Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| from plotly.subplots import make_subplots | |
| import numpy as np | |
| import tempfile | |
| import os | |
| import time | |
| from datetime import datetime | |
| import calendar | |
| import base64 | |
| from PIL import Image as PILImage | |
| import io | |
| # Set page configuration | |
| st.set_page_config( | |
| page_title="ChargeNode Rapport Generator", | |
| page_icon="⚡", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Custom CSS for styling | |
| st.markdown(""" | |
| <style> | |
| .main { | |
| padding: 2rem; | |
| } | |
| .stTabs [data-baseweb="tab-list"] { | |
| gap: 2px; | |
| } | |
| .stTabs [data-baseweb="tab"] { | |
| height: 50px; | |
| white-space: pre-wrap; | |
| border-radius: 4px 4px 0px 0px; | |
| } | |
| h1, h2, h3 { | |
| color: #2c3e50; | |
| } | |
| .metric-card { | |
| background-color: #f8f9fa; | |
| border-radius: 8px; | |
| padding: 20px; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
| text-align: center; | |
| height: 150px; /* Ensure consistent height */ | |
| display: flex; | |
| flex-direction: column; | |
| justify-content: center; | |
| } | |
| .metric-value { | |
| font-size: 2.5rem; | |
| font-weight: bold; | |
| color: #27ae60; | |
| } | |
| .metric-label { | |
| font-size: 1.2rem; | |
| color: #7f8c8d; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Page title | |
| st.title("⚡ ChargeNode Rapport Generator - Internt verktyg för rapportskapande") | |
| st.markdown("Ladda upp dina datafiler för att analysera prestanda och användning av ladduttag.") | |
| # File upload section | |
| st.sidebar.header("Ladda upp Datafiler") | |
| sessions_file = st.sidebar.file_uploader("Ladda upp Sessions.xlsx", type=["xlsx"]) | |
| overview_file = st.sidebar.file_uploader("Ladda upp Overview.xlsx (Valfri)", type=["xlsx"]) # Made optional | |
| # Expected column names and their potential alternatives | |
| EXPECTED_COLUMNS = { | |
| 'Startad': ['Startad', 'Start', 'Started', 'Start Time', 'StartTime', 'Beginning', 'Start Date'], | |
| 'Avslutad': ['Avslutad', 'End', 'Ended', 'End Time', 'EndTime', 'Finish', 'End Date'], | |
| 'Laddat (kWh)': ['Laddat (kWh)', 'kWh', 'Energy', 'Charged', 'Energy (kWh)', 'Power', 'Consumption'], | |
| 'Kostnad (exkl)': ['Kostnad (exkl)', 'Cost', 'Price', 'Cost (excl)', 'Fee', 'Charge', 'Amount'], | |
| 'Uttag': ['Uttag', 'Outlet', 'Charger', 'Outlet ID', 'Charger ID', 'Terminal', 'Station'], | |
| 'Område': ['Område', 'Area', 'Location', 'Region', 'Zone', 'Site', 'Place'] | |
| } | |
| # Function to find matching columns | |
| def find_matching_columns(df, expected_columns_dict): | |
| column_mapping = {} | |
| available_columns = df.columns.tolist() | |
| for expected_col, alternatives in expected_columns_dict.items(): | |
| found = False | |
| # First try exact matches | |
| for alt in alternatives: | |
| if alt in available_columns: | |
| column_mapping[expected_col] = alt # Store as expected:actual | |
| found = True | |
| break | |
| # If no exact match, try case-insensitive matching | |
| if not found: | |
| for col in available_columns: | |
| for alt in alternatives: | |
| if col.lower() == alt.lower(): | |
| column_mapping[expected_col] = col # Store as expected:actual | |
| found = True | |
| break | |
| if found: | |
| break | |
| # Invert mapping for renaming: actual_name -> expected_name | |
| rename_map = {v: k for k, v in column_mapping.items()} | |
| return rename_map | |
| # Function to extract area code and name from combined format | |
| def extract_area_code_and_name(area_string): | |
| """ | |
| Extract area code and name from a string in the format '2571 - Stena Hildedalsgatan' | |
| Returns tuple of (code, name) | |
| """ | |
| try: | |
| if not isinstance(area_string, str): | |
| return (str(area_string), str(area_string)) | |
| area_string = area_string.strip() | |
| if ' - ' in area_string: | |
| # Format is "2571 - Stena Hildedalsgatan" | |
| parts = area_string.split(' - ', 1) | |
| code = parts[0].strip() | |
| name = parts[1].strip() if len(parts) > 1 else "" | |
| return (code, name) | |
| else: | |
| # Just return the whole string if it doesn't match the expected format | |
| return (area_string, area_string) | |
| except: | |
| return (str(area_string), str(area_string)) | |
| # Function to preprocess data | |
| def preprocess_data(sessions_df, overview_df): | |
| st.write("Tillgängliga kolumner i Sessions-filen:", sessions_df.columns.tolist()) | |
| if overview_df is not None: | |
| st.write("Tillgängliga kolumner i Overview-filen:", overview_df.columns.tolist()) | |
| column_rename_map = find_matching_columns(sessions_df, EXPECTED_COLUMNS) | |
| if column_rename_map: | |
| sessions_df = sessions_df.rename(columns=column_rename_map) | |
| required_columns = ['Startad', 'Avslutad', 'Laddat (kWh)', 'Kostnad (exkl)', 'Uttag', 'Område'] | |
| missing_columns = [col for col in required_columns if col not in sessions_df.columns] | |
| if missing_columns: | |
| st.warning(f"Följande obligatoriska kolumner saknas: {', '.join(missing_columns)}") | |
| st.warning("Skapar platshållardata för saknade kolumner. För korrekt analys, se till att din data har dessa kolumner.") | |
| if 'Startad' not in sessions_df.columns: sessions_df['Startad'] = pd.to_datetime('2023-01-01T00:00:00') | |
| if 'Avslutad' not in sessions_df.columns: sessions_df['Avslutad'] = pd.to_datetime('2023-01-01T01:00:00') | |
| if 'Laddat (kWh)' not in sessions_df.columns: sessions_df['Laddat (kWh)'] = 10.0 | |
| if 'Kostnad (exkl)' not in sessions_df.columns: sessions_df['Kostnad (exkl)'] = 5.0 | |
| if 'Uttag' not in sessions_df.columns: sessions_df['Uttag'] = "Uttag_1" | |
| if 'Område' not in sessions_df.columns: sessions_df['Område'] = 'Default Area' | |
| try: | |
| sessions_df['Startad'] = pd.to_datetime(sessions_df['Startad']) | |
| sessions_df['Avslutad'] = pd.to_datetime(sessions_df['Avslutad']) | |
| except Exception as e: | |
| st.error(f"Fel vid konvertering av datumkolumner: {e}. Kontrollera formatet.") | |
| st.stop() | |
| sessions_df['Year'] = sessions_df['Startad'].dt.year | |
| sessions_df['Month'] = sessions_df['Startad'].dt.month | |
| sessions_df['Month_Name'] = sessions_df['Startad'].dt.strftime('%b') | |
| sessions_df['Year_Month'] = sessions_df['Startad'].dt.strftime('%Y-%m') | |
| sessions_df['Hour'] = sessions_df['Startad'].dt.hour | |
| sessions_df['Weekday'] = sessions_df['Startad'].dt.day_name() | |
| sessions_df['Day_Type'] = np.where(sessions_df['Startad'].dt.weekday < 5, 'Vardag', 'Helg') | |
| sessions_df['Duration_Minutes'] = (sessions_df['Avslutad'] - sessions_df['Startad']).dt.total_seconds() / 60 | |
| sessions_df['Duration_Hours'] = sessions_df['Duration_Minutes'] / 60 | |
| sessions_df.loc[sessions_df['Duration_Hours'] < 0, 'Duration_Hours'] = 0 | |
| sessions_df.loc[sessions_df['Duration_Minutes'] < 0, 'Duration_Minutes'] = 0 | |
| for col in ['Laddat (kWh)', 'Kostnad (exkl)']: | |
| if col in sessions_df.columns: | |
| if sessions_df[col].dtype == object: | |
| sessions_df[col] = sessions_df[col].astype(str).str.replace(',', '.').astype(float) | |
| sessions_df[col] = pd.to_numeric(sessions_df[col], errors='coerce').fillna(0) | |
| if 'Uttag' in sessions_df.columns: | |
| sessions_df['Uttag'] = sessions_df['Uttag'].astype(str) | |
| # Remove sessions with zero or negative duration | |
| sessions_df = sessions_df[sessions_df['Duration_Minutes'] > 1] | |
| # Handle area code formats in overview file | |
| if overview_df is not None and not overview_df.empty: | |
| first_col = overview_df.columns[0] | |
| # Check if the first column might contain area codes in the format "2571 - Stena Hildedalsgatan" | |
| sample_values = overview_df[first_col].astype(str).head().tolist() | |
| has_area_code_format = any(' - ' in val for val in sample_values) | |
| if has_area_code_format: | |
| # Extract area codes and names | |
| extracted = overview_df[first_col].apply(extract_area_code_and_name) | |
| overview_df['AreaCode'] = extracted.apply(lambda x: x[0]) | |
| overview_df['AreaName'] = extracted.apply(lambda x: x[1]) | |
| # Try to convert AreaCode to numeric if possible | |
| try: | |
| overview_df['AreaCode'] = pd.to_numeric(overview_df['AreaCode'], errors='coerce').fillna(overview_df['AreaCode']) | |
| except: | |
| pass # Keep as string if conversion fails | |
| # Also check if there are separate area code and name columns in the sessions file | |
| if 'Område' in sessions_df.columns: | |
| # Look for potential area code column | |
| possible_code_columns = [col for col in sessions_df.columns if any(keyword in col.lower() for keyword in | |
| ['områdeskod', 'omradeskod', 'area code', 'areakod', 'kod'])] | |
| if possible_code_columns: | |
| area_code_col = possible_code_columns[0] | |
| # Ensure the area code column is properly formatted as string for comparison | |
| sessions_df[area_code_col] = sessions_df[area_code_col].astype(str).str.strip() | |
| # Look for a potential area name column | |
| possible_name_columns = [col for col in sessions_df.columns if any(keyword in col.lower() for keyword in | |
| ['områdesnamn', 'omradesnamn', 'area name', 'areanamn', 'namn'])] | |
| area_name_col = possible_name_columns[0] if possible_name_columns else None | |
| # If we have both area codes in the overview file and separate columns in sessions, we can match them | |
| if has_area_code_format: | |
| # Create a mapping from area code to original format | |
| area_mapping = {} | |
| for _, row in overview_df.iterrows(): | |
| area_mapping[str(row['AreaCode'])] = row[first_col] | |
| # Update the Område column to match the format in overview file | |
| sessions_df['Område_Original'] = sessions_df['Område'] # Keep original for reference | |
| # Update based on area code | |
| sessions_df['Område'] = sessions_df[area_code_col].map(area_mapping).fillna(sessions_df['Område']) | |
| return sessions_df, overview_df | |
| # Function to calculate metrics | |
| def calculate_metrics(sessions_df, overview_df): | |
| metrics = {} | |
| if sessions_df.empty: | |
| st.warning("Ingen data att analysera efter filtrering eller i den uppladdade filen.") | |
| # Return default empty metrics | |
| metrics['unique_areas'] = [] | |
| metrics['area_count'] = 0 | |
| metrics['outlets_per_area'] = pd.DataFrame(columns=['Område', 'Number_of_Outlets']) | |
| metrics['total_outlets'] = 0 | |
| metrics['kwh_per_month_area'] = pd.DataFrame(columns=['Område', 'Year_Month', 'Laddat (kWh)']) | |
| metrics['cost_per_month_area'] = pd.DataFrame(columns=['Område', 'Year_Month', 'Kostnad (exkl)']) | |
| metrics['kwh_per_month'] = pd.DataFrame(columns=['Year_Month', 'Laddat (kWh)']) | |
| metrics['avg_kwh_per_outlet_month'] = pd.DataFrame(columns=['Year_Month', 'Avg_kWh_per_Outlet']) | |
| metrics['kwh_outlet_month_area'] = pd.DataFrame(columns=['Område', 'Year_Month', 'Uttag', 'Laddat (kWh)']) | |
| metrics['hourly_utilization'] = pd.DataFrame(columns=['Date', 'Hour', 'IsWeekend', 'Outlets_In_Use', 'Total_Outlets', 'Utilization', 'Date_Str']) | |
| metrics['utilization'] = pd.DataFrame(columns=['Område', 'Year_Month', 'Used_Outlet_Hours', 'Total_Possible_Outlet_Hours', 'Utilization']) | |
| metrics['total_kwh'] = 0 | |
| metrics['total_cost'] = 0 | |
| metrics['total_sessions'] = 0 | |
| metrics['avg_kwh_per_session'] = 0 | |
| metrics['avg_duration_minutes'] = 0 | |
| metrics['avg_hourly_utilization'] = pd.DataFrame(columns=['Hour', 'Day_Type', 'Utilization']) | |
| metrics['avg_weekday_utilization'] = pd.DataFrame(columns=['Weekday', 'Utilization']) | |
| return metrics | |
| unique_areas = sessions_df['Område'].unique() | |
| metrics['unique_areas'] = unique_areas | |
| metrics['area_count'] = len(unique_areas) | |
| # Calculate outlets per area from sessions | |
| outlets_per_area = sessions_df.groupby('Område')['Uttag'].nunique().reset_index() | |
| outlets_per_area.columns = ['Område', 'Number_of_Outlets'] | |
| # If overview_df is available, use column 4 for a more accurate count of outlets | |
| total_outlets = 0 | |
| if overview_df is not None and not overview_df.empty: | |
| try: | |
| # Use column 4 (index 3) for outlet counts as specified in the problem | |
| outlet_col_idx = 3 # 0-based indexing, so column 4 is index 3 | |
| if outlet_col_idx < len(overview_df.columns): | |
| outlet_column = overview_df.columns[outlet_col_idx] | |
| # Use first column for area identification | |
| area_id_col = overview_df.columns[0] | |
| # If we extracted area codes earlier, use them for matching | |
| if 'AreaCode' in overview_df.columns: | |
| # Convert column 4 to numeric if it's not already | |
| if overview_df[outlet_column].dtype == object: | |
| overview_df[outlet_column] = pd.to_numeric(overview_df[outlet_column], errors='coerce').fillna(0) | |
| # Group by area code and sum the outlet counts | |
| outlet_counts = overview_df.groupby('AreaCode')[outlet_column].sum().reset_index() | |
| outlet_counts.columns = ['AreaCode', 'Number_of_Outlets'] | |
| # Create a mapping from original area format to area code for matching | |
| area_code_map = {} | |
| for _, row in overview_df.iterrows(): | |
| area_full = row[area_id_col] | |
| area_code = row['AreaCode'] if 'AreaCode' in overview_df.columns else area_full | |
| area_code_map[str(area_full)] = str(area_code) | |
| # Update outlets_per_area with counts from overview | |
| updated_outlets_per_area = [] | |
| for _, row in outlets_per_area.iterrows(): | |
| area = row['Område'] | |
| num_outlets = row['Number_of_Outlets'] | |
| # Try to find the area code from the session area | |
| area_code = None | |
| # Check if the area is already in the format "code - name" | |
| if ' - ' in str(area): | |
| area_code = extract_area_code_and_name(area)[0] | |
| else: | |
| # Otherwise try to find it in the mapping | |
| for full_name, code in area_code_map.items(): | |
| if str(area) == str(full_name) or str(area) == str(code): | |
| area_code = code | |
| break | |
| # If we found a matching area code, update the outlet count | |
| if area_code is not None and str(area_code) in outlet_counts['AreaCode'].astype(str).values: | |
| matching_row = outlet_counts[outlet_counts['AreaCode'].astype(str) == str(area_code)] | |
| if not matching_row.empty: | |
| num_outlets = matching_row.iloc[0]['Number_of_Outlets'] | |
| updated_outlets_per_area.append({ | |
| 'Område': area, | |
| 'Number_of_Outlets': num_outlets | |
| }) | |
| # Replace the original outlets_per_area with the updated one | |
| outlets_per_area = pd.DataFrame(updated_outlets_per_area) | |
| else: | |
| # If no AreaCode column, try matching directly by the first column | |
| if overview_df[outlet_column].dtype == object: | |
| overview_df[outlet_column] = pd.to_numeric(overview_df[outlet_column], errors='coerce').fillna(0) | |
| outlet_counts = overview_df.groupby(area_id_col)[outlet_column].sum().reset_index() | |
| outlet_counts.columns = ['Område', 'Number_of_Outlets'] | |
| # Try to update outlets_per_area based on area names | |
| for i, row in outlets_per_area.iterrows(): | |
| area = row['Område'] | |
| for j, count_row in outlet_counts.iterrows(): | |
| overview_area = count_row['Område'] | |
| # Check for exact match or if one contains the other | |
| if str(area) == str(overview_area) or str(area) in str(overview_area) or str(overview_area) in str(area): | |
| outlets_per_area.at[i, 'Number_of_Outlets'] = count_row['Number_of_Outlets'] | |
| break | |
| # Calculate total from the updated outlets_per_area | |
| total_outlets = outlets_per_area['Number_of_Outlets'].sum() | |
| else: | |
| st.warning(f"Column 4 not found in overview file. Using data from sessions instead.") | |
| total_outlets = int(outlets_per_area['Number_of_Outlets'].sum()) | |
| except Exception as e: | |
| st.warning(f"Kunde inte beräkna antalet uttag från översiktsfilen: {e}") | |
| import traceback | |
| st.warning(traceback.format_exc()) # More detailed error for debugging | |
| # Fall back to using only session data | |
| total_outlets = int(outlets_per_area['Number_of_Outlets'].sum()) | |
| else: | |
| # If no overview file, just use the active outlets from sessions | |
| total_outlets = int(outlets_per_area['Number_of_Outlets'].sum()) | |
| metrics['outlets_per_area'] = outlets_per_area | |
| metrics['total_outlets'] = total_outlets | |
| # For calculations that use total_outlets, make sure it's never zero to avoid division by zero | |
| total_outlets_for_calc = max(1, total_outlets) # Use at least 1 to avoid division by zero | |
| kwh_per_month_area = sessions_df.groupby(['Område', 'Year_Month'])['Laddat (kWh)'].sum().reset_index() | |
| metrics['kwh_per_month_area'] = kwh_per_month_area | |
| cost_per_month_area = sessions_df.groupby(['Område', 'Year_Month'])['Kostnad (exkl)'].sum().reset_index() | |
| metrics['cost_per_month_area'] = cost_per_month_area | |
| kwh_per_month = sessions_df.groupby(['Year_Month'])['Laddat (kWh)'].sum().reset_index() | |
| metrics['kwh_per_month'] = kwh_per_month | |
| total_kwh_per_month = sessions_df.groupby('Year_Month')['Laddat (kWh)'].sum().reset_index() | |
| outlets_active_per_month = sessions_df.groupby('Year_Month')['Uttag'].nunique().reset_index() | |
| avg_kwh_per_outlet = pd.merge(total_kwh_per_month, outlets_active_per_month, on='Year_Month', how='left') | |
| avg_kwh_per_outlet['Avg_kWh_per_Outlet'] = avg_kwh_per_outlet['Laddat (kWh)'] / avg_kwh_per_outlet['Uttag'].replace(0, 1) # Avoid div by zero | |
| metrics['avg_kwh_per_outlet_month'] = avg_kwh_per_outlet | |
| kwh_outlet_month_area = sessions_df.groupby(['Område', 'Year_Month', 'Uttag'])['Laddat (kWh)'].sum().reset_index() | |
| metrics['kwh_outlet_month_area'] = kwh_outlet_month_area | |
| # Calculate utilization by hour and date (Improved robustness) | |
| session_hours_list = [] | |
| if not sessions_df.empty and 'Startad' in sessions_df.columns and 'Avslutad' in sessions_df.columns: | |
| for _, session in sessions_df.iterrows(): | |
| try: | |
| start_time = session['Startad'] | |
| end_time = session['Avslutad'] | |
| outlet = session['Uttag'] | |
| area = session['Område'] | |
| if pd.isna(start_time) or pd.isna(end_time) or end_time < start_time: | |
| continue | |
| # Iterate over one-hour intervals within the session | |
| current_hour_start = start_time.floor('H') | |
| while current_hour_start < end_time: | |
| session_hours_list.append({ | |
| 'Date': current_hour_start.date(), | |
| 'Hour': current_hour_start.hour, | |
| 'Outlet': outlet, | |
| 'Område': area, # Add area for better segmentation | |
| 'IsWeekend': current_hour_start.weekday() >= 5, | |
| 'Day_Type': 'Helg' if current_hour_start.weekday() >= 5 else 'Vardag', | |
| 'Weekday': current_hour_start.day_name() | |
| }) | |
| current_hour_start += pd.Timedelta(hours=1) | |
| except Exception as e: | |
| st.warning(f"Skippade en session vid beräkning av timvis användning p.g.a. datafel: {e}") | |
| continue | |
| if session_hours_list: | |
| hourly_usage_df = pd.DataFrame(session_hours_list) | |
| # Count unique outlets in use for each hour, date, day_type, weekday | |
| # First by area for area-specific utilization | |
| area_hourly_utilization = hourly_usage_df.groupby(['Date', 'Hour', 'IsWeekend', 'Day_Type', 'Weekday', 'Område']).agg( | |
| Outlets_In_Use=('Outlet', 'nunique') | |
| ).reset_index() | |
| # Add total configured outlets per area | |
| area_hourly_utilization = area_hourly_utilization.merge( | |
| outlets_per_area, on='Område', how='left' | |
| ) | |
| area_hourly_utilization['Number_of_Outlets'] = area_hourly_utilization['Number_of_Outlets'].fillna(1) # Fallback to 1 if unknown | |
| # Calculate area-specific utilization | |
| area_hourly_utilization['Utilization'] = area_hourly_utilization['Outlets_In_Use'] / area_hourly_utilization['Number_of_Outlets'] | |
| area_hourly_utilization['Date_Str'] = pd.to_datetime(area_hourly_utilization['Date']).dt.strftime('%a %d %b %Y') | |
| metrics['area_hourly_utilization'] = area_hourly_utilization | |
| # Then overall for all areas combined | |
| hourly_utilization = hourly_usage_df.groupby(['Date', 'Hour', 'IsWeekend', 'Day_Type', 'Weekday']).agg( | |
| Outlets_In_Use=('Outlet', 'nunique') | |
| ).reset_index() | |
| # Use the total configured outlets for overall utilization | |
| hourly_utilization['Total_Outlets'] = total_outlets_for_calc | |
| hourly_utilization['Utilization'] = hourly_utilization['Outlets_In_Use'] / hourly_utilization['Total_Outlets'] | |
| hourly_utilization['Date_Str'] = pd.to_datetime(hourly_utilization['Date']).dt.strftime('%a %d %b %Y') | |
| metrics['hourly_utilization'] = hourly_utilization | |
| # Average hourly utilization (e.g. 9 AM is X% utilized on average on weekdays) | |
| avg_hourly_utilization = hourly_utilization.groupby(['Hour', 'Day_Type'])['Utilization'].mean().reset_index() | |
| metrics['avg_hourly_utilization'] = avg_hourly_utilization | |
| # Average weekday utilization | |
| avg_weekday_utilization = hourly_utilization.groupby(['Weekday'])['Utilization'].mean().reset_index() | |
| weekday_order = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] | |
| avg_weekday_utilization['Weekday'] = pd.Categorical(avg_weekday_utilization['Weekday'], categories=weekday_order, ordered=True) | |
| avg_weekday_utilization = avg_weekday_utilization.sort_values('Weekday') | |
| metrics['avg_weekday_utilization'] = avg_weekday_utilization | |
| else: | |
| metrics['hourly_utilization'] = pd.DataFrame(columns=['Date', 'Hour', 'IsWeekend', 'Outlets_In_Use', 'Total_Outlets', 'Utilization', 'Date_Str', 'Day_Type', 'Weekday']) | |
| metrics['area_hourly_utilization'] = pd.DataFrame(columns=['Date', 'Hour', 'IsWeekend', 'Outlets_In_Use', 'Number_of_Outlets', 'Utilization', 'Date_Str', 'Day_Type', 'Weekday', 'Område']) | |
| metrics['avg_hourly_utilization'] = pd.DataFrame(columns=['Hour', 'Day_Type', 'Utilization']) | |
| metrics['avg_weekday_utilization'] = pd.DataFrame(columns=['Weekday', 'Utilization']) | |
| # Monthly utilization | |
| utilization_data = [] | |
| all_months_in_data = sessions_df['Year_Month'].unique() | |
| all_areas_in_data = sessions_df['Område'].unique() | |
| for area in all_areas_in_data: | |
| # Get total number of outlets for this area from our updated outlets_per_area dataframe | |
| area_outlets_count = outlets_per_area[outlets_per_area['Område'] == area]['Number_of_Outlets'].values | |
| if len(area_outlets_count) == 0 or area_outlets_count[0] == 0: | |
| continue # Skip areas with no configured outlets | |
| area_outlets_count = area_outlets_count[0] | |
| for ym in all_months_in_data: | |
| year, month = map(int, ym.split('-')) | |
| days_in_month = calendar.monthrange(year, month)[1] | |
| total_possible_outlet_hours = area_outlets_count * days_in_month * 24 # Total available hours for all outlets in area for the month | |
| area_month_sessions = sessions_df[(sessions_df['Område'] == area) & (sessions_df['Year_Month'] == ym)] | |
| if area_month_sessions.empty: | |
| used_outlet_hours = 0 | |
| else: | |
| # Calculate active hours from session duration | |
| # For each session, count the hours it spans | |
| total_hours = 0 | |
| for _, session in area_month_sessions.iterrows(): | |
| try: | |
| start_time = session['Startad'] | |
| end_time = session['Avslutad'] | |
| if pd.isna(start_time) or pd.isna(end_time) or end_time < start_time: | |
| continue | |
| # Calculate hours this session spans | |
| duration_hours = (end_time - start_time).total_seconds() / 3600 | |
| total_hours += duration_hours | |
| except Exception as e: | |
| st.warning(f"Fel vid beräkning av timanvändning för session: {e}") | |
| continue | |
| used_outlet_hours = total_hours | |
| utilization = used_outlet_hours / total_possible_outlet_hours if total_possible_outlet_hours > 0 else 0 | |
| utilization_data.append({ | |
| 'Område': area, | |
| 'Year_Month': ym, | |
| 'Used_Outlet_Hours': used_outlet_hours, | |
| 'Total_Possible_Outlet_Hours': total_possible_outlet_hours, | |
| 'Utilization': utilization | |
| }) | |
| metrics['utilization'] = pd.DataFrame(utilization_data) | |
| metrics['total_kwh'] = sessions_df['Laddat (kWh)'].sum() | |
| metrics['total_cost'] = sessions_df['Kostnad (exkl)'].sum() | |
| metrics['total_sessions'] = len(sessions_df) | |
| metrics['avg_kwh_per_session'] = metrics['total_kwh'] / metrics['total_sessions'] if metrics['total_sessions'] > 0 else 0 | |
| metrics['avg_duration_minutes'] = sessions_df['Duration_Minutes'].mean() if metrics['total_sessions'] > 0 else 0 | |
| return metrics | |
| # Function to create plotly figures | |
| def create_visualizations(metrics, sessions_df): # Pass sessions_df for more detailed plots | |
| figures = {} | |
| # 1. Bar chart: Number of outlets per area | |
| fig_outlets = px.bar( | |
| metrics['outlets_per_area'], x='Område', y='Number_of_Outlets', | |
| title='Antal Uttag per Område', color='Number_of_Outlets', color_continuous_scale=px.colors.sequential.Greens, | |
| labels={'Number_of_Outlets': 'Antal Uttag', 'Område': 'Område'} | |
| ) | |
| fig_outlets.update_layout(xaxis_tickangle=-45) | |
| figures['outlets_per_area'] = fig_outlets | |
| # 2. Bar chart: kWh per month for each area | |
| fig_kwh_area = px.bar( | |
| metrics['kwh_per_month_area'], x='Year_Month', y='Laddat (kWh)', color='Område', | |
| title='Total Energi (kWh) per Månad och Område', | |
| labels={'Laddat (kWh)': 'Energi (kWh)', 'Year_Month': 'Månad', 'Område': 'Område'}, | |
| barmode='group', color_discrete_sequence=px.colors.qualitative.Pastel | |
| ) | |
| fig_kwh_area.update_layout(xaxis_tickangle=-45) | |
| figures['kwh_per_month_area'] = fig_kwh_area | |
| # 2b. Bar chart: Kostnad (exkl) per month for each area | |
| fig_cost_area = px.bar( | |
| metrics['cost_per_month_area'], x='Year_Month', y='Kostnad (exkl)', color='Område', | |
| title='Total Kostnad (exkl. moms) per Månad och Område', | |
| labels={'Kostnad (exkl)': 'Kostnad (SEK)', 'Year_Month': 'Månad', 'Område': 'Område'}, | |
| barmode='group', color_discrete_sequence=px.colors.qualitative.Set2 | |
| ) | |
| fig_cost_area.update_layout(xaxis_tickangle=-45) | |
| figures['cost_per_month_area'] = fig_cost_area | |
| # 3. Line chart: Average kWh per outlet per month (overall) | |
| fig_avg_kwh = px.line( | |
| metrics['avg_kwh_per_outlet_month'], x='Year_Month', y='Avg_kWh_per_Outlet', markers=True, | |
| title='Genomsnittlig Energi (kWh) per Aktivt Uttag per Månad (Totalt)', | |
| labels={'Avg_kWh_per_Outlet': 'Genomsnittlig kWh/Uttag', 'Year_Month': 'Månad'} | |
| ) | |
| fig_avg_kwh.update_layout(xaxis_tickangle=-45) | |
| figures['avg_kwh_per_outlet'] = fig_avg_kwh | |
| # 4. Heatmap: Date-Hour Utilization - CHANGED TO GREEN GRADIENT | |
| if not metrics['hourly_utilization'].empty: | |
| pivot_hourly = metrics['hourly_utilization'].pivot_table( | |
| index='Date_Str', columns='Hour', values='Utilization', aggfunc='mean' | |
| ).fillna(0) | |
| # Ensure chronological order of dates | |
| sorted_dates = sorted(metrics['hourly_utilization']['Date'].unique()) | |
| date_str_order = [d.strftime('%a %d %b %Y') for d in sorted_dates] | |
| pivot_hourly = pivot_hourly.reindex(index=date_str_order).fillna(0) | |
| # Find the min and max values for consistent color scale | |
| min_val = pivot_hourly.values.min() | |
| max_val = pivot_hourly.values.max() | |
| # Create the heatmap with green color scale | |
| fig_hourly = px.imshow( | |
| pivot_hourly, labels=dict(x='Timme på Dygnet', y='Datum', color='Beläggning (%)'), | |
| x=list(range(24)), y=pivot_hourly.index, | |
| color_continuous_scale=px.colors.sequential.Greens, # Changed to green | |
| title='Timvis Beläggningsgrad Heatmap (Aktiva Uttag / Totalt Antal Uttag)', | |
| zmin=min_val, zmax=max_val # Set fixed min/max for consistent gradient | |
| ) | |
| # Add ChargeNode logo to top right (placeholder) | |
| fig_hourly.add_layout_image( | |
| dict( | |
| source="https://chargenode.eu/wp-content/themes/chargenode/dist/assets/img/logo.svg", | |
| xref="paper", yref="paper", | |
| x=1.0, y=1.05, | |
| sizex=0.15, sizey=0.15, | |
| xanchor="right", yanchor="top" | |
| ) | |
| ) | |
| fig_hourly.update_layout( | |
| coloraxis_colorbar=dict(title='Beläggning', tickformat='.0%'), | |
| height=max(500, 20 * len(pivot_hourly.index)), margin=dict(l=150, r=20, t=80, b=50), | |
| xaxis_title="Timme på dygnet", yaxis_title="Datum" | |
| ) | |
| hour_labels = [f"{h:02d}:00" for h in range(24)] | |
| fig_hourly.update_xaxes(tickvals=list(range(24)), ticktext=hour_labels, side="top") | |
| fig_hourly.update_yaxes(autorange="reversed") # Show newest dates at top | |
| figures['hourly_utilization_heatmap'] = fig_hourly | |
| else: | |
| figures['hourly_utilization_heatmap'] = go.Figure().update_layout(title_text='Timvis Beläggningsgrad Heatmap (Ingen data)') | |
| # 4b. Aggregated Hourly Utilization (Line chart) - Changed to use green | |
| if not metrics['avg_hourly_utilization'].empty: | |
| fig_avg_hourly_util = px.line( | |
| metrics['avg_hourly_utilization'], x='Hour', y='Utilization', color='Day_Type', | |
| title='Genomsnittlig Beläggningsgrad per Timme (Vardag vs Helg)', | |
| labels={'Hour': 'Timme på Dygnet', 'Utilization': 'Genomsnittlig Beläggning', 'Day_Type': 'Dagtyp'}, | |
| markers=True, color_discrete_map={'Vardag': '#27ae60', 'Helg': '#f39c12'} # Changed to green for weekdays | |
| ) | |
| fig_avg_hourly_util.update_layout(yaxis_tickformat=".0%", xaxis_dtick=1) | |
| figures['avg_hourly_utilization_line'] = fig_avg_hourly_util | |
| else: | |
| figures['avg_hourly_utilization_line'] = go.Figure().update_layout(title_text='Genomsnittlig Beläggningsgrad per Timme (Ingen data)') | |
| # 4c. Aggregated Weekday Utilization (Bar chart) - Changed to green | |
| if not metrics['avg_weekday_utilization'].empty: | |
| fig_avg_weekday_util = px.bar( | |
| metrics['avg_weekday_utilization'], x='Weekday', y='Utilization', | |
| title='Genomsnittlig Beläggningsgrad per Veckodag', | |
| labels={'Weekday': 'Veckodag', 'Utilization': 'Genomsnittlig Beläggning'}, | |
| color='Utilization', color_continuous_scale=px.colors.sequential.Greens # Changed to green | |
| ) | |
| fig_avg_weekday_util.update_layout(yaxis_tickformat=".0%") | |
| figures['avg_weekday_utilization_bar'] = fig_avg_weekday_util | |
| else: | |
| figures['avg_weekday_utilization_bar'] = go.Figure().update_layout(title_text='Genomsnittlig Beläggningsgrad per Veckodag (Ingen data)') | |
| # 5. Heatmap: Monthly Utilization per area - Changed to green | |
| if not metrics['utilization'].empty and 'Utilization' in metrics['utilization'].columns: | |
| pivot_util = metrics['utilization'].pivot_table( | |
| index='Område', columns='Year_Month', values='Utilization' | |
| ).fillna(0) | |
| # Find min/max for consistent gradient | |
| min_val = pivot_util.values.min() | |
| max_val = pivot_util.values.max() | |
| fig_util = px.imshow( | |
| pivot_util, labels=dict(x='Månad', y='Område', color='Beläggning (%)'), | |
| x=pivot_util.columns, y=pivot_util.index, | |
| color_continuous_scale=px.colors.sequential.Greens, # Changed to green | |
| title='Månatlig Beläggningsgrad per Område (Baserat på Aktiva Uttagstimmar)', | |
| zmin=min_val, zmax=max(0.01, max_val) # Set fixed min/max for consistent gradient | |
| ) | |
| fig_util.update_layout(xaxis_tickangle=-45, coloraxis_colorbar=dict(tickformat='.0%')) | |
| figures['monthly_utilization_area_heatmap'] = fig_util | |
| else: | |
| figures['monthly_utilization_area_heatmap'] = go.Figure().update_layout(title_text='Månatlig Beläggningsgrad per Område (Ingen data)') | |
| # 6. Box plot: kWh per OUTLET per month per area (Distribution of individual outlet performance) | |
| if not metrics['kwh_outlet_month_area'].empty: | |
| fig_kwh_outlet_dist = px.box( | |
| metrics['kwh_outlet_month_area'], x='Område', y='Laddat (kWh)', color='Year_Month', | |
| title='Distribution av Energi (kWh) per Uttag (Månadsvis per Område)', | |
| labels={'Laddat (kWh)': 'Energi per Uttag (kWh)', 'Område': 'Område', 'Year_Month': 'Månad'}, | |
| color_discrete_sequence=px.colors.qualitative.Vivid | |
| ) | |
| fig_kwh_outlet_dist.update_layout(xaxis_tickangle=-45) | |
| figures['kwh_per_outlet_distribution'] = fig_kwh_outlet_dist | |
| else: | |
| figures['kwh_per_outlet_distribution'] = go.Figure().update_layout(title_text='Distribution av Energi (kWh) per Uttag (Ingen data)') | |
| # 7. Histogram: Session Duration - CHANGED TO HOURS AND REMOVE OUTLIERS OVER 12 HOURS | |
| if not sessions_df.empty and 'Duration_Hours' in sessions_df.columns: | |
| # Filter outliers - sessions longer than 12 hours | |
| filtered_sessions = sessions_df[sessions_df['Duration_Hours'] <= 12] | |
| fig_session_duration_hist = px.histogram( | |
| filtered_sessions, x='Duration_Hours', nbins=50, | |
| title='Distribution av Sessionslängd (Timmar)', | |
| labels={'Duration_Hours': 'Sessionslängd (Timmar)', 'count': 'Antal Sessioner'}, | |
| marginal="box", # adds a box plot above histogram | |
| color_discrete_sequence=['#27ae60'] # Use green color | |
| ) | |
| fig_session_duration_hist.update_layout(yaxis_title="Antal Sessioner") | |
| figures['session_duration_histogram'] = fig_session_duration_hist | |
| else: | |
| figures['session_duration_histogram'] = go.Figure().update_layout(title_text='Distribution av Sessionslängd (Ingen data)') | |
| # 8. Box Plot: Energy per Session by Area | |
| if not sessions_df.empty and 'Laddat (kWh)' in sessions_df.columns: | |
| fig_kwh_per_session_area_box = px.box( | |
| sessions_df, x='Område', y='Laddat (kWh)', color='Område', | |
| title='Energi (kWh) per Session fördelat på Område', | |
| labels={'Laddat (kWh)': 'Energi per Session (kWh)', 'Område': 'Område'}, | |
| color_discrete_sequence=px.colors.qualitative.Safe | |
| ) | |
| fig_kwh_per_session_area_box.update_layout(xaxis_tickangle=-45) | |
| figures['kwh_per_session_area_box'] = fig_kwh_per_session_area_box | |
| else: | |
| figures['kwh_per_session_area_box'] = go.Figure().update_layout(title_text='Energi (kWh) per Session (Ingen data)') | |
| return figures | |
| # Function to generate HTML report | |
| def generate_html_report(metrics, figures, selected_graph_keys, selected_areas, date_range_text): | |
| """ | |
| Generate HTML report with selected graphs and metrics | |
| """ | |
| # Create header information | |
| header_info_list = [] | |
| for area in selected_areas: | |
| area_outlets = metrics['outlets_per_area'][metrics['outlets_per_area']['Område'] == area]['Number_of_Outlets'].values | |
| if len(area_outlets) > 0: | |
| header_info_list.append({ | |
| 'Anläggningsnamn': area, | |
| 'Antal_Uttag': area_outlets[0] | |
| }) | |
| current_date_str_report = datetime.now().strftime('%Y-%m-%d %H:%M') | |
| # Create HTML header | |
| html_header_parts = ["<div class='report-title'>ChargeNode - Analysrapport</div>"] | |
| html_header_parts.append(f"<div class='report-subtitle'>{date_range_text}</div>") | |
| if header_info_list: | |
| html_header_parts.append("<ul class='facility-list'>") | |
| for facility_info in header_info_list: | |
| html_header_parts.append(f"<li>{facility_info['Anläggningsnamn']} ({facility_info['Antal_Uttag']} uttag)</li>") | |
| html_header_parts.append("</ul>") | |
| else: | |
| if selected_areas: | |
| html_header_parts.append(f"<p class='facility-list-empty'>Områden valda: {', '.join(selected_areas)} (ingen sessionsdata för dessa i perioden, eller inga uttag registrerade).</p>") | |
| else: | |
| html_header_parts.append("<p class='facility-list-empty'>Inga områden valda för rapporten.</p>") | |
| html_header_parts.append(f"<p class='generation-date'>Genererad: {current_date_str_report}</p>") | |
| # Build HTML content | |
| html_content_parts = [f""" | |
| <!DOCTYPE html> | |
| <html lang="sv"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <title>ChargeNode - Laddningsrapport</title> | |
| <style> | |
| @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
| body {{ | |
| font-family: 'Inter', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
| margin: 0; | |
| padding: 0; | |
| background-color: #f4f7f6; | |
| color: #333; | |
| line-height: 1.6; | |
| }} | |
| .container {{ | |
| max-width: 1200px; | |
| margin: 0 auto; | |
| padding: 2rem; | |
| background-color: #fff; | |
| box-shadow: 0 0 20px rgba(0,0,0,0.1); | |
| border-radius: 10px; | |
| overflow: auto; | |
| }} | |
| .header-logo {{ | |
| position: absolute; | |
| top: 2rem; | |
| right: 2rem; | |
| width: 180px; | |
| height: auto; | |
| }} | |
| .report-header {{ | |
| position: relative; | |
| padding-bottom: 1.5rem; | |
| margin-bottom: 2rem; | |
| border-bottom: 2px solid #27ae60; | |
| text-align: left; | |
| }} | |
| .report-title {{ | |
| font-size: 2.2rem; | |
| font-weight: 700; | |
| color: #27ae60; | |
| margin-bottom: 0.5rem; | |
| line-height: 1.2; | |
| }} | |
| .report-subtitle {{ | |
| font-size: 1.4rem; | |
| color: #555; | |
| margin-bottom: 1rem; | |
| font-weight: 400; | |
| }} | |
| .facility-list {{ | |
| list-style-type: none; | |
| padding-left: 0; | |
| margin-bottom: 1rem; | |
| font-size: 1.1rem; | |
| }} | |
| .facility-list li {{ | |
| margin-bottom: 0.3rem; | |
| display: inline-block; | |
| margin-right: 1.5rem; | |
| background-color: #f1f9f1; | |
| padding: 0.4rem 0.8rem; | |
| border-radius: 4px; | |
| border-left: 3px solid #27ae60; | |
| }} | |
| .facility-list-empty {{ | |
| font-style: italic; | |
| font-size: 1rem; | |
| color: #777; | |
| }} | |
| .generation-date {{ | |
| font-size: 0.9rem; | |
| color: #777; | |
| }} | |
| .metrics-container {{ | |
| display: flex; | |
| flex-wrap: wrap; | |
| justify-content: space-between; | |
| margin-bottom: 2rem; | |
| gap: 20px; | |
| }} | |
| .metric-card {{ | |
| flex: 1 1 calc(25% - 20px); | |
| min-width: 200px; | |
| background-color: #f8f9fa; | |
| border-radius: 8px; | |
| padding: 1.5rem; | |
| box-shadow: 0 2px 8px rgba(0,0,0,0.08); | |
| text-align: center; | |
| height: 150px; | |
| display: flex; | |
| flex-direction: column; | |
| justify-content: center; | |
| border-top: 4px solid #27ae60; | |
| transition: transform 0.2s, box-shadow 0.2s; | |
| }} | |
| .metric-card:hover {{ | |
| transform: translateY(-5px); | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.1); | |
| }} | |
| .metric-value {{ | |
| font-size: 2.5rem; | |
| font-weight: 700; | |
| color: #27ae60; | |
| margin-bottom: 0.5rem; | |
| line-height: 1; | |
| }} | |
| .metric-label {{ | |
| font-size: 1rem; | |
| color: #555; | |
| font-weight: 500; | |
| }} | |
| .graph-section {{ | |
| margin-bottom: 3rem; | |
| background-color: #fff; | |
| border-radius: 10px; | |
| padding: 1.5rem; | |
| box-shadow: 0 2px 8px rgba(0,0,0,0.05); | |
| }} | |
| .graph-title {{ | |
| font-size: 1.5rem; | |
| color: #27ae60; | |
| margin-bottom: 1rem; | |
| padding-bottom: 0.5rem; | |
| border-bottom: 1px solid #e0e0e0; | |
| font-weight: 600; | |
| }} | |
| .graph-description {{ | |
| font-size: 1rem; | |
| color: #666; | |
| margin-bottom: 1rem; | |
| font-style: normal; | |
| line-height: 1.6; | |
| max-width: 80%; | |
| }} | |
| .plotly-graph-div {{ | |
| border: 1px solid #e0e0e0; | |
| border-radius: 8px; | |
| padding: 1rem; | |
| background-color: #fff; | |
| margin-bottom: 1rem; | |
| height: 600px; | |
| width: 100%; | |
