/1KowLBrXTBYPaN/o4U5Q6DiRUANBy1RRjvIFeE/5/8P0znqqXRbq9KqqoVEFZpQrLK1VQ7pG70iefYVQf/kTMFWb9xRMwq7w+qdRdpRK3v7BW4q5UeaVP5dVP4mqenJW6j5y01DxFa4weF6ht61/ObpKnlOQF9cdYAUBo8/n8M6G25JZoc65/F2t/awWrfzdEq0WJUU71To1R79RoxUUc6nVlGIb2l3q052C5covdyi9xa3+JW/klHuUWV2jPwXLtPujvyVrDbrWofXy4OraJUNtoZyCHK6rw53AVlYdmonuqfPIaRmBWfHj1A9Iqr08l1Q9QG1JQO5qa3q3uILbNaCq/O6WLpp7du9HvW9+cwN7oPxkAABPZbVY1h1YFPt+hQlhYYEcfa6BoYhhGrR0dq6qfnHmqi2jGLxq61jytrFkC6P5F/7FfNnX1eA2FWf27CPkTQ//U9Cqfv+Dm9Uk+w5CtehvtmhlL3upZU5Vef8NYT5W/j1e5x98Av8LjldcwAkU2/+wtf1xSYFKXPNVx1Oxo5PUZ/iWh1U/17NXf3Vc9U8tnHOqHVuapUln1z4t02GtNzZchHSzzP0EuKPOoqKJKVoul+omhJTDjrsrnk83aDH7zAQAIUVarRWltIpTWJkKn9Upq0GctFkugb+jRlHmqtOdguVxhNqXGuhrUkL0mfzqSKq9PBeWV2ldQoT3Vs5CyiyoUHmZTcoxLKbFOJUW7FBcRJsNQ4AFnlc+QK8ymSKdN0c4wucKsslgs8vkMfz/YSv+DyfwSd6AHbHZhhYrdVYHWGGE2f/71y5UCdqtVFVVe5Ra5lVvsn6W1v8St+EhHYCZXu1iXol1hgTzRU52j5Ze4lfOLzzntVg1Mi9PgjnEanBav7slR2p5fqh93+5vx/7SnUO5Kn5JjXUqN8S+hTIlxaUCH2HqPb1NgplQdeMoHAABqkBfUH2MFAACk+ucE7AEJAAAAAACAoKMoBQAAAAAAgKCjKAUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKCjKAUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKCjKAUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKCzmx1Ac2QYhiSpqKjI5EgAAIDZavKBmvwAR0YOBQAApPrnTxSl6lBcXCxJSktLMzkSAADQXBQXFys2NtbsMJo1cigAAPBLv5Y/WQwe+x3G5/Np7969io6OlsViafT7FxUVKS0tTbt27VJMTEyj3x+McbAwzk2PMQ4Oxjk4Wuo4G4ah4uJitWvXTlYrnQ+OpilzqJb656elYZybHmMcHIxz02OMg6OljnN98ydmStXBarWqQ4cOTf5zYmJiWtQfqpaIMQ4OxrnpMcbBwTgHR0scZ2ZI1U8wcqiW+OenJWKcmx5jHByMc9NjjIOjJY5zffInHvcBAAAAAAAg6ChKAQAAAAAAIOgoSpnA6XRq+vTpcjqdZocSshjj4GCcmx5jHByMc3Awzjge/PkJDsa56THGwcE4Nz3GODhCfZxpdA4AAAAAAICgY6YUAAAAAAAAgo6iFAAAAAAAAIKOohQAAAAAAACCjqJUkD377LNKT0+Xy+VSRkaGVqxYYXZILdbMmTM1bNgwRUdHKykpSePGjdPGjRtrXVNRUaFbbrlFCQkJioqK0sUXX6ycnByTIg4Ns2bNksVi0R133BE4xzg3jj179uiqq65SQkKCwsPD1b9/f33//feB9w3D0LRp05Samqrw8HBlZmZq8+bNJkbcsni9Xt1///3q3LmzwsPD1bVrVz300EP6ZWtFxrjhvvzyS5133nlq166dLBaL3n333Vrv12dMDxw4oCuvvFIxMTGKi4vTddddp5KSkiB+C7QE5FCNhxwq+Mifmg75U9Mjh2p85E+HUJQKorfeektTpkzR9OnTtWrVKg0cOFBjxoxRbm6u2aG1SEuWLNEtt9yib7/9VgsXLlRlZaXOPPNMlZaWBq6588479f7772vevHlasmSJ9u7dq4suusjEqFu27777Tn/72980YMCAWucZ5+N38OBBjRo1SmFhYfr444/1888/64knnlB8fHzgmkcffVRPPfWU5syZo+XLlysyMlJjxoxRRUWFiZG3HI888oief/55PfPMM1q/fr0eeeQRPfroo3r66acD1zDGDVdaWqqBAwfq2WefrfP9+ozplVdeqXXr1mnhwoX64IMP9OWXX+qGG24I1ldAC0AO1bjIoYKL/KnpkD8FBzlU4yN/+gUDQTN8+HDjlltuCbz2er1Gu3btjJkzZ5oYVejIzc01JBlLliwxDMMwCgoKjLCwMGPevHmBa9avX29IMpYtW2ZWmC1WcXGx0b17d2PhwoXG6NGjjdtvv90wDMa5sfzxj380TjrppCO+7/P5jJSUFOOxxx4LnCsoKDCcTqfxxhtvBCPEFu+cc84xrr322lrnLrroIuPKK680DIMxbgySjPnz5wde12dMf/75Z0OS8d133wWu+fjjjw2LxWLs2bMnaLGjeSOHalrkUE2H/KlpkT8FBzlU02rt+RMzpYLE4/Fo5cqVyszMDJyzWq3KzMzUsmXLTIwsdBQWFkqS2rRpI0lauXKlKisra415r1691LFjR8b8GNxyyy0655xzao2nxDg3lvfee09Dhw7VJZdcoqSkJA0ePFgvvvhi4P3t27crOzu71jjHxsYqIyODca6nkSNHatGiRdq0aZMk6YcfftDXX3+ts846SxJj3BTqM6bLli1TXFychg4dGrgmMzNTVqtVy5cvD3rMaH7IoZoeOVTTIX9qWuRPwUEOFVytLX+ymx1Aa5Gfny+v16vk5ORa55OTk7VhwwaTogodPp9Pd9xxh0aNGqV+/fpJkrKzs+VwOBQXF1fr2uTkZGVnZ5sQZcv15ptvatWqVfruu+8Oe49xbhzbtm3T888/rylTpuhPf/qTvvvuO912221yOByaMGFCYCzr+juEca6fe+65R0VFRerVq5dsNpu8Xq8efvhhXXnllZLEGDeB+oxpdna2kpKSar1vt9vVpk0bxh2SyKGaGjlU0yF/anrkT8FBDhVcrS1/oiiFkHDLLbdo7dq1+vrrr80OJeTs2rVLt99+uxYuXCiXy2V2OCHL5/Np6NCh+stf/iJJGjx4sNauXas5c+ZowoQJJkcXGt5++2299tprev3119W3b1+tWbNGd9xxh9q1a8cYA2i1yKGaBvlTcJA/BQc5FJoSy/eCJDExUTab7bAdNXJycpSSkmJSVKFh8uTJ+uCDD/TFF1+oQ4cOgfMpKSnyeDwqKCiodT1j3jArV65Ubm6uTjjhBNntdtntdi1ZskRPPfWU7Ha7kpOTGedGkJqaqj59+tQ617t3b2VlZUlSYCz5O+TY3X333brnnnt0+eWXq3///rr66qt15513aubMmZIY46ZQnzFNSUk5rFl1VVWVDhw4wLhDEjlUUyKHajrkT8FB/hQc5FDB1dryJ4pSQeJwODRkyBAtWrQocM7n82nRokUaMWKEiZG1XIZhaPLkyZo/f74+//xzde7cudb7Q4YMUVhYWK0x37hxo7KyshjzBjj99NP1008/ac2aNYFj6NChuvLKKwO/ZpyP36hRow7bjnvTpk3q1KmTJKlz585KSUmpNc5FRUVavnw541xPZWVlslpr/7Nns9nk8/kkMcZNoT5jOmLECBUUFGjlypWBaz7//HP5fD5lZGQEPWY0P+RQjY8cqumRPwUH+VNwkEMFV6vLn8zutN6avPnmm4bT6TTmzp1r/Pzzz8YNN9xgxMXFGdnZ2WaH1iLddNNNRmxsrLF48WJj3759gaOsrCxwzY033mh07NjR+Pzzz43vv//eGDFihDFixAgTow4Nv9w9xjAY58awYsUKw263Gw8//LCxefNm47XXXjMiIiKMf/7zn4FrZs2aZcTFxRn/+c9/jB9//NG44IILjM6dOxvl5eUmRt5yTJgwwWjfvr3xwQcfGNu3bzfeeecdIzEx0fjDH/4QuIYxbrji4mJj9erVxurVqw1JxpNPPmmsXr3a2Llzp2EY9RvTsWPHGoMHDzaWL19ufP3110b37t2N8ePHm/WV0AyRQzUucihzkD81PvKn4CCHanzkT4dQlAqyp59+2ujYsaPhcDiM4cOHG99++63ZIbVYkuo8XnnllcA15eXlxs0332zEx8cbERERxoUXXmjs27fPvKBDxH8nVYxz43j//feNfv36GU6n0+jVq5fxwgsv1Hrf5/MZ999/v5GcnGw4nU7j9NNPNzZu3GhStC1PUVGRcfvttxsdO3Y0XC6X0aVLF+Pee+813G534BrGuOG++OKLOv8unjBhgmEY9RvT/fv3G+PHjzeioqKMmJgYY9KkSUZxcbEJ3wbNGTlU4yGHMgf5U9Mgf2p65FCNj/zpEIthGEbw5mUBAAAAAAAA9JQCAAAAAACACShKAQAAAAAAIOgoSgEAAAAAACDoKEoBAAAAAAAg6ChKAQAAAAAAIOgoSgEAAAAAACDoKEoBAAAAAAAg6ChKAQAAAAAAIOgoSgFAI7NYLHr33XfNDgMAAKDFIH8CWieKUgBCysSJE2WxWA47xo4da3ZoAAAAzRL5EwCz2M0OAAAa29ixY/XKK6/UOud0Ok2KBgAAoPkjfwJgBmZKAQg5TqdTKSkptY74+HhJ/qnhzz//vM466yyFh4erS5cu+te//lXr8z/99JN+85vfKDw8XAkJCbrhhhtUUlJS65qXX35Zffv2ldPpVGpqqiZPnlzr/fz8fF144YWKiIhQ9+7d9d577zXtlwYAADgO5E8AzEBRCkCrc//99+viiy/WDz/8oCuvvFKXX3651q9fL0kqLS3VmDFjFB8fr++++07z5s3TZ599Vitpev7553XLLbfohhtu0E8//aT33ntP3bp1q/UzHnjgAV166aX68ccfdfbZZ+vKK6/UgQMHgvo9AQAAGgv5E4AmYQBACJkwYYJhs9mMyMjIWsfDDz9sGIZhSDJuvPHGWp/JyMgwbrrpJsMwDOOFF14w4uPjjZKSksD7H374oWG1Wo3s7GzDMAyjXbt2xr333nvEGCQZ9913X+B1SUmJIcn4+OOPG+17AgAANBbyJwBmoacUgJBz2mmn6fnnn691rk2bNoFfjxgxotZ7I0aM0Jo1ayRJ69ev18CBAxUZGRl4f9SoUfL5fNq4caMsFov27t2r008//agxDBgwIPDryMhIxcTEKDc391i/EgAAQJMifwJgBopSAEJOZGTkYdPBG0t4eHi9rgsLC6v12mKxyOfzNUVIAAAAx438CYAZ6CkFoNX59ttvD3vdu3dvSVLv3r31ww8/qLS0NPD+N998I6vVqp49eyo6Olrp6elatGhRUGMGAAAwE/kTgKbATCkAIcftdis7O7vWObvdrsTEREnSvHnzNHToUJ100kl67bXXtGLFCv3f//2fJOnKK6/U9OnTNWHCBM2YMUN5eXm69dZbdfXVVys5OVmSNGPGDN14441KSkrSWWedpeLiYn3zzTe69dZbg/tFAQAAGgn5EwAzUJQCEHIWLFig1NTUWud69uypDRs2SPLv7PLmm2/q5ptvVmpqqt544w316dNHkhQREaFPPvlEt99+u4YNG6aIiAhdfPHFevLJJwP3mjBhgioqKvS///u/uuuuu5SYmKjf/va3wfuCAAAAjYz8CYAZLIZhGGYHAQDBYrFYNH/+fI0bN87sUAAAAFoE8icATYWeUgAAAAAAAAg6ilIAAAAAAAAIOpbvAQAAAAAAIOiYKQUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKCjKAUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKCjKAUAAAAAAICgoygFAAAAAACAoKMoBQAAAAAAgKD7f1E1beJMtm+0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(12,4))\n", "\n", "# Loss\n", "plt.subplot(1,2,1)\n", "plt.plot(history.history['loss'], label='Train Loss')\n", "plt.title('Training Loss')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('MSE')\n", "plt.legend()\n", "\n", "# RMSE\n", "plt.subplot(1,2,2)\n", "plt.plot(history.history['rmse'], label='Train RMSE')\n", "plt.title('Training RMSE')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('RMSE')\n", "plt.legend()\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3615f966-1bd7-4d9b-b4cb-bf84eabeaa13", "metadata": {}, "source": [ "The training loss decreases steadily over epochs, showing stable and effective learning without signs of divergence.\n", "\n", "The training RMSE drops consistently and converges, indicating improving keypoint prediction accuracy over time." ] }, { "cell_type": "code", "execution_count": 61, "id": "0e2e1231-475c-4edd-b130-9a5f160808c8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 245ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766945038.163182 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.163783 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.163974 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.164265 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.164470 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.164999 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.165230 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.165453 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.165758 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.165970 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.166258 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.176744 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.182822 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.184053 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.184541 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.185031 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.185277 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.185688 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.185901 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.190644 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.191572 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.191869 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.192168 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.192512 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.192780 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.193315 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.197378 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.202119 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.237475 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.238002 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.238483 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.239125 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.239406 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.239857 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.240183 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.242075 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.242467 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.242721 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.242960 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.243520 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.243800 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.244187 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.260370 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.270381 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.287906 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.288666 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.290295 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.290745 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.290990 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.291560 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.291834 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.292182 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.292463 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.293058 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.293624 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.294079 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.294561 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.311989 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.315575 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945038.326483 533 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAE6CAYAAABXppi1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmYbFlZJYyviJwjIqd7b97i1gxVxayihQra3UCLgIUgNlhM2tAMAoIoP2yHtp8PqrFxFkEEpwYUQQWxsVUGP6RsbG1+ikyCFFQVNU93yikyI8c43x+318kVK98TmfdWpZVJv+t54omIM+yzh3fe796nVhRFgUQikUgkEolEIpFIJBKJROI+Rv3+rkAikUgkEolEIpFIJBKJROJrExl4SiQSiUQikUgkEolEIpFI7Aky8JRIJBKJRCKRSCQSiUQikdgTZOApkUgkEolEIpFIJBKJRCKxJ8jAUyKRSCQSiUQikUgkEolEYk+QgadEIpFIJBKJRCKRSCQSicSeIANPiUQikUgkEolEIpFIJBKJPUEGnhKJRCKRSCQSiUQikUgkEnuCDDwlEolEIpFIJBKJRCKRSCT2BBl4SiQSiUTiHFGr1fD617/+/q5GX7zwhS9Eq9W6V2V0u1088pGPxH/9r//1PqrV/Y/f+I3fwMUXX4zV1dX7uyr7An/913+NWq2Gv/7rvy6PvfCFL8Sll156nz3jXe96F2q1Gm6++eb7rMyzQbvdxtGjR/Ge97znX+R5l156KV74wheW/z/ykY+g1WrhxIkT/yLPTyQSiURivyADT4lEIpHYU9x000141atehQc/+MFoNBpoNBp4+MMfjle+8pX4/Oc/f39Xb0/x+Mc/HrVabcfPvQ1eLS8v4/Wvf31P0OC+xB/8wR/gtttuw6te9ao9Kf/+wAtf+EKsra3hN3/zN+/vqgDYTiuHDh3CN3/zN+Md73gHut3u/V29s8Ib3/hGfPCDH7y/q7ENb37zmzE+Po7nPOc598vzn/KUp+Dyyy/Hz/7sz94vz08kEolE4v7C4P1dgUQikUh87eLP//zP8exnPxuDg4N4/vOfj2/4hm9AvV7Hddddhz/5kz/B29/+dtx000245JJL7u+q7gl++qd/Gi95yUvK///wD/+At7zlLfhP/+k/4WEPe1h5/Ou//uvv1XOWl5dxzTXXADgTwLiv8Yu/+It4znOeg8nJyfu87PsLo6OjeMELXoBf+ZVfwQ//8A+jVqvd31XChRdeWAYlTpw4gd/7vd/Di1/8YnzlK1/Bz/3cz/2L1+e3f/u3zyno9cY3vhHPetaz8IxnPKPn+A/8wA/gOc95DkZGRu6jGu4e6+vrePOb34zXvOY1GBgY+Bd/PvGyl70MP/ZjP4ZrrrkG4+Pj91s9EolEIpH4l0QGnhKJRCKxJ7jxxhvxnOc8B5dccgn+6q/+CseOHes5//M///N429vehnq9f/Lt0tISms3mXlZ1z/Cd3/mdPf9HR0fxlre8Bd/5nd/ZN0C0n9r8mc98Bp/73Ofwy7/8y/dZmd1uF2traxgdHb3PyjwXXH311fiFX/gFXHvttfi3//bf3q91AYDJyUl8//d/f/n/ZS97GR7ykIfgrW99K97whjdgaGho2z172ZfR8+4NBgYG7regz5//+Z/jxIkTuPrqq3e8di/575nPfCZ++Id/GO9///vxohe9aE+ekUgkEonEfkMutUskEonEnuAXfuEXsLS0hHe+853bgk4AMDg4iFe/+tW46KKLymPcj+jGG2/EVVddhfHxcTz/+c8HcMYZfO1rX4uLLroIIyMjeMhDHoJf+qVfQlEU5f0333wzarUa3vWud217ni9pe/3rX49arYYbbrgBL3zhCzE1NYXJyUn8h//wH7C8vNxz7+rqKl7zmtdgZmYG4+PjePrTn47bb7/9XvZQbz3++Z//Gc973vMwPT2Nf/Wv/hWAM9lLUYBK9965+eabMTMzAwC45pprKpfv3XHHHXjGM56BVquFmZkZ/NiP/Rg2Nzd3rN8HP/hBDA8P49/8m3+z7dxf//Vf49GPfjRGR0dx2WWX4Td/8zfL9ihqtRpe9apX4T3veQ8e8YhHYGRkBB/5yEfKer3oRS/Ceeedh5GRETziEY/AO97xjm3PWl1dxete9zpcfvnlGBkZwUUXXYQf//Ef37ZHE5/1wQ9+EI985CPLMvk8xZVXXolDhw7hT//0T/v2wate9Sq0Wq1tdAEAz33uc/GABzyg7MtPfepTePKTn4wjR45gbGwMD3zgA885wNBoNPCYxzwGS0tL5b5A90Vf3n777XjGM56BZrOJo0eP4jWveU2411W0x1O328Wb3/xmfN3XfR1GR0cxMzODpzzlKfjUpz5V1m9paQm/+7u/W9Ii9zmq2uPpbW97W9mW888/H6985SsxNzfXc83jH/94PPKRj8Q///M/4wlPeAIajQYuuOAC/MIv/MKu+vKDH/wgLr30Ulx22WXb2lglc7rdLn71V38Vj3jEIzA6OorzzjsPL3vZyzA7O9tTRlEU+Jmf+RlceOGFaDQaeMITnoAvfvGLYT2OHj2Kr//6r9+R5hKJRCKR+FpCZjwlEolEYk/w53/+57j88svxrd/6rWd138bGBp785CfjX/2rf4Vf+qVfQqPRQFEUePrTn45rr70WL37xi/GoRz0KH/3oR/Ef/+N/xB133IE3velN51zPq6++Gg984APxsz/7s/j0pz+N3/md38HRo0fx8z//8+U1L3nJS/D7v//7eN7znodv+7Zvw8c//nE89alPPednRvi+7/s+XHHFFXjjG9/YE0zbCTMzM3j729+OV7ziFfje7/1e/Lt/9+8A9C7f29zcxJOf/GR867d+K37pl34JH/vYx/DLv/zLuOyyy/CKV7yib/l/93d/h0c+8pHbsl8+85nP4ClPeQqOHTuGa665Bpubm/gv/+W/lEEwx8c//nG8733vw6te9SocOXIEl156Ke655x485jGPKYMpMzMz+PCHP4wXv/jFWFhYwI/+6I8COBMAePrTn47/9b/+F37wB38QD3vYw/BP//RPeNOb3oSvfOUr2/YT+l//63/hT/7kT/BDP/RDGB8fx1ve8hY885nPxK233orDhw/3XPtN3/RN+Nu//du+ffDsZz8bv/7rv46/+Iu/wPd93/eVx5eXl/Fnf/ZneOELX4iBgQEcP34cT3rSkzAzM4Of/MmfxNTUFG6++Wb8yZ/8Sd/y++GrX/0qBgYGMDU1dZ/0ZafTwXd8x3fg1ltvxatf/Wqcf/75ePe7342Pf/zju6rPi1/8YrzrXe/Cd33Xd+ElL3kJNjY28Dd/8zf45Cc/iUc/+tF497vfjZe85CX4lm/5FvzgD/4gAGwL9ihe//rX45prrsETn/hEvOIVr8CXv/xlvP3tb8c//MM/4G//9m976G52dhZPecpT8O/+3b/D1VdfjT/+4z/GT/zET+Drvu7r8F3f9V196/13f/d3+KZv+qbwXCRzgDMZZ+9617vwH/7Df8CrX/1q3HTTTXjrW9+Kz3zmMz11+3/+n/8HP/MzP4OrrroKV111FT796U/jSU96EtbW1sLnXXnllftyD6xEIpFIJPYMRSKRSCQS9zHm5+cLAMUznvGMbedmZ2eLEydOlJ/l5eXy3Ate8IICQPGTP/mTPfd88IMfLAAUP/MzP9Nz/FnPelZRq9WKG264oSiKorjpppsKAMU73/nObc8FULzuda8r/7/uda8rABQvetGLeq773u/93uLw4cPl/89+9rMFgOKHfuiHeq573vOet63MnfD+97+/AFBce+212+rx3Oc+d9v1j3vc44rHPe5x246/4AUvKC655JLy/4kTJyrrwj79L//lv/Qc/8Zv/Mbiyiuv3LHOF154YfHMZz5z2/GnPe1pRaPRKO64447y2PXXX18MDg4Wbl4AKOr1evHFL36x5/iLX/zi4tixY8XJkyd7jj/nOc8pJicnS9p497vfXdTr9eJv/uZveq77jd/4jQJA8bd/+7c9zxoeHi5poiiK4nOf+1wBoPi1X/u1be34wR/8wWJsbKxvH3S73eKCCy7Y1g/ve9/7CgDFJz7xiaIoiuK///f/XgAo/uEf/qFveREe97jHFQ996ENLvvjSl75UvPrVry4AFE972tN62ndv+vJXf/VXCwDF+973vvKapaWl4vLLL99Gm05nH//4xwsAxatf/ept9e92u+XvZrNZvOAFL9h2zTvf+c4CQHHTTTcVRVEUx48fL4aHh4snPelJxebmZnndW9/61gJA8Y53vKOnfwAUv/d7v1ceW11dLR7wgAeE9KlYX18varVa8drXvnbbuSqZ8zd/8zcFgOI973lPz/GPfOQjPcfZhqc+9ak9ffCf/tN/KgCE/fDGN76xAFDcc889feudSCQSicTXCnKpXSKRSCTucywsLAAAWq3WtnOPf/zjMTMzU35+/dd/fds1noXzoQ99CAMDA3j1q1/dc/y1r30tiqLAhz/84XOu68tf/vKe///6X/9rnDp1qmzDhz70IQDY9mxmkNxX8Hrc14ja+dWvfnXH+06dOoXp6emeY5ubm/jYxz6GZzzjGTj//PPL45dffnll5snjHvc4PPzhDy//F0WBD3zgA3ja056Goihw8uTJ8vPkJz8Z8/Pz+PSnPw0AeP/734+HPexheOhDH9pzHfdluvbaa3ue9cQnPrEny+brv/7rMTExEbZ3enoanU4nXEZH1Go1fN/3fR8+9KEPod1ul8f/6I/+CBdccEG5NJJZSX/+53+O9fX1yvKqcN1115V88bCHPQy/9mu/hqc+9anblsvdm7780Ic+hGPHjuFZz3pWeX+j0Sizk/rhAx/4AGq1Gl73utdtO3cum7N/7GMfw9raGn70R3+0Z6+3l770pZiYmMBf/MVf9FzfarV69sAaHh7Gt3zLt+xIx6dPn0ZRFNvoWOEy5/3vfz8mJyfxnd/5nT39eeWVV6LVapU0xzb4BvX95APrcfLkyb71TiQSiUTiawW51C6RSCQS9zn4tiZ10onf/M3fxOLiIu65554eJ5IYHBzEhRde2HPslltuwfnnn7/tLVB8M9wtt9xyznW9+OKLe/7TKZydncXExARuueUW1Ov1bcuFHvKQh5zzMyM88IEPvE/LU3AvHsX09PS2vWqqUNjSv+PHj6PT6eDyyy/fdm10DNjevhMnTmBubg6/9Vu/hd/6rd8K7zl+/DgA4Prrr8eXvvSlymV8vI7wMQWq28u27RQ4efazn41f/dVfxf/4H/8Dz3ve89But/GhD30IL3vZy8p7H/e4x+GZz3wmrrnmGrzpTW/C4x//eDzjGc/A8573vF29ye3SSy/Fb//2b6NWq2F0dBRXXHEFjh49uu26e9OXt9xyCy6//PJt7d0NPd944404//zzcejQoR2v3Q3It/7s4eFhPOhBD9rG1xdeeOG2ek9PT+Pzn//8rp7ndExEMuf666/H/Px82P9Ab38CwBVXXNFzfmZmpjLQtVuaSyQSiUTiawUZeEokEonEfY7JyUkcO3YMX/jCF7ad455PvsEwMTIysuOb7qpQ5cj120S76i1bVU7qXmFsbGzbsVqtFtZjN5uCK+7Nm8QOHz686wBVP3j7ut0uAOD7v//78YIXvCC8h/tUdbtdfN3XfR1+5Vd+JbxON6gHzm5MZ2dn0Wg0wv5XPOYxj8Gll16K973vfXje856HP/uzP0On08Gzn/3s8pparYY//uM/xic/+Un82Z/9GT760Y/iRS96EX75l38Zn/zkJ8MMQEWz2cQTn/jEvtcA964vDzLOlVcPHTqEWq1WSceRzOl2uzh69Cje8573hPdUBUF3A9bjyJEj51xGIpFIJBIHCRl4SiQSicSe4KlPfSp+53d+B3//93+Pb/mWb7lXZV1yySX42Mc+hsXFxZ6sp+uuu648D2xlK/kbse5NRtQll1yCbreLG2+8sScz48tf/vI5l7lbTE9Ph8uIvD17mTnx0Ic+FDfddFPPsaNHj2J0dBQ33HDDtuujYxH4hsDNzc0dgy2XXXYZPve5z+E7vuM77vO23nTTTWXm3E64+uqr8eY3vxkLCwv4oz/6I1x66aV4zGMes+26xzzmMXjMYx6D//pf/yve+9734vnPfz7+8A//EC95yUvu07oTZ9OXl1xyCb7whS+gKIqevtwNPV922WX46Ec/itOnT/fNetrtGJFvv/zlL+NBD3pQeXxtbQ033XTTroJwu8Hg4CAuu+yybXTcD5dddhk+9rGP4du//dv7BiXZhuuvv76nDSdOnKgMdN100004cuTIvQpeJRKJRCJxkJB7PCUSiURiT/DjP/7jaDQaeNGLXoR77rln2/mzySi66qqrsLm5ibe+9a09x9/0pjehVquV+wpNTEzgyJEj+MQnPtFz3dve9rZzaMEZsOy3vOUtPcd/9Vd/9ZzL3C0uu+wyXHfddThx4kR57HOf+9y2t7DxLVwecLsv8NjHPhZf+MIXsLq6Wh4bGBjAE5/4RHzwgx/EnXfeWR6/4YYbdr3f1sDAAJ75zGfiAx/4QJgZp22++uqrcccdd+C3f/u3t13X6XSwtLR0Nk3qwac//Wl827d9266uffazn43V1VX87u/+Lj7ykY/g6quv7jk/Ozu7ja4f9ahHAUBP/93XOJu+vOqqq3DnnXfij//4j8tjy8vLlUv0FM985jNRFAWuueaabee03c1mc1e0+MQnPhHDw8N4y1ve0nP/f/tv/w3z8/P36ZsjH/vYx+JTn/rUrq+/+uqrsbm5iTe84Q3bzm1sbJTte+ITn4ihoSH82q/9Wk8b+smHf/zHf8RjH/vYXdclkUgkEomDjsx4SiQSicSe4IorrsB73/tePPe5z8VDHvIQPP/5z8c3fMM3oCgK3HTTTXjve9+Ler2+bW+VCE972tPwhCc8AT/90z+Nm2++Gd/wDd+Av/zLv8Sf/umf4kd/9Ed79l96yUtegp/7uZ/DS17yEjz60Y/GJz7xCXzlK18553Y86lGPwnOf+1y87W1vw/z8PL7t274Nf/VXf7XrzJ57gxe96EX4lV/5FTz5yU/Gi1/8Yhw/fhy/8Ru/gUc84hHl5ufAmaVXD3/4w/FHf/RHePCDH4xDhw7hkY98JB75yEfe6zp8z/d8D97whjfgf/7P/4knPelJ5fHXv/71+Mu//Et8+7d/O17xileUgcFHPvKR+OxnP7ursn/u534O1157Lb71W78VL33pS/Hwhz8cp0+fxqc//Wl87GMfw+nTpwEAP/ADP4D3ve99ePnLX45rr70W3/7t347NzU1cd911eN/73oePfvSjePSjH33WbfvHf/xHnD59Gt/zPd+zq+u/6Zu+CZdffjl++qd/Gqurqz3L7ADgd3/3d/G2t70N3/u934vLLrsMi4uL+O3f/m1MTEzgqquuOuv6nQ1225cvfelL8da3vhX//t//e/zjP/4jjh07hne/+91l8LIfnvCEJ+AHfuAH8Ja3vAXXX389nvKUp6Db7eJv/uZv8IQnPAGvetWrAABXXnklPvaxj+FXfuVXcP755+OBD3xgucRWMTMzg5/6qZ/CNddcg6c85Sl4+tOfji9/+ct429vehm/+5m8O94A7V3zP93wP3v3ud+MrX/kKHvzgB+94/eMe9zi87GUvw8/+7M/is5/9LJ70pCdhaGgI119/Pd7//vfjzW9+M571rGdhZmYGP/ZjP4af/dmfxXd/93fjqquuwmc+8xl8+MMfDpfSHT9+HJ///Ofxyle+8j5rWyKRSCQS+x7/kq/QSyQSicT/fbjhhhuKV7ziFcXll19ejI6OFmNjY8VDH/rQ4uUvf3nx2c9+tufaF7zgBUWz2QzLWVxcLF7zmtcU559/fjE0NFRcccUVxS/+4i/2vMK8KIpieXm5ePGLX1xMTk4W4+PjxdVXX10cP368AFC87nWvK6973eteVwAoTpw40XO/v/K9KIqi0+kUr371q4vDhw8XzWazeNrTnlbcdttt28rcCe9///u3vbK+qh7E7//+7xcPetCDiuHh4eJRj3pU8dGPfnTba+6Loij+7u/+rrjyyiuL4eHhnnpV9Smfuxt8/dd/ffHiF7942/G/+qu/Kr7xG7+xGB4eLi677LLid37nd4rXvva1xejoaM91AIpXvvKVYdn33HNP8cpXvrK46KKLiqGhoeIBD3hA8R3f8R3Fb/3Wb/Vct7a2Vvz8z/988YhHPKIYGRkppqeniyuvvLK45pprivn5+R2fdckll2x7tf1P/MRPFBdffPE2GuqHn/7pny4AFJdffvm2c5/+9KeL5z73ucXFF19cjIyMFEePHi2++7u/u/jUpz61Y7mPe9zjikc84hE7Xndf9OUtt9xSPP3pTy8ajUZx5MiR4kd+5EeKj3zkI9toM6KzjY2N4hd/8ReLhz70ocXw8HAxMzNTfNd3fVfxj//4j+U11113XfFv/s2/KcbGxgoAZb9HvFUURfHWt761eOhDH1oMDQ0V5513XvGKV7yimJ2d3VX/RHWMsLq6Whw5cqR4wxvesO3+KplTFEXxW7/1W8WVV15ZjI2NFePj48XXfd3XFT/+4z9e3HnnneU1m5ubxTXXXFMcO3asGBsbKx7/+McXX/jCF0Kae/vb3140Go1iYWFhxzonEolEIvG1glpR/AvvnppIJBKJROJA4d3vfjde+cpX4tZbb8XU1FTfa5/xjGfgi1/8Iq6//vp/mcqdI1ZXV3HppZfiJ3/yJ/EjP/Ij93d1Ev8CeMMb3oB3vvOduP766+/Vhvv3Bt/4jd+Ixz/+8XjTm950vzw/kUgkEon7A7nHUyKRSCQSib54/vOfj4svvhi//uu/3nO80+n0/L/++uvxoQ99CI9//OP/BWt3bnjnO9+JoaEhvPzlL7+/q5L4F8JrXvMatNtt/OEf/uH98vyPfOQjuP766/FTP/VT98vzE4lEIpG4v5AZT4lEIpFIJM4Jx44dwwtf+EI86EEPwi233IK3v/3tWF1dxWc+8xlcccUV93f1EolEIpFIJBL7ALm5eCKRSCQSiXPCU57yFPzBH/wB7r77boyMjOCxj30s3vjGN2bQKZFIJBKJRCJRIjOeEolEIpFIJBKJRCKRSCQSe4Lc4ymRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ4gA0+JRCKRSCQSiUQikUgkEok9QQaeEolEIpFIJBKJRCKRSCQSe4IMPCUSiUQikUgkEolEIpFIJPYEGXhKJBKJRCKRSCQSiUQikUjsCTLwlEgkEolEIpFIJBKJRCKR2BNk4CmRSCQSiUQikUgkEolEIrEnyMBTIpFIJBKJRCKRSCQSiURiT5CBp0QikUgkEolEIpFIJBKJxJ5gcLcXjoyMAABqtVr5rb+LogAA1Ot11Otn4lk8xmsGBgZ6jhdFgaIosLa2Vh6r1Wqo1+uo1WrY3NxEt9stzw0NDWFoaKinXkVRYGRkBFNTUxgaGkKr1UJRFFhZWUFRFGU9G40G6vU6ZmdnsbKygqGhIQwMDGB0dBQjIyNYX1/H2toaVldXsby8XJbd7XaxsbGBzc1NrKyslH0xODiIsbExDA8PY2ZmBmNjY+V/1pd1Hx8fx+TkJIaGhjA8PIx6vY6BgQF0u12sra2VbQOAjY0NrK+v4/jx41hfX8fRo0fRaDTQ7XYBAK1WC2NjY9jY2MDGxgZOnTqFu+66q6z38PAwxsfHsbm5iYWFBaytrWF2dhbr6+tYX19HURRoNBoYHh7GxRdfjKmpKTSbTYyOjmJgYKD8DA4OlnVZX1/H6upq2V8co6IosL6+XraDdeRY12o1dLvd8jyv4XUAsLm52TP+m5ubWFpaKseu2+1ifn6+596VlRVsbGxgZWUFa2trGBgYKOmuXq+j2+1ic3MTm5ubWF1dBYCS9kizm5ubJf0BwODgYDkuLIftGBgYwMbGBlZXV7G5uYn19XVccskluOqqq3DRRRfhCU94AhqNBh7+8Ifvlp3uF/zTP/0TgC3eZV+QTtl2/tf+GBzcLipqtRqGh4d7ymOZ7M+1tTVsbGxgdnYW7XYbi4uLWFxcLPuT/LWwsIBbbrkF7XYbd9xxB5aXl3HixAmsrKxgbm4O6+vrPWOmsiWqF0E6Ij3ye3BwsPxfr9dL+le5MDQ0hMHBwfL4yMhI+ZttZd+o3GKZY2Nj5fP02SMjIxgeHi77mffy48/w9vDbx6zb7fa0T+vFftaxdB5w2vCy19bWSn7f3Nwsr1tdXcXi4iJWV1cxNzeHbrdb6oTV1VVsbGzg5MmTpYzi2G9sbJT0wWdQrpF/eSxCRAeul/Tj9Mzj3W63lI3z8/OVdHV/Y319fdsx1l91ndIL0NtP2jcc006ng+uvvx6zs7P4+7//exw/frz8v7a2hs3NzVA2ap+6fnfdoPWjbCCvDQ8PY3h4GCMjIxgbG+u5f3V1tUcOk6fIH6wLy6Ju5n/WWftL6+60oHxaJWfYh3y2tpl0rPTMa7WvXPaSD/ih3mU52lbtfwAl/6ysrGBzc7PkH8pMlqF1JO87VDcDqLyOcHoYHR1Fs9nEeeedhyuuuALNZhOHDx/G2toajh8/js3NTQDA6OgoHvGIR6DVapV9srGxgaIoSjtK6Vqf5bJscHAQzWazx/bcr+jXl3qN0pXa10Sn08HJkydx+vRpfPrTn8bc3BxuvvlmLC8vl3YfeZf9uL6+jo2NjbJsjpXKen7THuX9lI/E8PAwBgYGyvMrKytYXV0tx2BoaAijo6MoiqKU5aTPTqdT0iFBW2JgYADj4+MYGRlBq9XC6OgoxsbGMDIygtHR0VIvj46Ols/R+qt9rbxCOH2oPGR/q94piqL8Ji+Qn1QXql1L/lNdxt/sA9qz5F3+p43pNhn7xmW7y19eq2PnzyQoK0dGRnrsDcrPkZERNJtNNBoNHDlyBOPj43jgAx+IRqOBmZmZ0h/TvnN4fXdzfqd77k/ccccd5e/d8DL5YX19HSsrK1hcXMRdd92F2dlZ3HDDDZidncWXvvQlLCws4NZbb0Wn08HS0lKlzUNwnMgXlKPu5wBnfJ9Wq4WhoSE0Go3Sd9WxHx8fR7PZLP1Y0oDrReVbPov8QdpV+qUfoTEBtWHVv1c5wzK9LcvLy2Vfrq2tYWVlBSsrKyUfar9rzELLUN2uY6hyUnmWoD+p7aKcVN2qfeTHKYOp31dWVrC0tNSjo73N54KiKNBsNnHkyBFcfvnleNrTnoYHPOABeNSjHlXGPNxW9ueqnaTYiWcnJiZ2rN+uA098uD9UjQI/7w6AG2pqVAEoDUAfAApUniOGh4dLI4WBJRrnvG9ychIDAwNYXl4uDWAS5cjISI9g1g/LUIVDx7PZbGJoaKj8brVaZXmDg4PbAmWtVqscDO0TZch6vY6NjQ3Mzc1hc3OzDKSNj49jeHi4NCLI7Kurq2i322i321hZWcHg4CBmZmZKYUKmLIqiRzkTahwPDQ31GPwASmeDbRocHCwFg44l28u+0vGJBDODWqqoGawjLQwNDZWM3+12yzp0Oh10u90eYzeC1oNOthv6HFM9rtfRYOAY8rmkj6WlJdx+++2o1Wo4ceIEWq1WWJf9CPad8pjSugZBSJ8MNKiTUSWAtE9XV1d7FAQFOYMPKysraLfbmJ+fx/Hjx9Fut3H8+HF0Oh2cPn26DAjr+ChdRYEHAD2GJx0UBpTooKpBR2XL6yhXOP48p44qacuD5mr8MkALnJEH+kwN8JGPSJPqDLP/VVm6vNWgsSp5lc9qSLA+vE6VYxTIJW9ShlDRK4+yzLW1NSwvL5f11Ge6saHjWGXIOa3uNPbaRxGNej+z//Y72F43BKKJHoc7sqRLBg2vv/563H333fj85z+PEydOYGFhoZxscAPFAzaRs6/jyb5V/mHwiPqKBrDqAg2ekqect9wxI4/xGR5kiniM16kTpVDZo7TI57veo570QIg+0w1w7Su2w4NAXgfVYZTbKhv4rcYwPx6QYj3Uud6NI6lOCR0aBgx0cooGNz/dbhftdhv1eh3T09OlIcw+oD2kcs/b4X23G0fwIKDKhgZQBiuWl5dx55134tSpU7jzzjvLCZ3V1dUyIKIOnf6nU6l2oQaDIxud48DrVC/R5lY9yXMaAKUN67YXy6O+bbVaaDQaJR1xooaB6cHBwZLftd6qs8hnhPJsZEN4cIp6kG3WQBTvHRkZ6XGSSZPuS/Cjk5fsCw3G0e9gn6mtygnWqsCT2gM6mca+Ji+RHpQutF/c5lhZWUGtVkO73UatVsPCwgI2NzcxPj5e9lE/3el9+38TlI/oS1FXTU9PY2BgAKdOncL8/DxGRkZw4sSJnsDwThgZGcH4+DjGxsYwMTHRM85ra2vl5Kf6qJOTk2Wwivp2cHCwDDw1Go2eIL7b/D6RBGzpF+osnUzkdU5bzn/URyxPbVTSOHAmWM4JSwZuNBik9K+TUxwP1XE76Q36Hq571FelrNOAmU88+X/yVafTKX1dtuW+xNraGk6fPo2TJ0/izjvvxMDAANbW1krbyP3onQJK/XC2unfXgafdVCCKoOnxKmc1ut+dYjecSVDqGALoUWpqgJIogC1hPTg42JNJowaOOzFaHpnVHVN3sjhrwOvUcWTbnClomE1MTPRkXfjMoyp0KoCxsbGyjmyDOotq8Gpb+42vGq98bjRm7OMoABXRApW7/o7+uyHtNNaPabT+SlNV8H7RjwvKjY0NLC0tYXl5Gaurq9sy8fYjqowAN8R4bKd7I572/zRadSZejVkKXApifjij4QrM61xVd9KkOnIaeNIAlAee6vV6mRVI/lYjV51e5+darVYaGN4XlEUayO12u2UdVfb4zFXErxEfqIPtY1n17TTQz0hwY57ygG3gfRxnzr4qPIgUOeCOszFe3ajwOnvw4CAj4tN+/xUMDC8vL2N2dhanT5/G3NxcmWGqQWh/ZuSouCHnjqVm0ypPqg5VPcJxUsdSg778Vj3vQVPVNwz2chJB21E1mcHn81t1aGS0qVxi251/+slb7at+Y6dBBa0f5YeOmU4eaBBZAwouX7xuVTJA+1ftKtaJQTh12tUIp6PlDnS/Nt8XMmI/oEof93PWNRCxtLRU2iCdTqcnwy2SAyrzdDLXx0+v94/zvAcvVP+4DeX1Up4hD1MWMAuSHx7X4JbSmgbB2Q6lWw886bGov6P7vF/Io+Q7lQvMBtPsKeVD1ZG0jVSuqRO+W1ud8prQTCjKCfVttPyIzvhM1o8BZPKz2z//N0BpJZLjRGRzaIBuc3MTrVYLq6urZXC1aqLMwes4aUMe4TgB6OFJzSrW7EENPDHTaWxsrFzVEvmPkXxRf03lgSeQqG+n/USe2dzcLO1iQgNP7Bu1w91fpCxQmeCBUdVFkQxg/+qkt/q9lMEcg6LYyu5mAEozRXWiRydT6P+ov35fgs9nVhWzxViXfs/ba116VhlPJCw3DJWoiMgpjYIeOuBVx3mO5Wqmky5nUeXIDChGLBcXF7G+vl5GgDUVnwSh6e0q6EnkdE5ZRqPRKL+ZZbS2tlYqx7GxMYyPj5dMpYj6gkRbq9XKFGMAZZ0UJFq2dWJiAjMzM+XsCZUDAExOTpYzjHTkgTNZU0tLS6Wg4cyzCgY1GCjAtP58BpdceXo3aYACxGe8dIw5jhQYVMasL2fFych0WpTetN48zvqqkNIME20PhZRnkJA+OI7r6+s4ffo0Wq0WFhcXQ57Zb+hnILgzQWgAs8pA0Xv0GtIHl/MsLy+XHy6joVCcn5/HPffcg6WlpXJpKIW+KwmXCxqY9OCwzvgoDzebzZ7AkxqyDExRRrhzyiCyzror3boC89nXaDaJx0l/HvBVxasyknwVGTrsKw/sunOh/K31V6dUnW41RBl05eyq1lsVLeWRB86qHK9+tNUv2BLpDNcl2u+sc1W2y37CbuvXj88pg5eXl7G4uIgvfelLOHHiBK677jqcOHEC7Xa7JzCjdLSb8SJ9AFs065l+pH/yKI1nH+fBwcEyc4YZMZ6l5BkPSsM6zu4U6znN/FBZp5nP0UfrqhNIBHU6r1MZqjwJoHSu/Xnu2Dm/Uj6rE+szuj5uOglAfa286YEGhfOvBgI0e42219raWqkfWW/KWMoPnVRjv+tHx5L9TNugiiYPAtw28eMRVldXy1nsW2+9tQwYc7JG7RTNmOEEBydDyU8aLFR7SrNv1JbzCQYfG5X/ulxG68F7yMukIU62Tk1NlZlzdJQ1I1IDZx4AV2dU+Y3fqs+j8XC7XD/KY8orhF+vS8Yjh5SZD8xg02/yBZek+zPddiWYQUGZqluC0KbWyTyVUfSL1C6gjFheXkatdibjSX0Jyq0oG+v/BkR2r8LlvvJKVfBX9ZTbNvQNySczMzOlzbuystKTWUq7bGxsDNPT0+WSSfKSZvZzmR1pgHTLsrUOSh/Alu6jb8aVROov0YbUIJC20wM1pEn2D+mV1w8NDWFjY6PcdoY85hPEkV3u2UtV9qYHzTlGUSBKV2UURW8gSpNEOD6eLc7MQvJ8PxtuN+A4ra+vY2FhATfeeCM2NjZwxx13YHp6Gg94wANKWVqlQ6v42et2Lnx/n2U8+XntVIIV3s2sWlQufzMAoplGfg8H1tdr0jjyzlbiV6Grxq0aWDo7w3oo8ekMDtusTqA+15UZmYazJv0cKxrwIyMjaDQa5bImhS4pVEbTfllfX+8x/nW8CBr4vFcDT26MeH3dkeY5dWz4rTO4Wl8GizQCv1uiJ33589jOSPh4+RrBZ39S2Ef7r+xHRI7MTkZv5IDweL/nAL0BCJ0xU0HMABSDUmpsVT0vcog18EQjlYq11WqVjuzg4GD53w1ZGuC674E6lVRsmi3Ac7qMRuvGsj2gHtGiO51EFFwCtgKkejwK0Hi9/HrWy+ldHQUfC1XK7gRE17ii9/KqjGnn3X6oKqPf9cD2/t2PuC/qRyOOS1yPHz+O48eP49SpU+VeakoLEW0S3r8+hpryTp5SOvHMYb9f+dEDS8rr+u3jqE6o6yItxx1pGoHebudP5ymVRVV0Hl3rYL18dpl2ijsyAHr6QPvS28dJGwYGtK60OVw26fOUPjwIoMEHNb41uKvOhNpcLFcDaFWyxWlyv/OuIupLP+/neA+DE9wvkVstMDtY+83lrdqVaq9FDq/Sns6O96NXzyzwSSMPWupEDu1yZn/wQ9tW927ziRst0+khsvv60ZIHj6IxYXsjHcVr2YcaPNV+4CqGer2+bS8pBlX5X2nAPzrO/E3/Rnma9omOjQbDaKdEvgntN04icvsEygq1Qc6FD72N+5mXq+rm9przuF8b8V0/Wab3KK8wOYH9phk1tVqtDDSPjY2h0Wig0WiU2f71er0M7DLTSflYfVZ9htO+6lzez3s1+Kxlq22svjfL1sxnYGsfQ+0byqihoaEyCaNqZYK3g2W6rRiNocpADZTxuMpL1o/+DX0FymeONQODGmSjL8l9n3djv/YD67e6uor5+XnMz89jcXGxzI7zOMy94buzvfecMp74IAozFarOICog+dujhfx2I0uZkgTFKC4zFjh4FNZ0JIEzjLO8vIzNzU00Gg0MDAxgYmICw8PDWFpaKhU2gzXcl8QNZ52ZVUOZZeleL0VRlLM1jBwTqgAYsV1aWup51qFDhwCgJxpZFEUZ8OHzJiYmMDg4WBIqy6MjDwCHDh3qmc2cnJzExsYGFhcXy1kROuIcX6bQ6gyGB8Qo0NjvdGR4rRK0Mw/pgsal0gkZV5dRsMzNzc0yu21paalkdBq1blBomUqvCj3vRpoKFNKTMmxRFCXt+CZ0+xmRIiRUgUQGnN7rBnFkjBbFmYg7Z2O5qejo6CiAM4K/3W7jq1/9KmZnZ8sN9XX2XevtZfO4BoCHh4fLzRZHR0fLTf25qaIutVOjNcqYYLtIhzxGno7aDGzxucs2luEGOZ+r1zlNVz0jmhHyZXvaRtYn4g3NntC661grj+qmq5y5pVxgHXQ5sD5bHaQIOgZq9Luxz3r7vYoq50nLV2f7IMH7pB+4ue38/Dy+8pWv4MSJE/j7v/97zM7O4q677kKn0+lZjs7vqv7y57ru5gQNeY/ZhSyLwV0Gl/S5/O0vL/D6eLaS6kygN8NBeVp5L6I1YGuiw2VdFEhW+tRAjDux/eqi46ntdPpWo1ydQ7fRVEYqbftEHA1kzrZSvrlTq2317DXSF+0t7j+pfcLly9PT06XTRMdJHQuvt9bd6UBxUPh3t062nqMePXXqFG666SacOnUKJ06cwNLSUqkzPeikekbltu7xQd7hf16rgayi2NrflPymOpo6hzZotKTe7WA6vQMDW3umTk1NYXR0FOPj4xgdHS3phcEoXQrvQS72lzvN3o/Kdypr/NooAKPHnWf1m/2uS910KwZ1tNlfIyMj2NjYKDOHqTe5eoETcq5PlZcZGJqbmyszYGj7aMCRgQFgi+/W1tZ6eM2zRpiFxcwnvoCJ9+m1ZwvyfGSjHxSo/+vHI9AG5QbQRXFmM2juzRTdq74NJ3MAlBlpnU4H7XYbg4ODOHToEJrNJi644AI0m00cO3asXIHDPZG5t68mT7hf5tDgi+of5wH1273+rsdV3rMsrrxRXgJ69URkQyq/jY2N9aUpfREY665yU+usMQWtF21gXQmk36wv68olb2wPg+urq6sYHh4ufSTy8r0NPgFnsmSPHz+OkZER3Hnnndjc3MSxY8e2ja/Tr/t6Ec6VX88q4ylyRDWCR4dDj2ugyQNQjigbRhWjvv2GgRlVljqjw+dRUHvKLt8coBk/nt6nAlUznfifgRtVTADK4FjkqLNMNahpaAIomSVygHV2iI6zRkhJ4HQeGo1GuayCgaahoaGSuN0I0X5U4aBOqfYJBZRnf0Tjq/2gggtAqQhV+WjkXOtFhahCT+lFBZ/T027hwpTluSPiRtZBg7YlUpjO736PIzquy7IY8ddA5+rqarnB4tLSUo+siMqPnDgqYvJ3o9EoN12cmprqyXTSt9epovO3xkTOj9Jcv77RYFDUZ+qMaluALYOZMkGVg5YTOcz6fDe8le9cOWrdXPFWjbPzIPlAnRg1DhTqDEV9oc/Rce9Xn37w9mqfRI7GQYDX22nM+4x6mJuJ33nnnTh+/Dhuv/32ciZMX8wRGYlOw+6MEe7QalA4CjzpBJMGvNxh07rxWtUHTpdajrcL6F1GrM6PXqvt1Tqoc6A8F03MRcddfjgvRHzsY8v7fEY30kVahi5TA7ayl3UpFK9xna662eVlURTl0j1u/kroUla3qfhsl4X9+is6fhCwG50bgcH9druNU6dOYXZ2tnQ2fQmYy1S3vTRI4JMtvF6dOtKx8hrQu+yS5ZImo4/Tj9qyDDAx84KyQT+ezcA+U0T6UM+5XFPoRJSOifKaTqpooEnrUkXH/NZx0eCeZjqpP6VvFKzVaj18pXJIdTHL0WXOzDjVcajX6yH9OG+RHjjJzW8ev7f68yDxsKPKn+0H8hSz8hkA0iSGqvuoW3VsuMk23yw5NjaGZrOJycnJ8uVWDOZyqwk+W3WwZzw777IOu2l/FY/pcdUJ0X/NyuWzXA9okFvliy/fdx3u0GCS2gaUOzynvMayXfd6//lqKgaW1FZi2xYWFu5Te5QT/IuLi1hYWECz2azcO5fop4vYvnuDXQeeolm0yPkBtmbx2DiN+kWV9jLUaCMT6etU9VolOgZmgK00b2ZXkOEYcOp0Oj2RYgZiXKkxcsrlOjS4uHZ6ZGQEc3NzWFtbKxmZ6YxqoOlSHm237zXE/qOj7EKdz44cOio19pG+AaBW23pbnL5BpiiK8rWpBMeOwohjF2VB6fpuDUBpJNtpqCq7wA0ljQqTMX0vLr9fhQ+fpc92B0P7LoIHB7RPdGkYg3/7GZEw6yfgqow3hSo/ClDeyxk77vHB2W0AmJ2dxZe//GXceeeduOuuu3pmzvotL1VnSN+C02w2S8OVe56NjIxgYmKiVEKUD2pU6Z4xUbuA7crEjV5e60veVLDrfzXeSadU+DzPpUdMIfaPO2qq4KPAkTp33r/+2ycHVLFWOX2U8W64sj5Vyz9UiUez9JHBcK5K2cuNdNh+htMb4Y6S95EGBebm5no2Eqce9DGp6hM3JtXgA7ZmcjXTif/deWT2rmclUW+6U8znK99WGbLKXz67qnJN2+i0oM54RCseFHadV6vVtr35ysdMA7RVNpZPCvEa9rtu4K/y2umF93jfslzWUZc/qKxxh0TpRW0wlbdugPMNvJ1OB9PT0wBQvhGT1zC7ReWky2OdxDgIvEucrTHPwMTCwgLuvvtunDhxAqdPn+55g51u+OyyluWS3xjk0T1OOWYqG0lbjUajtB1Vj+lEEssAtsZG95rSpT+0m4eGtt7YPDk5ieHh4VJn6/6turk4ZYjye2TLRbKPdXNHONJnSnPsT5dJkX5S/e6y1OvHsRkeHka32y0ziHXlwubmZvl/ZGSk50UsXPJGHq3VtgJWXPFA2c7xY2aZLn1mYNyde1/mR5uXe9FwpQb/q5Pvffy1iH720048rltBDAwMlKsBuIKC16n8VrpcX1/H0tJSyePcQ7Xb7ZaTrjMzM5iYmMDRo0fRaDTKN4c2m81SN2sddOw0sEo94O0jjQDo4Qe9zicnfYLJ/X7Vf6RJnTTiOfqi6g+67eDZd6q/++n/SI9rnyiPAFt7G3ugTF+GUq/XS55VXcnVRc6/1IeafXwuiOwNyjMNbnNszlWPnst9uw48RQ5AlWGqzqgu9aIyq3LylHh4HQVko9EoZ0OYiuoCH+iNlHa73R4hOzAwgIWFhTKzotvtlvvL+H4vZQcNbm1+yrfG0XijUuQSBl1DS4amoa1LeThzQCGkRgKAnllinREh4XuKu/YjlRVTmLlrflFsberJZ5IJ6RxoMEvrowpWjXH2j0d1nTb6CeYqJ5JCx40e9ocvx3JnSwXbTk5VZKDrOZ9VZpmcYThoezz1Oxc5+ZHxX3WvprqTvzqdTmmc8Hi73cbNN9+MkydPYnZ2dpui8udFz2aWU7PZLDOcKCdoxPLVsLokh/VjGU4L7rxpoFSztZzelB/dMNX/er0at16mPltlojpyEV1WBfiVT/W88ob3g57z4IArcndQvZyq2Xg/XvV8pYXoeNQm/00lq+OwG/reD1C+iHikXx8VRVEu2VhaWkK73cbS0lK5pKaqPxVq2HnggfShASVdmq4BJ+ondX5V5/LaiNaArexT5bdIF2rAid+kfzd61XjU+7WPNTNYr1Fn3c9T9wJxJpLyUETXET278ez19nt4TPWzlqNOAbMl6GxrBqrTnxrR1MkahHCjnNnZIyMj5aQE7aeBgYFyj0y1b6IlVSrjXHbsdx4Gqp3TiKfpWPLNk3Nzc1hcXOxZYufL7CiHSW866elvatW+1sA/66ErC4De7DgNyKhjo/TA65SPaTdzKV2r1er5r3JD93Zi1pXLa+8vRaRXeY/WSY8pD1HXsh+VPyPaq9JHCrf3AfRMMpMf6GBzspirF4aHh7G8vNxjw9OOd77k8/XlProvni6707b53q1Ki3SkybOse9WEXFV/uEw5CKiyK84G5BmOCYOIuhm3+i6qw4CtJfNqd3HPLU6+Tk5Olp9Go1HyGIOP/vIctYdIcxow1jarznCd58FuAD361n18D/zwGZrxp892nezj4IFwvU5tf+dzRaSnI3tAQd5jcMnflr20tIROp9PjM3LCiLxKOcftKu4rnnCbgPJZs7D6Ybf8fDY4p6V27uh4cISVjRyuCBxolkmGYABHN0RjXRjw4B4/XC/uRjDvW1lZKTuaswsqXBn99cAKZwrUEOaMDdvO+nC2xg1qNfCA3rfKqDFfr9dLRcs9rPytLzQcfCNzNez1TTrAmWwv1rPb7ZbCpyiKMltHNwAlVKFSSWn/uHNIx1iNcR6PjC03ppWx1Zim47K8vFw6SmRMdxzVYGV7I2fcjfaq9vCcKvKxsbFy7DudDo4fP45Op1NJ3/sJOgZuuOl4+xir06dwvub1uucA91DjmwBnZ2dx44034o477kCn09k2g1gFzZQYGDizXxvf2MHMJhqsGmQFtu/5oEaSttnb7n3nAXSnoahfNJsheoYHUBmwo3Go9V9dXe0ZC3Uqva4sy2esnMZ9/CNZDqCUl9oWGp36NlDKcKUb5U3nOa93RFP+PzrWTwm6/OXEBWW0v1hhP2I39esnY3U20K+pogeOh9KaO5k0EDlBo7Oq7Nso00l1ist+nxlV3UO6c55V2lG6cwdT2+3t9T5zJzRyTJ1mXa7qce9n1V+RAxjVU/nfeWwnuAykk8HsFc7EUg6ozGNdeI7XKh3wGr6ZR20bBpnm5uawsrKCu+66q3yrrjobdJBptGvdnS4OIqrqHR3nWwHn5ubKFwBwz0TqVjoRnlVKmiG/0dFVGlb+U13ICRnymeoq1Q/ka9KELqtXx1Vt7GaziZGREUxNTZVZyZqRQxtaM7OiDDine5cjwFawSB1rpaOIt7Uv3LbVst1mrAqCRjJG4Y42Awn81j6lP8QP3wrMrA/qNd0jRicXOK66nJF18+VAytMsl28O4x5PnU6n9L/OljcPKv8S51J/tcs4CbSwsICFhYUyIOH2YKSTyU/cG6woijJ7cHp6GjMzM5icnMShQ4d69hymbvY9vAgNzmgAm742sPX2Osr3yG6PbOhIH7od7uVR/pA2fbJTJ8JYP7dvdI9W3uP18d/qH0Y8G9kB+my3cThejUajJ1hHO59+O4PMRVGU9b63S1mppzWTMpKBHAdtj//33zvZ3VU468ATf3PwVMFoZSJhXFVZn5nhoFFBMQClyoOzc1R+urs/iYuBp1qthna7XUbrdb0mn0vFrGUAKA1otpdClo4VZ310z6doJlf7hApajQPWYXx8vBQoOlNIMCJK4cWx0P1r1OkHgNHR0R6FwiUQmt65vr5eBr0I1pMGCPs0Gl+C7SVdOP30U8BqBClNcFPvxcXFnsATx4Nwh4X3qwLlcTXO+DwX7uoocNy0PsvLy1hZWcGpU6e2vUnwoMCFSBUfVzk/zsu8n4YwZ7m52ewtt9yCW2+9tVxip4pDnxMpMvIVZ2+mp6fRbDZx6NAhTExMbFNGFPocO9aPAVYqNKA3iMPjKnQjOtDlPsBWYMb7UmnZecCNW/5nIFh5jv0K9L58gM/QzAWtB+tV9VzdV6BKXqsBQqgs9dkTzfTgs6sCT1E/V8HrxmP9ric0YMY+4ayTZ74dROxUf+qZfo5BZIhUBV6UJjRDgfqRzggdXt1vRI3fqGzSi2ZkRA6zG8479Y0aro6IHqtmZqsMMT3Wz/hWB5j/tR5E5IRoPaqeH7VL2+QZFaoHdSm/6mLWR51ZDUKo7NBJQc1YKYoCCwsL6HQ6uOeee9DpdHDeeef1ODOcbNtpf6+DHHxS9DPe19fX0W63sbCwgNOnT5d9pxOGGiSIlmAziKM2nJ53nqa9x2+gd9JB5TxpSbObfN9LjpnKB2ZljIyMbHvjLDOfPCPLbQ/+dr/E+aSKr5XnlLZUp0byzx1bD7rqfy9T+03rp8ED8tfm5ua25ZTcPoOBJy558yCTjgfPMWjEpTwMPrFduuet3q/yiH4Fs9g5cbixsVEmA3iAX/tY23xfOLAHDezrbrdbvtCKGYyefRzZ2vyvk6y0V0dGRjA+Po7JyUkcPny4DELpS6Q0mB8FT8gXKlMYuGBw069RW8Bp3e1I7wulFacd9Tsj/416i/Tn/gptfZ281f7031Hdoklxt0O0bLZfg+asw8bGRmkTASizD3kv3+bNLXE8g3En27gKtM91iZ22o4pf9X69/r7ArgNPrIB2Gr/VMFEnxGfOI8dHiYsDpTM0OuNCuEHKe4AtBcn7tJPVwWX9+FxdQsPB0JREMne9Xi9nZkjQ/sYNHxwlUK0vGZr1pXKu1+s9+27oOmz2LxW09ok6fUrsGqhh4InL+Fje6upqGZX1sdL2eOYG+1QNF223048r/8iR1PJZP6ajrqysbMt2igSaGgf6n9dGAqVK+Xm99bO2toY777yz3EvsICFSaEC810mVQxoZgwDKvQba7Tbm5+dxzz334PTp07jrrrtw4sQJtNvtHRUUn0ulOTMzU26aqKn53N9Jgy+UDxpw0jr63kleD6+P0pnTnRqoTicRTam87Pdc/ncZq4peAz48RqjRqOc0Y0uv831otH1eNxpPyk9qsGtAAkBpMOtkgcpgny32Poj6ysdOEckFgu1Xo5yzzfsZkV4B+s9SUQfylbq33nor7r77btx9992Yn58vjR1erxm6wPbgBvvKDRhmKDPrSTMsom8PDNO20OeRj93QU/6uqm9kd3jfRXSmz9LgkDq/HgzWMl2muMGokzEe1PFxVSeF10f61eWSl6WZJ1oe+5z8yG/gjE0T2XCa4cbA1dDQUJmJ6YEJPkN5jVsbnD59GhsbZ96Ex8kwLt+hYwugXD7C8WeZuzWc9xtcJ0T0Sbm+tLRULrGbn59Hu92uzPzWLG9ga3JCl9Y5bbsuiWhYx1IDkqoHGZBwx5l26PDwcPm2OmY66Qt/dO8n2tzKd/2CrJEd4t+aoRHJlip4X3kdOJaaDaUOuZahfOS8SieT9WQglpOcHoDSN5EBZ5zWwcHBkg8ZZOKyLLXbuVfUwsICVlZWtgUlXdazfuzHzc3Ncm+nxcVFdLvdco/YKJOmn21TZT/uV/Tzb6Lz/Xxf9i15YGRkpFwdQF7T8tRHZICSmWe12pmVGOeddx6OHDmC8847r9z7lDwV6U2nf6VBDWYDW5N0PEe/VLP1ogCN91U/343n6YfyOsovtbWpg3zyGOhdrl8Fn/ThuLicVH3JZ6ufHNmtKmM4ZkoDY2NjJY+yPKWHbrdbJreo3V5l0/YDg5ztdhsnTpzA8PBwuTWQtqmfvXRf46wCT8BWpXQjQzUa2TlKELyPwlcJm46lpuTT0WTUkMKchEWiYpYRlZsODJmES+x4DZeosX4e4GL76NCyDgBKZmu1WmWKY7fbxdjYWEkorihJyErMnN3pdrulotAZpqIosLi4WEZIfdkYZxdarVaPgKLhoJuNUvHwHIDSEOTrs6nYGAyrcub0GR7YUQPVgxJVjKnOZwTSk86y8A19ajTpM53WVICw74CtwFO0SflOUIG9traGW2+9tSdTbD/Dx8aPVxl52t+Rc6Mf9iuNm9OnT+O2227DXXfdhZMnT+LkyZPlHmdAtUAlz7ZaLYyNjeGSSy7BxMREmfGk/OQzMPwwY0/ryvoBW/uQVNGo9o/WS+/x435/ZMxpf+uz3TBVni+KoqetQO8bqtSJ0L7gMzR1mg4JgFIm6vIzLUuXwChtaDt05kadT8pEtmF1dbXHce03Q+b06eMQjVM/aNt1lika+/2OqjZrX3Ls19fXsbq6itnZWVx//fU4ceIEbr/99jJj05d8u0Ho9KWzZ7xHX8Khe7SQh2l88VpdPkMd4NlY7gixLBpqqjc5nqw/HfeItlTuKHje95Fx/a2BJ+UXDQxpXyl9qb0U1YlQGaPt13r7JKAb2tqGqqACz6tjDqBM9ydUdlB+MiuJBjSAHseJfaoO8ObmJtrtdil/ODnBTO+hoaEyuKL3j4+Pl7Smck0DCQfFea3SvQoG6hYXF3Hq1KmeN9lxaZXSuPIux1D3WtPZdw2kkMaoX3hOVwU4/XJWXu1S6nvde1WDTsxwajQaOHToULjfDO1t7o/i+tP1cSSj9Hdk52gfuHxRv0