Spaces:
Sleeping
Sleeping
File size: 10,535 Bytes
c5292d8 58bc784 c5292d8 58bc784 c5292d8 248099e c5292d8 248099e c5292d8 58bc784 c5292d8 248099e c5292d8 248099e c5292d8 248099e c5292d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
"""LLM-based code generator for creating web applications."""
import json
from pathlib import Path
from typing import Any
import anthropic
import openai
from shared.config import settings
from shared.logger import setup_logger
from shared.models import Attachment, TaskRequest
from shared.utils import decode_data_uri
logger = setup_logger(__name__)
class CodeGenerator:
"""Generate code using LLM based on task requirements."""
def __init__(self) -> None:
"""Initialize code generator with LLM client."""
self.provider = settings.llm_provider
self.model = settings.llm_model
if self.provider == "anthropic":
self.client = anthropic.Anthropic(api_key=settings.anthropic_api_key)
elif self.provider == "openai":
self.client = openai.OpenAI(api_key=settings.openai_api_key)
elif self.provider == "aipipe":
# Use OpenAI client with AIPipe endpoints
self.client = openai.OpenAI(
api_key=settings.aipipe_token,
base_url=settings.aipipe_base_url
)
else:
raise ValueError(f"Unsupported LLM provider: {self.provider}")
logger.info(f"Initialized CodeGenerator with {self.provider}/{self.model}")
def generate_app(self, task: TaskRequest, output_dir: Path) -> dict[str, str]:
"""Generate application code based on task requirements.
Args:
task: Task request containing brief and requirements
output_dir: Directory to save generated files
Returns:
Dictionary mapping filenames to their content
"""
logger.info(f"Generating app for task {task.task}")
# Prepare context with attachments
attachment_info = self._prepare_attachments(task.attachments, output_dir)
# Build prompt
prompt = self._build_generation_prompt(task, attachment_info)
# Generate code
generated_files = self._generate_with_llm(prompt)
# Save files
self._save_files(generated_files, output_dir)
logger.info(f"Generated {len(generated_files)} files for task {task.task}")
return generated_files
def _prepare_attachments(
self, attachments: list[Attachment], output_dir: Path
) -> list[dict[str, str]]:
"""Decode and save attachments, return metadata.
Args:
attachments: List of attachments with data URIs
output_dir: Directory to save attachments
Returns:
List of attachment metadata
"""
attachment_info = []
for att in attachments:
try:
mime_type, content = decode_data_uri(att.url)
file_path = output_dir / att.name
file_path.write_bytes(content)
attachment_info.append(
{
"name": att.name,
"mime_type": mime_type,
"size": len(content),
"preview": content[:200].decode("utf-8", errors="ignore")
if mime_type.startswith("text/")
else "[binary data]",
}
)
logger.debug(f"Saved attachment {att.name} ({mime_type}, {len(content)} bytes)")
except Exception as e:
logger.error(f"Failed to process attachment {att.name}: {e}")
attachment_info.append({"name": att.name, "error": str(e)})
return attachment_info
def _build_generation_prompt(
self, task: TaskRequest, attachment_info: list[dict[str, str]]
) -> str:
"""Build prompt for LLM code generation.
Args:
task: Task request
attachment_info: Attachment metadata
Returns:
Formatted prompt
"""
attachments_section = ""
if attachment_info:
attachments_section = "\n\n**Attachments:**\n" + "\n".join(
f"- {att['name']}: {att.get('mime_type', 'unknown')}"
for att in attachment_info
)
checks_section = "\n\n**Requirements (will be tested):**\n" + "\n".join(
f"- {check}" for check in task.checks
)
prompt = f"""You are an expert web developer. Create a complete, production-ready single-page web application based on the following requirements.
**Task:** {task.task}
**Brief:** {task.brief}{attachments_section}{checks_section}
**Instructions:**
1. Create a minimal, functional web application that meets ALL requirements
2. Use only vanilla HTML, CSS, and JavaScript (no build tools required)
3. Include all necessary CDN links for external libraries (Bootstrap, marked, highlight.js, etc.)
4. Ensure the app is self-contained in a single index.html file or minimal files
5. Follow best practices for code quality, accessibility, and user experience
6. Include helpful comments explaining key functionality
7. Make the UI clean and professional using Bootstrap 5 or similar
**Output Format:**
Provide the complete code for each file in JSON format:
```json
{{
"index.html": "<!DOCTYPE html>...",
"style.css": "/* optional styles */",
"script.js": "// optional separate JS",
"README.md": "# Project Title\\n\\n..."
}}
```
Generate ONLY the JSON output, no other text. Ensure all code is complete and functional.
"""
return prompt
def _generate_with_llm(self, prompt: str) -> dict[str, str]:
"""Call LLM API to generate code.
Args:
prompt: Generation prompt
Returns:
Dictionary of filename -> content
"""
logger.info(f"Calling {self.provider} API for code generation")
try:
if self.provider == "anthropic":
response = self.client.messages.create(
model=self.model,
max_tokens=4096,
temperature=0.3,
messages=[{"role": "user", "content": prompt}],
)
content = response.content[0].text
elif self.provider in ["openai", "aipipe"]:
# Both OpenAI and AIPipe use the same API format
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=4096,
)
content = response.choices[0].message.content
else:
raise ValueError(f"Unsupported provider: {self.provider}")
# Extract JSON from response
files = self._extract_json(content)
return files
except Exception as e:
logger.error(f"LLM generation failed: {e}")
# Fallback to minimal template
return self._get_fallback_template()
def _extract_json(self, content: str) -> dict[str, str]:
"""Extract JSON from LLM response.
Args:
content: LLM response text
Returns:
Parsed JSON dictionary
"""
# Try to find JSON in markdown code block (greedy match for nested braces)
import re
json_match = re.search(r"```json\s*(\{.*\})\s*```", content, re.DOTALL)
if json_match:
result = json.loads(json_match.group(1))
# Validate that all values are strings
return {k: v for k, v in result.items() if v is not None}
# Try to find JSON in plain code block
json_match = re.search(r"```\s*(\{.*\})\s*```", content, re.DOTALL)
if json_match:
result = json.loads(json_match.group(1))
# Validate that all values are strings
return {k: v for k, v in result.items() if v is not None}
# Try to parse the whole content as JSON
try:
result = json.loads(content)
# Validate that all values are strings
return {k: v for k, v in result.items() if v is not None}
except json.JSONDecodeError:
# Try to find any JSON object (greedy match)
json_match = re.search(r"\{.*\}", content, re.DOTALL)
if json_match:
result = json.loads(json_match.group(0))
# Validate that all values are strings
return {k: v for k, v in result.items() if v is not None}
logger.error(f"Could not extract JSON from LLM response: {content[:200]}")
raise ValueError("Could not extract JSON from LLM response")
def _get_fallback_template(self) -> dict[str, str]:
"""Get fallback template when LLM generation fails.
Returns:
Basic HTML template
"""
return {
"index.html": """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Generated App</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div class="container mt-5">
<h1>Application</h1>
<p>This is a minimal fallback template.</p>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>
</body>
</html>""",
"README.md": """# Generated Application
This is an automatically generated web application.
## Setup
Simply open `index.html` in a web browser.
## License
MIT License
""",
}
def _save_files(self, files: dict[str, str], output_dir: Path) -> None:
"""Save generated files to output directory.
Args:
files: Dictionary of filename -> content
output_dir: Directory to save files
"""
output_dir.mkdir(parents=True, exist_ok=True)
for filename, content in files.items():
# Skip None or empty content
if content is None:
logger.warning(f"Skipping {filename} - content is None")
continue
# Ensure content is a string
if not isinstance(content, str):
logger.warning(f"Converting {filename} content to string")
content = str(content)
file_path = output_dir / filename
file_path.write_text(content, encoding="utf-8")
logger.debug(f"Saved {filename} ({len(content)} bytes)")
|