| box-sizing: border-box; | |
| }} | |
| .print-button-container {{ | |
| position: sticky; | |
| bottom: 2rem; | |
| right: 2rem; | |
| text-align: right; | |
| z-index: 100; | |
| margin: 2rem 0; | |
| }} | |
| .print-button {{ | |
| background-color: #27ae60; | |
| color: white; | |
| padding: 0.8rem 1.5rem; | |
| font-size: 1rem; | |
| border: none; | |
| border-radius: 5px; | |
| cursor: pointer; | |
| transition: background-color 0.3s ease; | |
| font-weight: 500; | |
| display: inline-flex; | |
| align-items: center; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.2); | |
| }} | |
| .print-button:hover {{ | |
| background-color: #219653; | |
| }} | |
| .print-button svg {{ | |
| margin-right: 8px; | |
| }} | |
| .print-tips {{ | |
| margin: 2rem 0; | |
| padding: 1rem 1.5rem; | |
| background-color: #f1f9f1; | |
| border-left: 4px solid #27ae60; | |
| font-size: 0.9rem; | |
| border-radius: 0 4px 4px 0; | |
| }} | |
| .print-tips h3 {{ | |
| margin-top: 0; | |
| color: #27ae60; | |
| font-size: 1.1rem; | |
| }} | |
| .print-tips ul {{ | |
| margin-bottom: 0; | |
| padding-left: 1.2rem; | |
| }} | |
| .print-tips li {{ | |
| margin-bottom: 0.5rem; | |
| }} | |
| .print-tips li:last-child {{ | |
| margin-bottom: 0; | |
| }} | |
| .footer {{ | |
| margin-top: 3rem; | |
| padding-top: 1.5rem; | |
| border-top: 1px solid #e0e0e0; | |
| color: #777; | |
| font-size: 0.9rem; | |
| text-align: center; | |
| }} | |
| /* Responsive adjustments */ | |
| @media (max-width: 992px) {{ | |
| .container {{ | |
| padding: 1.5rem; | |
| max-width: 95%; | |
| }} | |
| .metric-card {{ | |
| flex: 1 1 calc(50% - 20px); | |
| }} | |
| .graph-description {{ | |
| max-width: 100%; | |
| }} | |
| }} | |
| @media (max-width: 768px) {{ | |
| .container {{ | |
| padding: 1rem; | |
| }} | |
| .report-title {{ | |
| font-size: 1.8rem; | |
| }} | |
| .report-subtitle {{ | |
| font-size: 1.2rem; | |
| }} | |
| .metric-card {{ | |
| flex: 1 1 100%; | |
| }} | |
| .header-logo {{ | |
| position: static; | |
| display: block; | |
| margin: 0 auto 1rem; | |
| }} | |
| .report-header {{ | |
| text-align: center; | |
| }} | |
| }} | |
| /* Print styles */ | |
| @media print {{ | |
| @page {{ | |
| size: A4;; | |
| margin: 1cm; | |
| }} | |
| body {{ | |
| margin: 0; | |
| padding: 0; | |
| background-color: #fff; | |
| font-size: 11pt; | |
| }} | |
| .container {{ | |
| max-width: 100%; | |
| margin: 0; | |
| padding: 0; | |
| box-shadow: none; | |
| border: none; | |
| }} | |
| .print-button-container, | |
| .print-tips {{ | |
| display: none !important; | |
| }} | |
| .graph-section {{ | |
| page-break-inside: avoid; | |
| page-break-after: always; | |
| break-inside: avoid; | |
| margin-bottom: 20pt; | |
| box-shadow: none; | |
| border: 1px solid #eee; | |
| }} | |
| .graph-section:last-child {{ | |
| page-break-after: auto; | |
| }} | |
| .plotly-graph-div {{ | |
| height: 400pt !important; | |
| width: 100% !important; | |
| border: none; | |
| }} | |
| .modebar {{ | |
| display: none !important; | |
| }} | |
| .metric-card {{ | |
| page-break-inside: avoid; | |
| break-inside: avoid; | |
| box-shadow: none; | |
| border: 1px solid #eee; | |
| }} | |
| }} | |
| </style> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <div class="report-header"> | |
| <img src="https://chargenode.eu/wp-content/themes/chargenode/dist/assets/img/logo.svg" alt="ChargeNode Logo" class="header-logo"> | |
| {''.join(html_header_parts)} | |
| </div> | |
| <div class="print-tips"> | |
| <h3>Hur du sparar denna rapport som PDF:</h3> | |
| <ul> | |
| <li>Klicka på "Skriv ut / Spara som PDF" knappen längst ner på sidan.</li> | |
| <li>Välj "Spara som PDF" som destination i utskriftsdialogen.</li> | |
| <li>I utskriftsinställningarna, se till att du har markerat "Bakgrundsgrafik" och ställ in marginalerna till "Minimal" eller "Inga".</li> | |
| <li>Förhandsgranska för att kontrollera att alla grafer visas korrekt och klicka sedan på "Spara".</li> | |
| </ul> | |
| </div> | |
| <!-- Key Metrics Section --> | |
| <div class="graph-section"> | |
| <h2 class="graph-title">Nyckeltal</h2> | |
| <div class="metrics-container"> | |
| <div class="metric-card"> | |
| <div class="metric-value">{metrics['area_count']}</div> | |
| <div class="metric-label">Antal Områden</div> | |
| </div> | |
| <div class="metric-card"> | |
| <div class="metric-value">{metrics['total_outlets']}</div> | |
| <div class="metric-label">Totalt Antal Uttag</div> | |
| </div> | |
| <div class="metric-card"> | |
| <div class="metric-value">{metrics['total_sessions']:,}</div> | |
| <div class="metric-label">Totala Sessioner</div> | |
| </div> | |
| <div class="metric-card"> | |
| <div class="metric-value">{metrics['total_kwh']:,.2f}</div> | |
| <div class="metric-label">Total Energi (kWh)</div> | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| ] | |
| # Explanatory descriptions for each graph | |
| graph_descriptions = { | |
| 'outlets_per_area': "Visar det totala antalet unika ladduttag som har använts inom den valda tidsperioden och för de valda områdena. Detta hjälper att få en översikt över fördelningen av laddinfrastruktur.", | |
| 'kwh_per_month_area': "Stapeldiagram som visar den totala laddade energin (kWh) per månad, uppdelat per valt område. Användbart för att följa energitrender över tid och mellan olika platser.", | |
| 'cost_per_month_area': "Stapeldiagram som visar den totala kostnaden (exklusive moms) per månad, uppdelat per valt område. Ger insikt i ekonomiska aspekter över tid och per plats.", | |
| 'avg_kwh_per_outlet': "Linjediagram som visar den genomsnittliga mängden energi (kWh) som varje aktivt uttag har levererat per månad, sett över alla valda områden. En ökande trend kan indikera effektivare användning eller längre sessioner.", | |
| 'hourly_utilization_heatmap': "Heatmap som visualiserar beläggningsgraden för varje timme och dag. Mörkare grön färg indikerar högre beläggning. Detta ger en tydlig bild av användningsmönster över tid och hjälper till att identifiera perioder med hög efterfrågan.", | |
| 'avg_hourly_utilization_line': "Linjediagram som visar den genomsnittliga beläggningsgraden fördelat per timme på dygnet, uppdelat på vardagar och helger. Detta hjälper att identifiera tidpunkter för mest aktiv användning.", | |
| 'avg_weekday_utilization_bar': "Stapeldiagram som jämför den genomsnittliga beläggningsgraden för varje veckodag. Perfekt för att planera underhåll eller identifiera mönster i veckoanvändning.", | |
| 'monthly_utilization_area_heatmap': "Heatmap som visar den beräknade månatliga beläggningsgraden per område. Detta ger insikt i hur effektivt laddinfrastrukturen används över tid i olika områden.", | |
| 'session_duration_histogram': "Histogram som visar fördelningen av längden på laddningssessionerna (i timmar). Outliers över 12 timmar har filtrerats bort för att ge en tydligare bild av vanliga laddningsmönster.", | |
| 'kwh_per_session_area_box': "Boxplot som illustrerar spridningen av laddad energi (kWh) per session, för varje valt område. Visar median, kvartiler och ger insikt i typiska laddningsvolymer.", | |
| 'kwh_per_outlet_distribution': "Boxplot som visar fördelningen av total energi (kWh) som varje enskilt uttag har levererat under en månad, per område. Hjälper till att identifiera hög- och lågpresterande uttag." | |
| } | |
| # Add selected graphs | |
| plotly_js_added = False | |
| for key in selected_graph_keys: | |
| if key in figures: | |
| fig = figures[key] | |
| # Get graph display name and description | |
| graph_display_names = { | |
| 'outlets_per_area': 'Antal Uttag per Område', | |
| 'kwh_per_month_area': 'Energi per Månad och Område', | |
| 'cost_per_month_area': 'Kostnad per Månad och Område', | |
| 'avg_kwh_per_outlet': 'Genomsnittlig kWh per Uttag per Månad', | |
| 'hourly_utilization_heatmap': 'Timvis Beläggningsgrad (Heatmap)', | |
| 'avg_hourly_utilization_line': 'Genomsnittlig Beläggning per Timme', | |
| 'avg_weekday_utilization_bar': 'Genomsnittlig Beläggning per Veckodag', | |
| 'monthly_utilization_area_heatmap': 'Månatlig Beläggning per Område', | |
| 'session_duration_histogram': 'Distribution av Sessionslängd', | |
| 'kwh_per_session_area_box': 'Energi per Session per Område', | |
| 'kwh_per_outlet_distribution': 'Distribution av Energi per Uttag' | |
| } | |
| graph_title = fig.layout.title.text if hasattr(fig.layout, 'title') and fig.layout.title else graph_display_names.get(key, key) | |
| graph_description = graph_descriptions.get(key, "") | |
| # Optimize graph for better display | |
| fig.update_layout( | |
| autosize=True, | |
| height=600, | |
| margin=dict(l=80, r=40, t=100, b=80), | |
| font=dict(size=14), | |
| title=dict( | |
| font=dict(size=18), | |
| y=0.95 | |
| ) | |
| ) | |
| html_content_parts.append(f"<div class='graph-section'><h2 class='graph-title'>{graph_title}</h2>") | |
| if graph_description: | |
| html_content_parts.append(f"<p class='graph-description'>{graph_description}</p>") | |
| try: | |
| # Include Plotly.js only once | |
| if not plotly_js_added: | |
| graph_html = fig.to_html(full_html=False, include_plotlyjs='cdn', config={'displayModeBar': False}) | |
| plotly_js_added = True | |
| else: | |
| graph_html = fig.to_html(full_html=False, include_plotlyjs=False, config={'displayModeBar': False}) | |
| html_content_parts.append(graph_html) | |
| except Exception as e: | |
| html_content_parts.append(f"<p><strong>Fel:</strong> Kunde inte rendera grafen '{graph_title}'. ({e})</p>") | |
| html_content_parts.append("</div>") | |
| # Add print button and footer | |
| html_content_parts.append(""" | |
| <div class="print-button-container"> | |
| <button class="print-button" onclick="window.print()"> | |
| <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> | |
| <polyline points="6 9 6 2 18 2 18 9"></polyline> | |
| <path d="M6 18H4a2 2 0 0 1-2-2v-5a2 2 0 0 1 2-2h16a2 2 0 0 1 2 2v5a2 2 0 0 1-2 2h-2"></path> | |
| <rect x="6" y="14" width="12" height="8"></rect> | |
| </svg> | |
| Skriv ut / Spara som PDF | |
| </button> | |
| </div> | |
| <div class="footer"> | |
| <p>ChargeNode Rapport Generator © 2025. Alla data är konfidentiella och endast för internt bruk.</p> | |
| </div> | |
| """) | |
| # Close HTML structure | |
| html_content_parts.append("</div></body></html>") | |
| # Join HTML parts | |
| final_html = "".join(html_content_parts) | |
| return final_html | |
| # --- Main application logic --- | |
| if sessions_file is not None: # Overview file is now optional | |
| try: | |
| st.info("Läser in och förbereder data...") | |
| sessions_df_original = pd.read_excel(sessions_file) | |
| overview_df_original = pd.read_excel(overview_file) if overview_file else None | |
| st.sidebar.success("Data inläst!") | |
| st.sidebar.header("Filter") | |
| sessions_df_processed, overview_df_processed = preprocess_data(sessions_df_original.copy(), overview_df_original.copy() if overview_df_original is not None else None) # Use copies | |
| if sessions_df_processed.empty: | |
| st.error("Ingen sessionsdata hittades eller all data filtrerades bort under förbehandling. Kontrollera din fil.") | |
| st.stop() | |
| all_areas = sorted(sessions_df_processed['Område'].unique()) | |
| selected_areas = st.sidebar.multiselect("Välj Områden", options=all_areas, default=all_areas) | |
| # Date range filter | |
| min_data_date = sessions_df_processed['Startad'].min().date() | |
| max_data_date = sessions_df_processed['Startad'].max().date() | |
| selected_date_range = st.sidebar.date_input( | |
| "Välj Datumintervall", | |
| value=(min_data_date, max_data_date), | |
| min_value=min_data_date, | |
| max_value=max_data_date, | |
| key="date_range_filter" | |
| ) | |
| # Generate date range text for reports | |
| if len(selected_date_range) == 2: | |
| start_date_filter = pd.to_datetime(selected_date_range[0]) | |
| end_date_filter = pd.to_datetime(selected_date_range[1]) + pd.Timedelta(days=1) # Include the whole end day | |
| filtered_sessions = sessions_df_processed[ | |
| (sessions_df_processed['Område'].isin(selected_areas)) & | |
| (sessions_df_processed['Startad'] >= start_date_filter) & | |
| (sessions_df_processed['Startad'] < end_date_filter) | |
| ] | |
| date_range_text = f"Period: {selected_date_range[0].strftime('%Y-%m-%d')} till {selected_date_range[1].strftime('%Y-%m-%d')}" | |
| else: # Default to all dates if range is not correctly selected | |
| filtered_sessions = sessions_df_processed[sessions_df_processed['Område'].isin(selected_areas)] | |
| date_range_text = f"Period: {min_data_date.strftime('%Y-%m-%d')} till {max_data_date.strftime('%Y-%m-%d')}" | |
| if filtered_sessions.empty: | |
| st.warning("Ingen data matchar de valda filtren. Prova att ändra filterinställningarna.") | |
| else: | |
| st.info("Beräknar nyckeltal...") | |
| metrics = calculate_metrics(filtered_sessions, overview_df_processed) | |
| st.info("Skapar visualiseringar...") | |
| figures = create_visualizations(metrics, filtered_sessions) # Pass filtered_sessions for detailed plots | |
| # Clear info messages | |
| st.empty() # Clears the last message, may need more if they stack | |
| st.empty() | |
| # --- Display Dashboard --- | |
| tab_titles = [ | |
| "📊 Nyckeltal & Översikt", | |
| "⏱️ Beläggningsanalys", | |
| "💡 Energiförbrukning", | |
| "🔌 Sessionsanalys" | |
| ] | |
| tab1, tab2, tab3, tab4 = st.tabs(tab_titles) | |
| with tab1: | |
| st.header("Nyckeltal") | |
| cols = st.columns(4) | |
| key_metrics_display = { | |
| "Antal Områden": metrics.get('area_count', 'N/A'), | |
| "Totalt Antal Uttag": f"{metrics.get('total_outlets', 'N/A'):,}", | |
| "Totala Sessioner": f"{metrics.get('total_sessions', 'N/A'):,}", | |
| "Total Energi (kWh)": f"{metrics.get('total_kwh', 0):,.2f}" | |
| } | |
| for i, (label, value) in enumerate(key_metrics_display.items()): | |
| with cols[i % 4]: | |
| st.markdown(f""" | |
| <div class="metric-card"> | |
| <div class="metric-value">{value}</div> | |
| <div class="metric-label">{label}</div> | |
| </div>""", unsafe_allow_html=True) | |
| st.markdown("---") | |
| st.subheader(figures['outlets_per_area'].layout.title.text) | |
| st.caption("Visar det totala antalet unika ladduttag som har använts inom den valda tidsperioden och för de valda områdena.") | |
| st.plotly_chart(figures['outlets_per_area'], use_container_width=True) | |
| with tab2: | |
| st.header("Beläggningsanalys") | |
| st.subheader(figures['hourly_utilization_heatmap'].layout.title.text) | |
| st.caption("Heatmap som visualiserar beläggningsgraden (andelen aktiva uttag av totalt antal uttag i de valda områdena) för varje timme och dag. Mörkare grön färg indikerar högre beläggning. Detta hjälper till att identifiera mönster och tider med hög/låg efterfrågan.") | |
| st.plotly_chart(figures['hourly_utilization_heatmap'], use_container_width=True) | |
| st.subheader(figures['avg_hourly_utilization_line'].layout.title.text) | |
| st.caption("Linjediagram som visar den genomsnittliga beläggningsgraden fördelat per timme på dygnet, uppdelat på vardagar och helger. Toppar indikerar perioder med högst genomsnittlig användning.") | |
| st.plotly_chart(figures['avg_hourly_utilization_line'], use_container_width=True) | |
| st.subheader(figures['avg_weekday_utilization_bar'].layout.title.text) | |
| st.caption("Stapeldiagram som jämför den genomsnittliga beläggningsgraden för varje veckodag. Ger en snabb överblick över vilka dagar som har högst respektive lägst användning.") | |
| st.plotly_chart(figures['avg_weekday_utilization_bar'], use_container_width=True) | |
| st.subheader(figures['monthly_utilization_area_heatmap'].layout.title.text) | |
| st.caption("Heatmap som visar den beräknade månatliga beläggningsgraden per område. Beläggningen är här definierad som totala antalet timmar uttagen varit aktiva i förhållande till det totala antalet möjliga drifttimmar för alla uttag i området under månaden.") | |
| st.plotly_chart(figures['monthly_utilization_area_heatmap'], use_container_width=True) | |
| with tab3: | |
| st.header("Energiförbrukning och Kostnad") | |
| st.subheader(figures['kwh_per_month_area'].layout.title.text) | |
| st.caption("Stapeldiagram som visar den totala laddade energin (kWh) per månad, uppdelat per valt område. Användbart för att följa energitrender över tid och mellan olika platser.") | |
| st.plotly_chart(figures['kwh_per_month_area'], use_container_width=True) | |
| st.subheader(figures['cost_per_month_area'].layout.title.text) | |
| st.caption("Stapeldiagram som visar den totala kostnaden (exklusive moms) per månad, uppdelat per valt område. Ger insikt i ekonomiska aspekter över tid och per plats.") | |
| st.plotly_chart(figures['cost_per_month_area'], use_container_width=True) | |
| st.subheader(figures['avg_kwh_per_outlet'].layout.title.text) | |
| st.caption("Linjediagram som visar den genomsnittliga mängden energi (kWh) som varje aktivt uttag har levererat per månad, sett över alla valda områden. En ökande trend kan indikera effektivare användning eller längre sessioner per uttag.") | |
| st.plotly_chart(figures['avg_kwh_per_outlet'], use_container_width=True) | |
| with tab4: | |
| st.header("Sessionsanalys") | |
| st.subheader(figures['session_duration_histogram'].layout.title.text) | |
| st.caption("Histogram som visar fördelningen av längden på laddningssessionerna (i timmar). Outliers över 12 timmar har filtrerats bort. Detta ger en bild av hur länge användare typiskt laddar sina fordon.") | |
| st.plotly_chart(figures['session_duration_histogram'], use_container_width=True) | |
| st.subheader(figures['kwh_per_session_area_box'].layout.title.text) | |
| st.caption("Boxplot som illustrerar spridningen (median, kvartiler, och extremvärden) av laddad energi (kWh) per session, för varje valt område. Hjälper till att förstå typisk energimängd per laddning och variationen mellan områden.") | |
| st.plotly_chart(figures['kwh_per_session_area_box'], use_container_width=True) | |
| st.subheader(figures['kwh_per_outlet_distribution'].layout.title.text) | |
| st.caption("Boxplot som visar fördelningen av total energi (kWh) som varje enskilt uttag har levererat under en månad, per område. Detta kan hjälpa till att identifiera uttag som är särskilt hög- eller lågpresterande inom ett område.") | |
| st.plotly_chart(figures['kwh_per_outlet_distribution'], use_container_width=True) | |
| # --- Export Section --- | |
| st.sidebar.markdown("---") | |
| st.sidebar.header("Exportera Rapport") | |
| # Initialize session state for graph selection | |
| if 'default_selected_graphs' not in st.session_state: | |
| st.session_state.default_selected_graphs = list(figures.keys()) | |
| if 'all_graph_keys' not in st.session_state: | |
| st.session_state.all_graph_keys = list(figures.keys()) | |
| if 'select_all_toggle' not in st.session_state: | |
| st.session_state.select_all_toggle = True | |
| # Section for HTML report | |
| st.sidebar.subheader("HTML Rapport") | |
| # Buttons for selecting/deselecting all graphs | |
| col1, col2 = st.sidebar.columns(2) | |
| if col1.button("Markera alla", key="select_all_html"): | |
| st.session_state.select_all_toggle = True | |
| st.session_state.default_selected_graphs = st.session_state.all_graph_keys | |
| st.rerun() | |
| if col2.button("Avmarkera alla", key="deselect_all_html"): | |
| st.session_state.select_all_toggle = False | |
| st.session_state.default_selected_graphs = [] | |
| st.rerun() | |
| # If select_all_toggle is true and no graphs are selected, select all | |
| if st.session_state.select_all_toggle and not st.session_state.default_selected_graphs and st.session_state.all_graph_keys: | |
| st.session_state.default_selected_graphs = st.session_state.all_graph_keys | |
| # Map of more readable graph names for display | |
| graph_display_names = { | |
| 'outlets_per_area': 'Antal Uttag per Område', | |
| 'kwh_per_month_area': 'Energi per Månad och Område', | |
| 'cost_per_month_area': 'Kostnad per Månad och Område', | |
| 'avg_kwh_per_outlet': 'Genomsnittlig kWh per Uttag per Månad', | |
| 'hourly_utilization_heatmap': 'Timvis Beläggningsgrad (Heatmap)', | |
| 'avg_hourly_utilization_line': 'Genomsnittlig Beläggning per Timme', | |
| 'avg_weekday_utilization_bar': 'Genomsnittlig Beläggning per Veckodag', | |
| 'monthly_utilization_area_heatmap': 'Månatlig Beläggning per Område', | |
| 'session_duration_histogram': 'Distribution av Sessionslängd', | |
| 'kwh_per_session_area_box': 'Energi per Session per Område', | |
| 'kwh_per_outlet_distribution': 'Distribution av Energi per Uttag' | |
| } | |
| # Multiselect for graph selection | |
| selected_graph_keys = st.sidebar.multiselect( | |
| "Välj grafer för HTML-rapport:", | |
| options=st.session_state.all_graph_keys, | |
| format_func=lambda key: graph_display_names.get(key, str(key)), | |
| default=st.session_state.default_selected_graphs, | |
| key="graph_selector_html" | |
| ) | |
| # Update default_selected_graphs to remember selection | |
| st.session_state.default_selected_graphs = selected_graph_keys | |
| # Generate HTML button | |
| if st.sidebar.button("Generera HTML-rapport"): | |
| if not selected_graph_keys: | |
| st.sidebar.warning("Vänligen välj minst en graf att inkludera i rapporten.") | |
| else: | |
| # Generate HTML report | |
| final_html = generate_html_report(metrics, figures, selected_graph_keys, selected_areas, date_range_text) | |
| # Create download button | |
| report_filename = f"ChargeNode_Rapport_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html" | |
| st.sidebar.download_button( | |
| label="📥 Ladda ner HTML-rapporten", | |
| data=final_html, | |
| file_name=report_filename, | |
| mime="text/html", | |
| key="download_html_button" | |
| ) | |
| st.sidebar.success(f"HTML-rapport '{report_filename}' genererad och redo för nedladdning!") | |
| # Show preview (optional) | |
| with st.sidebar.expander("Förhandsgranska HTML-rapport"): | |
| st.markdown(f"<iframe srcdoc='{final_html}' width='100%' height='400px'></iframe>", unsafe_allow_html=True) | |
| # PDF instructions | |
| with st.sidebar.expander("Så här skapar du en PDF-rapport"): | |
| st.markdown(""" | |
| ### Skapa PDF från HTML-rapporten | |
| 1. Generera och ladda ner HTML-rapporten först genom att klicka på knappen "Generera HTML-rapport" | |
| 2. Öppna HTML-filen i Chrome, Firefox eller Edge | |
| 3. Tryck på "Skriv ut" (Ctrl+P eller ⌘+P) eller använd knappen längst ner i rapporten | |
| 4. Välj "Spara som PDF" som destination/skrivare | |
| 5. Kontrollera att "Bakgrundsgrafik" är markerat i utskriftsalternativen | |
| 6. Ställ in marginalerna till "Minimal" eller "Inga" för bästa resultat | |
| 7. Klicka på "Spara" för att skapa PDF-filen | |
| Detta ger dig en professionell rapport med ChargeNode grafik och alla valda visualiseringar. | |
| """) | |
| except FileNotFoundError: | |
| st.error(f"Fel: En eller båda Excel-filerna kunde inte hittas. Kontrollera filnamn och sökvägar.") | |
| except ValueError as ve: | |
| st.error(f"Värdefel vid databehandling: {ve}. Kontrollera att dina datafiler har förväntat format och innehåll, särskilt datum och numeriska värden.") | |
| except Exception as e: | |
| st.error(f"Ett oväntat fel inträffade: {e}") | |
| st.exception(e) # Shows full traceback for debugging | |
| elif sessions_file is None and overview_file is not None: | |
| st.warning("Ladda upp 'Sessions.xlsx' för att påbörja analysen. 'Overview.xlsx' är valfri.") | |
| else: | |
| st.info("Vänligen ladda upp 'Sessions.xlsx' för att visualisera data. 'Overview.xlsx' är valfri men kan ge ytterligare kontext.") | |