THqR9t+bPcdo5s4ao2ebvY/wz0cHUCA3xra2vlahAGc7nXD/eQ2djYKPe05ViqzV+vn5lIZxYaAxT6fJUrtAcYzJqfn8f6+jomJiZQq9VK2X+QdOl9hchf0t/ahzqZqG9z5J5ZtKG0HPrInODhJuO6zcsFF1yAmZkZXHDBBeWep5oZxQ/518HMJg8+cWxVh7EtHtTViQ7WG9g5UKe6UH1YYCvwSdrVRA7qEvrUmlDCOkb2nfs7vE71Pa+jnPOyPZ5BaNCpXq+XMlj7tCiK8rjqW40nsL/5rHPhK67OmZ+fx913342hoSEsLy+j1Wr10NhO+rPKVqnymfrhrL3lfg33h6oT6AKdg0flpEvTXCGoYvXIvBuWJBjNlGLEj4NIxiIDasYSiYspwAxQ1Gq1coaGTKvMBmx/q5XXU40DDdzxejWgtU80oOd9oxkPfIam6PGZUR/xFZutVqsM9kXBIZahAZ6IwNyYVQfPr2N5pJPIiODztO1aR17n+2V5PSLj3Z18F/KRAe9Cg22gIb3fof1aBaWb6NxOBhhwZjyZQsxlAfrmHVVMVUGXer2ORqOBkZERHDt2DK1WCxdffDHGx8dLGeAbzHtdWZb+9/HlmLrxGCkpwq8n1LmL+jQ6XqUU3bmMZF2VoRM51NE9GrDW82wfDVVVrNqP+hw33nVtfq1WK5f9chmPyloNikd9vxtluxuF5/3HdqpOOAioaquPMcd1cXERJ0+eLPeImZ+fL4NOXNLBcp3+IxrnhwFEZjnpvizUXxp4cv2u7fEZWHeOXY/yPqdp1YMuk9ypU5rTtvqzWWe9VvtHdaLzmtfV5WokR3yM/RovIypT71N6cDnntokax95fwNaEI+UD73XHVmUef3swkJNJp0+fLvX62NhYqS/a7XYZ1NJJQNbTHYeDioifV1dXsbS0VH4Y1NEtDGjX+TI4gv3ktqQGf32CzuujNg/HTrMVedwdVrVFudSHAQ7KCw+MuexwvnAei/pPeTZCFHBiO5W/In3dz5aI+DjS+xHfKY9GZbMtnCTnpDeDS5TBRVGU24nwpUKcYGNgUOmDY8fj+mzWS2Uf76HO5ERSvV5Hp9MpV1jQOT8XJ/kgYTfOetU9AwMD5YtwdLJEJ+HJexxjZvb7eAwNDWFqagqHDh3C4cOHMT09XQayfH9FoDfjyOmPE3MAesZR/UjWjTJdj+vEnvOC3xudj2QQ/6uuVXpVXtJAvPOzw2WEtjWyISg3lCdYrge0KcMoZ6n7OLmyublZZq1x9RFlIIOKKrP1Wbu1U91WoW7Wt432g9s4Xm6/e3bCWQWeIqcgusaVA/9rtJCZTa4Q1UAleEyzj3icxEYBSwbj2mWmsFEgUgAzcMA3X5EgeJ6voKRgrtfrGB8f70kN5rO5ZtoJRI1uVdjMdNLAk6+75MasHGRdouJ7H6gBqMTmGwrqsj4AmJmZQa1W6xFKQK/TqwaeZj9U0YMKh+gaN+BViOisNetPhu12t/YRYXlab9KWOwmu9Fm2GkhuoKtg9HawD9hvRVGUb2Xb79AxdkHST7h4cEbhwp9jNT8/j1OnTmFhYaHHyfUlAsB2p5C8Pj09jVarhSuuuALT09N48IMfjImJCXQ6nXK2h04KabsqKOPtIK9oPWq1Wqmoo+VtvM5Te90B8NmSKECjSsT7UOmTZXnwOKqX07UHWX0mVzci1X5jwEID9Kq8Ndjt7eJxLhFQfiHPaB/qOW/TTvomMur1HI9FZXigmUuNDyoimcblyadOncJtt92G22+/HXfffTdmZ2fLzUyXl5dRFEXPXh/a92580dkgBgYGembL6WSqsetL7VzfuE6I9D8DmZ7VobpK+cAdS+ovdc5dvuvMbGSca/mR3uO36nW/3/fX0AkyDUw5v+qH8ACE14cf1Ykqx8nTRVH02CnaNg+AM1DJLCadSOC1GrDWcnQCCTizMfHm5mb5kgkAmJycLJeS8c1d9XodrVYLrVarnMFXm0snBw8y1P7odDrlEju+yY77OrG/STvM2nTaZj8xwMNxj16ko/SoOkC3zWCgWVcnMCDGvRwJ0h2XxLdaLUxOTpYBKAZQfFNxXaKrOjrKjnWeVB7UTEg954EUh+tN/XZ9GgWe9L9eo2Xo9Zopr9e6rNE3AlOnUhY3m02srKyUS7UajQbW19cxNjZWBqKYYa57gvE3s6Jol9H5VUeadSFv03ZgNtXi4iIAYHx8vGd/LvbHQbCPzwVnI3f02qGhIUxOTpaZah68VzuQ2TyTk5MYHx/HyspK6cPS/zzvvPNw7NgxXHjhhZiamsLk5GTp06r+JKLAotqJSr/kCcoGtWlZb9dhTv9um2migCLqS9X7AHpoV30G+vpqK3v/O8+yPO0T1om6xXWmywith28XxG/nW+1b3j86Oor19XU0Go0yMMXxjybrdwu9R/d09r1fq/pf+4/9pbLuXHDWezx5JTXKqJ2pv/XaSJgRGnTyAILep8TjM4pRNoIqCt5Dw4UGjRpgzLTQdde6lIDlen34LG+fKhRXQLw/In7txyoHXxUwr/e1wRqp1etd+Hh5qvz1P+EBo4gm9Lj/ZtudeFmmzu6x/pxV0X7W9rvD4cJFaUKdaqcTrYuf8+sOisMa9bOeqxImkdMTyQGWqYEJnRlbXl4uDRZVcjo29Xq9TCemAp2ZmcHU1FS5pxOVFsvSjB01MKvaqIaQ0ovKkCqFyW/yYHS+akZCnxvRlcszfUY0dqrA/ZrI8fNn+1j6fi6RcnZw/HQJUfQMl/3Kr6qYd5qJcSPWxze6tp9iVSN8pxmg/Q7Xd9zX6dSpU7jzzjtxzz33lEEnzXZSPUN60yCBn1fZS6NY93dyY9dl9E7yBOgNRkVynuci45Lfzg/96D8qux+qHI5IxuhxLdvbr5/Ijql6flVf+nm1Aaijgd5lvVo+sD3wpPSh5VM386OBex8vdzZ0Gb06D9oXKysrpQFeZfiejRN4f6If7bB97BO+wU5ft65jE310tl3HRJ8T0YzbTnqt60u1NXUfUZXp1OPNZrN8MzWzMLj8jsExBpyi5YCsR1SvKrkR2c0uG7z9fnwneaH/q769Dm7fa339uVqW+hnsd2YO12pbS90Z/OPyeb6+ndlP9Xq9J+NBbTBOvtAPIl/reDiosxl4pEMbvRhgNzgoPKw4myAAsEUX7CvqVN32pSi29tvzpV+kKdW/4+Pj5coVLnGnvHcdzDrwW/ubvOtZ8NpODcywnqo/3L7XY9oHSv9Vdm7UxxGfRH6b664qvtX2uD/A74hftRzNSmS/azyDoFxU/9ZjHjre2k+sg/v3uwW311leXsby8nI58VPlg2sfaP/dF/y568CTDyKhwRc1TH1GWZ0O3beJZVN4KvNpYERT91m+MgmZWSPGfIY6NHw+NzLk7v98c4hueMggE39PT0/3CACuQ/VlGnwG68O2KHOoUU4hpP3E5+gMlxI/13jzHvYRFYASjgowhQsl7SOtB0Eho+Ps2Q9KmO6senBLBZcKOo4X327DunIWhuX67Le2lVC6qNVqPdlfNHDV8Gb93HFn+3U2m0LD018PGqIgjMKFjfKXKxCP6DPotLCwgFOnTpXBIuVL7hVD3m+1WhgfH8ell16KQ4cO4SEPeQgmJydLhUolze/19fUycwPYUtQ0iEgXruhUabJ9nrWkRnbkSGl/REsfWJbSqPOLOvz80FHwrAcPBOgrZMmbTr9qdCv98pyvnyc00Kt11nbwHPlL94nT/uEzdB8pykmF7hESGSs8HmEno7VKuXIN/EEyeKM+YJ9Tjs/NzeH222/HTTfdhM9+9rM4efIkbr75ZnQ6HczNzfU4isqvqptJ0yoXeXxkZASNRgMTExPlpv+6kWk0KeDBx6gt0XUq1/s5pF6eO+lRoMp5S5/DazwIp/dWjYM+X2VQdK07Al4f5WvXtf0mPrRsnfWmfKDDGu3p430JbOnwer1e2goaeFDn1zOxdeJLv/lmrtnZWWxubpZbAHC8NjY2MD8/j3r9TNa565770iC+v0Gd1W63y2yn+fl5LC4ulvtbAltynHtB6Wb/zGjSQI8ui/MsB6VNp0O3axhU5r2cUKKdqvu5cVL3yJEjGBsbw8TERLmFBZcH0Ranrol0nPNTVC+vr+s4fjsvR2U4jzu/R7ZBVE9Cz6sPpHA+U7s3kocsUyf0ms0m1tbW0Gw2sbq6itHR0TKYxLcu801q6rPQZ+BeUhMTEyXN0OZSu1/bRB7nnmzLy8tlYDHC2ero/YxIFu8Wm5ub5TJa9j1fwEKblf1N/zPyIQcHBzE1NYVjx45hZmYGExMT5WoZ2tRVEzfAlp3LclkmbXL6ePwm/asfxs2wyVdqV2k8QP125QWlfbXPq/paj7Hv+TzV91wGymxuosp28ExsBeurq3FYX+1fXdqokzGEZpqyjbS7dZJAZYxne/XbYqQfNjY2MDs7i9HRUZw6darMkGSGelW7++nXnfi5CrsOPPUz9v0TZeK4QmGjSKyRQarBD1++ogEDKjoa0upkqqNKZc1gATcxrAp8qdDnbIwbwPqtzB0Zby6o3JD0PtXfaqx5UIjXRLOM+nytJ/9H1ykiRUqm0XJ9RsbrcDZGojMcx4jMrkpN+4Mf1iEaBzU8+rUv6g9nMpbPeu13ROMS/ee10TjtdNxpmoYR357lwT0+nzzM1Hym5zebzTIln+XrrH2V41alpDw7rx/N670RPen1zkdueFLhRue0fH+uBwD0fm+LtlPvjdriz4jaVdUvkcyv4hmXVzpmzrduIOkzd4PdjGXVfeeiyO8vVNEP5T8N2rvuugu33nor7rzzTpw8eRLz8/Phm6ecD8hjQG8wWvU6nRJ+Ip2p91bJ/sihrHLeWB8/5/VXo87h7Y2cxSrj03V3ldzcDR1GMjTqF2+jHo+c73711nK0DtonLqMinc7xB7aWxUcO8m5QFEW5+f3y8nKZqaMTEdGSerX9zsXwvT/Rr76cUFxdXd2W7aQTAP5huRybKJDk46P0HsmASL6zTN0CQW1OHTddgquZTgyM+d6uVePJ49H/Kj3v9Y3GINIxkS2hv3dzbfSsSL55PbUtHJ9+ZQJb2xJQ5nEJrO6l2Ol0UK+feYlTURRlNhQdYt6vdMElev62a5cR/GjGEwMpURZLP1vzIMDlZ6SjeG635TlfMmBBuyR6KyWwFXhSPuOxKNhUZSu7blEbX+WL+0xOy26jqp3qvLYT7zi/E5oAQ93jZWgWTxWv9TtGqOzzvtNlpF5GJEd5nuOiy8UZeNKEF8pJXQHQz2bbDbrdLjqdDtrtNk6ePInh4eEyUEzaubfYLd2fdeDJHRtNsaXwo5PlzKT7LQHoCeaoMgJQRoDpdGqnsDwq2aGhofLVgLqJrT6DDiyjs+Pj4xgbGyvf0ACgXErHbCgOPiPI6vw6MWqUE0AZMeZAaHaXwolKHVSH9if7hTNkfC0xr9NnkfjZZ7rxrwoJNyL4rY6Z/nfDpVbbviGx91OVoajnNeJLRQecYXa+9YEzA0zrpbLVNwF42wCUswma5eEKwwWuQoURs2oWFhYOjOPq7YoMKj3Xb2bQy3SFAwBzc3O46667MD8/X/KZ0xqzJ5g5cfToUUxMTOABD3gApqamSt5Vg4lvROJbIZUGNY3c+Y+zNr7XEK/TGV2eJw16th+P6z4tlG/Kb/psYLvCjuhMM8JIa1qGZjrxGUq3qgT70bE/3+vlwS3yuGdBaT9r2do3zGKkgUyZqe3lM3W2bLfKrIq2d3Mf+/MggvTOPc9uueUW3HbbbbjxxhvxpS99CbOzs7j77rt73ipIGvdAD/ubM3c8rnqbEzd8wySX0ejb7CKjr2pGUXWoPlPrpNlZbDProteqU6T7/hHKx1VOK+vk2YZeX96jv11/utHu2bpVwWEtQ9umz/QyNYAQyQDeE2Uv8jsqU/Upz6utU69vbWbM4+x7rb/PfrOufEvb4OAg2u12SaczMzMYHx8vaatWO7OfEYMapJndyoeDgJWVFSwuLmJ2drZ8k93CwgLa7TY6nU45Rm7XAFuylo6LTzBqYNjphHThb332FQS0PzmRpG881c1xx8fHcfjwYTSbTUxPT5fLgYaHh8s3GHLiV/d0AuLJC7cf3S5124PXeUYH4RMcLEOdas/2j/So20j9dKrylzuRzqsuJ51viIGBM5tUd7vdMmOm2WxifX0drVar3J+WWWn0GVSXj46OAujNhuaeYuS3RqPRY5vTl+M9XLazsLCAWm3rRUy7cWYPMv9Gk4lEVbt4Le0f+qXUf+y3sbExAECj0dg2sQOc8VenpqbKDcWZKUr+18kAtcNYb60f2xFNZlKW+z5RLE+z5yg3qK89RqATBvo8p3f1tbUuXCbKNmpghvSsumo3E5kR/6p80XgDx00DsVp/5SFtP/+zLAYKuccXE2fq9TpmZ2cBABMTEyWf0W/VjDF9/m6wvr6OkydPYn19HZ/73Odw4sQJXHTRRdjc3MTRo0dDXq3yDaqw2/qc81vt3DDczX1O1D4z6oowUg6815UQFaf+J6gUNaJPxvS6+7p4jSA78arB7AShzwa2or5qcEX9qQQfMZ73eVXfVwnCiHj6KXp/3k7QNu7k+FWdUwZXZ0KDmGpwKL3Q6N2pv1QAVmWOuMHixrw72/sdO9Ux6jM3dPqNZ+Qscq8KXcKjZXPcuESHr4DVN+A4/znf74bWqgIYLli1zc57VcaktjnqIzcyq455H/brW/732SSn1X71cig9+/U7KbqIv1wOqOKNsp+Ud/2zW/6qUpRRGeeivPcLtD00dvxNWNzUXzeUBXoDESwr+rhsBLYcMp2Y0QkkH1evc/RMPe/YiXYjPqkqs9+z+unUKh71/1VOpzu0WuZOtB3x724MwKq+3EnnEj677XqdtOE87Py9U5sAlAEOZllw6R3lP4Ce/Z2qZOdBBvuE2V+rq6vlPmy6/1wVbWog2e1qpb1+yz21fH1OlQ2qupx2MANKUTZk1VISr0vV/3563nnOP1FZSuOR3Nit/lA+ruJRr0s/Xozu73eN+k/8pi4dGBhAq9VCvV7H2NhYmQVVRQeeLEA+VpvO7QpgK+DgGU8HUbf2Q5Xs19/9aEV/U2/7W7k9wOMrfshnfCM59yT2Tfl3Yxc7XM73s8Wc/vV31XP7HWcf7ra+O7WvSpZEvO16Tu3YKlnK+nr9ga2x9Qk+70ddjkebygOHLquieEk/+0TrR3prt9s9bx2PJpEjG+m+0rlnHXjSzB13gghlElVQGj1kRFfXETMyyr0ifLZCO52f6Bo9rplPFMS12lZm1ujoaE+5ZGpGovUNIK7cNOuKbfUAiS4T0zZUzaZQsHMGnn1H55vRz2i5ki4n9HOsJ8vQIJ0v0dOIrmYiaJm61tWNlUggcPwdkUBmP2kElkyqUfyiKEqDjFFjvooy2iiY12sgsoqmNcNEla7X8yBtSOyzCzsJEBVGvgaY9KMzKfphwGlubg6nTp3C2tratowhljs2Nobx8XHMzMyg1WrhwgsvxPj4OI4cOVK+RtuXz1JB+95vkdDVY1WZBpoF6PucKa2prHAa9L7yDELSr75ymOe8LOVZYGvfKH2GyjFer/Xl9eoYELxXj3tGgs5C6yy415kBRpWJ5C9X1JzZ48w6n6UzXGyrzlwpbUWGr48z/yuNqyNcFWQ4CHC+pbN66tQpnDp1CidOnMDc3Fy5xwEzRNQh0LGnPlLHVA0rNcK4bIbLYLlxMGWvZgZXGX5qUBE6Hnqv6339D6CHVl2XRPTXD1FWpN/nepB1Uh7U65QvtR5qK2j7vT46Vm6Eugyrmj32+mu9CS/T2+F14G+dDR8eHsbGxka5FF5pjWW43QJsZR1zv5NOp4OBgQHMzs5iYmKifGPT1NRUuSG1OgNfC6BO4F6Ip0+fxtzcXPlWWM54q9zlh7PlpCc6Lq4fdWZdJyx0bHTGnlCa4/XMOCe98Fnj4+MYHx/HxMREuaqAs/utVqusg46d063a9FoHfb5/CLXJvd4K9yOq7IadHFuXOa43vf6qM7UMd1z9Pq+D0j/LpB7nkrrx8XFsbGxgZGSkpKH5+fkyO4l7qHLc1S8bHx8vdYfaBDqJUcXDtdqZPZ+Yldgv6+lsAg37AVXyURHZFk6L3W4Xy8vLWFpawvz8PNrtNur1es/2L9zvkrzMZ/HNsUePHsVFF11UvnyHe6fRllV7MPLJIkS6ivLcaVfv6Ve260u9zzOcPcDjdLYTvUR+b+QH6zP0W21q9zdZvv6P6EDtYfruGhTUjGuVyc1mE91uF5OTk+U5z1oDzmTFqs/uqJJnxPr6Ok6cOIF6/Ux2VavVwtGjR8O+3S3dnC3OeY+nSOgDu5uFqorI6n9lUj1fxURR0EM/vsxMX+NdFeWvUk7OPPxW47Pqc7b9HfVz1Tl1OL2/vd5ed2+TG/67qaujyrFQg7tfmZGxUXVdVaTf+17TlZXOdjM2kfO723u/VlBFQ+5oUUExwl4lJNVQZqYTP7qpoitENVz7GW48f18FGPrJHj3fz2jeDSLjZTfBlujYTrKnX52qDPx+fRrJEh87zZBRZ5TnOUmhcuBcxrBKfn0t8S/7joHBfrPNkTHss3pRsIXHdWJG92jxMiKaq9I3eq7qf1R/bbvzy06GcFSGn6uycVwHuLEb8Yq3za9nuS5PXW9GddZjLC+SQZFR7ud3Y1cBW7aG0487DpFt52Ur/Wq5y8vLqNfPbCjOpV1VdsBBQiR3ODnJ/Z1WV1d73hLmgU1C5av/9mP+X58dBQS1rlrf6FoGLTTjidmQKiui/We8PdFvrU8//opsvio5UCWnIv1ZdW+/cvs9y/mgnw6KeCgqz21ZymZdsrW2tlaOj05ER/JPnWTKB19NwHv4YUCSn+Hh4R1l4UFC5Jecazm0kT3wB/ROAqpNWRRFyVe6d5pnEVbRdr+2VCGyv6p++z1ng352/G706W7GoqpPouMup/rZ1c4/ar/yeKTz+V+3nvA9M50Hq2Rn1FdV59VOrPLNzoY+zpYPdh14qsog0YerglMHn1FN/maHqnM6ODhYbnCl+0toZkW/9G2WT8Z1xuNxz4TSVxrqGxx8Rkbb4QYa68SZXl9uwDarclAB7oYAn0EC0dmpKGuBQTQ+Q98MxVlq9jUJl+eUqXhe+9mFnxKp3hMJPCVc7UudJdX+I6P6TCmfu7a2VmZKaFl0htg3qjDZJyyPxiufz2d4RkmVIRbRXNUbPPYbolltHScXNMoDvqmrCz7NzGOf9XOAWZfR0VFMTU3h0KFDuOiiizA+Po6LLroIjUYDhw4dKpVqrXbm7ZJaRzWwOZb1er0n482NMbZdZRKwxW8+G0K64TMifmGdSM+6/5I/27OmtO+i+vgeTzoebJ+Oi9aHdYhmWXmuKIqeNw0qXUT7tfG88irHXcuks8SZHs6UMtBEnuGSgJWVlfKV6bo/nssChfdVP0XM8z6hETmB+xVVgQS2yzftBbZm3zjjzT0QKS/5BjqlbXUy9O2f1NHMYODeFOpgOi2yrsD21xb30x3e7ipZHPFNv/uica6axfZZRaV7/lfdom3upzN5TNuu9/Fb9b6WyXK83kS0F4f3l0L52vtf3xTkTqraN6yPzvT6/onu6LL+agdqeVwKMDIyUmbWqfyL7IuDgIi++Xrrubk5zM7OYn5+vtzbaWlpqWeWnffouABb2aS0n8mzXK5etekwgwSe9eQTAtQVer5Wq5UZlY1GA5OTk5icnCzfaNdoNMq9nfj2JM1Gcl3ar89070blL9p7vC6SJc4DTvM8zmPuKLrOrhpHr7M/P5KxQOxf8Xodd7V5PAvdn0FeO3z4cLlZPfd94hLWgYGB8uUvXCrHMviSF1+5oX1EnmX9O50Out0uFhYWSnrzPbwOOnYb5HDQjlRQ3g0NDaHZbJb7221ubpbZZv7cVquFQ4cOYXp6Gq1Wq8wCVf7WCaF+stH1EY9pdrse03qoDHZeiWIDWobXSW0DYDs/uG+qcgnYeps2bZXInlV5o9/aRyyTfairiFiWyh9fGeP6mmD9or6gzzQ2NlZmPq2vr2NqaqpcHcAXTKi/q+N1NvTIenOigHGLCDvZTnrubOpwVkvtduOEV1Wkn3GphmlV1FYF7tnUQ407r4c/u2omxhVVlfHmRKxlR2Uq40SGc4Sq81Gb1DCJiFPr54ZvVL4Lwd0gIlxnGFfGem/0idqrjhOP+cxfVG/PqojoNmqL1/ugw4VmZFT1G3OlZ88YVDhPaKYT0/Rp8NCJdqUU0QE/HgzaqZ1VUHo8FyMjCmh4vfvVS3lkN3Xld0S7OymFftkxHoCtGs8q+VZlsGtwGNiandUZHs1+0P7x37tp49cavK3sb3Uc/aPBDtV3kc510FjRj97fT3/2kyu7aaeObdUY+/ndGmXR+aqy6Mj1K6vqvwam9JmRvvPfTusanGK9eJ4yMHJwquwW/181/u5g8NkeSIjKUNutypZwPU+a1cwf0jiN9qpMoIMAbTeznehk8LdmC+sEgvYT269BHbedq+xq7buqcfA663FdWq37k+isfRSUrqKTfnqbbdfrdpJbEdxO3una++o550KjVbxUxaMAttm93DaDL1NqNBpl8Gl4eLjkL6fHaMuOKHikNMFJI9KxZylW+SA8d1D4uMq+IyK69msI8oVOkpNnKetUbzOYHL1Ndjf0GslxredOsjn6H8HrEJWr9Yn68mzpQdsb/e5Xnj8z0pnafpebWge9Xm2GyBZWGa0BIV0yrUF3t792Ctrf16ii87Oxwc/5/XmRQ8JK+Cw9z+tMnDqpnJFxhtCZVM9EcAaIDC019HjM61+v13te8aqpZ1T0vgcKQeLzSLOWoWvOec/m5ma5kSZn/r1d3h7NQtJosJbB+ujshBJ+1CfeZ/oMZxrt72jm0++LGEIj1pq1oWVq1ky32y0jvexr1oF0wZl3ra/vD+O045kn2vbIqOPsv/aztv0gKMxIQCo9+Kyh3qP/VQl62aS/ZrOJycnJchYWQE+Ef3R0FI1GAzMzM7jssstw5MgRXH755RgdHcXk5GTJj2qs0hGhQcOyKIjX19exsrKyzYDSOmt0X+kl2s9F6QPYnhnBczzu+3Cokcz+1SCwZlPpum/vY5WLbvDzHPnds0KLYvsb23iPZjPomEdvrGM7fQ8qviWUY6PZU26Q6r2aAaoBKNKJ8q0aZC73tT27gdOz8vxBgRs23Bdnfn4ep0+fxokTJ3DPPffg1KlTWFhYKPf0UCddDZzIoeB/zvjRAGKmFJfUaMYT90t0WnV+UfmrvBjxZb/rFWyb0grvd5tD9Y32Y1QmsMVrqq+iZ6hOU5nhtB3pmqrfnm2o9VK+dOOeM6NVk04sk0th+vGW05s7HXoNHSPSCmUDj6s80udRdnS73W17W1Cur6yslC+qWF9fx9DQEMbHx3fMhN/PYP9wrxf9kHfVplHbUmVwvV4vvz3rQT/kfeonl9M8poEIgrRGnaXLQrjnW6vVwsTEBJrNJiYmJnocZK8HsJ0GgO1vZ4yyr7jvqmf9eCDSnSS127xtbif63kQeVHe+cpvQdbnycZRlGT1LJ92qbEx/rvICbZ6BgQEcPnwYjUYD7Xa7fEuw6mD2M5+1urqKkydPlllLzJDVFRwup5its7i4iHq9Xk4q6oqEKhwEG5pwWely0v2miCbUJqUdxYyXWq1W+j2UeSyHeyOPjIz0ZBaOjo727I2s9fH/vMbp021CygJtq+t1zZR0fogmtyLwuNuqyifuN2qdSKORDt5p/PRaHUuVJZENAfSuPPD6cAzX19d7+Jkf6kf1b5jdu7GxgYmJCdRqtfJNkfV6vXye7pXKzcF3C/pQnU4HnU4HKysrO06osZ+ihIJIBu6Eswo8RYxTVclI+LtxxGM6kCqcdZCqGqVMo9dERO5MpkQUzdR6ec5YOovpz4yUkgurqgHzPojKJlxJV7Vdn+GGrD9f6+hGbSQ4o/uqDFTtS4eOibZDiT6qF40gN8hcaCgoKCN6UaHj5Wldq4yY/Y5+9d5JMTj/RAK8VquVmw3rUjlge6bT+Ph4mZ4/MTGxLSU/Mrh8Fkjr5g6UZgdEgbII3haXWU733h9qYGkd9Fqe61cP7fed6h0Zuf6MqB/1+E507OPtS3J30gsezFLZ7g4Sx4vflAtno2D12YqDxq9EVb0ZdFxbW+tx0Jk54bPO7Pt+8pHXufHojq07uaxPJB8jXiIi3RydJ704HWgwSfWE2xbOx/6M6L8HNVzmaRsjQ9avVbmluszrGOlalScanI36hucdVXZCJOf8nMsWL0fpxXUw+TfSparX3eagvOdyBa1TtOfMQQLbG+3vxJcBOG2os0MedH3p/R45PlW2mjqRkV1MOqDzxAA0P57x5BnQu7U7vE56bdVEtP6OeLHq2VXyyuvX75lVbfDyq/jK69zP/vRn9uMB9jsnZxuNBlZXV8vl0sPDw+WLKFRHM9uQfKbLclxOUe6SXrmsmxNO/TYY36kP9zP66ZPoWKT/NNOFkzwcb8o95UWdbPU91FS3+3Odnp2neTxqw056s5/9F/GO3uv2O1D91jh/vj5P7UW9ZydbP9LR+j+aGI6uicrRLCW1I9QuAXrtX814Is/pPn/kQWZC+eT0bqDBwnPJmLq3vLrrwFPVzJkL4mhgWEnfJ8b3emLWARmpVuvdw8gHi8f0v9apigk99Y3PZT1ZL65NduXnZTvjqOCmoeRE5+sqNXWcxgUJdiel7Aam9rn3S1SGOwSezabXR+m3rH/Vff3APqLhVavVSsGrQQq2k7ODq6urqNXORP99TzAVFLxHZwqBM28GYNlqEBORge0CLYqIHzS4gQP0Onn9HNSi2NobS/t2YGAA09PTGBwcxMUXX4zZ2VncdtttWF9fL99yc/ToUVxwwQU4evQoLrvsMrRarXJNMz8cG3c+NLuGM2ysP8dbHRStr2e6qZxRI5+KwjNFlFd0zTbvUR7xPma6rM9mev/RsAa2z6j4TBXbpca9ygYtS/uB9+i4654sXocoSMU+UNlI44nHda8Al8t6vb4JS3VCrVbbJkNdHlcZ9dF/vb+fIXYQQJm2srKCpaUlLC0tlW/K0Y9uUFxlOOlbV9Wx09k5vk1H31RF54VjpmPM8XN6rzJQHZFRqGOu96uc0rGNgr5uaPkz+hnHLNNlYlWZHgzi8ao9Xbzt/fqoKmuC9dK90lSfeZ3deI/qq/dxbF1WeGa62l7+fK1TZE+oPqacX15exsLCAsbGxsrZbWbm0IbbKativ4F2D19vPT8/j9nZWSwvL5eysNFolPoJ2L5Xmi+xoy7wzb3VfvZgHj/MsqBu031PWV/VHXwJyPj4eLlcfmJiomfjY8oHt2VJH5qJRZrwpcFuE7qt4ra5wh1BL8fvcSfO+aWqfJ6LZKzLJbXZ9XlVTnO/53o9q/5zQm9qagq1Wg2nT5/uCQ4x2OnldrvdciJDMw01AOIZ2Aw8ra6uYmVlpcfnqdKzB0n/al0jua9QPajnPchAutE3LPM/sMUvo6OjZXYh93jySdpI1rIMrX8kn3m/Bia0TLcjPEsqul/50/9H/Rc9U/WOl60+H+8jz/jEUVS21plQGaEBe/oebhMA2GYPa9s0xsEyOW7U1UVRlPTQarUAAFNTUz1vphwYGCifo3pPl6P3Q71eL1ecNBqNco+wiP9c7pyNb98PZ53xFB1zJRAhMqSUGZVwfZbSs0+83Ko6qoJxgqx6lhKaKsKq/oiMKK1bZOy7M+gGtt4XBc687W6ARvWMvqv6zvvL76kyFLWtEbFGRroaGVUZSO6IFsWW068zap4F5XVgvTwgWDUTFyn7g6Qc+8HbESktXud948KUx/Ta0dFRdLtdTExMYGpqqnx95/DwMMbGxjAxMYGZmRkcOXIEhw8fLg1VHXNVwBx3pTOOoztBWscqxebt7ke7VGwRfSiPutKN+E37qaq+kVz0/q2Sp45o7KpkcFQP9k1V+e5wq5JXORbVSY0gNWBVyWswzZ3iqv5T7GQURn20X1FFm/oWIf/oppvR2Krx6OfUwfXZOHc6fAJI6xrJ46ht/tFzeo3+9vGPdJPLgihrLqKNfgaX8n1k90R8zmNaB7dXvC1a1k719esiG6Kq3rt9hstTbV+UcQNszxir0rX+W+0bBkVWV1dLR4y2g05O7PfAk/czA/NsGzMWNcuBy6Cc5qtsHbVrPTClWS2RPmVASp1ltZH5TA1uMcOJGU/+pi2nC62nPkP1jcoBtcUju1npuErORPaA02k/muynw3Vcq3TMTmVGdYjk/W7rGPUB+WZ0dBRra2vlOGlWBctxfqS9DZyh2dHR0fI3oTY46Zr6J3oZQD/Zs19RNb67OR75Tmr7cCmyTwhqgKJW276fmu9vq3D63m0/e12j3/5xHol0+U795c9ivVVeqazyIJaXU2X/Rvo6kjs+mcuyoolYLd/PeyaWjq0uW+VSSS5jpjwtiq0l6uQxBit1Ml43gO8HTkZokk80NlWytIqOdnpu+fxdXYXeqGZk2HlF1OhRxUJlpY1VxtMgg0cc2UkapIiucQNO4craHSWtvz7D2wv0psvp9ZGidUL0zASvgxoKPK4ZYyyLhMe2exurjMSozQ5lIhK0Z2JE9VfGi9YMu7JSA2Wnumj2BZWmjwMNNTeuddxZL35zNkiv91k0p3uv30GB00E/IRIJb54DtuhBDa9a7Uxad61Ww/T0NI4cOYLbb78dwJkx4/I6vpmDe0GMjY318A/fvMIlB3xOlH6s4L2uTCLD1Xlcz7mx5AEPzybw7K/IwXPei3ga2P5mPOU7HRNVWp5Npent3gfaPq2vOyZ6XDc4rJJbOgYcb5avbWA9df824IxCHBsb63m7DmeXNFhM/aB0F9Wrn6F1kAxeoDfQWRQFVlZWsL6+jqWlpfLtV/y0222srKz0ZM76eDptqr52o9cznri3k28aDGzJSzcSNZCl7eHzSV+u97T9zHDheepJr0fkjCuf8JjC6+V87zLCDdWqeuu10XhG9Kpj4vLD5XF0j9db5YuORVRP7y9/ho4j9TFphE4Rs3V8Brkoih4bzm0uvVb7aXNzE6urq2i326jVamg2m+UMsuqd/Q7t0273TLYiM7nm5+dLPu52uz3ZRvqmVrXvooAO79FgEDPEnN+Vhjc3N8v9PqgnaF/pnpkAylny8fFxjI2NlRlPfCmIygZ9HsuNbFvtI+XhKKMmqr/KM+dVHwOnFT2m+rWf4+r85jS4Wzuryp708t1GcHnbD2oT8O1ZzFrV/S05kcE9aHVPVcrfbreLdrtdblrOza41yMhMvuXl5XK/J17D+3bql4OAs7H7ncZox66srGB1dbU8Th6k/uY4MMjUbDbLLCffO9MDvVF99ThlLv0yl8c+yavluC3on2ilidelKmikukv5POJb0q7uA6l2B69znep2rt6r592v57NYvypE9pTTQL1eLwNIHF8GhZeWlspMp6GhIayurpZ+RlEU5Wof7q/JN6NykobP0PoQnu3quvhsePJseIDYdeDJiUcHqJ/gdOGtA6jHouiiEoTPvERCXh1LN+ii69xgUwOGBOdBHkVU34jY2H8sQ89FBqmWHfWntkPXfvK49pn3o7bFz0f1UCakge/HI2PGr3GjXkGniN+aLqjXe19R4bFNfI4GLasMex0X9jeVrAvZqE+8rIOmPHdS+v1oYqdy6FwAQKPRQKvV6lmXzCATDVUVoBwHBqhVgSk9ufOo9XSnymVR1E7n10gpKi1FBn8kvJ0GXfFE59g+lVPkDTrelHOUE5riq853xG887rMjEY9qv0X87v2s7VAHlW3SYBHbqv913Omg6rLZSKd4PSJZ7WPrOBfleX+B/e9vwuLeMPwdvRGLv1U+skxguxPDazkx5BlPzgf9xoU6pJ8zV5VdyOuitH41uLUO2mb+92WjUb3d1onqr/XWa/we/q4yvqMgrwYJo/Lc2HVjWOum9WN/eDCA7e8nJ13Ou2xhvaMld9G9/NZ+UTvDbTEayqurqxgZGSkn23Rp7kFDURQ9y5G40Ss3i9VgatVEa9XEC/Wo8qw7gq4fGXQAtpaacxzVzmTwQGfk+dnpZUCsXz896Mt8qzIqo/5UmqmybZznq/SJXhM9x4/x2+m3CpEdWVWeti1qy07l8Tgd3Y2NjW1jBWxlF66urm6bpAO2lhKtra2h2+32bJCs9gH1PV8MwDfqRT7XQcJu5MxuZRF5kc6/+j8MHnS73fLlWx5I1oAwgG0yoR9daz2jSQCeVzpUm9t1sf9nuf2WlKtejCZ1+Cy1Ez1u4GWp3lef22Udz6v+qdqSgvVjPbTvvC81/qD1j2QO/7uu5BI7Tq4wUDw4OFhOwtJO5sSLbnEBxIlC3lccn8im1/51uXNf6NqzWmpXJdQ9QBPdF1WWylF34mcZVUrBCcG/9TkkFC1DBbgrM1fokXMJxPusaB10BqFqkKqEgT7Tmbgotqdhaht1E1klQtbXs5ScqauElO7TovV0YaT9oESvQs2DUt7/Kiz0OK/nJoe1Wu8byiKFprMrukliNCYufLUd/ZQ+n3MQ4H3lhl9kxOp//61tj4xZD+rpWNDQ7na7aDQaZdSejgvvcwXEZ1JBa9DVFanWNQoEA9sVBUFjV8effaRluXLSsnVWRMtSPnTZVkWfmnEYyQU+R8tTRax19aAq+Ytl6ey2817VDJXzh2YPFsXWWnQtR+unLwdgsEl5mLyrTpj3TRV2ozTvC2W611A6UQO/0+mg3W7j9OnTOH78OObm5rC8vFzKPG2/026U/eNOogebOC4efHL693JVxkdtUz71elP3caKBPEUD3B1dfjvfa2DTx9xlWDShE42F1l/LLIrtb3BzG8dlh9ZbdXkkuyN7yQ1srYvab1WGs+veyK5T+uO15F/ShAY71Fjm/dEYRxNy3j9q2zj9HRTQVtvY2Ch5d2FhAQsLC+WsNoN4dA6Y2UDe0++q4K++dU6zXzXzlOO9trZWZlVp0Ert4VqtVmatTE1NYXR0FBMTE+UkEieQ6Cjrm+y0DJffPK7ZvW4HR3on4vdIjgDbbZwqu8Zt+shGjXjNx7dq0sf5j/8j+aLHPfjm10b1U2hZzF4lbQC9b7Ilf5HuKF+BLdvKdTL1iC+x0+XeGiQ+SPwaQcfQaUSv0WNKx+wn2jrMatzY2MDc3FyZcVav18s3RuqeaZGPqnTvdmpEE0pjqrudbtXu439tl+7n6f5d9PH6qB1CkH/8xSj6XL0/svH5v2p1jmdRue+oupd95W82j/pPZbPqc374399ASD7jC5aazSaKoii/OeGiAVwti3XhiwKoe7WuvH55eRntdrt8gyoDyVV9q31/X/DurgNPymSR0I0qyO8q4tMZjX6Bp2iGNjJSIyHuhosej5yNKsWlbVQC8vqoolUm7jdYTsCR0ogYVxFlGZFAVUl4cCVS3t6vURt8fP1/VHftQzcmon73sqj03JjRcnUsOB68x/vU/0fBCg1iaEDNrzsoitTHWlFlSOn5qI+jMdfAAgWxvk6b6dwUqKpQNavO66zPdSdan69LdpxOqnjf+UJ5WPvPsyoj50iVqdezKtDrM0SunPUY/2sfu7Huz6jVepe6Ruc0AKtjG8mOfn3HummfadBIl9JxfDTDSQ0o0oMGJLWfI/rTPqxCVRv2K6p06draGjqdDhYXFzE7O9uzzM4NFOdXfqv+1ePs/yiTRcvzIKXWWb9ZdpXujSaDvJ7aFi5H8nK8zT5x4xMNkVzQPoiMr6id3i7n54gno7bzuTqGTq9ejvKdyxv+1uNVdda2eWa4Br51wpG6Vm0g8qu+HIbXRu2IxjuiE8qwfjbTfgfbwAkYvhRAl5Jy2YU6qarPoiCt2nAeMHYa18kV3YcHwLZMGD6D2RZ8hTuX2umyLd/QPMp+i2ytSK8DvXJe26i/ffzdfvcJaL+fz1G4c6n37MQ/bv87XHZEPkJk91T5AX5t1C4ddx0jHX/2ldIC5SzLoD3ANurEtGZSRB+3ISL9vZ95WWVflb3g9ld0b2RnMYN5cXGxzBJjcEI369ftRSJ7uCoQHfVrpJPcrlJ7Vf0h5a1+2TPqk7Ictze8Pyk7mPXF+lEGRjo4mtgAtrJ/Iv72fmA5fJb3nQfIIh2kY6rla5vVruJ5ykpmk46OjmJz88x+asxQHBoaKv0mLYt9r7JHl2freNXr9fJlHfoCGu3biHYje/lcefWsMp4UkbHPDtdrtMPVKFFDllDDJXJoPVChA1z1USLSe51wIwaOlFSVsQf0RjXVQFNGjrKl/JrIAFNC9r1noiwo1oH9VqW8tB4uGPlczpzpNfytQlPPR89TutHx1ZkWbSvv0X1g/LWsTiM6DgDKvYa4hlr7SAUiGU+Fgxpr/jwXNgcByqNKa/2M/Crl6mVGqNVqmJycxLFjxzAzM4MTJ04AQPl2FNaFKfqkMdaJY6IGEwOJbijzHn+rQ2QcKh3pDIUrtGi/mSpZEj1D73Plp/SntO/05HXwdvlsssoLT5Xnc9RAYR9ovTSw5gao8qwqMtKU8nJR9GZouo7Q+wjyospQnSWNgohsU2TsOVyeV53bj3BDbXFxscx04huK6vUze2k0m02srKxso7lI97g+LIret6W4UetL7vr1m8qWqoCD/nZ64D08r/sYAtuzI5QXVca5zNMArPNgVZ9Hx/276nz0W/tc66XXuNOu7YqMW+0z9qPLyciu0fN6XVVfRJNrzITQpTwAtr2VkgFmjgnHQd9iqrKHy9H0DVzMptBMZqev/Yput1u2iW+y495OKu9dp1H/cSKxyvb12XZg+ySOZlJpZorrWj5ndHQU9Xod4+PjZeCJAScu/+EeJbpBbhRIcr73drg9UaVjtT0+9qqzovMRfVfZP/5st+ujiSTvb70+ekaVLallRpmkkaz0ejt0k3G+0EX3e/EAgvIo/+uSHu1j9gezLTQoVdW+qnP7Ef1sZNet+h3pOtI+eU11L9/UXavVSjnBvmRWzMDAQBnwJR9WZSFHsiBqj9Iz71OdTB2l8tmz16PJWtdfujWE6l6W44FM7S/PQtK6O4/psWhsovFxO8BteT/u8jeii+iZnnEF9O5P60vu+HZTbqPggVzSBXnPZZ4mo+ixyDfZa34858BTFbwj1VnwwAyVkypMZZyobDW6WH6k1EgQFLIcJH8DgCtA/TiiZ0XP9YizOkfuNLmwUgbmdcBWBJjCRw15X36jddEyvc5RBoM7cyyDmwQzU8Gfpe2IDH4nbG2vzshqe/QaDTypgFAh4c9VAUZj18eez6Dh5W+J6GcM6HMOAlwR+jn2h9OCO/RO11Wo1WqYmprC+vo6jhw5gkOHDmFxcRGLi4s9xjRnSjUYpMsLlOcZeGJQSmnYM4aitjtvMsXcjWSWRTml5SiPaj/6ErYosMN+YV9r/2mwSPlQedn712emeY8aM2ooaB9UrUcnfLaJ5zwYxY+OB9ulzgufpXzn8kH7nP1B45bXugzls9mGyDj0fjuoULpZXFzE3NxcGXhiivXw8DAajQaArTT4yCBjefwm3QPbM1hcv/kSee13/V1l0ETyU3+74ct68LXqkQGo96vOiNqpjr3Ltwj+PP3W484rrpu9DA+0se76DA8kKG/5s72+bFdVJqW3zdsRQc+R92i70WniUjjlV+172hc6+8+xZZ1o63APJDqyDJQwI4h0e1D4uiiKcrk5lzu0220sLy+Xsk55SgN35DsfIx0Pt0Gd9wnVsxp4Is3ppAF19Pj4OEZGRtBqtcr9nXTZlmZYUaf6uKhTHNkh+h2dVzsvsj0dbov7/Tvpi6r6uQMe+S1eflW7nN8iGVMlo7z+kQ+m11CecPxqtVo5/pqZpMEnt6tIk1yK5+Pg9ltVuw8aor6uOufHnGb50czDotjaH5X9ys3GWR6Xmw8ODpZBJ25XwWyonWR41A7/sM468Uc5S/qPMreiwI1++6SxPtN9QbedqTe8HVXX93uG1sntymjM9Hr+dlm2W/pW+aHlMvAEnNkftygKNBoNbG5ult+Li4uo1Wo9y69ZBy5v555hPpHjPrDGE7S9/ert/XAuOKfAU5WA1/Mu6FXYR1FZNwZpzFQ5XDvNELiR1k/RqfKgMe3nI6O56nk6uPpWCJa3U99Gfcj6qSD3tMaIKaqcjuged+Rd4agQilIOq9oYGQcUUBEtVUXSXQlrcIn/2d/eD+6YqDLms9RAj4wS/+/lHVT0czB2CqxVZRJybJvNJjY3N3H++eej3W7jlltuwdzcXJlWTEWqQRBVZJGxRZrhjLemlDIw5bQYKSvSs55Xeqwy3t1BjpSHtqNKmPejHzVK+PxIVnoZLkd1xtEVK799GUZkOHgfKF+RDlR+OD1om/m8er1eKk8NLPA5zFLkORpV3DNG+VaDX04r3pYIB4V/lQ5oiJx//vloNBpoNpuYn5/HXXfdhZWVFQC9spT3qwx2/tagpG9OrB8N1DpvRbpX4YEIpRGXt15mxM9Oi9oO7zu/R/vG+UNlWZX+9+sje8VRZciyDpENoDzoba8qS9tVpcsiI9yfp+dUxrFvtM4MOnESB8A2newTZi5LaTdRNvDtWHxbI3DGKNfn+vjvV6hs49vsFhYWsLKy0hNginQO5aBPThC0qxkIYjAokt1K2wzu+RhRHg8NDZWZThMTE2VgW7/1LZcaeHI+U3pVOQD0voCnyk6OdAr7QvWkX+P0Gy0t9vrxeqVLr4t+65hE9a+SD1X2gT+nX3t3Ki+SpTo2dFaZjc6MdE7KRTpdP+4nadYTy2QwOmqH/96v2I3/FvlWPOfBSl7HCaNardazFQUzV7rdbsnXuvROMw1VJ59r2yJ+VT9SbVJNBojGUf07pRGnwajP3K+gbUn7nohscbV1nEb1Gbye/aWTm1q2T74pPMjnNoRPhvXjf5WLfPtkrXZm8n5wcBCnT59Gt9st7eCi2JqU0DL0LZM6lpp8MzExgcnJSUxMTKDVavVsbxJN4vjYug+hddgNznpzcX+YVqrqHk+V01kRn1XV+3i9K4J+Bq9fHxGpdiLPayaPLytTB80NQX8mGUTbpFHFKJXa+8sHF9gemXQFp2W64eKvwewnGDXw4mPnSsXLdIc/Mlr1uiol7bP0Khi0j30cybBaPxce3m4fY9bRhRChyn6noMx+RFV9tS/12G4DTxrAUdobHx/H6OgoHvjAB2JgYADtdhs33XRTzx5PFLA+Q8bxjui32+2Ws8bcB4P1IM+xfq6cFD4rS9rUJUa8jzTngWnytMswCvpItqkS1+MeSNF9UrReVD4OD97r7Ie+tVFlH5fEuIIiDbA+UaZT9CwdB5fRyo98BvuI5fJ3p9MBsCWbubmizs5qWT5WrH807o6DwMfKF4ODg6XBMDg4iJWVFUxNTZWZT1zW6ssmookYHSOlLw04cTmNZjfosnkvm3pC/xMuzyO5XmU8c5xdLmmAls+s6j/V5y7/tR3Km/oMvd7viXSLInLa/LyWGdk/PK8yz897f2mZLuuiekf/9aP87dmGrBtnbvmWNqc9XzbJa2gbMht1ZWUFtVqtXOJVFGdmgTVw5Zmp+xnd7tYLAZixyNdga2DebTsNBBdF0WOz0uEYGhpCo9Eo3xzLQKCPtfIcgwNAr9ymgzs8PIypqSmMjIxgcnKylAN0jjTIpSsZNDvd7cMqeRvZg9rGiG/UXnb73O+PsgdZt8jWdT6PeJF24k46xO0Jb1fU3n7ox6dV0H5SOc2gEz++zYG3IRoLt6E18MQyaWtEbTwIOrgflMYjGlXZq3qZvM0tJ2jbcnkxeZ1LW7nEjplOVW+TdJ7Yqe5q26msdnmkMiLyIYGtZV26RNMDUVpHnSRR3UYZ4tk6LEflYfRxG5tt0rqqvNMgmy43dp2lfaXgs9SGYH9G2VtaH60L7bvh4WHMzMxgbGwMp06dQlEUZfCRfax2vAYgOWnDZ+uS9unpaRw6dAhTU1OYnJws+9nlktKG6oxzkVeKswo8KSH3E8i8loPJztDN0ar2ZvBBqDpHYtVgghKkz6a4wCVcaVS1I3q+EmRk8LF8DUZ5XyqDsFwtX6O3XgeWHRnPrugVznB6nbbVAzxu6EeOjBv3Vc92wyrqV5+J1np4vXWcgC1HXc/pff5M/b2bmTeWW0U3+xWRceb0w3N+TI9XtdcNEtLJxMQEjh49ikOHDmFiYgIjIyPbxi9S1nqe9MjgQ7QXgdOU05I/i0pOedgFrt/nqBLILheqytLjSuuqgKN6uzzT8tSo0czRyEnmM6INCvvVXfvceZXQ8qK+YJBD68breVxlvDpm3u+74e+DDh1rGqHkhZWVFczNzWFxcbF8qx3QG6RwmmGfK93ph46GLoP3AEwk8yNn0PUfv3fiMbcJWH7V+chB1Pq4XvQZXpcd/j+qt09qeT94+/zjclDpO2qn9mckO72PIl2r8rnfvV4Hf57yI/uB9MKls95frL/qZdKpBgQpu+m8rqysYGRkpAxyMyjVbrcxMDCAycnJsN77Bfo2u06n07Opqy6TcVmsdrTarBENRrLWAyz8rTpU71UZzI1uNfDMLAsNOkVvsQN6eSXSqVp/t38jevP7ov9VcBrUvlGai+jf+XG3eiWqWyQT+t0b6bOIp3l8p/5Qp1x9MV1mR/qgE6tOuJ4nTQNbS+90kovn19bWyozmqn45COjnU+lvX+rtct6DtAxqaLagytKxsbHyDXcMLqtM2E1/Kp07H6rN5wFwXkuZpH5p5KP6ZATLVLmj8OCMB2hZPz/m/6t0tR5ze6QqkKrjQNr3IFZku0TP1utV3kZ2POtEHqIM5kdlMIO7OiGrE4Kjo6OlXmWfszwPVnp73B6KdI62fSd/WXHWS+3ciPNz/FaGYWcxXXdsbGyb0VGlWCJmcmeRTOIEr2VHRqU+S4nRnXN1jPS7qu68hgTmy10iJaJMpUweKUV1BqgsooBJ1X43fI4KQ83mUEJTY4XMoAarMo47t5EwjqABK2D7Hk+qxNyp9Mh8lIbuCpYfday1ntof0XmWWWXw73dU0avSotOjjm9VedGH9HTeeedhYmICd9xxB26++WaMj4/3ROtV8Tn9qbGjM3N0uJUvI/4viqLcVM8zs9wh9/RUKsGq9isPedor2+4zzj6zwg95WseEy8p8lkmdNK23zjKxnc6rmqEFbC3HYnq9BqrUSXHaodJTOP+pXCFdqWxSg0sNtXp9a0Nb9oEuh6YxzI+OdT9HOjJ6Vaftd6hRND4+XmYsbG5uot1u44477sA999xTpmUD2zNZ9Vv3COBx1VHU4TRWfA/GfnrGZUHEP5EN0c9gVH7Ta1xnR3XgdZFz63xYpdv1OaTvqgCR2iMedIt0h9ZHgzU+Rlqm96/WTetQZSz6bDER8XvVM7Vf1ZlixhMN5MjZUPnEa3xSklkTw8PDWFxcxNDQUKkHFhcXywBrvV7f94EntmVhYQFzc3NYXV3F5uZmaWOyrzlTTZuLWYf873qS9+oKAp5Tua82pTorfBbvHRgYKG11Orx8xTfrQmfYg05VqxcIp0flF/UtouyN6L5I/ztcBvA6n7jisZ10gevu6Dn92hfJqCq43o9s60i+VZWpdogupQbQo1NVv+ubKVUXMyOHNMlySBOkMb69kbLgoGQn7gauU4AtulIZ6Rl1GlBgAK9Wq5UvRCL9k98mJiZw5MgRTE9PY3JysuRJTeTQOgHbA5b9+EPtVbVRdQ8zyo2iKMpNsN2+pW3Gb+8f6jOtj69UcPsz+u/8r4HryN7QSRHvGwXbrhNtmp3LMmgzR2WprtY6qRxWG4zP1bGgvB8bG0O328XY2BhWVlbQaDTKZZi12plJl7W1tfLlG7rnFwNP9As0CUgz5SLa8bb4OT/ez8d3nHXgaafC1SBRwaaOv5fDezw9rZ9DEBlvKtT9nCuuqms8MOTl+7Hd9BXL1WDbTn1ZNZCRMe7P02urDPuo3VWKVL+jZ6lh4Pe5AKyqtzu3/epf1S/+/MhI1qBKhH7M1M+5OSiIDJSone6c9SsrOu/BRC5fPXz4MC666KIyGM3MJ6cPD6wCKGfN/O0rHpx1Byo6F7VZj0fnojZHhp47Y35ejccq+o6cS7YnMkT70aPXw4NbVY6p1yvqqypEAXw/T2OV5yO9wazWSLbzGVHQvqr+/eq03+H1pnPQbrcxOzuLubk5LCws9CxtqnJSqvha6UHHQ2Wn6zAPakVl6jd/RwGbfmPD8Y30cxVfRgahBpaj+ulMqH5HxnzV83m9y7UqG6WfXRJljpxNX+v1agdV2U4qL/z63dpjGsDQjCje73yvz1G61Toyq6/T6WB5eRm12pk3PrG8g8DPDPTo3nYafFe69D5QG8bHBuh1rDx4R/B6yg6f/PEsDN3Tzfd80/861q5fWE+V11V6z+lN21Cl47WMqOx+91XpjMi+jc758/13P5o8VxvS73M792zg9zEbRemDE1rRGGmAQbNW9KNvzCO9kdb62Zf7ER64iezGKtta5bn2t76hU7ebYHaYZqeovNCP+zURz2t9I71IKA/103k870GLKCsosqnVNol8P35HNluV3vV2ROd8ibfzs8ox9q0G01XOVNGwl+3t9IC304nKdAYmm80m1tfX0Wg0yj0CuXxV31ankw/6gg8+U/WD69sIVbq1qo27wTnt8eQP1vNkAEZp9Zsz1ZxdccOCjde35fB4ZNg4A6sA9gAS6+tGl8/QeOQY2J5i6wrdy4wMfbbdNxuvggs4F1oqaNinfJ73l4+dCwb+Z9q3t9UNT61fJKSiekcGNcvTrAodO5/Vi4SRMo8abb4EkwKCMzKcqakaBxeMCn8D2kGB03G/rC4aEn6PK6Iqo0x5pNs9s29Ho9HA5ZdfjqGhoXJ/punp6TLTRoW80gAziTqdDpaWlno2q3SDRuvv9dTjpJ+qIEwU8KHQ5oatvEdnPbRMtot9wnbRoOM5V2w6NvoGI2Br5pHHVZG5XOBx7QvKZmbK+HkdQ5fP2kc0jvx8lDmp97JszXJSWlP+Z/lcTsN+ZtYlv9XIJSK58bUA1THMnrjjjjtw++2349Zbb8Udd9yBhYWFcox0ybHC+ZQgffFtR8xYdkdTZyB1Npxl6rfyJcdLbQW2S9vndVWbQelOaUbLUXrQc2wTZYE7ScB2+e4ywO2Sqmv1mVWGaeQ0VtkSel80plWBNDe8tQ8JD27pHnlqN0VOhJZD3udsPh0nOq9aJ9otkQxRmuI9a2trWFhYQK1WQ7PZxMrKSrmH0eTk5IHg806n07M3IWef2T+cyQa2z5b77LuDekT3YBoYGNj2Cm3KBd34mfzIezkj3mw2ezYy5jIPzXSK9muNbCvVVQq3lwnncbXvWH5VZp7zQj9bR59XVQflxd06WiqXIufS2+j1ch6tqte5BJ5U/rqtpRN8tJOXl5fLfcO0DGbm0R7RQBWDKQMDA+Uy2dHR0XLJndpRBwVuK1VNICqU9ry/Nzc3yxcnLCws9GTwN5vNMsNwYGCglKPMJuWHPBjRgNNdP9uO9eN5lc1Ki+RvfYYHvSh3BgYGevpIbWuVB571o9fqsz2wXKVb1ab2uIDuPccx5QSn8oQHoPyZ6hNX6Vq2zycC+fIM2iNsm49hvV4vaeC8887D2NgY5ubmAKDcF5B+CTel15fAcMN66lpmUXGfKN+2xNvoHx0Dp6uqbLoIuw48VRkzDg6sDqIvc4rudSPrvhZIVYaf172KcNy4UjgBejlKzDzWzyj0cqO66/HIYK2qJ9vpx7RcPa7E5uhHE1XtiAzOqvpqvfSenfrAn6fCh/SodatyTiNlEgn3g6Y8tb39hHj0u98YRbSjRiNw5m1EU1NTpfE9NjZWBh54jy8N81k4fjzbidepE+lGY6Q03KiMzmvbXeBGfNaPpnZSnNp33v/OuyzLaTr6Tbix5PLD+8HLqpJJKvvUgPCyo3rxHvI4DQEGPlRBU9myL3T5pDrKEXyso+P7GdqPOqOsS2aqaDLSE66PVUb6rKpnUug9VXIhMkz8mAeGFP14L2pfNLbeH65Dqo57O10H7VTvyCDX31W6L6pXla6tciz0906O8k607+eq5Jv3mxrtNI7VoVH7UGW4yyZeWxRFT8BkeHi4J1hYFZDZT6Bz4Hs4qV0S9YPCx9ztHLU1nR5YNuuhGSjK+zp2O2U36TP7TcZxDF2HRfqH7dL26TFtW6RjquSI3+vX9LOHeT7SXXr9TjZiPxtK67bTdVXtimx1v8bbqM92J9kD9MqPvMfttJ1sM9cF/dq7n1AlC6NrqmR11C/kQ9o9lJ/8pl+ty96rNhT3Z/arp9vn/fRIv4k95Q3nAQ9U8Ll+bVW50RhU2aKqf1wf+X+WofrKr414Utvhk2raFxG0nd7HOmmr5ziR02g00O120Wq1yiBup9PZpktUZvtkLu0tD+b7BLROelB368RCJHfOxn6+VxlPCjaEsyWsoDKJM0gUcb83gkgJX4lKEXUaMzL8HO/VyKQSo2bX6AAyu0kNChpf2o+12tb+UVp//e11ipSc3l+l+IDetaT1+tb6W83mGBgY2LYfQz+lrQpG6+XGkfcpFZr2n9/v92gbVWjq8z1yq4ZUURRlxJdOLj8cq8igrur3KsG4XxEZNDpOyp8eKPVgqpfFez3LwLNSDh8+jLGxsXI2bHR0tFyrzLFxo4ZBKn44K0xlrWnhnKHjmHoARAWxKg7CDTBCyyK9UdjrMgk6R9onkaJyBaj95nKB1+vHDTulaVfwrhA124pjBGxlaPkzvUzWT5UV6cedKHVslC50U9uITpx+mAVAp61Wq5UpyBwTr+fZKMKzufb+gusGnVUm3bu+iYx85W99mwn7lHu3jI6Olnu8MOuBuhzozcpzo5Pntb6aJcfjbgwqIpmrfKd6IXJkImiZ3Pza9bsa+mo0Kx1rX1fRWjTB4/pcx9Tb6cau7/WkDoHqU5cRXqbKP+0PLUvHLapv1K+qa2n8UueqXeGZi8zOWV1dLWUnZQDrzn7mEoP5+fny2MDAAJrNZrmn1H7G0tJSz6vSSXdKWzq5EjlYVbLfl8XxWpW17MN2u43l5eVyg3O317mhON+axYwnZjqNjo72BKJ0rFhfh9sPTl9uH0f3ccx1P0CF85nTvvsYXle1LT145zo8yqhQ+eFyQet/tvpJ66n3qT0c8XNV/yjdqB2i2XAqG9fW1ko9XBRFTyY2Zc3m5ma5ZxkzKkjDPMc3tfWztfczIhqN5KMGA9xP0Iki7lXHDLOiKHp4TCcUuan4xMQEpqamSr0c+SQuz53uVXZwQsX1m97D8SUN8xiAHlsv8tsifcTjSnO8R8tglpfLQl2qrLym9Mxzmlmnep5lqt5XG1r5wjNwPTjLsjlmugJDocEb72cNOmp9mdl23nnnYWpqCktLS2g0GlheXsbGxkaPvHd7Slf+qA9EPcGJS9qQfC5fTsN+pi3IbDu1Hat8qX4464ynKuhA62895gxYVXZkjOlzzrWu0XEV3FXnqp7r9ax6VmQsuiPmx/u12c+pwouET1QfPlsFS1Qmz7mx4OVGBjOPR32rDBKVG7W/qqyoj/r1UxUtej38vDtHkVF4UBCNoSoj7fOon6roU8fI+5lCn44IBaDe63yiglFnaX32zI1rluEzEk7vqhz1nogPIwNUsyAiY7IfXSt2Q0P+/IgXvc0axInq42X7sSq55e1xhRdd0++/f9SppwOrG5eyvyk/aISo4RAFI87W2N/PUFpVw0kdIjfw+dv1MtCrwz2jwf/3c96Ux5Te1KDT65yfWJ7SnD9PA7gR+sl71yc+w1iVubHT/+j50fFzRZVsqXJkq5wNnlOd7eVV2TsRLUW86xNvHNvoHhrHHsRz2aL19aArl3Xsd+ikiQcKvQ+j31V2UTReHvhVPtPMFO3viP+rsh6rbPudaJzXVk36RNdHxyL5EOmj6B72S1Rmlb3Zz46NPlH5VTJkJ/1b1Xa/13lzp7r7OEZQO0snMryupK1oEqjKVtN+qWrvfsJO9sNO8hiIs9Z9ck4nkMhzXHoXbQrdz171eul//o4CslUTef7d7zfRTxeTDtVm86BVxDeR/RL5HjvJpn7X9NOfWl99vtK3B6e0LOUJtscni7Q+tH+bzSZWV1fRarXQarVKH4lw3aFQ2qrXt5bErqyslMeArSXhvqUJ95Pi0s9ardYzyblbnHNuMjuSRq6/7WZgYKBnnbl3ANCrgJSQ2JE+k6KzEKxDJHRd+CtBusGqRrC+HYnXcBZIDSTvAyV2j2RWKSB1DlgvNc6q0sYjJqFRwGc5AbiC1plqRpP97QPa54zKa/85yBQe6WVbaSxqm3mc9dLr+F/r73V0x8b7E+hN7+5nDOuYqQLUe3R/LqWjg5Dify5wg0Rpx4W+001UVrfbLTMfKcTYrxo0ZR/TsZifn8fi4iJOnz6NpaUlrKys9NAsZ4xcHqhAZtk6W1Or1coZFbaHtOdGtmb3sDxga3Za+0TlmCpt5TfNUtBgAevGZ2jWFLA1q6T8Wattfw2y1kHr7XSs/OZti+71+gNbb8dROqhyqtx51Xa7U8pnqaxaX18vZ1LX1tbKzbU5E8ssAt3AV+ulUHmxk0G5X6B9yPEZGBgoZ6RolKiuch5Vw0Nn9YCtjTV1Y2HdL4C/3akg1KDSPc50bDWTCEA5TpEjRN4jOF7UR254+zIF18luS2g2rM/gapv4DLc/PLDrfe5G7G7pzPnFHTjW03WRX0vdB2zPZlJ7So3myGBlmcov2jalI+0XXSqrr33W/uReUGqLqK7nOKls4Bvt7rzzTnQ6HRw+fBijo6M4duzYrvr3/sLp06exsbGBdruNlZWV0s6h/KRhr/sWdrvdbTpS5bjyCbMH3A7Vj+7ho/aO2jnMctK9npjxpPu8uW3fz8lT/uP5yOl1maTlqF5lmc6fSr8eUFGdqGW4PxDpLLdx1D/xtrMsf0ZkMzkPOyKbSvtH66VOa9T/ej/332WGm2ZHaDC+KIoyS4k2vNuAbjOQDvU3l8jSyVU7part+w1qTzp8PKPAqq8MAHr3DwXQE+gdGhrCoUOH0Gw2ceGFF+LIkSOYmppCs9kMV8MobSlv8eMTtJFOUlpV2tQyfcyBLf8sCiwCMV+T32hTeJ9pP6qdqzJT26+2hvO+Pz+SEXpO9aGOazTmHNNOp9NTD1/K7DY3+YN6UsvTSb56vV5mnJ9//vmYnJzE6uoqms0mbrvttp6ArvoTfKZmlDGjfXh4GEtLS2X/j42NlX3CjCeuMGGZlBmjo6NotVqlrtC+eNCDHoSdcJ97zCqUqgJOem2/Yy7sI1Sdj5hQr3ehWSWstbydjMYqYzO6zp/njEKC8/tdubpR74oucij9+VXBr359stOxqD5RnXbqR7+nSuDvRCdVY91PQVfV1WnpoDit+wFKc9GsqTrUKysrWF5eRrvdxuLiIpaWlrC0tFRuaMlxp0PjUCXp9OxZSm40uJJVJRTRhfNylWJ3enOZERkBisjJ9PZqvbWMqF6RbOxH15GxG0H7PDoX9QOdJ3fu1SAD0LPEbnNzszRadNNoN/6qePkgGLtEpOM0eFKl0yLnq2oMvEz/REaa/lbDs2oyQ8fEdZLSpDqBpGd+6xJLrT/ppcruiJxIdRCjurj88DZH4xTZAlX39CvH6+wyKbpnJxlSJZtcFrgNFd0ftVvlu//uZzdosESNfL9f7RU6ssvLyz1B8v0K34tNnR8PrikN+yRQP7nFczq5oTPv+jsar1qtto3vqzKeqmSIo58u8Pb0O+bPqZJrVdf4tTvZx3rOdV7Vs/o9z9uyW5vYy4ruO9uy3A5jvaKx7Uc3kYxzWtNAlJZz0GznqvpGtlMkdyOeJtRmUz3MwG+j0SgDwK6Lo/pEesMDTz6evFf1YmQPKj/3sykdER/oMdfbVQHZiM8iezKSp1U8G9nNagNEwcSoH7z+VcFg2jG6JHWnviM9ACiDT7Ozs1hcXCxXhFBG8x5tE0HaI01wuTX7TPciJM14ILlWq/Vskn42vHzWgSdV+vx2oczlNNwMSx22SFixDN9nKZqx0wwBQgnGGdL3M+E3mdfTiKscMd07SJVzlfPM+5Thtf0erabzpO0GtqLI2re+TlShREbBoVkcOnasD7Ol6NBrZNhnV7W/tQxnGJbBmTsdK7bLHUQajhF96LNc8aqzqc/xOlUJHJ+Z0uuVFn0dsjtBBwVsoxq9LkD57cYWof2iQt2vrVJawNYeH8o/3W4XKysrWFpawo033oj5+Xl88YtfxPz8PE6dOoWVlZWSnqN94/h8VzZKd7XamUwn/md2htadddFjlEXkBc3q8T70dnpwV2cmtCxX+p6x4zLGM7oI3WOAY0wZ42/b0/qqvHAHPpKBPM96sI90zyaXQSo7o7X6fJbuBcPnUP53u90y46ler5ezMpyZjTLIVG55f1YZcPsR7Kdms4nh4WE0m02MjY2VBgPHIDI4gOqJkVptaxacaf2a3j8yMrJNRmg5HMvV1dWewJPzpdOsG+D8r9nGer3yhzrxAMosa84O8j6V126HqJEWfWv/RO2PnOqojEi+eraH94s6Cy4LNDDj5Xq7ne55f9UMrmYsuU0D9O7RpjaQBo/Y/ysrK9va67qF49Cv71kfnR1eWFjAxsYGbrrpJgwNDeGxj30s9jOYrct+Z6YJnY/l5WUAvVmkAHreEqgZqm77qi3LN9bx7aVue5HfKU91fyg+T99kx49uWqv6RceuyvYi+tkWu73HnXbWQ7+r5JU/Iwq2uE0TZVho3aL69kOkdyI7yfupys7wclz+q91MevHgIm0E3WtNZYhm5+jm1vomUMotZkxoO4eHh3teDHCQ9C6wPRCi8tPHTmUd+0ADEdSptAGXlpZQFEW5fxr18MzMDA4fPoyZmRlMT0+H+xH7c9XvVVuJ8sdpT20m9W+ibyLqA9ZBaTbSEwxYuH7SvYq8z7V8t/f57b6ynnN/2XUb+6gKqrcifRrBs7+0/eQ11oHBHwDbbBIeq9VqmJ6eRrd7Jgv2wgsvRKvVwtTUFObm5jA/P99TP9aB+kUzxVVfaCYjP9RNnOhl1mKn0wEAnDp1qqef+XnCE57Qt0+Aswg87VZAqCGpzsJu73WGUCJmh/qMeKToPCARGcpVbYwESNU9VXBH3pVHP0NVHTCf0dX+3U1Z+h31m5YbKSkVnFXP8jHyekR9w7bpM6rS/M+23N0ed+G10/hGtMfvg6ZAHf2MPL8uMnrc2dHv6BlOTxx/rjdeWlrCqVOnMDs7i5MnT2JhYQGzs7OlciiKonyVbJTt4Y6QQjNrPPOJ5bjT7H2g9Opt3Yk+nZYj/tE+jPrXy9R7+Ntn0KJnRPXlvdGSo2hMI1rZiR8iOeLyknJQlbEabwDKjUwBlN90tPhqZx+bqnYcJLiedZkZOTUu74HeIDSNM19mp0trFGqEMTBCA4X84c+N6qi6TA1UXy6oH55zp1ptDgYlq2bXKQMivtTnqqG7Gz3hdfZjfLb3oz+P1+kETXS9oooPI9uo331Rn1Td58d0/NxWqbqHdeW1Oi563j/UGUtLS6Gs32/QoJMG0jjGqse033TJdxWc3jzLhHB+UZ7iuEWZjv6pou2zRcRTO9lUatNW6d5I5lfZkU5Xfr9ew/pV1bVKP++mf/rp96iMqMyzsUed3pT/qvhW5aEH7Nz+UJ2gy99Jk5Gtv5+xG/kH9Po2OjmrwTudbFNfFeidBBobG0Oj0Sjt3Yj3vD6ql2kL6abxVfTuclfLi3hI+6Qfn/WT5SzDjwHbJ1W8fv141oPPVfaH91k/RP1QRQNAb+CJ9O71YuA/ChRHYHCu1WphYGAAU1NTaLfb5QQ6x1rr5brDZb7SqX5IaypTdCIs0sm7wTkHnlgZnyWIriOz+PEoeOJOAZ+jASQ22g3uotgeqVfDtCiKcsaGA839YWhksxwlytXV1TJjwBUvr4kIVgdN96xie3xg1clShtN1plqeCjRGJr3+LEtnTP2NFM5AbI+2S/tM4dFw1kvHJcpO86CT1o/tdMHkQcRIAHod9VqftYkEZD+Brn3Lth9k9DNQ+vWLCnW/nmV62UqLQC/dMNh0+vRptNtt3HrrrTh16hT+9//+35ibm8Ndd93Vs5yCZakiVoOZM+LkiXq93jOzDGxl6DDSH629L4qidAxIN+4QK4+wX6J9o1TI81oaYD4WNBS0Xir0dWxUfmh93ECmMlKZw3b4xIC+gdPPubz3vZzYvugNJ3qf8iHP695TLIdBEJ2t4/2cMarXt/Z+Wl1d3dZva2trYVtUtp6N0ry/wT7qdDrlW746nQ7q9TP7ADBrgrylelpnSlXXkmcmJycxNjZW7iMxPj5ebmaqdK8GLd9GtrKyUh6LUDVjqoaMzrxx7HU2ljzEN6u4TmCbWS7pQmWEzqrSRtA6sU/0mVrfqnZENOR8EaWtVzkuGtBTw9TLdDjvE5FedyfDjVPumeY2g9onWi7P0ZYib/K32jpV9fY+VFmkDptmxC0sLBwI/tVJk6I4k7XIwBNt2ijgE2VwRk5arVYrM53a7XYpD7Vv1fHVrEBd0tNoNMo3WnI/ELXjd+NwuF6qOueIbAlvr/IC0LtMU/vCn+f19GALr+W5KkT9qfVkXbyeVbTtY+v95m3Zqd+jc14m2045q/TGctTRVzmospTfbkfp0h9mOFFPDA8Pl3JBMz/2O2hLuPwjqoIYSsf6cgF9oxh138jICFqtFmZmZjA1NYWZmRkcOnQIjUZjxyV21BMMMOk+mNTVlDO12tZbbD3oHPEO6dwnQkgXOhmoMoplKp+o/KYej6CrAti/fAYzedRejXxzftxWpZ3iyz+rxtL9Ub3GV0zo/nxFUfS8xZT6lBmlzFxXXvKtDbwtpJPBwUFcfPHFmJycxJ133olWq4XFxUXMzs6WgcbIHybfc78mt++crnm99p3SGH3/KpnuOKc9nlwYuqDTwelnJPUz9tX5cEPJgwbudAFbA+8zoroDu6eue73ILJw5VwLvV48q4tQ+0OBMZMS6gvf+9ghpNOsQjQ2P+RpQj9Drf1d0VX2g92p99blV/aZjpwG1iD6qhIMLe78mur+q/71s73/tm4OI3RhlVffsNCa7ebaWQeG1uLiIhYUFHD9+HCdOnMAdd9yBubm5MtNJl1ZR+GmKt2ZrbG5ulvyqAR91UPmtMsplCY9r5oG2wZ2ubrfbk+LLssj/Tvc+yxE9m8/TZ/k4aLsi2vRj3lbWT++pCqy6IlTZoIF1xU7ZCJF8UWdCZRZlJ5/PQB8VIFODdb27BjS8/30Wbb/Cx1RpkuOnzqHKQ46NByp5jv3E16hziY0up/C+0/RrGtAR/fG+aDk0gB4jXA04DRyTpzTzymmYZVE2aD+QdqKAeTQTqIj0bxWie12Hq851Y5fQTBU39LX9kQzwMVa+dB3t4+GTPzpLqw6A96HLRY4Z5bA7TLvltypdr+1SJ+KgQDcT97dTuS0XLavRPnBeI91QZ+rSOO9DDUhrpuO92dPJZUuVfezX+3cEb2+V3aL1iuw7LccDT/3gdB61uaod0f+o7f3sVdXfHiiLEPkiek6DDVEiQORfaPs9cKeyxgPnPOZ7PXk997NN7T5jNFbRGLq9pO1XPUAdx82edZl7lHWsYP9qpiMDWgxG+3Yq2u9uB7lNpmOquoJlVOk0pQmXHbStd9K5zjtqH2u9qXe8T3iP9xfH1IPHeq/62lEQzMcP6NXfRbEVeCJ8uTX7wSeXfIx0LNj2VquFer2O5eXlcnK+3W6X9YjklOqWKJjZbwzZB7q3k2a67wa7DjxFykMJjkaiKzlXnPyvDOREpwTCAdHrODgRc9NIY+CJs7B8Jg1YXyevA0CFq696VwHLyGXZif+nzdr2er2+bSDUuaNRF2UM8BywtbzEnd7IgWD53HxMx0AJyfs/EoDRGKtwYsRZI6oqcHW5hSp4VUCqmLj+lM9gv9ZqW7Ot2jeawut1j4SnCn03ovU7MtAoqNUR1oBk1Xrr/Q7tG2B3Sr9KGFYZpoQLJNLR0tISTpw4gXa7jXvuuQdzc3P40pe+hNnZWdx1111YXl4uZ2k41uQZronWOukMHpU33+IwODhYzhppRkytVuvZG0jLpFOtvKPCVtsTvVlS5Z/zmfapBrdUVrqs0ecBW4YQ+UxniNRAUMOaxzxIEC1lY5u5Rtzlg8pIIN5rQ+UP2+IyiDJD5ajKGpeZ2o+sGwNM1EVqNAMogyOuYFneQeBh5aOxsTEMDQ3hggsuwNjYGObm5tButzE3N7ctI9b3TvBzY2NjGB0dxfj4OJrNJlqtFhqNRjkbRqytrWF1dRWdTgdLS0tln7Jslb9KX6oL9D/lqGYAESpbSS/MXNSZ9Mh40tlMOtGso+tOd4hdHrq8I92x3hqYcYNZJ8JYn0h/adnaN/os6kdfBuyyjB/dQ0/b6+OiY8f+dyeUOpAzo5Q1vFb7ivdwfChzV1dXMTQ0VO75RNvMjVyXjfrNfqLs1706DwL/Amfawj7hcomFhYWefojoScdIHRelb2aGAmf6d3V1FWNjY6G9Q3BcuayHAWd/65nuEer6vwrO704jamNF2bz9JlS1Pdpv/fqdYFv8GVGZ3j63MaPgceTEVfGb8oDbsKr39JjuTavB+ao6sN5aJu/VrAfV1yo7XC/7R8uP+oZBkNXV1XKVib59sarO+w2dTmebnAa229KE2he0UZjtyOwvoHfZbavVwuTkJA4fPozDhw+j2WyGq4b0GZy0WV5eLr83NjbKQITuu8j6sj06zrpqwG0G1R+sM4AyoEJfUG1RbVeVb6A+a9Q2XqN+sW+x4Xa7843bvNpmrbdOtER+ceQzAr17xWpZ6rNoWRrwPX36NMbGxnDo0CGMjY2hKM5Mno6PjwPY0u9VfMY9wWjbsi+Xl5cxOzuLTqdTZh/Sn/AsR80Sd7mnvhXBc0wEcH9oJ5x14MkfrP89VdMFnTYgut+f4wKeBOPGrYIEQkPWAyNqyGn0mvVWgc56qeMSEQAJCdjuUCnq9fq2JYK+1EMZRp+vDMNjqsyUSFh3D7ZEBqK2QR1Ovc4daXVOPbjG61TYKjN7QIfX6LpUPofj4umfXq/IeI2EXNV5p22/3p1SrX9U9n7FbnjuXMuMjEMikh2kr83NTSwtLWFxcbHc0+nEiROlE82gkyp7HWunfcohGlXdbrd0nGk4aYqv0nOttrXZqgcZ3QmLgsYuGyIjRI1s52XlP5cx3tduICuf6XGWWcXzkZLxZ6oi9nH053l5nobtzrzyMvnd5aA6vep4a9BZ5Skd2pWVlW3Zb1pfrdNB4F+F0ur4+DiKokCr1cLo6GhPWjvHyJfJaTkarKUjwqU1nIRRec9NY5eWlkody/EBeo0xHS8PPDFVW18dX8VT/GgGjb5cQPUDx1azYHiN8oP3526hPBwZan6tO98uy9QOiWbCadAy41NfDkB9r3YVPwzKqYyJ6sS6u07zvlG7JXLWVYZon3NT7NHRURRFUWZCAb1Ze9pn/nzXv+w/ymoPgO9nkHd1Sbj3o4+nQp0gt6eVhnzShOfdgVIZoctb1fZS+03vi377+Dm9eVDTdZUjmmSNytf+3an/+328j6IynZei+kR2qr6gRu1nX5rDMtl2lzO62bwHb3bSZc7PKkvdN/OAhNKjymZ9dmSfeLDdJ7EOCjgOHmSJfFper/srqezjeddzzDrmMlfVc4TzHPUCgwxLS0tlAEoDIFW6Su010oNv3eLXe53UVqecVzva+0hll/usXk/SmPqFVWXxv9u87uNqUof2Ub/AUxREBrb8Z/aB04nqfx9zjtnQ0BC63S5arVZZpscSIjnIeEWz2SyzXBcXF9HtbiXcqM+ibXT5on2gfRjFNdyOimR3Fc5pqR2wPajkgZtoaYULeJazG6NPnSUyWVV5OuBqpHEA9HnuZJI49G1L2hYyic5IadSafaBKXJ9PA51vIVLDv99sjdZXZzbUiVUHk+3QvvNMCH7zTWFqDJIIuXxFFSkZbGNjA+12uyfNju1w58MNKI6h9vXKykqPc8i+4UwBjTQ+g/e5olZG96BUv+P+7caRBgWU+TVL5SAhcsD6wenAFWG/c8SNczfi5vmbccn4Jbhk/JJSOA4NDaHVamFtbQ1jY2NYW1vD+Ph4+RaUbrdbpgl7lpuCQlSV/cDAAJaXlzE4OIjl5eVy1olKXvmPNKYz+yyXtO9v5eJ1ahwqLysfKq1qcEDrz3u0T93oq3oznS8tVkPQ97VSg75Wq5V72UWGuGcu6kyoOxRRe9hHkRwgf7M8pRtvO2W7ynPKiFrtTCbr2NhYWcbw8DCWl5fRbrdL+aLK1fl+PyPiVc4Wbm5u9ryBToMRpG8PQlKXDQ4OloYu93fRN+6wX9fW1rC0tFQGhCnz3Xhx+mN/k38ZQFFj2GVHRH9KK0VRlMEG6ljNyFCHTOlW+VOdKl6n/F4VzOWyBc7eq653m0H1DdvhhqwahKrTNODEjCe9tkpG+CywZ0QpLfF6dyLcduC9mmlGuqEDrNepU0v629zcLPlxaGiox0inHNf6e0DF6679ezazrfc3arWtwIHuRcgsoyrZ7oEJH0/2uetHtc9Ulms5muGkb7Jz+9jHwO0qr7c7a94PyhOUD7ze9x1yW1yfr+Vp/YB4WbnaxC5XXa/5ZFA0nto3avtqpo8uJfbyNaisdkHV3is6ScA9amnTcIWA04jrOsoIXV7pAXzKWw1M6tJZz2bZSY8yGDI6Olo6224D7WdcfPHF6Ha75Z5JOm7MLNLsEpfT5CvqC+rZ1dXV8q12LkNVHirY1ww0dTodzM3NlQEoDWzy4/VV2at6UmUHM2lIA5zcIr2xXh7kbjQaPW/DjHSR2tBA7wSlyxHlGQ3uUPf7PoQsj22m/vTVTtRD5FG1NTxDTOvm9oLKMteHvF/9bKA3s3V+fr70xckfo6OjmJ6e7tmD2utC+mC21NraGubn58s32G1sbJTBLa7s0HpQBqgNF8mKSLerfNyTjKd+8ApFe5w4oe0WSnxusLmTxOvZ+TqbyPt1xkEDHPx24ok6WDcspjGmTrzOZkUDqQyritUVRFUfVynfqsCTl6EGL/uEyyVYHo1evjpRjVudTVtZWSkJmm3T6Gjk7ADo2eiOTEBG8UCfKsjIsNZ2On1FAswNCu/LSBHyeleueny/I6Ivr3tk3Ps9VXAjkMdqtRpmV2bx0o+8FB+/9eO44iRw2Sxw6OHfjFd/96+VMkMNXqb9O0+qMojGVp9P2qrX61hdXS2dH12qw3RvX0KijizQKy8Y5FA6dwPV+zgyyjVwprJGy1Pe0UCRL9FR+aFjqvzggTEafQQDUp4N5gpW6+nPccNV66fXK230uxfYcg44Lt7XPEeDQoP9rCfbzuVKVc7CQYLqG3UYfc8YNVrVwdexdMeT/5V2GGxh+r6WxbJd5/Je6hkaQTrr7cZMZCdo4IY8zUAGeVXb6eOrwUnVyarfCden+p+GLLO+VlZWel5AwHY4PWlmQyQD1ODlNXwW+4t2Bj/69kZgK6PTAzcakFK+1j5X3co+qJJZag9FE41KV5oxQ3lOA5l10ckzr6c6G0q3blMdFB1MeHaR9pUGiX0cor7wj9t36qR5uSxH66NZ/6pXiMg2qLKr/BzHW6EZkZ6ZQRlOuoue7zpFj7ltH9FOFVSu7XStg7yub+lVO1uDCN1ut3xxBp1j1tXlOfuXAUqdcAG2Vlxou/VZKs9cB/i9Pm5q8+j/yN73vuBHgzNuyx0E/j1y5EhpQ1IHcEkbsDXuq6urZeY1x8jtJl3CqnYfoTzteo3X+vNIZ7RzCF5Lv011iganCOp6+oAqIyYmJsrl+aqzVaeq3c5yyceuhyJ/LZJzKrtcTwLxPsfUk+pnanZ1URRlX9CX1aWgup0K68Jy+R3pTV6r2aPqk/BanZBdXl4ug2TMdtvY2Cj3cNKsQwWfzww1bptAO5h9oJvae0KI7zOlslz5mePqehnY/uKjfrhXgScXRF5BJwRVjFVKk+XwGm0gCQGIZ1qA3r1PvGMio4tlKrFWMYR3rM4s6DPpxPo6bM5srayslJs+MnpMB5gRSX9tJvuaEWgSIeulfaXGrDOmfpO5GA0lVlZWyjcmMQrvTgbbzeARA33Ly8s9wqfqdffR0gGWySCW0gvrrGtTI8exymBWulQa4HdkjOn463PUqDsIytLRTzhon55N25yH9XhRFHjpR16Kz3/5r/HhPwaeciPP/gP+/+95Cqbe/qdAo4H5+fke45uKjXxK+ud/KhQXjm4Ec4x5PQNROmtDfmO2CN/kExlYKmP4bD2uwXGVke7A+sxIJN9U0bkRSd5XOqQRowajj7nylI5VtEcVEG9iHDnZVQpRj2ubfZJCr1NDy/vVjTgqUy6n00wd0gxlIQOONDwY7D4IiIxzystOp4P5+XmcOnWqnCzQoIrygxqIDDa1Wq2eDx0e8kyn0+nZb835jdAgBsE9LSYnJwGg520oavx60MrlsR6j7mD2DPXuyMgIzpufx5H5eczPzGDxAQ8o6UJtCzWYPVDL40qbyms08vlhm30GUfvfbQcfD83Q1KAcnRvX66Rd7R9e49lKhDuPKmspB6ONWbUc8j3rDJyRg5y512coHWh22tLSEgYHB7GwsABg+xINPteNbLfdaMjT6FbZuF+hGYbsc9KaZp14oN7tDrU/VJZxrw/KPKWlfoEoYGsyQrMUfHJF7SygNyDsARrXP5E9rmV4YJXndILR+8Xtjp3qq/doOV5v5Vltl97rbVJepszkXnjz8/M9E7mkYw+YK9gnbLe2k/qM9vPQ0BA2Nja2ZXCzXto+daI1+Ky/qSPJ7w7VxZQhtOsVTr907DudTrkB8uTkZE9m3X4GeXR6eronQYH6i8ELZiABW/1M3mo2m2V/nz59GjfccAMA4Pjx4z2BEcoFHXuWx7FXO7hWOxPU39zcLJdtsSzu+cRg0tLSEtbW1np0upbHgCmPKW/RvqKNwDdzNhqNso2c3CUt6jYJars5T7m9Sh3gS1JVn1IP6D6twNZqIAYAdeWE2h8aPPR9yFzHqj7nM1S2cLzo1zPri2DfEnyTKH1l3t/tbmXVtVqtnsklzTBU/8DtuXa7vW07gtHRUYyOjpZZ7dFEE8uLJj6qrlV7YDc458CTGgFVUbjow4oD2yOUkUD3GT5Pk1NjjIxKREEEnVGt1+s9rzn0a/35FDQMlHi2EgWAzxZx+cLIyEjPRps6W0tjWJeqaRl8lhsK6uBSIOnSBmUSJcBarVa2nYxGtNttLC4u9uzj4dkSo6OjpdGjY0MBx35huzXIQ0HC/mL/sz3+CnB3rBuNRkiTyghV55zW9H9kqEflqEFyEIxdhxth+r0TPLAUnfPzN8zegI/f+nF8+I+BJ361954rvzSHuZ98LVbf8vZtzpAKRs1WID24I+ffHggnjzIIxUCvBpXW19dLvuT4UimQ5/XZrBMdLWArSMTn68aJpB91tFg3d7zJqyxT28Hj5CGe0+e4UtTxoSzRc/rtQTGXzdo3zj8qJ9QRYH21zSrvPNBAGcLzPkujgQE+i1kwalzr21yYNq5vT2OZzv/7EerMETQo2+12T4o1+0QnIbyPOSnSaDTKpXq6r4Qu81Ijtcqho2Hq9FSr1Up+Jm11Op0yaEYdpDP+6tw4jamhT90/srSEH/jYx/CQm28u63TjFVfgz577XKxPTfUESfnb9QufoXqdfaYBHw88qVzSjYt5fxTAUV6iHlxbW8P4XXdh8uRJnJyawi0T6zjRPYGp7hSmi+mewAF5SZcYqk5Wx8iNZ50Yo9yKHD838LWvKJM1wK6OtGZgUdYMDAyUhvbIyEhpKygtuV51fa1jw/b123x3P4F8xcxC0iH7ywNPQP/gE/tscHCwJ7iuM/xKCxFdkA+0DuoERc6JB1l0Jl+hdp3yNbCd3rxdOnGqY65lu54grTnvsv7an5FP4n6H1refn0L9RB2ztraGdrtd2tKnT58ulyoTdARp61AWqz70FRrkXZUBKysrpcxlEFj1o7bJ2602ufahZhBH9qKPC2nF7RodW530W1lZKbc/0MDGbu3Q+wvsU/a3B4UY7G2321heXi77hwEZLq9j/w0PD2NqaqqcXNBMMC/f+6bb7QJf+QpGbrgBKzMzWL/gAoyMjKDb7ZaBJwbCVL9Q566srGBhYaFn82mOjU54ANsTSRjsHxwcxKFDhzA6OorDhw+XtEcfT2mVUH3gdmYk91gW2+AZQ8ov7GvyIwNLvJf6m5NWmum0tLRUtp/fnU6n5OtoIkkD77RxBgcHy21CgN4kGH27HdvXaDRKflX/gsslmczBiXANrql9wTL0JRGaTcf7+DIBtdPYnyorVJ677ehyUm3MXfHRrq4KoETixmEkoHlPFRNpuS4kSbhkGg2+eMfRsXAHUQeehooyhTqD0eybKhYPflXNzFFJMHLKvThIHCRAzizzuM/wqAOnASjfuEwVpRoYyqjsz6Ioet6AoK/CpsKkcU+m1CBR1aywGucUfCR+TecmOK7qTFfNEtNI5Zp2jX5r8M3HoZ+x4DS0G6hi3e+KMkLkZEfOt9K4t9ONl+g8771p/iZccVIznbYwWABH/vencNtXv4rO/3Fu+VGlqQIO6J/N4e3S3yoHlMeU58iP3JyafDk6OtoTrNGgMICegKs7rmrIajDNHQAPmjrv0skkb5AH+DydCVX5oWPE43of741kONulTjsNU2DLqNRx570RX3qdXE9EdARsyQU1TpQPabQzWML+5WadNOxqtVq55IGy52xma+4vOB+SXvgmOxpYAwMDGBsb26YDXGbR4eEMGCcJDp86hfHjx7F07BgWWq3SUOM9QO/eghxLynkGmNRRpFGm2a+aTaWBHF2GzSCa6mDXycCZcfyB//f/xeV33NHTZw+84QZ893vfiw+85CU99Kh9wd86KQWgpBV1AulY6qwodaA60lp25Jyqc82+HFpcxNPe/W5cdv31ZTkfuQx47rOAuRZwyfoleHL7yahv1Hv4jXzjbeOEltMO9bA6jJQ7OgkHYBtfqMwjH5Enla4AlIY3nSA+e3x8HAMDA5iYmMDAwEC5TIVjD6AMIOsz1enR57EfD0LgCegN/rkxr3RN/lId4vSkOoNZvP5mpUjHsJ/Zn1xaS+dYdZfafU7HdATpULmOZls5RhpMISL7VfmTMkPtSLeHNeONtKk6S3VLlbPlY6BtjerrH8ozZru0220sLCxgeXk5zHjipAD9EDqFnjEZtb1qXNX21/YqrzgvRfqZGZzsS/72/lSbgB+X0e7/Ud4wYEbe9S1a9ivU/nc/lLKQb1FWeaWTaLyHuprXM2ikS15drnW7XXRPnsShV7wCY5/4RHl88du+Dbf83M9hfWKizOoBUNIV7Rz6pADK4JjyOf1sZvu4Tcq268qTkZERACiXh/kexkp3pGuNIbjfz+Oql8hb6quyr1QneIawLknXgBOXJeqG7LRBPPCk/ET+cplCfaiZ99RjWkddCcV+Y31drtFOqtfrPQka2nduN2tmk+7VyfLVTmFwToP2Og4uW1xWutyJbPgI5xR4UmbSY9pZkXCPAgERVOCrEta1lxwMFcxqgDDLwDtK9xXSAWDZul9RpID0uBtdnGnneRIXU24bjUbJLBsbG+WeM4z602DjtxqInuboxO//2UYyno4TiYQz2Jx5JmMuLS2VMzNkpsXFxTJSrrMXTLOks6GpnfqabQac9NWt3ANrdXW1FGQ6liowVPh1Op0eo9oFmkfm1eh2Jqqi793gIChJhzuveky/q84B/bPGCO3vSycuxWWz/es1ePPNWJ6cLGmPgScNbqizq+PtxmNVu/mt5agwZ9BCMxIpvMnnGvygEFdHVQ0oDX6rsa1GJ9AbgFL4rIPStRr5lDU0ENUh0H1EyPvcRJyKSPd60jGkseuKV9OkdbbD26eOPo/TQXBnUq/RsrVP1PAF0BNM0Rk4lsO+4Cwg+5rGCYByQ8mDBpX77XYbp0+fLg0qZoX6ZpkE+4tym9lOhwA85c1vxvmf/3x57a0Pfzj+x3Oeg00JLlFvqQ6mcatLZD0lXDclVb6lsafL+Tj7qBMeqguoe/n/2OIiHnn77dv6qV4UuPyGG9C66y4sPuABZR3VYVJ+1v4l/fh/DzyRBjXbWulYDTTfQFn553ve/W5c+n+WXRBP/CrwB38MfNcPALcO3ooPNz6MJ7WftE1Gkxb6OZUaGFI9qe1z/RAFntRx4HO1HpppQb0OoNyXZmJiAkNDQ+USm8XFxdI280lFrXPUNj6ftLjfoXqLdh/QSyeaQaSOeuQAKE9QrldlOanu07I5RvpGS9UXKt81YMpJQ07S8Lfb5uR18rBm4kcBCv9P+aKBMcoQlUe6zNztGO1/Inqm6xw9pkHBKAi4traG+g03oP7lL6MzNYXjrRYWFhbK7B4G1FkPDTjpnpODg4NotVplm3V7CbZRVwzoRLna5q7TXd9WyQc+l30KoPSX3J8iVCZoEMF5mR8GnriJMn2bgwCnGQVplS/qiPSAjgt1NQNPm5ubPXSuq16Izc1NTP3QD2H0b/+259nNT34SD/rP/xl3veMdpe1cFEXPZFC32y2X4/L5HA9dZqdJHj7xqwEt0iKX03M1ivOjT/Dyt25nwfuALR9Y7dnNzU3Mz8/37DGp/iTroPxAsH0MOHGZIRMv1tfXyxfQMPDECTH1pfWbY8hAbb1eLxMtiqIot9XhGDMTidlIlGFaR46XxlfoR3/55Jdx99rdeOjMQ/HgIw8u7RYH7Tp9Fq/zrCoNPPGY2yz+ieSjB7t3wlkHnny2Wb/dofUZTw0+8T495mWroI8cHxVyjM6SwHmO92m2jBrNquw9NVlTfft9sw2egcRrlPkYBBoYGMDi8CJOjZ7CZHcSg2uDPUpDlbIG9bS/tQ+0vvqsiBFZT2aU0En1lEyCfUZDQx131o8ChPXjPWrAkPHX1tYwPDxcrkdmGXT6XVGyDLaPQTL2tUaSVUF7GRpdjxAFZPScKnOFOtf7GZHBoOfcKIvORQEm52e/54pDV+DoIx4D4JOVdetccAE25+dLOiMdKk/6W5B8Rne37Veo06T0pE4t+UedaW2nz0CocaV9pWnBVXWKDFrtW8oPlQ/A1j5HqsC1H1kvKvFarVYGfDX7IaJjpxufsaKMUagRS8eGBhANW/3WIJ72nfePjpNnQKmj0u12e2bBtf+63S4ajUZpKFC2aHB7P8L5jjw2Pj6O9fV1HD16FEtLS7j77rvRbrdL3qD+UH3CMaRx0mw28bR3vAMPuO66nmdeeN11uOr3fx9/+IIX9AT+SC/67W+h0t9uXEbyhTOAvJZOMPUOaZmTFVrG+bP9I9vNU2cCT6qXXTewnqRlracaZQp1ziL45JkHszhGk8eP40GS6UQMFmcyRS8/BdxwuMBtI7dhpbmCyY3JHgeI5SlYX7XDfGx0jDiWiqolmirrdHaa+p3OtPIy7TbOhjebzdJZoV6nHcV+ipYaefBGgy37HaorXG6pY07aUBtVr3FHkHJdHRmCNhufVRWE1mAkr+OeMHqv6kbdJ0Unhd1OiPSp2qrqXKptRznPgDUdqVarVcoLOn2U+UWxtX2F8jv73x15heoc9T/cjtbx6Ha7wOnTuOS1r8XkJ7dsnFsf9jB84FnPwkKtVi6XYaBJs/61b3hcg4+8hhO7bCvr5zTD8SaPlG/7uv56DNx8M4orrgAe/OCe/tAAh+pYPpu8qHwWOap8JmnMdZa2l5MNzALTLJn9DLWFI9mr40IoDfIc9akGfQH0vCRE/SGifsMNGPuf/3NbverdLhqf+ARWvvJPqF/6kDLgMTw8XPIXV92Mjo5ibW0No6OjZYYet1bhxO/CwkKZpac62PfgJY222+2S95lFtLy83LPZ9cjICA6dPInp06exdOwYOhdeuK19yoPkOcqh5eVlLC0tlbKCGVaaOeQ8yjGh/3n3+t04WZzESHcEjbVGzx6TwNbWBfSN3eYB0LPsjYkuAwMDaLVaGBoawsTERCmbGAji2+w5mT02NtYTXNYtIljnzc1NnO6cxh9d+wYs3/IF3HAIuOEw8PgLH4/f+M7fwKGxQz38z/6LEoC0f1R36ARuFL/gde5zRGXuxg8DzjLwFAWH2EEcGD3u0ThW0KObWrYT3ebmJpZGl7DSWMHgwiAG1wd7ZulpjHY6nZ7yWScSDpWTG1JVnUXiU+NHFSXQO/PPftA2M/BCJUhFvlpfxWcu+wxOTZ8qrz1/+Xz829P/Fs2NZtkH6qTSKNCgjxpjqrB1ZlYjkRQYvpyBAuUUTmF+eB71pTq6K1sEqDv8+ysp+c2xUwWmATMdm1qtVgo+n7l0w0AFtAYi1GChYaJGB8eGz9aZMEc0/n7MAyyKgxZ4Opfr3fAlVOi5otX7X//C9+Lv3/tofNMXT2NQqlEMDKD9mMdg6fzzsX7yZI/xSeHvm9CTtyODkHXaqd1eP/IUFSeNeK57Jw9x9kBTV8mLlEmkYXdcmRbsgXSej2aVXFZyplqNQgA9zoF+R4a+G0vkN91zBNh6+YDKSeVhdZ68X1lfXkOFTEOIinh8fLzc9y5yfLR/WD6DRyojlB7I6/qtY8LvgYGB8o0tB2mTcZeNhw8fRqPRwOzsLIrizBLqu+++u0e3MY2fY08d2mw2MT4+jos6HVz0z/+87Vn1bhcP+spXMH3yJGaPHOlxBilnPcMP2FquQV7RevtsodaxVquVkxJqGHHm0b+p805PT/fts9+f/iS+o3hUSVceONGJHad51V/ap8qvPj6kYZZFmuU3+4T3Txw/3rf+l58+Y3ACwEpjBedvnl8+Q7PB3PBWHtegB8eOwUIavQz8uYx126KkDwkGsX1fnf8q5tvzeAgegsunLy+Dc/wAZwx3zXjSrI+lpaWyXzTw5HJHHfiDkrUY0RtlqjsLpLcoAA/0vi2yVtuauPPtD5id546i8yr5tXnHHZj853/G+iWXYPmBDwSAbTSmgScNUPmErfIo6cYDF5ppz+wppWX2VbPZRKvVQrPZxNTUVBmAohPIDdF1aadOUtEP0AkO7W/tD/K5t1nHUfv4wh//cTT//u97xufC667Dd/3e7+Gt3/3d6HQ6Jd8pH/AZmoHCZ5HOyeNaTw0WqyzxsRgYGMBYp4PJH/ohjFx77RbtPPGJ2HzXu1CfnOyZsCVN6oSw1i8KPKltwDZyTKP+oi3XbrcxMDCAdruNoigwMTHRNyi4X6D14/hoEA7ofetZFAjRMqjvaAcxA4oZ3Nv86ptu6lu/d334P+Mlr/wA6vV6me09PDxc+nDKt8wwZobT4uIiFhYWsLCwgJMnT6LT6WBubq7cs2xj48w+vspTDNBQr3U6HYyMjGBxcRGNRgPj4+NotVo4XKvhqf/jA3jo9TeXdb3t4Q/Hx1/6Uqz9n33/PNDG/uMKmoWFBbTb7TK7kn2l+/6qTaF6e2F9Ae/vvh9fbf2fjWYngPPa5+Ebb/xG1Fe3Ji+4sod9ojqOepMyh3Zrs9nE8PAwDh06hJGREUxOTva8sVC37OB4a/Bc5YzqvqHFRZz/S/8/fODLi2X7PnIZ8P3f9wm8HC/HHz3tj7bJIvXDI9AG4iQBgG1bGmi/adBO/QeVR07fO2HXgacocs3f6ixUCXM2eDeVKwMeA2v48jd8GfMz8+W55l1NXPjJCzGwNtAj9CjINQACbC3PoDL2mRA+T9tDAcvZVt3XSDuecGNMFRjv08H60iO/hLmpuZ4y7hq7C9cevhbPWnlWOfOhyoX1JMP7TJg7rZ4Z4kSk9V0bWMO1M9fijrH/sz/GxcDE8f+Pu/8Oky0760Ph366qru7KHU/3yXFmjuJII00QCBSQhMT1tQniGsEdLuHDHxhZksnGYIxABJkgorhgIwM2skkGW4AQQgiU42hGM6MJJ8+Jnaq6ct7fH9W/Vb/99trV54jHn/t4PU891b1r77XXeteb33e9q4iTD53E1GAqkhGlSoRvPeO8/Zy7GsqNRmOHYaIGgXUkWIFnlTU1Knzjsus2qU3C35txVP3v0Hy07IPLpOe5TrMzs5j9s0+h/i3fhNkPjaOC7Ze+FM+87W0I5Zh7XzoocVkdTaocxhlcu62LxU1VpoCxQ4fKojo6VVlTBZlCmE0VSMVDhadPQdG50ulGuFiatoax/q9KPPvVOSrPVLqz24K0DzWgfPDUOSYSCXfiEh1OLMLYaDTcCRtUtligUg0ExSkt4q4w0LGQ55L/0SlNI5jzbTQaCILAOaD2clP8VJ5ncZH32mcJDzXamfE0v0vG0KdX/wuWZ78F2cRIwVNlDPDzCqXXON5BQ9gnVxTX+C4qaeroGA6H2JqexsNH9uM5z1yLOLb7AfD+E8DfLFzCPUEZy1iO4L7So1XU+L9m9GhThdJnMBH3ray0OB2GISoLCxPhf2Z+/PfccM4Zp/pNnqAOGjVSycMYYfdlPOncVa/SrG1dH+XTtX4Nv1P5HTzeHTkw7/gM8LreHXjwNT+O7Om73dxJv7lczn0Ph0Nn0GjmuMJIFX0bnNKTg/ZyU9mmuovPEcJmYUGcAqLOKSBKK+yfW25VT6eTQOE502ziJW99K5Yfesi9q/LAAzjz1reit12vRAOPXCsGL+32b+KLDRjZdbXOK2bisw+tb8S/2+028levolitonvkCNqnT2M4HLpt8bpNXHVgvtPiu8/YtY4z3a2g61R/7LMomG1PwGib7+mLF3Go1cL1QsE5+LgdmRnASofZbBap1PikMN0mP8nxpMYwx861mf9n347URz4aHdwH3o/gwW8C/vt7IrjC+WuAV+GmDiW7jjo2awzrh2OkTcHtSLr9c682btFX+Tup+XRSYCw/gWiGk8+413eFYYjhsWMT3/mneAyvrl/EscKxiA6ktiFtOTqldassMK4LBcCtExM39MQ81TnVOaN6SBiGaIZN/OM/+x2cOteKjPXgE1/AK37rt/CXb3rTDkcGMJbPujNHbQHiE+8h/lgdeDgc4g+Gf4ALiQuR95faN1AafhQzlefifCrl+uCacF6aIUw9ljTHjCfSLfUq1Q2ss1t1epXXhD3hcM8v/zwOPVWLjPlV54D/9IdDvO7BD+Jc5RxOzZ+K4JfKeg0KqV2ugXWFuZ6IqvSvNpiFvfVF3Ez7oouLs/kUUOuIUsXNMlDfYIfDUc2G3oEnsIkGtuS3xnIDF++9iKW/WnL9KCO3e0bjlD02e10ziPREn0Qi4WpXEMi6NY2Ck44PG1F13tRCF5WFyo5xhEGIK5kruLp1FfPt+chpF+pVV+ahfaugpMGoRSaJVD7E+bvFv8PV9NXIeKqLVTz1/Kdw8mMn3QkH9AD7kIxrbpVsKgEKDwDu+O9EYlwY0qUEmw8NRauoKYGyX81o0HVQ40aJPa5Zg4p985o14ve60cp2s3O2130Kxa32NZydxfC/vQebZ84gef48BsePo7aygm65jKEcAT89Pe0iDcC4sKCNvvscNfb/uOYzzHVdVbip4jkzM4ODjQaODQZYLRZxYztKR4HEbAzN+CD+q/LKRly1TB0Y8UE9gQOAy0ggbdOoUCNf+6HSYA1fNSJV0VMYqkNdBTgbBbI1ohVXyPMpuPVUJ9ayyGQyKBQKKBQKKBaL7nSUwraybjMDMpmMg89wOHTZrpqyzLmrMsutGqwzw3oBzLLY61kTcTJNTyWzyr4aIpQFlJOZTAazs7MoFovo7JIx9KH5axgO/wAPhg9GFExt1vliHSKqWKms0KCJDS7wf86Ra5vNZkfydFum9ft9vOPr7sM//e9/FjnE4P0nRsW5AWAz2MRKsBLJxiPe+HibNeDV4FK5pkpenL6hDgLrYAjDEOWlJZy94w4cP3MGCeFNdJydWQCCMMDx8DhKgxL6g36kiKrCWbOYODbNaqHjSfHKGlKkOyuTLU9UPvmu2rvwVP8pzDWB3/9jHibxNPD/fiOqX/IlKP/arwFzc5iZmUE6nXaZes1mE1NTU5GsCgDO0FD8Ugcrx6u62V5v5FGKW+o8sHLT6lr6jNKOPkd8pv7K7TMaMFEHJMfz6t/+bSyZrbalT34SJ3/kR/DJt74V/X7fbafRWidqqFictxlQvK736HHmrOumeibHS1xL1+t4zbvehRNPPeX6ufGCF+DhH/qhCG4z+KD4qgf8aBBaDShgLFuYbcktpMA465n49/t/8xO4d8KaH+l2ES4vu+wG1Q0If2a72K3oXGufXqy4Q36sTsFut4vpS5dQ+NBHd4wpOQQyf/t3qD/9tNfxpKeLqhxhVp3qAeoUUd1cM9K5doq7PCm1Wq26vkkje7VtbW1518Ind9ms3KbsoP2Sz+ddoXV1DAE7D1YIwxCDkydx+b7nYuVTj3qDLGcWgGfqz+B48bjXRiWt9Xo91Go1t92R8oTOlnw+74pT9/t9FIvFiJ2rO2rUkWIPJxgOh3iq+R687GzU6QQAiWGII48/jvy1a6guL+8IJvObdZe0FrGlW2Z1apCE9LA2XMP5/DhTLCqjqgA+io8Wi/j+Q4eQzGRQKpVcUI50SN2SmfpTU1PI5/Ne/VmDm2r/k1bJl+lsZPa5OiRzV67g2Oej/BiIbr8/v3UeJ2ZPRHCQfgNu9VNa5D3tdtvxQ2aKBkGAer3u6lupraJOPOX5qgf+T3E8+ZRefu/m1IlzMNm+ASDf7eLHH34Y95fLwGdG19zJLhkACaB9qI1gMUC6Fk13sxE+HZeNkMUxDj47HI6PpKRjRCMKwDj9mETNbTQWVmyJRAKtmRbuWAdOluH2a2rbDDeR7+Yd4rI/LrqdI5sqIWo8KsKo8cHr5UQZz0w/4/qJjG1/A+1cG4nuOPKrBQBVYGmROm0+p5Netwo+77MKtRqvvG7XWSNHhInPSWZhE4eLcc0qgrdLixurvW6dEbfS927wCMMQg+PH0d9O4cd2pokqh2TwTA8G/LWPrCLrW89bab5n+Y7BYIB8t4vfWF/Hy7ajXgDw4X05/NSLnwdgMWLQ6rNqcMY5yXQMqrD3ej0sb21hvlzG5ZkZXC8UnONJnePqcLIRZ5vxxPeokW/n73M0+fpQZZPNGh/85nXriOAcGHELw9DVf9Pokm7dovAGoluelW+o4QLAGVv9ft8pz4VCAQCcgb2Xm5W9PgXXJ4t13Qg/0hc/rZUV3HjhC7H08MNIyJpTmX16AQDOopKoYCmxFMHlOPzxfXxj8zWreNq+ORcaW0EQIJs6iNc9OFLITm3ulK+LiUXXpxpLlo9Yh5OOh0q5FuSPcxyoUqxGbRyM/uyf/lP8k//6XyOn2qnj7ARO4KuHX+3eQycc++K8qK9onRDNtrDj5xysUaty3dK0lbGrg1U80R8pyb//x6OorLb8xz+O1JvehLXf+z3XP/Ul0joLDXNbhW7ViePtnLM67Pdys/ihyrzNRFddB4inKf6uGTrMTqAM0dOW1PjnWixsbHi32gbDIeY++UlUnv4UHi/1UBqWHP2rvqW47uM3fJeP3ggP4iX1bHVWcH79fh9f/xd/gWMXL0bGufjIw7jrp34cl371/wUwPkmRY9HgkcKT30qfKjv1Y7fahWGIi/WL+PPUk/jFCWsenjyJxcXFSGBc6Yu2hdoxdr0Vb1Tv9TnMdR2qT392wsiAG498BOGdL4o42jSQZZMGFMfU+cz3qU6vBaL5UVnNb2az6HbCvdomjW+SDey7RtjpVjWrk2lTujr/82/Do9/yT2KDLIfzhyPrxHdwOysdC1rn1wZb7U4DjlttN9U3yV/4O50f7VwbmY1rE+FaXF1FZWmcTBLHy4n79l02QKmwCsMQlUQl0o9PRt1freLnrlzBD919tytazux75XeaWc/1sokmOk7lt/q86sNBELhTSckjCjex/f5I4UiEtyofYICXzjJ1aNLJSBnLDC0AkbITVv7oe/guzudWZPBNO56UARGACmCrqFkl2OeEsoInDEP84COP4B6T9q8nu7BNr0xjNjXrntMMIDJy/bapbooQ1gFFJFGPqU9ptNEUZcQqrPj3PICf+PAz+NLNcT8RpxqAVC2F5qDphLVGUfW9GnXhdd2uYBHGjo/z25ge1ZmKeoDHY/vBQy10kXMEw8iiS8/ezsiyhYlt9NsKbq0XZbNAOH4tJq1MhkyF3lquW7/UR3++j0wrA7QQWUPbt/ar+KlwVtz836VZpVDnbZWNSfO2Rif/9gla+5zSKhlkGIYuCsOMFh63vbm5GXGe2OyI3ZjdpN93E3SESbfbxa9Uq/hSkxXzwFoDb3ry4/imfzSP+5+5H9lhNqLEWgexGhNKp/oMo0ozzSZ+4NOfxn2bY4bx96Usvvv5c6g1U0hWkpG6GjY1nvNSRVrnquuuTZUKCyufgss15HWfk4Dv5tozS6larTo+nU6nkc1mUSwWUSgUsLi4iFwuh6WlpdF2sPl5V6CSYxkMBpFT6wA4Psd7KFAVf3q9HnK5HHq9HiqVCiqVym1V54nNKlmWBi2tEH75fN7VXshms5iamsLnfuAHcPwnfxh3PjaODKoyCwBbyS3sT+13sLcKn+K0KmVxegGbXtN+VFbxPu2TDsMwDHE4PIxTnVM4u3AWZxaEfyPAqeAUFoPFHWOi4aPbeDStPgiCHZFdrb2hWRXWENc5adajympV7lszM/jDb/s2LGxuYm5jA5XFRTw1F+KfDFYxN5xDaVBCmAgxTI/mwLoWVnfRbQA6HjVqFXcID4WvRnnVwADGWcXax3pvHcAocKU6BFtiOET2Qx9C8tw5BKdPIwgCl9W9sLCATCbj6uDQGKK+oLqWxRMabFbf2MtNjRjqZRplVhy18k6dKUpnQTDOgiWMmEHUbDbdScDk0+oMSqVSWKpWJ475P378R/HeO0Z/Py/zPLxx5Y3IT+UdzDUKrnoo6cqnL+s9QRC4rdY0kuz2vcFggOL16zh94cKO8SWHIY4+8gW8+S+/E9/8ZT+BgzgY0Ul1u19qe0sNHSNqN/B/ygg67VRfZT/dbhePlh/F04sjXflV57AjA+Xi8+/AoVe8IiKzVC9V5yrfDYydiEqHypc0M4LPkZbpkB4Oh/jCUhL3T1jXM/NA3uAgM0sYAFRnCI1XFgRnlok6H9R20ZPCtYafOl+azSYSiYRzipRKpYm4+L+yEUcsv7T8Rx1xynOVfxHHt7a2sLW1FTlhV2WI1emCIMDRIy/Agz/45XjLox/G8Y2hC7IkgyReuvwS7E/vdye09ft91Go1dDodrK+vu90rKnvIb/XDa3rKOzA+cU4zz3WMum10enoa1wvXcXaXKieb8/MRWlA4K09j1iD/16weuwVQ16E0HONUnIxKAnjJ1hZeVCyisrQUKa+h2dtBEOzgcTyhjrzM1k7UtdNG24J1pbhdL51Oo3fkyESYzd31YhycObgj2UX5QKlUQq1WQy6XQ6vVQr1ed3SXyWQwNzeHbDaLlZUVFAoFV9vqmWeewebmZkQO8zndYaXvvJUdA7ec8WQNC/3dGrIclDVY4trBRgP3bmzsuB492WV0LdfNRWqSqOJlHWJ2bHEOBjYbMVfDLe66dfbwPYp0bztzBvdVd+7XfPcfAV/1fwdYrC4i185hmIw6R3xOO/5unQbW0+szBlToZcOR8urzAL/qHPCrG5v454dKrk+tpaUeYOvYs/BmRhj7YdaBXrdz0/FSkKmQIzz6U31knvsM9qdaODMPfGEBmF2fxelHTyPVj6K4dTIq/thmr8c5KXZztuyldivjVDzaLQPqVudPHGH/ZO6aOZhOp136tToWLI7fzBxuptn11v9PDYd4lYexkjfNDzbx6aOfxpee/9IdW3l0zJYW7XV1WH/vZz6DF4rTCQC+pNrEv7vaxOseBKafmUbxfUWgh4jjyTd/fd+twMhHG3H/W/rXpsqrD1eo/NBQolJBATkYDFxNGEah+A6bGaG8V/mxwiCRSDjnU7fbvW2Ocp7UqHzxY6P7avDqcc2UUd1cDu/5/jfinZ/5Xm/GEAAspZYiBpuuJWFrFROfjFLlzWdcq4xShU/XVr/5+YbUN+C/9P8LzuCMG9cJnMDXB1/vUsNVju6G+/zWuWjmiBpQvsirwt5nmCg8KEery8uorawgCAIsD4dYTIyyKXvhePuFfquzSPuxOlBcs7/bv1WeKz9Qo2gptQRglC09qSXPn0d41107cHE4HLoIc1zdLB2HlR16Cu9eblZ22awEdfBZY8InJzSYoPcA4/ICmrXAflV3SyQSqO3bN3HcWmPssdZjeOfaO/FjJ38s4lClDNdArE/u2SK6Wric/2s2r8q2w0Ye2ta79AW87Ym34Rdf9IsRuaA6ozZLv7ymPMiumY5zITFikG94/UiPtxko9R/9fhwU49M6EKyctDaF8m1+NPPX55TQeZWedW+sU+z9J4C50/eieqGKRqPhHL6W1+rYCBfrpLBw0mdsEF7npHKZDo693LiOPseT/g9EZa79jXBk1pE6/Kye5uPNQRDgl7/8l/Evwn+B9177kPv9gX0P4Kdf9NNoNpsYDAaRE+ko/zQz1/ISy4+0VIOV35aefAGO4XCI0qA00Tl77o7j2Nq3L9bWIgzpdNKMZK2DZjOJlN/ND+dxuHMYl9OXcbI8GccOtdtoSB1RrpMNhpHvqTNf5Rb1BNVRfIk6KqMZjBgMBigvLWH1nnuw+LnP7chC//SzZvE9X/tOL56ofmD1Edbq4v08TZEF2ik7FEd0vbVZHWo3G1HbTTue1IFijSm+1DohfIhpo//a14HWzj2g2qgMz5fnsYAFILszvR8YK4c+BOT/vsJodjwAHENkFsJwOHRHORNh1NBUwtZIxaFmEy/xRJVouL74fAlzlRciTI5gqvWihsPxdj/OwdY/4Px8irzWyBkMoicCpYYp3Hd+Dq89u1NjTIXAl1UaeNaxFJ7J5yPGnAoQRUplAvrNj2YgqVKiwtYqLvouAJFjPbPtNt6+dQWv+a9jwnzvSeANX1vBE899As/93HMjihaNJn7HeWmtwm1xTHFKifR2aCoUdA2tgFQhw+s+WNhn9P+4ezWjgNE2HgHPDIxiseieJS1Mcnr4FJ/dms8A9a3l8eHkkM2pMvDeO9ZQSVQw152LZBpQqbUKt9IyaZIKwuLmJl68mxP+YAebr9zE9B9OR5QVS5c3Y2Rr04i7j4+rALXZIXxGo5pK21ahVVkRhqGLxrEuSSaTQa1WQ6FQQBiGyOVyLtNRa0H4lFqmS3Pe1pHPWiCZTAbXrl1zhUP3alNct9cTiUSkVlY+n8dgMHAnBgHjrWma8URYEjYLWED6wLPxvoUnMITU8UCAu1J34VDm0I4DOqy8scctq3Gn/FzT+zWoo4qeOrHUqaLbyRQP86k8vmPqO3Ctew3rg3WUhiXMDecQBAGavaaL4gNRXuVzClGuUx6pfsOgiRrUVukGdm4rVfms2dC2pgvHwfeqgstmHa+2kKk6IXSe9qNztbxfa1UEwTh7kHyKcDgQHMDp1Gmcn3sSQDyfaR44gOnhMLJmxWIRmUwGzWYT6XTaZT4wU0L1Ks1K4/zosB7uwqP3QlPc6vf7aLVaaDQaqNfrrraR1ZGUt5O+KDN88pb0x7ot1BWJY6QB8sd0Oo36gQO48rznYf9jj3m32qoDeoghPlf/HDAP3Llyp8t6p35H+tXTaFWfi9P/7IfjZn2XZrOJqVwOeM97YuH71HyIM9XP4tFrj+JQ5pC7zvHRscmsRYWd8iwLe73OLJJ2u43Z4Szuzt2Nz+PzeN2DQ7fN9/xCAovPegl+9eS9LmuEsOA7la5oexBWrVYr4igHRrJyZmYGxWIx4jjwFW/n53jxON7yzx9A8Osfx1eKU+xvTgC//N0P4GdaGTx++XFcvHgRq6urqNVqGA7Hhxvpe/QdxD0eCMCdEMy20jVk7TbyQW7rIT4CIx67tbWFZDKJ4yzDsAeb3SrJ5rMXfM4TyrRut4tms4larYa1tTWsra1hc3PT/abOZ7sO/Ls0XcK7vuJdOFc5hwvVCzgwcwCLiUW0G23cWL/hti2H4bjuUjabRS6XcxlQuhWX3/ybv2vNYNrO1J80qyeTyUQcL6wNnBvmcLx0HN/4+vP4feOc/dipHJ749u+M6I+Emeqr5FO57dPvVDfVj838V7i/qvIqvK/4PpyduzJxjZsHDiCdTkccgoQjdXnqH5RHWqeYeonaALxPay/xmxnKrKXVaDRcdtJfPvggvnIwwMrDD7vxrb/4bmTe/g5MJ/MOVkC0YH0QBBEnHfGq0Wg42stkMlhYWMD8/DwWFhZc2Ql1apNvKy5rlpyuhdVPJrVbyniyBgiv63fcs77fraF0fTuiHdfOzAMLlQU876nn7YgqsvmMGyu8AXiVRp9RbR0h+ozeq4juU0IP7bKN4ysfO4mHVqZG+X7YeQy6hVucB1JhqsaA/V/TLF/5+BEA8aHKg60WnpmZ2fEu/bYKqyoV/N2Ol7AhklP48ptpjjbTjPAJwxDvuPEMXlqLKpyvOge8+0+A1z1YQTvbRrqe3oGncetthYmv3apzY6+0m3GO2fn/z5irjz7VIPX9Zsex29jifrMOsptt53aBHSPC9XQds+1ZLy3q+4FoDSgbRVyu1ye+j8erD44P0C/1EWz6t7jZv7+YZmlGlSxf9IYCWQ1bXS/bh3WQqaOCTsmpqSm0Wi0kk+Nj120kibyf/MPiERvHOBwO3eklM4a/7cUWx5vUiKFDjoqQbVQqmFWihY6Jp99e+nb85sZv4snBk+65O5N34puz3+xV+FS+aBYGx0bFRbeXaaaDlamkBSu7fIq8ddQQFkuJJSxgAQMMMAgHkbFyfOyTzkg7F/ZpcdN3X9w62WblMO9Xh5GlFY1gsg/tT/mn6jOaxaF44qNb7Y/PEkZANALKsajhPhgM8K2Fb8W78C689+QTOyLbYSKB2gMPoHPkCKaG0UNm2A/pUOtS2Iw2Oxeuoa8cwl5sVgfTjB6rk076WPwjz7MOK19/2hSmH/qu78LLf/M3sfK5z7lrdquttqudq3he8nmRiL3FMepzyjMUJ61Op9dZUJx8LZlMonHyJC6cPo3DTz6JpMzFOsgu1i5iAQtuPMQlhb3Fe0vLvEY+xeAQg8KE61sOvwW/fPWX8VD1IZxZGI3hpStfgp+592d26Ns2SK28R9+pPE/lL+nOZ4dYuPL7x1/9S/je3PfijY992AXvD939cvzUi37KORe4LqyBqHxAeZUPt3w8XHHByobBYBAxkJV/3Q7NR0c2WOe7186V60lHAIOTdCqTL/gCrtqOFo5i//R+dLtdVKtVdzqkbpHi8xr00Zpy1LW45YuOJ5/jmGPiGmqAhnSrMms4HOJ1jdfhfcX34XUPnnHO2WDlFL7i+Hcim8giKTqMlT/WrtaP4p3ujOF1hXmyl8RXXPsKXG1fxcf2fxL3Xa8iKcs4CAI8feQIbhSLzgnHLDTVVezcVPdkfT2Og/KLmUaKC7olVh1vigvtTAbv/77vw9z6OlbqdfSPHUN46tSIJwodaoCOHxaN10AgdUOtYUXdl84p4p7yIsVn/bbtZmxM4Is41c52rIoRB6RM3f7Oa9YwA4AbpRI+u7SEu9fXI0JlEACfWC5i/zN3445OHiFChIkoQauxoWPhR6NDQPSkLBIXI3jK2JUY+C5biJbvUGJmFJOK/aVdTmq4UShEENV6bdmICOqVBMbKugpxrZFExqH/EwZXk5mJYzsDoFarRZRNwobjJYzUyNCmGWUcv2YhkRABRCLSYRg94jEMQ7fH964gwMurO7MUNCuknW1jphndmqOMmNeUCfO6NQC0KVHebhlPcXNi8xkk+qzSAptVkizeKrxtH4SzbqthtIapwmTOfCbOQNI10/f6FO445qnjIw4+GQT460QCrxgOI0zTKrxTtSkMk8OIIcCIH6OsnLNGm6gAMkJ9ZhcjSrc+DEtDJDb8aa43Y4xZXsZrPmNCjWTNQLCZjjZDUxUzfSf71uiQviORGJ3OVK/XcePGDTQaDRSLReRyOVcDjP36MnF0De2BBqlUCp1OB/l8HouLi7dljSdg7BTI5XKYnZ1FqVRCoVBw2U6EA5UanmjHD48NpmxID9L4ltS34NrgGrZSW1hKLOFg5qBTlGxqvhphqqDy02g0nHxUuWMz0KwTSb+VT4dh6NaKBiXrBWmtBTU2NapLw0e/SZeWx+gYbACHv6kss+n+fL/dRkR6J/3w2zoK2Bf7t4o2+YsqnxrQURlNeuL2BMJI+bbP0aT9kX70VDzqV+l0Gm9OvxmfePAJHH73H+M5T15292zecw8u/cRPINkfn36mhZVTqRTm50en+Var1YhjRhV+Gj0cB0/Dsw7PvdpYx6PZbLpvbnNSfS3OEWUNeOtEsTpaGI5PNiVu0qnHE974jk42i4/+6I+icP06Cjdu4PxiEt+4+WOxczlWOIZ6vY5qtRrRLbkOamSrXaDORN6nTeVRMplELpdDPp/H3NwcBoMBnvy3/xbhT/4Yjj86doxbB1lQDnC1dtUV2C8Wi+7UMM0U1A/noJkdg8F4hwB1EeoH+Xwe09PTWJ5dxq8c+hVsYAPXu9dxcOYgDmYOot1uo9quRnRX1ZsB7NgiSr3B6v/kbaQV4o3KNp7ARTlIvrCQWMC7vuJduHjfRVysXcTB7EEcyR3B5uYmKs0KEokE5ubmXI1NZlu0222XAUV9Xnc8KO6oA1WDGVonp91uI5VKOX3IBhasDr4XG+WO1S9s3TK9rvXPeHpZOp1GYdvmO3XqFIrFIp588klUq1Wsra2h3+/j5MmTyGazDs989i75f7lcRrPZxPr6egRnmB1HHnDlyhWHO71ezzl0mYFVLpexsbER2WKnvIf9UhbofOvbwdJCoYDp6WmXydrtdjFsDvGq5qtwb+pedPNdnDhwAvun9yObykZkNU92sxmAqt8DiMBbeRwdP6RbXut0OiiXy+j3+yilSvit+1+J/Kc+heddGWc/PXHoEH7zy78ca2trLvvUl3kNjDL+CAuuNYBIZhmzmqhn9no9V1Nzbm7OOXl5omEYjuoWHzhwAP1+H+vr6+h2u9jY2MBGEKB5112jGqjbTix1cnGOzGqqVqvY2NjAhQsXUKlUEASBy3abnp7G/v37USqVsLy8jEKhgFqthq2tLVy+fBlbW1uu5qkG6dTxZzO7b7XdtOPJGnPWQPE1n5NK/7b9JBIJ/OJ99+FffvKTuGdtzd370MIi3vHcFyDfmfL26xunBRgVPv6uRXlJvBTOrDmk3kwdo88wVwPNKglBEODi9DQ+Virhvq0taELaAMBn5+dxNZfDpEQ16yxQ5hPncJsUPVNP6aWZGXx8dhb3ViqRMfQBfDyfx4WpKUCejXPi6Lut0adGBRDNOlC4+ZxC6kFW7/DRXYqZndoENlpRp5pvzW616fz4/+3afPP3OYz+Z71THXhURtQhs9u+f8WbL7bd7PP/TzqN3+n18GoxcJzCOwRmN2dHhe3z0b59jjD9TZUvKnTnp6bw4XweD9TrEx1dwEjJ1r6twbwb/HQ8cfdYR5H+Heeg0nvVQeSjQSqoPh6r0WHFDXVuW35o+ZAa7+rkoLPgdqjxpHPxOW/T6bSLYFHhsc3O3WYjqMxYCBawP7k/EsEEolkbvmibGppUiuIcTypP1KGgc7Y4xzEA2PEOzbJQ2GiflDnUEfgb//dlIfBbjS67Lj5FzOoESu/83W43VcPFx5fU2PNFpC0d2m3vfL86wRWuKn+tws3rdq10PebmTuBv3/iD+Hy5jMVKBcm77sLgxAmUCgUkDF2yPzqRFH8ZuFPnpOogFm/2utEKjNeORh31zklZT7ZZ3cM6eNR563NY+Wo/KR40Dx5E+/BhFIIALxq8CA9tPRTZdpsMknhg3wM4Wji640RS9u3jx5q94aNLe43fWocuDEO0l5fx6E/9O7zpQ9+P4dWnRtvrtuVhgAAncRKzg1n0wt6OA2k0oGxhyf8JJ86t2Wy6b+qhSlOUXccyx3DH1B3OAOTH8kjFY7VJLC9QmPjwKG6LnQ3ucc6Hc4dxOHfYbWMFxidVZ7NZZDIZ54zUzBPiCcdlbQq+W68rbepz2p/PHtnrrVarefULdVAofyes6RiYmZlBv99HLpdzjif+nc/nnU6jdMqECGBnRhz5P0sUEIYaZAvD0OEkt49Zvm4DF3xO5TTtYSsr+L/KedpqSmeDwQDT7WksYAG5mRy6Qddt06XdzcARnac2eYJ9WTmva6FBTovDlHud6Wn8yld9FfbX61ip17E+O4uL6TQ6nU4ERjaIpjoL++bc+U3+QHhZXYjZZK3tE705ZjqVyQOYiUTYdzodR6/kFbpeLE/BLZy1Ws3ROfvSw2XoqAbgMqOazabLeGLz6dJxdsPN2sK37HiymSAq+DkorYNAoKoixKaKGn9vpdP46Ze9DCu1GhYrFVyemcGV7dNbfJPjWEj4elKaLrjWaeLiq/JI5NboI5HfGjgkDnqLs9msSwcOAv+Wgl6vh3919Ch+5tIlPFCpuP4+PTuLt951FwYmTZGCjYyFSMb3UthZhqBZExoR04iCZnnRiPvXx4/jJ8+ejdSh+ng+jx88csQhq661RkqHw1FanzJcRk+skq5z0wisKruEr57cp5lRXIe17RpAcW09WUKmOYPBcByBs4axMi7OxeKXz+i6nZtVZHyMhA4+pVllPnEZUfYdVsFT2JO2SLPZbBatVgvlchmNRgPXr19HvV53CqsKHvatyo2Ntup82IbzQ4SzIYJygER5bITZueg7+P8mgK+ensYd08ChF7Xx5LOGTuHNXs3i1OOnMEiOU6hVEdQIgTq8dR6EB3/7/oMH8TOXLuFlUvsuEtkdAokLCed4si3OcLnZe1SxsEaBKj52DjovfmxmBf8mXBjNVWfQkXYbK40G1kolbMzPu1OPyGvWw3WUgzKOFo7icPZwrAFmnS3WSOfpH/Z0zb3a7HoRjrOzs5iennb1IqrbvJyBFeXfiouUA73e6LhlKjgzMzPIZrORGlC+rUHqaKKMZYaAwpq0poYMMDYs6WBQHsw1U5mrhhtrofC0Fq2bQHzih0WsOX7On8oi5S/HoVkHwDgLyJcdq8/7eKbNUtEaJ4lEwpsFZp0qXKt6ve4yE9RJYaPCdr1tVqFmKrJ2E69rzQrqcRqZZl90DuW3a0CyZlG320Uzm8X148cxOzuLtBidNJCsnsho7NzcnKt1wYwL6maEKf+n/qCFUfdyI04RXyuVCur1OprNpnN0aPaNGll2fmrwsfFeABFHkOq+HMfU1BRKpRKCIHBOh3w+754FgB84+QN4+9m34zNbn3HvuH/pfvzsvT8bkZGkKxpt6pBhnT2ViQAiOER+wzXWRvwlDKj/Pvhlb8VbH3srznQec/ce6R3BV/W+ColMwhlYPDFVHalam4VBhyAIXMZAs9l0WT/lctnRXRAEmJubc9kk7D8Mx5mdWltLM5rUWa/lOwgbhYWeSJlIjLIbWq2Woz8amXzH9PQ0er2em0sYhs7wZO1MwpfwX1pawtTUlMvAGA6H7mAPZuCR9nh6HYPyzNYkL1EHuM6H2ZVaMJ4GNx2UxDUeJ7+X21/91V+5v9Ugt/oc4UD6azab2NraQqFQwIEDB7CysoIHHngA09PT2LdvHzKZDJ73vOehWq1G8JXZdspz+Q5mtrDvZDKJxcVFxxe63S6uXbuGRqOBCxcuOMdXKpXC0tISstksrl69Gjk1enl5GcePH0etVsPm5ia2trZw9epVt77K8zVYqPozHRfEW/IVrR917do15HI5hGGIbDbr6k3Oz887RygAlMtll3mnJ38qDyEdZzIZJxe1ZlWj0UC/30c2m0UQjDJ/yAuuZLM4m0ig1+lga3XVOZlVBnOtib/WyUobn/oHM/yoN01NTWFxcRHFYtGNa2NjA1evXnV+g1wuh8XFRRQKBae/rKysuLG0Wi3cuHEDw+EQc3NzkYM42Ofly5dx9epVZ6/ncjnXx9LSkoPX1NSU42HMdFpdXY04woh/tON1rnFtkj1o2xe11c4XpdC/fVEL3+BUObPPrpZKeGbbOwzjDOAz+jcZpApZVYqp7FD4Wq+7CgXrCVaDRBVBMkkiKZVOIp6OLQxDVNNpfO+zn41DrRYOtdu4PDODy9texxnxjlq4+hwhakRZD7SNJuhH56kRiGoyiTffdReOdDpYrtVwNgjc2NKSkq+OIGuEktkAiGQlqAKvaZoqnKwhOhwOnWPNzpvtWqGATy8u4oUb65G9uv0A+LsjUyis3YM+xkcyT2oWb+1vPgM9zut7u7U4WtVrPufMP/R9lpkRpxgRYBQnDEOE8yEGpQESlQSwOY56qKMb2Fknwv09E6L/T/oITwotnQ2Q/NMkMPlMg0h/YRjibC+JC58qIDgXoDQfYqYxg1wnh8RiAuHMznpxcY4b+zvHz/dUk0l868oKDrfbWOnW8fmXtfCF54+NjOTFJKb++xTC4NbqX9k52cbn4/rhNY0eq9Kla2PpOg6PSN/JZBKlwQBv+fjH8YLr193vjx06hN/7qq9CP5NBfVDH77Z+F083nx79uAq8IP8CvOXwW5BP5nfIH5uhoe+3jvTbqVlY0nnAE0rsdkdg7CSh0simwRg6RvQ+jXpqVoaVmVRQqaRpxJR4o04ldYjEZQYoHqrcYcBFnyMfsIW2+b6IE3oYzT6g4UQc0a3rhC9lrjpcLQ+jbmBpWh1qfIfNCCBs1UhXOc11ony1znjFCc5F4aswSCaTzummwUHqM5p9YaOrVi5rnRI6oGis6jt0LoS3DUTNzMw4J7PinpUb+n7VufZy43rSIdHpdCI6qc16ss3Ho5QfA9GMPcULxTGbmaH8V5/JJ/P4ydM/iY1wA9e613Bq7hSOl47H4qc6TrVvbZbu7Ptt0+vKDxa7i/j+/d+PM+UzePz64yj0CpgbzjnDmE4ldeIovKizWwe1OqMp23RepA06VTgn8j09xp7OFY5ZnfNqW+j41MFudRsG6jSrin1xLDMzMw7HmA1DmJMvkmYzmQxyuRx6vR6y2axz3Fvnucp5/SgO6ofwtca78jgf/ux1Pfq66CTAmOboeFL+aB1PlUrFbauamZlBu91GMpl0W95nZ2cjOKDwZlPapCOG/IN4w3GFYei2wm5ubqLdbmNhYQGZTMatC8eYSIyKvpdKJczOzrotkeThKr+UR7BZHZZZkOTNTCJIpVLuN3VI8jduA6aDk31qphC3avrkkPULKH4R97WGEmmRBcSZ1cg1UHtT+7WZqZY+FD84P62f1ul0UK1WHWzogEulUg4vtIwA9SnWO6XsZBH0TqeDSqWC1dVVV4aCtM0MRs5JA0UMEjH4wS2CVjdRuo4LgNxKu2nHk3pa+b8yJiKOb7Gs8st+lBlbxcwyL58Dhfdp1JYZEmTGVM5Y42l2dhaFQsEp5ltbW6jVapG+VDgw+sCovGY6scJ+uVxGt9vF7Oys80LS86mR4iAYRVTOp1K4VCqN5idOGyVqmxavsAfGnks2RrJUcabAUoNCP6q8cu5nggBPZLMjD/F2JgDXlkJ1MBigXC5HBAn3+auQ0bVVxxMJhxEOCrt8Pu/GlkiMarsQznbbCIXoL957L77n05/Gi2Rr5mf3zeO3n30/MkGARqIRcc75BKQPn3146lOU1Oi+nZqPHu3/PoZijXc1IvX/uH7ZVAFhU5wfDoc42ulgsVfHp19RxRPPl6y5cwmk/3saaaRdxG5mZsZFKckPAODkYIATYYgnXtHH08ejYwiPhxh89QBT/9Vff02dF8qXnBJXTiG5lUQincAgPVbmNdKneKVZlMxyAMZbfNSZzHeFYYjzqRSeGGQw/PtplB7qYVAaAGUgUR4Jz2EQdfr8Q5U3Pk9Fm3StSiTfxyiYKrTqTFZnopUR6pgiPqRSKfzIZz+L562vR8Z0+soVfOtf/zV+7xu/EX8Q/AHOhGcivz9SfwS/cPEX8IMHfzDiZLIGEhvXgSeJ3A5Op93GSH7PCGOpVML8/DxarRZqtZqLkpVKJZw6dcpFGnu9Hq5fv+5kZDqdRrFYRDqd3lFk05fpROWVUX6mqevWujAMnSI1v529xloQrOVWr9edLNZGOa4ZIKStfD6PMBwHlridgFFiZj7ZrZyUuWyaecmjqCmTOU5ba4M4pc4g1joqFAouk474rThI/NSt/j7Di4aLnjKk66R4oXqUdXYpL+PclFZ1ywMj7dR5NBuFiinXnOtPYyGbzWJlZQXlchnAKPP56tWrLhNDsy4uXryIfr/v4Hr06FGUSiW0221MTU257QLMolF+QTjZ2lx7vZEWGFlfX193NVdckEU+Vg7bNVWZofoWMNYFadyQR9MxzXVkPUXqZ6SBIAhcPZpT86fw7PSzHZ4wqFiv112GDzNvGE3XkhXUHdUwo2zgtzqI1GnBbWD5fB7FYtHRw8zMDDY3N3F8cBxT1ZEMpy5w+PBh58Ckg5XzIwx4sITWhSM9NxoNVydvamoKnU4HjUYDQRBgcXHRwZOZSOqc0sA2Mx50x4CW+QjDEKuDVfldqG0AAQAASURBVGyFW1hJr+CO/B2OjsiH6UgaDoeo1Wq4cePGju1AzF6gTaN0zto2nGepVML09LRzKtD5MTc3h+XlZQwGA2xubjqaVicRjWg7V5W1vAcY1xxTHUL1PpUjhO9ebpubmwB22qdsvuu058jnaKc+88wzKBaL2L9/PwaDgcs23NzcdPrS9PQ0SqUSMpmMw4HNzU2Uy2XUajVUKhWk02nMzc05+Hc6HWxsbGBrawuPP/64y44Dxg6cRx99FN1uF6VSCfl8HqdPn8bx48ddDcgLFy4gCAJ3qEur1cL13nV0811MtaYw3RuNizRunUSDwcDVCspmsy6rbmlpycnJRCKBVqvlaJC4xvF3Oh1cvnwZjUYDW1tbLpOaehvtX+KcOnmBsd5A2U8aVH2QPIw6CJ1l5AfKw2ijsl5UJ99BO9tGtpXF4exhRy/MKGO9wna7jbW1NZytnEU700ZxUESqNqrTpllF6XTabcNst9vI5XIuW6pQKGBrawv9ft/RNzOjcrkccrmcy5otFouYn5/H/Pw8Dh06NFq7bYcp9aG5uTkAcLyLTmyeThmnN8c5mBX3b6bd0ql2+rd+7DXf/Tpwe916KePeax1PygypoOmec1XoVPnNZrOOoZMI2DTqqYBVD6R6IqlU6j59KsUKF1UGNPKv81GPqS6sZWYqlLV/mxHkg5u+z0YZVHGhwsI56lhVieCcmfarBp/PYaMRajqetF+Og89SKOoYVai1Mxn85Jd+KZarVRxstXCjUMC1bWMkEM+4hYVtPryNaxbX/6GG/v+/mm9udg52br777W8+x6iuYRydW+bFT67Twfd8/ONjZ+KfAO99eLTFrJIBhseG6P7jLrLvyTojlLRMfJoH8NvdLl5DpvlnwHsfHfcBAEgA4clRNlWweXOONx8t2Y86YGzGhTUSrCNvN3xNbiWRqGw7pOGPKNt1udXf7D3Knyz/Jj/j/5olYbMs1DmpvIr8IpFI4GCzGXEiu3mHIe46fx5TlQt4eunpHb8PMcQjzUdwtX0Vh7KHIjzIN19dH19gZC+3uLESzjR0aHhpqj4d/YyI0SigIaNHJNMpp0aGygwrg20mjsoYjjuVSrmaFlSoSbMqh23TyDIduAAimWqatUXcpKOTeBlnKFDh7fV62NraivSjTkrtRwM4zHKoVqsussltDT4csw5X9mXHZ+GqRhvHojJfjQCrR9g++S7yIXUYq/HI99hyAvzWbKjp6WnnzGRUv9FoOJ1BnW00Jnq9XgRPuU2A27/UoLAwVF3Kp/vstcb1o6NGnTZ2qy9havUo65SyOibpjU0NKc3UsZk0imPcLkfdi8ab8nfqcNz+wjWnU4Z0QIea8hFg7Cjn+NUZaoMYpHP2rc408rsgCFztEur3DBrTqcw5aFYdeZ4WCmbGBx1fiuOaTRqGYSSzX/meyk3dDcE5N8MmfrP+m3ii/4Rbqxc0X4AfOPEDKE2VnK2SzWbdOxgov1C7gMvNy1hKLGExsejGRx2IsKNDnfYR15R8n7hCGDLrSeFv+aW1UVS3t3JBZbvKYpvxBMDxpL3ctLg4EA3EKp3qnAkD0hzXqV6vOycubR06frUUAPVb4gAzqMg3uM1MaYxB2EqlEqlNRnlTLpdRr9fRL/VRzpZxqnQKx48fd+OtVqsuUJXMJ9Hd/yjuGG7hzDzw5AJQWith3/V9SCfSEaeuykWt0TocDl2Bf81etHKPNLS1tYVms4mNjQ23pZD8Ud/B+7lDgvY5dVHVsckjtN5zGIYRv4HPaWod+N1kF5eedwmN/Q2HF9VKFfc9cx8yGNHW7OwsMpnMyDGNFj609CGsz46DqQvlBdz16F1I90fyVLOZWISftEx6Jf5osoj6I6hTlUolzM3NoVQqueLyKsNJ66qTq542qcX5am7VBr7lrXZsSlAqjDRjBYjWP9BIPoHByRMBwjCM1PpQYgYQQTh1ODHa2mw20cl30J3rIqgEmB6MUm0PHTqETCaDo0ePolgsolaruSiaVaSTySSWlpaw71n7sBFuYO2JNaAyzgBIp9PIZrO44447kMvlcOTIEbTbbVy+fNmdyNLv912URvfZa5RV36kZPWQg1mDlNxVAOoVUoCmD0Xf4IjI25ZVwoFDmp9PpuH3iAJz3ngwuCAInxOmQ4rgp/DkWRq04l1qthmvXrqHf72NtbQ2pVAqlUilSz4nMS5UldXAlEglszM9jg3hpory+FqfEERcVz31EZZ0mt1PzGV56XRV8pWX+r89bwattEmOyCgujCYlEAt/+yU/itMl4edU54N1/BLzuQQAJYHhiCCwA7dU2MpmRJ4mO0k6ng3fVaniFyUSL9KFjmQuRKEdPbuIYSR8WLsrPSEekTU2PJ95ybHoymNI3ox3WcTvJqRTn1PP9/8U2VZ7ZfAa0Gg0UcPptM5/UaObzvV4P842GbxiupdYuAEvxv9/o3cAhHAKACD9XZVzxlVmVGom/XRvhvLCw4JRT1hK4ceNGRPGksra+vu7qqvX7fRw4cMBlDWiNQ41QU06zL60PxZRwvY/K0cGDB1EoFHD48GGUSiUXYWTaOddCAxB8r+oEqdT4BCc6QoBx9gtpjDDRsSqf1yzedruNGzduRLa+LC4uYmZmxmUv0dBV2iI+kcZpiBLem5ubmJ6exsLCgjMkOUfeq84kjo1wZKaTlamqP2l2hfIrOn41Q4ZjZQRdnRVcK4U9s77J3/i86muEK3U5ZpTv378fyWQSV65cQb/fx8bGhjOkOf5EIoFr1665+ZZKJSwsLLiTzEqlEvr9vjtV126JncQj92Jjlsrq6qpzVOpWO82StbqH4rEaDTSOuP6kV37U4FV6JG5Tfna7XWxubrpv0hOzCpmtE4YhyuVypB5jLpdzJ3BxzWjMMSjL+TArWeehjkPOmbsHtra2MD09jfX1ddy4ccPNo1arOZ5TKBQiTiG+X+mJOAwgIgsUvsobdJteKpVyxaDz+Xwk00O3HqlRvB6uYzPcxImZEzi5/6RbPxb//fer/x5P9scn8wGjzN2fPfuz+Dcn/o3bEkM7YmpqCuV2GT/z8M/gU+VPuWeeM/0cvHHljZjLjGq/kNcwGEdZwIyJ4XAYydykw1h1bs5FZafqy4qHKmOJf+qg18wRwofygnz9dmks0uxz9muz9jEdGrTbksmkcwhdvXoVw+EQN27cQLPZxPXr19Hv93H9+nWX4cSMtlar5bJzWC+Kzv5ut4tqterWJ5lMYnl5GZ1OJ2LjNRoN5JfyeOg5D+GDmQ8CAP7wyT/Eyxsvxy9+6S8iPUyjWq2O5OGNG/i+z/4NXnVpbLe+9yTwhq/dwicOfQIPnHlgR5bPjRs3XPYyM62CIHDOsHw+j0OHDjk8mJqaQqVSQaVSwTPPPINer+eyvpgIwixNW6qFfKTVajle2mg0HE5PTU1hdnbW8VXrl1DHNuFEx/Ts7Czm5uacDGaA6bFnP4bG/FhPvWMdOLmxjhvZD6N4+UVIp9M4fvw4FhYWsH//fryz9k5sdDYi+LExu4Enn/skHjjzgMv4ohOcWWfEFWYnHT16FPPz845/Hj58GPPz885ZfOzYMZc5pYXJ6dBldlev18Ps7KzTFXO5HNbX153epT4CYCxf6Li32VC+TO3d2hfteAL82RHWCz5JMbCeYvW42WiOz1tuIzXtoI31166jd3QcOepc6mDxg4uYn59HqVRyxwheuXLFLYg6ZwDgeLKPQ6cu4ZHDT46KB78QSF9KY+FvF5AMx8XMFhcXnVex3W5jY2PDFWoLgsClMxPJfUW6FFY+JUNhocLSGlN0XhEx1GFnBYZ+2+s0lCnAGflhTQKtncGIF5UbVUw4Bwpwtnw+74rg5nI5rK2tueNDG40Gpqam3BZGCi8ybav0x+HHbsponEPEPmdh6OuH99xOym+cs0J/02YdHPZ/n8Mpzrnl+5trPT09jdKNG3jOM8/sGEMqBF57Fji1MT7RLZwN0b/ad7hLw+RIux05eW5SHwAQlMfrTrriPE8Nhzg6GOBsEOBsIrqN1NKOjdRqnxRuvgwIjUjrGthv37st3OP4ie3nVprl53H9Ks0qbdjMJ71PM8LCMMT5XZTQWmF54u/LU+PfFR6+taGScTspvpMa4ZjNZjE/P4/Z2VkUi0VsbGxEDD2VnUwzZ8DAbssBonXHVH5oIINKomZGMchCvGckbmlpCcViEWtra844pRzZX6thoVLBlUwGN4pFbKW20Mq0sJxaxlw4tyMLgsYSHRKKb+ow5ZjVqKcMo0JZqVRcptL09LQz+CjHiStK74Q7lTM6i6hwt1qtHYEchSlhyH4o5xmsImzZrA6geoLPeWp5Pcc6PT0dcU7otjltOj7yMcp1OpKBcYF4XfNiseiMABoHfEYd9NyulUqlsLW15bZhMpKvWSLWWWDnudcb17NWq7maIlqUmeuj87Q4bPFP6ZSGvc8pwLWkvKFzgvBVWtja2kJ6+5QnLb5Ng4RF5FmIm+tEB62OVZ2mACI0H4YhNoNNrA/XsZhYxFJiyY2dxeY7nY6rfdLaPmgjCAIXbKYjRaP/xGnOTZ2stqmcsI5p3Z5rM600K1KNsfqgjl9f/XU8xqLnV4AvXftS/Oy9P4tMMMqCuNG/gcc7j7sx3LEOnCwDZ+aHeBgP40L1Ag5mDkaC8dlsFv/qM/8K1TOfxms3gTPzIz3mC50v4J1r78TbFt/mspa43bfb7ToHFA1o6uk0pmmgW/2DazbJnlC+ohlPNmCn+o0GLHz6xF5uVm+x9hSwUx+ibKJ85bN0jDJZgXyQxbAbjQbq9Trq9ToAuCwlwpeZw5RV+m6OlY5lwrxSqWAwGOBq5oN4/jPXkVkY68IfuvIhvPlDb8av3P8rzoHz3R/5IO5ZjZ4e/qpzwLv/BHjdgxsoJ8pYCpeQSCTclq9KpYLVwSrW59bRbXeR7qUd/jGLZ3Z21gV9wnC89bhWq6Hb7aJSqUToms462qSq13HOTJDY2NhwjifWOwKihxRYWteASyKRQLfQRWWpgmK+iFwz556rTlVRWawAAOaawO//8cimGLUqPjL/afz06echlRodeNEtdPH4xuOAEU93bAAnyxvYF2yhnzsesQ3IZ6jjMFAzNzfntvP1ej1Xj4vZwVpnMZEYbWOsVCqRpBTa8cwupjOPPEAd55T7qrdrkosGO25V/n7RxcX5IhVwHKQaVtah5OvDGmLqlOH9NgPAZvEMBgOsvmIVvYPRdOXuoS7qr61j9tKsy6hgNISp/aw+X+j18KvlMl7Z7QJ/Pnr+vSe3t+cc6qL8FWUc+uAhJ5xbrVakKBxPLeBpGN1uF+Vy2Qljpi4yQ0uNASrFGtVVRm2NOjJuMnQqNGRuVA7ZdI1sSjCZJjMyGGnq9XpYX193fZZKJZw8eRK9Xg9XrlxxtQm4zz0MQzzrWc9Ccl8SF6oX0L7SRmez44qW8dSBZrMZOcGAUa3z589HopuaYgggcsqdwkVxjXPVOapgU0VblW01QC3++YSs/s912ustTmGPcwzxd5/TSZ0mtg/7Ht871ECl4ZjP57E8YbsNAJzaHAvKTDuDZr/pjBa+68QuiozrYwgE5wMkK0mngFPpz3e7+PWtLXyFGH3vSyTwLek0NudDDOYHSNaTSGztPNWTEQvdkqupstzLzvu1wCIjg6Rh6wjdzaE6yVF6s23Ssz6nojqZ2HS7E2kUiG7boRCjYBsMBngqlcJHCgXcX6tFhNMgCPD4/v0oJxdxrH8MF5MXI0XVE0jg9PRpzGM+UtQyLtuJRrvdqnG7N43W9/t9bG5uYnNzE+vr6yiVSlhcXHT8mrBPp9Muq0Gz8mhk+uQ7r2l0zPIFKoms6bSwsOBqHnU6HdRqNVerIlGp4J9/6EN47uXLbi4fPDGDr/n6ttsae7hzGK+pvQYFFNyaMdNhc3MzIs/UwWv5s9IqAOd4I67Mz8+7OlnM5KVM1qwMyxdpeNMIYCYXlfjhcOhS3ynzCTN1NljdSjPy1HHLU4FU/jPDQWWYddhwvXlqIR0NWnuDtXw4NzoJADjHEWGhkVKuCU/qmZ2dxcGDBx2PYyR5ZmYGBw4cwHA4RD6fR6VSwblz5/D000+jXq9jeXkZYRi6SLDdMql46JPze7VxfamDMOvPBj54rzr7lObUGUx4KF4HwTiTn0YNdS2tuULDhbW1WCeEmanEGzqmmZ1FmqGBZ41GysBMJoP9+/e7+dXr9dGYzp9H5+zjeFfuQ3jf7HkHn9Op0/iW/LcglxyNKZfLRbYXPbn+JNYH61ieWsa+1L4dOwhID5wzMz/UWatOanUcKOyUb9DBpZF/pUMaqxznO1ffiS90vhBZ94+vfhzf/4nvxy/c8wvo9Xq41rkGwGe8jmyOv/2OJ7B0YMkFfavVKp544qP44Z/90I573/D6IR7BI2hlWzi8cNhleDAblAYpaZpZEisrK5ifn4/gE+dKnsTsMYWx6s9qfzHTiYFoa58pjdIGA8Z1zzQItdebtQeUZhWHlDZ9DjzCKJFIOJ536NCoVMChQ4eQz+fdmlibbmFhwWW30fmUTCZdncFut4v9+/dHEzVWV/Fl/+E3cOeT4yLpzsbNDPD3V/8elxqXMD09jZODAe67sblj7hrArSQqKLQLGA6Ho6ylTgV/PvfnWD26ijvWgbtKwNXBdQwunsYKVlxQ7PDhw2g0Grhy5QoqlQrOnDmDIAgwPz+Pqakply1LR4qVjzYIRB62trbmsgrX19fRaDRc4Id4qYkQ1HOYedyf6uPJe59EbXlUa/Kj+Cj2N/bj3ov3jgJ16bp79vf/eOSE03Z/uYa3njmD//Ga16Df7+Oxq49Fft9J7x/GuTtX8T/e8Aa0t+vOFYtFl8VE3QOA01VJ16o30/bXwMJgMIg4sVh/U30yzDicn593yTG6M0vxVgN3HI8G6m3Qa1K75RpP1vhR5q0MWxW0OI+YCltV5Oz91lHliwB18h10Do/2346jByMDs7qvimF1iJnUjBPIzJICxnUifn1tDS+V40+B6Pac9qE2BqUB+s2okkeP4/79+5FOp93xk4woBEGAwdwAnWwHpUEJM/WZSGYQ50IBph/+psYbYUTk0CgXBa1+a1OGZx1PNP6JqFp5n2nZJ0+edGmNFBbA9na4mRBnX3IW1/Njppa6kELwJwGSnaTb88paD1R+M5kMNjY2XKFNFi7n2vR6PXQLXbRmWygNSih0CxElzDqdLF764GxTBAlv4h5h7uvDOkh3cwjstbabgq4Kre83ywsU/go7bUqz/NZoaDI5wo/u4cMTx3ZmHgjCAMuNZWRbWawOVh1DpbJ5WQRLXB8AkLiQwNR/H9E+U1sZ4fyNjQ18mam58crhEL8938br/tno/w46mLo4hdL7SxFYUEAwSqMZJKr8EhbW6exzlFjHjsKSf/9DHE7/UKNNndr2uhpESq/k++pgD8MQ37Oygp8PQ7y0PhbyDy0s4J33349eq4VXV1+Nvy7+NS6kLrjf70zdiW8rfFtke5fC0WYQqKxS5/bt0OJoU+UpFX8eSc9jmmkE0JFApY41IugctcEJpW9VoJWPBkGA/bUa5stlXMvlsL4doSsUCm6LNU9TIc02Gg202218xwc/iGeZE4Neer4d2Rp7OX0Z7yu8D1/X+jo3x1wuh2RytGU7f/Uqsteu4Vouh8aBA5FT/VRWWD2Ccpr4wCwnFiBWBctnYJDuqBRSyWs0Gi6LijLPOqzYl/bN31Svss+QrwDRAAxlmNKhzeLkehcKBSwuLrrtStzGYZ+hvkRFdjgcb5EAxjQ/HA7dtkU63PP5PBYWFlwtIC2GurS05JyQMzMz+NznPodz584hkUigXq9jcXGUqR7ndNI53S5NHU+qh+raafPpgj6aVP1QDTLqgdTtuI2WxfK5Ftls1umU1Gt12x+3zzIzgQ4oys781asorK6itryM1eVl1NI1NKYbePbys3HnvjsdL65dvIgjb387lj7zGQDAN0ANX+Cp/lP43ebv4i2Lb3HbLVutFqq9Kn7x6i9GsoROp07j20vfjlwyF6HxZDLpChEDY1rhGCjjVRdkU3ojPLlGVidUfsv+Lrcuo3P5UbxG7A8AGIQDfGztYzhfPY+54RzmMVJCfMbrq84BJ//j3+DDP/CSiEP5yL/8IRzw3EseWQ7KKBaLjidS/9fsCWC066BQKGB2dhazs7PuZLQwHG/95fw1AE74KA6qU0kz26x9oXq0Oq80S1LLD+zV5rNRVSYqH7a/6zVtpFEW6+a2SjrwWaCaNiP7KxQKKBQKzkFIhwQLapO/sIVhiLt+9Vcx//T5yPttCYpL9UtYTi3j0HY9q7h2ahO4upVCLzF6R71ex9/P/z36WMVf/p46V1r460OP4N3LR51MWFxcdPBotVq4cOGCyxKamppySQnK8wkrdaazsd8gCHDjxo3I9n0efMUEELtdm46WMAxx9SVXcTDRxJc+Pabf69nr+Pihj+Oex+/BVGtEQ3esR53FbKkQuGd1FR8rlzGYm0Oymox4WXz0fuzMGXz9f/tv+Ms3vcnJZj0UhWNVGwFAhOdpEoXSn+rBAJysIRxdoH27sH2tVnOHDvAd6lxnU1wmn7mVLXe3nPGkzMV6cy1hKRNX4KlBoANVw4yT5TvthxNmNkFzvhkbPXjD64H14Tqy9WwkDZWGUKfTwcnBAC/3ENqO7TkLwNz0HHK5nIsYkMgZTVpYWEA6nR5FdNtlPHb3YygvlF2fS1tLeNbjz0Iy9G/zUJhZRUVhosqlpuvbdVDHnq6VKsxMY2xlW2jONJFtZ5FJjk66yOfzWFpaikSsiexcz3Q6jcUv2cSRK1s4szgWuP0jfSS/Jon036SdIkPFld5XKi8LCwvIZrPRrLSgjSfvfRLtQ+NMmPnyPF7w9AuQDbM7nGvWoaHKnDo91GOswlC9u9YByuesE+p2itRos0zC0qrvus/pFNfs79aA0loUwMjJ2Dl6FJef+1wcePxxJGRd+wHw/hMjvDraO4L71+7H56c+75iwGpXnUil8cGYGL223IwyuD+AD0wk887dTyFaSSG5tZzFkEy5VNQxDHOt28QofLwDw2qvRrXq9wz3UXlND4QMF58RgZiMFpzqe+FFHFHmQRmOYEalwVlyOc0b5nIBx630r7YvFb5uJYJ3n+hv5aDmVwnccOoQTgwGODwa4USjgeqGAYqeDaYwyH/+Pwf+BXrGHWqqGAzMHsJJeQaqfQjfsRupGaFSItMp38ZvyxjrN9nKLW0t1bFLBK5fLLormywKzygyACP8jj/U584nLuU4H3/qBD+B5V664sXzq8ALe+aov22HoWQfrvkoFd1+7tmMuVvaGQYhnpp/BWmMNC4MFhGE42g7X7eLL/+N/xKFHH3XPPnbiEH7ha+7F9MwK5jG/g/er8ePmsH16qj0xh7SmCtwkHkm9ZDgcIpvNRoIklHl2axthzSwCbkeinNd15Wk37JtOLa4lM67CMEQlWcFaYg2FbgGFXsGNl1lNc3NzzoCpVqsARsoptwpqtg0wPj2XW3bI2xQ/LI9SpxqzZpLJJBqNBpLJJIrFIpLJJJ7//OdjaWnJFWbN5/M7AgJcD66Pvu92aMxg0XXmVrJEYlyzRPU+hT/xyOo4wE4DmM7C/fv3Y35+HqdPn8aRI0fc8eF8hltu+WEGViqVwtzcHIrFIhYXF12dGT0KPSiX8aJf+AWsfO5zbo4fuTOPf/Q19VGm4mPAy556GX7tFb+G4lQRs9/5ncg99FAEJmr4DjHE493HcaV1BflO3hXb/dOH3o5j18+gK86cJ/tP4l21d+FN829yPIp1c1gcnSe40fFiM080q5DyR/URGqvEWzq0aOyrUytdr+Or3/Eb+KGxbyziVAOAc+VzeH72+TicPYzXVU/itWd3Wq+pELjjiXN4dG0NzZUVBEGA0o0bOPLpL3jvJY98zv7nOKeF8nWepMZAGLf8agY2MC6D0Wq1kMvlAIyzvZR+iXMqy1WHJn+zBrPyXc2QIr6TF+/lpg5g/m91Ycv/VH9T24LP62mzur2YfJ6yhGtDxzBPHLd80Tqp3W/nz2Px05/eMScrZwerA6xWV9Gcn58Ii/VkCctTy07fWg/XcTV7FX/5ezudK6+4MsBS8HF85FWvQrfbxZkzZ3D9+nU8/PDDqFQqqNVqmJ6edgFkyjTWRKTs1e2tCv90Oo3hcOgcNpoly4DI1atXkUwmIzWfmDmcSCSQy3Xw9r9pevwHIVaLq2hlWtjX24f5zXmc3NyZCaZt5vJlnM/nkdxK4lD+EK5MX8GpjdDrrEoMhzjwyCM43u+jvX+/y3Sy299YQF2Lo/twzOJkIpFwWY9ankDtA2aE6fZlu9WOOMVva1v8T8l48r1MPZFWMbP3WSZkPcLaH/uxipmN9GjEujgo4jdiogfv/iPgx+9KoImmU5x4TGy9Xke1WsWJ7UhfXOP2nGKviGJx9FlaWsLc3JxjBizaGYahS2str3wC929s4QzGAnO9uI7HTj+G5z/y/FhD3iKUKhyErxpKuuhxyKgZPSoEUqkUErkEPv/8z2NzfkxQi5VFPHDlASzNLuHEiRMoFAooFosu+kUGMBeG+NVGBa/8E1OAblvgDo4PECwESCG1w/FEppJOp10KPgB3BOXWq7bQPxDdY7xZ2sTnTn0O9z99vzfNT5U1navik4W14pR6162BoZEuVaxvZ8eTxRVfm+R08jnn4pxS6njSLD1gnHn4sTe9CS/55V+OGpKH9+Ovvvk1eNu+O1G9UMV6at1F8rQvrsebl5bwS2treLls3fu7VArfkc5g+tL2XFMJ57jmd7/fx9Gb5AUAgATQOdxBvzQ+bYvbaincVAgqzrBptgXrY1jHgNKurkFcxN+Ht5PWIrYtAJgDwvLOk//Yh+X12qcdn+U/iitcPwrVM4kEzqXTSA0GmNo2UplhGoYhiukiZqdmkUvl0At6rn/dpsjxMAVZgxsAIkrN7UjDvkZFI5fLuVpPrPUQl1EXF9VWvqCyR3lHMpnE/+cDH8BdV69GxvHCyxv4v/7+T/Hd3/QIvgHf4PoknfD9i9sOj7gWoTcAm9h0PH5mZgb3/uzPYu7xxyPP3HX+Mr7+Ty/jdQ8Cx/rH8H92/0/MYCRbiF/cLkLHk9ZwUceGlaFxTWE5PT2NwWDgTmujvNYta1wrle90TFC5pIG2Uq0i37yBC8spBIt34+DMQWSz2YixRh4yNTWFdtDGX8z8RSQr8FD7EF629jI3zunpaVcmABjVEKERsLW15bbGURejAswsDM0Cs05Jq6OpTGXUtdlsOgdpLpfDs571LHe0OKOxnA8z+IiDpHE68G6Xpo4nBtf0VCt1KqnjCYg6hYkbACKGBDDGKa5ToVDA/v37cffdd+Puu+/GxsYGNjY2UC6Xsba2hsFgEKnXZOt08Whuyq9ut+u219311rdi7pFHInO8/+l6JIPiw1c+jO96/3fh3x/4ARz+yEd2wMRXe/F67zpO9E5guL6Oe3/+Z/BPHxufZDrWLUM83n0ca8M1HJo+5HRKpWs68xhotjSsNgV/J1zV8cS6XKy9EwSBy0ihc+uBX/kVLD9xKTI3m02yECy42lP/fPiVAH49FldKa2sob69HyeOg0vb61N24+9DdjpdZXsRaTnR00LlBWUEjv1QqoVarOb7FkgHWdlB5aQ1Q8jJr6/l0P3W03krGxP+qpnwMiNrA2lRu8D7Sj8U3roceYkEHodZha7fbLnOUJ9D6HE90ilo5kzYOX9vu2ASCxTvQvDyqO9fZtw+PHzmCu555Bknpqx8Af39kCiutL8N0cRQoDcMQV4OrEzOBXvDMdZxvNLAxPY3z58/j8uXLePTRR12WLIMo3CZIPNZaaxZHCFctx0KcJd5Shm5tbQGAy7BlgggDct/3sU/g3mjSdYR+W9kW9g/344ErD2Cz+HEA8c6nS+k0NjY20Gw28UDlATx06iGcLE+m4f2NBra2E1m0lhwwlpudTsfJC6s/WzojfOIcT1w3wi0MQ1Sr1R3BWku7VsZzfLdCuzfteLLCzzZ73TInXvMZrZyoptX5IuOKYBwTAXS03IlF+NeeBX670MaNYh2rq6uo1WoRZSiTyeDGLtHuM7NAcbWIbDuLwuLo1JZyueyKkmo9h06ng5lmE9//yY/g3htbrg8VmBtzG2hn20h1R0tAZZyRGUYjtFYFx8t0YmWCysh88LdMSAVCIpHAk897EpW5SmSb4tn5DXwy8Um8buN1EUW02WyiWCwiDENsbW3h7Zcv4/5G/BZFABjODoEKXKo9j9bUSBI9+YeaTaw0GnikNMQnjkWdTqMJAJvzm9hKbWG2NxtxQCheaFNjSoWG/q5pyapoq1NLswOYIXW7OJ7UaQbsLF6txib/57fSv1U0gGjU1cJ10niUgdKAaefz+Jvv+z70v/AF5K5dw6V0GmuzszhaPIjpcBq1oBY5+cFGeABgMwjw4OIijvV6ONbv41wigXPbiv00xsq5puCzj4upyWzxjC8QNAekgiitknapOFi48rRHbl2gYCUPoJGuvFHhr4LBpqn7ggT8tk4GdWDzmVPpIU68BDjzXDH6zwCJ/5ZA0PZvo7R96N8+WgOimbOa5aq4QSWVW6NbrRaGw9F+fdaVUQVa30EatVk2bOos3Os07FtPX1PHQrFYdKeMMeKtDktbn0nhFobjgv36TpXh/X4fi5ubePaEAwFS5fP40wN/ip9b+jnH+1k7JJ/Po7pL9NDSW6lfcspk8PTTWNglint24SL+Kv1XeNP8myIOHh5nrXNVJU1rvvn0GJ/jnvfxeSq+3CahhnEYhi5rgvcrL0yn08i22/i6v/gfOH32gnv/e0++Bz/xfz8Lb7z7R1FAAc1mE4lEwtXPCYIAf5H5C1xMXDTy/Ar+bunv8K1T3+oymXU7VTabxfLy8qjmUrKCtcEaDq+1cGIzxObCAsoLCxEYWVqytGfrwKhjinKf/A4AisWi247P7DA6qdLptNMP1MlF50q1Wr0tMhap51jHuOqyzBZRmcpmeaLFQyBa/5SOkq2tLWxubmJtbQ3VahWNRmPH8fVcM82et85Y4nK73Uby7FksfGp8uhrbjgyKcIAPXfsQLl27F3dOgI06mJenltHv9/Hid7wDK194OnKf1S03sYkT6RMOLtzmmkiMapdQjjIARHxTWUNeZuGdSo1PWSb+8R6tQVq8fh37H344FhZ3bgSYOfw8LCYWnVNsePD4BGgAncOHnSGNkycn3vvmN/xKREdQmcpgeK1Wc78pLZKe9TAFPWFLs7VtU17o07upB+mODc38sdvB9nqztGa/eY8GuDRjRBthwww0tfVUFpPn0UnNj3UGsk/Vr7jOg8EAw4MHUZowt+HSCTyYfRD9zvhQi9997WvxTe95D54nQaXPrSziP9/zZcgl0kBiHMjJdXJYKk94AYDBk0/i3PKyq+1EZ646IFOpFGZnZ12NRWYt6Vx5P50zrFfYaDSwb1+09hvpnfZmu91Gv9+PnOx6qNnES67tDIApL8t3RzWiZ8IZHKq9Ep/e/7d44fUNJGVpB0GAJw8dQnlxEekgwMzMDBYTi3hJ4SUoPOsagJ+LhU1zu+YhELXfud48KVCda1prMa6pvKb8WV1dRSaTcZmsmgDgkzc+hxbbF5Nx/EUVF7f/+4hvkuPJeuY0YqdGghvkNuKokUKiI4Ec34geV2jb0tYWngZcls3c3JyrFp/JZHA9kcBHi0XcV61Gt+dsb/G5MSzgxEPHkUwlnYK0sbGB4XB0DGaj0XCZT8PhED//2GN4YXUrMgYrMDv5Dgr1QkTAq0GtjieNLGqanTXi4pwkds0U1p18B0Gmgr/8T3abYog3vH4Va4M1zJRnIkcr8zjG5Nmz+FKpxeLWzCgf2c5oW0Amk8HS0hJyuRxmZmact7vVaiFdr+PHH38cL9kSZ93vRVOVtdWmash38juMadvUmCKBqYBWmFIY2IKKbFRgLCxvl7ab8WqdUzTcNYIT51iysLhZDzjvI51zXarLy9iYn0e73UZ+ew11GwAzi9SoUQGVSCTwzMwMLm+PdwY7twrbgvVhGI626k1P46WdjpcXaPYFW76bx1Q+eqoEDVhGrmzGJsdBQzgIApc5ydRhwoTGCPGc66TGh8/ZCgDhfAjMA4lyAqnquNaDL4t0HsB/Gg7xlW0Afzv6OIf5CWD4NUMkfj+K77s5bHy/q7HPeRHXlLepkcWTz2g0MQMqk8lEZAjnro4nm9mkDlMqLpN4yO3SVDFmIWfWVrJOVjU0ibNq1BN2PvlLePZ6PSx7+L+2E5sh3rvwOLr5Lk4un8Tc3Jw7QnhpaQmP9vt4+sQJnDh/fkdkVektCAMcaB9AaVByBkvKZFnZNjJmQzw1fAqZgxksBAuo1WruABANLnBO3PKqzhXrYFHZoThM3NWIK+maW5pYP3E4HEa2U6gspz7whj/8Qxw5dyEyp1edA/CfvoB/u/hL+Hd3/ztnUHL9yokyKp3z+IsdZQdCvOH1l9HOtrGwsOAcgHw2n88jv5THL23+Ei60HtpRtuDSs56Fv/62b0NnO9OK+GHxT50eetqhdSazODV1HOIFM4Ju3LiB9fV1l7VheTzxV08k3OuNRo8q89Zhx8CidWyyqS5DWegzFrgG9Xod5XIZq6uruH79usucoMxRB4wt9MzsCRbZp7xqt9tI7eIwtpmKnw7KeNWE+8/Mbx8SkT6NA9MHkL18GQc///kd91nd8uDMwQh+MDuJRhudm1qoXuUeHZh6jXwgnU67wwa0ZmsQBBGncWF1dSIsXlk/guct/H+dDp1IJNA6fBjX7r4by5//fKSswDCRwNrdd6N37Bhy23BPHTyI1pd/OWY+8hEEGihKJjF85Ssx9/z7djjAyZPUzrEBBuVfzHiirOCWSt2yFGd8Ku/i/3y/fvgbMM7c0+L6e71xjpokYZvaVipXffYxM5P1EAu7RuSfDNATD4nHNqtK9Tnid6/XQ/fwYbRe9jLMfPjDERwaJhK48vzT+KZ7fgiVSgWbjU3n7BhmMvitr/s6zG9soLS2htViEWuzs0AYYlocRmEYItfOYaMwC6ASC78nBwM88cQTePjhhx3uEWbkZ6zxVCwWHexarVYkQEa9hbyPNYj7/T4OHjzoDg4Dxiex82CvZrOJIAhc5nwqlcL+XXY5vOiZItphAUFybDv/xktehjd9/ON4vuggTxw6hN/5yq908nt2dhbZbHZU6uDAAay+8IVYfPjhCL2HiQQqL34xGgcOIClygbhAG3lrawvVahXLy8tuSyF1FCtHFM8oP5vNpgv2XL161W3xpA1lZZLaFKpf8H/rcFZZslu7ZceTNr7MGqM6aeuBVycV/9ZtD3qfOqi0kBgXXpWZte0jE+Paje00Rr6Tp3coIP/NqVP4yXPn8ECl4p775HIRbz9yAnd/Pg+kRlkKjFpSUGk9lmQyiaOdDh7Y2toxBiswc52ci9JrxpPd+qGKhDJvRqZ08Selq6qxxfel02k0c83YIofv/iPgxx5YR76cd4VgwzB0xHBg+3jbuHZqHbjWyyHbyiI1Nd7OMBgMsLW1hVarhc3NTXQ6Hfz4Y4/hXrPtwjrrtM00ZyIMVudpDWqrvPkiM/qbGhJ6j1XUJuH/7dZUOMY5mCc5nm0fce+wThIf07RrqMohjZlEIhExVPT9Fi9U+O/mQEskEnjL8jJ+aXUVLxMB9oEDAd7wtYa2hkB+NT9yPG0raZrWqsanTwmhwUvHFB1O1tnM+lMKC9+8SP93hCGOTQ3x1GuGePqFo6EOMMDw/BCZ92eQ6IzriSgf+U+DAb7CrFmEBk+NHFnB5s5jaHVdle5icWE+RG+hh3ArRKIRlQ1UCCxdk8fplhQ1xDRyZoWmxTMqOTzJU2XMXmw3A1O9V7M1df6KP+xPjd64CC0AByv+3m630dy/f+JYmLG02l/F3em7nbOHjonBYIA/+Jqvwdf84R/i2ZfGW1U+fGwab3j9uNba4d5hvKb5GreNrdPp4ErGE5HwvBsA6tN13JG/w+kZlUrFbW+isakOSuusVBhaPUb/p5HLgqbqJCC+AXAGfKvVijh/eIz84uYmTjz99I45UY/4F099AmePnEU4iNLF2mANv/+n8fL8d7/pMu7augvJZNKdskfn2E8/9dN4uPow/tyjDxx68kn843e/G59529vcutGhpgFD4lezOTpxVAvjqkOEc1anuvalzoKpqSmnr2n2BNdor9MuGxV/DYD59D025asqy6y+wr5UFhA2PI793Llzbvsn+R3rhNGIY5BJ11PxX7P4wl2ycGym4tTh5+DKc5+L/RPqNz47fRrfPvvtCIJgV2fOnZsBZg4+B8tTyw6eakAxU471FjU7WmFL2Ok34QyMt6GUSiUMh8PIlmXCfHDs2MSxvurO70Qjld+hf3zqX/5L3PeOd0RqZG288IV44kd+xAW4GYje/LVfw9Kb34z0Bz4wnsMrX4nB7/3eDluLjQ6y4XDo6kfGZSuyblwmk0E2m0Wv14sYt3GZsTaY5mBi1sKOj+8nzbP2215uPntjkl6sckF5Ix0nDC7yN3XgWdtFYc8ApZXXyivUUc9rq+94B5be/GZk//7v3Vi37r0Xj7/lLUiIg5bjJq8uLy7i2vbJt4HhSfwkEgkUNl6Evzny93jZMz2kTCbQmWPHsLmwgGSj4XDS0mCpVHJ15QqFgkvkYHkX3q/woiM/kRjVN9y3bx+2trZQLBZd5qzyRqsLDgYDXN1Fj8g3X4BuLhHRDTrpNN7xlV+J/fU6DrZa2JibQ2VpaTQOSRxRnYtlRPbJtsfNe+7BYz/8w04P18DDcDhEvV53/griC3kZbQWfX4VN+Tb1LtaaZH1BPqsHR2gGlOIlr9l2K5lPtyStfYZanOHtI7xJkUProFKljw4jVYxpZLGf9fl5fHZpCXevr0eipgMAn5mbw8b8PLKAU5i2trbQ7/fd0bKJRAKtmRn82/vvx7OnphwiXclmMVurOQIERpXf6YWlkNb5Hd0l8nbHBlBJLiLfySM5My7qarfZqSJiGYyOR2FjawRoUwYBwNVvOLLZnrhN8TdXmriWuOb64FjDMMRAsn987VqYxZFPHInsl0+n02i329jc3ESj0cDGxgYONhr4Ek+tD9/+fwyB0kYJmWYGYdpf5Mym91t8VEWOQsEapYwe8B5lVLzvdsx2inO4xBlTeo1/qxIcxxfixqDOUeUf1tjVaEoYhpGtVoyWM5pnha0yS40IWcWP41TlKZFIoJ3J4DuPHcOxXg9Hez1cSqdxLpdEr3oZyDXcGIvrRZx4+IRTDpnJwUiCz5Gs9EMFgrRoMx4ouDTbUQ1Zy3tynQ7+fbuN14Qh0APwZ8B7H5V6a0cHaLy2gX3v27fj6NQT/T6+0rNmO2hwHgjKYwNb15RKgG57uSMMcRLA2SDAmSBAOBOi/9V94NTo9x566JzrIP/ePIbdqDHmy6hg1FmLk6oxa+mY8sTiqW7dzufzt0XGxG7NKpyayanZYMy40efUIWVhxQ+3SlNW1et1rCeTOHfHHTh65szEjKXnHHiOo1dGupkB0s5k8B9e/3rkrl7FgWYT9ZUVbMzP4+uxgXKnjHnMYz6cR6KQiCjvTyYSePL4cdxx4QISE94NAPedvA/LU8uupsPa2tqOmjaawm63ufMTp+Rp5hPplYY9t0bosde9Xs9lS1NJLZVKOHjwIObm5nBYatz52qlN4Gz5LI70j0QyjI5enlx24AMXW1idWUUYhu4koDAMcalxCZ/Z+kxsnY7EcIilz34W983NoXVoVFOnXC67k3B4QMJwON5GV61WUa/XI04WS2d0Sg0Go5oyNLinp6edfjYzMxNxPGldPGao7XWjFRhvE6bDTnmQbSqbVD6pXqJGm9W1GeDjicGNRgNnzpzB8ePHcfz4cSwsLGBpaSniANVMJ822J26zdkwYhug/+9novPzlSH/oQ5EMCkt7CSTwwtILcSh7CB/9F/8CD/zyL+PwY+Njxi+cPokPfPMr8LbZ41hJr7j5VhY8qcXShvtO4J8t/LMI/9fAQzI5KhysW42VB1qjnNcJY9KFFuJOJBJYWlpycBgOhyiXy2hmMlh/8Ysx/9nP7sheuvbsZ6O+fz8SIqdpCCYXF/HZt70NpdVV5K5dQ+/oUfSOHUNpm0dRh5iamkKyUEDtD/4A6YsXMXXxIhJ33ongzjuRMHqafjPTg05t3TZpMyW4NbtUKjknG09U0+waa29onTXV5azjifRpDVrdhny76NPKz+IcT9q47nTIT01NOeNegxGapU3Y2T7oiHEF/redhlb2q/zntX4uh8u/9VtInD2L5Pnz2JyfR3lxEe1GA8ntU0cpm8mrqWuzT+rhlnYSiQRmhjP49ZMvRa71EB5Yq7ixXzh5En/81V+NBODqKmk2LJ2P+/btw/79+7G0tIRsNusOM+B2THU88X9mNSYSCVfCpdPpYHFxEfV6HVtbWwiCUYaTXTPqkRfSaXxmcREv2NiI+g8C4OHFJZTzi0glx7UptT5aZWkJ/W3aym9fZ/Yav+nw2Uok8L7v+R7Mrq1hdn0djf370TlyZCQHRA6qPr2xseEytAeDgdtFQRyJs7nULqBOo3qX1lkmr+92u87JRZiyqR2t1/j9P83xZCc4ybjU5jNk7e/8VuXOGoravzpR+PnF++7DWz75Sbxobc3d+9n5efzUc58bSSknQLlNg/UmgJHAWS2VsDE/P8pWGAyQzWZddM/OzWZlAMD17RMh4tpGeg73nLsnMlciswp5hRk9v3o/5x8HW4WnMi3eT8I4OTmwhLvqSZTnkpG1oJd0c3ERn5yfx4s2N6FqXz8APjFXwNSZu5BKjBkFHU7dbtfVcACAw92ufW2kadr2fGUep5847YQnP9ZJ5IOLz0tvm/Zj4ck+fE6M263F0akVJtYB5evDxxMUXnq/76P3q0KjSo0yYxoeKsB92yg1cmvnqX8TD/Q7kUjg2vQ0VrefzQcB7vzknWjONNEr9pDv5JFpZZwyx0iyKqk6BjZ9hxq26nzjc1rYU/GSAk2jhoPBAP+h3cYrzLpGMpakGHqqMi7eGAQBTonx4GukwUQ5EdkWzDXR7KkgCDA7HOI/D4cRZ9ZfAfiG14227WkbHhui8boGSv+jtGMLj28trQFhcUkbr8c5Htmn79nbqSnN0uDgNjtuJVQDTWFA3CKeqeFFZUhrkTHqRjr8iwcfxGt/53dwSorgvv/EyOGZCBJ4YOkBLCWWXO0VYJR1rFuPUqkUaisrOM8shSDAARzAweCgm58NqgyHQ/z+P/pH+Mb3vAd3nT+/493AyPC9u3A3gnKAq/2r6HQ6qNVqLvVcaU3rmVgeYfmGwpywUoOP9Ts0gkkHFDA2bgFE4EvDZHNuDocmrPeZeeDlvbyTo+RDd12brNadrITY2B4Lg2iDwQBPV0fZVSd3qdPReewx1EolN17N5qJewjpA3CIBjLc86DY5zh0YZz7Y7U5WR9K14D35fD7i7N6rjbLK1lJis0q93msVe1X6fY4n1fm0b+p9DJSoAUzHoXW82rERn+u/9VvIfcd3YOaDH3S/febZc3jDPxoj0YvnX4wfuuOHgBbQn5vDB3/wB5G7ehXZq1dRWVxEdXkZpzDO3uWnsm8fLp4+jcNPPRVx5gyCAOfvOoGve/YPOScusz80k4IGGmWybklUHmL1E36rE0ptDSuPKAsf/5Efwekf//FINsP15zwHH33jGyMGq+I1r/ePH0ft5MmR4zsxPuzAvhMAhidPYnDXXQhSKVitU4Nuyovsljefw4Q8nQ5fnjBmgzbEBcU3NTyDYJx5rddUR/fBnYGj26kpvqr+BoxLn6juqTSt2+Z8jkDblP8RXtxSpo4rdUDpO/W7c+gQhgcOoFWrAeZUVN19A4xLYGi5COXfdgtlI53Gj979YtwB4Ei3i+RddyF7993I9fuY3l7jTqfjkg7Y39zcnDsIxdp2Pr+AymjKsCAI3AmBR48eRaVSwZUrV1wQKAjG5TWYWUz+947779/hP/jc4hJ+4cUvdv+rvhinv6uOog5a8jcA2Nq3D82DB0ewjnGAMyhG+c7MTT25UJ+L01/VvvHZvyqT6Qy04+GzaiPy/ZrscrM69BfleLIOj0nMwiptPoeSKhG6mMo4Vfmg4alG03A4RCeRwFtf8hIsV6tYqddxJZPB1W0vZ25b8VaBD4xPNWK9B7uVLZlMIr+dYsgosVUYarWai2ANh0NcKxTw6cVFvNDjPf300hyW1r5kxGRSY2Ln3nMalLbR26lKGZ1p9n4bZWBETbMmgHEK8Y18fuK6lxcWML3NCEi0moX2W694BTIf+1ikAN3nl/bhl57/fJTEKA3DEOVyGdeuXYt4rqempnAtm504htK1e3B/MIVSvzTaYpcdw5VKBddGU+8pzEJD3NYYVUIiDLVZhZDvVWGw15tvDrzuU3h93m7byGCtcjoJHnYNbJZSr9dzJzjoUb5k4NzmyYgmacA6PnRu7MNnMPJ35Uf81u1yfEeul0PQ3KbdbMJlOM3Ozrr9+lpPh/hoGTkVVuIs6Yn8lVshKOSZSUAjQVu/38eRdhuv9hhfvqzBQWmAbCvraKbf7+NCvw9MyPo5MwvgDDBVm8L0zCizK5fLuXGpgTQcDvGfw3DHtr2vAPDuzwKve475ITE6/bJb6CLVGtfg0PUgj9TTPlTQq+DTdVaezf6sY1ALk+/VdrPj43xKpRIOHTqEcrmM2dnZCF2xrgbxiPyZyhuNHsKPz7LIJXGXeBrOz+Mv3vQmTN+4hM9c/q/429Jlh2svzN+NNx18E65duxZRaDc3N122DIAd2VTWYcy0ecWxfr+P+tQUfutrvxaL5TIWmxW8e+lT+MDCuNj5seExvLr6arz//e93dUyq1SrW19ddNJdZh1qAXZVxC3srQzT1H4CTlXNzc06uE3bdbtcdnc2+qWBWKhUkEqNC4ZVcDovPfz72ff6RyLYFZpQEi3dgsDrAZnd0yh8V0/bBgxPxo7K46BTba9euOQOmNxhFlc/OTcavi1NTqF66FJGn3NJE47LVamFra8ttg6acZ/1Emz0BwGU0qSNSawtR5wHGhiz5M7cR7fXG7RLkl0A0uKMGDHmW8jcf3BTnaPTzf0ef244Y1mvK5/MoFAooFAqOFzC7jMYyjRwtYMtx0oGCffvQ+KM/Qu3JJxGcPYve0aNYOXoUf7jxNM6Wz2JlegX7kqPs2nai7ZxD/WwW6wcPjgwyY+joXP/iwQfx2t/9XRx/8kkHwyvPehY+9d3fPapJls9H5lkoFNzJyOl0GgsLC67OCutAaUaJNZZ4TeFL/U5lDuFJB38YhmgsLuKhn/5ppM6fR/rSJdSWl1FbWRndI7o48VgdT+xLf6fecLOBTZ/Rp7zJlgGwa8p6Q6VSCQsLC25HSK1W8/ar49I1Iz8D4NaCc6N+Z3XM4XAYqcuzV5tPDigOqX3mSyIgf+t0Otja2kIymXSZXi4LTjJm9T2kbw3idzodVydQ36GZTvxfnQRqk7FPDSYS/8nPSe/UD2x/ikv81FdWcHV2FqdOncLhw4dd/9VqFcePH8e1a9fwyCOPONxcXl7GoUOHsLCwEMn0A+DsO8oOq7+TpzLYduTIEbz0pS/FjRs3AMCdxKn+hUKhENHLqzMzePsrXoHFchlLW1u4USjgxvZWdL6LcLL0y3vU/iCsFD66rhqAJs2onbGxsYFut+t2Z83OzrpsMbXl6dTiellbTddEbSSOh5lOzIBqNpsR2UOcso4xdaLerMOJ7ZZPtfNdt0asesjtQC1A+O37+N7rc3SpA2owGGBtdtbtR02aZ3R8qliSKWqtADt237x9ToxEIoGff9GL8AMPPYQXyj71R5b24Rde8IIdjjT1MKsHUuGljD7Ou0lh6mMCvnnwvmuFAj4xN4cXl8uRrKVBEOCRpSVcy+cRSHolx8AxtTMZ/NLrXoeVWs0R7NlEAp12G1Pbz/kYKQlyamoKN6an8fFSCfdubUXHAOCzCwvYSu/DSm1kzA8Twx3wtmscZzTYtfKttTpT4vBVo1Y3qxjspabONt9vFm9881Nc02vatw//bJYgGSgznNT5ooanPsc1oIJMxm1rPVnHk52zCnMdK4WTzYKwEU+NHtuolQ+HFMYWPsDYyU6BSIELwKXZ+iIL6XQap3bBQc0anKqOFU/yzovT0/jrXg+vGA79RdW3gOSfJnfwKx9+3An4t+3Bs3VW2zyQuDaGAYU8lRDd/mGjYTYCRlxTONvIFP/2Ofv3WoujQfs750rHYKFQQKlUctk0mgFA/LLRaKUvmx2ltK3bLfv9PsIjd+Cew/8aR8J11KZqOJQ5hNP7TjvHDpUcOloY1VN6UhlnM7Gsg1FlXXlxEY30Abw08Vw8O9zEJjZR7BVR7I+KlLb6o1oPrNPIdHPF57ios8UZwt7yO/09CMY1nTQzkP0TdiwUq8o////kW96CF/3iz+Hw5x93Y3n/CeBfv/44Xo/XRwpVE4erKyt4+uRJnDx3LrL9cBAEePLwYZQXF5EPx6f7URmdD+dxR3AHziyewXtPhnjVOUQcXsNEAusveAHKi4vob2c6WRhxbbSguKVPn+5E2DGznEaVOkttUW5dg1uJtv6vbGqwqazzZZUAiOC/blEH/IEkH1x5rzrq9EMnCh146hDTxvW1LQgChKdOoXfs2Aj/h0OcmD2BQ9lDLrOdvARARFdXo0l1AV7r5fP4s+/8TpRWVzG/uYn6ygo6R44gl8u57By2RCLhAj4ql1V++2CnMPThE8fCRgORhqwGeKemptA5ehT1/ftH8xgMvDiv45j08Y3NjtOuk50TeSbfp7Lb6h5qWKst5OOJPpjZzAqfk8A2lSu3mx7ts0/tb2pPkB+Slmi4Wye0xRntl7hG3sj6dxpwt43vV6drHC768GISb1UHCjA6JR4ASqUS5ufnI44x8jDq7dzqnc1mMT8/7xzEGrSlfqJyxOKVOsGAEY/J50fZwLOzs865Tj5odXuOLZFIoJxM4sZ2zeiEwCXOmahr5ZNNSgs+34jeOxgM0Gw2MRwO0Ww2IzudqEvsRu9WT/PpTnb81qlndRulZfZD/s3A4a3I3y+6IqNVFvg/icICn/cCUWVRFRKLXDphy5CUwTHqwIVlVoQlWGWMtn4DU3R9Y1bAUnlkFFi/Oa6pqSkMsln8zMtfjv31OhbKZVycmsKN7VNk0kLcRGamDFMo26igLwKsY+IcNHLNPhS51CNLIkin0/h3L3whfvBzn8O9clLJ5xYX8Y5773X3ExaaHUJCmJqaQnlxEetzcxgOh5jejiRzToS1Ehj37RK5f+5FL8IPPfwwXiwnFD60sICff9GLnBdenR0u6uZpquRYYlLcUzy1Dg/FRWWunHd+O1PMp4zdDs0qCcDOrWdKQ5Yu1MBis8KMcFQFWjNjyLx6vR7q9XrE+UQBROOIxgzfSaWZyiczMrTeD+mJuKfPW7pSJquGuc1WUqcxHSTMluCYlbYVNtqsIqbGAetKUCCSx3DObCoMymEITDjd88w8gCEwfWUaya0kEplEZH0SiQT++dQU3rm1hVdJ5tPfZAN8S2MK2T8ZnyDCqAuftYbf5LKzO088Ysu2xkc5Z7NZF4Vl9gMVlmQy6RwoFu5cZ916qYY9ABeN4rpqwezbtVmFgtkA1WoVd9xxB+r1OjY2NlAoFFAsFh1+2cgl6YLbWAHsUEroNMnlcpibm3OOJOLCXGoO8/PzmJ6exr59+9z6DIdDPPPMM6hUKlhfX0elUok4Xsh3FKdUxmokF4CTP3yO2dDFoIgiiiOnRa/jYMJ5VqtVlMtlp/SSfnVrl4WphRGb6g1AVL9hjafZ2Vk0m01Xs2JlZcVlSeppW4VCwcFtZmYGw3wej7395/HoU09h/fGP4wuFHrYy+/C64RzQBXpBL7KNh2P982/6Jvzjd787Upz83IkT+G9f/dUu80NrZ5CfffPMN+M/t/8z3vD6J/DuP4rWerr+nOfgY9/1XehXqzsyx3nIA3kp10HXyCrlFm7k79Vq1WXl9Xo9bG1tuewpbilkJJx40el0bgv61fFq6QbyKNvUIFC5psaFBibUoWNlOumVBez5IR9gJh5rgMTpVurkUn2BctJGyTlm0jSDkFp4X2mbjukgCByMmgcPYnDixChjcdtgZTFs6vup1OgUKfJzyg57QqXC1WekMUPPBoH4Ow8XolziPLiVh1uQO52O26nAefD9pJ04nSAuQKJGH7DzcBGrk4Vh6LbP8D7yFpupT9nKjDjyCb7H2mCqU3PLtZ58SHxV/q5jtIG827VZHU51Zq6X6tTM2CZt2NM9qX9ae5S4Mj09jUKhgK2tLZTLZQyHQyePC4WCV6+0OMxvdTCo3aN4RB1Ps6R0PJqtn0gkMDs7i0wmg+PHj2NlZcXRYLPZRKPRcFn709PTOHDgAKanp7G8vIzZ2VnnqCJuUm8gfycstVwAAJdFRv04nU5j3759SKfTqFaraLVaqNfrEccf56p6JjOMaItoLUHNVLTBFDqjNetXdWJ1/iofUv4dBIE7bIvjAOBOe+W24Ti+7KN93cLPbfHEF7VhOp1O5NA063yyARPWgur1emg0Grcc+PmiHU/WY8aJ6sRv9llltLZP3q/ErIakCkFgrPRppoAVwDpGa3QrwC1S6P0KZDtmdbJczeVwcVsQsTiZjsFG732wUyKxHlPfONTQ13cQydSpxT7bmQx+5MUvxnK1isOdDm4UClgtlUaK+DaiWi+oNjIEdd6kUqkdad9sugWOfbWSSfzY/fdjpVbDgWYTV7NZXNtWMKwjRBmlDw6+dbEw9RGK71l7TZWC21Vgxo07jnnEKTa30ny05ftYYeh7tzo1rTGjjiFVdlTo8NtX0wUYn/zCj3VK6pjopNIUdsV1aygonBWnlB6J15pV5KM9jmt6eho3SiV8pFDA/bWaP2NpAZh+ZhrzH4geN8T5TE1NoZVI4BsTCRztdnG018PZIMC5ZBJoAlNT40wN63SygvbcLvhxZtZcGAIzV2eQ6+SQmh7XmmCUh/ClY04jzFZZsjxdvy2v4G+3Q8ZTnJGi15UnEUZMPw+C0dG8mUxmhyFAXm1loNKZbnFTupyE75p5QPnATBtuT1e69M3XrqeVtfqc8gAaQrotNQgCZ/QDiNzj4wP6fuVbNuqojng7XsJAZZ4qgOp44uEE/FDR2zp4EJvh/ZjtdJCoVnesufIHAOhks/iDb/s2zK6tobS2ho3tA1bCMETSs15c52wqizfOvhHVxSr++nvXcWVrCic2h6ivrKC2shLBGfIljkGdHTY7J64pL1Ydh9826Gj1L66Hj673YtNyCapfxo1f5aSusU+vsXjq04usjNFsP27Do+NAt5b53qH9xukDPh6hgQ72SbrQQKl1TGhwh/TC9xI+Wo/GZiIrvsbBz9oyOg/KCOq06ogmDNVhQF6nugcb56kOJHtdn+G4CDvV862MU5iog9naG5auFC67yUt+Wz1Of+fzqjtN0hsn4dFeaVaHU5z1tUk2sToR9VAWDaDZfoBxcgM/ANw2RRaSt2uk+GPHF6dX+Owe5T+KQ+QpANwW2EKh4JxIDB7RWcEtx7r1l05wDaBYG8DCwuKfDdIyqyqRSDiHtsomtTPo5KKTttPpROhP7Y1JtnocDC3M1WbWsbdarUimkyZv+Hj/bnTjs7V8v0+q1eTjCdaOsxnQk9otO54sMqhA8SEEmbL9VmeINf7U2AKixZ4VCTUiSqWOhEimzAX0CRkFlP1d90JqBoMSqvVc2kwHpouzVgvrIHBcZCCM5nPMCkf1tNrsIQo1hQ0A5yTiNXpJW60WADjiZ99K7Guzs9jYXosp2cvKsbEYuIUjUxkVNuyX41TcYUSIa8c2HA5xvVDA9W3PfUoUUTJnVUzZv77DMmkfYVrF2afo+K5xzWjAKE7u9TZJOdRGHPRFP3wCST9xCoxtxBmtOaO0rOtJfsCogtaAUXqxabDAOCLI/rieTJO3CrTyJI1csFGhJZz4DKPJNBhVeVA85VhU+FHpD8PQzZFRQiqyFNS+Aw6AUXrzcDjELxQK+MGHH8Z9krn40UIG37syi0N/kkSqOj6dht++GnDl4RAb23MvSdSO68HaVFRqScsc29lkEu8bDPDKodm2B+DvpqfwTDsBoOOu51fzOPnoSUwvTbv+mVXFCCHhym+eTmZrPqmBpkp2GIaOT3G+WjNmrxuuFlf1b9/YOb+5uTkcOXIEtVrNGWJ6CpjiJPGLcpN8nHjC9Va5R7rV2h06Xr6PtM36P9zqplmF2tRgI47GKfIcL3kHcYLHMrNtbGzgypUr6Ha7zrk5Nze3o5aNNt2+a8elxhd5C+lYldXSdhCn0Wi4rWRBEDjFm7WMWFyVR5ozsri1tRWpJanvV2eG6gEAsDY7i7XZWQBAyqOzAePMA6W1I5kjOJY4BswCN46NaH5GdDVb44Nw4m80prRZhxz7Ii6S53IbFXFtc3PTnbakGXh2LW6HpnVClVdR17RZT8Rpa8DrNlnbh3VUqWMHGOtmxD3dbnLw4EE0m02srq4ik8m456yzj99WxnNuipOql6ozhrhoDSEgmpFPhxOztVSeMpuHOxzoZCIO5fP5SIFxwjGVSkWyq9WhrnQNjHXIbDaLfr+P6rbjt9lsOmcX5TTXptfrOX1fDW2uEd9NXkp9hH1ovRfrCFQYWX1VYcr3lstld5ASMyeYJR7nQFRjUtdHnQ58D9eBtobaC8RL3fKoxqr2azOw9mJTHYl8HthZrwfYKaNUR9bSEswUZTCE8stmxfFb6wATD1dXVx2PTKfTKBQKkTGpA8VunfeNkbinOqnuqNEsJ46zUChgenoaKysrKBaL2LdvH2ZnZ1Gv19FsNlGpVHD16lU3d9Ip7+Xpk6qbcAyKU76snEQi4ewx6nzMANu/fz8ajYaTpZubm+j1ek7WMeM5l8shkUi4zKdGo+HkNbcyar1B6klW7qpsU9+G2tAcI2mHelG/Pzr1kLCh44xjVbvX7tpSx5Bt5JN0vukp2spHKXN92YmKuxwD+Z+1aXZrX3TGEwHMiVrhZO+xirK9J86Tx+9J/fJ3Cyj9juuHbZJn2jrA2MhElTjseIh8ZLw2LVEzK8gUrIJmnSBW6bdN7+f4aESQoNVIVEZjo9k6B583lPfQMLXKucKUMLHzsutikd0ySR2Xz/nhw6+4tY27z3evVdrVuNjrAtO2OCP2ZtvNwDKOlqynXB3IFqd9a0vFmXjHZ6gAWiGgtElGrVs3FS99jicV/HwHGbAKAqVjHz7G8TEffWvGJgWEjXorTAmLbiKBH7vvPuzb2sK+ahUXUik8FYYIKgNkul0Mk/4MAuUX9p0+xzEQPdHCt27fOj2N/9jp4NXCNz+UTuPNC4s48IFpDGYHCOdC5Dt5FHoFp1CpYUTeaTOdVPj6eIoP3yy8fDj7v0PjenCrB+sohWG4Qw6xce1VueB1fmugBfDXRLEKoY3m6RHKKrP5fr2m44mT3Vb3UHmlWQ+qIPNbcUyNb9u3/m/frTxkkjzWjEg+2+/3I7ht69Gwbxook5Q76xiwepTyF6Vh/V1pZxIf9j3jc0pM0qm0X+V5pGvy8WQy6ZxwzNoAohlmwM7Mt73arKND6Ub5r4+2rE7INfRt25qkv1h8IMx5mhkAZ4zF9ePT5Wyz6+/DHR9tEw505nBrGDOd1IhTJxeftcaZ0pRPv7Vzi8NxOn7UAKaRRl3eOlMUXuqQj6MNzYJQGE/iL/Z9fJeWHrBBBBt00/Ui//fJdR+cLJ7a+Uzi9ZPesRebj7/Z68BOGtH71FayyRMAInzeRx+qA9OxSZhyS5rWOuP92uLwahIPsfaPOj3osNHsJerYdKrQkcM505nCwBRlYRwNxo3X6hmEI+les8NUX1QnMB27altwHQg71YFsNq7VHXx4ozzAzoW8RAPkWqPOZhpPso21b8U54pgN2pDefYXbtelaq+OJDkmLP5PaTTueCDBFYAJMs4PUUFFlwIcsbD4lhgtuow/alInpfXy3Rrr5vO9EFTsWu5icu1XGbf/si+9g1N7Va9heeN02wkwnLiL3hPvg4iNCRjasQykIgghCBMEoYpNIJFCpVCJrxXoyylR0fvT0hmEY2RvKuVpBBcBlRimRa9aE4pBGRghfwkTXw3rwifwWJ2z9CT6jcNPsKb3uUwT6/X7EQchoWbPZjODDXm9xTMGnIKpzU++zyq/SrA9+9lnNSlDFmzxE102dRyo88/m827fMTAelNz6jjF77sDTEd+l8NCNTMx1VaSP+UGja9H9rzGqUjzBOJpMRQaCZO6RtOriGw6GjQ7t2/Gb22EYyiavbkZvM9t5ujWCpQshIm89ppnySTQUYI/hWYCWTSdSCAP90ZganwhCnAFxKp12du4VtvjiNaUzlp1ymmHW+UXGgICa89brCW5UhFei6liq4OffbSfm1uKvXAKDRaKDZbOKZZ57B+fPn3Qlu6XTaZd4QT31GATA+YYy1QFRm8t3EId02p/KHsC+Xy0gmR7Wm2u02KpWKyzzTQqI6lziF0xruFpeZwcFMB9ITs4YajQYAOCM7lUpFovR2fqpcWrllx6YyTp2zQRC4LQfz8/ORk81o3M/MzCCfzzvZwrqSlUoFa2trKJfLaLfbEQNbTzLS5pPjNmgV19g/o8e2FgThoPxbg1rWGU1eoPw1jtao9GsNGkaFgyDAlStXsLW15XgW+5uamkKhUNhhXO3FxjojhJEWTKcSr3q1NRR0TZjhwG02KssUPwl7dX7aiDkdT5lMxp2Updmlyh98eoDqsKTFuMCSPmd1B+qtXFfuBmDGEuFDxwqzBIgjnBOzpPQIctWRVbYRRqpX8lvtCGahcN0oawlL1s7jTgc6/pn9RH5IGCldqd6gzgkb7Lbj1uuEJbPIV1dXIztBmDmhW4+1cV6s8cX5xdV90Y+le6477QCtBTszM+OcYhyvtbn2aiMtKh/WpvqY4raVl+R1er9mG9tsRoUL/9Yal6lUCq1WCxsbG0gkEi67mdm8Gmi1TcdmHbk6J86Vh4nwHuq9Bw8eRD6fx+zsrONNjUYDN27cwJUrV7C2tuZOtuXY9u/fj2KxiFKpFKkbSlpltpXq4dZ+sGOlvUoY8n+eYtdsNl1AjifNDodDV45Agx/5fN7RseoZ1MkJV6Vf6kp6v8KR95A+WDeZ2eiLi4sRXY21Te2pzuSP5E/WoWydSp1OB7VaDcPhELOzsxGfCR2D6i9QXm/5IjPrwjBEqVSK4PnNtH9QxpMFpl7zKY/2fvusvXc3RqRCzxqOfE6NRiDqmPH1b40uAl3Hqg4Qy1y0DyIJEUaLGWpERvuxyu4kWOh7fbDUb45XlQhlHipkrSPCvt8q1qpQ+MajgsmukQ9/4ry5Fu4+I1mZtA8GFn6Tfvcp9KocWKPtdmxxQs33+yTG4oO7755Jn92iX1xjmx2oOGj5i1Uy4wwvi0ua1qppzbrWFHK21pCOddL7Js1P01f5LhUEPmEGRE9NsuNXZYY0Oakv3zh9BoVde6tQX0okcI1bILYddLZeB7c96bPah2aV2fRl+05Lp5Y32/ncisDcK83HO/k/lalKpYLV1VVX1Jq1DuKUfMuXlWdPaj461ugjCxU3Gg1niFnDS+lGx6Kylwod/9b38zkqtVTiqKjSmNLtupph5ONx1ulkZZoPb2xwRRU3vhNAZGuq4qYqi8wO44lucfrRbtd8dLHbeqqzm986P66vPmPxIW48cfRmZTmVa0bRWTKAfJF6FPn17eB4so5upRXC2epSPn0Q8GcO+X7zXYsL5vF3bjvxZQKyL5+e71tnnz4Y96w6Sekk0e3rXH/CTbMn2bfKvTi89+k8Cg+rf6reQWNTywOocaZb+izd8G++x2akTJJDVge3MFeY0LEzHA53nGJq10j/9zkgfM4v31pb55T2pwE3G+wlbG4HGXyzY9xNB9a/fTrdJF2YfWv2PkstAHAOjTAM3Tdx2NprvnH53sd3WlkZBIHbJp7NZl0wh/o58ZCZd5a/k7ZtNtJucFQ4KQ+lzpFIjLeD830zMzMAgOJ28JO6AXUMtb01WKIBLsLXOh6tzLd6gMVvjpUynvfQwaR+A7XNbQDVxwf0XapPEDaKD8o7JtmzVnZos8kfN9Nu+ok4oR6n/Coz1d/0fl1IILp3le9UpUeVOAsYHuGo9wJwyEagJhLjWkFxBhMJwDJWOy8usO7zDMPQFUmjYaXpf3xe65aEYeiUYs2WmhSltExKkZJwYBSaAkjnpwocT+PgO1WxA+BSJTluZWIKN2UCSoSEv66Nwp3wVANZr6vQ8kWpFGco1DUbTdNWLZNX+KqxpdlNdCqwP64T8eh2bXbslnH66EwZk4WdXVd9xicg1DjV//UThmGED2jEgbUK2D/xXecT5/ixjgh+6zYuxSvLeDlf7hFnVMkqvDpu7QcY06jSJmnQztvySstLfXxY+YIKWOItFWTyL6v8sGkarjWC2IdGu4MgcPyNkXPCglHXUqnk1k+j8GooqFFpjSTlV7rvXpUGjQSpoLY46YPfXm5WweD/xP9r167h0qVLuHTpEi5cuBDBWeVnQFSmAjtlLvtUPhunCPEUPMqbra0tdy2RGGXadjod54DyOREZ+LBOH358kXfNzGBdBI61Xq+7GhP1eh2pVMqd6Ee5p3ydMFFZw8wiH46oDFTaIR0o3SeTyUh2Memq2Wy6zGfSAjPCWq2Wo9XZ2Vl3iowdp9KN/bbyOU5Z5XwAROQ/+1b+QH6gfFIzdCy/JHziDCpr/DIzHIDjF8ViEfl8Hu12G7VabUdGyiQjZa801vYivRGOpBnqi6pvWKOIAQSt9QXsPKWW9KSyVY1OGjkcD3ExnU5jfn4eyWTSyTZdPzaLR/wkk8nIKZQqXzhOn57A58mf6DzWrZdBMKqtWa1W0Wg0UC6XASBipFlnlTqvrU7g4zEqMxRG5E3FYjEiu7muegIW360n3ClvJK+xOq4GguMMSzal+8Fg4DI5KpWKk/3T09NYWFhwxqzl+woXrlWn00G9XndZHj59WYPmHLfV/5PJpMNtNbC5E0N5Ct+915vFW9UDVfdQ/qbrxww+5bfk9TZrRh0nanPym++mTGEx706n4+p6Xbt2DUEQuOxfZs+ofq92EgDHMwA5pV3GQjrjexcWFlwWehAEKJfLru4a1/TgwYPYv3+/w/1er+fqL3GLHukM2FlXUeU9ZZnNftas61QqFannOTMzg4MHDyIIApw+fRrD4RAbGxtotVouE3s4HLo6yLpuNoPXpwtoBi4wzhi3jnurf05NTaFUKrl6dAy0qM5LnYCBF+V11kdgbQLCpdVquTp4icToJD9uhyRvBRDZLmz5jt2Nokk9cTwqrt2048kaktZwizNatO123Q7cElncNQWCbvkjkej9WqjRF0mKY/T6Xp/XVwWWPVHDwstGZNQgV2PIjsXC1ypwvEcRRQlT+6Sw0v6sA0bnqIponLD2wdJnIPuYsh2bve5D7rhxxF2zwtaurW98VqlX+Pj6ul2bxec4WNn7fdctPPl9sx9rXNqoguIIhag+y6bGcpyjxuKMbkGw2X/6bgBOudOU1zhnndKlva64TaVFjTVV0HzrojDm+AeDgRNe/N3n/LUKo8UB33gJWyBa/FHnQZjosc1BMNoeYjOeLPzUYaRraPmxjf6owa3/x+FqHDz3cpsk2KmMNZtNVKtV53DhOgDRzAYfH1SnE/tUxdriqv7N//kMj++lo8Vu3VClTPuwuD1pzopvSouERafTcQaZFgglnXCOfJd+Uwb6xqP8UtfF8k99DhhHB9Xg1MiwZnCo3NWgDxVICwOfoWqv+fiZjt+OV2GgeoHyad5vacm+2/at47fv1nvUCTE1NbXDkeHj/Xu12axvHbuFpy8gRr3Nyg7Any1o79d3WB7LvtSZr86FSbqAT+9is+vC3yytcywM4CidqiymMaWZk3Y+ugWFv03SO33js3xNeY3KT5sNobJJeYzSjYWBjo9rbw1Wy3N0TcnreCx6EAQuAK61sdh8Mo/8ho4BW/PFru8kuerDbZvlap/32WN7re3GxybJBsC/NY96mXWgE3ZKmz56V1syDEcBS26p0sOgSMua+W517TidgGMnbutuHh6cRUcs8ZCynodn8DkW+c5msy74qEkTOg47Pp23vY+/2WAucZ/ZWPl83sGNgR3KVZUtqo/r+tm18NkqmoVp6Vj1eY6PjnLrULJ6ri+w7cM5xR/yS6U/ylLVBTkedSipTheHFwrrm223lCNlhbsqNsoA1SjRe7kIbNZo0HstgVsFVI0pMksKKwCRiAIXj31znFqfIm5u/Nsn5NVAAuCMLD1lSbNjdMHpIfY1HwPTSKSFPRGZTjWtcWSVGkVkrc9FQ0CLNlsiIdwUnjpeMjVlEOopV6Gj62r70WifDx42u8sHP1U6dJ+w7c8aYZaQ6dnXvhUnEomE28JyOzWf4mDXQq/bCIl9Jo4B2vs1e0bfRyGp6aB8nkzcPqfvDMNwB+755symeEy6JP9QxsvniHNUoHid+8DV6WTnrjREGGi0VA1uRohYh4EpwbqtkM8onElnicRoi0Kn04lEWweDgTtZTIXRcDh0hqzPmLOKowp4/dZ7E4mEi4aVSiWn6ARBgHw+j3Q6jWKx6CI4+tFIqtIr56i0rVmhStM0Uun81/VUXmTlVpxhtZfaJOOPWT2NRsPV6GFdP1Vo2I9VUlQRtfBR45Vym/KCEWzNNuz3R6c/0eFEeUM5Y+WnKjF2jkoveqojebMayIz8V6tVd5IOM6+oG2h2nc7ZZiVyTDTCVKZoU70hToFXuKpyx6OTefot/2edI6UlZkIRliwka5Va6wBXw0HxxfI3i2cqH1W+q5weDAY7TrTkuxSHFL/Yv8Vf+2Gj0y2TySCXy0XkAB12rLe415vW3OG8lN5866f8V+Uj6Y336pYHvoNwJ++2jk0NnpBfMMOd8mg4HLpsBJ9816ZzoAzTrWecj34TL23WiN0KyzokWjfpwIEDbjzkBz5DzodT1jnF8fM3X7FjxVvCm3oHjW1mO7CfMAwjRh4zHVTW6i4Mjk95pM0uarVaDheoN5E3UMbOzs46vqF06Fu3MBztuqhWq9ja2kKlUkG1WkWr1YrwGZv9T35sA+yK74PBqA5Zq9VytfVUH6Fcj6s9tReb6nVs1vno42UKIzr4yPu5XpSxpFtrt+jfuq7kJ8Tdfr+PWq2Gfr+Per2Ofr+PGzduRJwiKvs0MxIY4zW/eRKizr3b7WJ1dRWJRHSbcBAEWFxcdKfWFQoF13er1UK9XsfU1JTLUCbtKwzpxOJ2ff6t2VjWLh8MRnWlmHWpDhbLD2ZnZ13txXa7jXq97nBdHXOatUkY0ammujPX1PoSSB/kiRpo1S3/vK7ZkjYQboN1PjtO8ZHbbpnRNTc3h+npaSwvLztZqk58XV+Lb9TtrWxXeXKz7aYdT8ok9Vt/t9Fz68G2Slkc4OIYPX+z/fFv60ggAeszNpVMBbnP+Ip7l76T79WonKY4W4FCwWyNtpuFPxEgTrmNMyosnJTAeJ21qHxK6qR3q5Kr66vvVoNFCVsVEFX444Skwi/OwaB9+DzDqnjrcxb31Cngw4tEIuEM6P+dmnUsADuj/fZaHAPUe300prjlY2K+5/SdXB/ihe+dPh7Db3U86TZU6zBl37ptlnSvmVe+9/jmavHItx3POr/5nGZL8neNtgJjBYjKi9K8/uaLtvN53/ro3Hzzo7HMaBgzsAC4jCcaBgpbFcQWp3yOc+UB+lEHlqavx/FZFZ63QyMcLF5rwX3iKI0OG3WLg0Mcffocjpb+rGNLo632/bouNnhlcUqdnnb7rR76EASBU07pfOKH0X+O1+oJil+26dyVvygMbUQwjn/p+0m/VA7DMHQnAgXBuJaMwioIArelR51wuiY+xTSOn8fxb3vdrjfX2epPKnst3SneWhhps+NRvcE6ktWhcjvQL3mx8iogimN2reLoUmklTh76jASrkyoP1uAN7+f4LF7pGHm/7Y+OLUsf2qzDSfVA5Rs09NTZkclkEIahownq4Bqc9PE9Sydx8PAF2+LgTQcsjXjdHuijTV1T1TGV9iyv4tppHadms+nWikfIz8zMONnrWx+LX4QvCynT0Lc1tGzA16fLaJ+EBw1cOgGIa+xb+cZeb3E0ym/KJ73fBx/qXXSkUy/SAI4Ptvpei9PUedhPEASR+oZcV4vr1h5THPTZYTpv3Z4GjLe95nI5zM7OYnZ2FqVSyeEs6UKdK/ZdGhxVx4iFh6VLpT8LJ+u4oSNqMBhEDjSwzjjawzb4mkgkIjW0LI+268XAjQZGlRZsENZmN1m88/ElH34pPHhaKbc3Kv75gvpsGrxSvVvnrLbBbu2mHU/25CP1wHOiykAswlqkJrPVyVkHBFucIOZCsmmURe8DEEF2Cq0wDB2BqlFlFVAbmdFxBcG4EKMvW4LPWWPIp+QSrhyvCj9V6BVB6AG2RncQjE89CYLAeb1tuisNXgoFdQzxPZybvp9j5zsJd1tPwBYzUyPBp4TxHkvEhA3X2Colih8qzHz96HWdo2V+2ifH3e123ZGg3DK0sLAQwcPboVnmOMlI0euWRvV63LNW+VNcCIIgIlwUt6xDWJ0tdj21f3VmWkPRrjdpViMhlnatodXtdt0pGYzCA6PTxMJwvK+b42VE0jJvy6wtPwP8p4kqfNXI4P36P5/zKTqkc0bd9YRAhRXnYY0W5acKYzqeuMVLs02ZFWpTijUC5HPiKn+zTgMqLrpFQ6NKVsniOKloc01vB8MV2GnsER5UanSOcbzXKpqWb/M9ShPWgclrVGT5Lo5B+7T4r7xE56RroA4FKuNca5UBwLhWDg1TGk3J5KhOTaFQcCfnaFa0yn3ryLQKnzVkdQ18Rp3KExsB5fzJH5ilVqvVMBgMMDs764xXjTQnk0lXLJh96PYArqeP58Ypqfq7ZqHxf95DHgFE5bwaKT6dxme8W/mr16yumEiMotU0ZBi9JS/jGsfNby81q4+QVpT3an0rvVcdMio7fGvlcz4SV3wGnMKZ72amip6sqltmrFzURqew8mriis3eVb3P6rqsFUPDeTgcIpPJYHFx0b2L40wkEs7BzMBHnOHGZnGS47HySX/XZxXuPEmT23q73S4qlUokGzTO+WP7t0XorU2h68pgDufOuoo+nUHfq3Q3HI5PCWw2m2g0Gmg0GpEMWupmiUTCzYe81OrjzP4i7uhuCtIqbS91bt5ONBy3dvw/jufxbzqCyuUyBoMBDh486LL2qMf48NWnSyst8R2p1OikRTpWer0eisWi235OHCVd2dq17JNzsUEsZuSSF9CJxAxdPVmWtc04Rj6rWY2W7pX/cJw2UErbVZ+3NK/2gPJNpXfWUKKtPBgMXACauKvyjn9ns9mITq36k75Di/uzP+uEpW5MnZnfNlsdGJf5IB5Y3FO9LpUanabLrY1co0Qi4TIa+W23KSqu8z0+mU043my7aWvZKmdcWF8kI86AV6XCl8Lq64sCMc7JpX2occJ7tACjKs0kUEZjFKFViBJR1WixUX+NsgRBEPEw8h71YOqcLdKocTVJ8FkljWuhgpCIrQa8VVZUKbBj5VzJdMgQ9J1W6VGcUOePnY9FZqv0xsHGZjvwnXqP71lf03lMUsyVOdhsgunpaVcU7nZrk4wl23xCNk742v7s7/xNcUzpT+/X/308gNeJM8DYoLQKuPavxrrilZ2H9sHx9Pt9F51inSLFeavo8r3WqLUw8c1Rr1t+aeGvPNduydDrHBPvp1BV3qWwp7DU66Qb63jiWPXIV+X1PqeTZjvxujXmdR0m4ZONdk8SnlxLwsonf/Zam8TXLB7b5/Rj5YfKB4t3wNjR4DNYfNtESAcAdsgD6ziMMzgUh1W2qVGr99KwVmWauMgtHsRL3su5+/BLdQaVT2wKh93gzfsUNpw/t9Cpw4zKITA27jhGPYBAlXGrDCp/8PFia/yqXkcHn3Vok25shFRxxdd8hrY2q9vo35wz15DwUL5qD6a5XRp5nvIeGj1supY+nmtxLQ7GqudaWc2/dQtqr9dDs9l0dMj36xY0X+NYNVPP6qgqXzSYrXOg8cktdvr+UqnknCU0lmms86PyZDd90KdP+GwUhZmVS0rTYRg6hxmdZ1b+W/3EynbyY9+6qfFKPWR2dtYZroS5bT59Qfk4nRGs06O1epRnqMxQWLBxzrodsN1uY2Zmxo2LOrOVR7dL8401jq/ae7m2zM6lDkZ5ZfUm259tPvxRO47b4ZPJJDqdDpLJJNrttrtfDwOwjifa676tvLo1jAcRaNFqTUhQHmYDjVbvJT5qtpNPzlmbwacrWryyNobad75gGH+3Mm84HLpSGL5SADpvrqe+yzqe9CAFny6rulscLig9q56ua0J5ynFr8X+748TyRfsOhdXN8Fm2m3Y8aQRGGaEaV6q0WqbEgfuYLfvhROgEsYumk1RDwodo+k5tPsXb/s7n4oxDjpdCWtP3dO520ZQBacaDKo827djHtPQdVgDQY074qZC3RzcqLHwp2GyqiFJwaPRK10DHTCWBMNMMJ7sFRmHvW2cgmgU2aQ3VAUknkVWWrUJiBSivk7HyNzIC1qkpFos4fPiwm+ft0CwN7AYD/mZxRmk37jltPsalwo5MW52Y1pFpf+cYlBdpXQOdpxWeACLKrvZps604P+J0NpvF/Py8U3AVt3XcfK+FndKaNbR8/MuuhYW3pSEKRHWG29oTxGvSvg0k+AxL3UKgjh119FF5ooBTJ5CezGG3SSlsLG+3MND5K6+2kR5dN6sgECZWdu3lprih1wDsqJkwHI5qgRBHFd92UxD0dwv/MIzWE2RtEd7HtZ2ZmYkoKBrZ5rfSgo8v6dYflfP6jMKA9FwsFt02nDAMMTMzEzktRt9vYeHLNo5zenNcPh6o18mzfHRPuLDoaRiGkS1E9iQ0lVuaneJLmeeYFIYKX+WlHJ8G36wzxzotfMqmT8eL0410/RW+Og/lu7lcDoVCAcVi0RnJzHC5HRxPxD81rkhHNgATJxvYFLcUP3ivXR/rXCAPtE4uytBEIoFSqYR+v49Go4HBYICtrS0A4xOo+fHhNd+vupbq+laH45Yxrb+qeJjP591R6JlMJhJgYpYPaVwDGD6ZZvVBHas19CYFvLTxXi2WzGL4rJmluox+2zWN08k4Pm7VsTVirAy3bRLvZwYOs540y0wd5jYArDhGByX7IbzoeKITkToI52R5wF5tcc51KwMs/yMu6v2EFTOQLG1ZeHDtrNzz6eq+QAQAly2bTI52bxQKhQhP8PFn3/y4bmobxjmjrVzXoIbKY2Csi5IHqIxUHqn2qvJTG3Qknln/hb5LM6Cs880no1Q3tzW5uHtAx646qh2fr7aT7iaL04t8urKFlW6xpE6WzWZdP7xHsxltVht5tf7vW99bbTfteCIh8EOHg2XwFmktoUxSRlQhJQDVGeObpFWg4hi5738VOGx8N5HKpzCxH3tShL7fwkAVO8JMHXgqYNVxYvvlu+PgTcEHIMJImJKokQuL0D6lle9Th8twOHTRDGuwsU8aDMrktOYHhSdh4mN4FmfUsUWC4HpZvLKZT1aZU0FgFXPFTQp2Pkc4TE9PY25uDrOzs1heXnYw38vN0pDSwm7Mw64Hr1lm7KNP+78+Z5k9MDZ2VPhaWlJBZ7dzWvpRPFHh6MPzON7ERr4wMzODYrEY4X9UoHyCQvmT0poPzj560rnobz7ntAoQ/kZDQx23xFnN/FAhw/9tNhAFud5HeaBp1/o/v23Ksd2yresSZ/Rb2KgDzMdD+CG/4hY7jVDdDoqvladWlmlBevJfFhmnE8jSK5uVB3odGDs7NOBAnGAEVQsmq/zkM9bpp0aSZtzqXG3AydKl/Z+4ncvlInO1BmVcH3ov+9JAh8obHy76eIiV/xbfNNqqzmrCmcVnub7Edcpi1SOsLsB5ka7tmttrPh3Mwl2ftbQ3Sc+zTcfqM5QszyffzWQyrn4NeZ1uEdvLTeWAOrytI8QaOhYmvA74C7nzdys7+E7NYvHxPaUBOiTogOJWQOqauk3dNybN6LL2gM5dCwlr5mIul0M2m0U2m8XCwkJEDyR/4xhovGkWhU8uxDlorTPF0rH9tjoU8VHlXafTwdTUVMQ5bLcdqsxTua76tGY5EedtMM2nP9im8Ndn1BDldkGOT4MPSvdWPpOPsw/+xvXkdc2+4D1a22ivNh8/i+P59tteIy+gg6DRaCCVSmFubm6i85Atjs5VNlkHNh0jDJZqxjcdYT79WHGVTQ83ALDjdx2PlRFWh+c7SBu6a8heV16p8/XpjdQ9rXOd49edScof7XUfn1Rdwtrr1CsVv5WO2Zd1HKveManF2SdcJwbyGVglrVFnqNfrjuY1S8vq45YvTZLvtxK8vWXHk27bUGXMKj+qwKiRrwOj8mknosDVxaVQsMqKvk+ftcxVjSpFCO2L89iNmdix6Xt8iq0laK2Sb+FAuOn/bGo4WmLTLAJlJhyDnqRHIcN50zHFa1aJpcNMI+d0ClqFyK6Dz1tKhqDwJ+OzDNWnzPB3yxSswsaPVTQUX9Rg0f7pREilUhECZWbBoUOHsG/fPrz4xS+OnHy3V5sPV/XvmxGo9jnfb5MMDf1bmbw1lIB4hu9TstUJYunVF6WyAlDxxLcdgTSSTCZd4U7WdrJOWKuQ2XR5G4G1Rodv7HGOMwsf63jjb/yfdK6NijadE4QJ32n3r1M4Kmz4nM1K5JioJDMibRVWHb/2rWtlea7lrXqPOgT54VYmpWWVXXu9TVJGOG8qNgyKWJzyOV60DzXYtOkaW97Jb02Jt4Ebfb/dKmUVQKv02eftWvMZq5wqLmtmhmZrqxHLuWvRT73HGq86fzseO29VUKlHqYy3wTurL9j3qG5BeiFd6VYJCwMr33Zr6ki3sln1Lqvr+GTEbh8fvOy6E6+4dYAZlDy9ca83zcIkHgCTM8mUR6muQrzUwxjCMIwUD2Z/QRBEigurU4H3aNPryWTS1TOcmppyeqUGjHyOQx27Gq5WB+Pv6gjjO5npxKL7uu3URvDVyLS0Yx3mSn/W0KIeStzXNglPFW7AOLjKcWkmhY7HwnvSR7eq8znLI31/x11T3Yan2jUaDbRaLRcoVr6m/NLKW/LX4XDonCnkSXq6VrPZxHA43qZkne57uVneb/VPqwsrvKwjlDyfW95Y62lubs7hjMqlSXq1Tz/X8ah84W8+e8qnb1u5Z2Wg8jBgXDojzjacxPcJI+oODFapQ8aOgXa9leXT09Nu263WmyPts74nm/ID9TNYe8LXrGNLt5EqrK3urA4nXWMrr3245aMV0jL1fNZDZJ/MFOVph61WC61WawcvZl/6LotPlm/eCv3etOPJOo8UCD7jSRUoIg7/1oGybwLGAt9OlghhnU4qaLigvnGrwWmVcDsPVU4VEYg4PkDHIadV+Gz9FfucwkZ/sw4zva4Fda1SAMAZfyqkVQBSOHC8PgZrCYxCQ4vH+RRl3zx8WSmK4DbTzSc0iVOWWOx6qMEfR7Rx7yCcCKtUanRiw8GDB3H48GHcc889bpvEXm5WGbPCIO4Za3jo9ySF1V63Qtsq1Bavfc4AOxa2OINa8U9/Iy5YDz+VagsXjpO1V7LZLPL5vGPeGiWxAkZpTJV0VcBV6fbBXJ2gKnx1u4GlNf3W7DA6D+x2GrvtUJV25es+ocN+9KQ6wjMIxieI0PEUR4OWL1jeo/xX4e1ThC3ta90Jq3DcDo4nX7PyEUDkZFXLUxWnfHxgt0CChZWlYx0XlUfiFR06/F8dmbauhPavfRKn9bAQYJy1p/eq4q/OI+sgVuOQ47WOJzsmn7zR8dg10m/fc9qvDwbKz9TZpu9UA04z0kizYRgNsLAPX1NHvvJm3/it/PXxZ52r0mmcQRUni7lePJIdgMvEnmQY7JVGvZQw85U+sHovcYLz5XpqFrryOj5jZSCz57Ruz26N+JXP5xGGYeSYdhaj1jpLFv98ARef7NBxUoctFArIZrMoFovI5/ORbAEad2oPKK9ReKgxplt4NJij41AZaWnXro02i++kNWYnqePJOuPsO/RdOg/N5lL5rPfG0U5c4xrxSPl6vY5msxnBzTjHkwa6EonxgRLEs+Fw6LYbMuOp1WpFdBHyrduhzqLP6aHrYu9ROrX8n/AinCqVCobDIRqNhsvuVAcIEL+O1oZU+WftOKsP2H5Vn7S2tv7PPm2mi9K8T4+YREPK4xOJhHMO+eCrPEV1bv7NOqxa743jY+KFzaoCdtZ02o12gGgpIiAaIFY6UZ2cuK+Zf8obffLR4pDP5iH8ucVXdZpMJuN0JQYi1Dll15fvtPhl9RGf3jKp3bTjibV91HBS5YKTJcJZgOnAySh9jF0JVn+ziG+Bw/4neZfZF/tjZNb+5kNifYdVCtjiIki6ICow9H/bF/8nYXCMhJkyEBW+RCYino0ycWw+ZZyC0RptFsEtQRGxfYyGxjGZs3Xi2TFZBNd+rCPQwkzn42O2PgbuE/qKD2EYRlKEGWEkM+v3+7hw4QJmZmZw/PjxHePeS82n5Nnrcb8r8/EJOfseqwT5nAF6ggLvmRT5UpxXBu1TsnzCTdfaZuzY35XXkFfR8cTTsRQ/eIIWEE09tv0mEokde9V9OOhTYrUpXfp4LZ+nwFXHE+ejiqWO1zbfFhZdM71m6ZpCVWtv6PzsWk0SblYQWzjZ39XwtvBWpV357O3WLBypzPCkI637oYagGhLsx/Jt3/9Wtup7fTBUw4i1oIiDvgxplWm6ziqLLd7pPDTARbmv91JGqoy3p6T6jCvFTR9/UliwWX1EZZzFQ+V/Vr5bfLaySp1JdOSpke2jVZ2HvsNHh7xX6c3Oy37iFG2fbLfNxwN0bDQq1FC4XRxPFs7qPLe8zYd3XGPLQ+NoUh0DxDtmftLwsjrepEYDhkGXmZkZV8LB1hjT4KfyWF/wGBjjFB1KPAzA0qfSh85Z4cr/Vae0+q7er+uj8Lb4rWto/47jmXaulv71/t1w3/dun/7jux7XBoOBcyI2Go1IbSefQeybn85LbQnCTx1t3W4XqVTKbSHWYNVep2GVU4A/EGphYmWbNsW1VquFZDKJZrPpDlLgLhOVHb7ndUy+35Qe9G8bUFR9nM4Xjs/KahucUPtAcSAIRplLusa+HSbsU8dMu5KymkkAHINmWNv56vZU8i07NputqXC062hlnKVPixcKI607x/n7ZKK+x96j79D14vsU3yxft447e5BAXAKM5VE6d5VHxBGf3eZrN+14ymQyGAwGzoNmB6ROJ6sgUQHk32T6Nmpp+4wDuH70OUVo9W5qX3q/RRLex2/1Sg6HQ5cNpPdYJPUJNCKCZa6JRCJS4NeOi8/ymir3Gi3m4mskhwqGzbCwCokawprtoV5MJQaFma6rrq06FDUjg0q+3ZPO/uKEm6498cY6mFQJV4Pf99E19z2v6zQcDl1RxFarFTkdiacRPfHEE0gkEnj1q1+9Y/x7qVlaUPwE4h02wE7nk227XVO84zu11otG8TQjQftQY9Iqm/a9Pr6hv8dFTyw9q4AbDkfp4TyalIyfjl4rJKxQU+WBtKb8gt92DMrXdD6Ehc+g1HmSJphZwnFb55vWetLxqgBUvkB69vFVpdVkcnw0rDVyrGJvHSGKN75ClLrePuem8iRbsJI4aHnu7dB8Sg//5hYkRvtsBqzSsSqP2pfKV/6vz1jFW/mDbUpD2mzmkfZnZZTVFdhUvqisVplJPs4PT41jFp7WavQpx5aufZFQ37wVZ3X81CW4JrxXYUm8VR4Yx6f5jJ4gREPGbqvV8fqc13G8X9+v89O/9XnNzFDnR9w7tFldwPIjOlZ5ndduh6Z8z8pUnzNPdRqf48nSj+pqyjfZmGHRbDadwXErTnfimBbRVd6qcpS/s9aoOnz5v+rMxBd7qpNuk7Fy3fIce4+lHatj6DMKOz5jdfabaUovSmd6PQ7mcbSnuOGb5279TGrMBG40GqhWq2g2m84paR2XqptwLna9uZWdfwPRotE8LIHyiSVAbObZXmxWj9T1AHbaltaxo89Z3t5oNBCGIer1OqamplAoFFxtMOpscbjos2X5v9IIYcxrOj61p9VJwj7VvrSyx9qswDjbXXVVdYBYPqfwJM/jaX+U6/zm82qv6ljJR1iEn/NR21gPWFDnloWrzs+OU+Fs4a/rrM4vlY++d/A9eo9P19B14HXOT/0xdNipbkynE7de2/lZfLb4pOPw3bdbu6VT7SwTthO3DFYR3nr84xwCtinA1bOmzgUrlHyEqQqojscKfmvQWkSyf2uf2gcVTJ+SqM06z2zzeWO1zhbnpsXMmI7sIxCLRNbBxHtU0VEm6SNEHT+Zo1X842CgSKwOPQsbn1JOZsnxKbx3wzGfgNcxs9lTYIJgdGLH1tYWzp8/77IKbkXQ/69sPhy0yps2q4xNUgDtulpaUt6hws566PV5n7ITx/zsGPS5OEXUd6+lAzUOafRQIfAZuZYH6jt0jurI0d99uKmOa50r+6BSwGc1y4nv0PFTIKkSrlEUn1Cxa2iFp2897NYHxSPLH7T5+IWFgYWFVaTi4Ki8Kk5hu52apV3CyJ6Uosqkfc4q0D65ZHm9XldZynssX7Hv1efsWlve4gso+fiOdaSxL/JxLaRJeNjtZzbS6FNq4/DFNx9VIvXgjyAYF7z3wUnH5aMTux76fnXWWf6i9DzpY/HBx8vtPLlGPkeT8isLX3strqluoHik9Sv3cvPpNlwXYHwikQbQFDa8h9eJQ2y6/hbG/J3OIBuYBG6eD1pZrLSs+p/ijw10WJ3MjtmHh/ruSXaDT2/R69YpFIfTPrmk71A9gmOxxryO0zrA4vq31+PG5oPRbmtoYUZDXGsgsh+r++t1K5uBcakC1dN5XXkdcZD4qzi6l5vaemor+HDSyju1p/Re/k8HYLVaRRAE7vAaOi3ibBgfDVg9WpulC92ibenPyhW7Tto315aObjovqSfTEQSMt4XbNbe4phlPKkct/+dYOB/Vq1X3Ub8BeS2DQBossfjO91jYWB3Urokva0mvWdzxyUEfvK38BqJ8R7PCVBejU1i3wsbp+j4+org8ybewW7tpx5MtkmezEnyChE2zdOy9yrx9hKULqUBV4QtE65P4AEaCUWPXIg5/973bjsk3Nu1L3+NzaOl9CiOfx1UVCzJwNVqDIIgQDz28MzMzOwwNazCwD1V+NX2RRovWjmJfJCJFfAtjraEThmHkfoWFMizCQB1suga22LFVaq0yoEqAfa/t2zZmO5FgmRXSaDSwsbGBMAwjxsxebj76mDRuqxhZOJOW9Z7dHJ263lRSNPtH6YU0StxURwoVc58Rxf71N5sxZB01Ol6lEY6LkZOZmRnk83kkEgmHE8pLCBPlI2zEWVV0KVht6r1VTpQ/BMF4z7YaH6o4MJND15F9M1uAdNRsNl3/yhutk4bvJ0+w/EPXWQtjsl8V5DaS4zNCrFOLjl/tW/FR5YMqxwp/ux1E8eN2bD785dyZnUn4aOaA3g9Et1Nankne7JMltk1SvH2OEjsXfUaVXFXa7DvU0NVn9V2DwcAVtSUuU67ZWoL2tCXOW41Una+Fi46T8okBilKp5OiVWSeU3aqc2nWy13wGgIUBMwrUua+yU/Fe4e17h17T63Z9CE+rbJOe1TBQY0J1jDgHlNK8XUfWANrrzWdscC5BELiTRwk3NYg0U0j5l26TID7q/dSJeD8NXOKensjrk4m2+fR0n9wn36DRrGPQADDp14f/cfq2fseNkWMDogag0oqVm5MMRN87lEfyOauf6jjYfPjta5YHTYKP7z2+MVu40fhutVou24l9qc5v+YLqVHRiar0vhS9/13pOrVYLYTgqVWCzp/dq8+1oAfyHGvFvYKeNyGvAOAuJ9dKuX7+ORqOBQqGAIBidSKun0t6s/s5xTbrPnvimY41bd/IZ+9HsY2Bcd5Fyh7VRgfFuJ3XGKX8nrPR0ZMUf5S/shw57PWArDMNIzUtmANPxyZpj7Jt6kupKSoMKK4sDeq864XyZTj4ZR17Pd7Pxb+vE5vuVH5Lm1J7S9SSd1+t1d0Kp9md5axzftbr6rbZbdjwx9c1OyH6s8WgNQUVeX9O+fYTsExBxgNM+VVG1Ubw4Jq4MwipnykxU+KtBpPOxi6xGnh233k+4EqFskWGfsup7p52fGr9USlSo+AQmm68vZRz2Ho7JOoBsJMwSGH+zDko7Z8VLfc7Cwv6u79VUVD7nO7VF15unc+z1ZtfLp8D5YBOnANqm6xIHDwoRy7D1f83AsWMCdtYb8a2xr+9JCuskps5aFrlcDplMxhUK1VMxrELog4uOyfKMOPhaZUP5nt6j9Gcdg3ynTWVX/mnna53z2rfC0zpwrAJvm8+gtuuk9+22pjoOawTzNxXEcYL1dqHfm7lHFRzd4qVOG4Wpb+4qJ32y1L7P8lHLQ/XeOD1A/4+jCTsW3xYQ/VudLtbp66MRNl6zxujNwErpm7CnAsoMND1BUiOVvnR/C+s456Hew7Hr+PibDdawD4W1dSz5xmD/jzOOlX8QHtYBpU4oH/+w66vOGh37Xm/EEx03sFMPUceawsTKRKvH+uja0o86AtQ4sTTGZ23T+3xwtzSic7TjisMvHas6cRTvrFwgfPXbzoHwt9kN+r7d5s+mdKuOY8tz7Nx0ra1jN46/+HQD3336d9ya+ubhwwVLy3FBecrYIIhmcFq90uI272WG1e3gOAZ24kTcusStlU+nU17GWrLNZtOdQmbt6N10Ft8YfXxHf7f6gR2zBkmBqJ6uH25fsxmVevqmxVUro5Q+fLqADz+1nqnWdtL77G+aDGMPW1CnnI9P6XXfmHT8Cse4tVJ+ZHWOSX1Y2WhlQ6/XcwXrE4nEjvISvnHGjdWO+YuVuTdN6blcDv1+H7lcznkTuXfbh3y6oNZQtA4ZOyFeU4HK36xho0oNn2G/RLS4d1sFyiphbPyfRfD0uj5LWKhwI1Pmt0YaVdDZ7A2LCFqJ3mZH8Z3WWWQNSP7OOi+MZrBeUb/fR7PZdPVYdBwWftYwtAJfBZU2VagAOCaga07CUILkuFUw6hisgsJ1ITHr70poquSrAsHn6WCwuEBvfCqVum2OcrZKjjaf8eWjt0nCNE751WeYkadbd62hoUfd8xntQ7P+rBLEfeUqaHSM1unJ63arn+IWo8LLy8tYWFhAPp9Hq9XC1taWSxcPgp3byqxg5jstzul44sarmU4+HqRRcX50fkEQuOwHTYUH4DKjeC+Li9qojT0ZRJvCwCrz2pQeLY1bJ4Kuqa6JxRfL39RI08gW+/HxbR+vul2apUlmu01PT7usV5sBpxluvKbKhJXPClNdI11zzcjQvuMa10vlosVZOx4bWba8QeUpZQm3FWlkXQ1Pjbr65hwXhLH6g+KRjj2ZHB/tXCwWnaydnp7G6upqREbTMRXXLI/Q8aoy7HMKKGwmOfcVrpbG4gwBqzArX9fTDfm/fjNDm1lhajDYefocEZMU5L3WOF4NWFgjQ2t06NYS3a7ERnqzgWArf1UfY7aJ1niyxrDFB9ssbuk7SE98n9UFVWbp/74xDIfR2qp8D7Oo7Jh4n96v41V8BsbbzAhHdYBO0nfYh2YREt+5RuQ5nJdmCquRafmefu82BtvsmsTdo7DTbciaPeejb9WPrd0CwOGULQfCtVRHE+HFLT+6O2Kvtrjxqf1ndV4guo5qAyqv5LNbW1toNpvY2NhAIpHA3Nycs7utfmSbT4/X/32/q+5kA47W1hoOhy7gqo5D1XFpqzabTbTbbac3Urb5dr1Ypwt5hgYm1AGvdjyASKYQZUgul3NbsBXeMzMzAEZ1q4MgcJnQWpeM+pPdwq1+BV1XX0kJ0pldL9815Qm2rJHilaUp/bZB4DAMHU2Xy2VXl488SdcgzvFkfRK6Zj475GbbLZ1qx3Q0izg6SHU6aURAhZIKJssELTC16b23ypCV+VuFlWNUweUTrHHE7EM2NlVsfULGerKtEL4Zj6/vHr4bmHy0o2b4aNaVMiAf0sd5gHmP7hu2hopVFuOQ1ocLVqGy6xunjFjYxr3L5wjZjdHbGh17tVl8/YeO2SdgfdfsGKwja7d1nESblt60H/3W9096F69rdkQ6nUY2m0WhUHDMW52YGhWJG0/cXCc1H6375qmKol7zzVmbKhbaH3lCOp122wytQ8mOU8drr9kx6Tvtt4VLnNBWnLAODt5D49QXyVVhfbs2q0RaHq9KXpwiNAk39G9rHOvzliaJV5P4vJWtPnkyCa/sOC3+cF1VoeR9VPAsHqmCpXLbzhMALrcu43r3Og7nDuNQ5pDTZ6xDj00dJuzfbmEnnqojzMLgZvSeOHjZ9fA5A+xcud66puxL7/M5he3fcbqLdZhPkg2aKaEKNnXOvd4m6XFx96lOomtGPFHjX3U3IBpo5TN0YumpTpPaJBkaNz9dG+3Hx/snyWD9XekmTg6RDhXXJ91rad3SnZ2z1c999/joR9dIHW7K+3bDA98cdms3q2fbbFCO0QYELN/29W3HrHTrS1Dg9qfbQRb75I/iuwYeJsktu6b6vy9gpgF1IN7BdLNzsPrxzciXuOu6nmE4doRzK6/V+3ywsfxLx6bjI24OBgNc713Htc41rKRXcDh7eIdjimNjrSn2SSdVJpNBIpFArVZDKpVy20SZCLGbTTkJTtZpFCcH2ez8ffzLvs+Oj88qvWlNJwCRLDQbxPM52Ow9vm8fr9+t3bTjaWlpCd1uF7VabYeQ17/7/b6rkq7OJmAc4WDkkYPV7XtAtAAfJ8Y2KQ1dn/ExPv5OryjHoifM2Miw9hVnVCuS81u9tQBc9ErHo9kH2lTokpi0/yAYH89oU/MVDkxdJQLZ+g6qBNtIIhkGiVydiUpANnPBElSn04mkdZPofZExhaca9joHXRd1XFoC5DMaTVBi08gN++J8uQ3Cvs/HIMNwdArF7dImKTC7CTFrtPh4QJxyyeaLYBBnbNYRGxUT4rxm3uh6qCNV11vxVemR8+B4k8mko8d2u41er4dcLofFxUWsrKzg6NGjCIJRcXk9cpg1MrRvG31Qxm63fSl8reJCPqVw1981OqWKC+ejPFRhaw0SHbdm8qmQtMqPFVZ8jw/efLc666yCbxUYK/B4jfhgFX07Dz2tUzMdLf3qOPdys7C3Ch0beezU1JRzlPJeNTB866d9+LLvrFylLFX5yL99gQs7VsKeckbplU3p2s6X77MRW/bVbrdRr9ed/KJ85/sszSUSiUimicrTqakpNIYN/MTjP4FPlT/lxvfA4gP46Rf9NPKJvFNeW62We45K+GAwQK1Wc/BKp9Ou7kWlUkG323XztjUmlA59+oDCU3mD/q68QGt16hpbelCeos3WY7K0TBwkzK3BQf2EkXDiKp3cNhsGGJ/IRp1N16vZbN4WNEw89tVKBcZ8WU9bVJmpOg/lj2YOAjsdNbyfehgz25vNJlqtFrLZrFdu34ohEaf/WeNK71E8Vn5h+Tf/p+xnrUUf3qv88Rm6OkfClQEWBtaZEckxx+lFCjOlUY6TjTqw4gB5kI5DYTLJEe+Du47JznPSOhKPVN9noI28jDTsy0xlH8Q9wkG3ZXEtO52O43tqkzQaDZddstdpWHEJwA4nqMqwOBkbpxuTNzADjKfbse6W2qVWFttm9UR9d5xTRe+1uOPDIbWrNPOJunO9Xke73UYul3PvtTLD6uu+U9Vpq5H2a/0a3nrmrfh05dNuLPcU78G/Pv2vUUqXXJBUnV/JZBL5fN7JJfIQ9Vc0Gg202+0depOPzgkTXtcsNq6lrrvVd9mX2uNKu5Yn+PDIBhzIL7XeGjNb6/W6KxdCp6b6Hnz6Ht9hd5eoj8XaXzcrM27a8USk12KclimrM4VCUu+xRr/17OmkLVFwovY+vZ9/TyJI258aaJap+JqPoetC+CIo/E3HqApy3Pzs3CYJVN+8dIz2d3WKqfGqDkEfY/L15fu2xKrjtjBT+Chyx0Vk7f8+48ZnwNo5xBlBqVQqUjRa4UXFWDP/bgbX9kKbNM6433Q9d5unD56+/nwZk/Z+n8CzuGWfnfT8boqY/qaCNJ1Oo1AoIJvNOoepRg18z08aT1y7Wf6lwgnwF7WMg4PyK33G17caNHZePrjZ9ys/1fv028qOOIVIx0+F1cdv1HBRZ7qPP9h2O9Ex4I9kK0zUsUvY+Nqk9bQ0o2uruBSnSPvGOmkMcTLN4lEcTum71OGogS91KPkiqxoA8wXYfvILP4nPlD8TGf8nNz6JH/7sD+MdL35HpD/FSTYaeIQhDT0tkkr8ten8vkwMO38LFx9usNnA3iRDRB1/Vhn26U6+99n1tU4VyzP0eZXpClOV97cL/VpctrqQ3mfh5ONtGsCL49PafE4d227WgPDNLU4H8OGGT49TO0KDB1qQOE5+qVy02ShWdtqx+PCX/ca9J64Py4NVrgLjg3N8tsdu/DQOrrZN0pl1Hjou4hmLObNZmtPrcTzJp4tY3Vx1LV8Qfq81C/e48frmr9dtX/o/v+0WSF9QdtL7fffE2cxxY47T0Xx9cC19H6s/WLnBvunotM5oncNPPP4TqJ35DF5bBs7MA2cWgM9VP4efevKn8DPP/Rn3nHX2drvdiN1GB7NuqdN5WN3RNh89WJhZuo7TM31wVf9InBz36bY6fvKh6elpR9PMgiKsffaY8ksff4rjOTcrg2/a8ZTPj6J5+Xw+kv3CQXGi9NYC46wbKlWaaQMg4uQgEIGdRyVzMqqMKVO0GT8KTJ/nVxeSdTB43b7PpzzyOgmK0QvLwDXjgv2TEJllxXlo9EPHYlNgOTeNDOq7de5k5PouK+zUa8qIY7fbRbvdjiibVkm0SpNlbkwRpfdYI8xcD+3HErjFBQt3+5v+T68v58ytFmEYza4jLIBx5GJmZgbZbBZbW1totVoYDofuCPpcLudSNJkZpc66vd44Rpt9Yg2aOGHmM0p0/axRoe/iM4SzPWGLv6lyaAUW8ZZrSsGhjk1VbOzcw3Bntow6X4fDoUtvZkRgYWEBp0+fdrVZms0mqtVqBKfIZ5SR65hIfzoWXyaQb60sXWiECBgrsFagK/ys0Le8SvsG4DK4VAGy41OY6Zi1josqEHwHI8HKf/RjlXiFkToQgmAcOeUcuCaEgeIt4WHrW7GvuO0be7XFKS+cC2sKMZrPEwHjjCYbTVPc0Hcpz7ZKtOIVlUjltXZdfJkyKk/097hMAKusEVeZ0cFMI0Y5NZpp8V+zSai7DIdDx+evda/hk5ufBADcsQ6cdIrvEB9b+xjObZ3Dcmo54vDSwrmky1Qq5Wp2MLuWelOv13NFZTl3PVE4Dla6lj4+rfAmrDSrQ2Wz1XVU97D9qk4ySUFV3kC9hTqMnjo0aX3VsFHnYFwG6V5tyq9tSQLOUfmTzSgknyMcKNMsH4+DHU+148l21JVUF/+HNMVDa7goDJTudN40injKF/8nTRAeyk98fEBpR/UKHYfKMKVRlZkWJv8/7v48yLbsPgtEv31OnjxzzvfmHapu3aq6VSpLsmTLA8JGT8JIIJloGoMEqEEGbDpatO2GoOkOmmgiOl5HP5r2c/PAhP1wNwZjsIxtYcAMDluyLduAJ1m2hlKphjvUnfLeHM98TuYZ3h95v5Xf/s7aJ/OWzHMmK+LEydxn77XX8Bu+37DW4u/qUAKmeYUOHMUBvV4v4P8kSTAYDJDP51GpVIKBqLzm/KDje9y144o6+Kg3qTN4gIq2XeUMx8z1v7ZXZYTaPpwb0jHn3k/zOu1FcZvTDJCeO/3ds9v0Hn2u2+0CADqdTtAJWhdwpLP8nU4PWXaV0zZpT5MiFDur8195h/PJD51m/X4/2NcAUlmLHAN1lChWdvk1Ho9x797n8f/8u7+O97921Oaffhb48AfH+DQ+jeuN63ii/ERKBmi2KIM8zHgCgJWVFczNzWF3dzfs26p41Te913l3GaG8q7a2jq9md6tcYsIOn/fsORYNUik9cJz29/fR6XQwGo3CKdylUgkHBwfY3d0N+9PShvJVFU4PSlOz6PZxdMeJHU/qdNCMJ3+hE6QKeh0cFfDKAPxdB9YFvDKx/s/B0W8WnTy/PysDwIu+00GYviNmlLvyJ1Gpwtc+u5HgIC6mxGMT72PsjgAFBSQyGik+VtrXrPH2OfIx9vd7X7xOCqYYnWTNkb5fQZ2/V/+ngCAopnDJ5XIol8uo1+tYW1sLjiddsnHWjNaTlFnj+7jAx0GfOkhimTGz6Jn1zfo91g//dv5hoVMLOBTw5XIZCwsL4eRCTWX1NhzXXr73cWglq/3+3hhAVlAYk12x75hci0XaYvX6nMZKltxSWZhFC9r34/qr79P6HSg/7nz8bpaT8J3L8ixjL0uX+b1Zxugs2a28rp+Yk8lBWYxX/Bm2L9Ze1bPqlNXlh5qNHeMr15X83O3dxXIX+JGPIwJ8gddbr2O1vprS7eogIXgnyGTb1PnC68QInmkUm68smea8PIvWfd58DmI8nYWFYu9yOtBAVhatup6eJQOyMi9Oa1GZCaQNQZe3Pm6kCZXPWXic/8f4IxbZ12feyHgqDlR60t9mtYuOEI3MU9/ycB+lx5jj6bhyHH5Q2o3Jyxg/uryjLIvROsc9SZJUgHQymaS2x/Dxi43h45bjZLraeW5Ez8IgWnfWh/c4Jud48ETt01yycKPqS70v634vsd/ovGEg1J3rPo8xepn1Hn9nFl2ctGTxc8zmU751p7hjSq3/Hf/b9+DK9fR733sd+NhPAB/4CHCnewcXCheCDtV20aFEOiN/Ehuon8EPXcgqjle1rbPkndeh38qjylMsKu9jH3Umc6zpZNNsJ80idfr1/nhfv9zyWOdXJkmS8pBxAJQ4ONlcmufCmhGayWQS7lGgqNEJGv5ZkQj+xve6MtK/1Vmm9ajnXqPlBKuxMWCdehrbLOLUvQm63W4qAs12EQxTAekacH0336XEpSd5sR2MXtAxwvsABK+y3usny+kcqDNMl2+wLTFi1Lb7SRkcf11SEKtDlZYLA52LmGGsY8UIk6ZeemSGJyDwRL/RaIR+v49z587h/PnzuHbtGr7ma74G5XIZi4uLYVy5VOIsgF4X/jEg7/dnGTUssQiL8ldsXkhvpVIJg8Eg0CefdWWlDmgFcc4PDtCpzIAj+cC5Yhv1RJrJZIJWq4Vms4lLly5hdXUVly9fxuXLl9Fut9FqtcI6cAWPXtgOP4XRgapng+jYeYaRR4H0XZSPHq2aTNLHRquR489r+8jzCjwZmdd2x+ZDeTUGVlk0I0TnWp/RSLjSjrZT+8N+Uj+xLhovMZlDORXL6DqtJQYI9FuzSRRMKV2QFlwOxrKAYkX5W2lBeT8rksZ7/BQjB1AxA5Dt9OfYVupWfhg4KJfLIcuI8t2zjlm3RilJy0mS4PzcefzIxw+BrhYC3xvvqKPdbqf4V8dvPB6nTlck7RUKBdTrdRQKBezu7qaythQDZe354JmrMbmuz8VkSBbWUN3P7xg4jc2bBhXUqCVtagDH5Z++Sw0qB+4qb7Jo9TQVx068RnohbdA40OWWxBzMitE9O1lPTE+rQUIcyBPXmPGkdfjzfP/jlJgR7HXrcr/RaIRer4eDg4PUN0+0Y53MxuGJVC4fPBPhJO1WnlC6pVxzp6bKWS2OhfRbeZd7bBFj8l3EQcyEnLUE1UsMp/lvsfnU53wrCcUVXo9iJiAdnFLdyrHVv2nnca6ILbrd7pnA0VrIW7FgKovTA/vvdej94/EYrVYrnG7HFRf1ej2la2dhdtYVw+az7CV3FPFb6Zv6PZfLpU5Ji+lrtWt1jKir9/f30Wg0ghzI5XJBV6uDqHz7Np75rZen5mBuchgIurYNVC9X0Ww2Ay0DRzKBJ+yNx0f7slL3aLadOsGo+12/6ZgohqasUFypYxPL7AfSezJzzPy9qr/5LtV5mjXW7XaDc4nyhPtZ9fv94Mh0TBBLBFAamYXp/f9Z5cSOJxJk7CX+t0cKYwowdi0rQq+T4AaRDlqMER0wxQZH2xlLbZtlXPoYuMJzha/KVoVHDOhnTXAM7Dnw13rdYCMwdgbS5xzExhTbLEKLAazj5iE2xj6nWc/F6A2Y3rgyFlGh4KAQUlooFotYXl7G+vo6rly5gkqlgqWlpVQEi5G40158LLOMulnPxEpMSHm9fr8aU66o+azTciyq7XTO+mO0lyVzlD6oCHn0eaVSQbFYRLfbTUUKssYsNqax+44rbvDN4qWYzFFZ6UUVoRuGfLdf98xMfZ+DLZfxsfHwqGfWfLlMdt7Wb/KuGgw+z1q0zsdRmqe1uKETM1icB1Su+xxk6Z/Y/Y4PgGmnlt+vNOdtUiAUm58sXvIoK2U7s4o4NiovZs2/0s+zWyP8vtem7yHw/ekHQ7QuDKf6obKLQFQzHBi8ABAysogXdF+fGN/qeGRhndi9MX2uJUtPel2ziusFlSdupD1OvY7X1KF6ForLTqdFzQCI8ZRij1kYMQsT6bjpx/liVr38O6t/jmu9TtURnulEHcz/VbfQGRMLVupYOM3Firctq19+Pcse8PGJZXtwOwHH6ioPFJ/H6COrDSf5LVZOgiNcduvfsXuy6vb7VUZmBfJOYzmur8c9G8M8jq/0dDg9zCaLv2L1eBv1/cf1LQvveX8dR/g93md+mJDR6/VCwEWd7XQyUxcV79yZOa7f1HwSq1hNjRPHjzRHucFAFDAddIzh1sfBiD6/isMV18waK+eVWFtiGJvXNSnFnVOayfVGdOYsXHjScmLHE71kzWYTzWYzCAkX9hSWGlHUQdQMHCpYPeVOwYhOnBN2lmOEk6yCW8FNlqeYhQwBHO1HEiMWF5puuHGCmWnDk1joHfY6HThpxgL7TYXFv5Ug1cNLYMK/mc3EdvFoRTeg2S4+o4TrjkGdi5jw1QiHz5F6zieTSSoTSetV41sNBp9v34QSQAq88xrnSOeewL9UKqFYLIZI22h0eMLh2toann/+eVy9ehUXLlwImTra1jfKwL8bJTZXMXCpxbN2nDc5N7Fn/b3kx2KxiGq1GiJ+Sqd0GujeE3RUKd07uIzJJBf4zHwhzTEDqtPphD0Y9vf3cfnyZbzjHe/A6upqiExy/bdvyhfb20b7CmCKl9gnZjrGsnt07NhejbDoffr+LPDL3zRjgspZ55J9onHDMWP7OFfed3+XjjtljbaRRZ1EbIcW38NO5QXboE4nXQqp9Tn/q0yLGdqnrTjv6nUFiZRRPDGNp1c5GKXsdEPY38X/lZ/USOD8KV3HZK3qcA8ekQ5Vzuhv7hT1MWD9g8EA3W43gEyCV/J57J2dTicVmGAmDmmKWUq5Gzdmzk/x9m1sLS/PBOKa5aV7NNZqtVT/Go1GyJ7K5Q5T5dkH161ZADbL8afyw4vr6FjWd4wO3fms2MsxmNIex4HvcmepygziqH6/j1arBQBhzw6lzbNQnK4pr+h4YSZwkhxm+bgM535AxHOOQ0nbKpMVY3P8/cS1mDEJTDs1fKyzMITLE+oQldM0qhncYcYT9aUuRfVglTuu3UjLKqprleZ06wSXFdovHxPiD+p5xZ4ca2IY6n3KXsepnCfiIXW06fzE2hLDR66LtT/8X/UnsU673Q6Yh5lnvj+kZjaT5lzueFuoO0jjHI8smXQai89BrJ+OY7S47FYMDaRxW7fbxd7eXsi2pz7TujxhwvU1/48F4Pg+t61cFriTX/cyVFuV8ph7KRJDEl9zXNrtNu7du4eNjQ38yq/8CprNJh4+fIhCoYC3ve1tWF1dxdd8zddgZWXlEINeujRzTt524Y+j1+uF/Yw6nQ729vbw4osvYjAYYDAYYH5+Hs8//zyWlpbw9re/HcvLy6H/vkerrySI2TZZvgSf+1h29ywdrnXM0vHeFvaDMpV7ybVaLfR6vcCvDHDFZIRihax9poAvDzOfmNN9zXVsMDRqokaKK00ncjd8ZglVAFMM5kUZMWtwsgjJ6+F37J2zDHYFWL6vU2zsYorejTFXPErcMbDr9+t+EfqM903BiQqc2P1ZxZV1zKCOARx/NtYfFqejWPt0zIG0w5JCRj90sJKWubSOG7TpZnMnBTmnpcToQ3+bJVizeEBLrF5XhLwWWw7kAp505zJE+RuILw/ImhPWo1GOJEkC2Of7uKdXsVgMIJkGqIKrGC/E5JSPm/JmDKzMAgxZzvNY33XcY5EXXtd6Y1kIPn86Z8oHep/PF8fd3+FtzZIHPvfKw7H+Zs2Hy5AY3Z61ovRA0ORHg/v9/q2AQ3/T//U9pKcsXssaz9g8xO51uZ8lo9yo8Q33VcY4r3ETYzVCKd/1UBQAaKytRfvD0jx/PqUzWZxm9R0cO6b66wk7niXN4jycNSZZsonjovPmc5/1bIxOYngj66P1qFzIwnE6foqn/JAIX75yWktsjDkfOq8eqIg9d1ywh3XpvKmxoU4g5+2sNvN9x2Eex5P+rOJi3dPJcTJwFEjV+XXZo+Oo78yiq6zxdDkxa2xdd+kyRu0P+8u61YnEAI7v/UbbiU4a9i1WYnL6JHPk40F5SOcuN5/3/WIcU7ijKzY+Sus6/0kSz2Q/CyXWP/4dw2In1YcemKeDmMujYg4t5YPY324jeduysFfsd85fTC5poIEYn3NMuU391+v1sLe3h83NTVy/fh17e3u4ffs25ufnUavV0O128aY3vSkcaLb/xBN48FVfhXOf/SxyMgajJMHNa9fQXr6A+Ucyk0ky29vbeP3118NBI8ViMRyUtre3l8JHsS0dYjznMs2xMa8pXc/ScTEspnX5nPrzXpc6CNXh1+/3U/h71lyzaEAxJsdjbTpJeSzH03g8DrvBq9KLETizfdhJEqISIY83pDDWiY8RtG9szo8COWVKPsP2OPjR7yQ5SoPl5DEzSNukCt899KogkiQJnkc6M3TNqLZXJ451+3iyX76GPSvtWOv2rAQ9FUTT7nzcNILZbrcxGo3CiW4eQZ7FPFmAhr97FMWfZRtjQlfBiTKUen65J486IzWiq9H0druNZrOJQqGAWq0WPjztL9aXkyr401JiPPs4z3r02n/XbxYdf/7OPbXK5fKUAeJCfzKZBO+97uXDjCHvmwIkp2//fzQaYWdnB51OB+fPn8fCwgKuXr2K9fV17OzsYGNjA3t7eyE7i7zre9Lx/azfwSTvc6euPs//NUNI+6aZomxLjF9jc6Zp/Gy/3sO6WDd/1zYqsNB2alahzrdmS+nYO934/MeUuQM03qeBC7ZTZaM7AbQujW6fdvAb4y2na/Z7fn4+HIrAzEHgMONPMx+8+FhmvV/1kkfjY9lJwHSEzNtwnJFHOteiRozvAehtJt+NRiO0Wi3cu3cPu7u7+NKXvhTot1Qq4U1vehPq9TrW19cDPwDAztoa7n3lV+LCF76QAr7jXA4bb3kL2hcvIhkfLRsaDAbY2toKey4kSYKlpSUUi0Wsra0FHEWjlPv31Go1tFqt0Fcu/dXxihmBs8YuZhTG5ndWXarrea8CdLbN5ZBGjVV+qBxSLOc8ykIg7U7CmGP1tJYYLkqSo/1SdGlErK+kFb1O/nasqA7LLHzIDF5meMdKlmychev0WaUX6gTfy4kODzpcdGksA1STyWH2B/mJuowO20KhkNobJkbPrseynCYcW5VrbnixPvaDWSksvk+Szj1lZrVaTelb2gh8vlKppLK93EHpMiHWl6z/yU/dbheNRgObm5u4e/du+OYyKG+zjitpT/WotlF1Me9R+aB45CT0dFoK26ljoteV/mJJEEpTuheRy75cLod+v492ux32Gc3lcqlVF1o8iOh4S/W6jrfjLbUX1Z6K4QK16yeTSTg9NpfLpezeTqeDzc1NFItFVCqV4HC6d+8eNjc30Wg0sLu7i1wuhy9+8YvY3NzEtWvXMBqNUK1WMTc3h3//nd+Jr/s//088+eKL4f3Xn3kG/+KDHwxjOBgMsLu7i5deegm7u7vY3NzEaDQKAR2e+vbw4cNgU0wmh/u7jsfjEPxhH5TfNIBKG8R5m2UyOVpKz/FTueO+C50HpRtuAeNzpXOqchU4PJl6MBhgb28PW1tbeO2111JzG3uf0qbTTgyLq0MqC9dnlcfa42kymaQESEwh6aCp1x5Ib/CtXjmNBs5qvL7TB08dDizOZLyPdXm/tC9sG4AUsajg9Lb4eJAYFBQ7UI9NaKzfzvAKwl2Y67hoHf6sOrP8Xr2HRr+mB8famgVkjwMuCgBidWXRxSxaUZDj61xdQapgobLlnk/8qNFyViM0LFmGK3/LokF/Vp9XJZY1NsqfSXK094qeJKhtcB7R5T1q9HgbXel7O7W9pKF+v49ut4tarYb19XUsLS2hWq1ie3sb7XY7ZEUQ1KpCVnrSotHOWNQASDtLdJz0WeAoxX0Wj+nYaR+dXtW5oM+Q311G+xh7XTHFxGvqLHae1r9dduvYst4sA1P1DeWrg7wsOs9y1p3GcpJ2cs4ZbSwWi6klqh6F82f5nZVlMeudWXhAn5+lL2N9dFngfKLgK2vvAucJLp0lKLt9+3YAoNVqNTic1CHCsfvURz+Kd33f9+GJL3wh1H//zW/Gf/jO70y1m+/Y2dlBv99Hs9kMvFipVFCpVJAkCfb395HL5cJR2Z4JyrpUfpxEzsbG0EvWtdjzWq/LHDc0Y++OtTsmG3X+nEd5r9KwA/LTXrIwGWWbLhvWzB8P3ALpYBtwpB+dJ7Lmhr+7rom1L9YPp4OsovPKdtLpoc4W1RW61Fudi7yPTioGryuVSgiKqy6ehTuPw6UnLXQyt1qt4Bigc0DHyOeeAQL2AwAGg0FqpYgGiZ1H6IQ8CfaK/aYGK5cocysVbvasGSox2a7OCX+X8q8upfOA4iyddJrLcfjBMVmWvlP+jTkASF/8aMBQi8rNLPvJdWPsfq+ThXPtxZ2MnlRBGtNNryeTQ0fP3t4ems1myOhi3+iA2tvbw+LiYnDw9Eol/NR3fAfy16+jcu8etpaXsb28fGinCebs9/vY3d1Fo9EICSSVSiX4I+gIU7tDV3LpYR5a1PGkfoMYhufcqr2g4+82jPsqyN+OX7wo9uX8EPP1ej30ej3s7Owgn8+Hg7H8AB6fb+dp18mO4TgmJy2PvajW11srSI0Rtka9PaLiES81LL3Daly444fv0aIRNhK/CzkVgG6E6T0u/LVt2kb2g/vE9Hq9FENxDDRDIRYtplJKkiScTOdRLV0elssdntbFaA/3BODJeVTaNELINIygxYQJ+z4/P5/aC4BrdHWNsRYXsk4LWWOn86HGL+nEnYi8rsaGGh9U5kyx5O+eNbO0tIRCoRAcTv1+Pyhb3R/E1/0D0xlvZ6W40Ig5/VyY6nxmGYOzlJgCW97HyEK5XA7AK0nSp2HFjGPNxOFmhMpHSi8aQY3JKp4uw/Y888wzIeOh0+mg2WxiZ2cntZTDAYLSrb4j9s3nfYmD3+NOFvIpl4FqXXoajmcWsP5YZqMbb1TQLoM9Ysv6qMCVPtgvbae+U435mOLVsfBlBhwT/q4npWgbFAzEljqoTH8jSvM0lSx+Yz91uViSJMFQy4rUOY140bFSOovJgVib/B5tfxaIV3AeM1qcHqkr1anLDwHp1tYW7ty5g729vaCv6Xy+e/cuer0eVlZWUsv0xuMxusUifvov/2XUNzawuLmJ5vnz6F6+fKhLH7Wh2Wzi9u3b2N3dxYsvvoher4d2u41cLof19XXUajX0ej0sLS1hPB5jYWEhzI0ub9E+uoM3NjazQKPPsT4fG++s4jIjBopjGInX1XBmUdmkMkv1U5IcLYfWpZQx4/s0F89YV/rK5/PBoQKk556Gu86t1qH6g/SvmFH5jPzS7XbD/m/9fh8AwkEpHkTJkglZY+70RyeGziH/90xFGn3+zSAg+ZyOXT7HKH+pVMLy8vLUPiZaAvZ+5RXMvfoqxs88g/Gzz6b65IEP1TMqc7rdbhg/Znvw3dTJWUEy9q1SqaSC1LqxuutYFg1GKU1kOd1cPrD9PN1QV2donWo3KYZTfa02HPW0BnYZYHR5obKL2Pw0F88gVDml17W4nFQZqE5HzotnJPN38mutVpty1rO4jeRF5ay2N0ZL+rviKnV867fu6US5RFuKzpe9vT3Mzc2h3W6j3+9jdXU1bPS9v7+PdrsNACiXyyiVSlhcXAw29cHBAVqt1uH+Y8Uiuuvrh36IcXrZbr/fRz6fx7Vr17C/v4+nn346tJNBnrm5ubCnHG1syhfu9+t7yum4+pJl3x+KY+BZYjrGistiGEfpIMum9rnSwAVPCySmKBQKgW40gYR90G+XNU4bqpuoZ/6TOZ7YMc1SiL0sJpQ4YNoxFWb8zpokN8xckKvxrBPpgJoTrqCbvxPE6HPKcE58Xq8LclWsalCqQHZjiR8aBmogeATMDSkug+PG4JqxpXVy3lyRelHAraBewaHTh8+Bjn+Wg8ufjzGXP6vRzxiNkO6Y6sl7SIvj8TjQ8fz8PFqtVpgz0qMeLesbscXAxGkvCkB9rmYpKhd6MWMi61n9WwEMQZmCNBXqCnD4HhaVEVkOY/5GIERnlssXjbLMz8/j/PnzuHLlCubn50MUkEajOp5i7/RoiNOl/h8zJvVv5W29TnCqclCfV6Wv86XtYFEHjfOYK0OfUzUm+D4WyopYJFSdwwRZKld1/FR+OT1plEdBvDsm/MM+eXpzVhTxLJQs/lMZpfN/HL9n8biPodJ/zNngYFzryZIbKgdi9WT1lfSgn5iOOjg4CBH93d1dtFqtEI3tdDo4ODjA7u4ukiQJQQjNeCWPNM6fR+P8+UNZJnqHe0Y9fPgwLCWgwZDLHS6bqNfrWF5exng8DtFcbiRMfeXBl+OMgqyx9+v6/yxjKfaMvndWJDbWVj4Xw2Mqw12Wad3EH445nV5Oc1G9pePOvhJvKNaLGXqOHYGjeYzxQEwXEKeS5nQpH+vzedX3ZPUtdm0ymaT2PtI9kBz308ZQw0//BxCwdbvdDvzLI+er1SpqtVpKZ3tJdndR/MhHkP/EJ8K1g2/6JnR/8AeB1dWptvNb+66YmEEb4kke1+7j5XxH/U0ZQweWZnQx0Ot71WXJ8iycx98cJ6tTkPzlc026ULkU42HW6YH/WIBC20R9f9rxdEzWZOlB/43/a10x3OXPcfmYZjyp48nbBqRXB2TpzSzeyJLbLhdi8wuknTLE8uPxOOBpxV/1eh3VahUrKysp7Mf2lcvlFE5nBg+TOvQdlCV02K6vr4c+8LoGRTmemi2pjmN3OsXGhG1VB5KOrQcKeM2fdXuedcRoK6ZzeV3xHpfRUr7T7o3V6djbl5DG7BTKDSajeEB+Vjmx40mjSnReqActpqTcyaTZSuolV0+qXif44ORr1lBM+AFHmQKudGJM6m1Xock6yPhsH5/VehVMuEB3IzE2odo+/u4RE46FMrQSZqlUQr1eT7XHmYDfVHK6WR3XhnI++Ly+YzweByLjmtssw0Pf7UaLtoXvziJsvc72eARIDXk3+glu1GmQy+WCgOE9vV4vdRoSQUypVIpmB/C5WcbQaSvq/NTic5NlIMQMDt6TJQy1+D2ch3q9jv39/dR8xNqnfMbn+b87g1g0akRhzOvj8RitVguj0Qhra2uoVqs4f/48lpeX0Wg00Gg00Gw20e12USgUQpaf0zzrdAcTadGBgtK5yowkOXIY6X4ICkw4d+TbXq8XxpGgl3JZx8ZBgo5RlpOPfXBFyULgrTLS59vHgrzu747xrtIVgYK2U+lZ5yQWtXH56rrKAxFnvXCsGe0i8FBdDMRPLYvVxbnI+vA+lxs6/q7rWFxP83ktWeBd63CnoxqG5DGC0lKphLW1NczPz4esWA2qJUmCbreLYrE4FQ12HcZMpV6vh0ajgb29Pezu7qLT6YS9mbif0/LyctCdbCfbxUAJPwpmCZj5d5YRF5PNOh96j4JcfUbrIC9pFo7KbzduXb64UarPOsh2PlT5p7hKnTZqvJ0FPcz+UmdQ1xHvUQdyyRWzADSThEWXn/mccixVd3Cs6GDodrvhpCyV88dhGufzmG7QQtqm0cwTl9z5pAFSPRgh5nzSkyo5RjRAubGw7kfrQYm5j3wEuZ//+VQ75z71KVS+/dvR/8mfnOqnf6sxzDYzuKWY3ceffXU9RN1UqVRSBrJmPo1GI5RKpbCET530Pj+sU3+PBcTU6afykniJ86I2gX58XFWPq5zke2jTeDlLODpWXEfymsowDyI67nJHO+uijGAG/uLiYmoJpNuj2qaYPnUc6n3w4jhL7WLgaOWHO2iYScR26MFMOja5XC7oWTqaOp0OhsMh2u12cBTRMe5Y1p085HcuXyftqdwBEPZ8oo1HmaJ7O8X0oo8xZS2AFO0rPcRwp+vImLNQMbTqZMrxWAB2MBig3W6HlT75fD6shnKZ5O3QgEesn4pXGLjg3lj/yRxP/OZAUsB6+qF2gtc1Wsj76EiioaTOA38vCV0JVuuaRZAxAKwEw2sKkFTYersdGGmfFSRp1In3euqvEyLbrRsTAghM58uKWBePp6dCVGPRQSYZSwWfzlUM9HMcGJEh87ItHCsXqpzDGPDV+YkpaTXknRa8qCJVsK2gRt9DRwLvoeHAPnFzXo00aVt0zFxAndaidOx0O6u40RWLfMTqcqEd+71QKKBSqYT11rHoQow+tC4XlEpfrI9gToH+eDwOS+2eeuopnDt3Dqurq6jX69je3sbe3l5ICaYA17pVbsSUtjrSFVi7MajzQlpzx5NGIhQo0oAZjUaBr31JBpDtkPd2O3DStvr8Ob+x/pis5Ri4PGQ/VFbqe1RGuIPalboq6lhkxw1qB4hnucTmjYYro9hqrPB/NxxjdOxAalaJGT1O9+40iYG5k/TX2+dBDuUR1ccEuktLS8jlctjd3U0tpyc47vf76HQ6wdDTtuqHgQseB819Uvr9fiqAVCgUsLCwEDKTdbwpJ7JOzyT9q7HpfKyGHq+5Mzxr/F2HuYx3GReTG7FvIO1cVh4lLlTaUFkYkzUub/T3s8DDjkPIhzTSPPjCY8GBI0NJDUDFd0B29oW/k458OqZVLvs4ngQfzPpNaZv0TSeHyn3dPkIzDvjR/xlkyeVywWnMPmqkfzKZBEcV+Tp55ZVUphNLMhqh8MlP4ud+/odw/u3fiGeXn83Uh+osJo7x7F0NOqs8ypJ/DHhybiaToyVG6kxUPBraHmljzB6L8bBiZ12yFMMPqfFKjpZ5egAJSGdj87r2XXWx9+MslKwx9z5Qjjst+N8xeU67dzQaodfrBUcxMxQdL2fZRln36G+x+5RGSAOaxQQcOZ4ol0j3uncr6ZurbXRp2vz8PBYXF1EsFkPm0/b2dtj0vtfrpXCv6y1PKsjlcsGu0PGjjmAAkw4nlb2qr30sXU8qdndbxG3VmL2lupX04faV3s9v9kW38OE7kiQJ8k8zwjR5IqZD1Xk3y/HE37mNDffKdL/NceWxTrXzFEwlTC8KMhTsAkebjLNjVL4emVfBpI4RBdEuEDVCx7Y5wRDw+ITGBHUM0PId7mnlGPkyEzVW1bEUA4PaD414xoCe95373VQqlQBSAGAn2cHDg4dYKaxgLVlDLpdLpawzLVhPQVHjjYzL6/l8PnWcccxZoOOoHnNVwCq8WFcWfWk9MQeT/09QEDP+6SzVMdDlVoVCARcuXMCzzz6LK1eu4MKFC6hUKlhYWIhGf2JC6jQWB1G8dtz9SrcxgHtcPVqfCi/SUqVSQblcRqFQSEVv1UMfM3o5z9oWdTzHFD35jsYdldTly5fxxBNPoFQqhbXRW1tb6HQ6U8sBqFiUJ3QMnMaVflUxq5GlY6mOJ7aXBi75jpudu0Gh+7q5U9iBns+dthtIR29mGTHaB/4ei8rEDElXpv4u8q7yv9OgygWltdiyZi9c1kLn4mkuMR6I/UY+Ix2pk0MdlaTF4/qt73Rajekl58XjsAJLlnPD5UzMYFK+nJubC7qM2RzcvwFAiP6Nx4dLWOic40bftVotGLV03ikNKR5IkiQ4qGgMVKtVXLx4MQBmxT1ra2sol8tYWVlBtVoNWRt0qnK/HQaPCMx9s/EYKOaYzZqX4+YzZjj5fa5vXd74vDvOc1rlMw7YOebMAOMSCz39jDyvJxCf9uI6VT90gBJHAkdZ4dy7hJk1HLPgUInoR/3baYKyVQ0zx1rOr7OM2FhRZ4a+RzEZ6aZUKqWcRL60zHldt7BgEFGdMjTWiSNYZ+HRCU9Z5f/zY9+Fn/4M8E1Xvgn/4AP/AGu1tdAXAIE3qYMpQz1jQefasboaaTH7hKfZAUfzPBgMUvLcbQnnN52zmO7lUiNd2qtyxu0jpQu1jUi37Kf2JYvO+SHPZ8md01ocTxzXdrdr9P6Ywa6/e/BBHZ666ftJx3AW9o/pD3WWez+A6ZP9eI9ifGY0EeMrpqP+oy7ls6xb7dVcLhecs6pzXDbQ+UI6UxuC9i7ljTqbfI6y7Jzj9CTHwXVmbP7195iData3fiiHyNeTyQSlUimTx2K4nu93+vb2c2sf0t9/MseTb9jJhutAuOHBa2qkKNDgvW78a6qqd5hgUAdfB1CdQGrAxQZZlQWFpoMqFZB8Tr21bLcrWFWKbgTNzc0FgohtHKh9JjE648eU2XA4xNLDh1hvt9G5eBG3Fufxd+78Hfx257fDPW+rvA3fWv1WlPKlwPyMwCrBagSRIAE48irTgPFUTwcm6qTj3MXmz8ss0BSrQwWLRqPUIAeQMig0+sffS6USyuUyLl++jOeffx5Xr17FxYsXU+v2leaodM9CiQk1YNoocdDgAjh2TWmF9cSKC0umgVIJqPAnoGbkUuk9ZvyQJzQrwJ3l3P+MabdM771y5QqeeeYZlEqlcAzpw4cP0e/3U7ztckzHRJfBKTB2OtW6tO1eVy6XC8YyjWm2RxUN30kjjdEmj8L6HPk4uzGvkWitg7/rWHgGB/tOeeI0obyn9KARLBZ1hHEs1ICNOZ6A9H56CgDcSQEgJa/PanGDnkBPM3fdcFA6BGYDaud1BZgOlJWmY4aMyhhtv4MXf4frSMckyofj8ThkdBSLxeBoqtVqAQhXKpWUc0j7mc/nQ0o5/ydN0XEFHGVGjcfjEDVdWFgIjgKC5rm5OZw7dw6VSgUrKyshoxY42r9InSukUT3cQudOgaKP2SxDQefVZb/OVZaTIVavOp2ynLzKp/5O5UmVg5RpzEimY06d/howOytFnQfaV/Kr7meltKHLWjQbCIhnO2UZKbzmATqW2PxrfW5csTiNqHPL9QbxJzMOmIGgpzp6fbq0W+edDjs9rUkNdN5TLBaBK1dQnjE3r64cfn/q9qfwbf/22/CTf/wnU7qTWdLUxex3DItolhbbpbqVz7D97HelUgljlSRJ2IvLHU+6gbrzcox/KWNHo1HIeNOtAHxbCacXxTYa2NCtNzhOakjH+DqWRXVWSpaMy+Ib/qZ6kddiAUitW+1hBkiok7KWhR1Xsmx4/Z16lY6bWABYneV6v9ape+mS9uhAY8CA9le/309hOtIJZUUulwt2mGb2kzbVXqZzqlQqpdrLDGZ1cHvgxHGjjpVeU8yvv+l4ensUS7tPgvf4nLi9o/hHZSNtBHU8uWz3+fP2xw7S4rwrRqdDsVwuR4PLs8pjZTzxpRSobgC4MnLvthuusYGIGcSxAeDfFJgeMfDfgek0bgW1see1Dn2O12Of2DPabt2o2hWlFs02UHDF9xDscT4WhkN889/9u7jw20dOpn//fB23v6UN1bKf734e/2j8j/CdS98ZUp59LtTRBBwZ/vq7pjGrgefzlgV81chwgymm9GLFDWUVQLoZn+5vohEdOpyUaVhXu93G1tYWSqVSULCcq9icAsC73/3uzLae9qK05nP1OEXr8OtZvMwoJ5eKNhoNTCaT4EByQTwLFKsA1ffG+DaXy2F5eRn1ej0Yo91uNxyLzMwDOqgYaSfo2ppsYXu8jfOF83jTToLFrS00z5/H3rlzKUWhDhYgO7NDi4MJlRcqr9xxQ1omWOC3jgufpRxyxe11xhy9+j41fhXcuiPHgetx4+C0GNMTLuN1rGJ6hvyvYG44HIZjfk9zeRye5Pz6yU6kDaeVGP/HdHQWSI49w8JnfH5Jm0qDzqteeM0DBwo6NYKpWYJ8Tsdhfn4ey8vLKZnlwQj2wY1HbbOe8ko6Y3CJ/JPPHx5nrPtI+BJUyhwAIUvLDXHlvVjR8fb503H0cT8Oh/nf/D8WTdX6nT9dnlOeulyic4+GCh1QuuSW8op7T5724nPj40y6Je2QFiaToyxd6kTdwBpASuZTvzkWVeyjuJJGC5d1OT/H6MeL8q46mNRJpLqQuKlSqQR+iW3o64EW1k3DVR00Gsj1Z+loLly8iPn3vAfFX/olJOKwHCbAJ54BXj3cWxyjyQg/f/vn8fn7n8fV+tXUBsfqsHOMwfb7Mh7tj2dJqRymflK5ojKODigdd8ff+p2FoTmWmoGieoPzpTiD9KFOI+ISnlKsznadG35ch3i7T3NhX2KBEH7HZGes73oPi9IEx5xjyKxPOhZ8DmLjp/aX/+9YK4ZDeZ/SJO/n336dv8X0Fa8rtlfebrVaSJIkdeiPBiZYyF+xAKY6yCg3gentYbJ0mspMjrFn83qARvvpJeaDUPmmdek4apCQ325b+Zz7OLgzUJ9xGmBbsmhJ54FjoOP9OPr3DTme6L1kmrgCFwcyCvLZWQpJHcTYxDmoiSk/GoWsX40p3uODovUpw7kgUZDLuv39TvhAOrLsBO4eamc8Ncz4jlwulxLkFEy66eL7f+iHcP7FF1Pt+z2vtPBPfwL4wEeOro0xxuf7n8defg+l+VKI4Gh7NUrlWRt8P6OOfL+Cppghot+5XC6VSs77NFKdpSx17JW59Bkakp1OB51OJyU4dUPK0WiUOr6Ycz0cDrG7u4s7d+6g2+1ie3s71R+dM+BIcJwlx1MWP2UBzTdad5Yw5vjRoVcul7G0tJTiKd9oW4+HBtJRJ+VjFYwxnuU78vk8Ll26hJWVFSwtLaFcLuPevXvhxCtmMaixMBwO0dhv4J+N/hleGb+C5S7wIx8H3i/Z+7deeAE//Wf/LA4qFQBHqfmqEB2M6HXNrNB5YLSHY6KGK/tF+UE5rSAmJjccVHqGGIAUgHTgxOdjmSs+927oxEA779N3uA5wo83Bhmc6KV1q3/kcTzpTR8NZLD5uNE6pc9RpqvQScyapIcPCsVcAqe/0+9kmpwPnYdf5vCdWFIy5QUt9RGyiG2Dyb2Y+UTaUy2UsLi6mMAmzABqNRnByUB6xT8oPSZKErGHyJUHx4uJiqr+ayZjLHWUo6kbCo9EobIzMo501YKUy0ufcx26WHI/d506imDGr8j0GVL0ONxj8PqUnOk/odKLMYHYGjX6dAx6zfRaynhykO2+o46VQKARsxr2eaNTrMizH2poRMwvfEudx7yVmUqjuUaMyhhdm9VOdWcqnurdrPp/HwsLC1HJSlU3qCOaH+FO3fCC+VizJd7XbbSRJgnq9jlKphP53fzcu/vf/PSq/+IuhzZ94BvjwB6f78uL9F7E0WsLu7m5wPCnvqYGtc8jsecWdGgjiGKk+pzGuGx9TllFncu84f3+WwejFbR/KRvId7TvdP8Yd9p6dXiwWUalUsLi4eDi+jxzEzNRS7KD2kurpmP44bSVm3wLTfK1j7LLScbbLSpVjygdcNtrpdNDtdlOrTU6K113Xql2X9Tv7yQwj/d3nTQOcsUxrx7+afTeZTNDtdlPjTH5wPED6Iz2qU5o4gO/wbWE8Q9QTY1gH58xpVLGRZ0rr345tdJyBbAeYzgn5U/V9zMms46XYhJg/S457sNUxs5cYJnwj5cSOJ25wqFEoJwYnWk1hcwXpHcgyTt2oYd0xLytwlIauIFG/dcJ0kt0R4sWJSgG495vCm1lBVJA0FLUNHEMVXA5GCFDVcFDCXt3exhOf//xUm+cmhwbxte2jKA7Lne4dXB1eTYEBBQq6tFKNOo6lZlVom12pKaBVpogZmlljoAI9qy691w1w0pALeGVUFo7B3t4e8vk8ms3mlONJPb0nVfanqWQByFg/dA79fv42C4D6ezl+zk+FQiF1uh1ljBoj+m7/m0WVuzt09BlmEdCw63a72NnZwd7eXjjJjtlyw+EwBcQ+NvwYruM6gEOn03uvp9vw5Je+hPf94A/ix77t24JDR40xpSVtF+UG/3cDhf3jR7N2fGypsFTW8H41+IB0dNodBMCRke9zr8V1QczA0nd5PSovdKyyQLWDNwcPOq4xgMHfqMdosJzmEuPFrEIdqFkzOt8aSIrJMNe9CkKzZMJxNBHrTwzIzrpf5bvikBgdMSubPEU9zGixBs7YV+2HglQ34LXNaqT7Bv9ZBgl5SvW6Ypes5UY+FopBlPZ9LrzdsblUIyJLpseua70xJ6YbKKo3dc4dZ6hDUQNvOhe6d+NZKD4/aiwxiKr4djgchswmOkFpSHGzeQbCSL8cC136pLTNMST96QEEnjF8HB24XGBx40cdUKQFOlRjy4HpaFI+V8cTnck0WNkGxxZKHzRQqfM73/u9mLtxAztf/DX8+Xv/rymMzLKSrITTKun0cgyrPESZw3GlHFbsyHnQrA7aB3Qo6Kl+XKakywtVVmXJcJ1vbbPiAdcBMT3p8kLlpdIx21sul8MpYWpbqDGsdozKh7NQ1G7Uay5j+Z1l78ZoKCa7yffMdiL9Z9WXpUdd9pykjyya3KHvYJ2qO2I2oTtrKIPI22q3sQ49iMADGtpOpWela9bJdjvPZNmFPq/af/1bncVat//tgVm+X8dQr+kYeFKKj686qNzJr7jb5zKGv2I4gvfEnF36v/89q5zY8UTju1qtAkDooDKbNpoKRY8h5wTpEr1Y8U47sCCwY53qodTfKSB18KgA9KPRGU2LPW4QY6CS76CziAShO8zHPLhKCDGQq6mHwNFG4KVSCbUHD2a289rOtOOp3CujP+yHtumyNEaJ2ScXVAQFbAevqQJRQcH/dY5ihqoCothvaggrbTizK1DNit4p3WjdTG2/ffs27t27N6WEnSbOksJ8HKM1qygNxEDncWPhxgb/LpVKWF9fRy53uL8BcETz6nxyWaAyRKO9qtRyuVzgexaCz3q9jmq1iu3tbezu7mJzcxOtVgs7Oztot9shtZlrmffye3itdJje9NxWOtOJJTeZ4JlXXkHy6qvYWloK9OqbpapCZrt16a3SJa9RPtEwpVOLdahMGwwGyOVywUBh2r8DBV1Kq3OoUVkF70oDzseqNGMf6gx9n/aVfMq6lEZYVBHyfg9usF4HPrpEYTweh2gs16mf5jILTMZKoVBArVZDtVpFpVLBZDIJm+VrZkPMaae6R533fF/MyaFGK2lQ/8+aH5UdWZE81kX6UYNUAZkaQPPz8ym5ziyJ/f39lNNJaUfr0dNfnWa1jfwuFApTR53zW7MHJpNJyNxhdhVLpVJJnbbj+6bouKgR73ooC6Bn/a9LCXxuYs+5HOd15WPlOa3b6UKdDqyH8oxLnHUTZHWgUnZxc+nTXnyZIWmZcojyn7THkiRJMDb1pDPSuQciSLMabNBgMceu0+mg1+tNGbOznAE+5zEcQL2h2VS9Xi/M7dzcHJaWloKdkCRJwGzU+3TccM71GpekttvtlCPd9YxnVy0uLqJcLod9JSfVKiZf8x4slX8Gub3fxBiy312Sw9cufy3mW/O4N7iHra2t0BfFnZQ/mqnGLG4uI1THE78nk8nUNhY8ZGV1dRWlUimc9lWtVkMGHE9fji290RIzWPke0ovuA6k8q4EKzjPf5Y4spS1maxFraEaLZkF5e84Kjnb7gf3wMYzZcY5b1V5h3bP0JMev1Wqh3W4HnKz60bGROwm0D36dv+ncxPA1dRoL36krj9zx4TiXmJI8zaXSSrPj8TiV4ap87AHmJEmvJlK69KxI1qWYWYtnT9F+VQytAQL2nXZxlu70oI7rT//f8bfzu9u9vhRTg1mKjbTd6pTTutRR7xjacVKs7ceVEzue2u12aEiSJKmTV2KD6YPvDOUOjRix67eCGWU073RWXT4oDmj1ugO62DuB+F4t/k4SKAmI0dYsI8eVBdutGTxJkoS6crkcHtRqM+eOmyUCQIIEz+JZLBwsYLCfPtaWQoDKXQlUx8eFE6+7QlIQEjNS9VkdTx/LrDFWoOv36Pj5M1oP/3aDR4FbrCg9udf8rBVVnixuWMzqn4Of2N9Z4EJ5m8tLaCTTCahLBzwrR9/hNOnv1fcTdBGAM4q5u7sblJ0uqWRbHhYfAo/2Knx2d9aoArWNDdx6FKmcTI72Q1ODSw1/BeUOHFiUj3SOXIkq33B8fXlALJvD50aVjt+rMjHLUaD6Ifacvkv/doCXpaRjjjz/6NjE5EeSHC4V8P6fheK8p4W0REPIgZnXA8wGpXqP63b9W0uMhmMyGJidIeUGjwYMZvG8f/he6mMAqePKye/qaFOZkQXo2Xd3DrGNnqWg2SXaPjqUKQP84zTs3z4HWfThfJ01Nzq2LsO9LarnYzIjhhWz3sX/FZf4ATfaB91A9jQXnxvvuwczgfjpZdSP6jD0JSRqFKlBTGMKSGeVxfgvhpNmyRz2ge8hTmVmH/W8Bo5prNFYooGtwW3ep4aqG6w6pmq0cTxzuaONiemMI0//j8/+j/hbr/4tfLrx6dCPdyy+A3/16b+KdqsdMIIuS9NAKfET+6fGIvewdL2kz2qb6MAej8colUqpeVSjN0tv6zgoHtf5VN6KZUp4dqHXqwFndTJq0FqXA5IeY7qf5SxgaMfDHKMYznWc5vXwuZg+VjrR+SYWpf0dy1DMkvd6X1bJwnZuC2TZgLFr/rc7pdUxepyd7sEJ1QGuT4D05uexg8YUA7J40Eg/aldqUIXj4oFZH08NvqjDTsdN9WrWHGnxvujvWUFcHwe1j9wJrb9rPT5uj8O/J3Y8PXiUVeOnAPkaQRZOEo1FZjppVoISkw6aThInQcGMLonjpDnRUcmxuKdOs7XUGNZlcbp3Edup92u2gQJjNTQrlUpQqFSq9JyyvQradFx1Yulp5bIJKt6DgwPcqtfx0lNP4fnXX0dOiG6UJPjlp4t4dbUfrl0dXcUH+h9AY9IIioZCjGuHqYRUYaoXWdvNwvFkdoXOgwIBzlvM6NDlH/qs0pT+rymaXhcFmgtJbb8yqaZp6v0aRXwcYXAaixsRLKo8Hbz6vVqXCsosR4n+zuf83XT01ut1jEYjrK+vo9FooNlsYjKZhH1Z/PjimIDUDCkF5Bp1z+VygY8Icjc3N0M0cTgchogoj0kfDAaH7SlPgPph219bnj3eL4/H2NzcnIoIqZGpkdBCoRCWGrIfmqHD8dN9ndy5oOPK+1UucY5dIcWUu/KrOiXd8Hf5oDLQwYv+nuVQchrTd+i3bhQeWzbA63oQhuoObQP3+TlLRY2I2Bgy+lwul1Gv1zGZTFI0cpzh4o4F17N6zXW0yxJ/p/7NeYs5Vd2pr0vU3HDzd1N+635eamxRF/vSD77PQaU7hGOgWvcJ0/Z5lq7vkahZTsxgcdrWJYMxYyDLuPD28lvpPcaLXgfHhG1QOUEc5DyvAN6LR4BdP3HMer0eWq0Wut3uVLZJkiRhg/isINFpKmqYKM+oYaMbfHNcNZuOy09arRZyuVzYlLtcLk85WdXR7EYQx5hGoNIVizsJdB8mYNoQZ93qIGo0GqFf8/PzIQsIQHBMDYdDtNuHDh4e7OHzrE5I0gK3APHiekjHoVgsYjAYhLaUy2WUUML/cu1/we3ubdzt3cW5/Dksj5fR2DjEIZQXDFTxW500nvFE3mVATfmQ46pOXDrGmMlcqVSCXOSpyroyQ2nG5aTKmiwcPRgM0O120W630Wq1QuYb7QpdGql0oX2nPun3+5hMJmFfvEqlEhyMulcn5Z0HAnRMzkJhH9xRrFhoFh4GppdreSBCncqcr8FggHa7jZ2dHVSrVQwGg5BRB2QHFFhcr+t1IM03pCs/5cyzZfi8ZiG7zce6x+NxoDvKB/K1YganV5cFjv1VjjpuJe+p3tN7nT80q4vOU+Juykg6/Slz2W5iDT+0iv2g3cH2kSfUDsrS3zEa0v4ASDnyKE9ict8xtNfLb8+89fHV7+NsZC0ndjyxQgL3mEdcGzLr40BDB1YNJBbvuIPXWFtjUTevQ8GS9xPA1O9Z7/T/FXDpcY3qUPLnfbkAiYPX9/f3A4MNh8NUZHQwGOAH3/c+fNvP/ixeuHUr1PvylSv4mT/0zfjWRgeNXAPLWMbKZOWQiSZH0Q1dN890aPadc+EOJx9bZWIdh1njFLueZXjG5k/H2u93I0bv1TqdBnVDV02rzCqzhPxpLW6kclycf/XeGC+90X7H6IL0TgDNk1s8Iujj7W3Se2NySZW68hc3riX4VYM1n88HgFwal3CxcxEblQ28sjbBTz97uMfTnJD2KEnw2fPncbtUwkScRJ5JScDPPnFpkJ5c5yANOHLWabSL7Q1tGB1tBqr84072mJERA7H8dt6JAZYYf/F5BWruqHD+dIU46+P3KK14X1RmKN2ddj6OzYn+r7zAfpMudNmWG6H+rL/LI1uqF2NgI2vM+Zu/+7gIeBbdKV3HsIS3R6PQCvS1f0o7/r8aAwpc+YnppdhyF46HO5U8IzJLt8zCH8fhq5jsj2GkLF5wXpull49rtzutY+9XXKEBEjXa6JQ5C44nGjKU+zpX6ihQx5D3m/uH8RrpWJffKZ9pcfp2+vWi7dM6s2hKeZM6ijynpzmyvePxOAR3Wq1WWD5Hx7K2SZdtcbkhM5FjbVAe1yWvuVwuHEevG7UnSYJzuXNYLCymljTq/lc6Xh5EUTlC3KDOCR0z130aNCHe932i2MaYbJ2FtV2Ocn6I+fv9fuoEX8+Am0ymVwT4XPOjmU/sp2ZRaX3KrzFaPY0lS1e6LOR1/Vuf1d9jtoxe9zrpBKUjajI5OiGSuln1f6wPWX2L/e58HsMPvO4yTOtyWlBs70vXYhmYjlW8jSfBb8pv2uYs+lNaVdmp7VQejOlux8k6RqxL2+BY2B16rFflBetWmeu6OEsnH6ezVQ7ot97D95+0nNjxpIJbgVRW0UwD3SSPxp42lBE+1ksBqCdduJBSL39swNSDqpPDyXbCjhFMTBm7QNdIrRuIbH+/30e5XEa/30e328VkchjFU9DFdjF6RWXY6XRCZId9AhD27SCh9QoF/O0/9Iew3mziXKOBzcVFPFhYQDIeo9qvoooqDg4O0Jg0Quoh282oBzdX5rGorqgI8tShpgBpMjn0yidJkjrG2wWsC1p+YsZ1DBTpeNM5wXt1A0o1XtkGXmfERtuSz+dx4cIFrK+v4+rVq7h06VKo22mQNO4G0Gkvbjjo31kGjwpqIK0AfI10lhCbpZQ5T8zQWF9fR7FYxP3794PThxl46gjVqLArMc1yUCcU6bJUKgUAOh6PQ9RvY2MD7XY7leJP3m2328jn83jbK2/D8OkhNhc38eEPAh/7ifReT7+1tobvfvvbw1HPrjhiBtRkMgmR0UKhgEqlEpYDamSFhgs3P9f+1B4tuU2SJCyZ9SUqSZKkxtHbAKT3waNs8j1q9FuVKTMQne9ie3CozNR2ULa7kveMJ89wUrCly6KyCseCUemzlvEUk6vaX/arUqlgYWEhGFsKJijbsjZX92wgPqdLyD0Dx4E46c6XdrIu8oUvZXMnkeoE3ytM63Ojm+3XpbPA0WbNGvWL0YBH6tl33TSXp4+pXlK85PNDHmOdxAoKcBVYav9Y3EjxzCLPKvSsQHdAaHHe8/fxeQ006XXtrzv2XBfwfrbBadGX2jFDTLPFVlZWprJDT2NZXFxMZe6QBjl3jik4VqSjfD6PWq0WHDAaOKTjiQEzFtblDlQAqWc948mNDtKDGkde+AwxK3VgoVDAwsJCkM2j0QjNZhODwQBbW1vo9/toNBpTy/K0/ewrg0CaKaGGt/I4cJQVl8/nw3I56ip3GDEL4+DgICzj4xz5Xiusm+3iu+k00rF22eZ6S51Uo9Eo2Anc4kRXSTjPajCN4+/8rTYb30HMv7Ozg+3tbTQajZD1rfg4pqPZDncm0BEyHo9Tezlx3rSt6vCLYcnTWkgL2mbFmG5XZv3NZzQL23GX8hr1ymAwwPb2NqrVash8UrxL+2uWnM8aZ+X5GL6KOUL0udFoFHjMn6WjU/eTo0zTjMCsulVvsG3kX2B6nyKXBcqPOiburPFVLjr2xWIx2CmKW3gKJXGkHpCkcpzX+Le2320C/sbsaF0RpNiVhQ55OpGVphRD6xy6rFA55G3U9vHjfTupHfxYmlqJLwYgtDjw8+s6qX5Nn/XnY0au/u1tmnU99i5/B+/NYtQsBay/k2g1hS8mnDjxusSNDKwgLiu6MDc3h3vVKu492gAekrp5+G86wkuw4YJAiVrbpkZd1hizbo/oxEps/FVoKMH7PXo99ry2y59zRtLC47UvXLiAq1evhvXUnlGi/TrOCXtaSmwedH5j98TmL8b7MX6N3ZcFVnlfLneYHsqsMwXE6lCKjXdMlvC6Cks1jJyWON/dbhedTmfK4TgajZDr5fDVX/hqtOfb6Ja7+F/fXME/u5DgycEA96tV3H206ePYUo5j0UQdO26gWygUMBqNAjjzzCsCudFolEpn130zyKdUJMD08juOq8phnTPnxSxe8/v0XQp49P2xefK63ZHh46U6JOveWXJbnz1L5aSyRnUPj+VW8DjL4eTvU+NMryngPq6tPm/6t+pElR8KHp3GvF41smJg1ekjC3c4PSrwj4F51ysxvKNgXusjf7phGuvPcTI3xr9Z37E2al2PU06C1WLv8fZ6XS4vCPCJj0jbXIZ0FhxPpVIpLFFSByppR2WyjlcsAKd4XOld+ShLbvI5pVvnK97r7VBa43ti+IyOGg1AJ8nRkjlm2tDZweU3vipAx4bP0tGjwVggjXEnkyMjje3WwLN+FMupQ9nHx+chJvti8lLHTg1BncNc7ujUa7ZDM0MUI2XhNZ+zWbKZffSTDWN0wOL8HdP/sQ/nTB1krINy9SxkHQPHZ4O6fI3JQS8n0enqmOF4csno75T8dtzs+pJ8GOMDdUh50IO2rPIVx0mDOazLda465t35yevaB29bDCPGMIjKT5d7rMd19mQySWFvHz+fE5UPLtNj2Mj7moUDVGbEcMisudfvmOxVrB2TLcfJGi+Prak1YhFTWAoUmaWggzCZHB0Hq0YJcGTAZ520oMBPn59MJqlorjOMEplH930Q/Z36Hu2jXvf0QP0Q4JfL5aCAGSFh4XjlcjksLCyE6BC926PRKEQhut1u8Chzfex4PA4ZHCzaZrbX9znZ29tDr9fD1tYW2u025ubmUK/XUavVwn47ujyImRdMDVQCjxG6MifHdhbYJ+0oqFAh7gwWM4bVKFD6cmHJZwiGeO38+fN49tln8Q3f8A34+q//ejSbTezt7aWy0M56cf5RxyYwbdDHno/xUYxnHKTqM1o4//l8HktLS8jlciGKvbm5ieFwGCK9TMlXkORz3u/3U/THCDmjhuQBOnVowBwcHKDdbuP27dt4+PAh1tbWsLKygiQ5PHGm1+thb28v9KGUKyE3l8NruQQ3a7XD/j46dYZjwbYyEkGQRyXMwvZyuSG/NVqs457L5bC8vBx4lhuSqnzi/bopKsE5Abfvf0U5rFmMGpUjfah88Pn1DCeP3vlvMaOevOmRLKU1Zoy4zoiVGCDk/27AnMXi7eeYVqtVrK+vhyUb3EdFI8++n5HPk6d5U46qAcV3epaMR/Q8aOAOG2IMtoH60gFlrO9qmPoGxbzPM+goRygL+Ju3W40j1y2aecExUCesnr6mUXLNHvZldlrIU/o7l9+7wea86GPNNjrI9GfY9ln1OU8q/cQc3pxfr1Ofpe4niOaeNvV6PUSctc9nKeNpfX099I0ZNZTLNPxjGFcj3iqf6fwFjniSdOH7c7hjSg1Y3ayYNMW2qZ5VGlc69fdQ3yRJglqtFrJ5h8MhGo0Ger0eHj58iF6vh83NzeCA0qXnfC952OvnGCRJMnXKMuvQVRakM83GoIyIGceaXcl28J0s1MO6/FHll7ZZi/Oy8sv+/n7IAGHf+bxmQccCSyprYga0tptZXe12G41GA51OJ+xjpTpXadGzWHQ+KDPdeHaHHcdQg2uaNXKai2YWce6dD9xBkGWQu0NR8bfShOpi4HC8yS+tVitkwXMsna60zMJGWbKc/KM4Vu9xnKhJDDrnlDUqG3TvYgApXiRuJ2+x7z6elHXcC5aykhl3lBHMRtJ26/xoEE351e117t08NzcXss2IK5z/2TZts+pitZ09I1vfp7jKHUvkrX6/H/bHU2e60gLr0HdpXY7ndWxiQcYYnj9JeWxN7Z3RaywxZ4IW9YTqM15O2olYp33gHEjpdWX8k7zTDZhYO7zvCvLdaFfjmfdpdgeJg2CWz5G5FaTF+q8p1Ao4ua8NAY+efqQOGQXdWRkUMeGpBH2S8XJDxIVg1hjrWPrfLG7ssKiioLHLZUsLCwthfGc5ns6iwRpTSFnGgP6fZeDMqnvW77F541hzySdpTgW8K+Osd6ozQ51ix9EulWe1Wk0BctIDn3OnqrZJnT5U3MxQjBnFGvmbTI6iKNzTTR0rOha6GbHLm/H46Ihu3Z9Px13lMRW3A0aVm/6b9pX3qJGj3zFdofXGjFedF+dfpcvj9Ilej+mxs1Sy+hfrCzOeuG+dnkYbc8brPLisdaBBw9dpP8bXWfLe7/M6tY0u72fVHQuMzZJhMXB4UgwyC+x73bHn/FrsedVT3m/HLjEs432KtWnWu70O/XjbHH8BcezlbXXcQqObulmd0Zxj6oqz4Hgql8sYDochSMDMJ6dZpycPZsZwktK5OqRm6Up1Pmkwj4V1a7CCDoYsJ7+2R52qbA91oO4tpMEYtlczhdWh5PIgRpvuwHAZNouvs/hY9VgWz+m388Es3ce54Phq1ojLZ3d2eB+VNnhd28WiRrru7xSjv9jYOB3NanOWjtbfY6spTmNxforNrd8fo5OTvif2XnXuKoZUh6GWk/zv8tyLOxDZFudTzXxSPtWMHD4fy2jSfvgSWv1b2xnLGlacq7/7GKldrNhG3+c41h3dunUE+cf5NIZ1+PcsHMK6vM28ruOtfgDvj8vE496Zhctd5p7EJvTyhjT1cQAHmD5SFcCU4e5GIQnDFZD+rc4X9Tr7BGmERgct1lbW4USia0P5btatE+nH/CpY0GiFbu6qpxDQCQQcOZO4nwwLMzLm5+exsLCATqcT9n/ihuDq7Wb7lYH4Tm7eyDX2pVIJy8vLKBaLAcSpx5bt1LngNUY6OE50rHEsNJvBI+EeOXKFpYwPIAW4+IwDWyq/LCCltEeaJP2oo6DVamFrawutVgutVmvmUju249KlS1PvOU3FgZFezxKUWaCFRR0vj2NwxerUJXWlUglra2soFouBF/QkFY8KkN9Go1FwXOleIKRnF6ROI8ViEZVKBb1eD71eL7xXIypqFClPxOh7Mjncj8mXB6iidgXIvmkEhdFBgvi1tTWUy+VwKk+SJKkNWTWbgqf4qJGhc6fLEzgmOnf89lRqnT9f4uBZU16Xz71mMfieGE5LvO6RZZUXKrOdnpXGj8uSOk1FDUv+r7pLi/aVp34NBgM89dRT2N7eRrvdDvI2K/1dxylmkCgA1mdiYIS6IstQ86CKG1H6rtgYKN35chlGV3XOHRfEAKKDcX0P/2akXuWP9pX0pToy9s33uSHqejNmcHpbY0DX79VglNcbk/8+3jG+1rlXPa1yl/8rrmBd5H/KEjomGPjhXmWj0SgEBvr9PorFIhYXFwO+Oc2FGU/j8eGm2vl8PizrpgNGaVxXGHjmjQYelTfIh8yWpVPOjfrxeByyJra3t0NGksphYiPNaiCmA9Kn3Cntco41o4Xzxuyavb29VPDT+x4zvFlIX6QV1QkxHM+2aYYsT/ysVCrhGfZdDUv2mfWoQc1x5Lv4v48Dx4LLnXm/yhK+j+Ocz+fDnlf8+Ng6Jlc6URyhY8LfuCdMp9NBu91Gp9MJWXjkY8c0rr/VfmFGrQe6SUe0/9Rw1YzPs3BAgGIQvRbTa1qy8AXHyOWgvsvtIY45T1quVCoBH2omC2UDcEQDMZkOHG3c73pE5YvbZAxg8Xdm2rCNaoMpblSMyown2q5cNsglydzbmDKCfMI6ifN5IqxmH2qWUmzuYllZAFJOcMXsOhea1ZXL5dDtdpHLHZ1KWa1WQ6CEWebM3FW84bJqlqNZ+09+4qoo7u2kqxNm0V2MDmJ0pphOx1ADJJoFPsve0/KfJETkDEOmYMkCfTGBPAsEZgGkWOezDB6tR7+Pq0+vK+D031WIA+l0PhaOj9any8wUBJDYdENIVcJKAAQoOu6TySQs2yMzUACwbjU6vL0+HyQ+jyTpnCg4iNWj98fGMDaes+Yny4Gl46B/u+OJwlYFUIwG+NxJme13u2SBuCxDJiZwYoaPX1N612ux6zEjiXPCPZ5Ilwqk1NiO1UkF5HvYeBucVtTBSHDGJaaa8stnY2PIuhh9oDKIRQOV5zUbUSPMAFJKR/unUUIHhsrHvE/riPUj9r+PlSod5RlVnO4Q0Dn2OYgZqseVLMNd64sVl/dnxekETPfPZaAbfnqdhlatVgsOVQAp+a3/s46YzObfjyvDXRceB4pi8j4LLDndxdrpfcpyBmUVbxcLeVGXJHngaxbo97q1n1lyM9berDHye2Njwuv+d0wPxMbA8ZzXF6tf63ba1qAldTMPXaAsJBinQX8WHE80qCqP9gGkA5hBFWB6OYmOkdK5GpeKGd0hwaUejrVZD/eK0Q2y+U4GEYG0s8f1QIw+6XChjNX3qTPlJJk9We+I6RKnQX47nqbDQzHCvcE93B7exkqyglqhFsYxRruu4/iZ5YjT4OVkMkkZ6kD6NFp1nmuWCOvybGCdoyxZE+Mvz1RxvnadEpsHdZwRMzte03bqXKlj7qw4nmK4Nfb/42CLLP3pepO/q43izk6tL8su83e4Dat4NIYJNchPvtaApAa09MM2anA0tlycQV+2JSvTz7OZ1GHu/eD/fEcMj6uzJcYTrIuyQbOcWKfuQRibjyxZ5h//nXYC258kR1sRKA9nYYZYOU7Px2jdZV0Wrskqb8jxFAP7XtgwRgwABG8gBb0KnJjy0GiJClkdeCUqn1BXQKqUtS79X7+VkWOT4h5TJQQyomZ7OSMmyZG3sFQqpergdb13PB6HsaBnmNeTJAkn5QFHHmn2kUw0mUyCp7pWq6WyKNhH3WSQhK77wKihwv5oVJkEmc/nAzNQyXHOdSx9iaBmren4egon++bAhSBMN17XiBjbrTTI+rgkinOmxr2n8s8SIqe5ZBks6kxQeudvaoRmgUGdV+ermLETaxuNjMXFxRDpVpBdLBYBpKN7wJEBOD8/H/Yi0yxLlRfKo8pjpVIJ9Xo9FTXkKXeavamKwbN/PAJEfvJxIZ87OFVFqvfSGTc/P49qtYpqtRrkjdJ3zFmgzjPvuy5j0Ll12U4+9vlW2eJGqdKD3q+ggHWTxnTjXeXZGK0p8PHou0dedZwp7zxCeFaKykkWBwmuL6vVKi5duoRcLocbN26ECJkCQPKBArlYNoHqHbaH17jHjDslHXgp2HFQQ93qmXOxwvtdHuhydecxpQtdtqV90f5rX2KOYwdnWgfbov3QMeB1zyLi3FEH6Wm0lB06vvreGEZzYzVGU0o7DkZj/dfn/N0u7xU7ELR7O9XQYXANQMjcrFarAUfwu1KphMDZaS/lchnj8RgXLlwIQY1Op4O5uTm0Wq1wn2YYsui4Kg7yDBfeS2cSs5hIR6rvKT91jyfOO3Gm7mvDuhm0JEbiR/UN8f78/Hwqw4bZNQzIKJ8pjtcgq8o6DRSqraD8pgFZv5f9KpfLWFhYwNLSEpoHTfzNl/8mfmPvN8J7vrL8lfj2pW8HcHRilBrYnsGs7dZxYTYGaVh1r2aNaP+4/2r10UFBS0tLYVyZpa+fLIcC6YXzTfw/GAzC3k7c1F0NSaUlyiB3nPE3lvF4nDoRr9frhe0S3HHAedDDAc7CclnFNTE5moWH9bfYPCmtUi5qph5wZMNQ15G2qtVqsP1IL9pexVD+bspaZsywDeQPxU7aDrWzOp0ODg4OQmZ/DOvR9uZ887AT7pHErEPWyzq5T5MeTEDa3JpsoT1p43L+Mp6cfzKcNKd7IHPcKY8YpFBcQzmqy02pd9RBq/4I3zKHc9br9QJdE88qDothNl9F5IkaateqDKYMabVa2N3dRbPZRLfbjc4/n/H5V3sdOFri6HJT2+s0y7F6HPz8O8rlMZDioAqYPhY7y3iPCSsdRPdc8p3O4Ap4ta3e9lh/sn5zY0vv86iQRyY4YXpdAYH21Q05JRA6s6jYddN2VWasm0qOxEiF6P1SIqezi3XE+sFvBZPqvHDHWex9Pu6zAGnMo+vGAO+j8HYGcrCs79KxPo5GY3Wc5uI0rTwSE0zH/ca6vhyjPTb/dLIouGXGTmzpHJ/TCEpWpA1ILwXWaBGVuS4PUCem05kakRxTNQg0Wqn9y5I3KhsdLGv/dENoN6rdycJv3TvKHWjaDx0vbbfKDp07jxr5vMaASGzuY/zLvsQAnd6rBq2+T+uIjTWNHaWBs1JiQHYWICZIpaHOpUrKC07PMZ3k71WntOoE1Yc+trP+j9EBZXKs77zPo5PKOzFeVV7TNujvs5w1s3ja9Ys74fQejhEw7XDw5fYO/n2OvF7+HzOAYkXrnMVzx+lsr0/b7HU5TSldkbbonKBzSZdm6GbLp71wDiuVCgqFAmq1GoDDTCjue6RAPmsuHX/puPGbTh3KRsfBHqjToCgL9SwDForple8pR5U+NftADThfgsN+xfC9flicP5yXXf574X3q9PhbX/xb+M2930zd94XeF/AP8A/w5+b+XNCXKis108PplOOs15xGOY5qH3GuuDRel89MJkcBXa1b61Ma4d/6O9/JbBk6J/n+LF0Zc8Dr7yxqxDsd8H+Xr4rZTrvjiSWr/24jzXo26151Ysbq5hzSYawZ9S4zjmsD6Zn0oBhPT8GN1Uf+IjYmLWlReaVzXSqVgv3Jb9K+BlJZVA/30MM/Hf5TvDJ5BRgAGABv6b4Ff+mJv4T5yXxqDzl9r6+6ojNVHWl8l+ujGMaO3cP30VHlMs6/XSbHdGuWzmW9pAPNOHN8oHwb0ymxb8dLsaL4+3HKG+Zydk5BZswAVWMpy3vGhvP32L2xooOYBfw0fdknwT25/N3bo8zOOrWfFLZsN5Ur69borYN8Xa/PvgMI16mAarVaKm1PlQ+XJHGvJxJkpVKZAiQKVqiAnOAcfFAxxjIP1KtMwVEoFML+ApqlNBqNUkJGaWAWmHKj1gE7+zEYDELkjvPrJwp4BFoBvwJupSfSA+c/RmdnoXAcSDvqrOV3liGTJXzeaP993pUeyC+MEC4tLYV10nokrxo0SZKgWCyGTZTL5XLqXSoHCIwUHLJ/GlnP5XIhEjQaHa43J824o5dyju2nMo8B61jkw4G2ZjlotlKtVgv9K5fLIZLqxpsWddADRxs2MjPF5zYWYVFe9He5vMgyiGJFIyvAkayJGb2amaVjTrnkUT3KWAUYCqBV8Z+FjKcsXouBQ5VlLIVCAUtLSxgMBjh//jz29vbQbDYDLU8mR5FFAEGWux6cNU76uy8jcfqMZQ96XUqL/hvbqM8r3+mcKu85DShfEHD7fUA6YhmjbcoPdWSyj65n3anFPtIBoONN3ePXtS7ygvKGt5HvcOPV6UbnykGlPuNjq89pIT97ZrvLRg0CKIjnMjpdMsbgQLVaDVmgZ8FoZV8ZdV9cXEShUAiRauox7u2jvOnOHpWbrst5TfUrlyVy7Hhvv9/H5uYmyuUyNjc3MRgMQnaAOpNUviqdsh3KJ8SApDViYj3NVTPXlW6Vd2jY6v18nnpSdS+NL2Jh5bPJZBKw4Wg0Qv3+fZy7cQNbV5fwazu/NjVXY4zxud7nsF3bRj1XD/xDHKKnSgPp/UI96OlOO+4bpdlTyn80XBuNBnK5XMAg7JPjU9Vh1Il00iqNcGyYJbGzsxP6QbpkNo06Idwec4efOihzuVxwLBCP6aFFuhcPnRDcZ/Ys8LAWDYAC2bYB54djpngqJvOA6RPyVIdxfrrdLhqNBh48eIClpaWwisVpxNvH99JZpE4jt4N5r2b4kYbJB7rkT2mFNJHPH55KurCwgFKpFPA15X6j0cDBwQH29vawv78fVhn4MtdcLocfPfhRvDZ5LTUPXxx8Ed9z83vwkeQj2NvbS+FzPseMOp4cX6/XU9vLAEjJLbaP46MyznWa2ubOmxxHpe1ZwSzXuc735B+VqZQfMb3uNo4Wt6H0fv3dZbNjS6f348qJuVyZy8FWFvBQRol1XsGid1aZLtYWFmXI2D3qLHCmdyWt3v6YceiOEF5z4UEB77/HlqPoUgIlZF8Oo4SnY6QRP3XysC4fA/aVQovHV2pR4y8GBhTYaoquCsTYJuN0GmR5SHVsYoDZ55bXPAqlBqpHcJyRfD79Pm2bOi+d5k670cqibc/iLzdcY/2MKdisuvw+/U3n2OeV9FQul6ccnzFeoNOIhoqCdTfEFKTpeNBJzuV8jATpMh6lN75f6/cluN5mXw7n71eHE8EZlSZTlJXvY3LK5bEqeRoU5A13wCvPumGvNKF99Ll3MBWT0c7nCtpjMkDHm3KE74rRoBpjKv9jAZBYH05byeJX/qbFeRg4BMmlUgmVSgW1Wi2ksavO0OVbMVAyq+g7gem9wnSOdF4dyPhcxuYnS1cobzr/8VudkFooC3x5v39Uh2n9imGUNvUejq/XqfPgulcDBf4O12fuSIqNG+uK6UZt6yx+8LnKog9/v97n9KFjqgFNXR6hsoL07MbDaS7KUzTQgcMleLq5NudTN4vVMVHnoeO7GHbinKvjkb8fHByg3W6HD5e3Ke5ynK9L1GOZhro0VLG43ptlwLCvio11CQz/171h9B2avcGMfg0ezrfb+GP/1/+FZ15+Obzv3z0LfPiDwF55qinYmmyhjnqKRzVzi332pa+KFdw+0C0oRqMRdpIdtOZbWDhYwMJwIWR99Ho9lMvl6D4+6oD08fcPi2bK8AAVdXqprNE6swxZN7x1KZIvNyQ2U4ckeZiHupyFrEUtPr4xWlZs6EVxjfNCrG61aWh/9ft9tFotFAqFqYNjvD0qI9SJ68tFeQ/bPBqNUstCyQPq/FD5ou0lPfC0cDqeFGOSFre2tjAYDNDpdFKZT5T/W5MtvDR8aWocxxjjS6Mv4UbnBiY7aZuc40Fa5HYdSZKklnjSZmVWqiaQ+HI4jpVn8vm88V4PuvhcuI52GlEMS75xGUIsn0U3We/3Nvvf+q242zHCSTAiy4kdTzoZbnyw6N/qiCA4IEFyPyB65H1QlClYl6eoZjG4g+SYgREDbKpEdT0nkAZI4/E4tRZWx4KAUdfWK3GQuLVd/I0Rr1KplAKEFOQUzszAIBNpO7h+XPdGUeJm9pSfwsfoizu4dDzZJgoDKlnSgwIdZqdo5po7hyiIdG7UYNf5ohFAIeCRALZbjQW2h2PECJnuA+GGDedXARLf50aIltNusLKw3T6+s+53OjhJ/ScpbhDGCh0vdDxp5oo+R75i5Eyz2TiXdLDqXgWqJClfyH+8RoHOVGKt15dEuCJR+mF9fLfzGH9Txxfby0wnjdJQpgLTBpxGzGI8UiqVAv8yAqrAQo0Dd7JnGabuBPBsl5izx+lA55byQGWhv5sfgibOu2aqOL1wrDztms64s1RmKX2dH6Vz8tO5c+eQJIcnX3H+AUwZiz7n/q6Y7o4BbV7TOmL05d8arNH2UIe5IUvDlB9tIwGb7lfI8QHSwaYYLXjfvI9qnGnQRYvyudK5An/SMfvPvYA4jzpH+lEn9EkMuNjcxpw3xwFjvcYx8rnNMoRjdfgekzqe3EOD+Kxer2M8HmNnZwfj8RhPPfXUsf3+3SzOV8z+XlxcDDShAQcuBRsMBgFj6umlwJHD1PdFixmfqgv46fV62N7eRqVSwebmJsbjMc6fPx+MPZ03Psu50SVgfFcWLfEZpwV3zNDZ5kENNZJ5ghrl/vz8fMDmXEKsWJF8k8/n8ZF/829w9fXXU21773XgYz8BfOAj03O2OFxMOX5UvhAPa//Ukc95UZ1PHZUkCTrjDj557pO4W74b3nepewnvevguzGM+OHA492536HxTPqgzTumNy7IajQZ2dnbQbrdDJlXMXtBvn191CKjs4TfxSblcDpnofsoiA2h0RqytrZ16xxPHxzNLHA/pvfzbMYdiHtcnjr393bqMq9vtYmtr65CeOp2AHbVN+qy2QfcL072XY0tkyXfdbjfIIXUK6//EFnNzc2E/0mq1GjLqGo0Ger0e9vb20Ol08ODBA/T7fTQajVSmsmdcX89fx3O7wLO7wKsrwKur6fl5vfM6zvXPTTmdJpPDk+I5Rvl8HltbW2F/KR5cQXpOkiQ4Z/v9fmrvJCZ85PP5sH+Z/0/soc5oxaLso/KoY1OVISpLOcZ7e3vodrvY29tDq9VK7bMc+7AdWTSq2DkWtGPfswLEj2MHn9jx5MBcAaSCSh1MMpvvR6LOi6zBUQPPJygLuMRATcxAUgWqAJATSqCnhg3rGo/HaLfbgbAABKKjUqUHeDAYBGfPaDQKAlfHir/RqOVY832awVEoFNBut9Hr9VAqlVJKm0LEo05qVBGwqIcUQFgTy2sEPZoRAaQjbrr+l2Ok7d/f309lbnDsOcYAgoBk8Yww9oPvV0ekEr+CcmcwBz+eUeaK3KNUrCNGV2et6Jh5cSWZ9Xvst5hh6gJtVvE6ORdUgATfWRkIvEdPNlIZ4o5HBU4spFHSNfmbUWg6bIF0VkXMwI71m+/U/ae0/eoQo7Nenfc8npVKUpeWUEHF5oA0rdd1SQCjwyqLFPS7kzJmrGrxscma59iYuQ6I1eF0ove5otZvVe6qp/S9px30sqjc5f/6mxfOo/LK4uIiBoNBiJJynilHY0DiOD5Wvab3Z82705d/c05jffH9VfgbdZs6cpQWPIjgekbb6nJSlxY5/fI5jl0Mi/B3Gg6s0/WNOrw9oqnBFX230vRx2T/afnVK+j2sX++fRRMxXKNjpE4Hve7t4vwpffD5/f391J5/3BuJSzPOWiEG5il3dP4DR1k0vMf3R3KjRGVcTCfrXKl839/fR6vVQrPZRKPRQLFYDMuwVU8BaccV6wGmD2shbnR+jhnWHuQYDofYHG+ikW+g3C1jcbQYdDKdksSrKrfH43EIolKn6UbC+Xwe640GvuLWrel5mADvfw24tn1kzOaQw/Nzz2NxtIj94ZGzLwsj+u+0c3Ss1TGcJAl+fuXncW/+Xqot98v38cvrv4wPbH8gNf8xA8/ng21RuuDYcFw6nQ5arVbYlkIxvsoxLTHclcvlAi5TRwyvazCwXC6jUqkEh5P+trS0FLZUOO06mOMTc9K5PmFxB4jX5Ya827oeTOf/dAYNBgM0m02USiX0+/1gNzrPxzCiOkTdmaY8TgxNpy5lkQZ/NNGCzkfKaG4RMTc3h8FggG63i1arhXv37qHVauHu3bvhOoBAV/wej8eo9Pv4n372U3ib+Ix/2jIV55pzKcc8+8PkjvH4cONyda6xbXSAkj5pv/d6vbDNBnVwv9pHe76NdaxjLbd2+O5HAWO+j7KM4028rrKC7VC+dnvbs6U4xt1uF81mE51OJywtdt06Cwc4nfLdMfyndOlyXbHjcRiR5cSOp0qlEl6gnndviDpN9B4gvaeDfmeBNL5HN8B25nFl6orWo558hsqbjhFNGaTjSdurSk2P8wWOMrjYX06eej11XaZmYNAI5J40VDIUCHpiCx0sujxOGUiX2ylB6H5TnAfNiiKzaMok36EGM40Wzg3HZjKZhCwwjoUa0mpQ69zSEaAn+mk7fe7ciNQN9QjmNeqr88z66VhQkKpCwA2TGF1qOe73s1JcaM363Y0dXuMYnnRMst7pcoFRknK5jH6/H0684PPlcjlkBCXJ4Yk73W438ASAKfDmckRTxieTSdhMtVgsTt1P2mHEVR0kCuL4btIkeZhOI/KUygdNP1e+4R5vuuREjQ8HfgCm5IDzkBowPq8qv2LGphvlMcOUMpFt8fqVvzxq7EBa5yoWANF3Kw/zOo0Uj+6p3D6p0vzdLFlGe9Z9Oi9K65VKJWw0PhodnQTD8VfnhdLIrHY46FbQ4yBYgbY7Njhfnjmgz/Gj2bvePp1v8p2DMaUVxS7s9yy6UH3hhggzMCindAlEzJhwvold1zEhDbu+IsagTnQ+0zHk/VkOIZfz/nE6cLntoDeG+9hOLeoAH42O9oXkMzRgVK6dRFefhuK0xDFiYAE4NLp48hsxGYMqg8EArVYrtZwMSO/H5vyg/Ei5TkNxf38f8/OHG/LS+VSpVEJWuupQ1uVzzjnKmncAKePKM5eYdTMcDtGddPEz534G9ypHzpi1vTV81atfhbnhkb7VrPRcLhf2blIZ5uOcz+dxXk4OjJVrO0eOp2u5a/ggPhiyCejcpI5nUFgDRJQzzOzhXoyqv8l/GwcbuN2/PU0jyQR3y3dxsHCASqUS9nL0JaXuYHRbTOeI9guzTLa3t8PJgsRYLm/doeQyUuUrcYnv8VStVlPOJ55opvvAMph2FvjXcS+QvTQqhjP1d7ePlW+0DsdOXobDYXA8NZtNjMdj1Ot1JEmSwqbeB/1f9RcxEWUEV/BwA2tiBdrD3LKl3W6nbMilpSVUq9UUvw6Hh6fgMeNpd3c3OL7p1AKO7EMGjJMkwUd/+qfxFfc2Un1hpuI3/5kEa8015HZz6Iw7wRZVvODLmPn37u4u8vl8oEfic65yoM2Ry+UwKU3w0ltewvbydmjDUwdP4UOTD6E+qafmS8dX9bQ6cbwtMaygDkD+PhwO0e12g47w+4/Dso51nCa1jU6PjtWctk5STux4KpVKKa8mlZ4zFgdYDQgOhkbmHWg5SAXiGybydx8Q/u2CIctryMmjkbm/vx8+6nhSMNdoNGYaPYzGVCqVsOwNODpaloxH5tXMIl12puBKNxDmuKoXlZEFNTgVoBL86jiyDVSaasxScWu0UomUhrlmaKlTjkWzOtg/jgnnhGCS2VsxA0Pn1L2xdOCp403BtjoF2FaOFduvijsLqGeVs6AoY8UVp/8GTAuaLGHpfOxC9Lj3Zhkw6sQiKOJ6bPKaAkCeDsTf2u12ADUKmGJCFThyItG5S1rQrDzSLpUj5V9MTjlYUycSlZue6EFeJI/R8URnFfc/0E0M1XgE0ifGuIGu7WH7spaXUc5on9xYjDkNvI7Y8yya9eE0p8sXtJ8xvaCgSdvoYzEajYKMS5KjZd7a37PgeGKJyZ4YoASm54D0VKlUUCqVQqRRZbManFkAw3VtlozQ4oA65tzRjKVY4EgdqrpMjX1TRyU/5J3YmHmkl+309rns0IxtjRxrHczM8PHhO7OcW84/rsvYTzVc2GbNEnc+0LaxXnU+6XNKQz4ubvB6vbHx5Pt07PWdLJxXYjTiMp0P7hHidZ2lwvaSH4mDNEuHm/ZS9/V6vTA2QBrrkR7VKePzxN/VEcFDYDqdDtrtdjAkSRtKi7P0vxpXbjTp/WqE0tgkj3xi5RO4X7yfGqetxS18+ulP4yt/+ytT7yT+o251GlIjjPJsd2Vl5px806X/GpeLYyyNl1A/qGO/f+hwYjBLlzESG6gDWh1S1WoVtVoNtVoNS0tLwdnCMbjbuAv0s9vSL/dRLpdTWRju4Pbxd3nMbxri/X4fzWYTu7u76Ha7wWHH4J7yve57oxhbC2mCy6p0a5D5+fmgZ0i/3MuJez15dvdpLzFZGituuzhtqnM0pn+A6fmN1ZUkhwHEdruNSqWCVquVwlUxeR0ba9dd6qyhDOKBB1wKyyX6dH40m83AJ3RAMQMLANrtNprNJprNJra2tsLG5NpflWt0kudyOVzudPDWu3fhhZmK77heR+n+8+iODjOmfEmgjh+LLlEFMLUnmfoDut0u5ubmsPX+LXQXu6k2vD73Ov755J/jz+LPhnFTrBmzXV1X8R6ON/WAy03a85Sb6nhiHVmYwm1dve762emBv8X0dewdx5XHdjxpto6m1rEh6iV3ZlKjJwbyWGKpZYPBINSvA6eCcjQaBUJWwKUERwCjGznyOjfaI7OowUhlCRxuBMn+a9SVS8sATB0rqf2kI0YdJeyHP+dAkvsauNPEhVGMMOg0osPHDTYF5143fyNI0b4kSRKcSrpkjwBZ38P+MD10OByGbC/SBcdZGdVBszI161WvvBonVKIKTlwQqJL2/7WfbOdZLK7EYsZkVokZsToeMSCa9X4fYxVmfg1AmDt+KIRJl6RNKkaNBPuGn0rrQHwDZI1g8pnhcBjAWalUCrIja3kokJZVrE832eSHkVDlM54qxGzErH1dlC7VIRNTPKqQNFuA/dSotMtNBfH6jtgcx+goVl+szpgjzIG2AgUH/THjX+dVI8eqzE+qMH83yyxD240NLQ4WOA40AhhxVLrRDDGXFU4T/I6BFX1WszP8HrZdwW7snZwrzptigZgRpvLBZbhjFAfjqls002JrsoXt8TYuzV3C5fnLKScq26FyRt+rhjl/Zzt1jnS5GefC+86TdlQ/qdOYbXY8lZUpobKP192A5z0xsOo6gffp3LL92nenJ20XgFREnPhiaWkp9Ht+fh4rKytR2XHaSow/9G891ILzroFGYkDgCCuqE5M4OJfLTS2hVSeVL5XhGN+7dw9JcpgFMJkcOvhifYjNnerCLEzKOWYbaNSORiM05hq4U7oTGTRgd3UXg9oA5W55Cgsq3WrmTC6XSy1Nz+fz2Flbw8vPPINrN24gJ/WMkwS3nnsOyfnn8abJBONkjIPxQQheadArSwdrEJnBsFqthmq1ioWFhaD/iVVfKL4APMimlfOF8+EgCDomdZk8xyFm67huGI8PlxjR6bSzs4NOpxPkrAehspwemhmu74oFv+msYH38XbfM0L9pcJ/mMsshz6JyWGme96n8jxXWrcEFlZ9Oc+Snfr8fHDqLi4sB63gQj3JT3+W4zgP22k/KDvIuHZh7e3vo9Xp4vfM6GrkGllvLWJmsYHV1FcvLy+Hduik/MwDVNuR7aE8CQP3hw5nz8v/49Uv41ZUJBhgEWeiHhOhpijovdKSpzcpvyo35+XkMF4foXupOvXuSTHA9uY7tyTZK41Jqb1K1RVx2uO3Pd+r/qqv5G/fFunXrFjY2NkK7KW9mBQ1jdKu/OzaYhfOdZh5H/z6W44kvUIWnxOLgP8ZgyjRuMLE4Y2iKnBJSDCR1u93UBNLBw0LjVBV7LpcLG4hRWHIgafwBCJsEVioV5HK54G2kEq3VaiEdmnsc6bIYjh/bpWNEBmQmBydUgQKAIEy46ZmOoyqimDFMwKJp6/ocHWyuyHgPFSfHWjNDNGNKhZYyuoJ4bnQ4Go3CxppstxoyHPcsA5UCXh1PGh1lGzluDhiUabSNOn76UaB1VktM2Zy0P2psKADx32c97+Op39o+/k2/uLZ9AACy3klEQVS602Ogybu6ZG08HoejXXWZK3C0zNcdUnqN72O9Sgd0OvHdesS106b2gXRGpzQ32lTnkxrGvI/RQDq5vbj847vVQa73Ke85gKFcUFmlY3Hc3Po9Lne8rphsifGc1897aIjpfl368bYokNNx13k8jm5PY8ni2djY6b2MypfLZVSr1XAQhDrrqXeyHE8OZl2n+ztjc+zt0yVAXAISo2+tg7+70UR+0v2AHJe4Q8b7RlDPAFNn3ME/OfgneHn86DSsfeAt+2/BR899FMVcMdVHj2YTQ/hY6J6PnBvgKCtZgTiDMhwn6n/qOM140bHJMkSVP5SPFLfEeFEBaZbj1ulOx1GXKqsx63TBDyPOzNABgAsXLqT6rRnjp7lk8Qf/p3NB9Umv10sZK5TXisV02ZnOC+vg+ANILYfh9clkgkajgZs3b2I0GmFzcxOTyQQrKytTuoz6kddiuIm4j+8H0ll8NCr5GY1G2C3szhy7/eo+aoPalL5VuuWJaTS4if81Y+jHv+Vb8Cf+xb/Ac68dHcl+89o1/NSHP5ySI5Qh7iT2Ja78nbqcWUo0BCuVSlj6RP4cDAZYW1vD19/9evzGzm9gDMEgSHAtuYZL85dQq9WwuLiIWq0WsIDib5djWfh0PB6j1Wphd3cXW1tb2NraCplcMRyhdMO547s4ru7oUxmgcoF0p+On8k/beNqLy9JZxW1fl6Ma/HQMrrau6zyd40KhkNr0+/79++j1elhYWEC1WsXq6mqqXuoTXVLpv2dlzLAPxE20tTqdDvr9Pu7t3cNnnv4M9tb2wv2FWwU8+WtPYrWyGpyoHlhV3aDYQ/v88mg01RYt13O54OTk2NGmJr9Wq9WAqTXJotVqBR1DRxeAFC7P5XJonG/MbMMOdrA+XE/xCpcpKgZVvRcL1rn9zjmn3d7pdLC9vY3XXnsN169fD6ue1tfXUxhX8RLHxd+nultlOO93W0HpQOnjcTH0iR1POii6JwnBkRNxzCDQexxM8m9VpLzHPZQOUEi4TDeeTKY34fQMBRIAUwV16aAat8DRHk4UnCQk1qUpenQisR06FlSSSnzeL13nrxlR/F03FGY/XFFwHFXAc+60bs2kIiBURvP50hRO1q3XOH78H0hH2ugJ1miZKk06kVi83bNAG+9X4UXaIVjjflKcOwIANbTZZv4fo1ml1bNUYgap/h0D/S6osng45mDWOmNGjLfNn1EHCo1lLkHVdpF/qHwJyBw0ajtjfXbDSzcD1H6R7ikjyJ/uIOUYadREnU+6xE4duJrd5f3k56QOP1U+J4lIx+ZfgYgqsti7jlM+WTyjMsCj6aofgKPIT5ajiX+rYUA5pVmudFYfR5unrSjtxsaT/DBLPlGHVyqVsLTceZqfWBSMfOBzoCUmy72N+mEGhPKRgxvNtnXDSPU+5b5m3PK9urRB63K5r9lIuVwOH2t9DK+OX03144uDL+L7N78ff3n1L6ecuooltC7XpT62LBrM0b7HnHccEzoTPIqsAR2fY5/DLMNqFm/4fCh9xOZO+6R04DKI2IHR9X6/j3a7jVqtllpeqTR1lkqMJ1Re6ZH0nCfdwJY4VPfj1HpIYyo/Yzqe9zALnXsA0XBSvOpYSftCmes6H0BwUugSc/ImDcPF0eLM8Xqy9iTq8/WpsVN+170RiRnoDFIH9L/9ru/C0uYmlre30VpfR3N9HcUkQSmjX9S5xPeqp/RdnB9mlPJvDdzn83kUbtxA/uZN/N0L34W/lPw9/Or2r4Z3vlB4Ad+++O1YmF/A6uoqVlZWQvtjeGUWLp1MJmFJzoMHD7CxsYHd3V20Wq2U3aaOQs88cflEnuXYqwPKnflav7abBrLaN7OwxWkpGvD2EuNnfS42jlpXlh2SJSe0Ho4hEyi63S6SJEGtVsN4PE7Zm6wzNtaqN9SO0j7wOf7OeX/xhRfRqKWdMwdPHmBvYQ9vfu3NYV9JBr0YUNb6mYzAPYNJE51aDb956xbevrmJvLR7lCT4zMoKupcvY2mc3vNUT5DP5XLB4cRvykcuq2P2t+NG0vjC/AI+h89NjRnLwmgB4/zRPticW9VligNic6A2vdIaP+PxOCxV3N3dRaPRSAXeB4MB6vU6lpaWUispdByUtnxuZ9Gp627HTbEAVFY5seOJL9W9ewgK3DBgcScLO+ED744n9YIr0NUB0GwlRkgnk6PjaVXQEdTS+TEej0NkqdFooN1uh3spRHkvN/HK5/OoVqvI5XKpDdAmk0lqjTLBZi6XC9EcBXYcQ43Ws30AQoSGzKHjAqTXA3PZWwyEaT88I40bxTPFkF51elQ9mqNGOMeJnmoHADq/ZDg17kqlUth3R+dagZIKP+AosqdRPL3P51lPViAYoKHPVMQkOTp+OJZl5go+ptyPM+5OaznOiMgyUoD45rg+BvqcC6esdyqY4TWn23K5HPYmc2OSGQDNZjM4dzzLgffGQA75k/RImiPoJ2jm9eFwGKJN3L+NTkxNH1ca1M00uXebHt+qAJrGhfOdZu3pfGUVlQ/MFFL5wXp97tSA4BzSWes8p3PmRqXXH/tf3+uyRmUjx9Sdda4EaaTxfq2TMln3FuB9Z4GXYwbfSe7T+zmGpVIJi4uLIWATeyZm3FMWs2jGyqy2ZQFdXTrG7AePxKlOUJntOpfflBGxcVEQrphAl/clSRJOYcrn83gwfIAvHnwRz22lj3IeY4wXBy/iVusWVpPVqWxf//YsH+8f+6iOKdVtMScP97lR+aFOAtbFe1Qeuw5VPjhOtug9Hq1mffyOYQWvwzEi54THWnc6Hezt7YUsPZULZ6Vk8YT3nQ4MXeKldKv7XxH7qjMCSPOuY2yV8YrRHj58iHw+j9u3b2M4HOLZZ58NNKV0Q2eLzz8QPz03l8uF/eRKpVLYvHw0GoVtGs6NzuGJ/hO4W7yLSSJBskmCpydP46ue/KpUJp7rTdWPpGM95lyd0UmSAE88gQMAJQBl0anuhPUsH89Sdv3O97AOzvFoNMJocxP1j34UpV/4BQDAFQCf+MZvxM/8lf8bXxo/RLlXxipWUa/XUSqV8MQTT2B1dTW1oT7lQ5bDX2lqNBqh1Wqh0Wjg+vXruHPnDu7fv4/d3d0QIFfjem5uLrXPjGa9Kp1yfvkMN8cn7mIbuBxLrzEIV61WU3gsZsectuLZ5FpUJsfwRFZA221V/u2GvMsIvhM4ys5tPdo8v9FoYDQahRPbPEPN63ZdqwkDbJfyuOLBfD6PbrmLB/XIutEcsLO8g5XnVnCpeCkcaFKv14NjhE6i8XgctrtpNBopW67dbuMnVldR/Df/Bm+5fbQh/xcvX8aPvPe9eDKXC0vPlZ5Ja5QN+fzRfqnsBzdL5zYt5AnH55PJBC+NX8KN5MaUfLo6voqFgwUMc0eboVNmc+51iTnfrYEh9bGoHaF7/jEb9fXXX8fGxgYePlqCmCQJtre3UalUsLa2hkuXLqFer+PcuXMpm00Tetyfojpa26qOYaVl0gd1x+Pw7hvKeFIwpZPig6nGJ4mAdSjDOfDQMguwEJjo8hKd6Kz6aKQyva7f7wdFQiBHQTiZTJ+Y5g4RKj1+u9JTZeeCxseEwJkCnH1wwlDgwDYpIPXx5jWN1FAZeDtYv7ZXgYc+y5IVrfD50zq03TEh7sTvEV8Svz7rTjMF25xLKsuTtPck5XHv/90uMaCv31klNkfKj2pg+JxmgaRYvVkZCKqo3KFEQa2bzSsId+cKr2t2gAtPZgWSxpzuCNK4iSHb4TytGU+MhGrGk/ZR263t9/GNjZ+3kR/fqFl5xAGGjpMbxP5Oj4ipbNKPllid/k6P/MUAl97vukTbqMqVx88yYEKaojFxHP3/bpcYYMi6J+t3vW9ubg71eh0HBwepU2v5e8wxwt+c/zgP+h1rkxZ3Fup7vY9K1zE6U92m/K9F28Y6lP410ypJkhCYmZubQ2PvBv7dDx9uZMqiRznf37+PhdxCqh8EZdRzfLc6RZ22XW6q/tV6vHBsCNZZKMMcj/l4q0xwGmK7/H0uZ9wwicmMWXKB97CozOIWB/l8HktLS2HvHs8y1SWNp7HE+sni+pKYtFQqpQKtqg+Jrd1hyLHTpZkue5W3SJs0wHZ2dlAsFtFsNlPZVzEZpDI4ZnCrU4POif39/eBQY7QeAP6LwX+Bfzf373Bz7mZ4/lruGj5S+QgWCgup4Ci/ORY+zirfdSm7t9HpUnnCdYQ7ntSppXvquGOVpfbf/rco/NIvpdpa/ZVfwR/4f49x8Xu+B3t7exgOh1hcXAxBWt2nR3F/TEbq3FDP7e3tYWdnB41GA81mM3UiMLE854C8rpiZ9TiuUlpwg19lzWQyCYE79okOVW2rj9VpLKo3ToKfY7pzFi7y9+g86Tt8zqkbmITBg7BWV1dTtOv2krdR7chYW/Sela0tLG5t4X61ihtrzZnjNn9hHheKF4Is8RU9WtS+pFyYn5/HcGkJP/ihD2F5awsrOzt4UK9ja3kZADAnp026/ae8zH7o/NEhxZVOuoJJlwuPx2N85/0/iM9v/Uv84sr9cPrl1fFV/JH9PwIkR+2P4Q+tx+Wmy2O1izkGlM3coF2XBarsbjabmJubCwky3G9OHY9KS04DMdrIsr0ZcB+NRlP7cs4qj+V4UoCv0Y1cLheMmxhwdKWpjg/toD7rE8HflSDJZBoF4Hv1xDrWwXbTWGTkezAYhDRApipyIIvFIpaXl4PiBYB+v49cLhciHMoc6pDh2MQAWZZiZB3MfOKYEQTzm88qyCdx0Aut0R8AKeXLNihz6kl/boRQMTESosuQJpNJKurm/WQdZCJmgeXz+dQJLU7UuvHhZHJ0QhDrVJpTkOARHApc0oNmlLBNahjEGPAkvHHaC+lgKEI6yxjgPLjgzlK8sWf5TnV2ssSMS/5NOlbjKJfLhQMOGKnT+hil6/f7qSUKLmNYNDWcz9NA4/gAR6dfMhLCNGHSCDdVZARXIxVsOxUb04y5/p6OJ1f8CuJ83Jw/3cgm7+g+HioXVCmyLvIVx0P3w9K5UF5WGcxrs+bb6cINJh0DyrcYfTp4UAON13WeFQA/fPgQL730ErrdLnZ3d0Okdn5+HvV6PZohc9pKlsEe+0351e9lcGN9fR3FYhG3b9/G3Nwc2u124AN15pE/WHxvDnWauHNE9QL/Vz6nHKdM8ntcLyhWUDlPnadZPz5WKu/5YaCJWILjpEeNf/s//iSuXU/PBY9y/sBHgOqgih7Se/EkydHG0GwrDTjdZ0KDUhxPnSffyyfmOCAfqx70jAbyiwbq2NbYfks6buok1N9Utih9OMDWfviyD/aXuprXGPwj1lpeXkatVsPq6mrIAmHmIt917tw5nIXifBtz1jCLhve32+0UDmYWA/c1VSNel606z8RkOse93++H7Jher4cXXnghHADjhovSoQeDXB/QgUanSi6XQ6PRwPz8PJY3N7G8s/Noyduz+O9y/x22xlvYy+3hYukinqo9FfQunY96GIdiS56Q53v3OSaP4V/NUlJsrnTL/x2r00jVbAb/nrt+HfM/93NTtJCMRlj8j/8R5/b2ULl0CUmSYHV1FaVSKdgYjqO1xJy9lAftdhs3b97Ew4cP8frrr+Phw4fo9/spOiJeUkcv+Vn3AiMOj2E5OhFU3qgspMNpcXERa2trqW0vzlLRsQamkyhcf3lwTu/V+7RO/U3foddn2Wej0Qi3b9/GwsIC1tbWACDICnXkazuysF7M0ZBvNPDHfviH8ewrr4TnP3f1En7pTx4GYWLlfe94H1awgna7PeUEB47ojW1Q23Y0GoVTTPf39zGoVPD6xYuHB/7I/boKJ8Yn7A+DQaRjXY5L5ygd3GxbvtHA7/u+78OTL74Yrn/22Yv4oT/yfhRLF1J7tHHOshyxal9k0QP7TQwBAM1mE+12G/fv38e9e/eC7mPdXJLe6XSwsbGBhYUFrK+vY2lpCU899dTU6gp91t/tuoJ6xAN1PEGch1N4gCqrPHbGE4sDv5iBoCCCxEZiUsJwABK7RydKQZCnW8cGVoEzUz+pdNRoUQAMpBleFbsqO1VYFL4s/F+zp5TZPDqbJZDYDypw/02NOVX4bB8dZrpOXwnE28U+6f9+3duqSkkVkyshnRcKPxVqsXZRUOj86nyoERMDdAQLVHZzc3PR5QDHlZgwy1Iap7F4G7OEsz8T44FZBrDShgvdLMWm9TuNsZ1c0lYqlULafgxYA0e87O0jPeqSNcoH0pHKAWYQ0AHlDjEFnkD6NCoWOp70FDvdv0kNPXXcuPHvkRIffwU6+lGFoXPCdzoQ8He5bIiBqSxactqJKbpYP2L6RMdBaUz5PGYUUS5SSXY6nXDs8Hg8DvIxFqE6TeUkMkrnKSaTlHbofOIm49wjzZ1MQHwDVKcNbedxssLpzGU39YI+79hCP1n3ZBkAei2WEcI+A8DCxgZeeOXW1FjyKOdv2noSS8tLGCfpTF6dD+2HGuNsh6a0a7tdtwLT2cWup4mLOA+sz5ftzgLnMR3rOE6vH6f/lA/Vya2F/aK85YcGeL1ex8rKSjghbDweB2cMZe5ZcTxpifFVzBDkPY51VF/MkhEux7N0+MHBAVqtFiqVCnZ2dpDP53Hu3LlU9j7rUIM7iw95H50c5XIZ4/EYa7kc3vPDP4ynXnoptOH2m9+MX/hv/hssLV1LbdbNDbvpePIlddRLemqcOmqdZ9TRrYFwx/XumHInd9bYK//wO3fjxkw6qN6/j8m1awHr+IlkWmKYTN83Go2CntvZ2cHOzk7AS5wvb6/L1Vny3uWBXqP803FkpreeKqv8fxLddhpLlo3qcjF2n9YRsyOy9KfKA8VyBwcHaDabIcDBazHd5no7psdVN2sd3/xP/ymeejW91+Gbb93Hv/p4Be/5M/2UEyaf5PHO8+/Ec6vPodfrpTC26+AYRnR84OOTNabOFzpeqn9pCzBQQ75TZ28ul8O7fuAHcEHkFAC89foGPvqvfhE/9Kf+1BRmiAVkda5jmJXP6woFH49Zetvnko5nOvl9nzsfN6UR53vti7aF40jn3++448kFoDtbFCQmydFJVABC5kpsczzgiLjILARN3IdJO89CbzzXdTKDRZUIB3E0GqVORWEEhwYjo0PcmJj91U24VcHqsozJZBLuo4EZBveRgUlPpBITx43ppioQNHqoRKqMomNGMOfpiWwvIwtsGyMe+j5+k4AUFCsx8vQYj7yyfYyMUeARNOhccH+cWq2GfD4f7lXmpOIbjUbhVBeOrxrrZFSC1ZhRPDc3F461JYDK5XLo9XopBeuGqyuOLMfgcYDvtBQVhsorxxkNQLZCdDDrGXy8l0tb+eF8KQ2NRof7jC0vL4cIhs71wsICSqUSVldXMRgMcP/+fXS73dS9VBi9Xi8lO8gfjCAuLCwgl8ul1ncPh8OQAUlHE+mVPMm+kncLhQKWlpZSSt4zJzgWlGdsg9O7jpvTmp7USCNUx8Z5WKMSfNYzsbKidLq23kEH71PgTlrS65Rzuocb282iACpLmcb4jlkQSmvuzHPFncsdnkLK03y4eW6r1cL8/Dw6nc6pdzwBJ3Nwx8BD7J5cLheM+EuXLqFUKmFvby+VQZH1YVEnh8oT/d/bpcDKgS2L0qbqNMpu3+DXAT5/47s0AzBGz67r9PfqxsbM8f4TG+/AzdrRPkvUZc6X2v7BYBD0pWcnsU/sA2UX9bzTgTqkNKLK7GQuBeKR7MQqSgcKnMk/Oq7qFFK+nxVI4HzwOjObOa/ETZxbvqPdboeNxDudDur1OtbX13H+/HlcuXIltLPb7WJjYyPgq8lkgmvXrs2cq9/tEgP0scJTo1RfAodjpBkrSXJ0TDj1jupnnSN9p2bBaVBiPD7MGmJE/Qtf+ALW19exsrISHKS6DYTu/6RFdQLphVkE586dQ61Ww9f+jb+BtZdfTj13+aWX8IEf/mF8/ru/O9RdrVYDXteT3bSfKvPVeGMGFJeD8JtZjqo3srKM1XnCQJPifeVXl7kpOfzsszNpo/TWt6J87lxqTrN0ovY7Zjzu7+/j3r172NrawksvvYStrS00Go3UEvOYEUza0BUNPt6UA8AhpqSMUocC72Wwt1arYWlpKcwl9TZpTu2T0150PDg+lF2qj9T5pjaNG+dZzhMNRjhOpp1GHhuNRmg2m3jt0UmNpVIJ6+vr+Oqv/mrUarWgQ9S+1eLvVluNyRrD4RC1e/fw9Je+NDUm+ckE73q1iz/cfQE/VTly0Pze9d+L7/mG70FlvhKWfHFlgmJr4m9dwaS/q+52fRP7X/unfdasPO7hqA5u1cMslTt3cOmzn53qc24ywXOvvYYLrRY26nVMJkcrfzjerFv3jqIN7ys3kuQwu4kb/zODmc522jl04B6HV2nLNJtNDAYDLC4uBn6kD0PteB2rmMNL6dcD5JQDv+OOp1jJAqNeFNjFFK8CZQcu+i7W4RGfWBt0INWxoNFDzR5SI1CJThlf26rv0UwC1sF3ezRVn1PQ7hOuQs2VmhKBGqmxvng71bDkR+fHmdsdT9o3F4ZqmGu7NQLM6yoAqPizxtiNjlm0Fhsv/Y0Rl/n5+aCEY0L3JAbef45l1ni4gtRrDoZIV9ywr9VqodvtotfrhQ0EfY3yaHS40SidAVz+pA6GyeTQ0VutVqcAD3mN6caFQiE4pvk8hT1wdIrGYDBAp9NBr9dDu91OZVJ5iinHgm1xkAakAQOvq/zSpWTatiy6VvnlfDhLLsU+LGpsECzFopcqB2LvmQm0jaa83VmyKgZ0s+gsNmYqgyh76HjQU9P0/pMqzNNUtJ9Zv/u4aVE5zGgfkD6txjPzshxK7vzR9vGa61F+Z9GoyyG+O2YkelaI1qFANuZ4Yp+zeGZzYSFzDgCgsXRuKtihPKQYgW3i/7rfio6f8ovqesocbbtHLxVPxPT6G3WwZulE7Sv/j/FmlnyKXWM79RRQAm7KeEb4acicZZ3t+lXHQQMfuowMmD5pyjG505BjuKx5ouOLDvrd3d1grKl+y5IvWfKGDsf5mzdx/jd/c+qe3HiMtd/4Dazu7GD49NOpjCdmJmibXW8AR/xAxxINLMUlikndyapzwPrcMa5jndVfL5PnnsPofe9D7ud+DonKg3wew/e8B7k3vWkq60rfFcNd3h5imm63i+3tbWxvb4clOppV4s9RprAOz7LM0rXqIFAsRBoh33IO9VRifWcWZj+NJUtHqQx0+9TvzarvJO/mWAFHCRjdbhetVisE0BiA9YCctnOW7PWlb7y//mgz66zy1+Y/iD/xdW/C1mQL11au4bmV56bsVl8VA6Qz/Ul3GsBRPM2idKN9iNG33quZm57VqOPAeo4LPK3t7eHh4mJKFpPX2DbdgFu3f/H2qa2h/Mo5BY5Oas+SATqnpI9erxdsXg0Ga8mSK9pGlQl6P/tzUlp+Q44nFxYekQbS4JXCbH9/P5UJpXv7AEc782c5KZi5pIygXkxXJkoA9PLxBA1GK/SEOs1G0nfQUOTvGknM5XIhhTDrJC0fO7ZL7/GlDWqIsv3qrVRD3AldQfl4PE5tqEtPqu4X5XPKe3RuvDhQpwe7MddAr95DuVtGqVtKMYh6nnnCHNf+0+vtc0sQpFFRzl2WYaLClu/lPl6Li4soFosBqMayKfzEJP7mc5Y1x6e9qBCJFXcGuIEApCPjagBSqG1vb6PT6eBLX/oSNjY28ODBA2xvb6PdbqPVaoXsQ0ZQOfbFYhGrq6uoVqu4evUqyuVyyHS6evUqqtUqlpeXUSwWsbGxEbKUJpNJcGzRkbSyshL28Tl//nw4xStJEvR6PfT7fbz++utot9vY2tpCt9tFp9NJbZLnmT/su/Ii6dj3jXIe4Zpspr9q1iOjLa5g1QEAHO2tw4iuRhgdnPrSVdatUSZger8rjRr75r0xOtG+avQyBib5N52D5FX+puA1NgaqdzTi51EvjlWpVEKr1UKz2USr1QoZr3oSkWbM/edQZvG2F0bu6/V60AWaHcR9yXxpiYIzH7esiK47Mb2Q5ljc+OOc67c7XRyQUZcxO9oNdeVPXvNs3nu1Gl68cgVvun176ijnl69cwUa9jpw9oxiGPKf/M5rJbGrqNMoUpvs7liBwVZ3vTivNXuG3OtHdKeHjwfGO0ZECTR9nZiLyNwWobpRlGWPalkqlglqthrW1NZw7dw71ej2M2Wh0eNLR9evXg9w+C85j7W8M+Pt4cM8OHpHe6/XQbDZTvKJOIPKpOllIL64jiHX0OnV6r9fDaDTC5z73OSwtLaFer+PChQsoFApYW1sL+NeL0yrplL8x2zi/uztznC52OhhevJiS82pk+njGxk5pcH5+PrWSQGXRcDic2iOQ1/X9mnXmfBNrT6wM//E/xty3fivyP/uz4dr49/9+DH/oh1L7yrgTLVZf7Nr+/j42Nzfx8OFDfOYzn8Hm5iZu3rwZslhZyKPE4roqgfvQEQfx48Fv3kvspc4nZjYtLi6iVqsFXmaQQ/uYpUdOa1FZ5vJXs760X+788Pp8bvw9LKTpXC4XHE7b29u4desW2u02Hjx4EFZ2MMtscXExZAoSx6p9F9OHai8SDwyHQzSPW8p87RqurVzDm+ffHJUPlP0MIFBfMEOI40daApCyv9lu8m+72MZebg+Lo0UsDhdTNiz3aNRMYuJt34sMQOiv6tIkSdBeX5/Z5cGTT6JQKAR/Bu1N0gXHmzKTW4awz3yO7VbnE4DgvCVG4+b8J80QPDg4wM7ODsbjcdh0fmlpKYw98Ql1hepY1eWKwRXTcLzqj7K+TlLekONJlZQaF86ELLEIm97jytijM270x5S3M68zFOt1g0gdV+5Y4LPj8RidUgedWgeVfgXF0aGRoksD1dhxAa3frFeVsbeV79Rn6FTjNTqV1DB2AaKAkymTZF4lcGc0b2ts7jwjqoceXvnqV9A8f3S6wcLDBbzlpbekjOmYU9EZyOfN36sANstzz+JOIl3H6869LDA8q2TR/Fkos0CwX4vNB/9XZcoMp42NDTQaDdy6dSsc+7m3txeWTzBKrZsCapYSN30ul8toNpshXZtAmRFQGsG6BxM9/JvjTXT3u7icu4yV4UoKFNAJwTY1m81wbLdmYmnkwSMa/F2Xpur4OI9oVoY6WRTwq1NFaVcN6iywy79jH9aj8sGVrNKy8loMYGfRkwOsGKCMyTsvMVCalQHqffX7Dg4OQkYbl1q4U5BGxmkuWbJYx1fnMavEeDjmrI8Z8q4fs2RITCZmzbnSW0yP63s908mjnfqcRm11Lzg1GrKAt3/+0R/8g/jzP/Mz+IrXXw/vePnJJ/GP3//+qb6rfGAhtiCYU+eWZjIpDXoAQPvr9BuboxgNxJ55HP2lz/t883fNINF2xLBQrE3qlCcv655PHLvR6HAZfrfbDZvWnsUSc2K4HiEN6xjQYNEAneM6x79qDMUMYh1DBnrn5uaws7OD+fl5tNvtsGSTWRVOBzF60vfMzc1hcsySyOS551InxM3KhjlOnzgG1Ofc2c0xII7g2I7H4+AwIW/Hsq+y+s73JcvLGP7UT2H4yitIXnsNk2efxeTaNeRMt2fxr7bd6yZP0BHbaDRCkI/OpCx+1Ot0blNWuY1AfELsxm+uJOCHBjMzFVW+ef+O6+9pKSfBXv53rI6YDlX8pTIhRrd0rLRarfDhSgLVPZqIoLyfhRFZP3nAbazG+jpef/Ob8cRLLyEnsmKcy2Hnq78a+089hXIGPjgOS8Z0sDphdJVOZ9zBvy3/W9wq3ArPP3XwFL65+82o5qszsYa+w8eC/VVfQGN9Hfff/nasf+5zU32++8ILaF+8iNze3tT4AmkZQf1Ph5sG72NjxPvorNUA8UmwqvIz9cVgMAiOL7W7s3Sz/8aP+iJmPZtVTux48ko5cBwU9aBqQzTDiUU9aXxG36Hpb5PJJCzP4clzHHwFkcym8j2IWKc6P5TQGFlk1gGVe0hrnjvAq29/dcqhcu23roW9h1gvDWF1amk/NQtJl7nwurbNBbRmJ6j3VudD11tSMFERMcNBjW9NmVbj2JV8TDiRgVjna9/wGjprndQ8N8818XLhZbzz1XeG9u3v74f9LbSv7mhTelDjgu9NksOT/vb391MRgE6nk/IgK+NWKhWsra2hVCqh2WymIl3aT+CIWdUznXWvtvU0F02bBqZpTf9XMBpTjvxNT3jZ39/HF77wBTx48ACf+tSn8Prrr+PevXtoNBopRUKhDiCAFs3eefDgAQqFAu7du4d8Po/BYIBCoYCv+7qvw4ULF/DOd74TFy9eDNGcTqcTHEeTyQStYQuffdtn0b3UDX1/eutpfCj3IZxrnMP+/j5u3LiBTqcTTnmhM1Y3Jddx0mgpx6DdbmNubg6tVivIHs3CIE/5Bo+8R49t5RJA30eCkQ1mQ+ncqJylwowtEXSDjHzOvZ8GgwEATO1dx6VpWYYi361ym/Sgpx8p7elY8PkseaN0ps44HwP2U/fA01NId3Z28NJLL+H27dt48OBB6h62od1uH8s/p6k4WIoZFCd1JiTJoSOXoIS87Nlr+i7KR42IuSHmQYEsmeJ0631SRwTpy5emKo1PJpPUnhHM7FWHso6h730Wc/oe1Gr4//7RP4q13V0sb29jo1bD7traIc8+4lfWRZ6KZSR6+xWg5nKHJ5Qxm5LGPbPxiHk0MEcdrAaC6nX9/zjDXWnGMZka1Rr4YduVLkgb7BNP7lSjiu/gGHGeAQTHBtvFbMXV1dWwP+T8/HzYD6PVamF3d/dMOZ5i2Ibf/Ft/I7bRrFziupgjnbTI+ef8MauAbXCs7cFX7hHy4osv4v79+1hcXESj0cDzzz8feDJrX0L2I+bwGL/pTei/5z0o/tIvTS87e/e7MfcVX5EapywDWWWg3u96QscYOMpMoXxgub9/Hw8OHmC9sI61ZC3o4rm5uUB7XK5CnaN7XvHd+n6neQDAtWvAc4fLkBJMy+yszK6sQkdZu93GxsYG7t+/j7t372Jvby/IIl827c4I2mpqW3DPGg2KFYtFrK2toVwu49y5cyiVSqhWq6nThJkpy+wM3d6A/K6fWQ6J01SUd4DpQLriLac9lZFZBr7L18nkKAuFvMrsxwcPHuDOnTvodrthVQufJ12rjKaNxDnVd7BoBpLur0RZMhqN8K//q/8KH/jhH07t9fTwbW/DF//6X0cuOUoU0YQM4jTf2sUd6gxc89T5RqMRTp/n6obhcIhPXPgEHsw9SI3f63Ov418W/iU+sP2BoGOBo9UBvDYYDIIc1KAPv2lr65j84kc/ind93/fh0uc+F67ff8tb8At/4S+kgiTqINP506wr0r+u8FI+0ESRXC6HarWKWq2GUqkU7N3HKaxzMBhgZ2cHBwcHWF5eDqssqAc4T7Hi+t/tihiOn1W+7D2eYtEIFyAx5UpC0KIATYURJ5AKVoHwLGGlwC5mLMWMGOAoy+HJXg+jJ15GM+mhKfU215p45e2v4LlffS5Vn4M8B3zq5FHjO2b8c1J53SOkqhzUCUAGV0eTRsj4bgWw6nTi31kgAkg7ZQ4ODtCr9NC5kHY6HTYM2F7eRq/Sw+JwMShrzy7wOfKPjq/er84AbZcDUAJ+ZtAQSGQxcAzk/OdQYkLB++nGa6y4okqSJCiH+/fv486dO7h16xZef/117O7uotvtpowhPkeHoy8bI11RKNLB8/DhQ8zNzYXoHeeTyoh1f/HNX0R3uZtq883cTfyz4T/Dn9n7MxgMBtje3g4Km04n5Y0smaD9J68BSBmFumSNRoMqeFVShUIhKHg6ZhltJL/oenfP+OD8aRaA7gniCiIrwsP+qLzKilBlydJZ15Sm3Kh1YK7/+zzoNW2Pv1+df/1+P+wxxhRuDQDoPJ7mEpuHkzyTZfzoGNPo0KWPWe9T2onpYb0Wm39/N+tU/UNQqDKD9yvmiOkmACkwq5vla1/4Tt1niXpUDUnVwbtra7j/aIPU+UfPFAoFVCqVILeSJAlOcAffWp9mmLg+VhqOZVHrfPr8ZI111rifBCy6To5lzMRwW5YM0OJ1cX6pF/b397G/vx+AN4CQbaMg+Czx8CxdnIU/fPxJ07o0XJ/R+x3n6ljH5Ce/ScOtVgtJkmBnZwflchndbhf9fj8smcmiN73mtNf4/u/H4l/8iyj9wi+E+4bvfje6P/iDU3yf1T/FrsD0QRkxGlHsyk9r2ML33vtefLZ7tInwW0tvxXesfwdWJ6sBP2q2AgOcisOVbxVHxMZj1nidtLhNxYAzPwwgxHSzy16OH7GMYmTaNsxmqlQq4aRJnjaoDkhdyqSyGkDU9vP+nJUSwy4uU10G8l4tfk9MBnCeBoMB2u022u12cMzE9kuNYU5vK/kiJrvViaJ4slss4ie+/duxurODlZ0dJM89h4OrV7FYr2Pe6mbfAKRssyy+pN5mn0jHegjQTrKDjdr0vkuTZIJ7lXvY3NzEymhlCiNon1Tm6ZLlGKbI5/Pol8v4xF/9q1ja3ET9wQM0z59H4/z5Q9kre+75uFInZdXttOA2rNquOodZcmVWYYbw3Nxc6gCZ4wJTU+Mc0WGP26bHdjz5oGnEg7/r4BHUKiHS40dHCetk5xV88jo9hRy4QqEQhKxuRKzRM20HJ1wj8ioYSeSTyQTz7Tb+2mc/i6/f3QV++7CfP/0s8OEPAntlADmgtd7CbrKLUrcUiILGn0Z4XKCooaogi5Pn+5u4gcVvFwZ6L/uuJwSoklahrwBGQUpMAWh/zu3t4VK3i9eSBF9cG07dq2W/to9SvxTGnPTCuWIqMPfvYlsZyeX40kGgY0ngNR6Pg5dcIwb7+/soFotYWVnB+fPncfHiRczPz+P27dtotVrhPgUM3mfOlUcD3ZA4a8UNBBdq5EHts0ZtGP0aDAb4/Oc/j42NDfzoj/4obty4ERQi15krT6tRyXZ4Bl8+n0+tSweAra0tjEajUPfi4iKeeOIJHBwcoNFoHGZH1QbYXd2d7msywa3CLfz8p38epU4JW1tbAXSqklenLOeeTgrtg44T29ftHjq7POOJhWOokWKPFvOdmhnBcWb2AP/XSAuLAmvKBhrDOufaB44Bs5uYjcG55pg43bC9SjsKYLVPWfRH45IynW3TTFnWwwgQ54f04qnkbA8zXfb29rC9vY3BYBBO1PHUf816Oe1llvHK39UYnOWk4FhVKhWMx2OsrKyEPdKYMau0olFVB1EqGwCk7gXSGcG834G7GoU0dNxQVllNvlTnNYMu3MvQo5C8j3qH2W7c82tlZQW1Wg3Ly8up06W4DPfevUNwy5NZL1++jGeffTYYBM1mE3fu3Alt4OEKxB/5/OFJXbGlOhwfAm9mn6lM8OzoLCe08ygL6/A5VF2n8l75VHGdf3jarspLPqOBMc1+0G+2jePd6XTQbrfDcrq5uTlcfLTvD5+pVCopoH/aiwYclVd8vBjx5ngS41KuaRBPMbPzpvKX8g+fj9GA1kG8xdMuf/u3fxt37txBLpdDs9nElStXsLa2FpahxTBEzHgej8cYLy5i+5/8E+SvX8fczZvIPf888NxzKRyQ1aeYocdxVMObQVcarq1WC/1+H51OJ8Wf37v7vfjSQfq0ri/0v4C/fftv4zsWvwOFQiE42hYXF0N/mXmn2UK69yDLLEdTbK5cZismjxmqlGcaRFODXrGIG8F0WpD3dU8ttV+4P1epVMKFCxdQKpWwtLSUctSrs1hXCqjcyipnwenkp6yrIwU4sodjdrIGFvQZ/1ufAdLZsIPBAHfu3MHdu3fR6XTQ6XSCDnC+1SBqpVIJNFwoFMLKEG8DnyMGoF2mqwHocN1eWUHj/PlDfuj3A15n22kjOP3pu8h/nuG0u7uL/f39EBjmMsJOpxN1OmnZHG6i0D3sK2WeOlM5XsSADEbGAk7UNezL9soKtpaXD8f6kUOMmVqkeXXokLcUs/A3yhCVifv7+2i322HO6vU6lpaWUKvVUj4Mz/g+Sdnf38eDBw+wu7uLTqeDcrmMy5cvo1KpYHV1NWx5EitKWxwL36vtcdpzYsdTVoMc1MSUg94XU0QuZP15VYYEMS5U3auuz2ldmi2kXnkq8Vwuh//pc5/DO2zzw/deBz72E8AHPnJ0rVfpYa55ZDC5Ee+efXUQzcooiikp7dtkMsHFVgsXOh3cKZVw59HGgCxkdt0cMDZv2uaYIaGFQrN+cIC/8cUv4p2NRvjtU7tl/NHf88gpFymLw8UwzrGNLt1QZps8WhwzqPi87//gba9UKuHjAuYk9MfrWfNzlkoMwBx3L+ffgSyN0c3NTdy9exc3b97EzZs3wxgzG0ANQHW4Krh1ByzniEqDR2zTYJyfnw97QZH/u6VuvCOPysb+Burb9XBkqY+BOp5iPKp84sCM38PFIYb1IXKNHArNwpSBliUb9X8fJzpdZilLzoUaiDS4WS/b6YaKAwN3PivfxejD5X5Mrsee5XvdmI6Ni7c7a/x0LjWqDSDQim+UfVb4OEuW6+86JzFQ4PRKftMTxJTf3aDPGntvWwwHxJ7T+9Vgiunz2HgoNvANUWOOWP5O544vY+e7NNJI3uJvHpEk6KZc8uWJekAG+RKY3qRbsYyCeLYrKzjixqTyn377c7Frs/Cc05e2h+3Q97H/uhRT53KWDmKEW/fey8JzdHqd9hLjEX7rh3Sq/WSggk4j3UTcZbgHI/VvpS/lc/4Ww4Sk352dHYxGI2xvb6NarWJ1dTU4xGIG9yy5w+/RM89g9Mwzh/wnz8fozWWS62V3ROuBOjQQuXUHjca7/bv44sEXp+cKE7w8fhm3O7dxsXgRpVIJ4/EY5fIh0GVAh47UWFaD4oRZ4xKT2XpvFi9rn9X5msWzWqcGCHyLAepIXlPnJ5fWcTmwO5QU0zmu8L7zfv0+zcXlW0xHuV0R47WT9NVxI+WhZjr5MmUWfw/lLzfZpyNW2+92tmYgqSOLWJD1u45Vfcnf/XANAKl3aIay6mYPHA2HQxRa6a17vJT75eAn0Pdpv/h+bRO/Y9k/Md2qgS5PcHH955hW7R9tH9tInaYHjfC6J/uchI5YP4OxXFK4sLCAyWSChYWFKWdWFq7mb45THod/3/BSOwUQOlGcDI2aM5LuHz5PAuCEzUr70onVjADWQSVAkKITpYYZCyeYjHG508HX7exMD9QEeP9rwLVt4NXVw2uFVnq9N0Ej6/JsBI3mOQjQDAu9z9Psy70e/sqnP42v2dwM9X56bQ3/xzvegd6jUwRUeamSJjOoQCCo0EiczrEbzP/7K6/gax9lCrH8vmYPP/GxAt7354eYJCKEJwku9i7iXP5coIt8Ph8MGxrQjKyTEXUTdJ1rbyfrciGpirNWq2FlZQVPPvkkLl68iJWVlTCuKgA0Y0MBnzokFZSpwJjFoKe1uNHAax591sw8zVaqVCoAEPYU+OQnP4nr16/jwYMHGA6HuHjxYoiOFQqFsOTO+VeNTBXK4/HhyTrKLzy97sGDB1hZWUGxWMSFCxewubmJra0tJEmChcHso887tzvo7/VTx5sC00Bd+VIzs/x/pYfR/AiN9zZw8NRBeF/hVgHLn1xGfv+Ir9lfjyyyHQ4kXD7Q2FVHFKMgCgZUkWnfFGBQPjtY1Cwi3qftcnDloJtjEstucGWsRo+2LWYM6fs5Hnr6lyo/ypZ8Ph+iRktLS1GgdhaMViDuLOD1Wc/43w6auc/a0tJS2OtJnYFqYCm9UrfyPtU9ys/e9pixGAtAeLspi/kbDSYCaToo6JzW+vQ9Kne4LyRwaEy+/PLLyOfz0azCyWQSsnA6nQ42Nzdx7949fO5zn0s5enkqGA12RspJqw7IWSgTGHUuFAohy1t5nYagYiDyqOovHUO2T/mVMikr3V7n1A0ord+dA+4IUUNX61aMw/EmOGZmymQymdqkWDPjaKicBR52kO686QFVZj5pdq46zUejUdiblJkJzNzPmkvOuR7OQZmvqxBGoxFarVYKoz18+BDNZhOf+cxncPfu3bDB8cWLF0Pm03H4XbGy4ijNvFG6Vnp1bKbjRMyoDmg6l5rNZsjioHzgvXcO7sycswfDB1jLrQWeVoc050SzF1zu6fzG5iQ2Rk4vbhxr/9WprbysTgSVd25TsC7SGg1dXULHjcKXlpYwPz9/eDKhvEe39RiPx+E5rV+dEtpXN+pPe1FZ5nPq/XA7zJ08WfWrjQI8Wua9u4uHDx9iZ2cHvV4vU97pvKtNNDc3h4WFBVQqleB4YGYz36tYkbqPOEBtbO8XcSSQzu5Sx5Q6RoGjwII6t/gMcQXtB24/UalUsDxcxu3mbWzWN6fszQvdC3iy8mTKdmF7KJtcb3pf1N71QJj7LWKOOZ1r9oM8xcOtKHfVCcfl+Qym82RCzc7nqd/r6+u4ceNGKnNZ6SeLrvguYpiDgwMUi0W0Wi3UajWcO3cuLKPVPVAdByidspA+TlLeUMaTvzjGeCw6aeoZ18mOgSQHqTGhpApJI4U+8Q7OXAAo8V3szs6YuLYDvLoMLGwtoNguYohhyihzQK11+7vcsaOGpTK3gsK/8ulP46u2tlJt+qrtbfyV3/p1/KU/+Dwq/Qqq/erUuBFwqFHqStuNRwebT/Z6+EZzOgFAHsAfeP0AX3dzGb/29FGm2IXuBbxn5z1hXx4CcDIS+0qHAosbH+ppd8eFG8fsBwUPlefi4mI4VjTWN6VjN6Cc9lS4OJA8zUXnlv8D2cYD73GAAiA4OTqdDlqtFm7evIkbN26g1+sBOFwCsbCwkKIpXfLlTgoHa0qnvMbn+c5yuRyO7S0Wi1h88ADX7newMV7Cr1/dAxT3jYHC7QIONg6wP9lPvZvfwLQj2GVcDDiRPvfeu4fhk2lD8uDJA+z+gV2s/NuVcH8MeKncis0NizuguHEnNyfXeVK+URrIan+n1MF+dR+1gxpqg9pUuzQ7SIGw1xuT1R6J9f7HSpbx5H2JgXy+U53dLvd5z1ngXSBufDzu8/qthQCJh2x4RM35wPkESBsRswBKTJb6J6vtTs90PG0cbGBztInSQQnVQXXK8aTP0tnDdnrG8u7ubqoPjiFYJ4H23t5edHyz9LrKOKdJBW+OY7YmW2jONXF+dB7n586HNmXNkY+fAuksHXhcOY72suZRdYvrTb6fNMgtAgjsNTvdjRrFMWfB8XRccZpwZylxHMdM6UMDdUA8s0RpjY4mle+lUinQBB1OAIJjj47dBw8eYH9/H5cvX0a9Xke9Xg/OCJexTjMx+lF9r7g56+Pj5Y4nPViHy2k1c457v41GI9RGNWBGEsXSeCnQYpIkge+JR+gM1+Cp91PbfFLMOIsflZeVn/mct8N5MobrPGOFzm0GcIvFImq1WurAA7UhaIS7fPE2aB+UNs6KHmZxOue1mHwDpoNbWbLU5TLnmHtVck/TWFu8HZpooXiRWXvUk/68vt+zwr2/yoPkAw2CKq2qftMsJrfLacOpc2htZwcru7vYqNWQbL0bv5z/Zdyv3g/1XexdxO/f+f0h+1iTN1SPqz09S2fGbCX+rfPibddn+V59t2ZDx8aP/EUHkAb/8/l8sHvoQMvStbNwtWaXMWObW6PQia62jvK04he+53F5+LFOtdOBikWe1YvHBqvxqPs1aAPVy+rEzg+dV5oOr8zFKJkOdi6Xm0oFVQGby+VCyi2f3VpcnDkOr64Aa801vPX6W7F//igVUA1k7ZNOlioENbZ9DNh2ZZZcLocr/X4q04klP5ng9zzcxfbyr+JXV4GlrSU8/9nngX6aOJyIaHDSA6uOnJjCePaRUyGrvP/Fa6i0q+iWuljBClYmh1kp+fl8ADV0PGndDh7ZBu7foI4xZTTd14NjyHX4TAt+05vehHPnzuGpp57CyspKOJXEnWxsDwuZUSM1SncsWULrNJYs4BYzmPQZFgo9gpF2u42XXnoJN27cwK1bt/Dw4cNwugkF2M7OTjjKXsdd59KVANvFcSadcpPBe/fuhXTvxcVFLI3H+K8//nE8/fLLAIC/CuBnn8jjT/zpUVj+WX1QxfqvraM73w2AOgbIKGccPGh7dVwC/S6N8HR1iGdfO5QRzIpEDjh46gD79X3Mt+ZTdRD8avGIixogPkdqyLqjQHnLFZMbwygDd995F52LRwcELDxcwAuffwGFUWGKP5xOPAMsZni7YlZ+0jq0XZQJHrlSOaX91P2y1MnOU3hYv4N2p/PTXNyY07nxcef1LAOIv/N6Pp/H4uIiRqMRFhcX0e/3U/LW6TE2z+4M8Tb7ezVIwKhmLAuHc6Z7so3HY+z2d/GTuZ/EjfyNQzSzAFzMX8Q3NL4Bc8Mj8KtZz8zWdMOMf9OAjxn6MWPB9buPK8GkRmF5j+IHvo/LQvl786CJX17/Zdyr3AvvvDq8ij/Z+5Ooz9VTMsuxhfKT90P5SPsem7uYHFG6cWeJ9l9llI6NF2ah9Ho9DAYD5HK5sBcWo9/+vI7pWeFhAFH85w4mvZdOFWbraHagHyKjmNNxqeImRtCBdHCT9Do3N4d6vR6cTqyfztnBYICbN2+GugqFApaWlsJc+9JKN440U4KOncnkaA8Tl/Eq41iHZh1oBgUdTtwjhvvVMANKnU/FURFPVp7Enfk7UxkUT+w/gfKojN58LzhbaCBmGZtsZ0weO7ZS3uNca30xea1jR/nEe3U5JrOUXK7qARJ853g8DpiIfMbn2N/hcBjsr8FgEMaCtKG6lHKBRrS+M2tOzwL/+rYFQLazXWVnDHv73LPwftZHudhut9FqtaZktLZD61CHoDtI6HDW01/1BGNifeotzYrXfYt0TFgX20w+1qJ9Jo0ACDRC/UfaGgwGKHY6+NC//td44ebNUM8XnnwSP/je9+N+r4/mXBOLo0UsDheRKx3hBt1bTPUeszqVTt32zcJM6o8gb6j+dluVAWHiWS7rdx7kHCkPs12sm/9Xq1UsLS1heXkZKysrYb+6kwZftD/kXe791O/3UavVcP7R3l3q/KJPhjqGuEN9GictX9apdtoRBSAxhaG/udL1BjsBOIjz6LYCUnU+kciYkuzAiPcrkW0uL+Ozly7hLffvp9abj5IEv35xEU8//DrU9msYF8fo1XohqqKeXAXl2u6sPulkunGnTLPW1LP1psu1nUODd29lDy+99SU8/e+fnhpPZSq+j5FuBftKTAQ+D2q1me+/X62i0qug0jsk1nHhKBNMlzzqxphKIx4pIaHzPjdCXOFREJDRS6US1tfXce7cOaysrGBxcTEs7/PiikPbqptG6j2kw1i2xWkurvCOA0nqYNClHqPRKBzdu7u7i1arhYWFhRAdm5ubQ7/fR6PRmIrYaltcISsYUZ7VDANuFp0kCX7v934v1l59NdXH339nhH/196v4s19/HqVuCbVBDQeFA+zPpbOd9B0xI17lF6+7vFoaj/H9D1t43987upY6jADAaGGESTNbOLtB7+9XkKs84sal1xnrJ+eSEZOtd2+ht552KjfXmvjSV34Jb/nMW1J1+ftjcwZMZ3NqHbHr5GuVlaovYpEq76c+y+tcGlGr1cI4UU5QrvlzZ6nE5iAGaLOMfa+LDl2e/qkyehbtxvTyrHY6sFM9of97f9Q5Mx6P8XF8HK/nXk+9a6OygV++8Mv4fTd/X7imywYY+IiNy2QyCadX+R6DswxIjWjqWLEP5DUCbY8gUieRLlUfferip/Cw/DDVzlv5W/jx8Y/jIwcfmWoP/9fxmxXhdX5RXlbnsMtJ9s+jro5jFFMA8ZR8fTedAkmSpIxWBepZ83LaSwx/AekMVb2XJZZVovsXxRxWQNqh7way4hiVfzR+JpNJwIVcJs/30LGztbUVcFar1QpZMWpUOrZwfnbHE+9RQypLbyg+VSeUH8vOzA7Slu4hMxwO8Z7ue/BzKz+Hu+W7Yewu9i7iPbvvwUHtINUeXVajJYbfY3zm9OD6MVZicxd7lzvydaNzl7NKW46z6ZhgYeYbl66rvFLeVQM1hv1n6ZGzwMdsu8vFLJ0Wm9NZNBGTsQcHB6nT3YhZYs9pe5RWPXBAHE8aodOIDhvPLk2So5Na+VEbUZdZJkl6r1HN8iGe0zHiWCom1QzDP/WjP4pnbt1K9feFO3fwF37u5/AD3/ItWMf64bKbR1NCHtADepS22C8Wd7rH8LLLYk+W0DFXJ5EekkMZ7idN8jeVx64z9TdmQ1UqFVSr1dQy7Mct5F2eWjqZTNBqtVI8rIeCuMx1fXbS8liOp5hQ4MC44UPF6JPthgFwtC8TO0UGYP3KxL4sTAUkASmJLkmSsCmvErd6E9lWZYYfeM978NFf/EW89c7R2u/Pr6/j/37nN2AFBUwK6XYyM0b77l5uFcDaHio0MrUTmo7LdK5Tury6wkkBmuebKKwXUOlXAtCmV1QFCnC074QDUzd479Vq+NWlJXzt3h50O8FRkuC31tbwYGEBczgCm0oTHAP2R73F+lHA721gHQRcFMQca1W6NDYvXryI1dVV1Gq1kEbO9rB+poZS4A0GA2xtbeH1118PGXGsP8ZcnPsnn3zymBk6HUXBrtJcluNCaZeKgSc1vfbaa7hx40ZwAlWrVdRqtRBNbDQaaDQaU+upOVcekYhFKDjunOudnR3Mzc2h1Woh9+qrOP+Zz0z1cQ7Au/Y6+Or7Ndyv1VCuH204yFOBNHqsxtasOXZwDAB/v9XCu4dpY8oPI0h2sw8+UKPDwaQLdQdtWcZkzLjR+4PsWx6jdzmSyZgDGuca6JQ6KDSz1yE4zbiydOXkJQamY0Z0zODgbw60KVMpT2j4uxxmPToe/zmUGJ35dS3Kk1wus7y8jH6/j+3t7XBaI2VBzNFAnQsgFfHTNsXki2fHuOPJQeLq9jYWt7awUa/jpaUhbs2nASkATJIJHtQf4GDhAEujowwMDSDExowfjejRmIo5a1Q+qqzy3wnatH8qezVbhRv68tnGXAMPag+ifbyeXMcOdnAhuZCaZ20D2+xAV8dYHQpuFKgTQJ9xOaLzqTJK79Mx4Dv5nOr/GNjVjxrKBN0xp8tpLC5nYviINDEej1Oby2rmis+lzonS62QyycyGJc8yK4Vjqm3iPDDq7TKd+ybt7OxgY2MjBAmq1WqQJbG94SaTSeqkKsVgfAdXMbBvLrdV/hBPqmNJg5CuA3SPx+FwiLnxHL7p3jdhN7eLvdweFoeLWE1WUyc3sQ10yi8sLIRlLxxHNZ7VoI2VmEzxoJwX5TF1buuccul9pVLBYDBAo9GY4l+1xzRjUcdE66aNQvvK9/VTXESMVS6XUavVQtZEpXJoi5CW/NTas1DcTlI7xXGhFtIOi+My3uO8PJlM0Gw20Wg00Gw2AwY+rmhg3gMowJHjjHs76uby/F2z0pMkCStjnP6YGT0ejwNdUH5p0IAfyje+X+mOvyXJYcbTytYWrr322lT/8pMJvuLWLZzb28PW8nJq7LIcT66jPZDJ53QstG0+vjqHPp7cTkbtHtIA/1edlsvlwsFXtFWLxWJqGwCVY8ViMZx4R97mUmK2+40UOuqHwyE2NjawtLQU3sMTLJn5GcPpJy2PnfGkA8b/nRmB9KbMfMaFMAmN1xXwAelIDAUgFSOVoisi7glAJaP3q6B1glMCGBSL+Ht/+A/jUqeDpa0t3MjnsVGvH4JXHDG1KrXjQD2Jjql3nDyOAzfR1M14Vcns7+/jYaGAX19dxTt2dlLZWMME+MQzsryH47s8Rq11SMSqIHSzMjdwWWLGYJIk+N/e+lb8jRdfTG3A/ttra/ier/maFC34GDttuDdePx5N8jaQRug4cDqhUiuXy1hdXcXy8nLYB0jnwxUGhR6P9dzY2AjviBU3VE57iY2pG/sx4xBIn4rBPvd6Pdy9exf37t0LabrcI4bCq9vtotPpoFQqhWfVWCP/urGkc0qe4L30znc6HczZfmderg6H2H4EdmhEMvrJyB0Ft/ZXx4b/c55Vbl0bj/EHIhl04TCCTeBmZw75Rh7jZDoblPSumQ6zihvqs+YsVnxsh7XptmvplXspx1MWqGKJyfiTtCum3LX+WJ0xua7yk2OrThG9P6sPp7WcVMbE6EPpmCUGHKrVKnK5HOr1w5Mft7e3sb+/H4xZjaD73Go2D5DeLH6WEcWiTmcHkaVuF//lj/0Ynn3llXD/Z55ex4/9iezTVPuVPkoHpSnQm+VoV+ev8jsBrI+VB0RYn75DsUzM+NDf/P2TyQQP5qedTgDw3Bbw7C4wv3ILycWLqf7EdK6/0/uvso1titUV6yPrdWeAtkfnNmbosg2UxbrMwCO6GgTwpSSnvegYutNB5RpPMaLD1JcRe4Rc8ZEaV8SU5Fkgvf0FsVKlUgk6XQsxLvG0BpMnk0lYGtlsNrG9vR0cHklytKQ1ttyGzw4Gg7BRcrlcDn3ju6inOSYu21g024nGNm0BHbPhcIilhw/xxO3buF0s4m6lkgpS1A5qKB48OlihlJ4z1kOMU61WUycl8x4NbMd4cFZxnvJCuaSyhx+Omy+1yzKwfZN6jpnaWerA0PnXZZQAUtkuSXIY8J+fnw9ZcNwDrFarBZpTR+BZKY5v/G+1Kzw4pjzpjid9VgP24/FhduHe3l7IMoy9W4vajZpJqO9jW5jdS7yuGTt6EAb1IPWUZjhRNisNuv1KjK+yP6YPabOTV1ePWeVzvtkMjid3puoSb7UjWOgg9rmNzc8s20nHkzKKfOe6021ujlE+nw82Em1V31aIc66O5Vqtllp6HcumysJfrE/v41LAdrsNAFhcXES9XseFCxcwmUxQqVRS45tlgxxXvqyldto5OlM0ikXGc0CqApIEpopXHTokKNZBRUSiojGr+yJQcCrY8ciJr0HnZPE0BwBoVKvYXFpCo9FAAQiCUu/3DfW8OIBW4ubYUEnTcKfXNUbY/3B1FfVPfhIvyF5Pn3jmcFmPl0ulS1jIH57yNRqNokeJK6Or0HRQQ+LtlUr4n7/2a3FlMMClbhcbtRo26vVMBat1aoo9AQsjVAq6CZJ0OQz7AGBqzF0I0OExHA5TO/QrE3vUhyfm9Ho9bG1t4dd+7dfC/gWxpQHsmwLuD3/4w9H7TmvROYsJJwUxCqb29/fRbDaxu7uL7e3tsLkuaZTRMd13LQaY6OhTXiXtc07UiUz65Z4N3W4Xe4/27skqzfPnUavVgryo1Woh/ZdCltlaAEIWnhszMYfUZDLBUxm0wfL8Swnu/1Yx5QB3cKLK2bMFvLhCzJo7fT5LBuXzeeTas0FfsV3MrIPXvU/arqx2s81qTBLUcKxU9qgMcoDhf+t4AkdZriwxA/UsGK0nKVnjn3Wvy3uCmnq9jsXFxRDx10ASx9Lnx5fTemBJZQ2AqAGVRVd/9Md+DFdtOe3bbj5MZRV6WcFKSua7MeCgyUGeRuR1nGL9cSMwVvS6GyWeMc56LuQupOpY7gI/8vFDp/Zh+Ve4/vxL+KkPfxg9OZ0v1kcaCWqI+xhoAMfnS4vLKg0Y+Rzy/tgSEeDI6aWOJ153fUGdMRgM0G63sbm5GbKSzwIPK685vbiBQkxNpxAzC7rd7hT2AdJGsY4j9bdiTv5OpzJ5tV6vAzgae2707s4KdVTq0rVms4m5ubmA05ndwueJ1XVvFI6LbpvgeJRt9KI2Ap10SZKgVqul6LbT6QA7O3jv3//7uPqlL4Xrn3/iCXz/u96FpgShdDxVt3gGg2JDjo2v7Mhycj+uoebB2hhGZ72kHWY8VavVVKYK61BMzHeobFNsy28GGD3orpu660oG1lcqlVAul7G8vIz19XWsrKzgqaeeCtdiWaWnsXC+va2qA/SaliwacD7m/LZaLfT7fWxtbWFnZyfg1eOKykq1nfVd6mCisyNJDrNmuOxO6Yy2KevSJWO6YsD5RMdK5RF1q7eJvE6Mvn/MKpLupUtYWFiYwnraBsoEHQcdf3cmqr9C9TSLZp2yj+p4Yh9dp7OvdIiTj5iMQscT90LOwvR8hp9SqRRkMJ1Qx9kRsRKjXe77Nh6Pw4FO9Xod5XI5ZEDxlEQf31nlDTuenKk4GDTinBGVuLj8TYGEMp6mcikxU5gpwdBjy7pjIIbv0CiPpt6rwcxT0ChE6YxSpxCVjjqzstbYc2zcO0im5/NsS61WC8a1gtxSqYSF4RB/9Md/HG8Sp9MvXknvJcNyfngeTy88HQALM53ImAp2VXCoMejGnwq0BwsLeLBw6NRKMHt9thvZk8lhijadQwQc6nhUIKLzmyRJeEadnDrujNyNRodHDdPxpGn7McdTsVhEr9dDq9XCvXv3QnRHFbsWjWCcxZKl+FhUcfFDemk0Gtjd3cXOzg4ajUbKYUjHE+dAQZpmhznQ5od8pbynoJK80e12sbO2hp2v+zosf/rTSETYjpIEL166hM6lS6g9Asfz8/NYWVnBZHIYBe52u+FDPmM6OYBgpLmBrp9Xj5n7W79UwDg/xiSZ3pdJQbYaEiwxIDPLsRDjP/aL46egGABynRxKd0roX+pPnQK4sLWAYqcY6nHHlc+fyg53LKnz1g1alQ+kFwUt3m+ly5hxoI5D1uH7s3lbzwoPn2TOH7c+rYPjVKvVsLi4mNqfIMa76oCgw5DADDgCgu7gcH3A35yOkuTwNJtnJNOJJT+Z4P2vHWb/vCL+52SS4Mnhk1hL1jDJHc0t9T+/tR8xo8CXxblBSvpzZyn7Rz2jzzrNqX7R/rPuWr6GZ/EsruM6JpjgRz5+uIxXy9VXX8Uf+dEfxY9/27el9Lj2j/1Xg56Yw3mZfVQayXI+8VvBrvZD55u87WPtekFlhhp6HHNuIt1ut7G1tRWWB5wFHnb5rePMopiXkW06gSaTCfb29kJg0h0lPlc6zyyKtbjsfDw+XB5Chw2zgrkFBNs0Pz8fsLFmVNDwaTabwWhlIJqOD/I1M2scM9MhxTY7PbpN4Qb2eDxOLXdT3hoOh3jnD/wALpoc+Yq7d/HRT30K//t73jO1JCnmdNIAnGJSGriUl97OL0dOq270MfN3sC10PO3v74egNh2WMT3LMXYjXO0pZlRwflTW0cZoNBro9/vY3d1Ft9tNZZcXCgWcO3cOV65cwZUrVzA3N4fl5WXUHu0dG1sCfdpKluMJmK2bVf75864TeO/Ozg5arRa2trawu7sb3Zs2qzjtut5Ve5jJG+Qh7iOl8pr3UZdzqw3yP/tE2vPkEe0v5YiPDema756bm8PBs8/i3tvehguf/zxyGujI5XDz2jXsP/UU6slRwJJ1q52r2Yg+l+y3YhnV+66zVDdxjDneihmyljdrIIV2CLMAuayaB6LFMAl5Tx1PxWIxyGpmXCmGeiOFz9MR2Wq18PDhQxSLxbC5+RNPPJHaeFxXFB1X3jCne8fUkeEAQoGPOzgUcGgkjicoAOkUeC28jwKRdWjnyRTqYAKQMsRU4PH9VMx0SijhaOqvO6Lc06iAyY1sNarYZjrldIz53j/28Y/jGdnZHwC+4TaiUd93Nd8VBAi9oJqurYymDKOgUYuDGRe8MQHD+ulIoFNBN3vU9F6ON5mHjh/OB+/nCQwEbkoHSlONRgPXr1/HhQsXsLKSjn5TUPV6PXS7XczNzaXS9tVx6ZE2peezVI4TRDpvTpdKhzyeuN1uhxOIKKAJMOr1OkqlUrhHFa6OG+dQFSHfOx6PQ9SXUVTNems0GtjZ2cHn/vpfx1d/93dj4T/8h1Dvy1eu4B+/970ojdMnTZBnV1dXUa1Wsbu7mwJR8/PzgS48Mqtgn+XVJMHP5HL4pvE4JUyHAH4ul8NruRwgY6nj4HLS5yE2P27A+7cqQAXM/PZnkiTBE7/yBO5/4/3UqXb1zTqu/ubVKcdEjFay2sgSc0ZlyQ8vOt4K8JWXNbrvhr/WrddikayzVmLAhCVLB88Cu6qb6vU6hsMhFhYWguHrGQr6vL9Dx9vnOzY3alh6NsfiMctpv3F7Ha+sHS1Je2r0FL65983BoHY5pt+xsfF+aNtitKv36ntcx8feyWu6nFiNhiRJ8KeTP42P7X8M2HxFMp2OSm48xtNf+hIWHz7Ezupq4AENbOm4Z81D1njovccZvf5/DE9kyRMfIx9vpSuN8PLz5QDt/38Vxw4xPs1y1lL/8Cj0TqcTjWy7EUSDUR15WpghzsAr61D6cRlB+esYlbiKh4pMJpOwBxIdUcxy1wwHN+LIP9oOHTfFr8pfKt9JJ6PRCJMvfQmXP/e5qb7nJxN85b17OLe3h1uyn5P2hc4WBtV7vR4mkwna7XYITjH7g0Yjx0exvM6zXmNx2geQwh7EwbN0V5IcZamrgcpx1/poqLv9FbPNlCY4vhoQJp7nCcYM6OmR7byv3++j2+2G7DhuZfE4GROnoZBGWVyGKU+7M8BxleqZVqsV9pltNpvh8Ko3It9iNBazpdVhpIF/bb9igJiTlxk7xJvkWwb9yVfad6U1HQfePxqN8B+/67vwzr/zd3D5858P7b39/PP4mW/91lQ2E9/nwRSVhwBScofXXcdPJpOUTam0DhytVNKVDMDRai3P4HO7ku/UjCcdOw3c+HzxXt0cXp+LBTN+JwptPx40MZkcLinc3d0NWfInffeX5WJWRtIJBKYVqhKXKxFOHjOKfHJ0ozsHQ3qMaj5/uE5S76ODQtenUnmzzZo+y3YpgZXL5ZA5pO2gQ4pRdgp2ti3GAPpxIEfBTOOdTpXJZILlzU08F9lkLewls324x1MySXB5cBmL7UV0B92UU44CgkRDZcl+sijR+3jrXCgdeB91LHXeqZx4UoMqdgVKpAt1THF86RQgs41Go5RTgn3e3t7Giy++iF6vh7e+9a2p/V8Ypet2u2E9q+7llGVc8Nudk2fVgHUgpKDLHUS8zshms9kMS94IYugoKpVKGI/HQXnGaOk4x0u/3w9zrM4hKsTd3V08fPgQq1/xFdj4h/8Qn/33/x6NT38aG7Uabs3PIzcYoPoo6sa9wAjGlpaWcHBwgN3d3SB3+E4CcTo49ZQlBX8cnz83P48f2t/H+2S8fj6Xw597RMdZYMNLjOZi86PK1I0TykyPiCRJgqv7+3hiMMCtuTncfmRgsI7nfvU5DKoDDKoDFDtFlLqPNuKPNFcVokZ8tR1u3MYc8lnGqANw3SSWkRXVM+p4igEZH9MYeFdddppLFv3EZJWPY2y8PRONwI1p1EtLS1hYWAgOZM/+yXJE8J2xMfXrDvq03slkgq3FxZlj8rblP46/eDDBDnawNFnC8ng5HAASM7Zj7Yo5TbKyUWK06vzoYDcreKZ8S6PRje3ypIyPzn8Uizf+A4CPZ47D4uYmth9ldLINvszCsyx1OUwWPypPeXb0rGccD8ScXLGS5ahT44wGLI3cs+Z4YlHZxcIxo0FBI4PjuLu7G+6LjTmv0UFfKh3uc6bLEXWsGEgaj8dh2YQvM+UzKiP0XUpPw+EQnU4nGGaVSiVsusuMChp1wJGx5v3RjA3ygsp11cOOJ4hfePx85bqlCVo512jgxupqqm4G05j1ReccHQHUs8wWI39pxsIsuRzDA278Etd6UDuLZ0k36nTiHq/EMhrIVf7UOVC8p44A3R5FcSK3zSAmbLfbqXnmigvya6vVws7ODvL5fNhXjHvPnoWic6d6IstB5PPOa6p3aMs0m82w6oIbw2fpjViJyWZttztR1FbVQwyU3lSXcu5pp1FnMUDsAU93HHsgkTJQ6Y+y6+DgAMN6Hb/w1/4aKnfvonTnDnZXV9E4fx4AMG998/FVWaXBSm23Zicp77GvuqxQn41lsGkWsc4Tx5NjqFlZlM/0XagDybEU38GtYfTgCQ80fbklJpsoQ7jMfW5uLhy2cP78+RPz74kdT658Yr+r4OOEKajUtDUyon7cgFAnDj2sKvh4nwOhWFt5nR5+Fa7ufIllssSAqEZmyLw6VkoEWWOmzzjg1LFZls28Y+XazqHj6cmDJ/Hu7XeH9wNH6059aZ0TKsdCvababv6mxZ0v+pzOAxWdbv7I+aZDSJWdAl0HNWqcsD/c4I4MyLRxVY66BKRSqaQ2TavValObVzpY9j7xt7OiLFlUGHLMVEAzm2lpaSlsyq2Kio5eX0/MuRiNRqg/2ox/aWkppPPn8/ngzNE5y4r+so1c/sb20Zm8ubmJe/fu4fLly4eZcFeuYDufR7/Vwtz2dtSoUsez0ggjsARpBJXqeNJjnzUDqjuZ4EPFIp4ZjfDMeIzruRxeWQVGCyPkdhNMto+W3fg8ZMmsGGClvNBv/6jjiUpwNUnwv772Gn6vbNT4HxYW8D8/8wxamu3Zy6HcK085LPxvNwxj/XCnpfKS02F4fwRM87obsKpPNJVaHfoxJ4k7AFQPnJWSZaxk6ZhZz8WuAUebji4sLGB5eTk46QnCvE4HjjH5H5t/XZ4bo6vJZIKdtTW89txzePrVV5GTOsZJguvPPIO9tTWsTSZYw9rh80k6U0bf4brZdZb+pv0CpjO2dQyzwN4sfaLXY0tH/T1zl94UfQdL49y5KcDqfdCosM+Vz5/2IcuY8v9jY+HOac1aVZ70cVEnl7/TnQ5nrcRwofZZs7uZIdJoNNBqtYKRr/PF53UsNBruEXFiOR1PBgWJn3x8lYb5LANRvV4vOJvoZDo4OECv1wvBHfZNjTjVi073momgzmM1Cplpw2U/dI7zw+yRvXLGCQSPyv1qNcUDareQRhmYpCNKlygRn+zv74cjzun8UQdwDEOq/POs6pi+0np0TlQ+0XlI59N4PA5bTvA+z5hQPaJ6VtusDoTJZBKwmW5KH+NHOlBpMBPH6UlcZ8HxFFuyr8Xln8tWfU77Oh6P0Wg0MBgMsL29HRymLt+y9Iz+Thvcgw4xzObYjI5q8ilxr8ppt5fdUcJv3R5jVrsdz7LPXKXD9ncvX8bu2tph4Fnsdqc38qQvd1MZomPkWFrxPe0Z5UPFnzEHnbeF8nw0GgW+LJVKweGkdmkMS3twkI4nfrQfvrKLbTiObk5aXMdQzgOHiQC/446nrBe7AqWAUUNfCYRZB8DRgNKAUEdTLpcLy86oREjMnHAqZ82IcKGuE+pAS5UKkN6kz/voggI4Yjxvt3o8WWJGm3pbNbUawJTSv//ohJCscin3Lnxo4wIWh4uH9WMShKRu5Ma6ScDsB8ebCtT74A4C/q8OHx0jV7BUqFQ0fD6Xy6FUKqWWBNKxQEPf51vbwesEBUz5O3fuHBYWFsLv/LBNS0tLGI1GeOGFF3Du3DmUy+Wo8lVnXIypSJNnqahAG41GAQywNJtN3LlzB5PJBMuPTowgj47H47Cxa6fTCadhsE6OM09DaLVaKa98p9MJ6didTieAR1eASmPMmCKvcH+JGzduYH9/H1euXMHzzz+PQqGA5eVlAAinRDo/7u/vh6WASZJgdXUVhUIBe3t7YT+EfD4f9kdQ2iHIJV2STknb9yYT3J4fofm+JvavHBnn+Rt5FH+qiLlhmsfVyFRncwyo8h7KudgeGBwjKl3y5N/8rd/CO+x0kN/TbOJv3rqF/+Gtb02BXnfWxIr/7gYQaUtpTfsSAyLaR5bxeDylUNUQocLT5Q3kYd1HRNvkEUmls7NQZgGILCN9VlEDi3UACCerrK+vhwyG3d3d4KBVutX5UVpwIyXm6M7lcqk5Ufmr3//8gx/Et/z4j+OabDB+/Zln8M8/9KEpuaxGGAvn3vGK05yCYD6vuCGWoaJGhbZfxzMWtNJv3T/DZQSvHTz9NG6/+c24/NJL6f0ukgQ3n3sOzfV1zCXTziN3ZvE7ZjDEcIiOq7dLx8DHUyPrjrmoR3SeYlki+rxe02xondezUlwOqlNuNBqFpUrtdhuNRgPtdhu7u7thvw3qXPJejH8YfKBBr0erq/NIZT/xdKlUSjkf1KEPpJeadDodNJvNEOio1+spPDcYDFAqldDtdqNyQmmPuo19UgOPhfuZ9Hq91J5CLt/peDo4OEAnn8cXnnwSL9y5kzoRepQk+Oz587hfqyE3Se/9qbRKxzv3imTWLYNT+Xwe3W4X8/Pz4fQ2njoVc0BpUaxLniBfcJzddsmyZdToLpfLIeOM76beHI/HYbNoBuFcFuj462bxnKvxeJyiSeI4dW7QfmOQj4f9cLyKxSIajUZqBcNpLroaIytBIYZ5YjJZ7YbBYICNjQ20Wi3cunUrBHlm4bCsd9NxrIdhxTCd/0ZbsfrICUtnie4Npu9Rm8+xLDPTNdPRbUjVxWpzqtNVN+JWR48nJcTGWvccoowDjjb+ptOGRe0LOtti28Ho6iZdjsjf1BnlS2Tr9TpqtRrK5TJqtVqQoY5B9EP5QjnMZ3mqZrvdTjmQ3Q/y5erG2PMqY7kPFFcOnaQ8tsUcYwRntFi0TpmUQMEjjTHnhgtXF7CsQ4lW26BCUK+TqPR6jDGPA/peN3AEvtw4Uwbn8x7tUwLWdzxYXMxUnC9dvoy58ldgcTieep8ysvfNAWk+f3Taic6B91f/9vGPgVH2Ux2IrpzUSaiGSuyj/VMh9P9r791CZM2y9LAvMiIz45aR9zxZ53RVddd0d7XGQ1v2TDOaGTCWxjPoRUhCgsEaZBpjBHrRgzBIGIOf7RdhjB+Esa1XgwWDQSCPNLKMH1ozYzwD0xd113RNnbqcW568xyVvEb8f8nw7vv/LtSPzXKors/QvCCIz4o99XXutb1323rzmdnNzE++99x56vR6+8pWvpBRAHe/l5WXMzc3h/fffR7/fT+CMdescesTW58qNittOuraopBYXF1N69P7+Pp4/f46NjY1wXUVl6f+qCObn5xOwUacJrwtltFSFsx82r+tFHSODwQB7e3vY39/H4eEhxuNx2mce8baDSbZFb+5iu9VhpY4cAiSmyypoH4/HePKfPMHZ/TMdIozfHeP8r56j+8+6JXmm2QcKuPgdUDZQOZ6q9N04VuA8NzeHB8MhvhNkS9YB/PL+Pt45PU1nW6jMjIxol8X8zPlBx/KmTtmonFy91B/Kw2rQkIfU2aD98no86+K20nUAwo3z3PPX6XBgynfNZhOdTqd0o43KcJWP6mDI6WC+R/LbsyvUoD7rdPC/ffe7WNvdxeruLvbW1rC/sXG5FqQPyn+zsmG0jZGTN2q3O6l0rLQ/uXp87LUuNySjcazVavi//s7fwX/8j/8x3vnRj1I5D7/xDfyz3/7tmQBR69R2Xfe89yNapyqXlTci+Q2Us5UiR56WTeeztkOxwXXzfNvIdSVfvIjj8PAwOZwGg0FysPA8Kz1gWPkjZ4A530U8r/ND3eu42PnW+3R2dpacZYPBIOlGNRQ1OOB6sFarJQymQUAAJYcZDR0Grw4ODnB6eoqjo6MrDqqiKNKYTSYT/C+/8Rv4z3/3d/Hvffppeub79+7hf/gLf6G0E4LkxjTHgcbmaDRKjk8NQtOZfnp6itFolA7k5e1hKi/U0chMcmITjomezej4OlqTnF/iOjoR6Syi0ayOPjdciYVp/Ot4MNBfFJfXqzcaDaytraHVamEyudyuube3h8FgkALCzH5h+cRNdCLWapeZ9rfd8TRrHfjnro/5TnlFhw6Pgtjb20vOTeXjWXXp91EgiHW6Q1DXvX6ma5IB4/n5+RRwBa5mpmv5Hqjg/2wL+UAdqrm+6HpUnMBXzjFHWeh+Bh9L9zFEck5tCJYd2fFat9oE/J9rsd1uo91ulw4Bd2LZxKTE/Pxct19TPri98yYpaqeOoT53U7qx4ynHvE5utAHlfexu9KqR5V5RPs/rBYGyB1GFWK02zcrQiI1mM6lXlVkMujDUSHKwGRksPh6cdHpU2RfWrQxFgewCRr27RVGUxvF/+ot/Ef/Fv/pX+AVRnD968AD/86//eigQFZBEhpyntiowVAM96jM/V0PYHYlapmaKqDBQXtFUTnqV9cBvzXCbm5tL33MuedL+17/+dfzar/0aVldX8c477yThWRRFOqfr7bffRq1Ww7e//e1Sm9l3jb7QqHLni4KRuwB8vY/k7U6ng06ng6dPn+LRo0f48MMP8cEHH2BzcxOLi4spKymKVrrw9sy0VquF5eXl5Hzi8wTXGsFlpIEgUm8qUocD+8Lzoz766CO8++672NjYwNbWVulsKK7rxcXL29mosOhA4lbCnZ2dEojUdayKi2BS551y5Gj+CCdfCa68nQPO3z1H++02moNmqV0O+HQNqWzUz1T2usPEjfoHkgIf0TtnZ/j0xRi449eV7CyZr3VS8bpcIM0qk5/pmvI50G0mjDozbZmynVtBeY6Fyl+2WYE/t0/cRXKgq2smB0LcSI2ARb1eR6/Xw8XFBbrdbro9hXOr+kX1KOt1IORBChqlLJP1usOYfSmKAkf37uHo3j3UajXMA6E8AspnKqgh7f0jj2oZ0VipLnadT3Jni9bh60O/Vx2o/dFXasvyMn737/99dB49QvvRI+yvr2Nvff2yPGlzDhhzHqK+sn05Y1af47s6DP2l2IE6tCiKK1s3PEqrbVFMpwYJdYXy45sG3J8H6boDkHTOzs4O+v0+Hj58iGfPnqVzXlQ/UH/y964rgGnGrBqhrJe/1bFWzKdOBp6ZqlkDbrDq35qhMR5f3mS3vLxcsgfoWNBsKi2Xh5D3er203QdAKfP47OwsBZyGwyH29vaS0yvqo/L+xeIi/se/8lewsb+P9f19PO508GRpCUVRYHFSPpKBPEdDmWNNJxEzyIghGo3LQ7IXFhYwGAxK2fO9Xg/r6+vpaAfdFUKnw+7uburbZDJJY+F2CSmSVypT9LBfZqZzPDybhvi42WymAMP8/HxpK+NwOASAZENxDtmP1dVVXFxcYGtrC/1+H3/2Z3+GnZ2dlK3XarVSAINrmEHHw8NDjEYjnJyc3PogrttrEalOdTuKa+zk5AR7e3s4OTnB8+fPcXp6mnDwywbBdI3RGUEnH4ArbZhlt/M1Pz+P9otdNqenpxgMBjg4OCjZ3ZHe5W+JDWivqSOL64ptcx8A62B5AEqXUunlVBq01Tbouc/E/oo3qY/0/FDHMtpO/859FWrbTyaTtJuD48MjC5jxxCM8crxCDM1xU1uTWWTMeIoOdH/TpLg8opfVvS+V8ZSrOAKtqhgdADkw9k65IeXKEbia6u1R2KgsdxCQ4SNAGf3GlTXb4lHOaHzcSeEZDe4Zjpwa/fl5/KPf/E1sHhzg3vExnvV62FlZCaNS2nb/nHWTSaOoYa4szcTSedb5cCCkIFLTEHORZW+PAnZvk0fJWa6CNTdetN3q2NPx1wWsRpb2LTfut52UxzhWc3Nz6Pf7CfQy5VuzwNxocsPIn9G5VyHMOnmYHvmKaeuaYhtlo7gRRACjBrFu75tMJiXQrintKgPonMhtOaORqlc1s2/j8RhH3fJ2Nqf6Zh3dWrek3NlGOtZdxuia0HboWHg79f9H15xt8ehFGn4kM91QVyc8eUDrVFKFOktheT3R77UODWLkonsRzyg/6hjfpWwJJefL657zubwpUGCUnpE6GjEeZPAxJZ/wb3+G75FM1zYqPoj6rbLc+UwBptfL531cvA5tJ/viTjZvu5aV65fLUP/bX15G/6230kHic6KTHQy7garjwf91Htw4ibCdy3etG4gP2GW9/jvHCRGGiGRJhFnuAqlRMR6P0xalp0+fpiur9/f30zY1xSeKwTSq77w1K+MhN2/OOyRm8Ch/cJ64jtTJxb7RUaTY2rcnOQ6s1aY3ReuxCLrFnc4ZXnbADBEGDqIylY+KosCTpSU86nQudUkGUzr+5rgXRTkrjONDrMR+clubjtd4PE6GIrODmM3W7/fTmUdFMb25MKLr5LdiIGZZaJAeQCnormeA5crmGDAbR5+ncT8/P5+2Dy0vL6djOGq1WjpfSrPdONYMDl1nR90WmiVz3Bms2Tl0oPImaJ7pRB6OnE431dO6BvUV6Q+WOzc3V7Ln/EWczpue5+fnSzzNedP+5spSmc1xyeHISKeqvFM70tc3MNU/5HfNRqzValdsEX2Gz2nQKic7Waf2jUEVDWLrWWsa5OJ8+dpjP3TngspyzotmPEV4+abkczDrOadXqQ94ha12GtHUih0keLRlliHB8nSxFsU060QVLA1UGn9qmGnZ6pnUdw4es6iYikqFocaVMjuA0nYtZTLP2NEyOCbq/FBgoCnJOh5ah2Z6jMdjfNJs4lPeyvfCY0tmZ13RIuFio3Jnu6n8IsZSx5TuadVocQ4ws79FUSSlygwmZqEoIOVcs8+q8KO0Siotjjn/VyEepVtSaAJI6aMsO4oEK3/z2Rwwv83ENcKoFvc4cy09fPgQf/iHf4jhcJi2v/F2OuVPYBr58uw+VQrMJGHKNZ1NBCnc4rb2woBihI1RTEYN+M71xjniGhqNRnj+/Dl6vV6KlvAMp9FolKIsLOvs7Ax7e3tJeBOcsb2MvJGnqEA0+swthMA0ar1QW8D38f3s+H+t9zUstZbS/xwLjWa7bCFA5Luui4jUsQsAn3U6+H83NvAf7O5e2aL7R2treNztoh4YcCo3PQNMZaLOe+QIcIeA16NZdEDZePKMMzo89BpfVepc14wiR0BWwY6Ci7u0jkk6purM0O9VtyppwMOdAPp8r9fD4uIitre3MRgM8PjxYxwfHyf95hF51WHqCGad7kDIUWQwRs4IBXCRIygybjjfUfDKx8TL4fdcFzljjZ+5I8cBJl+uR72cSI8rblHDXs8242917ar8ZH88akxSxwfL0rq873rmkvZVHUWK+ZScD7W/7kjRczfIh3eB2O6dnR0MBgP86Z/+Kfb39/HZZ5+l7eKTyeWh/ktLS2g2m0k3qQGrGcEcb8pFZpV4tpNvTyTxf/IOMMV96jhSnKpZu2wjz+45PT1N66vZbKLX6yV8fH5+jqOjo5IOYbt5sDkPqWUdJycnyenEjGPNlmYgyR1PAEJ8yu/dIe5jwHcfM8oS3pRLo/zs7KyUDUIsOj8/j8ePH2N1dRWj0QitVgsrKysoiiI5IT777LOUAdFoNNDr9UptVJqlq7ju6ATSnSLEaYeHh1fwvuJwykvfgXBxcYHRaJRwVaPRSLef8hypWq2WsNfa2hr29vZweHiY+kLsp3idWV4vcx37F00cqxxf8aW3/TGrcWdnJ60FlYevSupwUkyrmTDRb9gPnV+Vq5yvlZUVLC4uJhtud3cXk8kk8b9ujXWHKzA994h1UG6wXmI6xQrKixwrrn86otXOYP/V5iPPqxO7VquFGfMqb3SHjeJutt/9GbRvLy4u0O/30/jVapcO2E6nkzKdiJXUWcszStWBxLHnWqbuBqa7jLrdbsJnr5Pp9EVg35e61S4HDPQZnVB14ABxhFMp51Uk0KDR5/XlnFpR2bN+422I+qfv/uys/rlwiYwtpQgcRuVHzruobu2D7xlVpaoAxR02/D4Cxvq/CmMFnLm59f/9eTcSVChpve4c8Igfn/P+6DuBuX+v/dR2RQD6tpI6EDTKBVwqh9FohKOjoyv7k53HgXKUTBVbNH/8TCM6aiwQEAFIzi6NHur6p2NJHRtULlSatVotOSP0AH11MDCirG3QtFrtj/OAbvvQcV27WMNbg7fwpP0ERU1AXVHDVn8Lm/VN1BrTCIlGQRhNUt7S8dRXTg5oe1W2/Hd//s/jH/zxH+MXnz9Pz//xxgb+229/+8a867LPjWH+7WA+aqOW6QrcnQkEECRuI1Ado7932RCtWx3XaH3fVnoZcBrNz8v0j7/leHe7XaysrODw8DA5qiPZrcT15vyo7/67SN5E7Y7K8f+1bneW5vrr8ov98P93Jjs4ahxhc7yJjbmNK5FfDdBFr5wzztvkY6x94vPqUNI2uOxQncy/VQbmsIOWF7XH129uHnJzGM3DrHnlc9RlNDzuAlG/7u7uot/v4/nz5zg4OMDR0VHp8G2Vf8RjNLZcP5M0gk7+Ux7wCH6ON4GrDk91XgEo6UANHkTz5tkFbBODf4oF1OGljiduneY7DXodE5X7Gjjy9uT4XMdIX8TCHAvP2qcDgd+xr4pJuC2PZ1JxLLQ/4/E4YZ/IWcb258jXJbFPp9NJa4Rj5DcLEmNR13JO3BnO+de503FVjKRZGfo5f8fx5djQcXcXaJY8K4oi8QSPlOBrOBymc7yibXuvg0MUO0XHN2i7Z+kan1MPtPLMJ+L56NZ04nWvm3rK1xb1jNq70Tpk2fybcsz5W9c+++r6UYNVKsfUoRXJg6hdegnReDxOTiVmi9Pm5jiwfg+85nghsof9jCed35vQF2m7vvYqVyald44DpBOiAwiUz/ZRoRaBGkZ4Op1O2p6jdSoTUUG444RC1iebkSN3bCgp45Kxtd18nkzq3luNTgFTMA8gfa4KuVarpX4uLCxgPB6nTA22Q/uq55hEoJNKRhc3x5XfKyhndImZGNFYuKBSEKxRUs6/Lhgdf9bPdkVpjnrAHbNiNKLLuprNJtbX17G2tobl5eW0R1n7Tq+y8q8L24jHc6DqdRTFz5qYBk1wo3M0Ho+xv7+Pp0+fJocIt7ApyOA48lyodrudMtcIXqK0YQpxdbCos5Pvc3NzKXNpaWmpxL/8nV4LDABLS0vpyunBYAAA6XyJ4XCYIiTkpfH48hDXWu0yIkGQ1Gq10tW+nmHn2U5cPzr3i4uL+PX9X8e/rv9rfNqcnsN2/+Q+/tLRX0J3pYt6vZ6iI3SM6ZrldzwUVW8GivjUHcPkdZVzw0YD/80v/zLuDwa4PxziSbeLx93upbIuyttnIwBCcqNE546fR4a0GvPqUFdZoLKR5zUtLi5eXoV9cJC+X1xcxPLyclLsqnQVlBB8uEGqYEH74nLuLlJOPs2iKEqmc0/Z+84776DX66WMhsFgkM6g0THW+tRhqO1Ro1X5WPWogsGcgawvzmvuvCb+79toWQ8xg7/TYU45NJgM8C+X/yU+WfzkxWABXz39Kv7axV9De256exTb4X2NDDQ1GBQ7kYfVmIjwkTrA1UHgaf96yxHHmRFozWCJ5lBltGI4nT/V78oLDnBzPKlOQuBqNp6+CLyXlpZShs9d0MN/9Ed/hPPzc3z00Ufo9/t48uQJhsNh6pfe/EXMQ6eEZ0ioYUVMyQyker2errrnuwZmOF7kKfKaymE+R72uOph18dBczjnlN196qQjxHXUaswmIa1kns4ApW46Pj9NtuMxw0qwE14+RPFeZwrrcoGV7WDYNWcVKANIY0mnLsXNZ6E47HhjfarWwurqaHE/qfNnY2CjhKl9LWrbaOO44Iy8VRYG1tbXUZ9bJzGDFa3Tw8TOOJzGLjo3+rW1iVgydgpwLlQ9sJ+f9+Pg42WB3xYGsWEjfOSY8o21vbw/Pnz9P+JTj9iZJ+Z5rstVqodVqlS7b8d+w3S473Zldq9XSpU3k1+FwiEePHqW+UG/Mz88nzE2do2Pm9SgOo72rfMIjNMhPzHiiLFMdxv7r4eVc16xD20HsHe2mYd/VocMdEW5bn5+fY29vL7WpXq/j7bffxvLyMjY2NtBut9PzLEtvxozGRXUm17RjG56jR13BMcvhd6cvUl++MfdyBAyoaEicsEi4RIOkzhiP7kQRPhpv7hyJytfP3ZGkz3oZEfCLylTmcWHDdip48La4YIjawrI5xh4tyEVuVNnmUq+pVCPD0sc8ekVj4WMaOa8ij7LziypdFSY0VvVwPTVMZi00bfN1dBcAbkTqENX+utdeQRnXHftMPqGA1yxEXavKWzr/Cpp9zN2g4fcayajVammbrLaFdep2Uz9wj38rgNZopUdnVCkqv7F9BFba3oXaAv7y87+Mw8Yhnk+eo3PawebcZijzdN0RfBIEaiRXozuknCE3Sz591m7jUaeTxvNleF7J1130XbRGvM2RzFAjmONCo0IN+siQn6Vw1WCLZH7Ul9tIOWfgdc+9al0c52azmdLFO51OyTDxIE+OH0nX6VtgaijqmlOendXvaE4dYLv847vykBtY5+fn+Ber/wKfLXxWqvNh/SF+B7+D3zr/rfSZ8mcUjZzFe7N0p5L3xXUzy+B4awDGy/e5iJ6J+hC1Kfr8On50eeTYIKqHzicAd8Zg3d/fx/n5OQ4ODtI5RWdnZ6UsThpNqpc1q8fn4rq5Uz2ia8qxmv42mn/lFcpiXuygWTpKWp6uBzfoAJR0LHl1bm4uZTrxFeEM1Y+RbnBnHZ/T3ysWVp1Pw9b7pbJIHXTO/1rmYDDAeDxOmImBZ865ZjFETqybyEC2T8vUMa/X6ykjhca8OjUVH7LtPESc71x7qqs5lx54jMZD55jjy0yw20yRHUleKYrpLYr9fh9HR0fJ2ai3winlZOXLfO5t45wTn7vj1Ot3XOvyhPXqNj4Gkckjir35G103Uf1ud/q6LYoiOXaYDKF4mHXStiZPsX7i80jvars0GKX9pm3DtmvAnPVr1mVRFMn27HQ66Ha76TgNPqftiIIlOTs5wgq6DS/yEdxmem3HkwM7YOoUajabAFDylqsAjJwsOsAKBPkcjTIAVyItFHwaCeKznCA9GNAZUiMHJFWMLEsjkBTi2kYymWZVReCcHlMuagdeOhZ6Uxi9n+wP95FrdJjn2bhDqVarlSJO6hh0Z4PPCZWNKj5mHKhByDl30KRpxwTKCv7JJ4zw8ZwhrVOjwsob3Ge+urqKXq+HdrtdyuzJRUR9Qavy1d8ogJ9Vxm0mRsAINICpoNL5ofJk9KsoitI5Yiyr1+theXkZg8EAz549S3PLjIh6vZ7OMCAfabSS6bG63U+BqZ5VoUDHQSWjtrwZpNlspvMNeKNFs9lMa39ubi7dIKLn1SiI9FsnVNFRoTFS/c7JCe6PRnjW6+Epz2bAHFbOVlAUBY7qR6W14vvEyVsce3WMcfy5TnORK5LLY5Y/i389UuJOfq1Lwb3K2ehZbRMNRP0N26iOwWaziVarhfPzcxwfH6ftKPV6HcvLy6VxI58QrHN+ve0aHXO+17Z8WehNAA+Vy7VaLUVO33rrLYxGI3zyySfY29tLclovC/Atqzk+Ud3D5zTbSI1w6hfPJCJFAM6NbAbCVM+rvtXIp2IJAt5d7JYyGVNdtQIfNT7CzskONrFZMpp1W7Bm+joGUuPVHQjaHpbj4+qg241oACW9q2UrcHWcos4LNdyjSC0/dwc++6POyqjdXl7O8cT28eYubm24C2v4xz/+McbjcbrFrCiKtCVDt4arQaO6R+dGx3kymaRMFvKI6nHe8ESe9IygyPhSXaBBnrm56U249+/fTzeaMTOB5wDRgULe4YvygXp7OByWZAHbShoOhxgOh+mMF20bx0izpsgbGnz0QBjHUTPsFV9z/XpWj8oT4he9MU6f4Vpge4nh5+fnEybi/N+7dy9lMPAGUcVFvmYVn3p9up45V56pTbnNM5ZOT09L54npWJyfn6ebuJiFzjp4thP5lVvL6HRR28dlMceFuzo45reZXJeRn46OjtINdcQtvD3QM26u0885OZb7XJ08lBHE5p1OB60X5wFHZZCHNChNm5b8qg6zer2Ozc3NlKE2Go3SmaxsAzNw1PmTa7fqE8WUXNfcmqrnklEfeYY7dZ3aC6ovOe508hND8HO1S+hk5TrU4DYzLHkb5WQySWvnnXfeQafTwdbWVjr7am5ursQDlEnu5OU6V10M4Irdw7/1qA7ty11wPt3Y8XTTxaLCV7MNfED0bwczUZ2+0Ol88Qie/lYZW+t3B4u3S4WLf+6GXeTE0jrJYF6OpvG7kQhM03m13w7M9XM3uBQseuaSR4siAKlKQv/XRezKJALK7iTS9upcevTKt8zootK5VhBBD7AeShz1jb/x/jqP63Nav47nbV/gSp5eTtI5UD6fZSTo/n3fv0xFSOXFLCoFeq4ovC412vzQVO2PyhYCUFWiBL4EuW4Y+Tpz+eQ8oNQ+OcF/9YMf4Du7u+mz/29rC//oO9/B4MVNIDqeVCzuHFdZkNtO4Y6ASDbqPM0y4HxOZzlect9F8kHr8899HUVANNqCS0AbGeO67tVQdnL+jiiSCbeNcn3jGH5esqgoplvUW61WOvSYjhzlZ/2N69dojSnx+SiDQfk+tx4jHOAGoRuDrpv4nMuEoihwND/71sr9uX1sYrP0G9fJ142zt93bkVtzUTmRruQYqwyMAGvut5ERrm2J+ui8qfMR6dxoPHxcaAzwamle737bicY4gzq6DU2Dj+q0dayaG2sPVqiuV6Oe6yCHx1gv37VObSsPxu10OqVtfLo9052fwNXzFjWbi79TTMAr1KNAaeRgZTuj4KGORYQ7XV8XRdl4VqyubdE1xHXBsdK5ovGsF5gQt0aZ+o5zryNfk4qJFaepc01vuGO/1NDmXDQajVKQ3YMMDOzoS/nH2+ZY1I8uuI3k8og8yQt5jo+PcXh4iNFolLLzSNfJbZYbfX/d/Lt81h0J1wVp+BllAtcnyfUit8N1u920FVYxLHGuYutofXA9ql7m53RkaaYjM+KUdyJbVnG2r0GXY8qTmk2lWVTO43TGaXCa2xt5KQRvr/R6I1yhz7iOj+ZL5Usk426CA79ovPvGttqpUwSYTiyjUVygyojqPAGu3vgClB1YAEreV2ZXRIuLZbNOPRBVmVWNGpJPvjtunFQIU/F7mqmWR6NKwR49oh5ZYlsZzVJQouPMxci2AEjbkbiINHNID0LTjAMKLC9L++hM7oBFFTz/52L1KLIaGhq9Yrv5PedShZuPgRqfTCXm/EfzpX3wedLPdQxUQOcMqNtKBALMKCPo1Uylk5MTdDqddNOD8y2jAkyx7/V66dYSEsf/5OQEBwcH2N/fTxFd8hB5TY0H8mLnxXYwPRsAuJq2T8VKXh4Oh9h94QTq9XqYn5/HyspK2pfOffb8LTDNxnTQ7sqRfdf19g+//338hwcHpTH+9589w9/7N/8G//Uv/mJoyFLuqSHhAJrkfOtrX59zeekAU8kzJ1SZR8ZkpOD4vUZWVXFG/VbQrlEpPT9rPL48f2s4HKaDeLm1ktEdlr24uFg664n9vW49aruj/28r5fqVA7Q3kUvKo1EZ/Iyf93o9vPXWW+j3+3j8+HEC2woGqds8w8VvU9W50v/J55SzmiWkjtjJZLoNW/kdmPKsrmUaULweWrMdlG/JS6yPMmCr2Jo5lvca99CoTSGVOs35HmVsRaA8wg0qj5wUdyj+8JfqQ3XC+7aIyGDnnGrZmkXj2EAxBMeAjgTHDREvulOAr3q9jm63i/Pzc7z99tsYj6+eX3VbiVnonEPdEk5+dezkL183Kr99zejzitGiLd2R/iFm1LMIiacXFhbQ6XTQ6/VSZkW/38fx8XHKfOF18cxCZv1nZ2c4Pj4GgJLDIloDPDPInRjkeW2zBrj4v/KFZzJrgEftEx1fPYO0VptmLvv4+xqOjiBg/7keaKSura2VMp24hhWbzzI03eFFHqDtxJf3m2tSd0+wPD1bh3JTz/DlWmbW1Gg0wuHhYTooXx0FSqyf4623IN4Fmkwuzzg6Pz/Hzs4OhsMhDg4OUlaeO9xehnLPzyrH66nVaqXbozXrNupLDqc6P5Fv6/V6uul2PB6j3W6nbC86205PTwGUt6fpnEfOIP6veqbf76cbrnUXka9br0PHwo9nGI1GV9aUlkl5yPP1qN9YNm8pBC6xQrvdxje/+U0sLS1hY2MjOZxUrgIoOZa5vnSt8qW7iNyuUtlPG0mznW6Cf6/jp58FvTHHk3eWE61pavxcn1djyo0TLYcToM+SSTQi6u3h5+4k4OfKrNFeWDWmrhMKCnSjZ1SpReOhn0cGaeTg8XK1j37ugYJxrVMVF8E5331e3MDU6JYqXwdK/mIfFFxGBxgqYHIwrfWyXREPRAsx+k7H0J+N+GLW97eRdKzpmHOBrYAtWg9q2GmkLjJ6qUDOzs6uZDwpoFKnIbcBeISOdbshqVtdeZAqDV8C5MlkujXVDTr2X9Ns2X7th/PdOycn+GVzOgFAHcB3dnexdXiIT1/cAqIgFZg6UH3sI+MzN64sz/lX+5Z7PifjvBz9Pyf/tM6IZoEZf9VqtZTGTAOhKIrSgZE6h8o76kiO2hq1gc/fFcrJmdzc5eRZ1HeV37PmemFhIR1+vLi4eOVcB+VpP5NGAafq3ohXWY6u00ju58YpR2xDzsnquqRWmxrdf26njv/s6Sa+t7mDDzakzKKG9/Aethpbpbo1o8FBrtedW8f+rmPgfY6cFfpdbpzc4ed4gs8Sb7njXHGFgl8aKooFKaf195HO1jojnmDgg1t/GEi47ZTbbqhrwPFehKf4bKTPVD+6PADKuItzEQU+IqOI5aiR1Gg0kgNK9SyDPOwH14D/7+1y0nNcnHJjqbhfecoNU5dZ7BswDdCwbB0L/V5lp46zrgnF8z4mPBKATidttwdIbqK7Zsky1b+65VHXj67LaK50vHg0gB78zC2eiiVnySzVIbcdR1P+MUjLLYUHBwfpYpovgiI9q7faXTeu0RrSV2Rv0QnJM+qYzanBXNXz5IlINrmNRzxORx5lgOI84GpGqGZPUv+owwyY4vHc+GhQinWqnOQB+swAbzabWF5eTk5kbr/1bExfQ65zOf65QK/LMnWekdRH4PLoNtFrO55cUfjAMWthNBphNBol4MFn+V6r1ZIAIkOTPNOFey9ViTio4wLRzCE/+M8Fn1776WDYFzbr1Pq4aPRgwJyS0OgJgBJIp6Dn7yeTSbrpgx5TTWl0r6hmOLH/qhxdqdGoiw40VEHDdy9Dx1nPj9KtMvxfUyI55/wNs9lYtmY8cUyiRUQPPMEPz/dRj7GP/yylPctwiX57Gxd2RMz8US88hSpThYfDIdbX17G+vo5ut5v235OnFIzyXBeer6EKoNVqJWF8enpaunFnaWkpOZiYrq98z/I0Yqj8q3uetU5G0lutFobDYQJ0CijVEaWZdn6ehr4U6LP/2y9uz8vRdr+Phy8iH+78ZrkK4NyB69E/lz36rpFMdw7r2PmL5V4XJYnaw88jWTjrpdEcAlICOcoAglka7Dwokzf9+FZazYgkDy0sLKQ+KR/x3aNi163520IOAJVepR8vK7sajUa6IphZJxpI0HJVV7AeXU9Rv/S3yl9eR07Pe58iWc1nyX8KWvX3/Hzp/Bx//Xd+B1//6U9TOf/854D/9G8CBy3g52o/h7+1+LfQrrVL60Hxjzrno7lzA9P7EfUpMgL1jD53EOl4chx0LCIsoWOj9WoACyifEaTOq3a7jfX19bSOiQPU+aR1+t/R9tt6vY6NjY2UIRLx020lzdhXHlccGxkmJJ0L3UriznvFZ7xwxY2zXFBT14geTK04knpTjcmFhQVsbGzg3r17GA6HuH//fsoa4DlWLId1ExvwfMazs7OUOaLZNur0UUeZXqij65bZNhwj5U/FDbmgj5bpussdVPw+2i7u8op/1+v1dAvz0tISer0eWq3WlSzzyGng/6ttomtYM52U19yhyGc0iO9yU/tNHjo/P0/bynZ2dpIDhtlAOWeT23Ye7LvN9MEHH2A8np49NBgMSuc4Kf0s7QJ3SPj5P/6MtlH1tH6uW+6Ud5TfAaQzdYHL89iePn2K4+Pj5JxTO9sv5CGvepIB+UzPjtOsR+03y1c/ga5byicNZKu/IVr7qleps/h9s9nE/fv30W63sb29jVarlc5RU1tBSWWXyw8+604knRv/DctUDKMZrLd9Lb2RjCdnTp1AzUpQhVNqRGN6TbAvAP1MvZ40LDghmklBUibzNqrCoWOH5OArapOXn+s/y9B3Pqv94Pc5Rx6ZkumTGgVSZeDAjwpzVtmqfHT8VFFH3lfts37PtqgDSjNK1PGkHnI9vJ316zxpHTqnNGTpxNCT/t+E8J9lyETP3FZSEKeCVp0vPI9Jr/N1YaqKR7c58ZmimF4XqpE8All1onrGFPlVFZt78cmn7jSho5KAVZ2p2mY/Q0H50sG4R0hJDxuzRecnL27+AK4aE+54Uscex4Dk0e2cjNF5uY4Xte86Z7OezZUZtWlWO1WeEeyS/5i2rxcu0IlEXlFDSGU5+8E6yB8cY5dPbvzfdkVNctCVmxfXNbO+u67vrIcymGuWwDbnvIz4TOcrV7/rVf5WdRiNJL7n5pTla5luSPNZz9Bin/7GP/2n+OqHH5ba+Bsf1vB//+/b+F+/+1vYnt9OGQMKqNVwJ+jNGVk3WbfaL//fZZg7zdkfHQM3VnSMfAzcMeFAXWWlbkkuigLNZrPk5Irm9SbyTNdyu91OY+qOk9tMmgUClPEoUF7TyvO6lnS+WYaWpbqFddH54gfoKh7Q+dU14ryh+Jl1UebSCGNWJLchUY4Tq43H4xTYYsYE+Ua36dBQdZmg2E8/Vx2r+DVnUyjv5HRC1H//DEDpwHY3GLV9/J7jxWMIoqMFfA1cJ8t1TFxPRpTT0xEm0Ge4zk9PTzEajTAYDNIh5cxU1nJyslx5/y44kHmhBg/Udod8Tge9LmkdN3nGs2yvw3j+v/O4Puc8Q5u02+2i0Whgf38/BbRVp+rNfvwt8YMHAsnDXMe6U0PtR5eHfNf2E7d4f7QOtS/5Yl16WRKPBuFZTpubm8mxrzbJrDlyW1bbE423z4vPA1DWvzddRzfhTcdQb4qfX9vx5MyuXjw6gubn5zEej9M1zMx80jIogBQA0qiNImP08PE5OnCoqAhK1EGjizECssrQJH02WrjsN98d6OWEt75UODDaT6HGd71Br1arpcPW+HsablTwAEo3nNRqtfS5A2w6AlRZcLzYZm2/KpPIiPcIXRT1UcOe86rnt0RgyMEvFzq3f3S73VK6o4Nr74v2NUezlPabWoQ/K9J1RKcns+cUPDSbTbz11ltYXl5Oc+MRQzWsaFzpeuO5Bf1+PzlKx+MxlpeXsbq6mspg5lMkcDU1lspplpFLIHR0dITd3d10QwyzqCgrxuPpbXqu+NTxpArN1/+PAfw/nQ5+ZTAoCdELAL+/tIQfTyYoXmRFaQTUQTHnxbMFVNZpGXrWhkcxI17U76P1rP+7ss6B0ggIaz1sLzBVtOo4J88xZZkOJ40aujPZs5y0bNavB96TD3W7BMdaf6dR/NtO6pCfRZGR5aAhCkLou5fD33KtLy8v4969e6VMPTp7qWeiSKvy/01Bjzs/VO94urzypoN1/96dZu6IGo/H6D15gvc++OBK2+pFgW//9DH+3GEDx9vlzCHVud4uj3JGxLnic9cB2ch4VoPcHfcayFLdre3W9UEdrXwUneekwJ9GdbfbxcrKCoDLjFsaD5oRkQPj/Jzyodfr4eLiAt1uF5ubmyWseJ0evy3kvOiBDcdSUb88ou1ym7qaWFG3ues8q273XQhAObvK1w7PW+GcU15TTvPWu/Pzc6yvrwMo63EGe8/Pz9FoNNIZpgBSZhzlvs+vriXV3+wzMJU9em4UUL5FMpIXyuOqO2q1WsLTOh5KXBca+NQsB9XBnHMN0NF41bXm9WgbIznHTCrFaL7WFYdQ76q+VAOf7aTOpvOAW8t2dnYwGAxS5pNfBBLpasf2/DsK8N024i1mtMuAfGZq9P+r0k10JdvFQP9146llkucoE2hbEX95JhEwveWda498/9WvfhUPHjxAv99P2xF5ADnHLdp95Pq8KIp0MyCP0HDsrGvMHU8uO9Ve1u+pQyg3fc01Go20k2Zrawvdbhf379/H4uJiiE1V97os97WhmEEdYFwPGrTK2QecGz3b8SZ0E96McP6boJdyPDlA90GMBCKFIRm4VqtdOe2fz7rnWwc458xwwMjJYjtUEenCcmWmgMkHV6MXKiz1e9an+5nd+xgBURIdbExBJyPx9hNeiclFxfNsuPC4XYqLn/XXarWUceKOQbZJr73VRRspV++z70mPlIo7jBRwubDT+eDvc4Ym3+mFXlxcLB1i7cLnJsZVjlzJ63sk5G4jOWjRrBMqrNPTU8zPz2N1dTVdlQtcPX9BgZ9ucyEP6dZHKpCzs7MUEeV4UTbonLij0nnJv1ee4nXOg8EgZTFSeHN9q6FKZzGVF+vxMVMDgc/9vY0N/PeTCf4j2dv/vU4H/+X2Nk5OTtJnOobeB9al3+lv1EhWZROB51zEJCdzWH9OuURriN/rWs21SceKCpbAXOUbD7u/uLhIPKlKWc938giuy2E9qFwVddRvtu+urF+dn2hOIlL5FMlRL1d/57IWmAZv2u02lpeXsbe3B+CqzuZ7JC/V6XTd2OfkrbaLTnRtb65MXy/R+Cit7e9n2wYA6/v7GD54UOJvNTC1TrY1h6O8nRqcifBGTudGfcwZ7i4vVO5EBmQkG/zF+aVR3W63MZlMEu5zoygaey1Pz/tgEG5lZeWNgeCfJfk4uozywK3/zuea37n+1AxaxbR0jlAHAmVHlo+pB6tIuoNBcT75wo/D0Ii8zqMen7G7u5uCpxp00nWghhffXTcrxiGejvTldTJI8ZLLlkhmurNZ+8zxYjBe8Y/qLNf7ka6bhc197KL+sgzNjFRHk744BhpY5GHivACExzTQVmH7lF+07T6miq9uux7u9/ul/2+TDHIHhOrk60jXEnWGOp98bsg/wNS5S2xHu4GXxBRFkS4ZYPt4LIbrNd5czTZw94LeaqlOHK6bSEYoxmObAVyxWVW/6C4i6vFut5uODuEWO24fzwW9HFuoPHf9rDs7/D3SC1qGrh2Vs7eJLyN6KceTd8YFNifBDSTg0nDi2TtkPh7G5krPMwM8dZzMwWwJghqNtnpKnxMnJ4qiu6JyMObK36OubKefLRKNpYMLpi2ynLm5uXQQNJlZoxTadu6hB5AiHzS6Cc7ZZwoYPkuh48AyAq78XseLz6gi07OEFIDo71ThuBHO/x0Y8Xu2e3l5Gdvb2+ncB+6VVz70eYgAYPR5bgHfFWNViePh/PD06VN8+OGHOD4+xvz8PDY2NvC1r30NKysrVyKe+ne03kl0Bq6srGB+fh57e3s4Pj5OzkGNTABlMKVb9/hdbg1xfajSOT09xd7eHhqNRsquJAimoKcTnNu6KFM0S1DrVn4l/z0vCvz2+jq+dnGBr15c4OH8/OW5Ti/KdJ5S/nbloEpEx1mVm67JKMoya3vpTT7zeYyMS6AMbnWOlC/8sF8qezo3eeMRI1naFo3UKijXLXcqczUzltlt0dXbLNtBcM7pcNtIdYXSdXo5Ry4Pc7+JDN35+Xl0Op2UZUpgSZCp/OqANTKu2D93XjiWUJ2gv+d2bd9mHRldkbzy8eNzx1uzb7I72toKy3MjUY0xj1ZGNGv+HINEkVqVJzp/Ea84gGW7tGxfJ/zbMRqAFGTsdDoJg6j81Dq9T1H79Qa2aFy9P7eZvH3K7zlDiZ+pY4NlqbOTv3EHj68Blak8T1Wj7DToWIeuJdU3+tJt925IaRaPBgXIX7Xa5U1T+/v7qNVqySilozJyUPB3Ks+JHbQ/Ps4uT3QbvtYROUj0d7k1Txzh86kHIyvu9SMOiM10fdMO0DF0uRGt6yhIwzZyCxH1sWbJqK3Fv5mdzMym3d1djEajlPnEjDUf06h+ygnXw3ch4+m2yxfOGQ95n4WdSZEzQ+Ww4kuVEfytr2W+eNNls9nE5uYm9vb2sLOzg6OjIzx79izhQAYgIxuAOI7Zsu540nXh+CHKgmTZjkFItFt4Y2e320Wv18P6+jo6nQ5WVlZKiQ2Ube7cj3CH87cH4Fyu6nyoPNLX3Nw06YSZwXfBLn3trXYRo6pHP1UkabjcXjEajUoOEJI6K1TRkOE1YkbHEzM1Wi9ukuKiiw76BspbAd0DyjY58/AZZyBVvDSEVeE7UNR+OpCi40yjSbqdwceDzMsFo/NCz7MuOFXWHpFQwB0pLX0naaq7zhfbqE5E9SZrf/xz9677OGkfG43LG1U2NjawvLyMTqdTuh3EyQH4LPAaCWd/7i4ZrpxvpnQTpO3u7uLjjz/GcDhEvV7HysoKHjx4gF6vV4ogelluSCl/01FAZzMvF+BtRARdDixV6Xik3ykCiwDSdrt2u50iqJoCT+cEAS/lBNeEgic37jyCCwA/Lgr8pF4HJhPUXpxPQYran1Mi/hs6mFTxs30u19jHyKibNXY5g1zbxfHV59Tx5IYt263KnfUwHZ/XLxNY+MUGrtT1TDB1urEu6gE6orhdw8dCo3oKVO6CsnbZN0vuaL/dYRCV62XPqhtA2krFg8aLosDx8XHJueuZjMojkeMSKDufZq0Nd9BSluSM5JyMn/VZrVbD0fY2Hn7rW3j7Jz/BnKyBydwcPv7mN3F07x7m7Hcu03xtvKquUHkETPWkB2ZyctG/j4jrXEG7luHyxSOtuh558QSxzHXy3Elxg4JqLeM6vr1tlJP55Gdmfc5ag7kAhDoNaazpFjr9DfGiYkENDKqjK2q3G0qU0ep0ID94YJdBCQZA+dnS0hLG4zGOjo5KzsZoHNhXLTtne8ziF2+bB0Ej3ZBbwzqHmt2g+tMzM9hH4nl1yvnvHHN5gDyH0bwfXFN6rqJmk3AMFLszSHR8fIzhcJgcUDxEmo7/6Bw3nwsN3uk434WMpzdNObvidcqbTKa3weUCG/p8Tj/oGgeQdkco9o3WCWVHu91O29Qmk0k6QP/Zs2cYDAYpqEC8TpugVpseKcFylT+jYEpkl+qFNSxTEzF0W7wGMLkrY3V1Fevr61hZWcHm5mY6n1Yxhpah45Fbk/oM17RiHXc86dhGZRP7jEaj7PZPrzeHBV9Xf77M2n1lx1NOuLsh7sZMo9FI2QbcYhERBxS4ep2qgknecsLbt05OTpLSU8WiDg7NRiIj637VoijfjKQTwj6o8tOFqkaZRnr8xSiGGotKjERxf60uOABJsLiQYPk0DCIgqi//PQ1zV4A5plIFqWOu0RzPfFLnFF9c+DnFpG3kdzRuer0etra20g0hzWYzbKuP03U0y7C7iwqSGU50bvImkh/96Ef4wQ9+gF6vh+985zt47733sLq6isUXB2SrkiEw5hw4yFD+Y1bEwsICDg8P0e/3S/zuc+G8ypeuIf0uyg7imh2NRumWFabJFkWR1gQjLOp4BqZb/5z3lG/ZVrYl55zT9vpvouf4jCofgnk6U6k0FeBRJnmGpSo0JQWwAEpAU+dBM1bUURP1wdvu2Ve8aevo6ChFT+m09joJANxQ4n56rUMNHvKlnvOk8l1lXZRVcJcomoecrFK+0zHw378Mcb0tLi5iaWkJtdrl9ek6rg6edJ0oX7oDUNuk+EB/405NgmzdZuLt9THzqGcOpP+f3/0ufvOf/BN89d/+2/TZw298A//8b//tK33xMfa/rwN3Kttcr/pz/kwuQzwil8Euw0k+h3yPnF6UT35mjdfJtauYgKR9dXnP+vT51wXLP2tS/UiedD2mGJrfO46MDBQ6L6KzPvg3A6Ju8HCeNBslWq/abjokhsNhyRHkusnXgGPBubnL7OvV1dUUpOKa5pmnLkeIGUnOB26kOq5w2aPPOvb0oEtOZrJOnRcNDjUaDbTbbTSbzSsXMzi+d6wbYSyX5W6nROu6KKZnpun5iu5Apr10cnKSMp2GwyH29vYwGo1weHiYfs/DxHMyRMdZA9IaUJ9lY3yZ6U3LL2Idbn/UJAjH0Uquf1VW6zNAGT+qvFL+5fwqfy8sLGB9fR3NZhPdbhfD4RDPnz/H2dkZjo+P07mf7MNkMkmZTiTKNTpaItyq8ontoN2jjifqJwak+c5dR+12O11iwX7pVnqXvz6e+u5bHxXDKu5VuR7pXp0rPSeVcz2LvJ1vmvdeprzXdjzpRHtEy6MRVErcEsarKNUxoWXqvk6NiusiIoPS6BqNRmkSdYLVS6uRAk6i1gOgZPwosMotRm23Ruo97ZjjpDc3uRHI+lVxUIB4dokuej8AWrcscRHz72ixsu26dUWzqlRoOZBXEEHPuCo1bYdfXc+thOrQyxm2Soza8aDb9fX10oHY0e9zBlfOKPgyKUNm+SwuLuLi4gJPnz7FkydP8IMf/AB/8id/gl/91V/Fz//8z+Mb3/gG1tfXSyCB863OWyCOGhZFkaLenFMCLuVJB78+/qzDownumNT1Wa/XExg+Pj7GwcEBJpMJ1tfXUatNswAZceE5E6xfnTfK6/yMUXe2TRWK8523bxaPcRworzQ6E22b1a2kbLcflqxzpOOnSs/7qu30rC8CYV37+htVmCoDPbKlZ/wp/6j88WwuP2TcnU7qkCLvUY6408kNWu3DXaRZfYgcFpGhEhkOs8aDc8sbXmq1Gvr9/hVjUfUVZYlvbwHKa1o/8/5pIMn7qVl/zvv6t4+BO1Wdzjod/B9/9++i+/gxlnd2sL++jsOtrUseNP3pPOWOF6WoPjdCVZ97lqEHkaKgjs6DOwD0Fcmu6HOvg+OsWTR6U1d0OLSC6mgt5tan4hEd07uko3W8SCpfvc/qDNA14859ri/NoHGeVv3pesvH0dceeUGDNAz08uwWzXyKnCIug9kvjsXa2hra7TYGLy7lOD4+Lq1PXb/edi3bnbBFUYS6jM+6znRedMyb4zf+1g1TzdjlbcG8ZMPXK8uPMKzWr/3Q8Y3GW9tH24MOJcpqlznqwBgMBtjd3S05nvb399N5mpFMz61l9le3zt6l9XtbiePu80ZZwHVEJ5SS8xSJ2YPOV1xzah9T/qiMoQziWuT2tc3NTbz77rs4OTnB3t4ezs/PS1vuzs/PcXBwgLOzMxwdHZWOmiFvMpBNmafOMPcRsM/E0MSMdCrpLdvuzK7VaqUEFA38RnaLYyi+XBfT8UVSn4Vj4kiGA0hYi46nKDv0ttIbudVOjQbdYkbSQdTMFk3DBq4eKqwvTdt35QGUz2ahoOfnDnRUUVMYkhnV6+gpzxEzuBHK9ms7tb00xNQL7UagjgHJs6ectCz/XoW+gpHIW5szNvR3Wh4df1Rg+iwFxdnZWXJm6SJUJaTGgu4lnpV+S0HGq3v9XJnIIPO5ifqdW+x31TAlcVvZs2fPMBwO8cMf/hBPnjxBq9XC17/+dbz//vt4//33sbq6eiUjTQEchTPnXedeZQGdOg6agfIZYTnytPlIOZIiUDYejzEajdKNdto+lUdc9/xejSUH+ORjZvTRGRy1yddLpKT8pfJLozKRfHIQQNnihreOtSs1zkXkaMi1V/sWtV/rY7oz96BHDgPVC+qw4plOOv7a/qgfHCMFPHpeifOQzstdX983BfCvAvQjsKoyHJgGS3SO3eHAd50/nQ/NuNCXGp7kf7bL+dKNHpf9zsPq3PF1oH8fb2/jcGvr8hlc1RnROPlnNzG0tM+RzPOx8e+5nn2MHL/odmfHISrTtC1cU2rQAEjbW9XgdtmpgSaNznpWm/dT5bRu4Y1+c1eIQTrnUeX1HI7jd7oOODea5anlejm6dj3KrnWpPuG76gseMN3v9zEcDlNgGbiaUejv7tzi/PJg8maziWazmZwb7lRzLMt3Ynt1PJGHHKOqA1XtEJ8PkvKirqdabXr9uuJ76iPeuryxsZE+0zMLNdCtbYjWuON3l4G5OdeDnfkiftcXDVpmNunWOgaOmLHM+hxT5Rzofvi19isXMK7oZqT6TM/dUrs0kiu6LliOPncdLuRnLs903tku3fpbFEXCDNyu3+l0MJlM0O12Sw4p2uLkm6WlpeRYY5m6zrUvXIvUHf6uazlyPGkyho81n3f7XWW1lqU2t2JPlbWcD5UhEXbhFjtmHeZ2j91Gem3HEzBNq+ckKngEyg4OGlNzc3Not9vpcDv19jtjM/VNFaoas0VRpMPEyVDNZjMZPsD0XBsKS72Vg2nhNFBnRW683y5UI+Ocz+nn6oV25orAL9vioI3kIJMLzsG7Chi2R4G3g3JVItpvCgAy/GAwuJKRxfHWm0qKYno4Isvh3PH3fI5AI3I6FkWRtlDxqktm9ERjGM1dRLnf5IyRVzHivijq9/s4OzvDhx9+iL29PXzve9/D06dPsb29ja985Sv4pV/6JfzCL/xCugAgcjxpGv1kMsFwOExbbFTw68Gl7vAApsZjzoBSBeB87OTzwbacn5+nA81VIaqSoROJ2TS8wYNlNRqNxIPMouFBnJRbnmmUMxRdCakyckON64VyizJTeVyVKeWHKiwtexZ4iBx8Pq5OkYzS9nPehsNhmge9NcTboWc40QnFLQkciyiqpW2gjOQYcT788F0H8MC/W6D3VWWWjrUGDbg+m83mlcN11QESOUyp+7Rc11dRxoeuE11LkZ5j252fXe44P0f/e3v0u1lYweu8CXn7FFhGMlPbEgXO3Cmsxjm/16vYgatXTave54HInFd1FHs2Ih0GvD2VAUFgOuee0aXzogdie7/uIqlDw/VXpC90nvm/BiNp1OlZKGoMOn/r+tUMU9UF2kYNPCkdHx8DAA4ODpKuZRtza0INXe2XZrby7DjaCGwr/9ZsVhL5hPYAnVXad11LOma6plVGKa5XGaS6WR3o6mzhc+12G0tLS1hdXcWDBw8wmVzuPlDnGrOg1OB3POE84HLUx5n9ZVl0NOktdJp1xHEdDofo9/sp04kZTjxU/OzsrJQxHulldTip3OANZe44jORzRS9P5NfBYIDBYJDmXPlZ157icZVHPi86Pzms5AFM18MMdKhzhVmxjm/5W24hY5nEG3R2664oxZaKxxXP12rTJBbqtOscuMzs1t0Q/B2fc4eSHw3k65Xjo85+vywsukCB5RfF5eUL/X7/yvlOd4Fe2vHkyjD3jDoycoa6bplwReTKQoWXC2EFuJwkMqMuIJ9YVxQqJPlyY1n76AadMyRJozVcVK4wyGSqKHxMFcDrFkUFwTrGDsYdiOi4ElTUarWSYs9FLliuGh/6Owo8fkegyXZ7KjjBrEZHld+0X3ym1Wqh1+ul9GVPlXRA7mMTkQO06569S/Tw4UOMx2McHBzg5OQEGxsbaLVaePDgAVZXV7G2tnblYG8dL98OycgY91rTYUAQRecvUI6I58YzEvrKp+4w8PWva4EAmmmog8HgisNJBbs7frRNdKBSTvG3dLKrU9zbyrHUPqk84bhqerAqKXU88VkH8S5LWIc60COHi7ZDHQSaMh2RyjkdT80c4zNc6xGQ4VpzOco+6cG5kZHvjgy2n87EyOkWGeus865STr/mnsmRy75Ifkbfq3OA+k2zadRgc0yQc6B428kHvtU0Ctx4/X7mjLZfgWnUJ29H5DiLgKX3MTfeUb03/Q3JDQoPQvFvvlNWKRbgHHnwx+vLGb85B3eOouciIzRncEfjcdO6v0hSvON90e9zv3W5p/OpuHkW7zn2Uz7wdvj6dKzJGyyPjo5wcHCQMhZcF81qT24MtE7iZzotFJ9qv50ftG8awFJjlXLCdYbuTlCdF+FrHU/VicRDrVYr7fDQti0sLCSj28fHxz7CrpGcciIuj26wU7uK3/GYgn6/j+PjY5ycnGAwGJQyaCJ5qvhL59AzHXUedCxeRn5UlCd18PkZu8BVGz6S8fqsBhKjoI4GELR8Xysq89yZ4rtbuK4Z3GXZGgBRPcV2u0NT+6Q6TuuIeFF5kpjD5Ys/72OksjjCDtfp/0iGqrznOmXWU2Qz31Z6LccTcFVJ8Ds1LEg+yTSI6IEk49GQZVlUPOoM4uRpxEOzLIbDYWmy6NTwM0H4PBmGUZVabeqoUqNU+6MZHb5glC4uLpLnltkTnU6n5Cg7PT0tgXd3mgHTdL65uctMrZOTk9IiZLYGI5GtVqvUN1UWRTGN5HiELIoCsU1sJ6+n56HBnB/NgOJect+OF2WwMNLiQilS9HRWrqysYHt7G2traynjSRW4lu8LOueg8v9nAeS7Rn/wB38AYOrwff/999Fut/Huu+9idXU1Zf24kxcoZxKenZ3h8PAQp6enCaCQv1qtVrqClIcOn5yclM79UEPJ59ZBas7h7Lzj7aUz6PDwEHNzc9jd3U0OMWYvTSaTUuYEx4b9paNUgRPXhB+EqOtIFeUso4l1aLalglhVen7mm85LxKPkce2rbylQWV6r1UpOoyirUtumbWWkipGroijSoZB6G1U0x565pKCdZWrGkzsd9H/KY8o1yiqVed52BwW3mSLDg3Sdk8OfjQCnAx2Xn67LFWCRj4timunqwQUPDFAP+Nr19ug6YEZOBObYLjqUx+NxapOeyUD5ozo/GlflG7bDiX13UEmKAkhRGTnAHIHdnGGgDiVtv/Zby+Cccgw4d+rE9ef1d1ynnoU0iwdnrTWW7efxOJ/d9nV6E3JnrPcrcmqw/xxzDRRExqWv8QiXMhg6K6jL9uo728ctdk+fPsXS0hLa7Tbu3bsHID4TlWVGc6hBTtVXepbJcDgsPa9rmLiUY0SsqOPngVHFDmrMEovr2uD48/Ia1yssi0E2OpyY7dRutxO+YNt4VIQb79rHHEXjGGFX4vl+v58CccTpHN/z83McHR3h+PgYg8EAR0dHGA6H2N/fx8nJCQ4ODtIZPJxbrVMdA3Nzc6U5JJ95Zoriec5ZRa9Pk8kk3SLNzDa18ZxcRijO0GQEXQdK7jRVvR3hef3MbUOtg74A8mjk0FG9zvq9DP5G7d1Z46BOY98G63JRdX9RXE148TOco0AodbY6tiO9wM8o6/f29vDkyRPs7++nHUd3hV57pUeTMQvY6vM0dHQrVTT4Dk5nGQ5aDnD1BiedSDIjt+ORibj1y51UbsTkHBRcQLq9TPvvRpC2yxcpSRUT2+0KmuOhZy2oAezeWG23lqlZCvqcCq9ob7j+1jMdFEA6iPG9s5FDQvmLxnSv18Pa2hqWlpaupEJGRpoqav37ywBkb0I8BJjnYa2vr6erQ2nYOfAEpinw5IHRaITHjx/j6dOnyePOuex0Ouj1eglQkU8IwJi5E80vKXLa6P+6NrwcNYrI0zwEEwDa7XYJ7HgZLidUcajBqinleiaZvnu7Xf6pw4QGsvZPHU5qjEX91rFTOaPkBrTuS9fn/bfROlFZw+0RlJVRNFoptyY1A9Yjw7NeTqoTorM4Ih1yF8jbGsk4f37W974O/Xf6v/KkO1m8fHfi6laVXDvVeJs1P8r/rhu4HmkgAkhrVfVOxAO5cZrFu/x/1pxcNzfeHu2L4iCgfAOXj0W03rQNvl50/HwcKcO0zgjvaJleVzR2JMUquTHxZ729uTG9K2t5Vjsj3aGfRzznvJMrL9K1+j0xY4QPozVJvhsMBtjb20uH/jILPVqjPg7KS7m+OQ8qz6vTyJ+LnNv+O9VXPk7eZ8Xuvkaor1utFprNJjqdDjqdTulSDADJ4cQbfzUj2eWGYprcfOfkF9vJ7Bfd5qrBYmZMDAaD5EgcDAZpSx4zoXLj47hEx1ptjlyg0fnhy0zXyag3IcPoyKGTUfF5VJ++kxyr8rPIEZLTedfJamB6LiedvLq+iK2p14mDudZoj9CRyXWsyQqq99XpyzK1PS6LIn3p46O/j/RkpLsca2uZbLPLMu0z1/Hh4WE67D+nU29CX4TevLHjSQWNf6bMooysThH1aPN5ZhTQI87bMXRPpjKh/lbrIfOqweKHZlLAqzOoKIq0MFutVikdtNFo4PT0NB2WSPCqE+QHXZKhmHWkGVH6nEcEPIoClFMP2dd6vV66RhIoR7vG4zHa7Ta2trZSGRwjKhh1BrVarbRtiGOhioLjqvPAZ3kzlTvATk5OkqGv2WizjApuydLoVQSy2B86N9599128//772N7exvLy8hWeoaByvtXnIsPVn/uyKMNvfetbaDQa2NjYSFvhfH5dQTGbpd1up1vJnj17ht///d/Ho0eP8Omnn2J/fz+l3PO8qO3tbWxubqJWu3TebG1todVqpcgXx5RyQevn/FP48l0jaCoPWA5wOV+UA+TDer2O3d1dLC8vY3t7G8Cl8zI6lNC3dpEiYEUZo4Z1BARzyp2yiRFsH38CWaBsdCpIjhSbjoX+zTVBZ5puq9T2ahnaf+eNRqORDvZfXV1Nsk+3Q7jhGo2JOtnohNPt1/q5ZljogY+uoAlm+IwCiQgg3CWKZNl1z78qwFcAp7JYda7Xo9cV67ksus6cx8gv0XkrWn50QyHrBKap+JQDDo4VyLoxdFNZ7wAy0mkOckmu09XB6uXPzc1d0Zkqd/Qz/a22Q2WaXkCg5arRn5MvPl4uu3yMI6e+6nE9MNaJbdd2knwrtM/LXSDn65wBE/1P3tJAROTgj/gz55hQo4Xjq+sMKDtwgPL5oOPxGE+fPk0XeaysrGBrawvLy8tX9BHr0XcNhLj+9fWpn6m8ID+xDrZTz4dSPanOF8WbKuc8M8eDT8yoJTGgt7a2huXlZbTb7eRg0stvFhcXsbq6Wgr6cRz9zMaID5ix4XwRtfHi4gL9fj9lp/PQcGYvXVxc4ODgAP1+P2U8jUajlB3Fa+5Ho1EJO1C+6fpknY7ldVsfEB+KPstJ8WWi6/r4Jsbg4uICh4eHaLfbePbsWdLDSr6mIp3Ezz2YQz72ZIhZjhqtw+W58jmfox5nIJNrhLyjGJ87a9QRrLa46iVtr9+qqJhGX+qkUr13Hb73732Ner9JXCsqF4BpIszu7i6Ojo7w0Ucf4Sc/+Ql2d3evyOuXoS9i3b1SxtMsoDtLgPhEUFGQkfUmOhe0+nstQ8ukoAPilFV+r8pMBTW/J0PomRXqRWW9asx5XbolMKrP+8Ny3OmmAFHHVsGhL/bIENU++hwpAHGgpwDAnUJuXGq7vQwFOPodDU5dYDn+YluazSa63W46fDK3R35WGbMomudXNdxuE3W73XRQnp635AYYiXxD8HJ0dIRPP/0Ujx49wscff4xnz56lA/54QP/m5ibu3buXnLUU5gsLC2i1WkngRod+XhcJd6Cl3/nfyv+TyfQwTz3nTY3gSPmxHDeQXX55+5UcPHrb1JCgrNDxVwM2Agu+3jVqNGtM3CiJ+uxAX+UQHT+cdz37KzcvOUWrdUag1B2CUaZTzvByJ2Ikg/z/20q5dXETimR6VObLlB+Nm/Ii14fzJuuN9JDzWa7PN+mD6jWWGUXeVR9fNx4KwHX9uc7Ntd31o8q7SAa5UaftV+eQ/t7BtGcl5WhWmxUf+DzmslX4/XX1RXwWjdVd1LlOufGJsG2EpYCrtyvP0j05nna9q7hw1rrP4TsGjvv9Pg4ODlK2Mx2TUf0q26O14/Lb8bCXo5icz6hjimtXMU+kD7yN/DvSJfo5t9ZpppNm4hPrNptNtNvtUibULGdMJGNV5vicavvonIteDGLzIGo9dNzPgnKM4I5pb5vKiog3o3G+Tv5WdDMi35+enqbLf9zxyucUP74MTnsTdhaf0zIjPB3JnJwMcGzo+h2YHt/CxJDr+C+3JiN9reXfZDxc/vsceJ2TyWV26eHhYXIUc4fWXaI3tqk2YmiST4h78IpieqYIIxQ8ZwmY7lFWpUHHDieEGUL8nR5CCkxPw6fjie1dWlpCp9NJ9TASwGwQ7wcBNTDNwNF2cNFrJpBmEOnWnaIoklJiZIDtZ73MHtBbtwBgOBzi5OQkGfRkynq9nrJPNPIMTJ1HfiU7x43tVocBbzjj94PBAMD0fCueM5UDtuwLy2A7CUh43hUFpS5YNy7Zrs3NTTx48CBF1ejkYNkRmIt4NOJVpS8T4AWQsn3IB9ximsvUoYNqf38fT548wU9/+lP83u/9Hp49e4Yf/vCH6VaFer2Ora0trK+v41d+5Vfw3nvvYWNjA8D0iuSlpSW0Wq0SsGGGnW7xrNVqpSwWNbK4ht2h62BHFRG3sO3s7KTb1eioZDYMHZ8sR8Gt3lzDSLBm6BRFUeI9oOwIdj6j/IgyAkgOdrUszwp0cBoZ2hqldpDuCp7tp5zVeln3wsJCcv5ubGyks50oO32v+SwgzXHVjCYF4uoo9a3PHBcPTFDO8sw7jwC7ocW+3qV1HhlLkc7l59fJsllyELi6FZxj6Rk5HEtgepMsz1OhrlD+923WHvhQXtR1wTWs2+D1eeVZlRnaT12P0Tjmzr2JiOVQt0aZeNFa83a4QaxZA3oOhv7WI9Rst2c66TPuvPLx1vZOJpN0dgXxGceTN0/qjZQuR3z81NkQEdez84KO1V2lHCbR7AHgakYo+YPYVscv2i6meibHw6ofqHvdCcTnFCvyf9YzNzeH09NTnJ6e4pNPPkG9Xsf5+Tk2NzeTA0blgmJf6s/JZHpDMgMxfiEJM+p1vPxMMraPelpvUGPdLMsdI5QNLM/HQm0KYtqiKFLwc2NjA6urq1hdXcXS0lLJ6cZsptXVVXS7Xbz11ltJ5ykWjxxQ2i+ft8jpSxlAnMUDwpn5xPe9vb1kxA4GgxI2YzaUns8IIMkeDdArX7NtbgP5Oo7wkF+c8u8K5fT2q9JkMkG/30ez2cTjx4/RaDQwHA7R7XZLQXqtj7yXSyLQ5/wCIu+D4jzXc/7OFzP+eUi22wYq33SdaCa17m5RW4A2gONgP3MyR2pLex2OazXrUvvqwR/l/8gWcLnPzK+zszN88skn+PTTT/Hxxx/j0aNHySa/S/RKjic33nPf557TQedzLjwdYEQCyZWolh3VCZRvXuBzUTtnRUKiOvkevXIULVBfRGxLNA4Rc3t5EYjwcrzvuTY7UL1JH6MyvI6XAZMK8H17Jb+PjKiXVWg5/rnLilHPEpjFp953ArjhcIiDg4N0jgOBIhUHzzegIzBa455Or3yZU2JRm5xmySI1Ql1ZOu9F/Onl+d+5d/+dKho1gp1fczLQy/Jnc84Dl7e5vkZG3qz1OmsuozbnaNaYan1Rv6+Tr7PIx+tNgL7PkyK9FlFO3856/iZyzcc8kv0Rn8wa45cd82it+P9RHZGO1T5dt36uwxdOs7DPq+rLWfo2N8Y3WffRs95H1hs5MXK/y/FUTqbNatuXhWb1nZTTxZERl/udl38d7rtOBjh/RRgBQAog0lHp2DXXh5x8z+FXX8OOIzzoq/hfMfJN+ew6uaC4lFhI9bziehqS12U6XYeDZskB7Z+PBbEQHUv67jhJ2x7VHenQSGaxbbPa/zJ2QEUxcYw519F5vdHzuf9zdbxO+/zvCCPMsk1y6/e6teOkDuuX0TcRVoh4Oeqn9mFW26Ky2N9ZNxbeFaoVX1YNX1FFFVVUUUUVVVRRRRVVVFFFFVVU0RdK1+eZVVRRRRVVVFFFFVVUUUUVVVRRRRVVVNErUOV4qqiiiiqqqKKKKqqooooqqqiiiiqq6HOhyvFUUUUVVVRRRRVVVFFFFVVUUUUVVVTR50KV46miiiqqqKKKKqqooooqqqiiiiqqqKLPhSrHU0UVVVRRRRVVVFFFFVVUUUUVVVRRRZ8LVY6niiqqqKKKKqqooooqqqiiiiqqqKKKPheqHE8VVVRRRRVVVFFFFVVUUUUVVVRRRRV9LlQ5niqqqKKKKqqooooqqqiiiiqqqKKKKvpcqHI8VVRRRRVVVFFFFVVUUUUVVVRRRRVV9LnQ/w8okwlacKi4WwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "idx = np.random.choice(len(x_c), 5, replace=False)\n", "\n", "pred = final_model.predict(x_c[idx])\n", "pred = pred * 48 + 48\n", "gt = y_c[idx] * 48 + 48\n", "\n", "plt.figure(figsize=(15,4))\n", "for i in range(5):\n", " plt.subplot(1,5,i+1)\n", " plt.imshow(x_c[idx[i]].squeeze(), cmap='gray')\n", "\n", " plt.scatter(gt[i][0::2], gt[i][1::2], c='green', s=20, label='GT')\n", " plt.scatter(pred[i][0::2], pred[i][1::2], c='red', s=20, label='Pred')\n", " plt.axis('off')\n", "\n", "plt.suptitle('Ground Truth (green) vs Prediction (red)')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "35ff3c92-d45d-4355-ae4e-7a095c5f25b2", "metadata": {}, "source": [ "Predicted keypoints (red) closely align with the ground truth (green), demonstrating strong spatial accuracy across facial features.\n", "\n", "The model generalizes well to different faces and expressions, with most keypoints correctly localize" ] }, { "cell_type": "code", "execution_count": 62, "id": "dfffdd4d-792f-44a2-9fff-d5160394664e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGJCAYAAADMo5pWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAANQ9JREFUeJzt3XlcVmX+//E36w1uqMkmorgvaOK4EJqDFoml9sXJMi3BdcYSWxhttFS0pmgskaYw00TtW46WZl8ntwwjMzFHDScrNTNHMlnMBTfA4Pz+6Mc93gEKeB9uwdfz8TiPR1znOud8rvvOmzfnXOfcToZhGAIAADCBs6MLAAAAtRdBAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDqMGWLVsmJycnHT161PRjjR49WkFBQdafjx49KicnJ7388sumH1uSZs+eLScnp2o5FgD7IWigxir5JVuyuLq6KiAgQKNHj9bx48dL9e/Xr5+cnJzUtm3bMve3ZcsW675Wr15ts+6rr77SsGHD1KJFC3l4eCggIEB33XWXXn31VZt+QUFBNjVduQwcOPCq40lLS7Ppb7FY5Ovrq379+umFF15Qbm5uJV+hsl28eFGzZ89WWlqaXfZnTzdybY5U3aEOsCdXRxcAXK9nn31WLVu2VH5+vnbu3Klly5Zp+/bt2r9/vzw8PGz6enh46PDhw9q1a5d69epls+6dd96Rh4eH8vPzbdp37Nih/v37q3nz5powYYL8/PyUmZmpnTt36pVXXtHkyZNt+oeEhOjPf/5zqTqbNm1aofE89thj6tmzp4qKipSbm6sdO3YoPj5eiYmJevfdd3XHHXdY+44aNUoPPvigLBZLhfYt/frLfM6cOZJ+DV8VtXjxYhUXF1e4f1VcrbYZM2Zo2rRpph4fgP0RNFDj3X333erRo4ckafz48WrSpIn+9re/ad26dXrggQds+rZu3Vq//PKL/vGPf9gEjfz8fK1du1aDBg3SmjVrbLZ5/vnn5eXlpX/9619q2LChzbqcnJxS9QQEBOjhhx+u8nj69u2rYcOG2bTt27dPAwYM0H333advvvlG/v7+kiQXFxe5uLhU+VgVceHCBdWtW1dubm6mHudaXF1d5epaez+ySl5noLbh0glqnb59+0qSvv/++zLXjxgxQqtWrbL56/yf//ynLl68WCqYlOwnODi4VMiQJB8fH/sUfQ1du3ZVUlKSzpw5o9dee83aXtYcjd27dysyMlJNmjSRp6enWrZsqbFjx0r69RS8t7e3JGnOnDnWyzSzZ8+W9Os8jHr16un777/XPffco/r16+uhhx6yrrtyjsaV5s+frxYtWsjT01Ph4eHav3+/zfp+/fqVefbkyn1eq7ay5mj88ssveu6559S6dWtZLBYFBQXp6aefVkFBgU2/oKAgDR48WNu3b1evXr3k4eGhVq1a6a233ir7Bb/ClZctrjVOSTpw4ICGDRumxo0by8PDQz169NC6dets+pS8b59++qkeffRR+fj4qFmzZtespax9bN++XY899pi8vb3VsGFD/elPf1JhYaHOnDmj6OhoNWrUSI0aNdJTTz2l335Z98svv6zevXvrlltukaenp7p3717qsqEkXbp0SY899piaNGmi+vXr695779Xx48dt3p8Sx48f19ixY+Xr6yuLxaLg4GClpKRUamyoXWrvnwe4aZX80m3UqFGZ60eOHGmdB1ByGWLFihW68847ywwOLVq0UHp6uvbv36/OnTtf8/iXL1/WyZMnS7XXrVtXnp6elRiJrWHDhmncuHH66KOP9Pzzz5fZJycnRwMGDJC3t7emTZumhg0b6ujRo3r//fclSd7e3nr99df1yCOPaOjQofrDH/4gSbr11lut+/jll18UGRmp22+/XS+//LLq1Klz1breeustnTt3TpMmTVJ+fr5eeeUV3XHHHfrqq6/k6+tb4fFVpLbfGj9+vJYvX65hw4bpz3/+s7744gslJCTo22+/1dq1a236Hj582PoaxsTEKCUlRaNHj1b37t0VHBx8zfoqMs6vv/5affr0UUBAgKZNm6a6devq3XffVVRUlNasWaOhQ4fa7PPRRx+Vt7e3Zs2apQsXLlT4tbrS5MmT5efnpzlz5mjnzp1atGiRGjZsqB07dqh58+Z64YUXtGHDBr300kvq3LmzoqOjrdu+8soruvfee/XQQw+psLBQK1eu1P33368PP/xQgwYNsvYbPXq03n33XY0aNUq33XabPv30U5v1JbKzs3XbbbfJyclJsbGx8vb21saNGzVu3Djl5eXpiSeeqNIYUcMZQA21dOlSQ5Lx8ccfG7m5uUZmZqaxevVqw9vb27BYLEZmZqZN//DwcCM4ONgwDMPo0aOHMW7cOMMwDOP06dOGu7u7sXz5cuOTTz4xJBnvvfeedbuPPvrIcHFxMVxcXIywsDDjqaeeMjZv3mwUFhaWqqlFixaGpDKXhISEq46nrGP/VteuXY1GjRqVeg1++OEHwzAMY+3atYYk41//+le5+8jNzTUkGfHx8aXWxcTEGJKMadOmlbmuRYsW1p9/+OEHQ5Lh6elp/Pjjj9b2L774wpBkPPnkk9a28PBwIzw8/Jr7vFpt8fHxxpUfWRkZGYYkY/z48Tb9pkyZYkgytm7dam0reV+2bdtmbcvJyTEsFovx5z//udSxrlSZcd55551Gly5djPz8fGtbcXGx0bt3b6Nt27bWtpL37fbbbzd++eWXqx7/yhpeeumlUvuIjIw0iouLre1hYWGGk5OTMXHiRGvbL7/8YjRr1qzUe3Dx4kWbnwsLC43OnTsbd9xxh7Vtz549hiTjiSeesOk7evToUu/VuHHjDH9/f+PkyZM2fR988EHDy8ur1PFwc+DSCWq8iIgIeXt7KzAwUMOGDVPdunW1bt26q56KHjlypN5//30VFhZq9erVcnFxKfXXZom77rpL6enpuvfee7Vv3z7NnTtXkZGRCggIKHVKXJJCQ0O1ZcuWUsuIESOue6z16tXTuXPnyl1fcnnnww8/1OXLl6t8nEceeaTCfaOiohQQEGD9uVevXgoNDdWGDRuqfPyKKNl/XFycTXvJRNz169fbtHfq1Ml6WU369QxK+/btdeTIkQod71rjPHXqlLZu3aoHHnhA586d08mTJ3Xy5En9/PPPioyM1HfffVfqbqgJEyZc9xybcePG2VxSCg0NlWEYGjdunLXNxcVFPXr0KDXWK8+wnT59WmfPnlXfvn21d+9ea/umTZsk/Xr25Uq/nQRtGIbWrFmjIUOGyDAM6/hPnjypyMhInT171ma/uHlw6QQ1XnJystq1a6ezZ88qJSVF27Ztu+ZdGA8++KCmTJmijRs36p133tHgwYNVv379cvv37NnTGkz27duntWvXav78+Ro2bJgyMjLUqVMna98mTZooIiLCbuO70vnz569aZ3h4uO677z7NmTNH8+fPV79+/RQVFaWRI0dW+M4UV1fXSs0XKOt24Xbt2undd9+t8D6q4j//+Y+cnZ3Vpk0bm3Y/Pz81bNhQ//nPf2zamzdvXmofjRo10unTpyt0vGuN8/DhwzIMQzNnztTMmTPL3EdOTo5NWGnZsmWFjn01vx2Xl5eXJCkwMLBU+2/H+uGHH+qvf/2rMjIybOa1XBlcSl7n39b629c9NzdXZ86c0aJFi7Ro0aIyay1r8jRqP4IGarxevXpZ7zqJiorS7bffrpEjR+rgwYOqV69emdv4+/urX79+mjdvnj7//PNSd5qUx93dXT179lTPnj3Vrl07jRkzRu+9957i4+PtNp7yXL58WYcOHbrqPJGSZ4Ds3LlT//znP7V582aNHTtW8+bN086dO8t9Pa5ksVjk7Gzfk51OTk6lJiJKUlFRkV32XRHlnTkoq66qKJlcPGXKFEVGRpbZ57e/nK9nzk6J8sZVVvuVY/3ss89077336ve//70WLFggf39/ubm5aenSpVqxYkWl6ygZ/8MPP6yYmJgy+1xtvg1qL4IGahUXFxclJCSof//+eu2116763IWRI0dq/Pjxatiwoe65555KH6sk3Jw4caLK9VbG6tWrdenSpXJ/iV3ptttu02233abnn39eK1as0EMPPaSVK1dq/Pjxdn+65nfffVeq7dChQzZ3qDRq1KjMSxS/PetQmdpatGih4uJifffdd+rYsaO1PTs7W2fOnFGLFi0qvK+KuNY4W7VqJUlyc3Mz7YyWPa1Zs0YeHh7avHmzzdmupUuX2vQreZ1/+OEHm7M6hw8ftunn7e2t+vXrq6ioqEaMH9WHORqodfr166devXopKSmp1MO3rjRs2DDFx8drwYIFcnd3L7ffJ598UuZfvSXX5tu3b3/9RV/Dvn379MQTT6hRo0aaNGlSuf1Onz5dqtaQkBBJsp4aL7mL5MyZM3ap7YMPPrCZe7Br1y598cUXuvvuu61trVu31oEDB2yebrpv3z59/vnnNvuqTG0l4TApKcmmPTExUZLKvCvielxrnD4+PurXr5/eeOONMsOnvZ7sai8uLi5ycnKyOat09OhRffDBBzb9SoLtggULbNp/+1RcFxcX3XfffVqzZk2Zt/3eaONH9eGMBmqlqVOn6v7779eyZcs0ceLEMvt4eXmVegZAWSZPnqyLFy9q6NCh6tChgwoLC7Vjxw6tWrVKQUFBGjNmjE3/48eP6+233y61n3r16ikqKuqax/vss8+Un5+voqIi/fzzz/r888+1bt06eXl5ae3atfLz8yt32+XLl2vBggUaOnSoWrdurXPnzmnx4sVq0KCB9Rezp6enOnXqpFWrVqldu3Zq3LixOnfuXKFbd8vSpk0b3X777XrkkUdUUFCgpKQk3XLLLXrqqaesfcaOHavExERFRkZq3LhxysnJ0cKFCxUcHKy8vDxrv8rU1rVrV8XExGjRokU6c+aMwsPDtWvXLi1fvlxRUVHq379/lcZzPeNMTk7W7bffri5dumjChAlq1aqVsrOzlZ6erh9//FH79u2za03XY9CgQUpMTNTAgQM1cuRI5eTkKDk5WW3atNG///1va7/u3bvrvvvuU1JSkn7++Wfr7a2HDh2SZHsW6sUXX9Qnn3yi0NBQTZgwQZ06ddKpU6e0d+9effzxxzp16lS1jxM3AIfd7wJcp5Lb+8q6lbOoqMho3bq10bp1a+vtg1fe3lqesm4x3bhxozF27FijQ4cORr169Qx3d3ejTZs2xuTJk43s7Gyb7a92e+uVt3Fe7dgli5ubm+Ht7W38/ve/N55//nkjJyen3Neg5PbWvXv3GiNGjDCaN29uWCwWw8fHxxg8eLCxe/dum+127NhhdO/e3XB3d7e5RTEmJsaoW7dumfWVd3vrSy+9ZMybN88IDAw0LBaL0bdvX2Pfvn2ltn/77beNVq1aGe7u7kZISIixefPmUvu8Wm2/vb3VMAzj8uXLxpw5c4yWLVsabm5uRmBgoDF9+nSb20sN49f3ZdCgQaVqKu+22ytVdpzff/+9ER0dbfj5+Rlubm5GQECAMXjwYGP16tXWPlf7f/daNVxrHyWvU25urk17We/tkiVLjLZt2xoWi8Xo0KGDsXTp0jJf5wsXLhiTJk0yGjdubNSrV8+IiooyDh48aEgyXnzxRZu+2dnZxqRJk4zAwEDDzc3N8PPzM+68805j0aJFFRorah8nw7DTTCgAqIWOHj2qli1b6qWXXtKUKVMcXc4NIyMjQ926ddPbb79tfXosUBbmaAAArurSpUul2pKSkuTs7Kzf//73DqgINQlzNAAAVzV37lzt2bNH/fv3l6urqzZu3KiNGzfqj3/8Y6nndQC/RdAAAFxV7969tWXLFj333HM6f/68mjdvrtmzZ+uZZ55xdGmoAZijAQAATMMcDQAAYBqCBgAAMM1NN0ejuLhYP/30k+rXr2/3RzEDAFCbGYahc+fOqWnTphX+TqSbLmj89NNPzJIGAOA6ZGZmVvhbnm+6oFHyFduZmZlq0KCBg6sBAKDmyMvLU2BgoPV3aUXcdEGj5HJJgwYNCBoAAFRBZaYeMBkUAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAahwaNbdu2aciQIWratKmcnJz0wQcfXHObtLQ0/e53v5PFYlGbNm20bNky0+sEAABV49CgceHCBXXt2lXJyckV6v/DDz9o0KBB6t+/vzIyMvTEE09o/Pjx2rx5s8mVAgCAqnDok0Hvvvtu3X333RXuv3DhQrVs2VLz5s2TJHXs2FHbt2/X/PnzFRkZaVaZAACgimrUHI309HRFRETYtEVGRio9Pb3cbQoKCpSXl2ezAACA6lGjvuskKytLvr6+Nm2+vr7Ky8vTpUuX5OnpWWqbhIQEzZkzx/Tagqatr/K2R18cZMdKzHM9Y6yKmvK6ALCfqn7O1PbPi5r8utSoMxpVMX36dJ09e9a6ZGZmOrokAABuGjXqjIafn5+ys7Nt2rKzs9WgQYMyz2ZIksVikcViqY7yAADAb9SoMxphYWFKTU21aduyZYvCwsIcVBEAALgahwaN8+fPKyMjQxkZGZJ+vX01IyNDx44dk/TrZY/o6Ghr/4kTJ+rIkSN66qmndODAAS1YsEDvvvuunnzySUeUDwAArsGhQWP37t3q1q2bunXrJkmKi4tTt27dNGvWLEnSiRMnrKFDklq2bKn169dry5Yt6tq1q+bNm6c333yTW1sBALhBOXSORr9+/WQYRrnry3rqZ79+/fTll1+aWBUAALCXGjVHAwAA1CwEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkcHjSSk5MVFBQkDw8PhYaGateuXVftn5SUpPbt28vT01OBgYF68sknlZ+fX03VAgCAynBo0Fi1apXi4uIUHx+vvXv3qmvXroqMjFROTk6Z/VesWKFp06YpPj5e3377rZYsWaJVq1bp6aefrubKAQBARTg0aCQmJmrChAkaM2aMOnXqpIULF6pOnTpKSUkps/+OHTvUp08fjRw5UkFBQRowYIBGjBhxzbMgAADAMRwWNAoLC7Vnzx5FRET8txhnZ0VERCg9Pb3MbXr37q09e/ZYg8WRI0e0YcMG3XPPPeUep6CgQHl5eTYLAACoHq6OOvDJkydVVFQkX19fm3ZfX18dOHCgzG1GjhypkydP6vbbb5dhGPrll180ceLEq146SUhI0Jw5c+xaOwAAqBiHTwatjLS0NL3wwgtasGCB9u7dq/fff1/r16/Xc889V+4206dP19mzZ61LZmZmNVYMAMDNzWFnNJo0aSIXFxdlZ2fbtGdnZ8vPz6/MbWbOnKlRo0Zp/PjxkqQuXbrowoUL+uMf/6hnnnlGzs6lc5PFYpHFYrH/AAAAwDU57IyGu7u7unfvrtTUVGtbcXGxUlNTFRYWVuY2Fy9eLBUmXFxcJEmGYZhXLAAAqBKHndGQpLi4OMXExKhHjx7q1auXkpKSdOHCBY0ZM0aSFB0drYCAACUkJEiShgwZosTERHXr1k2hoaE6fPiwZs6cqSFDhlgDBwAAuHE4NGgMHz5cubm5mjVrlrKyshQSEqJNmzZZJ4geO3bM5gzGjBkz5OTkpBkzZuj48ePy9vbWkCFD9PzzzztqCAAA4CocGjQkKTY2VrGxsWWuS0tLs/nZ1dVV8fHxio+Pr4bKAADA9apRd50AAICahaABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwjcODRnJysoKCguTh4aHQ0FDt2rXrqv3PnDmjSZMmyd/fXxaLRe3atdOGDRuqqVoAAFAZro48+KpVqxQXF6eFCxcqNDRUSUlJioyM1MGDB+Xj41Oqf2Fhoe666y75+Pho9erVCggI0H/+8x81bNiw+osHAADX5NCgkZiYqAkTJmjMmDGSpIULF2r9+vVKSUnRtGnTSvVPSUnRqVOntGPHDrm5uUmSgoKCqrNkAABQCQ67dFJYWKg9e/YoIiLiv8U4OysiIkLp6ellbrNu3TqFhYVp0qRJ8vX1VefOnfXCCy+oqKio3OMUFBQoLy/PZgEAANXDYUHj5MmTKioqkq+vr027r6+vsrKyytzmyJEjWr16tYqKirRhwwbNnDlT8+bN01//+tdyj5OQkCAvLy/rEhgYaNdxAACA8jl8MmhlFBcXy8fHR4sWLVL37t01fPhwPfPMM1q4cGG520yfPl1nz561LpmZmdVYMQAANzeHzdFo0qSJXFxclJ2dbdOenZ0tPz+/Mrfx9/eXm5ubXFxcrG0dO3ZUVlaWCgsL5e7uXmobi8Uii8Vi3+IBAECFOOyMhru7u7p3767U1FRrW3FxsVJTUxUWFlbmNn369NHhw4dVXFxsbTt06JD8/f3LDBkAAMCxqhQ0WrVqpZ9//rlU+5kzZ9SqVasK7ycuLk6LFy/W8uXL9e233+qRRx7RhQsXrHehREdHa/r06db+jzzyiE6dOqXHH39chw4d0vr16/XCCy9o0qRJVRkGAAAwWZUunRw9erTMOz0KCgp0/PjxCu9n+PDhys3N1axZs5SVlaWQkBBt2rTJOkH02LFjcnb+bxYKDAzU5s2b9eSTT+rWW29VQECAHn/8cf3lL3+pyjAAAIDJKhU01q1bZ/3vzZs3y8vLy/pzUVGRUlNTK/1ci9jYWMXGxpa5Li0trVRbWFiYdu7cWaljAAAAx6hU0IiKipIkOTk5KSYmxmadm5ubgoKCNG/ePLsVBwAAarZKBY2SSZgtW7bUv/71LzVp0sSUogAAQO1QpTkaP/zwg73rAAAAtVCVn6ORmpqq1NRU5eTk2NxuKv36nSQAAABVChpz5szRs88+qx49esjf319OTk72rgsAANQCVQoaCxcu1LJlyzRq1Ch71wMAAGqRKj2wq7CwUL1797Z3LQAAoJapUtAYP368VqxYYe9aAABALVOlSyf5+flatGiRPv74Y916661yc3OzWZ+YmGiX4gAAQM1WpaDx73//WyEhIZKk/fv326xjYigAAChRpaDxySef2LsOAABQCznsa+IBAEDtV6UzGv3797/qJZKtW7dWuSAAAFB7VClolMzPKHH58mVlZGRo//79pb5sDQAA3LyqFDTmz59fZvvs2bN1/vz56yoIAADUHnado/Hwww/zPScAAMDKrkEjPT1dHh4e9twlAACowap06eQPf/iDzc+GYejEiRPavXu3Zs6caZfCAABAzVeloOHl5WXzs7Ozs9q3b69nn31WAwYMsEthAACg5qtS0Fi6dKm96wAAALVQlYJGiT179ujbb7+VJAUHB6tbt252KQoAANQOVQoaOTk5evDBB5WWlqaGDRtKks6cOaP+/ftr5cqV8vb2tmeNAACghqrSXSeTJ0/WuXPn9PXXX+vUqVM6deqU9u/fr7y8PD322GP2rhEAANRQVTqjsWnTJn388cfq2LGjta1Tp05KTk5mMigAALCq0hmN4uJiubm5lWp3c3NTcXHxdRcFAABqhyoFjTvuuEOPP/64fvrpJ2vb8ePH9eSTT+rOO++0W3EAAKBmq1LQeO2115SXl6egoCC1bt1arVu3VsuWLZWXl6dXX33V3jUCAIAaqkpzNAIDA7V37159/PHHOnDggCSpY8eOioiIsGtxAACgZqvUGY2tW7eqU6dOysvLk5OTk+666y5NnjxZkydPVs+ePRUcHKzPPvvMrFoBAEANU6mgkZSUpAkTJqhBgwal1nl5eelPf/qTEhMT7VYcAACo2SoVNPbt26eBAweWu37AgAHas2fPdRcFAABqh0oFjezs7DJvay3h6uqq3Nzc6y4KAADUDpUKGgEBAdq/f3+56//973/L39//uosCAAC1Q6WCxj333KOZM2cqPz+/1LpLly4pPj5egwcPtltxAACgZqvU7a0zZszQ+++/r3bt2ik2Nlbt27eXJB04cEDJyckqKirSM888Y0qhAACg5qlU0PD19dWOHTv0yCOPaPr06TIMQ5Lk5OSkyMhIJScny9fX15RCAQBAzVPpB3a1aNFCGzZs0OnTp3X48GEZhqG2bduqUaNGZtQHAABqsCo9GVSSGjVqpJ49e9qzFgAAUMtU6btOAAAAKoKgAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACY5oYIGsnJyQoKCpKHh4dCQ0O1a9euCm23cuVKOTk5KSoqytwCAQBAlTg8aKxatUpxcXGKj4/X3r171bVrV0VGRionJ+eq2x09elRTpkxR3759q6lSAABQWQ4PGomJiZowYYLGjBmjTp06aeHChapTp45SUlLK3aaoqEgPPfSQ5syZo1atWlVjtQAAoDIcGjQKCwu1Z88eRUREWNucnZ0VERGh9PT0crd79tln5ePjo3Hjxl3zGAUFBcrLy7NZAABA9XBo0Dh58qSKiork6+tr0+7r66usrKwyt9m+fbuWLFmixYsXV+gYCQkJ8vLysi6BgYHXXTcAAKgYh186qYxz585p1KhRWrx4sZo0aVKhbaZPn66zZ89al8zMTJOrBAAAJVwdefAmTZrIxcVF2dnZNu3Z2dny8/Mr1f/777/X0aNHNWTIEGtbcXGxJMnV1VUHDx5U69atbbaxWCyyWCwmVA8AAK7FoWc03N3d1b17d6WmplrbiouLlZqaqrCwsFL9O3TooK+++koZGRnW5d5771X//v2VkZHBZREAAG4wDj2jIUlxcXGKiYlRjx491KtXLyUlJenChQsaM2aMJCk6OloBAQFKSEiQh4eHOnfubLN9w4YNJalUOwAAcDyHB43hw4crNzdXs2bNUlZWlkJCQrRp0ybrBNFjx47J2blGTSUBAAD/n8ODhiTFxsYqNja2zHVpaWlX3XbZsmX2LwgAANgFpwoAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADT3BBBIzk5WUFBQfLw8FBoaKh27dpVbt/Fixerb9++atSokRo1aqSIiIir9gcAAI7j8KCxatUqxcXFKT4+Xnv37lXXrl0VGRmpnJycMvunpaVpxIgR+uSTT5Senq7AwEANGDBAx48fr+bKAQDAtTg8aCQmJmrChAkaM2aMOnXqpIULF6pOnTpKSUkps/8777yjRx99VCEhIerQoYPefPNNFRcXKzU1tZorBwAA1+LQoFFYWKg9e/YoIiLC2ubs7KyIiAilp6dXaB8XL17U5cuX1bhx4zLXFxQUKC8vz2YBAADVw6FB4+TJkyoqKpKvr69Nu6+vr7Kysiq0j7/85S9q2rSpTVi5UkJCgry8vKxLYGDgddcNAAAqxuGXTq7Hiy++qJUrV2rt2rXy8PAos8/06dN19uxZ65KZmVnNVQIAcPNydeTBmzRpIhcXF2VnZ9u0Z2dny8/P76rbvvzyy3rxxRf18ccf69Zbby23n8VikcVisUu9AACgchx6RsPd3V3du3e3mchZMrEzLCys3O3mzp2r5557Tps2bVKPHj2qo1QAAFAFDj2jIUlxcXGKiYlRjx491KtXLyUlJenChQsaM2aMJCk6OloBAQFKSEiQJP3tb3/TrFmztGLFCgUFBVnnctSrV0/16tVz2DgAAEBpDg8aw4cPV25urmbNmqWsrCyFhIRo06ZN1gmix44dk7Pzf0+8vP766yosLNSwYcNs9hMfH6/Zs2dXZ+kAAOAaHB40JCk2NlaxsbFlrktLS7P5+ejRo+YXBAAA7KJG33UCAABubAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaQgaAADANAQNAABgGoIGAAAwDUEDAACYhqABAABMQ9AAAACmIWgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYBqCBgAAMA1BAwAAmIagAQAATEPQAAAApiFoAAAA0xA0AACAaW6IoJGcnKygoCB5eHgoNDRUu3btumr/9957Tx06dJCHh4e6dOmiDRs2VFOlAACgMhweNFatWqW4uDjFx8dr79696tq1qyIjI5WTk1Nm/x07dmjEiBEaN26cvvzyS0VFRSkqKkr79++v5soBAMC1ODxoJCYmasKECRozZow6deqkhQsXqk6dOkpJSSmz/yuvvKKBAwdq6tSp6tixo5577jn97ne/02uvvVbNlQMAgGtxdeTBCwsLtWfPHk2fPt3a5uzsrIiICKWnp5e5TXp6uuLi4mzaIiMj9cEHH5TZv6CgQAUFBdafz549K0nKy8u7zuptFRdcrPK29q7FLNczxqqoKa8LAPup6udMbf+8uFFel5L9GYZR4W0cGjROnjypoqIi+fr62rT7+vrqwIEDZW6TlZVVZv+srKwy+yckJGjOnDml2gMDA6tYtf15JTm6ghsTrwuAiuLzomxmvS7nzp2Tl5dXhfo6NGhUh+nTp9ucASkuLtapU6d0yy23yMnJyYGV2V9eXp4CAwOVmZmpBg0aOLoc09wM42SMtcfNME7GWHtca5yGYejcuXNq2rRphffp0KDRpEkTubi4KDs726Y9Oztbfn5+ZW7j5+dXqf4Wi0UWi8WmrWHDhlUvugZo0KBBrf6HUOJmGCdjrD1uhnEyxtrjauOs6JmMEg6dDOru7q7u3bsrNTXV2lZcXKzU1FSFhYWVuU1YWJhNf0nasmVLuf0BAIDjOPzSSVxcnGJiYtSjRw/16tVLSUlJunDhgsaMGSNJio6OVkBAgBISEiRJjz/+uMLDwzVv3jwNGjRIK1eu1O7du7Vo0SJHDgMAAJTB4UFj+PDhys3N1axZs5SVlaWQkBBt2rTJOuHz2LFjcnb+74mX3r17a8WKFZoxY4aefvpptW3bVh988IE6d+7sqCHcMCwWi+Lj40tdKqptboZxMsba42YYJ2OsPcwYp5NRmXtUAAAAKsHhD+wCAAC1F0EDAACYhqABAABMQ9AAAACmIWjUINu2bdOQIUPUtGlTOTk5lfv9LiW2b9+uPn366JZbbpGnp6c6dOig+fPnV0+xVVTZMV7p888/l6urq0JCQkyrz14qO860tDQ5OTmVWsp79P6NoCrvZUFBgZ555hm1aNFCFotFQUFB5X7B4o2gsmMcPXp0me9jcHBw9RRcRVV5L9955x117dpVderUkb+/v8aOHauff/7Z/GKrqCpjTE5OVseOHeXp6an27dvrrbfeMr/Q65CQkKCePXuqfv368vHxUVRUlA4ePHjN7d577z116NBBHh4e6tKlizZs2FCp4xI0apALFy6oa9euSk5OrlD/unXrKjY2Vtu2bdO3336rGTNmaMaMGTf0M0cqO8YSZ86cUXR0tO68806TKrOvqo7z4MGDOnHihHXx8fExqcLrV5UxPvDAA0pNTdWSJUt08OBB/eMf/1D79u1NrPL6VHaMr7zyis37l5mZqcaNG+v+++83udLrU9lxfv7554qOjta4ceP09ddf67333tOuXbs0YcIEkyutusqO8fXXX9f06dM1e/Zsff3115ozZ44mTZqkf/7znyZXWnWffvqpJk2apJ07d2rLli26fPmyBgwYoAsXLpS7zY4dOzRixAiNGzdOX375paKiohQVFaX9+/dX/MAGaiRJxtq1ayu93dChQ42HH37Y/gWZoDJjHD58uDFjxgwjPj7e6Nq1q6l12VtFxvnJJ58YkozTp09XS032VpExbty40fDy8jJ+/vnn6inKzqryb3Lt2rWGk5OTcfToUXOKMkFFxvnSSy8ZrVq1smn7+9//bgQEBJhYmf1UZIxhYWHGlClTbNri4uKMPn36mFiZfeXk5BiSjE8//bTcPg888IAxaNAgm7bQ0FDjT3/6U4WPwxmNm8iXX36pHTt2KDw83NGl2NXSpUt15MgRxcfHO7oU04WEhMjf31933XWXPv/8c0eXY1fr1q1Tjx49NHfuXAUEBKhdu3aaMmWKLl265OjSTLNkyRJFRESoRYsWji7FrsLCwpSZmakNGzbIMAxlZ2dr9erVuueeexxdmt0UFBTIw8PDps3T01O7du3S5cuXHVRV5Zw9e1aS1Lhx43L7pKenKyIiwqYtMjJS6enpFT4OQeMm0KxZM1ksFvXo0UOTJk3S+PHjHV2S3Xz33XeaNm2a3n77bbm6OvxBt6bx9/fXwoULtWbNGq1Zs0aBgYHq16+f9u7d6+jS7ObIkSPavn279u/fr7Vr1yopKUmrV6/Wo48+6ujSTPHTTz9p48aNterfY4k+ffronXfe0fDhw+Xu7i4/Pz95eXlV+lLhjSwyMlJvvvmm9uzZI8MwtHv3br355pu6fPmyTp486ejyrqm4uFhPPPGE+vTpc9Una2dlZVmf1F3C19e3UvPDau8nM6w+++wznT9/Xjt37tS0adPUpk0bjRgxwtFlXbeioiKNHDlSc+bMUbt27Rxdjqnat29vM1ehd+/e+v777zV//nz97//+rwMrs5/i4mI5OTnpnXfesX47ZGJiooYNG6YFCxbI09PTwRXa1/Lly9WwYUNFRUU5uhS7++abb/T4449r1qxZioyM1IkTJzR16lRNnDhRS5YscXR5djFz5kxlZWXptttuk2EY8vX1VUxMjObOnWvztRk3qkmTJmn//v3avn276cciaNwEWrZsKUnq0qWLsrOzNXv27FoRNM6dO6fdu3fryy+/VGxsrKRff1kZhiFXV1d99NFHuuOOOxxcpXl69epVLR8S1cXf318BAQE2X0HdsWNHGYahH3/8UW3btnVgdfZlGIZSUlI0atQoubu7O7ocu0tISFCfPn00depUSdKtt96qunXrqm/fvvrrX/8qf39/B1d4/Tw9PZWSkqI33nhD2dnZ8vf316JFi1S/fn15e3s7uryrio2N1Ycffqht27apWbNmV+3r5+en7Oxsm7bs7Gz5+flV+Hg3fuyCXRUXF6ugoMDRZdhFgwYN9NVXXykjI8O6TJw4Ue3bt1dGRoZCQ0MdXaKpMjIyasUHdok+ffrop59+0vnz561thw4dkrOz8zU/DGuaTz/9VIcPH9a4ceMcXYopLl68WOqvehcXF0m/hqzaxM3NTc2aNZOLi4tWrlypwYMH37BnNAzDUGxsrNauXautW7da/wi9mrCwMKWmptq0bdmyRWFhYRU+Lmc0apDz58/r8OHD1p9/+OEHZWRkqHHjxmrevLmmT5+u48ePW+/lTk5OVvPmzdWhQwdJv94n/vLLL+uxxx5zSP0VUZkxOjs7l7q26OPjIw8Pjxv+23wr+14mJSWpZcuWCg4OVn5+vt58801t3bpVH330kaOGcE2VHePIkSP13HPPacyYMZozZ45OnjypqVOnauzYsTfsZZPKjrHEkiVLFBoaesP/f1qisuMcMmSIJkyYoNdff9166eSJJ55Qr1691LRpU0cN46oqO8ZDhw5p165dCg0N1enTp5WYmKj9+/dr+fLljhrCNU2aNEkrVqzQ//3f/6l+/frWeRZeXl7Wf2PR0dEKCAhQQkKCJOnxxx9XeHi45s2bp0GDBmnlypXavXt35R6TUOn7YeAwJbc4/naJiYkxDMMwYmJijPDwcGv/v//970ZwcLBRp04do0GDBka3bt2MBQsWGEVFRY4ZQAVUdoy/VVNub63sOP/2t78ZrVu3Njw8PIzGjRsb/fr1M7Zu3eqY4iuoKu/lt99+a0RERBienp5Gs2bNjLi4OOPixYvVX3wFVWWMZ86cMTw9PY1FixZVf8FVVJVx/v3vfzc6depkeHp6Gv7+/sZDDz1k/Pjjj9VffAVVdozffPONERISYnh6ehoNGjQw/ud//sc4cOCAY4qvoLLGJ8lYunSptU94eLh1zCXeffddo127doa7u7sRHBxsrF+/vlLH5WviAQCAaW7MC0kAAKBWIGgAAADTEDQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaACwm9GjR8vJyUlOTk5yc3NTy5Yt9dRTTyk/P9/ap2T9zp07bbYtKCjQLbfcIicnJ6WlpVnbP/30U91xxx1q3Lix6tSpo7Zt2yomJkaFhYWSpLS0NOs+f7uUfJcDAMchaACwq4EDB+rEiRM6cuSI5s+frzfeeEPx8fE2fQIDA7V06VKbtrVr16pevXo2bd98840GDhyoHj16aNu2bfrqq6/06quvyt3dXUVFRTZ9Dx48qBMnTtgsPj4+5gwSQIURNADYlcVikZ+fnwIDAxUVFaWIiAht2bLFpk9MTIxWrlypS5cuWdtSUlIUExNj0++jjz6Sn5+f5s6dq86dO6t169YaOHCgFi9eXOobXX18fOTn52ez3Khf1w3cTPhXCMA0+/fv144dO+Tu7m7T3r17dwUFBWnNmjWSpGPHjmnbtm0aNWqUTT8/Pz+dOHFC27Ztq7aaAdgXQQOAXX344YeqV6+ePDw81KVLF+Xk5Gjq1Kml+o0dO1YpKSmSpGXLlumee+6Rt7e3TZ/7779fI0aMUHh4uPz9/TV06FC99tprysvLK7W/Zs2aqV69etYlODjYnAECqBSCBgC76t+/vzIyMvTFF18oJiZGY8aM0X333Veq38MPP6z09HQdOXJEy5Yt09ixY0v1cXFx0dKlS/Xjjz9q7ty5CggI0AsvvKDg4GCdOHHCpu9nn32mjIwM67JhwwbTxgig4ggaAOyqbt26atOmjbp27aqUlBR98cUXWrJkSal+t9xyiwYPHqxx48YpPz9fd999d7n7DAgI0KhRo/Taa6/p66+/Vn5+vhYuXGjTp2XLlmrTpo11adGihd3HBqDyCBoATOPs7Kynn35aM2bMsJn4WWLs2LFKS0tTdHS0XFxcKrTPRo0ayd/fXxcuXLB3uQBM4OroAgDUbvfff7+mTp2q5ORkTZkyxWbdwIEDlZubqwYNGpS57RtvvKGMjAwNHTpUrVu3Vn5+vt566y19/fXXevXVV2365uTk2DyvQ/r1rImbm5t9BwSgUjijAcBUrq6uio2N1dy5c0udhXByclKTJk1K3ZVSolevXjp//rwmTpyo4OBghYeHa+fOnfrggw8UHh5u07d9+/by9/e3Wfbs2WPauABUjJNhGIajiwAAALUTZzQAAIBpCBoAAMA0BA0AAGAaggYAADANQQMAAJiGoAEAAExD0AAAAKYhaAAAANMQNAAAgGkIGgAAwDQEDQAAYJr/Bw7MHZPCg99TAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "errors = np.sqrt(np.mean((pred - gt)**2, axis=1))\n", "\n", "plt.figure(figsize=(6,4))\n", "plt.hist(errors, bins=30)\n", "plt.title('RMSE Distribution per Image')\n", "plt.xlabel('RMSE')\n", "plt.ylabel('Count')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "b25987f7-9bf7-4c37-a57d-0b49f3b189aa", "metadata": {}, "source": [ "Most images have low RMSE values, while a small number of harder samples show higher errors." ] }, { "cell_type": "markdown", "id": "824ac6a9-1e11-4536-9574-755fd0ea35f7", "metadata": {}, "source": [ "### Final Model Inference on Test Data" ] }, { "cell_type": "code", "execution_count": 64, "id": "bb672d29-eb78-4b42-b701-1b277f083cee", "metadata": {}, "outputs": [], "source": [ "submission = lookup_df.copy()" ] }, { "cell_type": "code", "execution_count": 65, "id": "0bf1cf78-9b6f-4aa5-8fef-ddcf790aef15", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 1783\n" ] } ], "source": [ "print(submission['ImageId'].min(), submission['ImageId'].max())" ] }, { "cell_type": "code", "execution_count": 68, "id": "af3d3c32-512c-4713-ac02-7ebde524735f", "metadata": {}, "outputs": [], "source": [ "def parse_image(img_str):\n", " pixels = np.fromstring(img_str, sep=' ',dtype=np.float32)\n", " return pixels.reshape(96, 96, 1)" ] }, { "cell_type": "code", "execution_count": 69, "id": "04285546-0a2d-4ff2-97a5-5c27de20f155", "metadata": {}, "outputs": [], "source": [ "x_test=np.stack(test_df['Image'].apply(parse_image).values)" ] }, { "cell_type": "code", "execution_count": 70, "id": "4fadb546-9712-4a03-92ab-063d96d1b3da", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1783, 96, 96, 1)\n" ] } ], "source": [ "x_test=x_test / 255.0\n", "print(x_test.shape)" ] }, { "cell_type": "code", "execution_count": 71, "id": "e3684176-2d29-4c4f-a5ba-8c0d38b1a45f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "56/56 [==============================] - 1s 9ms/step\n", "(1783, 30)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "W0000 00:00:1766945733.552945 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.555958 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.556202 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.556589 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.556942 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.557548 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.558136 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.558772 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.559172 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.559521 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.560246 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.561045 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.565361 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.566378 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.566964 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.567699 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.568152 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.568993 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.569886 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.570815 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.571421 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.572325 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.573212 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.574368 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.575100 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.575910 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.576901 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.580505 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.581185 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.581642 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.582198 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.582835 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.583283 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.584131 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.584862 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.585725 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.586473 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.587308 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.588238 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.589296 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.590098 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.591094 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.593318 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.593930 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.594387 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.594813 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.595342 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.595754 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.596424 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.597273 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.598171 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.598761 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.599734 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.600729 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.601714 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.602685 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", "W0000 00:00:1766945733.603686 536 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" ] } ], "source": [ "y_test_pred=model.predict(x_test, batch_size=32)\n", "print(y_test_pred.shape)" ] }, { "cell_type": "code", "execution_count": 72, "id": "9ec44599-03a1-49ec-9ccc-ff921f095a94", "metadata": {}, "outputs": [], "source": [ "y_test_pred=y_test_pred * 48 + 48" ] }, { "cell_type": "code", "execution_count": 73, "id": "2957cc0b-5f8f-4986-975b-1550d1a1cf5e", "metadata": {}, "outputs": [], "source": [ "feature_to_idx={f: i for i, f in enumerate(target_cols)}\n", "\n", "submission['Location']=[y_test_pred[row.ImageId - 1, feature_to_idx[row.FeatureName]]for row in submission.itertuples()]" ] }, { "cell_type": "code", "execution_count": 75, "id": "77192af0-257f-4144-a618-006e830395b7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " RowId ImageId FeatureName Location\n", "0 1 1 left_eye_center_x 67.159271\n", "1 2 1 left_eye_center_y 38.925602\n", "2 3 1 right_eye_center_x 28.235607\n", "3 4 1 right_eye_center_y 34.146210\n", "4 5 1 left_eye_inner_corner_x 61.096382\n", "(27124, 4)\n", "0\n", "count 27124.000000\n", "mean 48.627544\n", "std 17.872271\n", "min 5.656898\n", "25% 35.362759\n", "50% 45.751131\n", "75% 62.926924\n", "max 102.183228\n", "Name: Location, dtype: float64\n" ] } ], "source": [ "print(submission.head())\n", "print(submission.shape)\n", "print(submission['Location'].isna().sum())\n", "print(submission['Location'].describe())" ] }, { "cell_type": "code", "execution_count": 76, "id": "61b48caf-0c6b-41c0-a5e4-f509dd16891e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RowIdImageIdFeatureNameLocation
011left_eye_center_x67.159271
121left_eye_center_y38.925602
231right_eye_center_x28.235607
341right_eye_center_y34.146210
451left_eye_inner_corner_x61.096382
\n", "
" ], "text/plain": [ " RowId ImageId FeatureName Location\n", "0 1 1 left_eye_center_x 67.159271\n", "1 2 1 left_eye_center_y 38.925602\n", "2 3 1 right_eye_center_x 28.235607\n", "3 4 1 right_eye_center_y 34.146210\n", "4 5 1 left_eye_inner_corner_x 61.096382" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(submission['Location'].isna().sum())\n", "submission.head()" ] }, { "cell_type": "code", "execution_count": 77, "id": "9378a7aa-593d-4e3a-a67f-371ecc44b9c0", "metadata": {}, "outputs": [], "source": [ "submission.to_csv('submission.csv',index=False)" ] }, { "cell_type": "code", "execution_count": 78, "id": "bbea8567-4538-4c7a-999a-098f726615d1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(27124, 4)\n", "RowId 0\n", "ImageId 0\n", "FeatureName 0\n", "Location 0\n", "dtype: int64\n", " RowId ImageId FeatureName Location\n", "0 1 1 left_eye_center_x 67.159271\n", "1 2 1 left_eye_center_y 38.925602\n", "2 3 1 right_eye_center_x 28.235607\n", "3 4 1 right_eye_center_y 34.146210\n", "4 5 1 left_eye_inner_corner_x 61.096382\n" ] } ], "source": [ "print(submission.shape) # (27124, 4)\n", "print(submission.isna().sum()) # überall 0\n", "print(submission.head())" ] }, { "cell_type": "code", "execution_count": 79, "id": "a998496f-c7d2-40f2-8d6f-bba20cf8ba90", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RowIdImageIdFeatureNameLocation
011left_eye_center_x67.159271
121left_eye_center_y38.925602
231right_eye_center_x28.235607
341right_eye_center_y34.146210
451left_eye_inner_corner_x61.096382
\n", "
" ], "text/plain": [ " RowId ImageId FeatureName Location\n", "0 1 1 left_eye_center_x 67.159271\n", "1 2 1 left_eye_center_y 38.925602\n", "2 3 1 right_eye_center_x 28.235607\n", "3 4 1 right_eye_center_y 34.146210\n", "4 5 1 left_eye_inner_corner_x 61.096382" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "submission.head()" ] }, { "cell_type": "code", "execution_count": 81, "id": "63681d6c-01df-4a98-a2a4-e0ea2308d53d", "metadata": {}, "outputs": [], "source": [ "final_submission=submission[['RowId', 'Location']].copy()" ] }, { "cell_type": "code", "execution_count": 82, "id": "b8c3ef06-0f92-4b71-ba54-fda08e679a03", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " RowId Location\n", "0 1 67.159271\n", "1 2 38.925602\n", "2 3 28.235607\n", "3 4 34.146210\n", "4 5 61.096382\n", "(27124, 2)\n", "RowId 0\n", "Location 0\n", "dtype: int64\n" ] } ], "source": [ "print(final_submission.head())\n", "print(final_submission.shape)\n", "print(final_submission.isna().sum())" ] }, { "cell_type": "code", "execution_count": 83, "id": "fc60a20d-8402-4913-9b59-dce82c90f1af", "metadata": {}, "outputs": [], "source": [ "final_submission.to_csv('submission.csv', index=False)" ] }, { "cell_type": "markdown", "id": "5a9203fb-3f37-40a0-9133-9f56ab56b12e", "metadata": {}, "source": [ "### Conclusion\n", "\n", "In this project, a custom CNN was successfully trained to predict facial keypoints with high accuracy.\n", "The model showed stable training behavior, with steadily decreasing loss and RMSE values.\n", "Both quantitative metrics (RMSE and MAE) and qualitative visualizations confirm that the predicted keypoints closely match the ground truth locations.\n", "Visual inspections of test images demonstrate that the model correctly identifies key facial structures such as the eyes, nose, and mouth across different faces.\n", "The final predictions contained no missing values, and a valid submission file was generated for the test dataset.\n", "The trained model, preprocessing configuration, and feature mappings were saved and used to build a Streamlit application for interactive inference.\n", "Overall, this project demonstrates a complete and well-structured CNN-based regression pipeline, from raw data to deployment-ready results." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }