{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ML Baseline & Feature Engineering: Automated Movement Assessment\n", "## 4DV652 - Data Intensive Systems\n", "\n", "**Project:** Automated Movement Assessment (AIMO) \n", "**Task:** Develop baseline linear regression model and explore feature engineering techniques\n", "\n", "### Context\n", "This project develops a data-driven system to automatically assess human movement quality (Deep Squat exercise) based on:\n", "- **Input:** 3D skeleton sequences from Kinect camera (40 features after preprocessing)\n", "- **Output:** AimoScore (expert quality score 0-100)\n", "- **Goal:** Train ML models to predict expert scores from movement features\n", "\n", "### Key Insights from Domain Knowledge\n", "- Features include **38 movement features** (angle deviations) + **2 time features**\n", "- Some features may be **identical or highly correlated** (to be removed)\n", "- **Left-right symmetry constraints** should be enforced (e.g., left vs right knee)\n", "- Feature deviations are weighted by domain experts (larger deviation = worse movement)\n", "\n", "### Dataset\n", "- **Records:** 2095 deep squat assessments\n", "- **Features:** 40 (38 movement angles + 2 timing)\n", "- **Target:** AimoScore (continuous, 0-100)\n", "- **Ground Truth:** Expert assessments from AIMO methodology" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 0: Setup & Imports" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "✓ All imports successful\n", "✓ Numpy version: 2.2.6\n", "✓ Pandas version: 2.3.3\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.linear_model import LinearRegression, Lasso, LassoCV\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.feature_selection import RFE, mutual_info_regression\n", "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, mean_absolute_percentage_error\n", "from scipy import stats\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "# Set style\n", "sns.set_style('whitegrid')\n", "plt.rcParams['figure.figsize'] = (14, 7)\n", "\n", "print(\"✓ All imports successful\")\n", "print(f\"✓ Numpy version: {np.__version__}\")\n", "print(f\"✓ Pandas version: {pd.__version__}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Load and Explore Data\n", "\n", "**What we're doing:**\n", "- Loading the A2_dataset.csv with movement assessment data\n", "- Exploring structure: 2095 records with 42 features\n", "- Identifying AimoScore as target variable\n", "- Checking for missing values and data quality\n", "\n", "**What to expect:**\n", "- Dataset shape: (2095, 42) or (2095, 43) depending on if target is included\n", "- Target: AimoScore column (continuous values 0-100)\n", "- 38 FMS/NASM angle features (large values = bad movement)\n", "- 2 time-based features (timing deviations)\n", "- Potentially some identical or highly correlated features\n", "- No missing values expected\n", "\n", "**Data-driven insights:**\n", "- Understand feature distributions\n", "- Identify potential outliers\n", "- See which features correlate with quality assessment" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "DATASET EXPLORATION\n", "================================================================================\n", "\n", "Dataset Shape: (1675, 42)\n", "Records: 1675, Features: 42\n", "\n", "First 5 rows:\n", " AimoScore No_1_Angle_Deviation No_2_Angle_Deviation \\\n", "0 0.653711 0.361071 0.561932 \n", "1 0.866667 0.279770 0.868006 \n", "2 0.900765 0.279770 0.103778 \n", "3 0.972904 0.279770 0.626016 \n", "4 0.721837 0.279770 0.092300 \n", "\n", " No_3_Angle_Deviation No_4_Angle_Deviation No_5_Angle_Deviation \\\n", "0 0.346724 0.337159 0.259684 \n", "1 0.346724 0.188905 0.331899 \n", "2 0.346724 0.225729 0.523673 \n", "3 0.512195 0.188905 0.163080 \n", "4 0.346724 0.634146 0.698231 \n", "\n", " No_6_Angle_Deviation No_7_Angle_Deviation No_8_Angle_Deviation \\\n", "0 0.204687 0.194165 0.528455 \n", "1 0.142516 0.456241 0.521760 \n", "2 0.842659 0.838355 0.521760 \n", "3 0.140124 0.194165 0.521760 \n", "4 0.585366 0.797226 0.521760 \n", "\n", " No_9_Angle_Deviation ... No_19_NASM_Deviation No_20_NASM_Deviation \\\n", "0 0.616451 ... 0.670971 0.656624 \n", "1 0.511239 ... 0.670971 0.912004 \n", "2 0.746055 ... 0.681492 0.656624 \n", "3 0.156385 ... 0.670971 0.656624 \n", "4 0.156385 ... 0.714491 0.656624 \n", "\n", " No_21_NASM_Deviation No_22_NASM_Deviation No_23_NASM_Deviation \\\n", "0 0.642276 0.552846 0.648972 \n", "1 0.733142 0.598757 0.648972 \n", "2 0.642276 0.572453 0.648972 \n", "3 0.642276 0.552846 0.648972 \n", "4 0.839790 0.772836 0.648972 \n", "\n", " No_24_NASM_Deviation No_25_NASM_Deviation No_1_Time_Deviation \\\n", "0 0.578192 0.380679 0.256337 \n", "1 0.578192 0.794357 0.148733 \n", "2 0.578192 0.308943 0.148733 \n", "3 0.578192 0.308943 0.352463 \n", "4 0.578192 0.308943 0.148733 \n", "\n", " No_2_Time_Deviation EstimatedScore \n", "0 0.264467 0.110952 \n", "1 0.151124 0.176949 \n", "2 0.151124 0.312291 \n", "3 0.197513 0.008608 \n", "4 0.151124 0.498326 \n", "\n", "[5 rows x 42 columns]\n", "\n", "Column names:\n", "['AimoScore', 'No_1_Angle_Deviation', 'No_2_Angle_Deviation', 'No_3_Angle_Deviation', 'No_4_Angle_Deviation', 'No_5_Angle_Deviation', 'No_6_Angle_Deviation', 'No_7_Angle_Deviation', 'No_8_Angle_Deviation', 'No_9_Angle_Deviation', 'No_10_Angle_Deviation', 'No_11_Angle_Deviation', 'No_12_Angle_Deviation', 'No_13_Angle_Deviation', 'No_1_NASM_Deviation', 'No_2_NASM_Deviation', 'No_3_NASM_Deviation', 'No_4_NASM_Deviation', 'No_5_NASM_Deviation', 'No_6_NASM_Deviation', 'No_7_NASM_Deviation', 'No_8_NASM_Deviation', 'No_9_NASM_Deviation', 'No_10_NASM_Deviation', 'No_11_NASM_Deviation', 'No_12_NASM_Deviation', 'No_13_NASM_Deviation', 'No_14_NASM_Deviation', 'No_15_NASM_Deviation', 'No_16_NASM_Deviation', 'No_17_NASM_Deviation', 'No_18_NASM_Deviation', 'No_19_NASM_Deviation', 'No_20_NASM_Deviation', 'No_21_NASM_Deviation', 'No_22_NASM_Deviation', 'No_23_NASM_Deviation', 'No_24_NASM_Deviation', 'No_25_NASM_Deviation', 'No_1_Time_Deviation', 'No_2_Time_Deviation', 'EstimatedScore']\n", "\n", "Data types:\n", "AimoScore float64\n", "No_1_Angle_Deviation float64\n", "No_2_Angle_Deviation float64\n", "No_3_Angle_Deviation float64\n", "No_4_Angle_Deviation float64\n", "No_5_Angle_Deviation float64\n", "No_6_Angle_Deviation float64\n", "No_7_Angle_Deviation float64\n", "No_8_Angle_Deviation float64\n", "No_9_Angle_Deviation float64\n", "No_10_Angle_Deviation float64\n", "No_11_Angle_Deviation float64\n", "No_12_Angle_Deviation float64\n", "No_13_Angle_Deviation float64\n", "No_1_NASM_Deviation float64\n", "No_2_NASM_Deviation float64\n", "No_3_NASM_Deviation float64\n", "No_4_NASM_Deviation float64\n", "No_5_NASM_Deviation float64\n", "No_6_NASM_Deviation float64\n", "No_7_NASM_Deviation float64\n", "No_8_NASM_Deviation float64\n", "No_9_NASM_Deviation float64\n", "No_10_NASM_Deviation float64\n", "No_11_NASM_Deviation float64\n", "No_12_NASM_Deviation float64\n", "No_13_NASM_Deviation float64\n", "No_14_NASM_Deviation float64\n", "No_15_NASM_Deviation float64\n", "No_16_NASM_Deviation float64\n", "No_17_NASM_Deviation float64\n", "No_18_NASM_Deviation float64\n", "No_19_NASM_Deviation float64\n", "No_20_NASM_Deviation float64\n", "No_21_NASM_Deviation float64\n", "No_22_NASM_Deviation float64\n", "No_23_NASM_Deviation float64\n", "No_24_NASM_Deviation float64\n", "No_25_NASM_Deviation float64\n", "No_1_Time_Deviation float64\n", "No_2_Time_Deviation float64\n", "EstimatedScore float64\n", "dtype: object\n", "\n", "Missing values:\n", "✓ No missing values found\n", "\n", "Basic Statistics:\n", " AimoScore No_1_Angle_Deviation No_2_Angle_Deviation \\\n", "count 1675.000000 1675.000000 1675.000000 \n", "mean 0.575319 0.539129 0.502094 \n", "std 0.237320 0.238810 0.281690 \n", "min 0.010000 0.279770 0.092300 \n", "25% 0.409259 0.279770 0.246055 \n", "50% 0.623084 0.501196 0.494500 \n", "75% 0.761946 0.749641 0.745815 \n", "max 0.993987 1.000000 1.000000 \n", "\n", " No_3_Angle_Deviation No_4_Angle_Deviation No_5_Angle_Deviation \\\n", "count 1675.000000 1675.000000 1675.000000 \n", "mean 0.559657 0.516177 0.511224 \n", "std 0.219129 0.262952 0.272035 \n", "min 0.346724 0.188905 0.163080 \n", "25% 0.346724 0.247728 0.242229 \n", "50% 0.497370 0.496413 0.497848 \n", "75% 0.753945 0.747250 0.748207 \n", "max 1.000000 1.000000 1.000000 \n", "\n", " No_6_Angle_Deviation No_7_Angle_Deviation No_8_Angle_Deviation \\\n", "count 1675.000000 1675.000000 1675.000000 \n", "mean 0.504162 0.516320 0.635480 \n", "std 0.273288 0.264328 0.152102 \n", "min 0.140124 0.194165 0.303247 \n", "25% 0.242229 0.243424 0.521760 \n", "50% 0.493066 0.493066 0.521760 \n", "75% 0.737685 0.749163 0.749880 \n", "max 1.000000 1.000000 1.000000 \n", "\n", " No_9_Angle_Deviation ... No_19_NASM_Deviation No_20_NASM_Deviation \\\n", "count 1675.000000 ... 1675.000000 1675.000000 \n", "mean 0.515840 ... 0.723809 0.715658 \n", "std 0.271632 ... 0.094203 0.100324 \n", "min 0.156385 ... 0.670971 0.656624 \n", "25% 0.253706 ... 0.670971 0.656624 \n", "50% 0.506456 ... 0.670971 0.656624 \n", "75% 0.756337 ... 0.741511 0.750598 \n", "max 1.000000 ... 1.000000 1.000000 \n", "\n", " No_21_NASM_Deviation No_22_NASM_Deviation No_23_NASM_Deviation \\\n", "count 1675.000000 1675.000000 1675.000000 \n", "mean 0.706262 0.652765 0.709920 \n", "std 0.106136 0.140646 0.102617 \n", "min 0.640401 0.525310 0.648972 \n", "25% 0.642276 0.552846 0.648972 \n", "50% 0.642276 0.552846 0.648972 \n", "75% 0.747967 0.749880 0.747489 \n", "max 1.000000 1.000000 1.000000 \n", "\n", " No_24_NASM_Deviation No_25_NASM_Deviation No_1_Time_Deviation \\\n", "count 1675.000000 1675.000000 1675.000000 \n", "mean 0.668300 0.549950 0.513675 \n", "std 0.130992 0.228300 0.273739 \n", "min 0.578192 0.308943 0.148733 \n", "25% 0.578192 0.308943 0.250598 \n", "50% 0.578192 0.506456 0.502152 \n", "75% 0.750598 0.747250 0.750598 \n", "max 1.000000 1.000000 1.000000 \n", "\n", " No_2_Time_Deviation EstimatedScore \n", "count 1675.000000 1675.000000 \n", "mean 0.513174 0.496979 \n", "std 0.273313 0.289519 \n", "min 0.151124 0.000478 \n", "25% 0.248207 0.246055 \n", "50% 0.505500 0.496413 \n", "75% 0.749641 0.744859 \n", "max 1.000000 1.000000 \n", "\n", "[8 rows x 42 columns]\n" ] } ], "source": [ "# Load dataset\n", "df = pd.read_csv('/Users/reemothman/Downloads/Data-intensive-systems/Datasets_all/A2_dataset_80.csv') # Update path as needed\n", "\n", "print(\"=\"*80)\n", "print(\"DATASET EXPLORATION\")\n", "print(\"=\"*80)\n", "print(f\"\\nDataset Shape: {df.shape}\")\n", "print(f\"Records: {df.shape[0]}, Features: {df.shape[1]}\")\n", "\n", "print(f\"\\n{'First 5 rows:'}\")\n", "print(df.head())\n", "\n", "print(f\"\\n{'Column names:'}\")\n", "print(df.columns.tolist())\n", "\n", "print(f\"\\n{'Data types:'}\")\n", "print(df.dtypes)\n", "\n", "print(f\"\\n{'Missing values:'}\")\n", "missing = df.isnull().sum()\n", "if missing.sum() > 0:\n", " print(missing[missing > 0])\n", "else:\n", " print(\"✓ No missing values found\")\n", "\n", "print(f\"\\n{'Basic Statistics:'}\")\n", "print(df.describe())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Target Variable:\n", "Column: AimoScore\n", "\n", "Statistics:\n", "count 1675.000000\n", "mean 0.575319\n", "std 0.237320\n", "min 0.010000\n", "25% 0.409259\n", "50% 0.623084\n", "75% 0.761946\n", "max 0.993987\n", "Name: AimoScore, dtype: float64\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd2pJREFUeJzt3Ql8U1X6//GnCy1gKbIURhZRQQURKovggvsywIgiiOOCuCH4V1BHHRUYBFREcJtxBxEHhXFBQEdFVNx/ijqCgIgwLIooIAWEAi3d/6/v0ZtJS4G2SZub9PN+EdLcJCcn52Q598lzz4krKioqMgAAAAAAAACAL8RHugIAAAAAAAAAgP8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgIwRtAQAAAAAAAMBHCNoCAAAAAAAAgI8QtAViTFFRUaSr4Is6VBe0NQAAABg/MqYGEHsI2gJV6LLLLrMjjzwycGrdurV16NDB+vTpY88995zl5+cXu/3pp59ud9xxR5nLf++99+z222/f7+1Upsqu6OPsTWZmpt1222321VdfFXvOOvmF2ljPVe3esWNH+/zzz4tdP2vWrGJ9tLeTH8yYMcPGjx+/1+v/9re/2VFHHWUZGRl7vc21117r+r+wsLDC9VB7PProo2G/T7hel5KXl+feZ5999tke1z388MOuPnfffXeZ3i+V7ddff7Vx48bZmWeeaUcffbR16dLFLr/8cnv33XfNT1TPU0891datWxfpqgAAUKVjeJ06d+5sAwYMsC+//DJirV+RMdj+xo/lcf/997txyjHHHGOvvvpqseu++OKLMo2pf/rpJ4u0/e1DPfnkk66uS5Ys2ettNI7U/sXOnTsrXI+KjH3Lch+/7Y8BKLvEctwWQBgoiDZq1Cj3d0FBgW3fvt0+/vhjF6RRsPPvf/+7xcf/9nvKY489ZikpKWUu+5///GeZbnfddde5QWa4fffdd/baa69Z3759A9u85+oXn3zyic2ePdu1wQknnOD6I5iCUC+99FLg8ocffugGauqLtLQ08xPVSwPlvVE/aGD+5ptv2hVXXLHH9Vu2bHHt8f/+3/8LvOYqQu31hz/8wfzsqaeecnVUnwdTsFo7GUcccYR77d56661Wq1atKnm/lGb37t126aWXus+GQYMGWYsWLWzHjh321ltv2ZAhQ2z48OEugOsH9erVc68r1Uk/OsXFxUW6SgAAVNkYXj9evvDCC3b11Ve7H/0PP/zwqGj9/Y0fy+q///2vTZ482S688EI777zz7LDDDit2fdu2bYuNqb/99lu766677M4773TXeRo1amSRtr99qPPPP98eeeQRe/311619+/Z7XJ+bm2tvvPGGde/evVz7biWVd98PQOwjaAtUMX0R69fokr+QaqAzduxY94V/7rnnuu0lA4rhcvDBB1tVadWqlfnJtm3b3LmyLps3b77H9fXr13cnz5o1a9x5mzZtrFmzZhZN9Gt/y5Yt3QCztKCttitoqbYIRcnXs99s2rTJJk2a5HasSvq///s/27hxoz300EPWv39/9/7r169fxN4vc+fOtdWrV9vbb79thxxySGC7sm4V0NUOg+qZkJBgfnDJJZe4nT9lAZ999tmRrg4AAFU6htePwccff7wL2pblaLdY4o2p//SnP7ms4/21V05OTmDfwO9jx5L0w3+3bt1szpw5Lqu15Djso48+cu1xwQUXhPQ4lbXvByB6MT0C4BMKxDRu3NhefPHFvR7u4gV09Qvvcccd57ICf/nlF3edDnnR4Vk66fAdHZLkHZakMk877TQ3HcCnn35a6uHeOnz8nnvusWOPPdYNvDTw3Lp16z4Pq/HK9x7Ly0bUuXfbkvfTgO3xxx93v0S3a9fOBXoUUAs+PF+3HzFihNuuzFfd7qKLLtrnIUle1sP06dOtV69ero103wceeCAwSNTz9tpTQbBQDhP6z3/+4zIr1F46hF3tqcPTvOehQ73UNs8++6x7runp6TZz5sxA9q4CparjH//4R9evZ511VrHD2zTwUyaCdgb0/JXFMH/+/MD1eryff/7ZZQ3v69AyZdsuXbrUvv/++z2u031VfpMmTVxA8MEHH3T9oeej18qVV17psqc9ajtleSrLRNf37NnTtXnJQ/OWL1/uskL1GlUmxUknneReW3qMYDp8TK9hBZe1w6PbZGdn77XN1Y8TJkywU045xdVR/azB8/6oD/QcdZ+S1CfKsu3UqZN17dq1WEbIvqYTUSbEvffe6+6j+t9yyy22a9cu95o9+eSTXXlDhw51WThlfX3K5s2b3Xlp01UMHjzYZf0qm8OzaNEiu+qqq1x/qL1vvvnmwGeCF7AeNmyYazM9pnYmdAhgMPWfno/3mtTfsn79eleesnH0+lXfL1u2rNh9k5KS3Gt44sSJ++0HAABijY7OSU5O3uNoE41P9L2qMcKJJ57oxnQ6us4b/2hcrvGh952uNQo0ftZtNf72xpE6WkpTWel7WOMGjaH3NaXV/r73yzp+3N9z0LjPG0drfBDKNFJlGTfubazy9ddfuyOUFARW+0ydOtUlKgTvP+1v/FjaPtTextQapwWPxz1qTyXgaPyn8Z7Gg+ecc46rq+qm/ZjgKdnUfhr763lonKWAsNq25L6f+kdTz+l6tY3Gy7ocPL4sy35cSXoNqY6qg9pEY7nnn3++DL0FoKoRtAV8Qoen64tYgcmSc9vKggUL3Je0gmpPP/20G5Dpy1/BIlEgTb/O6qTAU/BhRxoQ6Mtbgy0NvEqjw6912NJ9993nbqvA4jXXXOMGHmWhx1P5ovPSpkXQgFQDTx1KpWxGHbKuAaumhCh5e2UaapCpeVmVBalBkoJg+6qPHtebC1TZfxrETZs2zQW69Ng611QAXptUdOoGDS41IDzwwAPdfKh6LA2QVKbaMZgGZWpHDRY14FWfqR4HHXSQu051VD02bNhQbHCpAbCe/1/+8hdXrn7hHzhwYGCg6E3XoAGo+ntvh5bpcLXExESXVVvyOejkZZXqtaUApg7JnzJlint9rVy50r2+ghc70xQeqqt2GnRdyUwD7SzoOSn4qteSXqvKwNBAUIfQB9M2BTrV/wpIaioHBXFLozpcf/317gcIBZPV5notq31KzqFWkp67BqMlKTD+/vvvW+/evQOHvn3zzTfufbA/aiO1g/pfrykF3jWYV+au5jRTsFP9p8zYsr4+RTsq6i/1v/pYQVkNxEUDf/1Q4E3foACqfuzxdkbGjBnjAvS6jT5D9J7Rzpr6TO2k11vTpk1dO/773/8u9nz0XtROjOqrttJAXzsYaouRI0e6gL4G+KqzMoGD6T28tx8GAACIFfqu1verTvpu1poB+n5U4DV4arAnnnjCjQMUrNP3qr53Na5VcFCBSGWg6ui6H374wX3/isZIChbqB+HgI75Gjx7tbq/vcI3pNDbQY5amLN/7ZR0/7u85aPwYPO73gqjlVZ5xY8mxisYj3pFk2lfQfoICkdpnKs/4cV/7UMEUUNXUUCXH1Bozaao7L8tWP8ir/f785z+7fR6NCzXmvPHGG4slJ+jHcWXoaiypcXfdunWLlavbKpCv56k6PvPMM+6yAvm6Tyj7cXpdqR2VDOTtj+m1p/E9AH9hegTARxo2bOgGgfpi19/BNACpWbOmC6opu00UNFSQSQMSHWrkzYFU8pAjHcKsL+N90SBEg4HatWsHLmuQo0GIsgH2R4/tTYWg89KmRVBZWghKAysNyESBTD2vf/zjH24g4s0HpgGx6uM9JwX3NAhR5mdpGZOrVq2yV155xQUS1UZe2RqMKiCpx9YA1TvUPZTpDhTsVIaqFl/w5oLVYykAqAG399ykR48exQbyqp+eowa3XlZGgwYN3MDYo7lV9Rgvv/yyy6wQZW9qoKyBoIKrGljqdaCB/b4OMdPrSJkHCirecMMNge0aqKqPNQDVzobaVwFyZc+KfvVXJogGf9oJ8ObzVb9oPrK9zWGr+c3UtupPr+/UVsrwVtt4fSOaukGDQ7Wh+kbtoQGjylD2azC9bjT/rgapXh0V4NSAVm2ibAYFO0vSQFc7VaXNP+ZND6GdINEPInpuGtjvbVEyj56b6qLH1PNThoUyXBV4rlOnjruN6rtw4cJyvT6V4aFyFYDVzpZOen/oRwHtDOj15NEgW58BCiAry0dUnh5DAXf1uXYktJOlnTbRY2gHR0FetZn3+lX52pnxqA76HNKUEt599RpU26tvg4PRygQX/aBw6KGH7rPdAACIVjrKqrSAnsZwGtOIsiUVGNQRUl5QUzSuUXBSYzida+ygoJ6CjBrraWys7fqeDqbH0zjH+x7Oyspy2aT6wbjk3Kc6smh/3/tlGT+W9TkEj/srelh/ecaNJccqGj9pzKXAqPeDtrJd9aNzecaP+9qHCqZ2U5BT4zmN0zQ+EwVRxUsCUCBaQeHgI/o0TlNQecWKFYHH0Jha+zalTS0hCuprvK1F47wp3ZSNvHjx4j0WvyvPfpx+ZNc+hl63Xvsqk1fjcB05pf1G3R+AP5BpC/iIl21X2oI+OtxFAwwNLvQLu35F1xesDifa3wJAGgztjwZ13he9KJingJQGqOGiAYbKLBlA9ubwDR6ABA+gRFNHyN4On/fuGxww9S4rG3RvhzpVhAZlygRQgF3BVQ2OFcTSr9leVmRpba/gqA7jUnAwuM/UHsEBRwW/FCTVQN3L6FDZGnQpo9E7NK2sFDReu3atG+SJylLAUsFKDUB10kBPg1kFHpUNrMDlBx98EKi3R0HCfS06ptekskc1OFWgUtmmGvhrJyK4HO95By+A5s2JWtprTm2iNtPr1GsTnfQ6VVBWQcrSrFu3zp2XFqDXToemN9Dzz8zMdH2n8hTs3N/KvwoCB/eZguMKWHoBW6+ttIhYeV+fagdlSGgnRFMfaEdQOx033XSTC7x7nxP6IUc7cF7AVpQ9oh8P9LrTY+qyt+MW/H5Tm3nzNZf2GaH21ja977y2Vl/p8VSXYHrOqampvlj9GQCAyqJxmQJ2OulHWo2ddGSMAoJe5qOOkNF4R+P1YArM6fs4eKyroKO+Z3UUmq7T5ZK8QKBHGaYar2g8WVJ5vvf3pTzPIVTlGTeWHKtovKpxSfACsiWff0XHj/saUyvRQWMtj364V4KEkjBE+2l6Xeg5aH9N400v03l/z6nkdf/617/c81EAV1m5es2pH0uWU579OLWbxpK6Tck20dFbwZnKACKPTFvARxQw06+2CvaUpEGIfo3X6qb6JV1/K1Ckgd7+5mYN/hLfGy+T0qMAjX5lVTArXBRsVJklD6n3HtsLcEnwAMyrj+xtHi8vkFnyeWjAoscMLjtUOixMmZjKiNUgRwFB9Y8eK3gqgZJtr8xFBUy9QZ1H7RHc57qdBpJ7OzxL15U8hGpfNKBVuyhQq2wOHcKv7NngBbeUhaAsVw0EDzjgAGvdunWg7sHPSdfti/pH2SKau1XZIJoGQgHO4MCip2Rfee1S2mtObaJ6aO7W0iirobSBr9fvJV9PmlrAm69XP4iUpMG1Mg32prSVfff1Pivv67NGjRouE0Qn77NBc5XpBwIFdBXAV5uUfC2VfMzSFtvzsviD27lk3VW2Av17ew3qx5PgNtXf+wt0AwAQzTQG8o4uCQ46aryjH1p1xJj3fV/yiDlvW/D3vcrTD7U6YkZTpHmZm8G8pAWPN3VCaT/gl+d7f1/K8xxCVZ5xY8mxioKipY2Dgutd0fHj3uiIKB3xp3Gikh0UaNa0BJr6wKOjIJWJq3ONj5SIorUVpOR+wv7G1drn05FV3lGYemyVWbIPyrMfF7yAXGmC10YAEHkEbQGfUPBP2XYaVOxtZXgviKOAiX4l1VxPCuQoEFfa4d/l4X2BexRc1CT3wYOhkvMiaXBVHgo0qkyVE/wcNWCSUA7F8YKYCmgG/8KubAQ9ZjgP89E8ZAqeaS5WHcLlDSI14N4XtaWCcd5iU8ED1uD2V+biIYccEjgcrqTyTuugwKAyNbSysebM0tQIOjTLO6ztxx9/dIdQaa5VHRalAb+yEjSAVjC3PLwfFjRY1Y6Il3la2mq6JV9z6jspbQCuctTOJec387Ro0aLU7V6/lxy0qi1UnuYcC872FR0KqDnN9hW0razXpw7pU8au5r4tudOm190777zjdhAUtFWblLbIhDIxtAOix/TaNJi3bV/vCZWtKTJKy/oRb4oWj9qXQ+kAANWRAmnKvNURJ973vcZ6OlS/5PdvcFBVUwNo7lZ9Z2s6ImXEetNieUouOLVly5a9jpVC+d4vWU5Zn0OoyjNuLElHfpUcU3tt5NW7ouPHfVHdNCbTOFZjao3RFLwX/YCtNSi8ReRUD40zNTbTvkN5KNlC05T99a9/dQuweQF7BYgVEC7vfpxHR0eJptkoLWjsBZgB+APTIwA+oSCRBkIXX3xxqddrPiMdkqNfaPULq4I2mgfJm8heSgafykNzRwUvgKaBhS7r8HEvs3Djxo3F7lPy8Jm9BZs9CgKpzLlz5xbb7h0ypBVXK0plB88r5dFlDVxCKbskPW+1i4KcXsBW0xYogLavFX3VPgrKB6/iKzrEKrjt9Vy0yJUGWsro8E7qI2VyeO1cnv7Wa0eDWGXZKlMzeDCsuutwKM1rpTl/vakbvIBtyayA/bWNgsF6PG/grV/stWNSsm00z1bJvtJje30ZTNv0I4HqEtwmKlfz4pa2eF/wwDP4tatDyjQQ1mFgCrSrL4NPCnBr2gsdHhguZX19KqCr94c3rUMwb6Evb75fHaao10TwIXLKIFY/KutDGcQ6fFKrRJd8vykjY187KqqvHk8B5OD2Vna5DgsNfq8rI0c/JDHIBwBUR1pEWN+LCmYq6KofNjXVUjAdJq/xupfxqXHLHXfc4cZdmpJKRzhpXK/xWLB58+YVu6zxufYDSgZ3pazf+/sbP5b1OYRDecaNpT1fjVWD20zjoODpmso6fizPmFrTRqi/NY2YFgDTQrbeuEhHrCmAqqxrPS+vXG/Mu7/nVLJtFGBVENgL2GpqBm0vWc7+9uOCeXPoKqgb3Cbaj9HcwiUDwAAii0xboIrpF1gvGKQvXH1hKpCmoK1+Yffm9SxJE8/rEBkN8HQ7ZegpgKfD6nWd6ItdgzXN31TeBQEUMNYE+ZpqQfMm6VAlLZTkZY8qSKzgojIAFezSwM1bddXjDbYUFNSv9BqAljxMX4MHLXilAZmu17xYmh9WA57SFi8rK91XZWhuWQWQNJDT4e9a8EuP6R1mHg7KatYgTVkRmm9UAT7Nv6WA497m3PVoTlK1sc4VONXgVwMk8YKl+jVd83tpsQVNf6FDxTSPqNqpf//+LlvX628NTtWGqlNph9V5FHzTIFtTIIi3GIPoEHhl42phNc2hqiCgMlHVj+XNqFY9lL2qzAll8+oQe2XvqsySbaMsgREjRrjBr/5W36lNlGVckubqUp9ed9117qR2106S7qO+DV5pOZgyHBRM1AD3rLPOCuwAaUBacq42j+b6VZ9oJ2pfC1JUxutTC1co417toAG/pt3QgF/to8Mn9R7SSdQOWsRk8ODB7raatkPZ3+oDvXe9w/e0AInmvtZnhd6zytLX62BfOyi6jwK0OtdrQtk5c+bMcQtXKFu7tB9vvCwTAABifQwvGttobKw5S/V97I1F9OOpAoIar2n8rCCixhXeWEB0yLvGcJqzVOM3Tbulaas0N67G+h6NN/UjvsZBGu/pKCiNFUqbkknjxrJ87+9v/Kj7leU5hEN5xo0laYyssYmCmhqr6Kgf1VHP0xtTl3X8WHIfal/TkGl/R2NK9aEC5MGJEBpvK9FF12lsrZMCqPrBW/b3nEq2jfY1lG2rPtCRiZrTVtnFJeu3v/24YMoC1r7kyJEjXf01XtQP9Xrt6Wi+0sbhACKHoC1QxTRI0sBONKDQYSnKnBs9enSxOUZL0qBDh8srcOMtPqbsPB3u482HqpVclTV5zTXXuOCqVpIvKx0KrvmRdJi8fl3v1auXOxzHG/ToF3AdRq/J9hXM0gBIA57gzODDDz/cBcK8w+pL/kLvrUqq++lQKP2iq8GBVi8NXg22onSokrIINHhWgFPPX8EsDdJCyUIuSYNpBc0VINOgUs9Bq/jqsHUN3ktOI1Hy1+1HH33UDSpVL2VWatCkAbh3iJIG4mpDLWSgQKr6Rbe75ZZb3KDUo781CL/66qtdQH9vq896NKgcPny468vgw6HUZnosBRD1PDQQ1MBZh+xp8KcAvQZ4ZaEAon6I0OtSg30FnBUE9fpeA2rvsCy91vR61aBbA2ANuvXaLo36TwN6tZvKUdawDkfT60bl7IsW7VCGg7cTpIC0nuPegowK8ur1rR2lkgHKyn596rWk95ieo7KBdTtlh+h+6mfd3ntPaqdCfaS+0yJl2knQ58Stt97q3sPKqtFgX9drGhW9ZvVDiXaOzjjjjH3WVW2r97nuq88mZbFoEK/nUPKQRbWtdixKLnwCAECsjuFF864qU1ZjOH1HexQ80/yj+gFeSRkap2vxVX1Xa4ynH/sV1NMY2sta1Q/o+o7XIesKCHpz2epQeAVXVY7GVJrCaW9H5ZX1e78s48f9PYdwKc+4sSSNjRTEnDBhgkuGUHBb5SmRwhvnlnX8WHIfSvtB+6KxkMZpSpwJni5C41m1t+qkvlM9NP2F2lFla0yt5JeyUHBcwXKNGxXcV701ztM+m/YdVq9e7YLQZdmPK0nPUe2hsZ6ORlPbKaFD/bu/IycBVK24ovIc9woACImmRtAcXMELPGnlWgW7yxJMQ/kpq1tTWegHj9IWHUPFKQtbmSqavkVtDAAAQqdgncaECq7pCCzsSVmxygQODjoryKv1JjQnv4LgABDtyLQFgCqkqTB0KJeyIXUIlQKKygjQYfwcXl45lJmgQwWVtUrQNryUoaEMe35sAAAAVUnz9+voPR2xp2QITX2lzGFlu+5tCiwAiDYEbQGgCmmRCc0dpkCt5qbS4WbKVNTUBzrMDpVDh/lp+hEFzQmOh4emN9E0J5qiYW+H3wEAAFQGbx0GTQmhBXw1bYMWHlN28t7WOgCAaMP0CAAAAAAAAADgI+FbmQcAAAAAAAAAEDKCtgAAAAAAAADgIwRtAQAAAAAAAMBHfLEQmSYQ79Onj40cOdK6du3qtq1fv95GjRplX375pTVq1Mj+8pe/WM+ePQP3eeONN+zvf/+7ZWRkuEVl7r777nJNOF5YWGj5+fkWHx/PAioAAABRpKioyI3lEhMT3ViuumEcCwAAEPtj2YgHbXNyctyq6StXrgxsUzB18ODB1qxZM5s9e7YL3N52223WqlUrO+KII2zJkiU2YsQIGzNmjLVu3drGjh1rw4YNs4kTJ5b5cfUY33zzTSU9KwAAAFS2du3aWVJSUrVraMaxAAAAsT+WjWjQdtWqVS5gqwhzsI8++sg2bNhgL7zwgqWkpNhhhx1mH3/8sX399dcuaDtt2jTr0aOH9e7d291+woQJdtppp9m6deusefPmZXpsL5KtBkpISAjbc9JzyczMtNTUVDJ4YwD9GVvoz9hCf8YW+jN2VEVfFhQUuB/fq2OWbWWOYwHALxgXAIhlZR3LRjRoqwxaTYegqQ+OOeaYYtuPP/54F7D1PPHEE4G/Fy9ebNdcc03g8kEHHWRNmjRx28satPV2IjTQDXfQVo2uMitrRwVVh/6MLfRnbKE/Ywv9GTuqsi+r61irssaxAOAXjAsAVAf7G8tGNGh7ySWXlLpdGbNNmza1Bx54wF577TWrV6+e3XDDDXbmmWe66zdt2uTmuQ3WoEED27hxY5XUGwAAAAAAAAAqS8TntC1NVlaWm8tWC4899dRT9sUXX7ig7UsvveQOA9u9e/cecz7oshY0q8gveCWnZwiFV144y0Tk0J+xhf6MLfRnbKE/Y0dV9CXjLAAAAMQ6XwZtdZjXgQceaKNHj3aH17Vt29a++uore/nll13QNjk5eY8ArS7XqlWr3I+lOdfCOR+adiIUdK7Oh+zFEvozttCfsYX+jC30Z+yoir7UarsAAABALPNl0FZTH2iQHxxMPfTQQ23FihXu78aNG9vmzZuL3UeX09LSyv1YWiQj3HPaSt26dQnaxgD6M7bQn7GF/owt9GfsqIq+1OINAAAAQCzzZdA2PT3dnnzySTcg9wKqq1evdvPcetcvWLDA+vTp4y5v2LDBnbS9vLQzEe4dCq9MMm1jA/0ZW+jP2EJ/xhb6M3ZUdl8yxgIAAECsC9+8AGF0zjnnuMPexowZY2vXrrXp06fbJ598YhdeeKG7/uKLL3YLlM2YMcOWL19ut912m5166qnWvHnzSFcdAAAAAAAAAGIvaJuSkmLPPvusrVmzxgVwn3vuOXv44Yfd3LbSoUMHu+uuu+zxxx93AVwdfjdu3LhIVxsAAAAAAAAAYmd6BG++Wk+rVq1s2rRpe729pkbwpkcAAAAAAAAAgFjhy0xbAAAAIFrl5ua6o8W++OKLvd5m2bJl1q9fP7cmQ9++fW3p0qVVWkcAAAD4G0FbAAAAIExycnLs5ptvtpUrV+71NllZWTZo0CDr3LmzzZo1y039NXjwYLcdAAAAEIK2AAAAQBisWrXKLZz7448/7vN2c+bMseTkZLeYbsuWLW3EiBF2wAEH2Ny5c+kHAAAAOARtAQAAgDD48ssvrWvXrvbSSy/t83aLFy+2Tp06WVxcnLus844dO9qiRYvoBwAAAPhrITIAAAAgml1yySVlul1GRoZbdDdYgwYN9jmlAgAAAKoXgrYAAABAFcrOzrakpKRi23RZC5iVR1FRkTsBQKzxPt/4jAMQi8r62UbQFgAAAKhCms+2ZIBWl2vWrFmucjIzMy0+ntnOAMRmQMNbnNGbSgYAYkVhYWGZbkfQFgAAAKhCjRs3ts2bNxfbpsuNGjUqVzmpqamWkJAQ5toBQNmsWbPGtm3bVmlB259//tmaNm1aKUHbAw880A477LCwlwsAZVFQUFCm2xG0BVAtaT5BZSiFg3aa09LSwlIWACD2paen29NPP+2CEgpG6HzhwoV27bXXlqsc3ZcMNACRoB+ajjjiiDJni/mNfvDauHGjNWzYMNJVAVANxZXxxyiCtgCqZcD2squusa07fjvkKlT169S2ac9OJnALANjnd0+dOnXcFAjdu3e3Bx980MaOHWsXXXSRvfjii26e2x49etCCAKKCgp1aPLGyMm2/++4769+/v02bNs3atGlTKZm2BGwB+B1BWwDVjjJsFbBNO76vHVC/cUhl7dr6i2XMn+nKJNsWALA33bp1s3HjxlmfPn0sJSXFJk6caKNGjbKXX37ZjjzySJs0aZLVrl2bBgQQNSpzegFvkZ7WrVtbx44dK+1xAMDPCNoCqLYUsE1t1CzkcjLCUhsAQCxZsWLFPi+3b9/eZs+eXcW1AgAAQLRguVkAAAAAAAAA8BGCtgAAAAAAAADgIwRtAQAAAAAAAMBHCNoCAAAAAAAAgI8QtAUAAAAAAAAAHyFoCwAAAAAAAAA+QtAWAAAAAAAAAHyEoC0AAAAAAAAA+AhBWwAAAAAAAADwEYK2AAAAAAAAAOAjBG0BAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgI74I2ubm5to555xjX3zxxR7X7dixw0466SSbNWtWse1vvPGGnXnmmZaenm7XX3+9bd26tQprDAAAAAAAAAAxGrTNycmxm2++2VauXFnq9ffff79t2rSp2LYlS5bYiBEjbMiQIfbSSy9ZZmamDRs2rIpqDAAAAAAAAACVJ9EiaNWqVXbLLbdYUVFRqdd/9dVX9vnnn1taWlqx7dOmTbMePXpY79693eUJEybYaaedZuvWrbPmzZtXSd0BAAAAAAAAIOYybb/88kvr2rWry5YtbcqEkSNH2p133mlJSUnFrlu8eLF17tw5cPmggw6yJk2auO0AAAAAAAAAEM0imml7ySWX7PW6p556yo466ijr1q3bHtdpuoRGjRoV29agQQPbuHFjpdQTAAAAAAAAAKpF0HZf0ya8+OKL9u9//7vU63fv3r1H9q0uKzu3vDQ1w96mZ6gIr7xwlonIoT9juD9/++dOIZX5+3+876se78/YQn/GjqroS8ZZAAAAiHW+C9pqEP63v/3NbrjhBmvYsGGpt0lOTt4jQKvLtWrVKvfjaRGz+Pj4sNY/KyvL/R0XFxe2chEZ9Gds9ueOHTusoKDACvLyLD8vL6QyVYbKUpnbt28PW12xf7w/Ywv9GTuqoi8LCwsrpVwAAADAL3wXtF2/fr19/fXXtmLFChs/frzblp2dbaNGjbI5c+bY5MmTrXHjxrZ58+Zi99PlkguWlUVqaqolJCSEPfOjbt26BG1jAP0Zm/1Zp04d975PqFHDEmvUCKlMlaGyVKbe96g6vD9jC/0ZO6qiL/VjGQAAABDLfBe0VUD2nXfeKbbtsssuc6dzzz3XXU5PT7cFCxZYnz593OUNGza4k7aXl3Ymwr1D4ZVJpm1soD9jS+C9+ds/dwqpvN//4z0fGbw/Ywv9GTsquy8ZYwEAACDW+S5om5iYaC1atNhjmxYaU0BXLr74YhfEPeaYY6xdu3Y2duxYO/XUU6158+YRqjUAAAAAAAAAxGjQtiw6dOhgd911lz3yyCNuDskTTzzR7r777khXCwAAAAAAAABiJ2irOWz35v33399jm6ZG8KZHAAAAAAAAAIBYER/pCgAAAAAAAAAA/oegLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgIwRtAQAAAAAAAMBHCNoCAAAAAAAAgI8QtAUAAAAAAAAAHyFoCwAAAAAAAAA+QtAWAAAAAAAAAHyEoC0AAAAAAAAA+AhBWwAAAAAAAADwEYK2AAAAAAAAAOAjBG0BAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAABAGOTk5Nnz4cOvcubN169bNpkyZstfbvvvuu9ajRw/r0KGDXXzxxfbtt9/SBwAAAAggaAsAAACEwYQJE2zp0qU2depUGzVqlD322GM2d+7cPW63cuVKu+WWW2zw4MH22muvWZs2bdzf2dnZ9AMAAAAcgrYAAABAiLKysmzGjBk2YsQIa9u2rZ111lk2cOBAmz59+h63/fTTT61Vq1bWu3dvO/jgg+3mm2+2jIwMW7VqFf0AAAAAh6AtAAAAEKLly5dbfn6+m+7A06lTJ1u8eLEVFhYWu+2BBx7oArQLFixw182aNctSUlJcABcAAACQRJoBAAAACI0yZevVq2dJSUmBbQ0bNnTz3G7bts3q168f2N6zZ097//337ZJLLrGEhASLj4+3iRMnWt26dekGAAAAOARtAQAAgBBpPtrggK14l3Nzc4tt//XXX12Q984777T09HR74YUXbNiwYTZ79mxr0KBBmR+zqKjInQAg1nifbXzOAYhFZR2/EbQFAAAAQpScnLxHcNa7XLNmzWLbH3jgATviiCPs0ksvdZfvvvtu69Gjh82cOdMGDRpU5sfMzMx0WboAEGt27twZON++fXukqwMAYVVy6qy9IWgLAAAAhKhx48Yug1bz2iYm/jbEVjatArapqanFbvvtt9/aZZddFriswGvr1q1t/fr15XpMlavpFQAg1mieb++cqWMAxJqCgoIy3Y6gLQAAABCiNm3auGDtokWLrHPnzm6bFhpr167dHtmwjRo1stWrVxfb9v3337vblkdcXJw7AUCs8T7b+JwDEIvKOn7jeCoAAAAgRLVq1bLevXvb6NGjbcmSJTZv3jybMmWKDRgwIJB1u3v3bvf3hRdeaC+//LK9+uqrtnbtWjddgrJszz//fPoBAAAADpm2AAAAQBhoMTEFbS+//HJ3SO/QoUPt7LPPdtd169bNxo0bZ3369LGePXvarl27bOLEibZx40aXpTt16tRyLUIGAACA2EbQFgAAAAhTtu348ePdqaQVK1YUu9yvXz93AgAAAErD9AgAAAAAAAAA4CMEbQEAAAAAAADAR3wRtM3NzbVzzjnHvvjii8A2rbx70UUXWYcOHeyPf/yjzZgxo9h9PvvsM3ef9PR0t8DDunXrIlBzAAAAAAAAAIixoG1OTo7dfPPNtnLlysA2ra57zTXXWJcuXWz27Nl2ww032N13320ffvihu16r615//fVuIYdXXnnF6tevb9ddd50VFRVF8JkAAAAAAAAAQJQHbVetWmUXXnih/fjjj8W2z5s3zxo2bOiCuYcccoj96U9/st69e9vrr7/urlfW7dFHH21XXXWVHX744W4l3p9//tm+/PLLCD0TAAAAAAAAAIiBoK2CrF27drWXXnqp2PaTTjrJBWJL2rlzpztfvHixde7cudhKvW3btnVTKgAAAAAAAABANEuM5INfcsklpW5v1qyZO3m2bNlib775pg0dOjQwfUKjRo2K3adBgwa2cePGctdBUyqEc1oFrzymaogN9GcM9+dv/9wppDJ//4/3fdXj/Rlb6M/YURV9yTgLAAAAsS6iQduy2L17twvWarqEP//5z25bdna2JSUlFbudLmtBs/LKzMy0+Pj4sO5EZGVlub/j4uLCVi4ig/6Mzf7csWOHFRQUWEFenuXn5YVUpspQWSpz+/btYasr9o/3Z2yhP2NHVfRlYWFhpZQLALFGa8donBptli9fHjiPxv3qOnXquKkcASBmg7a7du1yC4z98MMP9q9//ctNgyDJycl7BGh1OTU1tdyPofskJCSEPfOjbt26UfnlguLoz9jsTw2i9L5PqFHDEmvUCKlMlaGyVKbe96g6vD9jC/0ZO6qiL/VjGQBg/wHbI444IqqbqX///hat/vvf/xK4BRCbQVvNXztw4EC3SNnUqVPdgmSexo0b2+bNm4vdXpfbtGlT7sfRzkS4dyi8Mgnaxgb6M7YE3pu//XOnkMr7/T/e85HB+zO20J+xo7L7kjEWAOyfl2E7bdq0Cu0rR/oHwJ9++slNmxhtn/nfffedCzZHY4YzAH/xZdBWh7wNGTLEfUg///zz1rJly2LXp6en24IFCwKXNV3CsmXL3H0AAAAAAMBvFLDt2LFj1AVtFQfgCFYA1Vn4JnMNo1deecW++OILu+eee9z0BVp4TKdt27a56/v27WsLFy60SZMmuUM+hg0b5n6B69q1a6SrDgAAAAAAAACxl2n79ttvu2zbwYMHF9vepUsXl3mrAO2jjz5q9957rz3++OPWoUMHdx5th00AAAAAAAAAgG+DtitWrAj8/cwzz+z39qeccoo7AQAAAAAAAEAs8eX0CAAAAAAAAABQXRG0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgI4mRrgAAAIg+GRkZlpmZGZayUlNTrWHDhmEpCwAAAABiAUFbAABQ7oBt/ysH2tYdWWFpufp1atvzU562pKQkegIAAAAACNoCAIDyUoatArZpx/e1A+o3DqkBd239xTLmz3Rlkm0LAAAAAL8h0xYAAFSIArapjZqF3HoZtD8AAAAAFMNCZAAAAAAAAADgI2TaAgBQTYRr8bC1a9dafl5+WOoEAAAAANgTQVsAAKqBcC4etjs7y376eYMdnJcXlroBAAAAAIojaAsAQDUQzsXDNq1eamvXTbGCfIK2AAAAAFAZCNoCAFCNhGPxsJ1bNoatPgAAAACAPbEQGQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgIwRtAQAAAAAAAMBHCNoCAAAAAAAAgI8kRroCAABg7zIyMiwzMzPkJlq7dq3l5+XT1AAAAAAQBXwRtM3NzbU+ffrYyJEjrWvXrm7bunXr3OVFixZZkyZNbPjw4datW7fAfT777DO799573e3S09Nt7Nix1rx58wg+CwAAwh+w7X/lQNu6IyvksnZnZ9lPP2+wg/PywlI3AAAAAEAMB21zcnLslltusZUrVwa2FRUV2fXXX29HHHGEzZw50+bNm2dDhgyxOXPmuADu+vXr3fVDhw61k046yR5//HG77rrr7N///rfFxcVF9PkAABAuyrBVwDbt+L52QP3GIZW1afVSW7tuihXkE7QFAAAAAL+LaNB21apVLmCrIG2wzz//3GXQvvjii1a7dm1r2bKlzZ8/3wVwFaidMWOGHX300XbVVVe5248bN85OPPFE+/LLLwOZugAAxAoFbFMbNQupjJ1bNoatPgAAAACAGF6IzAuyvvTSS8W2L1682I466igXsPV06tTJTZXgXd+5c+fAdbVq1bK2bdsGrgcAAAAAAACAaBXRTNtLLrlkr3P4NWrUqNi2Bg0a2MaNG8t0fXkoy7dkpm8ovPLCWSYih/6M4f787Z87hVTm7//xvq961eH9GfbX6u9/+K6sourRn9VFVfQlrxMAAADEuojPaVua7OxsS0pKKrZNl7VgWVmuL+98gfHx8WHdicjK+m3BGObXjX70Z2z2544dO6ygoMAK8vIsP8RFmVSGylKZ27dvD1tdsX/V4f0ZztdqYV6ea7P8wgJflRX8HvKOsInV/qwuquK9WVhYWCnlAgAAAH7hy6BtcnKybdu2rdg2BWRr1qwZuL5kgFaXU1NTy/1Yuk9CQoKFO/Ojbt267HTGAPozNvuzTp067n2fUKOGJdaoEVKZKkNlqUy971F1qsP7M5yv1fgaNVw7JcYn+Kqs4PeQgrax3J/VRVW8NxXoBwAAAGKZL4O2jRs3douUBdu8eXNgSgRdr8slr2/Tpk25H0s7E+HeofDKZKczNtCfsSXw3vztnzuFVN7v//Gej4xYf3+G/bX6+x++KyvoPRTL/VmdVHZf8hoBgLL5Q0qc1dr2X7P1EV3OpgKKLGHnTrOslDCMgqqW2lvtDgAxGbRNT0+3SZMm2e7duwPZtQsWLHCLkXnX67JH0yUsW7bMhgwZErE6AwAAAADgJ4M7JVmbjwebfWxRRSHPOhad2vze7gAQk0HbLl262EEHHWTDhg2z6667zj744ANbsmSJjRs3zl3ft29fe+aZZ1xg97TTTrPHH3/cmjVrZl27do101QEAAAAA8IWJC3Ltz3f+09q0bm3RpMiKbOfOnZaSkmJxUZZp+93y5TbxwUvs3EhXBEDU82XQVnPbPfHEEzZixAjr06ePtWjRwgVmmzRp4q5XgPbRRx+1e++9123v0KGDO+dQOQAAAAAAfrNxZ5FlH3iEWZNjoqtJioqsQIv8as2IKJs2KXtjoWt3AIiZoO2KFSuKXVagdtq0aXu9/SmnnOJOAAAAgB/k5OTYmDFj7J133nFTfF111VXutLex7+jRo+3bb791414lKxx33HFVXmcAAAD4U7TNRg4AAAD40oQJE2zp0qU2depUGzVqlD322GM2d+7cPW63Y8cOF8xt1aqVvf7663bWWWe5tRm2bNkSkXoDAADAfwjaAgAAACHKysqyGTNmuIzZtm3bukDswIEDbfr06Xvcdvbs2Va7dm2Xaass2xtuuMGdK+ALAAAA+Gp6BAAAACBaLV++3PLz891aC55OnTrZU089ZYWFhRYf/79ciS+//NLOOOMMt46DZ+bMmVVeZwAAAPgXmbYAAABAiDIyMqxevXqWlJQU2NawYUM3z+22bduK3XbdunVWv359GzlypJ144ol24YUX2oIFC+gDAAAABJBpCwAAAIQoOzu7WMBWvMu5ubl7TKUwadIkGzBggD399NP25ptv2tVXX21vvfWWHXTQQWV+zKKiIncCgL19RkTrZ4VX52ird7S3O4CqUdbPBoK2AICotXnzZneKi4sLuSwFVUoGXCoqNTXV0tLSwlIWgOiQnJy8R3DWu1yzZs1i2zUtQps2bdxctnLUUUfZp59+aq+99ppde+21ZX7MzMzMYtMuAECwnTt3Bs63b98edQEN/cAl4RjnVaVobncAVUNTZ5UFQVsAQNQeijx4yI2WmZVrFuJYPi83137+ca01a3GoJdYI/auxfp3aNu3ZyQRugWqkcePG9uuvv7p5bRMTEwOfUwrY6oecYPpR57DDDiu27ZBDDrENGzaU6zFVbvC8uAAQLCUlJXBet27dqMxCU72jLWgbze0OoGoUFBSU6XYEbQEAUUkZZr/uyLbGJ11oKfUbh1TWptVLbc0PU6xel/OsQZMWIZW1a+svljF/pqsf2bZA9aHMWQVrFy1aZJ07d3bbNE9tu3bt9siGPeaYY+w///lPsW1r1qyxc845p1yPqUBGtAUzAFQd7/MhWj8rvHpHW92jvd0BVL6yfjYQtAUARLUD6je21EbNQipj55aN7rx2vbSQy5KMkEsAEG1q1aplvXv3ttGjR9u9995rmzZtsilTpti4ceMCWbd16tRxmbcXXXSRTZs2zR599FE799xz7dVXX3WLk5133nmRfhoAAADwCSbBAgAAQLWmeQeXLVvm5qD15iKsiGHDhlnbtm3t8ssvtzFjxtjQoUPt7LPPdtd169bN5syZ4/5u2rSpTZ482T744AOXXatzLUymKRYAAAAAIdMWAAAA1VJOTo7dfffdNmvWLHf57bfftvHjx1t2drY99NBD5Z6LUNm2ur9OJa1YsaLY5U6dOgUeFwAAAAhLpu3nn38emBgcAAAAiEb333+/rVq1ymbPnm3Jyclum7JjtaDYPffcE+nqAQAAoBqrUKbtjTfeaDVq1LDu3bu7Q7q0mAIAAAAQTd555x17/PHH7cgjjwxs09/Kvr3qqqsiWjcAAABUbxUK2n766afuNHfuXBs0aJClpKRYjx497E9/+pMdddRR4a8lAABRJC8319auXRtyOSojPy8/LHWqLrTYU2ZmZljKSk1NtbS0tLCUBX/atWuXm9KgpMLCQisoKIhInQAAAIAKB20TExPtlFNOcaf8/Hz77LPP7P3337dLLrnELaDQq1cv69OnjzVp0oRWBgBUKzk7t9sP36+xm4aPDhxuXVG7s7Psp5832MF5eWGrX6wHbPtfOdC27sgKS3n169S2ac9OJnAbw04//XR7+OGHi81Bu27dOjc1gsa5AAAAQFQuRKYVdj/55BN3aNmHH35o9erVc4PfH374wWXd3nLLLda/f//w1RYAAJ/Ly8m2wrhEa3hcH2vQpEVIZW1avdTWrptiBfl51SIzeceOHVanTh2Li4urUDkqY9PWTDvo5D/bAfUbh1SnXVt/sYz5M13WLtm2sevOO++04cOHW5cuXVx2bd++fd3rsFu3bjZy5MhIVw8AAADVWIWCtvPmzXNTIyhQq7lt//jHP7r5wDp37hy4zfTp092quwRtAQDVUe16aZbaqFlIZezcstGqS2byX4aPcUfyJCQkmMWFmJlcp37IbS8ZIZcAv9OCY48++qjLrl29erU7guzQQw+1li1bRrpqAAAAqOYqFLS9/fbb7cwzz3RB2RNPPPG3HawSjj76aLvyyivDUUcAAFANMpPrNmpiCTVqVDRmW20ykxE+F198sU2cONGNW5s3b07TAgAAILqDtprDdufOne6QQS9gO2fOHDv22GMDhxCmp6e7EwAAQFkyk+s0amaJIQRtq0NmMsKrYcOGtmXLFpoVAAAAsRG0XbhwoV1//fV2xRVX2A033OC2PffcczZq1Ch76qmnrFOnTuGuJwAAABBWRx11lF133XXWrl07a9q0qSUlJRW7fty4cbQ4AAAAIiK+InfSCrvXXnttIGArL774og0cONDuvffecNYPAAAAqDTnnnuum8e2ZMAWAAAAiLpM2x9++MG6d+++x/YePXrYE088EY56AQAAAJWKTFoAAADEVKbtYYcdZm+99dYe299//307+OCDw1EvAAAAoNLNmzfPLrroIuvSpYub4uuCCy6wV199lZYHAABA9GXa3nTTTW7+r08//dTatm3rtq1YscK++uore/TRR8NdRwAAACDsNL2Xpv3q37+/DRo0yAoLC93aDWPGjLG8vDzr168frQ4AAIDoCdqefPLJNnv2bJs5c6atWbPGEhMTrXXr1m6A27x58/DXEgAAAAizyZMnu4V0e/fuHdh25pln2uGHH+4W1yVoCwAAgKgK2ooGs3fccUd4awMAAABUkS1bttgxxxyzx/YOHTrYhg0b6AcAAABEV9A2MzPTpkyZYt98843l5+dbUVFRseufe+65cNUPAAAAqBRt2rRx89dq6q9gOqKsVatWtDoAAACiK2h72223uYBtr169LCUlJfy1AgAAACrZX//6V7viiivsiy++sPT0dLdt0aJFtnz5cjc9AgAAABBVQdvPPvvMpk2bZu3btw9/jQAAAIAqoGkQZs2aZTNmzLDVq1dbcnKyHXvssfbwww/bQQcdRB8AAAAguoK2jRs3tvj4+PDXBgAAAKhCmuqrZ8+egWQETQGmqcAI2gIAACCS4is6PcLo0aPt448/trVr19r69euLnQAAAAC/mzNnjvXr188WLlwY2KYpwC688EKbN29eROsGAACA6q1CmbZDhw5154MGDXLncXFx7lwLkunv7777Lpx1BAAAAMLukUcesTFjxtj5558f2KapETRlgs7PPPNMWh0AAADRE7R97733wl8TAAAAoApt3LjRzWtbUqdOndxRZQAAAEBUTY/QtGlTd8rKyrJly5ZZvXr1rLCw0Jo0aeK2AwAAAH531FFHucV1S3r55ZetdevWEakTAAAAUOFM2+3bt9uNN95oX375pbv89ttv29ixY23dunU2adIkArcAAADwvTvuuMOuvvpq++ijj6xNmzZu24oVK2zbtm1uTAsAAABEVabtPffcY7Vq1bLPP//ckpOT3bZ7773X/vCHP7jrAAAAAL9r3769Sz647LLLrGHDhm4sO2DAALcIWXp6eqSrBwAAgGqsQpm2n3zyiT3//POWmpoa2Fa/fn0bNmyYXXTRReGsHwAAAFBpNIZVoFZ+/fVXS0lJsRo1atDiAAAAiL5MW8nJydlj29atWy0xsUJxYAAAAKBKvPvuu3bNNdfYL7/84i7/+OOP1rt3bzvhhBOsc+fONmHCBCsqKqI3AAAAEF1B23POOcfNYbty5UqLi4tzC5JpqoSRI0daz549w1a5DRs22ODBg61jx452+umn2z//+c/AdVoArV+/fu7Qtb59+9rSpUvD9rgAAACITW+++ab95S9/cVMhJCUluW033XSTG3dqHtupU6e6o8qmTJkS6aoCAACgGqtQ0Pa2225zwdI+ffq4gO15553nFnE4/vjj3XXhogF07dq1bdasWTZ8+HD7+9//7jIj9JiDBg1ymRC6rkOHDi64q+0AAADA3igJQFN63X333VavXj1bsmSJSwa46qqr7KSTTrJjjjnGbr75Znv55ZdpRAAAAERMheYyUFaCVttVUHXdunVWUFBgzZs3twMOOCBsFdu+fbstWrTIDagPOeQQd9JAev78+e46LYCmALEyfUeMGGEff/yxzZ071wWSAQAAgNLoSLGTTz45cFlZtRpPnnHGGYFthx9+uK1fv54GBAAAQHRl2v7nP/9xp2+++ca2bdtmO3bscBkK3vZwqFmzptWqVctl0ubl5dmaNWts4cKF1qZNG1u8eLF16tTJDbBF55pCQUFeAAAAYF/JB8FrM3z66ad20EEHWatWrQLbNm3aVGzBXQAAACAqMm0vu+yyvQ6C09LS7L333gu1Xi6T9s4773SZts8995zL5lUWreaxVfnBA2tp0KCBy5wAAAAA9ua4446zF154wa3FoESAr7/+2k2NEOyZZ55xCQIAAABAVAVtly9fXuyyAqpadVcB1l69eoWrbrZ69Wo77bTT7Morr3QBWZWveXOzs7MDC0d4dDk3N7fcj6GVgcO5OrBXHisOxwb6M4b787d/7hRSmb//x/u+6v3vc7YoPP34+x+UFaH2CtpSZHH+qBfvbd+OhUIp+9Zbb7UBAwbYG2+8Ybt27bKWLVvatdde665766237Omnn7affvrJBXYBAACAqAralpSQkGCHHnqom+dWC4Sdf/75IZepuWtfeeUV++ijj9xUCe3atbNffvnFnnzySTd/bskArS7rduWVmZlp8fEVmiVirzsR3oJo3vQNiF70Z2z2p6Z00Y9NBXl5lp+XF1KZKkNlqUzNt42qozYvLCy0grz8kPuxMC/PvT7yCwsoK1LtpfdkQYFv6sV729/fnXrvV9TBBx/s1kH47LPP3BjwhBNOCCQD7Ny500259Y9//MONNwEAAICoDtp6tmzZ4oKg4bB06VJr0aJFsUDsUUcdZU899ZR17tzZNm/eXOz2utyoUaNyP47mK1PQOdyZH3Xr1iVoGwPoz9jszzp16rj3fUKNGpZYo0ZIZaoMlaUy9b5H1VGbK+CSUCMx5H6Mr1HDfWYnxidQVqTaS+/JBJWnoUlcxOvFe9vf352hBvg1vjz99NOLbVPA9uyzz3ZTcQEAAABRGbQdNmzYHtt0eJkyFrp37x6OerkA7Nq1a10GrZf9oMXImjVrZunp6e7QNe0UaGdA51qkzDu0rTx0/3DvUHhlkmkbG+jP2BJ4b/72r4KhoaDyfv+P93zV+99nbFx4+vH3PygrQu0VtCXOL/Xive3bsVA4y506dapNnjw5kBBQv359u/jii23IkCFhewwAAACgvMI2L8CBBx5ot99+u40ePTos5Sn7oUaNGva3v/3Nvv/+e3v//fddlq0WQVNgWBm9Y8eOtVWrVrlzzXPbo0ePsDw2AAAAYt/jjz/uxpfXX3+9vfrqqzZr1iy77rrrbPr06TZp0qRIVw8AAADVWIUybceNG2dVcdjrP//5TxeQveCCC1zWw//7f//P/vznP7vsiokTJ9qoUaPs5ZdftiOPPNINrGvXrl3p9QIAAEBs0DhSY83gqRLatGljjRs3dtu1VgMAAAAQNUHbxx57rMy3DeXQslatWtmzzz5b6nXt27e32bNnV7hsAAAAVG+ax/aQQw7ZY7sW2N26dWtE6gQAAABUOGiruWa16q6mRDj66KPdnLPLly+3H3/80Y455hhLTPytWOZ0BQAAgF916NDBpkyZYnfddZdb2NBb5EzblCAAAAAARFXQVkHaXr162ZgxY9y8s57x48fb9u3b7d577w1nHQEAAICw0+K6l156qVtMt23btm7bt99+6xbC1eJkAAAAQFQtRDZnzhwbOHBgsYCtXHjhhe46AAAAwO9atmxpb731ll1xxRXWoEEDa9KkiZvH9u2337bWrVtHunoAAACoxiqUaavFGT755BM77LDDim3XALd58+bhqhsAAABQqerVq2cDBgyglQEAABD9QdtbbrnFbrrpJvvwww8DWQjffPONLVu2zJ566qlw1xEAAAAIu6+++sruueceW7NmjeXl5e1x/XfffUerAwAAIHqCtmeddZbNmjXLnVavXm01a9a0Ll262MMPP2xpaWnhryUAAAAQZiNGjLDDDz/cbr75ZjeeBQAAAKI6aCtHHnmkW7xBC4+lpKS4FXfj4uLCWzsAAACgkmzatMkdJXbooYfSxgAAAIj+hciKiorsySeftK5du9rxxx9v69evt7/+9a925513utV2AQAAAL/r1auXvfnmm5GuBgAAABCeTNvHH3/cDXDvu+8++8tf/uK2nX/++S5oO2HCBPvb3/5WkWIBAACAKjNw4EC74IIL3JRfTZs23eOoseeee47eAAAAQPQEbWfPnu0Ctscee2xgcHviiSfa+PHj7cYbbyRoCwAAAN+79dZbrX79+nbmmWcypy0AAACiP2i7ZcsWa9So0R7bU1NTLSsrKxz1AgAAACrVihUrXJZty5YtaWkAAABE/5y2xx13nD3zzDPFtu3cudMeeughN88tAAAA4HedOnWy1atXR7oaAAAAQHgybUePHm1DhgxxUyLk5OTYdddd5xYja9KkiVugDAAAAPC7bt262fDhw+2dd96x5s2bW0JCQrHrNd4FAAAAoiZoq2kQXnnlFZs/f76tWbPG8vPz7dBDD3UD3/j4CiXvAgB8LCMjwzIzM8NSlr5D0tLSwlIWAITigw8+sDZt2tgvv/ziTsFKLkoGAAAA+D5oe84559hjjz1mxx9/vDsBAGI7YNv/yoG2dUd45iyvX6e2TXt2MoFbABH3/PPPR7oKAAAAQPiCtsqmzcvLq8hdAQBRRhm2CtimHd/XDqjfOKSydm39xTLmz3Rlkm0LIBJeffVV69mzpyUlJbm/96V3795VVi8AAAAg5KDtqaeealdeeaWddtpp1rRpUzfoDcb8XwAQexSwTW3ULORyMsJSGwComEceecROOeUUN37V33uzadMmgrYAAACIrqDtihUrrG3btm4wq1Mw5v8CAACAX73//vul/i1aYPfdd9+12bNn7zHHLQAAAODLoO2ll15qTz75pFtAxpv/a/fu3VazZs3KrB8AAABQqRYsWOCmSpg7d67t3LnTWrZsacOHD6fVAQAA4P+grQazJeexPeGEE+y1116z5s2bV0bdAAAAgErx888/u0CtxrLr1q1ziQkK2D744INuzlsAAAAg6qZH8BQVFYWvJgAAAEAlmzlzpgvWfvXVV9aoUSM7/fTT7eyzz7Zjjz3W0tPT7YgjjqAPAAAAEN1BWwAAACCajBgxwlq0aGHjx4+3c889N9LVAQAAAEoVX/pmAAAAIPbce++91qxZMxs2bJgdf/zx7vy9995zi5ABAAAAUZlp+9Zbb1lKSkrgcmFhoVtht379+sVu17t37/DVEAAAAAiTPn36uNPWrVvd2HbOnDk2ZMgQt7iuxrZffPGFy8StUaMGbQ4AAAD/B22bNGliU6ZMKbatQYMGNm3atGLb4uLiCNoCAADA15R0cOmll7rTxo0b7Y033nAB3LvvvtseffRRO++881wWbnkoW3fMmDH2zjvvuCDwVVdd5U778tNPP1mvXr3sqaeesq5du4b4rAAAAFDtgrbvv/9+5dYEAFAt5OXm2tq1a0MuR2Xk5+eHpU4Aqrc//OEPNnDgQHf64YcfAgHc8gZtJ0yYYEuXLrWpU6fa+vXr7fbbb3eJD927d9/rfUaPHm1ZWVlheBYAULqFCxdGXdNo0XP9qKXpbJQYFk2+++67SFcBQIxgITIAQJXJ2bndfvh+jd00fLQlJyeHVNburCxbt36DHZqXG7b6AcAhhxzipkvQqTwUeJ0xY4Y9/fTT1rZtW3dauXKlTZ8+fa9B23//+9+2a9cuGh1ApfB+3L7mmmto4QioU6cO7Q4gJARtAQBVJi8n2wrjEq3hcX2sQZMWIZW1afVS+2HdM1aQR7YtgMhbvny5C5B06NAhsK1Tp05u2gPNlRsfX3z9319//dXuv/9+N/3YOeecE4EaA4h1Xbp0cfN0JyZG326/slX79+/vpmNs06aNRWPA9vDDD490NQBEuej79AYARL3a9dIstVGzkMrYsWVj2OoDAKHKyMiwevXqWVJSUmBbw4YN3Ty327Zt22Ph3vvuu8/OP/98duoBVHrgNhppegRp3bq1dezYMdLVAYCIIGgLAAAAhCg7O7tYwFa8y7m5xadx+eyzz2zBggVu7txQgxpeYAMAYon32cbnHIBYVNbxG0FbAAAAIESap7tkcNa7XLNmzcC23bt325133mmjRo0qtr0iMjMz95h2AQBiwc6dOwPn27dvj3R1ACCsNHVWWRC0BQAAAELUuHFjN0+t5rX15o/UlAkKzKampgZut2TJElu3bp3dcMMNxe6vhYJ69+5td911V5kfU+UmJCTQdwBiTkpKSuC8bt26ka4OAIRVQUFBmW5H0BYAAAAIkRbKUbB20aJF1rlzZ7dNUyC0a9euWDZs+/bt7Z133il237PPPtvuueceO/HEE8v1mHFxce4EALHG+2zjcw5ALCrr+I2gLQAAABCiWrVquUzZ0aNH27333mubNm2yKVOm2Lhx4wJZt1pNXJm3LVq0KDVTt0GDBvQDAAAAHCbBAgAAAMJg2LBh1rZtW7v88sttzJgxNnToUJdFK926dbM5c+bQzgAAACgTMm0BAACAMGXbjh8/3p1KWrFixV7vt6/rAAAAUD2RaQsAAAAAAAAAPkLQFgAAAAAAAAB8xNdB29zcXDcf2LHHHmsnnHCCPfTQQ1ZUVOSuW7ZsmfXr18/S09Otb9++tnTp0khXFwAAAAAAAABiO2h7zz332GeffWbPPPOMPfjgg/byyy/bSy+9ZFlZWTZo0CDr3LmzzZo1yzp06GCDBw922wEAAAAAAAAgmvl2IbJt27bZzJkz7dlnn7X27du7bVdddZUtXrzYEhMTLTk52W677TaLi4uzESNG2Mcff2xz5861Pn36RLrqAAAAAAAAAFBhvs20XbBggaWkpFiXLl0C25RdO27cOBe47dSpkwvYis47duxoixYtimCNAQAAAAAAACCGg7br1q2zpk2b2quvvmrdu3e3M844wx5//HErLCy0jIwMa9SoUbHbN2jQwDZu3Bix+gIAAAAAAABATE+PoPlp165day+++KLLrlWg9s4777RatWpZdna2JSUlFbu9LmvhsvLSwmbe4mbh4JUXzjIROfRnDPfnb//cKaQyf//Pj+97fW5mZmaGXI4+i/Pz8sPXXr//EXpr/a8EP9WLsirYXkFbiizOH23v0/e231XFdyd9AgAAgFjn26Ct5q3duXOnW4BMGbeyfv16e+GFF6xFixZ7BGh1uWbNmuV+HAU04uPjw7oT4S2I5k3fgOhFf8Zmf+7YscMKCgqsIC/P8vPyQipTZagslbl9+3bzi82bN9vgITfarzuyQy4rZ3e2/bzxF2ualWW1Q2yvwrw81w/5hQUht31hXr47zy8IR1nhrBdlVai99J4sKPBN2/v1vR0NquK7U0deAQAAALHMt0HbtLQ0t9iYF7CVQw891DZs2ODmuVVAIpgul5wyoSxSU1MtISHBwp35UbduXYK2MYD+jM3+rFOnjnvfJ9SoYYk1aoRUpspQWSpT73u/0GdiZlauNT7pQjugfuOQyspYvdTW/XuK+zvU9oqvUcN9NibGJ4ShrN++whITEnxWL8qqUHvpPen6Uv0aF/G29+t7OxpUxXdnqAF+AAAAwO98G7RNT0+3nJwc+/77712wVtasWeOCuLru6aefdjsF2hnQ+cKFC+3aa68t9+Po/uHeofDKJNM2NtCfsSXw3vztXwVDQ0Hl/f6f397z3nNMqd/YUhs1C6msXVt+ny/89zYLqV5Bf4TeWv8rwU/1oqwKtlfQlji/tL0P39vRorK/O+kTAAAAxDrfLkR22GGH2amnnmrDhg2z5cuX2yeffGKTJk2yiy++2C1MpmkNxo4da6tWrXLnmue2R48eka42AAAAAAAAAMRm0FYeeOABO/jgg12g9vbbb7dLL73ULrvsMktJSbGJEyfaggULrE+fPrZ48WIX0K1du3akqwwAAAAAAAAAsTk9gmgeuQkTJpR6Xfv27W327NlVXicAAAAAAAAAqLaZtgAAAAAAAABQ3RC0BQAAAAAAAAAfIWgLAAAAAAAAAD7i6zltASAa5OXm2tq1a8NSVmpqqqWlpYWlLAAAAAAAEJ0I2gJACHJ2brcfvl9jNw0fbcnJySG3Zf06tW3as5MJ3AIAAAAAUI0RtAWAEOTlZFthXKI1PK6PNWjSIqS23LX1F8uYP9MyMzMJ2gIAAAAAUI0RtAWAMKhdL81SGzULuZwMegMAAAAAgGqPhcgAAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARxIjXYHqJCMjwzIzM8NSVmpqqqWlpYWlLAAAsKe83Fxbu3ZtWJqG720AAAAA5UHQtgoDtv2vHGhbd2SFpbz6dWrbtGcnE7gFAKAS5Ozcbj98v8ZuGj7akpOTQy6P720AAAAA5UHQtooow1YB27Tj+9oB9RuHVNaurb9YxvyZrkyybQEACL+8nGwrjEu0hsf1sQZNWoRUFt/bAAAAAMqLoG0VU8A2tVGzkMvJCEttAADAvtSul8b3NgAAAIAqx0JkAAAAAAAAAOAjBG0BAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfCQx0hUAAPxPXm6urV27NuQmURn5efk0LQAAAAAAUYigLQD4RM7O7fbD92vspuGjLTk5OaSydmdn2U8/b7CD8/LCVj8AAAAAAFA1CNpW82w8SU1NtbS0tLCUBVSmjIwMy8zMrPD9i4qKbMeOHbZ161ZfZqHm5WRbYVyiNTyujzVo0iKksjatXmpr102xgnyCtgAAAAAARBuCttU8G0/q16lt056dTOAWvg/Y9r9yoG3dkVXxQorMCgoKLC83x35a798s1Nr10iy1UbOQyti5ZWPY6gMAAAAAAKoWQdsoFM5svF1bf7GM+TNd9iLZtvAzvUYVsE07vq8dUL9xhcooMrOCvDzb+uMKW/sTWagAAAAAAMCfCNpGsXBk40lGWGoDVA0FbCv6ulfQNj8vz7Izt4S9XgAAAAAAAOESH7aSAAAAAAAAAAAhI2gLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADAR6ImaDto0CC74447ApeXLVtm/fr1s/T0dOvbt68tXbo0ovUDAAAAAAAAgGoTtH3zzTfto48+ClzOyspyQdzOnTvbrFmzrEOHDjZ48GC3HQAAAAAAAACime+Dttu2bbMJEyZYu3btAtvmzJljycnJdtttt1nLli1txIgRdsABB9jcuXMjWlcAAAAAAAAAiPmg7fjx4+28886zVq1aBbYtXrzYOnXqZHFxce6yzjt27GiLFi2KYE0BAAAAAAAAIHSJ5mPz58+3r776yl5//XUbPXp0YHtGRkaxIK40aNDAVq5cWe7HKCoqcqdw8corWaa7/Ns/dwrpMYL+CEtZReFvh1ixt/5EZPoi9PdQUfHzcL2HKCsi7RVcAv0YA2UFbSmyuNh7jtXou7YqvjurQzsCAACgevNt0DYnJ8dGjRpld955p9WsWbPYddnZ2ZaUlFRsmy7n5uaW+3EyMzMtPj4+rDsR3ty6Xiaw7NixwwoKCqwgL8/y8/JCeozCvDz3OPmFBSGXpfqoXqrf9u3bQyorFu2tP1H1wvUeUhmFeflhew+F8/1IWeVtr3x3nl9A28fE60vv74IC/9WL71pffncWFhZWSrkAAACAX/g2aPvYY4/Z0UcfbSeddNIe12k+25IBWl0uGdwti9TUVEtISLBwZ37UrVu32I5KnTp13OMk1KhhiTVqhPQY8TVquLIT4xNCLkv1Ub1UP9UZZetPVL3wvId+68/4Golhew+F8/1IWeVtr9++whITaPuYeH3p/e36Uv0aF1PPsbp911bFd2eoAX4AAADA73wbtH3zzTdt8+bN1qFDB3fZC9K+/fbbds4557jrgulyo0aNyv042pkI9w6FV2Zwue7v3/5VcFc0qPygP8JSVlzltEOsKK0/EZl+CPU99L9DruPC+x6irIi0V3AJ9GMMlBW0JS4Wn2M1+66t7O/O6tKOAAAAqL58G7R9/vnnLT//t0Nf5YEHHnDnt956q/3nP/+xp59+2mVyaNCu84ULF9q1114bwRoDAAAAAAAAQAwHbZs2bVrs8gEHHODOW7Ro4RYde/DBB23s2LF20UUX2Ysvvujmue3Ro0eEagsAAAAAAAAA4RG+FbiqUEpKik2cONEWLFhgffr0scWLF9ukSZOsdu3aka4aAAAAqiktpDt8+HDr3LmzdevWzaZMmbLX23744Yd23nnnuanAevXqZe+9916V1hUAAAD+5ttM25Luu+++Ypfbt29vs2fPjlh9AAAAgGATJkywpUuX2tSpU239+vV2++23W5MmTax79+7Fbrd8+XIbMmSI3XbbbXbKKafY//3f/9mNN95or7zyirVu3ZpGBQAAQPQEbQEAAAC/ysrKshkzZrh1F9q2betOK1eutOnTp+8RtH3jjTfsuOOOswEDBgSm/3r//fftrbfeImgLAAAAh6AtAAAAECJlz2oRXU134OnUqZM99dRTVlhYaPHx/5uV7Pzzz7e8vLw9ytixYwf9AAAAgOid0xYAAADwk4yMDKtXr54lJSUFtjVs2NDNc7tt27Zit23ZsmWxjFpl5M6fP9+OP/74Kq0zAAAA/ItMWwAAACBE2dnZxQK24l3Ozc3d6/22bt1qQ4cOtY4dO9oZZ5xRrscsKipyJwCINd5nG59zAGJRWcdvBG0BAACAECUnJ+8RnPUu16xZs9T7bN682a688ko3cH/kkUeKTaFQFpmZmeW+DwBEg507dwbOt2/fHunqAEBYaeqssiBoCwAAAISocePG9uuvv7p5bRMTEwNTJihgm5qausftf/nll8BCZM8995zVr1+/3I+pchMSEug7ADEnJSUlcF63bt1IVwcAwqqgoKBMtyNoCwAAAISoTZs2Lli7aNEi69y5s9u2YMECa9eu3R7ZsFlZWTZw4EC3XQHbtLS0Cj1mXFycOwFArPE+2/icAxCLyjp+43gqAAAAIES1atWy3r172+jRo23JkiU2b948mzJlSiCbVlm3u3fvdn9PnDjRfvzxRxs/fnzgOp127NhBPwAAAMAh0xYAAAAIg2HDhrmg7eWXX+4O6dUCY2effba7rlu3bjZu3Djr06ePvf322y6A269fv2L3P//88+2+++6jLwAAAEDQFgAAAAhXtq2yZ70M2mArVqwI/D137lwaHAAAAPvE9AgAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPkLQFgAAAAAAAAB8hKAtAAAAAAAAAPgIQVsAAAAAAAAA8BGCtgAAAAAAAADgIwRtAQAAAAAAAMBHCNoCAAAAAAAAgI8QtAUAAAAAAAAAH0mMdAUAxLaMjAzLzMwMuZy1a9dafl5+WOoEAAAAAADgZwRtAVRqwLb/lQNt646skMvanZ1lP/28wQ7OywtL3QAAAAAAAPyKoC2ASqMMWwVs047vawfUbxxSWZtWL7W166ZYQT5BWwAAAAAAENsI2gKodArYpjZqFlIZO7dsDFt9AAAAAAAA/IyFyAAAAAAAAADAR8i0heXl5rpFnsIhNTXV0tLSaFUAAAAAAACgggjaVnM5O7fbD9+vsZuGj7bk5OSQy6tfp7ZNe3YygVsAAAAAAACgggjaVnN5OdlWGJdoDY/rYw2atAiprF1bf7GM+TPd4lNk2wIAAAAAAAAVQ9AWTu16aSEvFCUZtCcAAAAAAAAQEhYiAwAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CAuRAdhDRkaGZWZmhtwya9eutfy8fFoYQLWXl5vrPhPDITc315KSksJSVmpqqqWlpYWlLAAAAADhQ9AWwB4B2/5XDrStO7JCbpnd2Vn2088b7OC8PFoZQLWVs3O7/fD9Grtp+GhLTk4OOfj7849rrVmLQy2xRujDuPp1atu0ZycTuAUAAAB8hqAtgGKUYauAbdrxfe2A+o1Dap1Nq5fa2nVTrCCfoC2A6isvJ9sK4xKt4XF9rEGTFiF/rq75YYrV63JeyGXt2vqLZcyf6T73ybYFAAAA/MXXQdtffvnFxo4da59//rnLTOnZs6fdfPPN7u9169bZyJEjbdGiRdakSRMbPny4devWLdJVBmKGArapjZqFVMbOLRvDVh8AiHa166WF7XM1HGVJRsglAAAAAKhWC5EVFRXZDTfcYNnZ2TZ9+nR7+OGH7YMPPrC///3v7rrrr7/eGjZsaDNnzrTzzjvPhgwZYuvXr490tQEAAAAAAAAgNjNt16xZ47JoP/30UxecFQVxx48fbyeffLLLtH3xxRetdu3a1rJlS5s/f74L4A4dOjTSVQcAAAAAAACA2Mu01dxqkydPDgRsPTt37rTFixfbUUcd5QK2nk6dOrkgLwAAAAAAAABEM99m2qamptpJJ50UuFxYWGjTpk2z4447zq1u36hRo2K3b9CggW3cWP75MzXVgk7h4pVXskx3+bd/7hTSYwT94buyisLfppG0t/6MZbH9Wi0qfu6belFWiC1G28fC6ytoS5HFxeZzrCbf21Xx3VmdvpcBAABQPfk2aFvS/fffb8uWLbNXXnnF/vnPf1pSUlKx63U5Nze33OVqxeT4+Piw7kRkZWW5v+Pi/rfTuWPHDisoKLCCvDzLz8sL6TEK8/Lc4+QXFviqLD03PUc91+3bt1ss2Ft/xrJYf63quRXm5fuuXpRVkfbKd+f5BbR9TLy+9LlTUOC/esVwWZX1vV0V3536MR8AAACIZYnRErCdOnWqW4zsiCOOsOTkZNu2bVux2yhgW7NmzQpl9CYkJIQ986Nu3brFdlTq1KnjHiehRg1LrFEjpMeIr1HDlZ0Yn+CrsvTc9Bz1XPX8Y8He+jOWxfZr9bf+jK+R6LN6UVbF2uu3r7DEBNo+Jl5f+txxfal+jYvN51hNvrer4rsz1AA/AAAA4He+D9refffd9sILL7jA7R//+Ee3rXHjxrZq1apit9u8efMeUyaUhXYmwr1D4ZUZXK77+7d/FdwVDSo/6A/flRVXOW0aSaX1px9p2hBljofqxx9/tPz8/Jh8rf7vkOs4X9WLskJuMdo+Fl5fQVviYvU5VqPv7cr+7vT7dzIAAAAQ00Hbxx57zF588UV76KGHrHv37oHt6enpNmnSJNu9e3cgu3bBggVuMTKgOlLAtv+VA23rjt8ORw3F7uws++nnDXZwiIfdAgAAAAAAIMaCtqtXr7YnnnjCBg0a5IKxCkp5unTpYgcddJANGzbMrrvuOvvggw9syZIlNm7cuIjWGWZ5ubm2du3asDSFpq5IS0uL6WYNV3as2nzT1kw76OQ/2wH1G4dU1qbVS23tuilWkE/QFgAAAAAAIBJ8G7R977333HxlTz75pDsFW7FihQvojhgxwvr06WMtWrSwxx9/3Jo0aRKx+sIsZ+d2++H7NXbT8NFu3uFQ1a9T26Y9OzlmA7eVkh1bp76lNmoWUlk7t2wMuT4AAAAAAACIwaCtMmx12hsFaqdNm1aldcK+5eVkW2FcojU8ro81aNIipObatfUXy5g/02WhxmrQVs9NAdu04/uSHQsAAAAAAAD/B20RvWrXSws521P+NyFGbNN0BmTHAgAAAAAAwBMf+AsAAAAAAAAAEHEEbQEAAAAAAADAR5geAajAAmKajzZUa9eutfy8fNofABAxebm57vsoHFJTU2N2HnoAAACgqhG0BcoZsO1/5UC3gFiodmdn2U8/b7CD8/LoAwBAlcvZud1++H6N3TR8tCUnJ4dcXv06tW3as5OtYcOGYakfAAAAUJ0RtIVv+TH7Rxm2CtimHd/XLSAWik2rl9radVOsIJ+gLQCg6uXlZFthXKI1PK6PNWjSIqSydm39xTLmz3TfkwRtAQAAgNARtEW1yv4J12GbCtimNmoWUhk7t2wMS10AAAhF7XppIX+nSQbdAAAAAIQNQVtUq+wf5toDAAAAAACA3xG0ha+R/QMAAAAAAIDqJj7SFQAAAAAAAAAA/A+ZtqgWKrqoWVFRke3YscPq1KljcXFxroz8vPxKqSMAAAAAAAAgBG0R80Ja1KzIrKCgwBISEszizHZnZ9lPP2+wg/PyKqu6AAAAAAAAqOYI2iLmhbKoWZGZFeTlWUKNGorZ2qbVS23tuilWkE/QFgAAAAAAAJWDoC2qjYosaqagbX5eniX+HrTduWVjpdUPAAAAAAAAEBYiAwAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAAAAAAAAA4CMEbQEAAAAAAADARwjaAgAAAAAAAICPELQFAAAAAAAAAB8haAsAAAAAAAAAPpIY6QoAAAAAsSAnJ8fGjBlj77zzjtWsWdOuuuoqdyrNsmXLbNSoUfbf//7XWrVq5e539NFHV3mdAaCi1qxZY9u2bauUBly+fHngPC4uLuzlH3jggXbYYYeFvVwACCeCtgAAAEAYTJgwwZYuXWpTp0619evX2+23325NmjSx7t27F7tdVlaWDRo0yHr16mX33XefvfDCCzZ48GB79913rXbt2vQFAN/bvHmzHX744VZYWFipj9O/f/9KKTchIcE2btxoDRs2rJTyASAcCNoCAAAAIVIgdsaMGfb0009b27Zt3WnlypU2ffr0PYK2c+bMseTkZLvttttcBtmIESPs448/trlz51qfPn3oCwC+p2CnPuMqK9O2qKjIfvrpJ2vWrFmlZdoSsAXgdwRtAQAAgBDpEN78/Hzr0KFDYFunTp3sqaeecplo8fH/W0pi8eLF7jovEKHzjh072qJFiwjaAogalTm9gIK2LVu2tLp161ZK0BYAogFBWwAAACBEGRkZVq9ePUtKSgpsUxaX5rlVJlr9+vWL3Vbz2AZr0KCBy1orb1BDJwCINd7nG59xAGJRWT/bCNoCAAAAIcrOzi4WsBXvcm5ubpluW/J2+5OZmVksgxcAYimgoWlnhExbALGmrPOBE7QFAAAAQqQ5aksGXb3LNWvWLNNtS95uf1JTU91iOgAQq1loTI8AIBYVFBSU6XYEbQEAAIAQNW7c2H799Vc3r21iYmJgGgQFYhVcLXlbrbweTJcbNWpUrsdU9hkZaABilfcZx+ccgFhT1s81jqcCAAAAQtSmTRsXrNViYp4FCxZYu3bt9pjCID093b7++utAJpnOFy5c6LYDAAAABG0BAACAMKhVq5b17t3bRo8ebUuWLLF58+bZlClTbMCAAYGs2927d7u/u3fv7uajHTt2rK1atcqda57bHj160BcAAABwyLQFAAAAwmDYsGHWtm1bu/zyy23MmDE2dOhQO/vss9113bp1szlz5ri/U1JSbOLEiS4Tt0+fPrZ48WKbNGmS1a5dm34AAACAw5y2AAAAQJiybcePH+9OJa1YsaLY5fbt29vs2bNpdwAAAJSKTFsAAAAAAAAA8BGCtgAAAAAAAADgI1EdtM3JybHhw4db586d3TxhWuwBAAAAAAAAAKJZVM9pO2HCBFu6dKlNnTrV1q9fb7fffrs1adLErcgLAAAAAAAAANEoaoO2WVlZNmPGDHv66afdKr06rVy50qZPn07QFgAAAAAAAEDUitrpEZYvX275+fnWoUOHwLZOnTrZ4sWLrbCwMKJ1AwAAAAAAAIBqF7TNyMiwevXqWVJSUmBbw4YN3Ty327Zti2jdAAAAAAAAAKDaTY+QnZ1dLGAr3uXc3Nz93r+oqMidK1vX+zscVFZBQYErNy4uLrBd2b81k5ItLzPDshP+t70iCnZts9q1alnBjq2WveVnyqrU9iqygrx8y6+ht0ocbR/1r9Xf+rNw168+qxdlVUSgH3fS9jHx+tq51XK2JAU+b31TL8oqE41vNM7ReEdjoNLGQuGk8iWcY7ho4j1vrx0AIBY/5/Sdos+5yvouAYBIKetYNq4oSke7b731lt1zzz326aefBratXr3aevbsaV988YUdeOCB+7y/ArvffPNNFdQUAAAAlaFdu3Z7/IhfHTCOBQAAiP2xbNRm2jZu3Nh+/fVXl8WRmJgYmDKhZs2alpqaut/76z5qnPj4eH65AwAAiMIMLG8MWN0wjgUAAIj9sWzUjnTbtGnjntyiRYusc+fObtuCBQsCgdj90W2qY2YGAAAAohvjWAAAgNgXtQuR1apVy3r37m2jR4+2JUuW2Lx582zKlCk2YMCASFcNAAAAAAAAACosaue09RYjU9D2nXfesZSUFLv66qvtiiuuiHS1AAAAAAAAAKB6Bm0BAAAAAAAAINZE7fQIAAAAAAAAABCLCNoCAAAAAAAAgI8QtAUAAAAAAAAAHyFoWwE5OTk2fPhw69y5s3Xr1s2mTJmy19suW7bM+vXrZ+np6da3b19bunRpKP2FCPfnhx9+aOedd5516NDBevXqZe+99x59EsX96fnpp59cn37xxRdVUkdUTn+uWLHCLr74Ymvfvr17f37++ec0dRT357vvvms9evRw703167fffluldUXZ5Obm2jnnnLPPz0/GQgCAyvh+AYBYR9C2AiZMmOCCr1OnTrVRo0bZY489ZnPnzt3jdllZWTZo0CC3czpr1iy34zl48GC3HdHXn8uXL7chQ4a44Purr75qF110kd14441uO6KvP4ONHj2a92WU9+eOHTvsqquuslatWtnrr79uZ511lnu/btmyJSL1Rmj9uXLlSrvlllvcd+Zrr71mbdq0cX9nZ2fTtD4Lwt98882uv/aGsRAAoDK+XwCgOiBoW07a+ZgxY4aNGDHC2rZt6wIDAwcOtOnTp+9x2zlz5lhycrLddttt1rJlS3efAw44YL8BJPizP9944w077rjjbMCAAdaiRQu79NJLrWvXrvbWW2/RZVHYn55///vftmvXriqtJ8Lfn7Nnz7batWu7ALzenzfccIM75+iG6OzPTz/91AXge/fubQcffLDbccvIyLBVq1ZFpO7Yk/riwgsvtB9//HGfzcNYCABQGd8vAFAdELQtJ2VV5ufnu6xZT6dOnWzx4sVWWFhY7Lbapuvi4uLcZZ137NjRFi1aFI6+QxX35/nnn2+33nprqRl+iL7+lF9//dXuv/9+u+uuu6q4pgh3f3755Zd2xhlnWEJCQmDbzJkz7ZRTTqGxo7A/DzzwQLfTtmDBAnedjlZJSUlxAVz4g95z+uHypZde2uftGAsBACrj+wUAqoPESFcg2ijTp169epaUlBTY1rBhQ3cIx7Zt26x+/frFbqtMoWANGjTgMI8o7U9lSwfT4Trz58930yQg+vpT7rvvPheMP/zwwyNQW4SzP9etW+fmsh05cqS9//771rRpU7v99ttdUBDR1589e/Z0/XjJJZe4QHx8fLxNnDjR6tatG6HaoyT1TVkwFgIAVMb3CwBUB2TalpPm0wve4RTvsiZLL8ttS94O0dGfwbZu3WpDhw51mdPK7kP09ednn33msviuu+66Kq0jKqc/dej9pEmTLC0tzZ5++mk79thj7eqrr7YNGzbQ5FHYn8qCV7DvzjvvtJdfftktADls2DDmKI5CjIUAAACAiiFoW06ao7bkzqV3uWbNmmW6bcnbITr607N582a7/PLLraioyB555BGXAYbo6s/du3e7YJAWQuL9GBvvT2VjarEqzWV71FFH2V//+lc75JBD3CJWiL7+fOCBB+yII45wc4cfffTRdvfdd1utWrXclBeILoyFAAAAgIoh2lROjRs3dhlAmpfPo2wg7XCmpqbucVsF+ILpcqNGjSrYXYhkf8ovv/zigggKNDz33HN7HG6P6OjPJUuWuMPpFeDT/JreHJvXXHONC+Yi+t6fyrA97LDDim1T0JZM2+jsz2+//dZat24duKwfx3R5/fr1VVpnhI6xEAAAAFAxBG3LSZlciYmJxRYT0yHW7dq12yPjMj093b7++muXkSk6X7hwoduO6OtPHX6tlc61fdq0aW5HFNHZn5r79J133rFXX301cJJ77rnHbrzxxojUHaG9P4855hhbsWJFsW1r1qxxc9si+vpTP26uXr262Lbvv//emjVrVmX1RXgwFgIAAAAqhqBtOenwzN69e9vo0aNdtt68efNsypQpNmDAgEDWkA69lu7du1tmZqaNHTvWrYKtc83t1qNHjwp2FyLZn1oE58cff7Tx48cHrtNpx44ddEyU9acy+1q0aFHsJArEa7FARN/7UwsCKmj76KOP2tq1a+0f//iHy6bWXKiIvv688MIL3Vy2+kFF/anpEpRlq4UD4X+MhQAAAIDQEbStAC2G0rZtWzev6ZgxY9yCVGeffba7rlu3bjZnzhz3d0pKigv0KZOoT58+tnjxYrdQTu3atcPQdajq/nz77bddQKFfv35uu3dSMB7R15+Irf5URu3kyZPtgw8+sHPOOced6/OWjPjo7M+ePXvayJEj3XeoAr06SmXq1Kn8qBIlGAsBAAAAoYsr8o7dBwAAAAAAAABEHJm2AAAAAAAAAOAjBG0BAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAD5C0BYAAAAAAAAAfISgLQAAAAAAAAD4CEFbAAAAAAAAAPARgrYAUMlmzZplRx55pM2YMaPY9tNPP91dVxnWrl1rQ4cOtWOPPdbS09Otb9++9sYbb1TKYwEAAAAAgPBKDHN5AIAS3nzzTTv44IPttddes379+gW2v/LKK1a7du2wt1d2drYNGDDATjvtNJs+fbolJyfb//3f/9ntt99uNWrUsD/+8Y/0EQAAAAAAPkamLQBUoi1bttj8+fPt+uuvt6+++srWrVsXuK5+/fpWs2bNsD/mZ599ZllZWTZ69Gg74ogjrEWLFnbppZda79697eWXXw774wEAAAAAgPAiaAsAlWju3LlWp04dO/fcc61Ro0Yu27a06REuu+wye+aZZ+zKK6+09u3b2wUXXOCmOBg5cqR16NDBzj77bPvyyy8D9129erVdffXV1rFjRzvppJPsscces8LCwt8+2OPjbdeuXbZo0aJidbnlllvsnnvuCVxesmSJXXzxxW76BGXfKiPY8/XXX7vrjjnmGFfPF154IXDdHXfc4U56Tscff7z98MMPlpmZaX/9619dfbp162Z333237d69u5JaFQAAAACA2EbQFgAqkQKhp556qgukKvj56quvWlFRUam3ffzxx+3CCy90gdwdO3a4wG3Dhg3dNAqHH354IOC6detWu+SSS1wQWPPkjho1yqZNm2bPPfecu/6EE06wQw891C666CIXeFVAd/HixS6z96CDDgpkAF911VXWpk0bmz17tg0ePNhNn7B8+XIXEL788svdfLiqi+bGHT9+vL377ruBuir4fNNNN9nEiRPtkEMOsREjRrg6K7j7xBNP2DfffGN33XUXry0AAAAAACqAOW0BoJJs2LDBFi5c6LJnRdmyCmouWLDAOnfuvMftNQdtjx493N9nnnmmzZkzx2644QaLi4tzwVxNsSBaUKxWrVoumzUxMdFatmxpGRkZLuh7xRVXuDls//Wvf9lTTz3lMn0fffRRdzrqqKPs4YcfdkFWBZPr1q1rf/vb31xA+bDDDrPt27e77FgFcXXbm2++2T2erlMgd/LkyXbWWWe5be3atXNBaPnxxx9t3rx5LhNYWcWiumk6hmHDhgW2AQAAAACAsiHTFgAqiQKjCqBqugDp0qWLC5QqKFqaZs2aBf7WXLdNmjRxAVvvcl5envtbAdS2bdu6gK1HUygocKtpCkSPo8zZDz74wF5//XWXFfvzzz+7ILB8//33LjCrgK1HwWVNh6DyNUVDMJWv7Z6mTZsG/tZ2Tc1w8sknu9vppCxfbdMUDwAAAAAAoHzItAWASgzaKnO1U6dOgW0FBQUu+1Vz1e7xgRwUhJXggGowBYJL8uazVflabCwlJcV69uzptmkxMp0U6L3mmmvc9AolH6ss5avs0m6j7cqmnTlz5h73a9y48V4fBwAAAAAAlI6gLQBUAmWyLlu2zE0/0LVr18D2VatW2V/+8pdi88OWl+arfeedd1zmbY0aNQILh2nO2gMPPND++9//uikYunfvXizwm5qaaklJSS6gqykSPvroIze/rpfNq2zco48+2pX/n//8p9hjqnxt31t9NJ+tyjn44IPdthUrVtgjjzxi48aNc1nCAAAAAACg7JgeAQAqKctWAdQ///nPgUxXnZT92qpVK7cgWUX16tXLcnNz7c4773RTE2g+Wc1Zq0XHFDgdMGCArVu3zoYMGeKCt/pb0yQou/fSSy91gVuVsW3bNpswYYL98MMPbsGx9957z0488US3yNl3331nDz30kAs+azoHzZGr+5ZGc+qedNJJduutt9qSJUvs22+/dXPZZmVluUAxAAAAAAAoHzJtAaCSgrYKjCpAWpKCq2PHjt3r9Af7o0xZLQqmMrTYlzJsL7/8chs8eLC7XtmuWvDsH//4hwvcKgtW8+NecMEFdvXVV7vbKJg6ceJEu/fee+3555+35s2b24MPPmht2rRx1+s6BXSnTJni7nvHHXdY375991on3faee+5xC6Fp6gUFcZVlDAAAAAAAyi+uSMfGAgAAAAAAAAB8gekRAAAAAAAAAMBHCNoCAAAAAAAAgI8QtAUAAAAAAAAAHyFoCwAAAAAAAAA+QtAWAAAAAAAAAHyEoC0AAAAAAAAA+AhBWwAAAAAAAADwEYK2AAAAAAAAAOAjBG0BAAAAAAAAwEcI2gIAAAAAAACAjxC0BQAAAAAAAAAfIWgLAAAAAAAAAOYf/x9GS5dtgEKD8gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Target statistics:\n", " Min: 0.01\n", " Max: 0.99\n", " Mean: 0.58\n", " Std: 0.24\n", " Skewness: -0.6940\n" ] } ], "source": [ "# Identify target variable and prepare data\n", "# Check for AimoScore column\n", "if 'AimoScore' in df.columns:\n", " target_col = 'AimoScore'\n", "else:\n", " # If not found, it's likely the last column\n", " target_col = df.columns[-1]\n", " print(f\"⚠ AimoScore not found, using last column: {target_col}\")\n", "\n", "print(f\"\\n{'Target Variable:'}\")\n", "print(f\"Column: {target_col}\")\n", "print(f\"\\nStatistics:\")\n", "print(df[target_col].describe())\n", "\n", "# Visualize target distribution\n", "fig, axes = plt.subplots(1, 2, figsize=(14, 5))\n", "\n", "axes[0].hist(df[target_col], bins=30, edgecolor='black', alpha=0.7)\n", "axes[0].set_xlabel('AimoScore')\n", "axes[0].set_ylabel('Frequency')\n", "axes[0].set_title('Distribution of Target Variable (AimoScore)')\n", "axes[0].grid(True, alpha=0.3)\n", "\n", "axes[1].boxplot(df[target_col])\n", "axes[1].set_ylabel('AimoScore')\n", "axes[1].set_title('Boxplot of Target Variable')\n", "axes[1].grid(True, alpha=0.3)\n", "\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "print(f\"\\nTarget statistics:\")\n", "print(f\" Min: {df[target_col].min():.2f}\")\n", "print(f\" Max: {df[target_col].max():.2f}\")\n", "print(f\" Mean: {df[target_col].mean():.2f}\")\n", "print(f\" Std: {df[target_col].std():.2f}\")\n", "print(f\" Skewness: {stats.skew(df[target_col]):.4f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Identify and Remove Duplicate/Identical Features\n", "\n", "**What we're doing:**\n", "- Finding features that are identical (same values across all rows)\n", "- Finding features with extremely high correlation (>0.99)\n", "- Removing duplicates to clean the feature space\n", "\n", "**What to expect:**\n", "- Discover 1-3 pairs of identical/nearly-identical features\n", "- Feature count reduction (42 → 39-41)\n", "- Clean dataset without redundant information\n", "- Improved feature stability\n", "\n", "**Domain context:**\n", "- Some FMS features may duplicate NASM features (e.g., feature 5 = feature 14)\n", "- Identical features provide no new information\n", "- Highly correlated features increase multicollinearity" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original feature set: 41 features\n", "\n", "================================================================================\n", "DUPLICATE FEATURE DETECTION\n", "================================================================================\n", "\n", "Identical features (correlation = 1.0): 5\n", " ✗ No_1_Angle_Deviation == No_3_NASM_Deviation (r=1.0000)\n", " ✗ No_5_Angle_Deviation == No_1_NASM_Deviation (r=1.0000)\n", " ✗ No_7_Angle_Deviation == No_2_NASM_Deviation (r=1.0000)\n", " ✗ No_10_Angle_Deviation == No_4_NASM_Deviation (r=1.0000)\n", " ✗ No_13_Angle_Deviation == No_5_NASM_Deviation (r=1.0000)\n", "\n", "Highly correlated features (correlation > 0.99): 0\n", " ✓ None found\n", "\n", "Features to remove: 5\n", " - No_1_NASM_Deviation\n", " - No_3_NASM_Deviation\n", " - No_2_NASM_Deviation\n", " - No_5_NASM_Deviation\n", " - No_4_NASM_Deviation\n", "\n", "Cleaned feature set: 36 features (removed 5)\n", "✓ Clean dataset shape: (1675, 37)\n" ] } ], "source": [ "# Separate features from target\n", "X = df.drop(target_col, axis=1)\n", "y = df[target_col]\n", "\n", "print(f\"Original feature set: {X.shape[1]} features\")\n", "\n", "# Function to find duplicate features\n", "def find_duplicate_features(X, threshold=0.99):\n", " \"\"\"\n", " Find identical features (correlation = 1.0) and highly correlated features\n", " \"\"\"\n", " correlation_matrix = X.corr().abs()\n", " duplicates = []\n", " identical = []\n", " \n", " for i in range(len(correlation_matrix.columns)):\n", " for j in range(i+1, len(correlation_matrix.columns)):\n", " corr_val = correlation_matrix.iloc[i, j]\n", " col_i = correlation_matrix.columns[i]\n", " col_j = correlation_matrix.columns[j]\n", " \n", " if corr_val == 1.0:\n", " identical.append((col_i, col_j, corr_val))\n", " elif corr_val >= threshold:\n", " duplicates.append((col_i, col_j, corr_val))\n", " \n", " return identical, duplicates\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(\"DUPLICATE FEATURE DETECTION\")\n", "print(\"=\"*80)\n", "\n", "identical, highly_corr = find_duplicate_features(X, threshold=0.99)\n", "\n", "print(f\"\\nIdentical features (correlation = 1.0): {len(identical)}\")\n", "if identical:\n", " for col1, col2, corr in identical:\n", " print(f\" ✗ {col1} == {col2} (r={corr:.4f})\")\n", "else:\n", " print(\" ✓ None found\")\n", "\n", "print(f\"\\nHighly correlated features (correlation > 0.99): {len(highly_corr)}\")\n", "if highly_corr:\n", " for col1, col2, corr in highly_corr:\n", " print(f\" ✗ {col1} <-> {col2} (r={corr:.4f})\")\n", "else:\n", " print(\" ✓ None found\")\n", "\n", "# Identify columns to drop\n", "cols_to_drop = set()\n", "for col1, col2, _ in identical:\n", " cols_to_drop.add(col2) # Keep first, drop second\n", "for col1, col2, _ in highly_corr:\n", " cols_to_drop.add(col2) # Keep first, drop second\n", "\n", "print(f\"\\nFeatures to remove: {len(cols_to_drop)}\")\n", "if cols_to_drop:\n", " for col in cols_to_drop:\n", " print(f\" - {col}\")\n", "\n", "# Create clean dataset\n", "X_clean = X.drop(columns=list(cols_to_drop))\n", "print(f\"\\nCleaned feature set: {X_clean.shape[1]} features (removed {len(cols_to_drop)})\")\n", "\n", "df_clean = df.drop(columns=list(cols_to_drop))\n", "print(f\"✓ Clean dataset shape: {df_clean.shape}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Train Baseline Linear Regression Model\n", "\n", "**What we're doing:**\n", "- Split data into train (80%) and test (20%) sets\n", "- Standardize all features (important for linear regression)\n", "- Train linear regression using ALL clean features\n", "- Evaluate on both train and test sets\n", "\n", "**What to expect:**\n", "- **Baseline R² score:** ~0.35-0.55 (typical for movement assessment)\n", "- **Overfitting gap:** Train R² > Test R² (shows some overfitting with all features)\n", "- RMSE & MAE metrics showing prediction error magnitude\n", "- This becomes your **reference point** - all other models compared against this\n", "\n", "**Why it matters:**\n", "- Establishes the floor - \"what's the simplest possible model?\"\n", "- If R² is low, feature engineering is critical\n", "- If overfitting gap is large (>0.15), feature selection will help" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "DATA SPLIT\n", "================================================================================\n", "Training set: 1340 samples (80.0%)\n", "Test set: 335 samples (20.0%)\n", "Features: 36\n", "\n", "✓ Features scaled using StandardScaler\n", " Train mean: 0.0000, std: 1.0000\n", " Test mean: 0.0072, std: 1.0111\n" ] } ], "source": [ "# Prepare data for modeling\n", "X_final = X_clean\n", "y_final = y\n", "\n", "# Train-test split\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X_final, y_final, test_size=0.2, random_state=42\n", ")\n", "\n", "print(\"=\"*80)\n", "print(\"DATA SPLIT\")\n", "print(\"=\"*80)\n", "print(f\"Training set: {X_train.shape[0]} samples ({X_train.shape[0]/len(X_final)*100:.1f}%)\")\n", "print(f\"Test set: {X_test.shape[0]} samples ({X_test.shape[0]/len(X_final)*100:.1f}%)\")\n", "print(f\"Features: {X_train.shape[1]}\")\n", "\n", "# Scale features\n", "scaler = StandardScaler()\n", "X_train_scaled = scaler.fit_transform(X_train)\n", "X_test_scaled = scaler.transform(X_test)\n", "\n", "print(f\"\\n✓ Features scaled using StandardScaler\")\n", "print(f\" Train mean: {X_train_scaled.mean():.4f}, std: {X_train_scaled.std():.4f}\")\n", "print(f\" Test mean: {X_test_scaled.mean():.4f}, std: {X_test_scaled.std():.4f}\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "================================================================================\n", "BASELINE MODEL - ALL FEATURES\n", "================================================================================\n", "\n", "Training Performance:\n", " R² Score: 0.6156\n", " RMSE: 0.1491 (score points)\n", " MAE: 0.1143\n", "\n", "Test Performance (EVALUATION METRIC):\n", " R² Score: 0.4864 ← YOUR BENCHMARK\n", " RMSE: 0.1601 (score points)\n", " MAE: 0.1222\n", " MAPE: 0.7753\n", "\n", "Overfitting Analysis:\n", " Train R² - Test R² = 0.1293\n", " ⚠ Moderate overfitting (feature selection may help)\n", "\n", "================================================================================\n" ] } ], "source": [ "# Train baseline model (all features)\n", "baseline_model = LinearRegression()\n", "baseline_model.fit(X_train_scaled, y_train)\n", "\n", "# Predictions\n", "y_train_pred_baseline = baseline_model.predict(X_train_scaled)\n", "y_test_pred_baseline = baseline_model.predict(X_test_scaled)\n", "\n", "# Metrics\n", "baseline_train_r2 = r2_score(y_train, y_train_pred_baseline)\n", "baseline_test_r2 = r2_score(y_test, y_test_pred_baseline)\n", "baseline_train_rmse = np.sqrt(mean_squared_error(y_train, y_train_pred_baseline))\n", "baseline_test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_baseline))\n", "baseline_train_mae = mean_absolute_error(y_train, y_train_pred_baseline)\n", "baseline_test_mae = mean_absolute_error(y_test, y_test_pred_baseline)\n", "baseline_test_mape = mean_absolute_percentage_error(y_test, y_test_pred_baseline)\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(\"BASELINE MODEL - ALL FEATURES\")\n", "print(\"=\"*80)\n", "print(f\"\\nTraining Performance:\")\n", "print(f\" R² Score: {baseline_train_r2:.4f}\")\n", "print(f\" RMSE: {baseline_train_rmse:.4f} (score points)\")\n", "print(f\" MAE: {baseline_train_mae:.4f}\")\n", "\n", "print(f\"\\nTest Performance (EVALUATION METRIC):\")\n", "print(f\" R² Score: {baseline_test_r2:.4f} ← YOUR BENCHMARK\")\n", "print(f\" RMSE: {baseline_test_rmse:.4f} (score points)\")\n", "print(f\" MAE: {baseline_test_mae:.4f}\")\n", "print(f\" MAPE: {baseline_test_mape:.4f}\")\n", "\n", "print(f\"\\nOverfitting Analysis:\")\n", "baseline_gap = baseline_train_r2 - baseline_test_r2\n", "print(f\" Train R² - Test R² = {baseline_gap:.4f}\")\n", "if baseline_gap < 0.05:\n", " print(f\" ✓ Excellent generalization\")\n", "elif baseline_gap < 0.10:\n", " print(f\" ✓ Good generalization\")\n", "elif baseline_gap < 0.15:\n", " print(f\" ⚠ Moderate overfitting (feature selection may help)\")\n", "else:\n", " print(f\" ✗ Significant overfitting (feature selection recommended)\")\n", "\n", "print(\"\\n\" + \"=\"*80)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAHqCAYAAADMEzkrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQl8nFW9/p/MmsxkT9p03wu0UKBQFgEvKqi4oILCxRVFRbzX7XrdEBVwB8XdvwJXFDcUBNxAFkVBQWUt0JYutHRPmqXZJ7PP//Oc9E0nk5lkZjJ7nq+GNJOZec97zjvvOfk95/f8qmKxWAxCCCGEEEIIIYQQQgghhBBCiLLGVuwGCCGEEEIIIYQQQgghhBBCCCGmj4Q/IYQQQgghhBBCCCGEEEIIISoACX9CCCGEEEIIIYQQQgghhBBCVAAS/oQQQgghhBBCCCGEEEIIIYSoACT8CSGEEEIIIYQQQgghhBBCCFEBSPgTQgghhBBCCCGEEEIIIYQQogKQ8CeEEEIIIYQQQgghhBBCCCFEBSDhTwghhBBCCCGEEEIIIYQQQogKQMKfEGIcsVhMPVJCaDyEEEIIIbTeEkIIIcTMicOUQhuEEOWNhD9R0rz97W/HkUceOe5r3bp1eMc73oFHH320KG3au3evaccdd9xhfuZ3/szHi8k3v/lN044vfOELWb1+YGAAn/jEJ/D444/nvG3F6qNPfepTE66fo48+GmeccQY+/vGPo729PW/H/ve//22Ox+/Z9EGux4PH/u53vzvl89i+l770pTh48KD5+WUve9mEPly1ahVOOukkvOUtb8FDDz009totW7bgjW98I1772tfiFa94Be68886M2/mPf/zDvMdxxx1njv2jH/0oowVvOBzGm970JnPvSOTPf/4zzj//fKxduxYvf/nL8b3vfQ/BYHBCv1911VU4/fTTzfP+8z//E//85z9THo/X0Iknnjiub/me55xzDtavX592u4UQQohUa9+jjjoKJ5xwgpnDfve73+W8oziH8TiZrGtyyVRrFKt98V+rV6/GKaecgv/+7//Gtm3bxq39uH7IBL7+zW9+87TOQQghhMgHWhekty449thj8cpXvhLXXHMN+vr6xj0/07VBuuuCxBhPNmuQVPy///f/TCwkk7VarnnmmWdMn1oxk8Q+j1+PXXLJJeb5iXFTfv36179O+v6Dg4NYs2bNhPUlYzo/+clPcN555+H44483cRn++6abbpoQv0nWpvivr3/96xmfd3d3N/73f//XnBdjPR/96EfR2dmZ9uvZ/gsvvDDp2pbt/8Y3voGXvOQl5pp93eteh7vvvnvs9729veZ3e/bsybjdQiTDkfRRIUoITiRXXnml+XckEjE3wltuuQXvfve7zUS7cuXKoraPN2VOZLNnzy5aG6LRKH7729/iiCOOMAGhj33sY6ipqcnoPZ577jnzWooulcSsWbOMwBM/Cb/wwgtmAfDUU0/hj3/8I6qrq0vuOinGeFBgu/zyy3HxxRejubl57PEzzzwT//Vf/zWuD3fv3o0bbrjBPP6b3/zGBCUfeOABnHvuuXjnO99p+pUCGhdo6UKh7LLLLsOrXvUqfPjDH8YTTzyBr33ta+Zzf+mll6b1HmzTs88+i5NPPnnc4w8//DA+8IEP4NWvfrVZxHExzwUX7yef/exnzXN4nPe+973Yv3+/EYZbWlrw05/+1Bz7tttuM+eY2F+f/vSnMTQ0NO5xl8tlPoOf/OQnzRgW4voSQghRmWtfa37q6OgwQRBuCmpsbDRzc6644IIL8OIXvxilTnzgiH3C+Zob39761rfirrvuMmu+bLjnnnvMmlAIIYQoRbQumHxdwL/LfT6fiQPceOONJi7BmKEV02DMgskDuV4X5DMW+O1vf9vEL4q1VgsEAiaewbgI4xsW3GTNtsQLWYyt/PCHP8S73vUu03fx6zGbzWYe44bqRO6///4JQh5hfOa+++4zcZhjjjnGxDu5If5b3/qWiRF9//vfH/f8xDbF09bWltF5M9bFmBBjPIxn8efrrrtuLP7sdDqn7Deu1Z9++umk48U4EWNTjEktWbLExIsoLNbW1uI//uM/0NTUZOJpjDMxFlVVVZVR+4VIRMKfKHl4A+Quj3hOO+00vOhFLzI3Xk5GxYSLiXiRpBgwS4oBIQoZb3vb24zokmrim2lwkZJ4/TBrlBM2r52//OUveM1rXjMjrpOp4MJr69at43aWEbY7WR8yK49C2u9//3sjir3//e83vxsZGTEBOGYGZgJ3RPE1FPsIFz5caHERyYX6VALa5s2bcf311ycN/PFeMW/ePPPedrvdZPT19PTgxz/+sdmZx+vhD3/4AzZs2DC2c49QQOQuLC7OEoW/X/7yl9ixY0fStpx99tlmYco/OLgAFkIIIaaz9rXmRWv9m0vhb86cOear1EnsE+7Cnjt3rhH+6DKQ7iYhIYQQopzQuiC9dQH/xmeskM5EjI198YtfNI8vWrSo7GM8hV6rMdbhcDhMXCOxHYn9zpjJwoULjWBGwY7rMgs6VjCbj45SiX1lxYy46d2Cm7q4pvv85z9vsuYsKKLx9V/+8pdNZiGz5SZrU7ZQpNy0aZNp24oVK8xjbCNdrf70pz+Z2FAqKE6y3QcOHEj5+3vvvddsVrfW8VzX79q1yzhpcZ1PeP3+4Ac/MPE5OmkJMR1k9SnKEmazud3ucbsfuPOXN1DekDkJ8MZ/0UUX4V//+tfYc/x+v9m1wRsqd47Qji9R5KAtwOc+9zmzYGDaOSebyaz+kqX3c4fG7bffbtLieZzXv/714ywRrQmNOzs4SVJAYZYVJ5hEW4d0rAJ4LGb7MQDCdPRUqfQPPvig6RP2De0ueZ60NuREbO2A4nfLJpHH5vlMdr6WhSInJ6bgW/36i1/8AulCWwDaVyXCnVnWxMqFAnfFcDHHcWGfMssxW/geZN++feY7z5NjwB32XJxQ0OI1xd1FvK5oDclz45j+7Gc/m/B+v/rVr8zveO1RfOX4TtVvmY5HvF0l28++4GKWu9vioQ0ud1TxumKbHnnkkbT6hKIZnx+/o2sy6uvrzff4zyGFMO646urqMovtVPYk8V/sE+704nmzn+Nhe4aHh83Orsng67mzisdaunRp0p1XvG9Q9LNgxkQoFDLvT7gIo4VpvIUG7zN8nDu84qH1ArNGJ7PWZfYjhcVku9iEEEKITOGcxDk6ft5NZ53CLH1m1HONyLUB1whcg0xmHzXVuiaV5VSibSfneM7PXOfQbp0BDv7MjPtcwHOOX88lwrUc16Sck3ku3J3P+ZvrAus8LGeIdG3RhRBCiFJA64KJcK6nWMJYETckJ7Pg5GZfxn4YP2MMi/E7q0xHqnUB/83HGYvhMfjvVOVcGI+zrBwT43zprJ+s3/MY1r+TvY4WkVYpE8aGGE/q7+8fdyyuD//2t7+ZdZC1Tpwqjsb4BeMYjK2mS7LYEOHxmfVHESsergMZq03chE+bTWZwcn2bCM+BMVTrWJlgjVWqL6vvmVTBeJIl+hH+e/ny5ePWzsngRnhuNrfKQiUTFSlCx2/eY39xzf2Zz3xm7DGu9TlOjM8JMV2U8SdKHt70mfVj/ZvC3M0332wmo3gbRP4Rz+waikO8cXOXBVPAaRnIiY5Bf+4O4Y2cmV6tra1GjLv22muNAMD3YhCAEzMnm//5n/8xKfsU1d7znvfg//7v/0ywIh24kKAH9Ic+9CGzO4tp+h/84AfN8RoaGoyIRcGHbWIaO7/znLgzhraJnFQIRaipRAP2B60MPvKRj5ifaa3IgMrGjRtNgMXir3/9q5mIzjrrLJOJxNfx3BkoYfu4SODuFH5nYChd2Lesr0KBiudIcZW7g/heXFgwwDQVFPc4JtzpsnjxYvMYBTD2F8eB0GKAGVpXX3216VOmxPM13N1z6qmnIlNo95m4+4s7cLh45nVDMY0iEfuDE/f73vc+s6B67LHHzHXE9vG8yc9//nMjAPHaoahModiyj0xFNuPBjDRaA3DBw/Hmc2lx9fzzz5uFGRcNHHcKqeyT73znO2YRysXRVFCw43Vr9XeqzyChWMaxYnuZKWctCGlnwGNz8caFiyUg8jpOtMOMh58zCml8X9odxGNdDxwvLmZTwTFjG/mZSxTpCD9b3IFGoZ/ZsDxffua46OLn38oY5HjQSo22CryH8F5CmwVmOFpwEco/HmhJau3KSgYFcIqfFGIZ8BRCCCHSIXHepXjFOZ9zHTercPOTBTe0TbZO4ZzF33Gu5bzN3duc47gG4c5la56NJ5t1TTIYcOP6kLZFXAvU1dUZ6ywGspjFz3XOdEm2nouH6yiuGbkG4FzO4Bv7kbvLubbnmoCuGVx/M1BXDpmPQgghZhZaF2QG4wbM2EpWAoRxCcb3GC+h2MN4G7OrGENgbGuydQGdiBhvpDA0f/588/6J8LVc5/B5jFvx39yczFgORaF04HG5SWsyC0vWAGS8hxvwGcNhPIVxJAqYt95665hbEjdkc73FdR/bzHgI42jcSG7FHRPhhmzGQpJlm3FdGb9GZQx1y5YtZt3IdR7jKfFQpON4JNp9cnM1+yM+c4/QZYluDl/5ylfM+770pS81G/PZl8z445p2qjbFw3VvvC1rKqxx3r59+4SYlLXOtNacqeD6ebI6jIw3sVQVrwWOnxX/5LWSmFnJWBLby2Mm29guRLpI+BMlDwMY8QKWBcWM+ImKQhsnvPjsKIo4FKM4YTCrigF4TjrWrhIKKh6Px9TyIgwM8GbMidISrBjw4HtSWKQImA4sUssgjBWE4DG4W5o7Wrhzg4IDhR4KlZx8reMwy4yTNSdwEr/LJBWcNDjRWUEgTs6c2LlrJD4bybJR5MLD2oVDYYbHo1hnHYvf0zmuBUUnio1XXHHF2GMMPLFvuWBIR/hjmyno0aLUEtNoEcBAlyUqcez4O2tC5AKOgk062WnxiwAu9LhA40JiwYIFZgEQ/zz2nTXpc5LltcBrzbKPooDD/uPuGy6y2AZO2hw7CkTWc3gcjkEqMh0PLvZ5DdLiIL5AMRcl3KHG3Uc8F7aL1zMXr5b/OANuyQS9eKzM2MSFF+GOsMRdYVxAUdjlwtGy9GSfUsSmAGgtULnLPp3riZ8ZwgVdPF6v13yfTDik1QMLPfNYqa4HLuy5mGfQk19WrQT6tVtQkOeClOI8xXOeC7MoKGbyOrCsPvn5paDKhf9kcBHH92LAVMKfEEKI6ax9uVaguwPXCQyCpLtO4dqGm13oomDtMLZ2qifbXMb1RjbrmmTs3LnTrKmuueYaYwFlzcdcJ3Bdlynx6zmulbhmp8jJQFMy6yWuURm4Y0DF6h/+HUARlPM8N5ixT6x1X65sooQQQohconVBZnCTP+GG/mRrA2abcWMSBSWybNkyI7Jwc1W8pWaycifxZTySCX+MYXGDkRVXYTyMMSy6MaRbpsg6bioLS2b1Md5DdzJucLLgOpEbnhm3tOw2uQnrS1/60lgSA+NHXEcyfpRK+GNsiIJdMsGJa0R+xcMYDPuGa7JkNfW4YZpryni7TwqzXGsmwvdiDIbrNCYU8IsZg1wX8314XoklYJK1yYKxGMuSNR1bVsalkm2KY1zKcopKxWSiH+H5c23MzfqMz7FEDc+PtRx5zvGbyi2HMrZfwp+YDhL+RMnDGzxFISsYYWWCMdOJWVmWoGEF8HkzZYCDuyeYVUWswAbFKAYtuAuHf+jzyxKarJsqb748ZnxwgRMjxYL4tPnJ4IQSv/PYWjhYVgM8DsUSTorWcTiZ8UbPemmZwEmd58UJkn1DaGNAEY0LCwopDI5whzNF0PjUe0601mTLnS3ZwN1ShJMgA1C0k7IWQOlaHFIY5WKIVgXWeHAhwMWJtXDgOVIs43lQ/OLYpbNw4g75ZMIxF2AU+eIXDRTx4nd0ccHDa479GX898GcutGg/yUmYmYhWEM6Ci5JUAbJsxoPXNK9b7nCKbwutKTnGrEFH4Y9tYlviiw5TWI23uEwGd4hxcZfMNoHvZ40Lx5d18jguDBrG19NLdb5c/LIfU0ERMZmVQzz8fCSDO8wsm9ZkoqUFMw0oxnOnG68rXhdsP69fZvhR5GPGIRd6DBJa1wHtP2hPwSLhvMdwXJihSXGegcap4C62ROsPIYQQIt21Lze2cd7hHMXvDE5lsk7hzmtuwGHGHl0vKOJxvXn55ZcnPTbXG5mua1LBtS4DGpzjGejg2pwBNx4j1c7syUi2nuPO6cT1iIUlLibaSPFnnj83qOWyVqIQQgiRD7QuyB1cNzBeRwt0ZlUxtsRNQXSYmgprw/NkcKNTfFyC6xOKdxRvcwWz+hhrS7TipPjGxAKuf+Lr7MWLh1acI7FcTGJsyEpQSIRiI7+4/uQGLMaGGDNhrMTatJ0IY31ch9Luk1l/XNvSbYuiJeO3iVDA5MZzxhW5duV6jY4R/JmxGm74jhfxrDYlw4pvsb2MS00Wb+LXZHGrRBvTTOFanhmYjEtZa1puiGMSB4XLeOGPsSa2XbEkMV0k/ImSh5OHtdvBgkELTlS06OFOHWY4cRJgkITfGcRnkMNKpbdu3sxK40RHcY3ZcPxidhptkpjNwyw83oiTBRYIf5e4uyQZPH6yCcISN3gcBj9SHYcCYeJ7JIPikVUIlwJQIjxP7vamYMk+sDIbcwknaooqrD3H8+TuGMsWcbJJMxFOdmwvFw/cocXJnTuGLCj0MsOKtlS0BeCkzDqMFO9SLUqshRaDXxYUSHkNMBMrkcSFCscpWcDIgvYH1oKDWXWJx01FNuNhtYXXuBUMjIeLJ+u9E9tCYS3xsUS4kz/VNUdB1PoM8jt3MtEal7ZZzDSYKuuSGYmT7ez/y1/+MiaiJe6isjL9EjMBLRgE5eeKmQzxlsCEP1PwZN+wnRRNLUtcwgU5x5biOTNyOf7c9RYv/vK4vEfws8aFIgOF/AOBfxzEBy0tewnLSsKCfTpZtqIQQggx1dqXm5WY0cYMdAYLrLVHOusUrs2YFc+1EAMuDKRwcxCDMFxPJK6HrE1umaxrJoNW5Fy/sa1c39EtgHOjlemfCQz2WPAc2KbJ1lLWuSS23VoXZdMGIYQQotBoXZAZ3DBNktl3sy8pHHFdxNgSM/0Y42M8Kr5cSaoN6+lmG8bDtUp7eztyhbW+SXYsPpa4vomP81gbqieL1U0WG6JrgrVGZTyFQiezIBlnYdZaMnGMMRWKWpbdJ78zXksRlnG/VPA4/OLmbcZIuZ7lBmxuyo5PAohvUyruvPPOlJveCLPuuDGfbU2W2cc+SWfj92Tw2rMSTSwYr+LG9GQ2pIoliVwg4U+ULQwc3HbbbWYHBC09mblDQYKZYtwNzQmN6esUiSw4iXPS4Nf+/ftNRiB3VtACiK/jjZyp7/FWivHQGjKZXUCm8Di0qmT6ejLSsa8kDP5w8cFzSMyI4u4ZTh4U/jh5cQJO3E3DbCnuFp/MjjNxV0ziziDWnOPObWZNUSBh2zkpU2jJBE52nAS5+OJ3jmm8pzj7jLuw+MXjUSzieTNoxQVGKtieqRYBqbB2B9HaMdnuJQrLVpYld8fHYwXjkpHNeFht4TWT6FNPrMAdRbrEa5SLuqmyVTMJgHGRxlp6zILlLvupaghyjCazReBCjW3kooeCeDzMMCSpbCj4+Wb2Hq+9RLigov0oszL5/paVR/x5sL+2bdtmfqZonSxLlYIe/xjgYp32ZPxKtD617CV4XfI+YcHrI10vfyGEECIZDOJwXce61bRrslwu0lmnEGbpc5MbN2pxgxUDLgyaWLX34rEEv6nWNVZgh+tEy1Ugca6nHf1Xv/pVs3Y7//zzxwRLnkcye6ypyHQ9Z62NuHEvfpMYd1zT5muqTVFCCCFEKaJ1weQ88sgjJk6WaqM944XMVOMahmVDWPKHZXjo2mU5WmVLsrgL1yHWGiid9VO66xvGfeKdIKxjWfbq2cL1kbWxPJ04HmOOFFMZA4yv4xcPna24HmQMjE5fqTat0R6ecVquVRNFMLpQsSQQ3SMyhU4W8RvIksWkCGNHVnJFYlxqMoepdGC8iTElxqbiBVIr3pQIY0laq4rpktw7TYgygBM0J0pOahSCGJBg9h+D+ZYIRktQKxuH9oqsr8ddIlYwhOnvnHAoAhIKKrwRc0eOtbuEX7RRZHbhVHaJ6cLjWEVa44/DBQcno3SOQ4GCARXaOXGypRVm/Ncb3vAGE9yhDQCDQbQlsKxPLdg/rHnCST3ZMSlQWbulLGgblfgzBTrLbtR6XzKVfWM8PP655547NslzJ7q1o4rCDq2YrMmfixtmmzHjzxq7fGBlLjI4FD9OXKywxg6vOQrFLD6cuDBJ7Ot4shkPnjOvSwrd8W1hMI8BQGakEV4LfB/LVpb8/e9/N0GuyeDngaJuuna2tNakBQM/T7Tvmgy2Pb7NiV+8bij0sr+ZjRC/+4zCHkXfVIss7tTjZyb+iwt8fvHfXOBxgcX+TLx2rfuGtTDmNcZFXrzNKsf+ySefNPYVXAwmHstaPNJagv+2FoyE58Fsi8kyUoUQQoh0sOyoaOVuZdGns06hNRLXS1w3M8jA9Qdt8jmHJ1tDpbuusTLx49eJydaIFCcZRLMCXgxu8fFM1ojZYm2U4ua+ePgzA26c2yezExdCCCFKFa0LksO/57kZlw5FjDEkwvUN7RUpkDFGYDmAcb1irYumsy6wyt9YML7ItRjjZemun6ZqAzeKM4bCNWE8tM/kOSRueM4UxobYvnQdvLiupBj9jW98I+UGeMZl2Oaf//znJkaZSvhjjJR9SHEwEa4hGSvjGjZTKKBNFpOySgzRXY7xoHhxkf/mY3R9mg6MN7F/GF+Oj+syXmetSS0Yl2NMT5vIxXRRxp8oeZhSzYkh/sb4wAMPGHs+7iZhIIF2P5xAaSVE+x5+UTCwgvK8YXIHBcUAZijx+cwO5ITClG8KgoS7kTkRMVWdnt8MfHC3EHdF0wowvm7adKD1IUU+fqdtEychTmzcIROffs4Jhue7evXqCe9Ba01OGom+3ha0KmDQh/VY6OnNDC1mOjI7i6IgdwdxYqbAxolzy5Yt5nV/+9vfzA4iWp9ycr7++uvNFxcX7HdmpMVDQYYCJPuWVgoUSawU/3jxKR3YZgpJXOSwzy0onPC9v/jFL5rrgTuxNmzYYDI6ad+YL3iN0FqLfuQUH5llymuGtqPM6mJwjOfJrEdmjdIaggtwXq/cMTYZ2YwHF1Tc8c8FKseGO4CYZUZxydrNxl1QvDbe/e53m0Abg3+0w5zq2rUWMVx0UkyeCn7GWKCZ1zAtWSfLukwX9gc/e8wE4EKdC+Qf/ehHpm8tqwmOPz8XvAb42U9WQNnKeojPDKBQyfcilmDMewGvLcsPnhsHmEVL8ZV9zWNSWOQYsz8nyx5NZi+xdetWk0XJQK0QQggxXTjvcl3C9RDXr+msU6xdxHQMoIURAzNc2zIwxnkvkXTXNQxeMKue6xLOkQxsff/73x+Xecg1Il/HrD+uWxis4VzMNU8yy/Vcw82A5513nrGF4pqUtvg8b87/DMBZ87OVOckAGte7090pL4QQQhSCmb4usOKEFKgoCtFNgE5UPE/GFJJBUYybjxg34d/9bB9dp/h3u+U4NZ11AcVGxjUYT+AmI8bk6DLEeES6/WS1gbE11ga0NnpZ8P3Ydr6OcR72JTeI81jW2mc6MDbE+A7jGcniLYlwozbPl6WV2IZENwnCTf08d76vZRGaDMbGGF/k9WnVYmZfcLP5T3/6U3PtMoYaD0XK+JhxPIzppHMO8ZmJjCsz0YDXPOFGe8boWO/aghvvGR9if6cLEx0Yb7Y+TxQbeU5sP/stHksMphApxHSQ8CdKHt5Q49PFOZEy6M+JhROlNdFQAKH1ICd4K6OKN1XesLnzhWIG68FRBKG4xB0+zKB605veNLYo4GTEFHXe2Jn6z8mfwgBvyomTy3TgDZ6CHI/D3UW0eOTihPZNbE+8RSIXbBTcEqFAwcVRqomAO0MY4OAihmIiFwOcwBjs4CKHogknHi72CP21KSLy/LnjhIscimoUjrgYY8bYS17yEtNGLmQsuGiz6iUSngfbzXp97PdMoLjFCZU715m5Fg/bTWGMEyJ/T1GWPtxc8OQTLsoofHK8OCHzmuFigB7mVlYe+41iJa9BCro8B15rk1lgZjMeF1xwgbm2mX1KG1der1y40prWWjix/3ndc1z4GWF76X/OnyeDr6d4SDE1HeGPcIwomlNkZyYAz2k68P2++93vmgAd+4SfEy744j97GzduNH+QcFwo1KcL38f63PHzT6GOC1r2kbWw5+eJf4jws8/x4zXP/v3lL39prrdMYeYlbWunu+NOCCGEsDLo3/72t5t5jPMVN6VNtU7hF5/PNSfXcNw0xLUC57lU82g66xruyKYdEzfIcC1GS+749SBh4ImBKG7W41zKeZgBHFpCMSjJ3dOprLxzBc+Zmf9sAzeVcf7nOoK1ga3d9Az08Tw/9alPmXU41+ZCCCFEqTPT1wXxcUIKQoxpvPnNbzYboK3MukS4DmA8hXElClXcGMTYC+MQzASc7rqAm/YZI+FrGE9kjIMCreV8kE4/ESYisL8Zz0yW/WaJtoz9MDZEMZCiLMc5nVqEk0GhkdcNY0PpimbcuM128Ivjkqz/eR0y45LfU0ExjfFHCmJ8Ll0a6N7GcWOcirHIxPrO8U5MyWKMHMt04fFZn5qfDV6TFFYZN2JMlZvfLRiLZKz4Zz/7WdrvzffiezOuSTGeYjWvF4rViba0jCVRIJV7lJguVbF0c3eFEEJUNBTwuCjlIiNZrSCRPpxaueDnHzHMihRCCCGEEEIIIYQodSwxmTX14uvRifzDEjx0paBATEcwIaaDChoIIYQY29nG3W5T2ZSKqeECmdYeF110kbpLCCGEEEIIIYQQZQE3MNMSNbHms8g/zNZlXO6ss85Sd4tpo4w/IYQQY7AQNS1Cfvvb347ZUYjMYF1O2ray9mFikWYhhBBCCCGEEEKIUoY1Bml3yrIztMAU+YellljnkBaitKoXYrpI+BNCCCGEEEIIIYQQQgghhBCiApDVpxBCCCGEEEIIIYQQQgghhBAVgIQ/IYQQQgghhBBCCCGEEEIIISoACX9CCCGEEEIIIYQQQgghhBBCVAAOzBCi0SjC4TBsNhuqqqqK3RwhhBBClDCxWMysHRwOh1k7iMNoTSWEEEIIralyg9ZVQgghhMhHrGrGCH8U/Z599tliN0MIIYQQZcSaNWvgcrmK3YySQmsqIYQQQmSK1lRaVwkhhBCicOuqGSP8WQooO8Vut09bWR0YGEB9fb2yB4uIxqF00FiUDhqL0kDjUP5jEYlEzIYhZfvld001E9D9oDzRuJUvGrvyRONWueOmNdXkaF2Vv2tPFA6NR2mh8SgtNB6lRazM549M1lUzRvizBpIBqlwIf+xcvk85XiCVgsahdNBYlA4ai9JA41A5Y6F5Pr9rqpmA7gflicatfNHYlScat8ofN62pJu8Xravyd+2J/KPxKC00HqWFxqO0iFXI/JFO21W0RgghhBBCCCGEEEIIIYQQQogKQMKfEEIIIYQQQgghhBBCCCGEEBVASQh/wWAQr33ta/Hvf/875XM2bdqECy64AMcddxze+MY3YsOGDQVtoxBCCCGEEEIIIYQQQgghhBClTNGFv0AggI9+9KPYtm1byuf4fD5ceumlWLduHe644w6sXbsW73vf+8zjQgghhBBCCCGEEEIIIYQQQogiC3/PP/88LrzwQuzevXvS5919991wu934xCc+geXLl+OKK66A1+vFPffcU7C2CiGEEEIIIYQQQgghhBBCCFHKFFX4e/TRR3HKKafg17/+9aTPe/rpp3HiiSeiqqrK/MzvJ5xwAtavX1+glgohhBBCCCGEEEIIIYQQQghR2jiKefC3vOUtaT2vq6sLK1asGPdYS0vLpPagQgghhBBCCCGEEEIIIYQQQswkiir8pcvIyAhcLte4x/hzMBjM+L1isZj5mg7We0z3fcT00DiUDhqL0kFjURpoHMp/LDTHCyGEEEIIIYQQQohypCyEP9b3SxT5+HN1dXXG7zUwMACbbXoOpwwG+nw+82/LflQUHo1D6aCxKB00FqWBxqH8xyIajeaxVUIIIYQQQgghhBBCzGDhr62tDd3d3eMe48+zZ8/O+L3q6+tht9un1R4rC6ChoUHCXxHROJQOGovSQWNRGmgcyn8sIpFIHlslhBBCCCGEEEIIIcQMFv6OO+443HjjjSZ4x6Advz/55JO47LLLMn4vvj4XWXrW+yjjr7hoHEoHjUXpoLEoDTQO5T0Wmt+FEEIIIYQQQgghRDkyPc/LPNLV1QW/32/+fc455xiLzi996Ut4/vnnzXfW/XvVq15V7GYKIYQQQgghckw0GsOegz5s7hgw3/mzEEIIUQxYaubqq6/GSSedhNNOOw3f+MY3xlwlNm3ahAsuuMBsWH/jG9+IDRs2aJCEEEIIUXRKVvg744wzcPfdd5t/19bW4vrrr8cTTzyB888/H08//TRuuOEGeDyeYjdTCCGEEEIIkUOe7xzED/62Hd+8fyu+85dt5jt/5uNCCCFEofniF7+IRx55BD/60Y9w3XXX4dZbb8Wvf/1rU0f60ksvxbp163DHHXdg7dq1eN/73jdWX1oIIYQQAjPd6nPLli2T/nzsscfizjvvLHCrhBBCiNKBGS/7+kYwHAzD63JgfmMNbLbp21cLIUSpQHHvxw/vxMHhIOY2VMPjqoEvGMaG/f3Y3z+Cd52+BCtm1xW7mUIIIWYIfX19uP322/HjH//YxKXIJZdcYjakOxwOuN1ufOITnzA28VdccQUeeugh3HPPPWbTuhBCCCEEZrrwJ4QQQojJg+H3bjiA7V1D8IcjqHbYsXxWLV55TNvMC4IPDgJ1M+ychZghmxt4n6Pot3J27VitzbpqJ2rdDmzrHMJ9Gw9gWWutNj0IIYQoCHSeogvVySefPPYYs/zIZz/7WZx44olj8xW/n3DCCVi/fr2EPyGEEEIUlZK1+hRCCCHE+AwYZrw0epwm6M3v/JmPV7r93YRaX/fcC9x0U7GbJYTIMXt6fXhmbx/cDhsG/eGx+klWMJUZgM93DpnMZyGEEKIQ7NmzB/Pnz8dvf/tbnHPOOTjrrLPw/e9/H9FoFF1dXZg9e/a457e0tKCjo0ODI4QQQoiioow/IYQQooSZ6RkwyTMdj8dbHvo+mp56Cli7tthNFELk6LP+83/twrP7+1HjtMNpt6HJ48KK2bVo9rrMc2pcdhwY8Bu7YyGEEKIQsF7frl278Ktf/Qpf+cpXjNj3uc99DjU1NRgZGYHLNTpHWfDnYDCY8XG42SV+w4tIr7/UZ6WBxqM8x4P3s4GBgby1o76+HrNmzcJMR5+P0iJW5vNHJu2W8CeEEEKUMMxsoejFTBdL9EuVAbOw2YNKwsp0HOgbwqzW+nG1vr754rfjXc46LC12I4UQOfus7+31GdHP67bDVmVD16AfQ4Ewjl/YaMS/kWAEbofd1DgVQgghCgHr+A0NDeG6664zmX9k//79uOWWW7B48eIJIh9/rq6uzvg4DL7bbDLlyiTwSVGWJP6NJAqPxqP8xqO7uxvv+8CH0TuYPyeNproaXP+9b6O1tRUzGX0+SotYmc8fdBxIF/3VLIQQQpQwzGxhphtFr2RUagaMleno3LYVV33/k3jsPy/Fcy9/w7hMxz91AZdFYxWZ6SjETMxqPnZ+A0LhGDoH/Wj22o3Yx8e5+aGxphHt/X6smd+A+Y3J74dCCCFErmG2itvtHhP9yNKlS9He3m7q/jF4Hg9/TrT/TDczxm6356TNMwEr46GhoaEsA7eVhsaj/MaD96oBXxBtL74Q3ua2nLdh+OABdD9y+1g7ZjL6fJQWsTKfPyKRSNrPlfAnhBBClDBel8PYWzLTjaJXIokZMAyiM/uPQiAfY4A8E2Fsuq/PFWxD7e/vwHtuuBruER/O+s6V6Fp+FLqXHVXxmY5CzNSsZmY6LJ/txWAgZAS/2moHPG6H2dzwzL5+LGjy4BVHt0nsF0IIUTCOO+44BAIBvPDCC0bwIzt27DBCIH934403miAi16f8/uSTT+Kyyy7L+Dh8fTkGIIuJ1Wfqt9JA41Fe42EerwJqm9tQP3tB7o9PcZGH0Gc0rfEQhaWqjMcjkzZL+BNCCCFKGApvy2fVGntLZrrFT/IMLsRnwCSvh1eLVx7ThhWz66Y81nRfnzOCQXg/+TFc/H8/GHuob94ihN3VFZ/pKMRMz2pu9rqNtef2zmEc9AURikTgD0VNHdO3nrqosPciIYQQM55ly5bhJS95CS6//HJcddVVpibWDTfcgPe///0455xzjAXol770JVx00UWmDiDr/r3qVa+a8f0mhBBCiOIi4U8IIYQoYZhtR+Ftf/+IsbdkVgxFL2b6UfSjFR4zYHZ0D5kaWcyS4XPi6+Hxte86fcmkAXOrxla2r89Z1uC+fcCFF6L5kUfGHtp09uvxlw9djXD1YXs/1foSojLwJslqpvjXtMSFQX8Yvb4gRkIRcw9a1OItWLtG72N+tI9UodbtLFr2sxBCiOLz9a9/HV/4whfw5je/GTU1NXjrW9+Kt7/97WZD3vXXX48rr7wSt956K4488kgjCno8cqMQQgghRHGR8CeEEEKUOBTcGPS2svGY6UZ7T2b6UfRjJswP/rbdiHYrZ9eOZQXG18O7b+MB87xkgev4GlvZvD5nWYMPPABcdBHQ1WV+jDid+NXbPoYD//kOVNlsKTMdhRCVl9XM73XVDnQM+HHcgkZj81koeB+7Z0MHNu/rRbTKjmpnkbKfhRBClAR1dXW49tprk/7u2GOPxZ133lnwNgkhhBBCTIaEPyGEEKIMYLB52Utqk2bS7TnoG6uRlej3nU49vPgaW9m8ftpZg9EocM01wGc+M/pvsmgR9t9wMzb5WnCwazhlpqMycISYGVnNhfqsx9/HmmscaKrzwBeMZJX9LIQQQgghhBBCFAMJf0IIIUSZwMB3vPDGTD2KfgxIsxYWA+bJmKoeXmKNrUxfP+2swd5e4LvfPSz6nXMO8POfY2FLC94Vl0GYmOmo4LsQMyOruVCf9fH3MS8CgSDstqqssp+FEEIIIYQQQohiIeFPCCGEKEPiLTUP+gLY3jmMwZEQVs+rN/Wx4pmqHl6yGluZvH7aWYMtLcCttwJnnQVcccVo5t8ha8/JMh2FEJVDKXzWc5X9LIQQQgghhBBCFBMJf0IIIUSZkWipya/BkTD29o0gEI5g7aKmMfEvnXp4qWpspfv6rLIGAwHAHSdQnnEG8PzzwMKFU2Y6CiEqk2J/1nOR/SyEEEIIIYQQQhSb0e30QgghhCgLEi01maHnsNuwel4DZtW60TUUxKb2AYQiUQz6Q8aabqoaWVaNLT6Pz+frwtH0X882DYyEEAhFcWBgxIiFKbMGo2Hgve8FzjvvsLWnRRLRTwghCoU3Lvs5GelkPwshhBBCCCGEEMVGf7UKIYQQZUQqKzqKc8z027S/H50DATzXPoAmjyvtGlnZ1tiyLEf5nfUGn2sPY3GLxzyfbYrPGjy9qh8LXnsJ8NRToy/+8pdHbT2FEKIEGJ/97B33u3Szn4UQQgghhBBCiGIj4U8IIYQoIyazoqPQdsqyZiP6XXjSQhwzryGjGlmZ1thKtBxdt6QJT+7uxY7uYfPYCYubUOO0m2D5i577J978/c+iqr9v9MU1NcDixdPqCzGeQCCAq6++Gvfddx+qq6txySWXmK/J2Lt3L84991z88Ic/xCmnnKIuFTMaK/t5f/8ItnUOo7m6Cg6XCyPBsLmPTZX9LIQQQgghhBBClAIS/oQQQogywhtnRUebz0T8oSiaPG4j+mVTKyvdGluJlqPMPmR7TlrSjOcPDGHXQR+e3NWLo9u8eM89N+HEX/zg8ItXrgRuvx1Ysybj9onUXHvttdiwYQNuvvlm7N+/H5/85Ccxb948nHPOOSlfc9VVV8Hn86lbhUjIfr5nQwc27+tFb2DY3HPTzZ4WQgghhBBCCCGKjYQ/IYQQomyt6Bzj7D4LaUWX2nLUjZOWurCg2YNQezuu/P7n0PDIQ4dfeP75wE03AQ0NeW3fTIPi3W233YYbb7wRRx99tPnatm0bfvGLX6QU/n7/+99jeHi44G0VotShuPf+M73YvKcTNncNat3OjLKnhRBCCCGEEEKIYmIr6tGFEEIIkZUVHS3ntnUOYdAfQjgaNd/5c6Gs6A5bjk7cQ0Qh8Pi9m3DlVRcfFv3sduDrXwd+8xuJfnlg8+bNCIfDWLt27dhjJ554Ip5++mlEo9EJz+/t7cXXvvY1fP7zn89Hc4Qoe3gPnd9YjaPm1JssaIl+QgghhBBCCCHKBWX8CSGEEGVqRUerTWbdHRjww11gKzrvFJajR991K5p6O0d/mDMH+PWvgf/4j7y3a6bS1dWFpqYmuFyuscdaW1tN3b++vj40NzePe/5Xv/pVnHfeeVhJ21UhRFlBq+V0a7EKIYQQQgghhJh5SPgTQgghyhCKe8teUlu04O9UlqM/vuh/8bntG9G8aC6qKPpR/BN5Y2RkZJzoR6yfg8HguMcfeeQRPPHEE/jjH/84rWNynPkl0usn9VV5Uarj9nznEO7d2GE2fQRCUbidNnMvfuXRc7Bidm2xm1cSlOrYicnRuFXuuOmzKIQQQghReCT8CSGEEGUKRT5a0BXTcnR//4ixGF3gscHlrcFIMGLqDDa3NGDg93ehZdVSwOFQhkqecbvdEwQ+6+fq6uqxx/x+Pz73uc/hyiuvHPd4NgwMDMBmk2v8VDDgyRqMJF4gF6VNKY7bjm4ffvn4fvSNhNBW50ZLtQMjoQjW7+rGzs5+vGXdPCxrLc6cUEqU4tiJqdG4Ve64JbMcF0IIIYQQ+UXCnxBCCCGmZTm6/bs34eQffBXfvOKHGJq3eMxydOkhy9HnOwfHbElZF5AWoSZD5ZjC2JLOBNra2kzdPtb5czgcY/afFPfq6+vHnvfMM89gz549+NCHPjTu9e9973vxhje8IaOaf3xfO2s3ikmxMh0aGhokQpQRpTZutPd85MkuDIersHp+01ibvABa6j3Y1jmMf+7x4bilc2a87WepjZ1ID41b5Y5bJBIpcKuEEEIIIYSEPyGEEEJkRzCIFV/+LFZ8+9vmx0/f9Dl03ftXzJ/TNBZ4puj344d34uBwEHMbquFx1Zi6gLQIZbYghUOJf9Nn1apVRvBbv3491q1bZx6jneeaNWvGZeUde+yxuO+++8a99hWveAW++MUv4vTTT8/omAzwKaieWV+pv8qLUho33i93dA2b+2hV1fhMW7aPj2/vHML+fn/RMsFLiVIaO5E+GrfKHDd9DoUQQgghCo+EPyGEEEJkzt69wIUXAv/859hD1WuPw8LGauCQ6McMFWb6UfRbObt2LPBTV+00dQFpEXrfxgNY1lo74zNUpktNTY3J2Lvqqqvw5S9/GZ2dnbjpppvwla98ZSz7r66uzmQALl68OGnGYEtLy7TbIYTID6zlyoxpbp5IRo3LjgMDfvM8IYQQQgghhBAzGxVmEUIIIURm/OUvwAknHBb9XC7ghz8Ebr4Z8BzONNnXN2LsPUczVKqSZqg83zlkniemz+WXX46jjz4aF198Ma6++mp88IMfNNl85IwzzsDdd9+tbhaiTPG6HMYmmRnTyWB9VbfDbp4nhBBCCCGEEGJmo78MhRBCCJEe0ShwzTXAZz4z+m/C7LHf/AY4ZC8ZjzJUCp/1d80115ivRLZs2ZLydZP9TghRGsxvrDG1UWmTzIzp+M0UrLHV3u839VX5PCGEEEIIIYQQMxsJf0IIIYSYmt5e4B3vAP74x8OPnXMO8POfAyksIr1xGSq090xEGSpCCJEerJv6ymPaTK0/2iQzY5r2nryPUvRr9rrwiqPbZJsshBBCCCGEEEJWn0IIIUS2sIbdnoM+bO4YMN/5c8Xy738fFv2YaXL11cBdd6UU/eIzVBiUZkZKPFaGyorZtcpQEUKINFgxuw7vOn0JjpnXgD5fCDu7h813Zvrxcf5eCCGEEEIIIYRQxp8QQgiRBc93DuLeDQdMDTt/OGIy2yhyMSOD3ysOZvd9+tPA9dcDv/gF8MpXTitDZX+fH26nDSvaak2NP4qEfL4QQojUUNxb9pLR+ybtlL0uh+6fQgghhBBCCCHGIeFPCCGEyEL0+/HDO3FwOGjELI+rxthZsvYSRa53nrYEs9xl3q2BAOByjWb3WXz+88B//zcwb17GGSqWSHpgwI9AOIpAKIpw1IbfPrUP9zg6xkRTZawIIcTkcJPEwmaPukkIIYQQQgghRFJsyR8WQgghRDJo50kRi6Lfytm1pnad3VZlvvNnPn7fpgOIJlhblhU7dgCnngr84AfjH7fbMxL9LCjmvf8ly/E/Lz8Crz9+PrxuB7xuOxY1e7CstRaNHqcRTSmmUlQVQpQ3M8oGWQghhBBCCCGEKDGU8SeEEEJkAO3VmLnGTL+q+Gw4U/quyjxO8aq9vxZNjWXYtX/4A/COdwB9fcBHPgKsWwecfHJOMlRo5/n79fsRDEdxRFvdWP9RNK11O4wd6H0bDxgxULafQlSeDbIyeoUQQgghhBBCiPyjjD8hhBAiA1hTicFsjyv53hnWsKOVpS8YKa9+jUSAK64AXve6UdGPLF0KeDwFFk2HzPOEEOVrg8wMXmby5iqjVxmE6hshhBBCCCGEEOmjjD8hhBAiA7wuh8lgYU0/ZqolMhKMwO2wweOyl0+/dnYCb34z8MADhx974xuBm24C6uvzIJrWpBRNWQOQzxNClLcNcq4yess1g5D9wU0MvJ95XQ6T8ZzrTOZy7RshhBBCCCGEEPlFwp8QQgiRAQzeMrDKDBYGs+Mz12KxGNr7/ThmfgPmNriLGhBOm0ceAS68ENi373Adv699bdTmMyErb7p4E0RT9tegP4xgJAqXnSYEMbgddvM8IUR5kUlG78JmT0YZhBQT+XpuGuD9g/ff/f0jeNfpS0pS4CqEIFeufSOEEEIIIYQQIv8osiaEECJnpCNolZTolUW7+BiDtwysMoOFAVdmqjHTj6Jfs9eFV6xug60qUtoZGrEY8N3vAv/7v0D4UIbd3LnAr38NvPjFeRdNWedve9cwen1BhCNROGxViAJ48YpW8zwhRHmR64zefGUQ5ptCCHLl2jdCCCGEEEIIIQqDhD8hhBA5IR1Bq2REryzaHg8fY/DWeg2D2cxUWzO/Aa84us28tr+/v7QzNIaGgG9847Do95KXALfcAsyZk7dDWqLpcx0DeHBrF2xVVab+l8tRhQFfCJEYcGAwgB3dQ8pUEaLM8KZlg5x+Rm8+MgjzTaEEuXLsGyGEEEIIIYQQhUPCnxBCiGmTjqBFSkb0yrDtqcS/ZS+pTZolSAvLUs/QiHpr0XnTLzD7NWdj6NL/Qu3Xvgqba2KwPtfw/GbXuVHjtBsnUfa13WbDvCYPlrV60DMcUqaKEBVqg8zNEelm9JZjTdBCCXLl2DdCCCGEEEIIIQqHhD8hhBDTIh1Bi79n4LcURK94S0+KT/ds6Mi6XXws3eBtoQLCk1qWBgKA2x2X4ehFzTW/wUjbfCz/x65JMy9zZdHK9+jzhXD6ilbzs1Xfr656VChwOezKVBGiDEnLBvnotrTvG95pZBAWy1K6UIKcN8fZlUIIIYQQQgghKgv9NSiEEGJapCNoPbOvD4gB85tqimpLlmjpGYnEsKfXh6Pm1OW9XbkICE8VzE5pWXpEE1ZcezXw7LN4/hd34Mf/3ns4w/HIFXBPkeGYS4tWqx/muWtgTxKIV6aKEOXLVDbImdwvss0gLKaltLdAglyusyuFEEIIIYQQQlQWEv6EEELkXdDyBSOIIQZPimBnIcSeZJaee3t96BkOYsuBQXjdDjR73Xlrl3eaAeH4YPZIKIxoFJjbUIOzV8/GactbTV28ZJalezdshev9lwNbnzHv0/+/n8LB11yadoZjrusSTrcfhBClzWQ2yPnOICx2HdVCCXK5zq4UQgghhBBCCFFZKKomhBBiWnjTEHI8LrvJ+CuW2JPKjrTJ40JTjRPD/jC2dw2bn+MDtblsV3xA2OuyYygQGbO5rHXbJw0Ixweza5w29A6H0DUUwPq9fXhwaydecuRssNWJ53f0psfwqq98FJ7+XvNzzOXC9trZaduN5qMuoTJVhKh8MrFBzlUGYSnUUS2kIJfL7EohhBBCCCGEEJWFhD8hhBDTIh0h59j5jebfG9sHimJLlsqOlHXlmrxu7O8bQc9QAIP+MOprnHlplxUQfq5jAPduOoBINDb2O1peHtFWlzQgHB/MbvG68PTefowcElCbPE50Dwbwt62diMWAExY1jp5fNIqTf3U9Trv526jiLygKts7FCz/4Cf4WaMGyNDMv81GXUJkqQoh8ZBAWqo5qKQlyucquFEIIIYQQQghRWUj4E0IIMS3SEXL4e9I+4C+KLVkqO1IGg1fMrsWAP2SEv15fEB53Adp1SPOrMgaoVWM/J8MKZs+pd2Nzx5AR/dguK7Dd6HWhbziIoWAE+/v8WO4I4VVf+ySW/ftvY++x46QX44eXXIlXr1mD6vX70868zEVdwmQoU0UIkesMwnzdrzKttVpoQS5X2ZVCCCGEEEIIISoHCX9CCCGmTbpCTrFsybyT2JFSRDuyrRabY8BIKIKd3cN5aZeVucdMv1ce3TbB6vP5ruGkNnRWMLs26jDCZG21c1w2i9Nuo4KJGocNjZufxVtu+QKaDuw1v4tVVeGfb/8g/nz+exD2R7C01ZtR/anJ+m26VqiZBsbTCbYLIWYu3gLUD42vtcr7Mo/Heyo3tyTOFRLkhBBCCCGEEEIUCwl/QgghckI6Qk7iczxOu0l2o+C256Avb2LOVHakI6EoXrNmDs49bh58oUhehKV4GzqbzYb6Gtu436eyoWNbGFxmVmI4EoWzevzUHYpEUe2wodrjxFm/u3tM9Bupb8Tdn7oOu048He2dQ0bQW9jkyaj+VL7r8aUbGM8k2C6EmJnk+34VX2uV905mFlJk5PF4T+XGllK4H2mThBBCCCGEEEIICX9CCCFyRjpCjvUcBlH/8HR7QcSc9OxI52BRixf5IlsbOiuY/ejOHjhsVQhFYnDZgWA4inA0hkF/CPMbPWhrcOPGc9+PEzu2wu1y4A+f+RY6G9uM6Bcv6GVis1kK9fjKJdguhCgu+bxfxddaXTm7dkxUZGYhRUYeL1nGdqHRJgkhhBBCCCGEEETCnxBCiIJTDDGn2HXlvFna0FnB7H19PhO87hzwmyKBzFKM+f2AuxqNNSF0D1XhjDUL8Nev/Qib/Xb4quxw+0JJzy8Tm81i9lu5BNuFEKVBvu5X8Rnb8ZmEhD+nytiulHlVWYRCCCGEEEIIUV5I+BNCCFFQiinmZFpXrlRs6NjuS85YCn8ogvs3dSIYieCV2x/FZ+7+Pj516bXY6FwIXyiKd562BC89cnVa55dJ/ali9Vs5BNuFEKVFPu5X2WZsV8K8qixCIYQQQgghhCg/JPwJIYQo6I7/Yos5mQhepWRDx4Atv1bNGsAFv/8/XHD/z83jV/7salz56R8h4qnGlo5BvPTI2RXTb6UebBdClCa5vl95s8zYLhT5mldltSyEEEIIIYQQ5YmEPyGEqDhxzo/2kSrUup05y8rK5Y7/mSzmTMeGjgHbzud345obPo2lzz469vjQ8iNx4qJG9NorL/vNW+LBdiHEzGA6GduFIB/zqqyWhRBCCCGEEKJ8UaRMCCEqBIpz92zowOZ9vYhW2VHtzF6cy2fdIO8MF3OytaGL/uMf+Ojlb0Njb5f5OWJ34O/v/TieOu9ipnSgJhqtOMG01IPtQoiZwXQztvONNw/zarGz84UQQgghhBBCZE9lRlWFEGKGES/ONdc40FTngS8YyVqcy+eOf4k5k9vQTbBUbaiG7XvfxaKPfQxV4VFRb6h5Fu76zLew/5h1ORNMc2XlOpOC7UKImcN0MrbzTT7m1ZmcnS+EEEIIIYQQ5Y6EPyGEKHPGi3NeBAJB2G1V0xLn8rnjX2JO+paqDSE/Lrn5y1j5t7th9f6WVSfir1d+GyPNsyYEdo+Z14BoLIbNHQMZiXe5tHKdScF2IcTMItuM7XyTj3nVO8Oz84UQQgghhBCinNFfakIIUebk044rXzv+JeakZ6na+tRGLH/wnrHn9H7gf/DzM9+Obn8Uc/2hcYFdir09QwF8+8/bMhLvcm3lOpOC7UKImcdkGdvFJNfzqrLzhRBCCCGEEKJ8kfAnhBBlTj7tuLx53PEvMedwxubeXh9+/s/d5vux8xtgs9nM73pPPBUPv/PDOPHXN+Jvl38N53z6fbi4e2hCYJeCXedgAO0D/ozEu3xYuc60YLsQQpSKhXIu51Vl5wshhBBCCCFE+SLhTwghyhzvOHHOkVNxLt87/nMp5pRijbp0LTaf2deHDXv7UWuLIhiKYkVbnbFmI4//56V4/MWvwR5PC9b0jUwI7Hqcdvx+/X4zFpmKd/nMFhVCiJlMsSyUczmvKjtfCCGEEEIIIcoTCX9CiBlHOQpE6Ytz3nG/m644Vy47/ku5Rl06FpsU7xb6unHVz7+Ah44+A3945dtw/MLGUfHPZkN43nwEuofHsjbZ3xxPS7h7dl8/5jVmLt7lM1tUCCFmKuVgoZwuys4XQgghhBBCiPJDwp8QYkZRjgJRZuLcMJqrq+BwuTASDOdEnCv1Hf/lGGBNtNhs/dffceU3P4bG4X4cses5bFl4FLZXn4omT5MR7xKzNuOv464hP7Z3DaN/JISVcZmC6Yh3+bRyFUKImUg5WSini6yWhRBCCCGEEKK8UCRPCDFjKEeBKFNx7p4NHdi8rxe9gWEj6ORKnCvVHf/lGmAds9isc+GUW36I027+NqpiMfO77uY2xBrqzDkN+kftW+OzNhOvY57n/j6/ec5wMHI4UzAN8S7fVq5CCDHTsv9loSyEEEIIIYQQothI+BNCzAjKVSDKVJx7/5lebN7TCZu7BrVuZ07FuVLc8Z9JgNWyxiwF4ZJtsPUdxFtv+jyWP/rg2OOPrT4VX77ockSamhAKRNDrC6Jj4HDWJkm8jinQtdVV48DAiBGy2R9WpuBU4l25WLkKIUS5ZP/LQlkIIYQQQgghRLGR8CeEmBHMlB34o7XfqtHQUD/hPCuRVAFWCl7MlhsJjYpnm9r78fv1+0vG4rVx07O4/LNvR0vX/tH2VlXhkXd8CPe+7l2o6R7BgUE//KGIEeCOW9hoxDeK0o/vOognd/ei2XvYlpPjvHy2F4OBEAZGQsbWk+fstNvSEu9SWbkeM6/eHDscjWHPQV9JZHhWap1OIUTlZP97ZaEshBAVyf33348PfOAD4x575Stfie985zvYtGkTrrzySmzduhUrVqzA1VdfjWOOOaZobRVCCCGEkPAnhJgRaAd+ZYom3iQB1oPDAWzvHMZBXxAjoTACoSi+df82tNa6sbKttrgWr7Tz/NGP0PaBD6AqEDAP+Rqa8KdPXYfdJ56OJgAnet14Zl8/lrZ68a7Tl2Jhkwc7uofwg79tx5O7D2Lj/gE01Dixt9ePFbNrjbDX7HUbi89tB4awp9eHnT3DmFVbnbbVa6KVa9dgAE/v6cMdT+4rCaG00ut0CiFKL/s/270zslCeWesQIcTM4fnnn8dLX/pSfOELXxh7zO12w+fz4dJLL8W5556Lr371q7jlllvwvve9zwiFHk/5bigVQgghRHkj4U8IMSPwagd+RYomiQFWZrqt39NnMuW8bjtCYRtCVVH0DAdgt1UhFImZ77m2eE0MYs5rqE7+RL8f+PrXx0S/3SvX4If//RVUL1uCmmh0zGJzQZMHbzt1MRa3eMdlp7R43Ub04zl0DfoxFAiP1fSj+LdqbhUaPE68+eRFpl8yCaZaVq48HmtFlmItzEqu0ymEyL+olEn2/4Km7GqbykJ5Zq1DhBAzh+3bt+OII47ArFmzxj3+m9/8xgiAn/jEJ8xccsUVV+Chhx7CPffcg/PPP79o7RVCCCHEzKaowl8gEDAWCPfddx+qq6txySWXmK9kcLfUN77xDXR0dOCoo47CZz7zGRx99NEFb7MQojzRDvzKFE3iA6xbDwwZMcwXCKO22onhQBgOuw1u2DGr2oHhQGRc/btcWbwmC2Ium+XFaYu8WNvQMP7JNTXA7bcDJ58MXHIJgp+8CvO39o6z2IzP0kvMTiF7e93oHPSjyePEQV8IG/f346g5dXDZbaYe4HELGvEfK2dlJWSWci3MUm6bEKI8RKVCZf+nslBONwu7UqnEdYgQYmYJf6eddtqEx59++mmceOKJY2tTfj/hhBOwfv16CX9CCCGEmJnC37XXXosNGzbg5ptvxv79+/HJT34S8+bNwznnnDPuedu2bcP//u//4vOf/7xZQP3kJz8Zs06oYRBVCCGmYKbvwK9k0cQKsN762B4jgjEbLhCOYnZ9tRnXzR0DcDns5px5/qz9V1/jzEmQN1UQk3acOzv7UVdXh5VNbsDlGntNdNVqtD/yBLZVNwPDEbzm2DmmbaxH6E0jO8Wq53dgIGDqAHYO+M050EV0Vp0bF6yry3oMS7kWZim3TQhRHqKSt4DZ/4kWyjPd0rKS1yFCiMqH9cNfeOEF/OMf/8D111+PSCRi4lYf+tCH0NXVZer6xdPS0mLiWJkeg18is/5Sn5UGGo/yGw/zu9H/m6+ct+HQf/Q51eej1IiV+fyRSbuLJvzRB/22227DjTfeaDL3+MWF0S9+8YsJwt/DDz9sFlJveMMbzM8f/ehHzfPosb5mzZoinYEQotyYyTvwK1004di94YT52No5iDn1Nahx2lFX7TAi3/M2G0KRKJx2m7HGDEaiOQnyTh7EtGPz7i4M/M/HEduxHlUPPoio04VHtnfjN0/sxYZ9/fAF9gK2KjTWuHDq0ma85dRFE/o+WXYKLT1Z/+/fOw6a33POd9qq0FLnhsflwAObO7G4xZPV9VzKtTBLuW1CiPIQlS598bJx9tDx8yH/gOJGIK4JKNDlAstCWRR/HaK6gkKI6cCN6iMjI3C5XPjWt76FvXv34otf/CL8fv/Y4/Hw52AwmNExBgYGYLPZNFBpwnmbcUWSOK+IwqPxKL/xGBwcNJsYIqEQwqFQztvA9+X78zj9/f2YyejzUVrEynz+iEYPxzRLVvjbvHkzwuEw1q5dO/YY7RF++MMfmhOIX/A0NjYake+JJ54wz7/jjjtQW1uLRYsWFan1QohyZabuwJ8Jokmd24lmD8Uv+1gmB8W/Zo/LWGN63Q44bDZjiZmLIO9kQUxvXw8++a2PYvnGx83Pff/1QXznDR/GvRtHa+fxcqMdaaObFqRh3P/cAXQOBfCRs1eOE+y8SbJT2O7uwSBqeW5el8n6O3FxE+YdOofpZE0kO16+smEypZTbJoQoD1GpfcCfdvZ/ue4ALVWKuQ5RXUEhxHSZP38+/v3vf6OhocHMK6tWrTJxq49//OM4+eSTJ4h8/JnlbDKhvr4edrtdg5Um1jxtjYkoLhqP8hsPuhPxnmN3OuFwTvz7errwffn+PA7bMZPR56O0iJX5/EFBPV2KFh2jHUJTU9O4nVGtra2m7l9fXx+am5vHHn/1q1+NBx54AG95y1vMTYOiIO0Vsrlx5CKVs9xTQisFjcPMGwvu1mawjllb3Kk/ryE7wY739QVN4wNPlfJ5TjUWXpcdboftkGgy8dY/EgzD5bCZ55XLOCYyr6Ha1NajzSYz7kbr+I1aYw6MBE39uwVNDPLaMOgPor0/YIK8L1/dZp6X6XkPBUJGdPO4+Ef94dfO2/gkXvOFD6P2YNfo+Toc+Ee0EX/f2oVhfxgOG+C0281rD0ZjmFPvhi8UxdYDg7hnQwfef6Z3rD+SndOgP4SDvoD5mXUL5zZWY14jg92jx5/b4Ma2zkHs6/NhQVNmWRPJjmdhCaXHzG8wzyv0ZybbtmV7f6qUe4IQM4FMRKWj5tTP2Oz/YuIt0uYN1RUUQuQKbkiPZ/ny5SZ+NWvWLHR3d4/7HX+ePXt2Ru9v1SAXmfeZ+q000HiU13iYx0f/b75yfvxD/9FnNL3xEIWlqozHI5M2F034S2WHQBJ3S/X29hqh8HOf+xyOO+443HLLLbj88stx5513Gu/0QtsnlHtKaKWgcZhZY7Gj24cHtvZgZ8+Iqd9GEWtJSw1edkQLlrXKRmuqsfBWxTC/zoHNBwawrMUzQTTZ3ePDqjl18FYF0d+fe5uHQo3jaYu8prbepn29aKtzG8vPaDiCOjfv+07UOm3Y1t5vjrui1YOXrmzGLHckK+uJaMAPWyyC3kGfETDpuXnS73+Ol/7kW7BHRjMW+hpb8ZuPX4u/thyB4Z5hU8ePBPn7WAwBLjQQw+xalwlIP/lCNzYvq8P8xuqU58TgqM8fgt9mg8dlw4J6FwKBw/OmLRrDkC+Aju4+1NlCOelDtvvAYMDYkr5ooQeDgwMoBtm0Ldv7Uyb2CUKI4uLNUFSabva/bCMzh/1bSJtVa5xUV1AIkQv+/ve/42Mf+xj+9re/oaZm9D713HPPGTGQzlUsYcN7Ge9t/P7kk0/isssuU+cLIYQQomgUTfhzu91J7RBIoiXC17/+dRxxxBF461vfan7+whe+gFe96lW4/fbbcemllxbcPqHcU0IrBY3DzBkL2nPd/kwPDvqCmNvoNVaOvmAE2w/60ftMD955eh1WzK4tarZZOYzF6090oPfhndgzEDRZYTUuh8n0ax8IoK2xFq87YTGaGtPrx2z61RrHnuEA6qpdqLVVIRKN4fmeQMbjmIq1DQ3GSoKWmszk6A2Ejch3xpFzcPZRs+Fx23M29nV19Thq/qDJQJvjCOGV37gCR/z93rHfP3fUCbjvim/iBUcdqv1h9PsHEYnFTGalzQQFgHAkiv6RMBo9LtjsdgRRBZu7Bg0N9SnPqS8QQ6zKZmr6rZ5bb7IW42FGYK3HjTmtjWho8OSsD9cumYVXrG6b9hhNh2zalu39KRP7BCFE+YlK2dbfk21kdrC/07VZzRU8ViXXNxZCFA6WnGEM6zOf+Qz++7//G3v27MG1116L97znPTjnnHNw3XXX4Utf+hIuuugi/OpXvzIb3RmzEkIIIYSYccJfW1ubyeRjnT+HY7QZzOqj6EdxLp6NGzfi7W9/+9jPzNg76qijTIHlTMlVGmc5p4RWEhqHyh8LCkqsV0bRb+Xs2rH3r6u2meAeg0f3bzpgAn5TBYsKGawrRjaAdcyObh/mxFyY3+gZd8yVbXV41xnx9maBnNibpdOv1jjuPuhDOBrFzh6fEb0cdhuaPE5jWZnuOE4Fz5Pvk+/+t9urcM4xcxB5dgMu+MT/YE77rrHf3fPai/GH896LE5fMQ9/WTvT5QoghBruNGX7836jlrMNehWA4hh5fEI3VTnidDtS6nRM+R/HnRGHvt0/tx+6Dw2jyUPRLDHAHDgW4x2d2lmIfFqpt2dyfNL8LUT4USlSSbeT04JqgkDar3OhT6fWNhRCFoba2Fj/60Y/w5S9/GW984xvh9XqNyEfhj2tGlqK58sorceutt+LII4/EDTfcAI9HGwqEEEIIMQOFPxZDpuC3fv16rFu3zjz2xBNPYM2aNROsOOmNvn379nGPvfDCC+a5QojKhsH9XOzWLmSwrhjZANYxn+8aNDaPtZ5OrJhVN+GY07U3y7Zfebyn9vSic9Bvsvxqq51wVjsQisTQNRgwgtiTu3vHjeN0xNNsMzkyhef29h0Po/mQ6Ofz1OJH770Kj645A7ZoBA9t7cSWA4PwB6PwOB0YCoaN8Om028bkOk55DE7XuZ04dkFqm7P4c2LWIPs9nwHuQvVhpbVNCFGZotJMso3M5+alXK9DJoPjUoy6gkKIymTlypX48Y9/nPR3xx57rClFI4QQQghRKhTtrxz6or/hDW/AVVddZXZNdXZ24qabbsJXvvKVsew/2nkxA/DCCy/Epz71KRxzzDHGYuG2224z2X7nnXdesZovhCgQDApNd7d2IYN1xcgGSDxmS7UNUZsj5THTEU3SCfpl0q+DgRB29QwjEIqivsZp6tsx7402jS6vCz1DQew56DPPy6d4mo9gZvN1X0XsqUcR6u3DE1+7Ac/3uuENR9BS40RjbQ06BwLYPjxk6tHxfBloDIWjRvAzZeSqRtu1qNmDVx4zJ632pApwHzOvHsctbEQ4GjP9WSpZekIIUQjyKSrlaiNSqVOIzUvZbt7IdA6npXeh6woKIYQQQgghRClQ1O2Nl19+uRH+Lr74YmOd8MEPfhCveMUrzO/OOOMMIwKef/75ePWrX43h4WFjn9DR0WGyBW+++Wa0tLQUs/lCiALgdU1/t3ahgnXFyAaYeEzA74/AW03LyNqsjplu0C+Tft3cPmgEMFZbGwyETY27GqcNzV7WGrTD7bRh0B/GkD+cN/E0Z8FM1qN1xdXVczhQdfvtsFV78PeHdqNnuB8rZnnhqhq1Mj1yTh329Y8gEI7B67bDXWNDvz9kLD7ZT16nHa21brz3P5Zl1I7EADczJ5/e04c7ntxXsExTIYSYKRnBudiIVOqUspVpNnN4MeoKCiGEEEIIIQRmuvDHrL9rrrnGfCWyZcuWcT9fcMEF5ksIMbPgLuzp7tYuVLCuGNkAE48Zm9YxMwn6pduvz3UMmPp9kVgM9iqYYB1bORyMIBjxo63OjUCI72M3X/kQT3MWzLz/fuCSS4Df/x5Yu/bw+8eqcetDu/CnDR3GtrR7KIA6lx1HzbOZfl/a4sUL3cMIhiJo8rpQW+0wgvWcBrexPj1laQtOX96KbAPcPL97NnSUZLBWCCEqAW8ONiKVMqVsZZrtHM5z4picecQsPL6zF12DfhwYiOa1rqAQQgghhBBClALl+ZepEGLGkIvd2t4CBeuyERinaz2ZS1Ez06BfOv3qstvw+AsHzXNaa10mq88fjpoaddUOG3yhiDl//o4Cli8Yybl4mpNgJj05v/Ql4MorjU0p3vhGFqYFmprGApK0MrXbgJZalxHzuoeCWL+nD8cvbMKaBQ0IRiLoHAxi2axaLGiqgcNWhY6BgLmG07X4zNv5CSGEyPtGpFKmVK1Ms53jdnT78MiTXdjRNWzWSW67DbPq3Fi3tBmr5tTLClsIIYQQQghR0Uj4E0KUPKnqmaW7W7tQwTpvhgJjLqwnMz1mLoN+6fQr69Z1DvhNQC4UjmFvzGeCeCOhqHkO6/wxUNfgceGERU3mfXKdnTntYObBg8Db3gb86U+HH1u1akJAcsWsWiP2UfRjLb8mjwMDgVEhc93iJhw1p55Gp0YM5fNzlXFQqsFaIYSoJCrdNjLbjUT5qJ073TmOP//y8f0YDleNyxDc08t2dmFZq7dsx0kIIYQQQggh0kHCnxCiLEisZ+bNILhUqGBdJgJjrqwnJx4TWYuamQb90unXExc34bfr98HrdmD5bC8GAyGT1Vdf4zT9E4lG0esLmV34HAOKYhTO9vX60Ohxoa56fD9mk505razIxx8H3vQmYNeu0Z/Zli98gUVq2QHYd9A3FpBk/zd7XOgc9MPldZl209KTYzwwEjJi52vWzMNrj5uLkVAkZwHSmVB3SgghKmEjUinjzWIjUc5q5+ZwjjMbcjZ2oG8khNXzm1BVZTOPKwteCCGEEEIIMZOQ8CeEKBusemalGqxLV2AkubJmnHhMN2zRGAb9IbT3BzISNb1ZBP2m6lf+m7Xn+J7NXjeOX9iI7Z3DOOgLIhKJIBoDWr0uvOXkReb9fr9+P/YcHMHB4QAaapym/XOMMOqA85A15rELMsvOTPe8PE479hz0jQrLTjvm3/Zz2D78ISAYHH1iaytwyy3A2WcnDUhyHC1xk2Nb46iCy+WAPxTB811DWNziNWPF77kk3fPj8/KdmSFEuaPPiMjnRqRSJlN3hJzVzp0Cb4ZrEytDkPWDlQUvhBBCCCGEmKlI+BNCzBgKEaxLR2CkuJRLa8b4Yz7fNYghXwC1HnfGoma2lqiT9SuD6PHvSfGvaclorb9AeLS+38lLWjC73j0WQDxqTi22HAB6h4Po6Pdj0/5+kzEIVJnMwAvWLchozNI5L/Y5Rccd3cOIDA/jrTdfg4UP/eHwm5x6KnDrrcDChePeOzEgaYmbHL/uQT8GggFTHvDoeQ2m3fnIBkl33EZCYfzgb9vzmpkhRDlTiOwlURlMZyNSqZKJO0KmdfemI6hnujbhMQKhKFqqk/+Zqyx4IYQQQgghxExAwp8QYkZRiGDdVAJjPqwZDx/Th47uPsxpbcT8Rk9GAlk6Qb+zV7UlPa9U/ZrqPRm3o8XngiYPXr66DfdvHB9ADEdj+PdQwNh+RmIxOMMxLGqphtflxAObO7G4xZN2IH6q87LbqtA5GBgTAJd2deDERw7X8+t79/vQ+P++A7hcaQUkKf6dtMSFrr4h7B4I4eh59fj4K46EwzFqN5Zr0hm3I+fU4eZHduU9M0OIcqVQ2UtClDLpuiNkUnePm3ymI6hnatfudTngdtpGLbWTvF82luFCCCGEEEIIUW7oLx4hhCiwwOjNwlIz3WNSSKuzhdDQ4JkQjJtu0I/i0f2bMg/epWMHGh9A5A7+7sEgal12zKlzwx+OIhSJ4dj5jaY2YCZWqFO14Zh5DegZCqB9wD8mOnYfuQYPvu9yvPj/vo6fvvsKBN70n7jM4YQto4BkGF3DQSxpqcWF6xbmTfRLp48p1nLccmEtK0Qlkmn2khAz3R0h3Q1Mz3UM4MEtXdMW1DOxa7c25Kzf1Y2W+vFroUxrHwshhBBCCCFEuSLhTwhRdGZaTaVsLTWLGfSjTaSVMTan3o3aqAMD/hAe3dljsgwvOWPplOJfqkDi5o6BcQFE2oCyBmBdjdME9lzOGHp9QYSisaysUCdrQzQWw3fvfQ7zal3jxuHp170V2190FtrrW9E3xbGSBSRdDhtWzanD605YXLAsoVR9nElmRqVZ1wmRDvqMCJGZO4I3jQ1MLrsNj79wMGeCerp27WZDztFzsLOzH9s6h6fMEBRCCCGEEEKISkTCnxCiqMzEmkqZ2lYVO+hHYZa14ZgZV+2044ndfRjyh1GFGJx2m2lzjdOOK16zetI2pwokehMCiMFIFOFoFE776BQVikThsNlMEHG69XkS27DtmW249IuXoWftKfjXOz98+IlVVRiaPRc10Whax5oYkLTDWxVEU2NtQUXwZH2cD2tZISoJfUYKw0zb5FPJ557OBqZFzR50DvintekkWb+lV/u4Fm9ZNw+P7B7Gjq7hSTMEhRBCCCGEEKISkfAnhCgaM7mmUia2VcWGQben9vRif98I9vf5jRDHjDaPyw6nw45AMGLq7r3kqNl48cpZ0w4gUuCj0GeOY7cZkXF2fTXqqh25rc/zj39g2ZsugP1AB/DcE+hYfTx2nnzmuKdkcqx40Y2Bz/7+UEmI4BRlI5EY9vb60ORxmX6MD8Kq3pGY6XjzZL8sZvYmn0o+96k2MDV5nKYW78b2fvOZ4pyYKP5Ntelkuv22rNWD45bOwf7+0WN4K0BwFUIIIYQQQoh0UQRDCFEUVFMpfduqYsMaPVs6BjEcCJvgXX21AzEAvmDE1N6bVedCz1AQf3nuAE5f3ppx+xMDiLQSbaxxor1/BA67zQhXbXXV6BkOwmmrQseAH8cuaMzeCjUWA771LeDjH4c9EjEP9TXNgt8zPjtvurartBGl2DYcjEw5tvkSwfm+92zowJ5en+m/phonmrxukw3BzNJSsJYVotiUuv1yuTOTN/lU8rmn2sA0r6HarBEe3NqFFzqH0d7nx+y66rF5x/pcMRvQH4piYCRk1oTx82Ou+m0qy9JiUGnZn0IIIYQQQojSRMKfEKIoqKZS6QalEgNUrNETCEeNkFXtso8FqGqcNoyEokZQYvYfg+PZ1olLDCAyo9BWVYVwNGaOy6yBYDhqvmbVuXHBurrsAmUDA8C73w385jdjD/nOOBP/75KrsMdZh7n+UE5sV2lf9rsn9mLfYNj03WSZCumI4Pdu6IDrOBt8oalFxGSB06Pm1GHLgUEM+8Mmc5P1GY9sqzXjVwrWskIUk3KwXy5XZvImn5lw7okbmLoGA/jTsx2mLu+8hhr0+0Lo6B9B56AfQ4Ewjl/YODY/7erxmQz0W/69G4+90Ds2P1Zyv1Vi9qcQQgghhBCiNJHwJ4QoCqqpVB4wmMdAXovXhd0HfagZ3axvYDDOsuKcU18Ne1XVtOrEJQYQn97Th1/+e7c5vstRZTIJWmpd8LgcxlqUNmIZBco2bgTe+EZgy5bDj3360/B8/vO4sMeXM9tVBvZ+8vBOHOgfwqLWetPeyTIVphLBKbDe9WwHntnXD7utKq1AYbLAqdftwPbOYfQMB0y9xs0x4DVr5uCVx8xRwFHMeMrJfrmcKMYmn1LJqJopG5ysDUzs979s6jSinzXvrGyrNePgC4TR7wvisRd64A9HjQjIdcWJi5tM7eD4+ZGfu0L0W6Gvk0rO/hRCCCGEEEKUHhL+hBBFwauaSmUBA2KBSBRHtNUa601fIGKy/ijyRWIxBMIRk5nHAB6Dd95p1sBKDCDObajB2oWNCEVjRmS06vxlvOP/l78E3vtewOcb/bmhAfjZz4Bzz82p7eqY4OYLYlmLBzWmvVWTZipMJoIzQLjlwBAODgdMht78Jk9agcJkAedmrxtNS1wY9IdNYHYkFMG5x83DohZvRucoRKVSLvbL5UShN/mUUkbVTNvglGreYZbfs3v7sbNn2MxbXD/UVjvMRpYBf9gIfStmefF817CZH19y1Ky891uhr5NKzmIUQgghhBBClCYS/oQQRUE1lUo/W4Hw+AyINdQ4saTVi909PoQjUYRiozvvKQLWOOzGkpP1e3JVA8sKIM5rrDaBsUQy2vEfCgHXXntY9Dv+eOD224Fly3Juuzou8InR+oHxMMD3xK6DeHxXE9YtbjbH9KYQwaPRKDbs68fBoVErVY4BA6XpBApTBZw5ZvU1TnjcduzsHjbWoUKI3N4HxGFS3d8saKdK4YfPK/eMqsS5m/VpC3XupbCWSC10jtp2cx7zhyKmhi8381AI3HPQh9Y6N+bW12BOg9vM6+uWNOW134pxncyU7E8hhBBCCCFE6SDhTwhRFFRTKXlQbkf3UMlkKyQKtMfMq0c4EsOgP2Sy+5iBx1pxTofNPC+XNbByminhdI7W9Fu3btTq83vfA2pyI1Cmbnc1QsHDohoz9miz2T0cwMBICNc/uAOPLRqtaUThzupjCnoMAjIguXF/P7Z3DpqAaSjqMDX6eA2w3thUgUKvMmpnJIFAAFdffTXuu+8+VFdX45JLLjFfyfjb3/6Gb37zm9i9ezcWLFiAj3zkIzjrrLMK3mZR2RRqk0+xM6qSZZAtm+U1IhfPMZ/nnm578r2W8CaZd3ienKco+HGtEInGTEZ8LFYFmw2IAmZNQeeAfn8QLV636at8XTPFuk5mWvanEEIIIYQQovhI+BNCFI2ZXFMpWVCOAcLOoYAJjJVK/Zd4gbZnOGgsP/f3+dE1FED/SAA1TgdevKIVbz5lUU7b5p2ucBUMAq64goQrVgDPPAMsWpTXjIjD7Y7AGSf6rd/TZ9rscthM5l6z1zluXK0+ZtCRNf1o79k7HDRZEV6XHa21LlPrcCgQMbZpFP8mCxQqo3Zmcu2112LDhg24+eabsX//fnzyk5/EvHnzcM4554x73ubNm/GBD3wAn/jEJ3DmmWfiH//4Bz784Q/jN7/5DY466qiitV9UHoXa5FPMjKpUGWQb9w+YLG1+5fPc021PvtcSyeYdy1raYatCx0AQ0RhgB0zdXsKNLYP+CFq8VaZeMGKjmfG8ZjhWT+/tQ5PHhfpqZrwDHQOBafVbsa4TrzbjCCGEEEIIIQqMhD8hRFGZKTWV4gWm7sEA7n62Hb2+0FhQbjgQwj+2d5uA4JlHtI6JXaVQ/yVRoGXQrcHjNG0/a1UbTl/emvM2ZSJcjRPvmH34/etgu/NO4JFHAE9c4C5B9MtHRkR8uxfWOxCLwWT6cVybPE4z5rPrq03tQmKN62VnLjd9fM+zHbh7Q4cRCz1Ouzn3lloXGmpc5rwZyGV7mzxNk4qfyqidefh8Ptx222248cYbcfTRR5uvbdu24Re/+MUE4e+Pf/wjTj31VLzjHe8wPy9evBgPPPAA/vSnP0n4E2W5yadYGVXpZJBxrmz2uLCjezjvG5yKmfmYbN4ZCYUxEgybWn6EIiibxHbx6A4bEIzE0OcLmn6JoYran6HaYUPXYNC8F5/LTTOnLmvBW6ax0ahY14k24wghhBBCCCEKjYQ/IUTRqfSaSvEC00gogl09w2aX+8lLmuOy2apgY1CsCtjR7UOz1z0WsCuF+i+FFmj5vi9f3YatBwbx5O5eI5TNqnMbu7D4TIl4a1R7bw8uuf5K2NY/PPom738/8JOfsAMLlhExFvjsG8GOniE01caMvScz/Sj61bhGLcyssY0fVx7vdcfb8Oz+fhzZVmvE1S0dgybTj6IfX1Nb7TBtpl3ogcHApHZnMzmjdibCLL5wOIy1a9eOPXbiiSfihz/8oakXaaOv3iHOO+88hFj7MoHBwcGCtVfMLPI9h/D9ilFPL50Msj5fCO88bYn5Od/zZ7FrySXOO72+AILhqBHuWmvdZv5inWDahlMEpMjH3w0GIqivcZnsds57D27tMs89ZWkTIlEYW3FmDnINMB28RbpOtBlHCCGEEEIIUWgk/AkhRB5JFJhqIw4jZjHo9fTe/jHbxiADYdEY6j1O81zaY9XXOEuq/kuuBdrJbDbZb/dvOmB+1zkYwK4en+mDRc0enLCoyQhXxOrbEzqfx4XXfBQNnftH39tmQ+/8JWgpQkYEA5/vPH0JfvfETmzqHDEiHTMVmOlH0Y+Zf3yMY26vqjKBTGtcfaGICYbOb/KY7ytm12IoEDZt9brtiMRi5rUUKI9oq5vS7mymZNQKoKurC01NTXDFWdy2traaun99fX1obm4ee3z58uXjuoyZgf/85z9x0UUXqStFWW7yKVZGVboZZLy3HzWnPqfHnk578rmWiJ93BgMh3PT3F/D3bd2oq3aYtY3TXmXEQK55RgXA0ey+Rc01xtLz8Z29E+bnJq/LzP/TnZ+LmXmnzThCCCGEEEKIQiLhTwgh8kQygal7KGAS0GbVuUwWgGXb6LLb4LDbQPOrSDRiRKFC7EKfLtnWyJvMZpPc9I+d2NfnM/ZopyxpNpmSHQN+eN0OnL16tgn6/eBv23FwKIDzH78LL/3Bl+A4lMHka2jCjZd9Ec6XvwKXxYDE5hQiI4KC3SUvWoDn+yK4/sEXTE0/Zi0yY8EENX1BhKNRYwXqdtiM/SvmTMxGYOYnxeFn9/Zjb9+IsUxjjST2Q7WTlZKmptIzasUoIyMj40Q/Yv0cZM3LFBw8eBAf/OAHccIJJ+Css87KqDsZKOeXSK+f1Ff5g7dyboRgtvWozaTbZFjzntneP1oXjlnkfF6645DOuLEGK+/ho/fsifMzj8+Mbz6vEONfKu1hPy9oonhWg9cfPx9P7Oo1m1Yo+gVCUSNAmu/OKrMZhusfCoGz6t3oHBg5ND/znQ63kT9zXLd1Dpr1wYImT8Zjl4/rJBO4zrnsTK9xFuCmHoqP8xpG1026P+heWa6kc6/U9S2EEEIIUXhKK4IshBAVRDKByQh8ttEAl2XbyB3wDNA1eVwmGFXttJnnFWoXerZkWyNvMptN9pk/FMaGfQMm8Maf2V8UAJfN8qBnOIQ/b+qE+1g7du/twmU/+SqO++vvx957/6rjcddnvo3+uhb0pRDvCpURYauqwomLmnHCoj5zbqzbxyxPirgce4fNbuoX2W0xU/NxTkO1ETQnZiNUmeuFgVqn3Ya2ejfWLmgy1wT7MVtbUlFZuN3uCQKf9XN1dXXS13R3d+Nd73qXucd85zvfGWcHmg4DAwMZv2Ymwv5lDUaSuNlA5I5ZbuCNx7bgga092NnjQyAcNSLYilYPXrqyGbPcEfT39+d03LxVMcyvc2DzgQEsa/FMyCDb3ePDqjl18FYF0d8/0V431yS2hz6aQ/4IQpEoHLYqdA4HsbqA7SFHz3LgRUsb8O+dfYjZgOFoDMFDoldTjQPDQdp3xtBaY8eqVjdeODBg/u33T7T1tEVjGPIF0NHdhzpbKKuxS3WdLG+pwTFza9HXP4BNI8NGFOQ8ng/qbECdWYKEMDhYmHEoB3SvrNxxo+W4EEIIIYQoLBL+hBBimpltqX6XTGCiwEcRq3PQj0aP02R9MbuPfygvn+XF3l6fyQJjEIy/o0gUX9OuVCwas62RN5XN5r929GDrgSE0VNvRVOs2QhcDluwvWobxNczG63j8WXzwsxdjwe5tY+/91Ovfjocu/QSiThdqolEj3vE1rKn4Qvewec6yVi9qnPaC1fgxtQqPno0tBwaN1RlrG1Hgi8RgMj5p53rcggb0DAeNfdllZ44Kp+xDZiPMqXdj64EBIw4zaMvnUwCmJWxdzfRtSUXl0NbWht7eXlPnz+FwjNl/UvSrr59oMXjgwAG84x3vMP/+6U9/Os4KNF34vnZ7epmnMxkr06GhoUHCX55Z29CA45bOSZpRla9xe/2JDvQ+vBN7BoLjM8gGAmhrrMXrTliMpsZaFAqrPc91+TAcCJl+YHZdKBIztXKPWzwLTY2NKCTvevFKoOoF7OsfwUqbDT3DAZMB2OePmDn5zCNn480nLzIbnx56YQBRmwPeJBmLg/4Qaj1uzGltREPD5Bl/k41d4nVCN4b1u/tx79Y+01dup210I9PRc0wGvygMuldW7rhFItOrzymEEEIIITJHwp8QQkzTljLV77wJto3ECHyzvUaQ6hoMGHsrxiMZzKL4c9zCRsyucxtRiLXtKEBR6KHoVypZXVOJd6xheNvje/H64+eZx+bWV6P9UAYdA33sz2Q2m4QCF209FzZXm3Mn/O7y2szx9lME9bgw657fjYl+wWoP7v+fL2LrS18zTrzjLv4f/+MFbNw/iL6RIKpiQIPHiVOWtqCxxmkE1XzX+KFIef/GThPkPDgcQgwxjIR9puYfrT95rVDUpfWaZS8aXwfomb192NvLLFA72kyNQK+x/8ylLamoDFatWmUEv/Xr12PdunXmsSeeeAJr1qyZkJXHnfnvec97zOMU/WbNmpXVMXkNKoMts75Sf+Ufu532xt6CjdvKtjq864wlY2uBAwPFnbvZnpetmo3v/GWbWWdwfuEc0lrngMfpwF+3dGJJq6eg7WKbLnnx0rE+YoYd5zTOYWetasPpy1uNOMv1xYpZdYey3g+vLw7Pz4FD8/P47Mpsxs66TrgmuefQmmZ0I5PDrNs27h8w6wFl1RcW3Ssrc9w09wkhhBBCFB4Jf0IIkWVm23MdA+Y5kWgsadbbxactTmLbCCPcMMvr0Rd6jfDXMxRAtdMxFiRk9lY2dfMKxWQ18np9o4ImA2bMcmOWmrV7nsFH/nvPQR/WLWmakG1H0S8QipjX0GXTE1eujMehPSbfm6KZ4/LLsevhh+Hatwf3XvU99C5ZOS44uO3AkMkS3NIRMVZds2rdRnQb8IXw5+cOYNmsWpN9OVrjp9rYe+Y6u3JHtw+3P9Nj6vnNrnVjdp0LTocdw4GwsXJl9iGPlcxelAHZZS+pxUPbuvCjf+zA0pZakyGa2N+5siUV5U9NTQ3e8IY34KqrrsKXv/xldHZ24qabbsJXvvKVsey/uro6kwF4/fXXY/fu3fjZz3429jvC3/E5QojMsO7ZpTB3Uzzb3D66wWbtwkaEojEz51g1/4qVKZ5OH/Hf8Vnv+Zqf093IpKx6IYQQQgghRLki4U8IIbIICLHe2r2bDtCRE680QSjbhGARa9G9fHXyABZr1Z20pBnnrJljrLe8CQGwybK3JrMdLQSpauSxn9bv6YMvEAZLFHqcduzoHjJiIDPsTlzcjJArgufaw3hyd685fyt7jdDyNBKLGdsv1vmLxQ6LpfZwyNTEo2jGflzQWoedP/sZbniiHR1RJ+b6Q2N9yzqJ/SNB+MNRIza2eF1j71NdbzdCa3vfCJatbEGLx40d3cNGPMtlhgbHiPWDKPrx2qGoSdGPNmb11dWmr3jc5kNtS2YvyjGlcDyrthoOe/Jd1Lm0JRXlz+WXX26Ev4svvhi1tbX44Ac/iFe84hXmd2eccYYRAc8//3zce++98Pv9uOCCC8a9/rzzzsNXv/rVIrVeiPKG9+xSmLutzTnzGmuS2llPJ1N8uucwVR+R+Kz30QzK3M7P6W5kUla9EEIIIYQQopxRpFBUNMUWSER5M1lAaCgQMZl+1r/ra2xJg0XnHjcvpwGsyWxHC2XbRWEuEomZeoRNHtdYFgHPl3WNaqvtCISq0DHgRzgSw6KmGiP+7ewZxomLGrG4xWNELz7/pCWHRTmnrcrUIJpd7zZZehTHmOW3Zscz+OCPP4+rL7oCPUvXGFswfo6XHbkYb21qntC3i1u8RmgbDkZM0DN+7Pjvuhqn+f3+Pj/eddpS81iu7xEUe3f2jGBuo3f0mHG1HSn28bx4fmwHf5fKXpQ/x2eNEr6GIin7q2MggGMXjL5O9zvBrL9rrrnGfCWyZcuWsX/fc8896iwh0iAaG53rOJ94pzFHFHLuTrU5Z7qZ4oU8h0JlUOarr4QQQgghhBCi2Ej4ExVLKQgkoryZLCBE4YVUITb271TBoqPm1OckgDWZ7SiFJgqMvMbzyWgtnA7s6fWZmoRNNU40ed2YU1+NXl/QiFNDgTDqa5wm848CF7MhLaGLIik/f/z3rh4fFjR5jNDHzDWKWMx+rK92GnFwe+cQXvqnn+Pdf/gh7NEorv7F53Hz927Hi5a2GLtQqy/f9x/LxmoI8mfWS9zY3m/a67RP7GMn0xERgy8YgS8UMeOTa9gHrDHocdkn1HbkuXvcdoQiUdNnFEhT2ZfF2549dSibctC8dwShcMz01wXrFpjMSt3vhBAid3Bzyu+e2It9g6P382zXkenM3blcl3qT1BeebqZ4oc8h3ezA6eLNQ1+J3KDNTEIIIYQQQkwP/RUjKpJiBChE5eGdJCDEejkkhqqxf08WLJpuACvdOjTv+w9v2u+XqRAZ/7k6ak6dqeE3bDLnRkwmmz8YQchpg8ftMBZjmzsGDolso2IbxTCKpK21bpywuAlP7urFweGA6V/2FTPXKGI9sLkTw90H8dmbv4TV/7x/7Pj9i5fhpGUtuP6hHUkFfUvAoyjodY72OzMI3Y7x50XBjZItRTmeez7gmLgdNiMu1lWP9gFtTY9f2IjtncM4wP4KRcx1ctzCxkmzP/n4y46aje/8ZZupcUj7Up53a60DHqcDdz61b9Jak7rfCSHySSUG6Dnf/eThnTjQP4RFrfXwuBxZ3VeLUUMuMVM8PuudNXBTZZiX0jkUilz3lcid6M5rSps3hRBCCCGEyB4Jf6LiqOQAhSidgFCt2w47r5/Y6L/jyUewKN06NAxI1k3UIaedDZvsc+V1O4yI1TMcMNl/wXAUcxpqsXpePRw2G5632YzIRlGP3/mYJZLSLnT13Hq8+ZRFJjvQGxcsXtm5E3Ufehea9r4wdvwn3vp+9H3qM3hgWw8ODvdPKnDxfdj3L/QMm+w/V1yNP47N4EgIdpsNx85vzFswb15DDZa01GD7Qf+4a4fiX+NiJ57Z14+lrV686/SlWNjkmfRexL7f3D5oznntwkaEojHTj7QI5fncu/EAdUy8cnXyWpO63wkh8kUluiuMzXe+IJa1eFBj7KyrsrqvFqOGXHymeGJ9Ya5NUmWYl9I5FIpc95WYPju6fbj9mdEaydrMJIQQQgghRPZMER4WovzIJEAhRDoBIQZ+GBCiiBSORs3357uGcURbHY6YU2f+Hf87PjfXwaLDtqPJ92swUEX7R2bVpZO1R7Gs0eM0gUt+5898nL9P93NFEWvdkiactrwVpy1rRrPXaQQoe1WVEUNZ027IH0Y0GjXf2SeWWMWA2sq2Oqxb3Gwy9RgsNH31i19g0atfNib6Reob0PWL23DcT76HzZ2+MeGRAVgKr/zOn/k4A7EM2PJ9zlkzx4wPxcgDAwGMMLsuFDb2q8FIzIwbxzaT8eF7M5uQmYz8zp9Twfd92REtpg+SXTu0OH3bqYtNPcJ0A8fMomzwuEzGJMVSjoOpNRmLmWw//jse3e+EEPkk2/lkJq0j0527c11DjqIrN8McM68Bfayx2z1svnNTTKZZ4MU6h0KRy74S04Prqge2jop+U631hBBCCCGEEJOjjD8xo+qyJdZeEyLdgJCV0cBrhxlsDAhR2COpfleMmj3MRgBCOc+GTfW54nuEozEcGKRlZwT+3hG09/lNYHROQ7XJBtzdO4JGj8vU7aMwmXQXfSAAfPSjwP/7f2PvHTz2ODhuvx2zViw3QlsmGQfs+4+cvRK//Ndu/OuFg+gZCpjnNtY4ccqyFrzllEUTxmcyu7psslqWtXrwztPrxuyqsr0+pq41yQBY1ZS1JoUQIldUoruCNQdQuLSyjcKh8RsqprqvJs4jzG4vVA25xGOz79+fg/rCM6EOHufjXNRiFtODmZc7e0Ywt9FbcdmlQgghhBBCFJry/QtNiBR4Z0CAQpRWQKgQwaJ069DQYnJwMJRzu65UnysGfdfv6cPASMg8fsy8euyl+NfvR9dQwLR7dl013E6beU4gFE0ufG3fjuhNN42loT985uvx+3d/Cot2x/DK+kEjLmYq6PP9P/Pa1djT68ML3cPmsSXNHlTZqkwGIMVEa6wmE/ZItjVDV8yuNe8znesjVd+TUevU0fdKp9akEELkgkqzf4yfAw76AsbGmnPWipZqzK12p3VfTTaPLJvlNRtOOCfms4ZcPi1XZ0odPKsWsyWgbu0cnHLOLnR9y0qspxkPN4cFwlFTgzkZ2swkhBBCCCFE+igSKCqOmRKgEMUJCGX6u1KqQ5Mqc8zUvfOHjRVmry+AwUBoQoDJ47RjWasXG9sHxj5XfB0DuxSkHDagrb7aWFfyiwHT57uGTL2/j519JA4MBSYNVD3fuhBPv/vTeN0NX8Sf3ncFtr72P+GNE9dedcycSQV9XyCMcCSGjn7/uGPwy2oTA6N3PdsxITB61Nw6PLC5M6mwx/OvdtjSzmoJh6N4ck8vuocCqI6F8OJVdXA67dO6PqasNcmfqwpTa1IIkR/KLaBfSe4KlmWpNQfwa3AkjL19I/D5g3C7XcbaerL7auJ7WPPIxv0DxqqQX/mqIZfq2OlsTkmHmVQHLxMBNZPn5uLzXYn1NBPhGsftsBkHibpqbWYSQgghhBBiOkj4ExXHTApQiJnFVLaj/D2DkqnwJskcY6CQ4l2vLwh/KGJqxf32yX1oX+bH5vbBcQEm1m6KD16GIlF0DvoRiURRV+PE8lmHrZlYi4419roHg0b0myB8RaOjXw7HmGXchlNfjYOnnoGhtvmwJ4hrT+/pM5kTDKImil+08Xx050E4bVX49WN7jLVaYjAsVWD02X19uG9Th6mZt3Zh4wRh7+m9fegaDOKUpU1TZrWw9t8ND+7A7l6f6UeXDVj2aDvedfpSnLVqNHMwH/c01is059g1rPudEGVIOQb0vRXirpDKsnT1vAaTedQ5MIJN7QM4ZWmLmSOTrSPTsT3lfZs1X3d0D+fUFrxQlqvprD/KnUwE1EyfO93Pd77F3VKBrhVLWmqw/WB+M2SFEEIIIYSYCZT2X+NCZMlMCFCI4pLN7u1c7PieTh2axMyxXl/I2HSOBMPm51A4gpZ6Nza1D+KBLV0muMRAohVgYsCFwt/c+mr0+ULoGvLDH4xgYYvHPM/KiJgy46OnB3j724FVq4DrrhtnGTdUXTcuC5F165jJRnHtvBPmY9uBITy5uxdzG2owq86Njv4RPLaz17zmmCVNmNfomRAMY8AzVWB0Tn0Mz+zth8M+sf/4vCaPywROrfJ58e2itSbPMRD249eP7cYvH92D4UAYLnsVnHYbgjHgufYBfOVPm81rpyP+lUqtSSFEbinXgH6luCuksiyluLd2USOe2U3xL2Du5ZwPkt1X07E95Zz5ztOWmJ9zmdVZSMvVSq6Dl4mASu7Z0IG9vaN24dxvxS5I9twd3UPT/nxXYj3NVLD9LzuiBb3P9GjzphBCCCGEENNEwp+oWCo5QFHqlJtlWaZks3s7lxkd6ViLcgwYVEocAytzbOuBQXQNBoxFZm213dRV8bgdWDWnDtu7hjHoD2FWrWssoBsfYGqpdePi05eYunm3PLrb7NBmxlxaGR+PPQa86U3A7t3An/4EvOhFGD7jFeMs4+KzEMORqGl3MBw1wTWeT+dgALt6fKh22hCNwWT4nby0CS211UmDYa851pYyMBpiZp7DhiF/2Ah6iedRX+00FfQG/CHEEDN1nw6yXdEoHDYbvC47nPYqPPrCQQwHQqaWE8VRtovZIRQAe4cDuPmRnThz5Sw46IlaxrUmhRC5o5wD+pXirjCZZSnPYd2iBmzvDeDCkxbimHmjQmbiOaVre+oLRXDUnPqCtT8flquFsDYvBpkIqLt6hnH3s+0mI5Q/cy3AbM7ls71mA5T1XNYXzsXnu9LqaU7FslYP3nl6nekbbWYSQgghhBAieyT8iYqmUgMUpUw5WpblOzuj0BkdO7p9eOTJLuzoGk46BjzerY/tPVR7CAiEbZhdX22sOhnAYiZgi9dlvseLYVaAiWNrq6rCf6ychY37Bsx51FVPkfFB1e6GG4APfQgIBkefNGsW0Nw8zjIuFIkdzkKsdsJZ7cDB4YDJuPj3zoN40bJmvHxVm7EYpfDYMRDASUsOi37JgmF8XqrAKLP2KPwFwhGTxZcI+6ehxmkCamyTPxRFbbUDTrsDwXDEBPZYW5CZfnzcwRfwdVVAtaMKgUjMCIM7uoZM7b+Tl7aUXK3JShfqhShVyj2gXwnuCt4pLEv94ajJ9KPol2oMcmV7ms29OFfHng6VMIekK6Ay8/O36/ehZziItnq36VvL9pz1kY9f2GjWTHwu1x65+HzHty3RdYBrr3Kqp5kuK2bXmnVruV9XQgghhBBCFBMJf0KInMEAxk8eKT/LsnxmZxQ6o4Nj8MvH92M4XDXpGLxh7Txs7RzEnPpqkzFnCXfdQwGTZdfgcWJgJDRBDIsPMKWd8eEfAd7/fuCnPz38Ri96EXDbbcD8+ZgfjZkAD+vt9Y+EjMDG17I9DHL1DofgdlbB47QboW9Bk8dYejKbbk/viDnWwibPhMCa1VaSKjDK865zO9DuD5sagfHw2Dweazs9sesguoaCpr94XAb6hgMRNNa40DEwgkiMAp/NiID8H9+pClVwOaoQCkcRjUVNoLDUgqaVLtQLUcoUOlsrH5S7u8JUlqUHBgNYu2TWpJal1ns8u6/f2EebTPJDogxJx/Y023txsS1XK2UO8aYhoHJMH9/Zazb6NNU4YauymU1QFP9cXptZ59Ex4ci2WvMYycXn22rb/j4f2vsDY24I3GhEUXpuw6gAyedVEtq8KYQQQgghxPSorL8QhBBFIxqL4d6NHWVpWZbP7IxCZnQYkXFjB/pGQlg9vwlVVbaUY8DHaE3lcdnHBbkY2GIwiUEuu81mfp4se2DKjI/+DuDsNwLPPnv4TT78YeDaawGXy/xoCYgUInft7Uejx4kYYDLqeoeDxjZzTkM1qp12c31ZWYg8Ds+LlqXJbDqtti5r9aYMjBKPyzFaL3AgYNrCYBwtUHd0D5vnr1nQgN0Hh42wNxyMmCAdMyOZJUmBkjagQ/6IES0Jkxt5CFp+1jhHRUKPw2GyKEspaFqutcWEqBS8JZCtNdMD9FNtYOHmjlesntyylL87am4d7tvUgWf29sHpGBWDuKmEFtqLmj2T2p5O515cTMvVSppD0hFQFzbXoGvAb9YUwXAMXYN+uA5tUuIXs/57hgLYYa8yG4b4vFx8vtk22ojf/9wB41BQd8gNgQ4JzDRkrUFeo6VeT1MIIYQQQghRWEo7kiCEKBu4C7mcLcvylZ1RyIwOS2Rsq3NPOQapglzMUGjyOI3oxaCVlbEwWfZAyoyP3/0WeOc7gYGB0Sd6vcCPfgT8539OaDvf4zVr5uK5/QOIRGPo8wWN8NjocRkR0AqasRahlYXItrXWuky9P1p1As6kbWWG4GSB0UUtHrzsqNnY3D5o+o99xMxH5uxRxLvrmf0ms/DERU1GfIy32KLg6D5Ut4/1fij0VdlGX0fBj7vyKVyumuvBCQubSiZoWs61xYSoFIqdrSUw6QaWY+Y34EULPcZ2cDJ4L39gc6epCeuwVZl5ivNBu99vNpVwfkl1L8/kXkySZVYWw3K10uaQdATUdUua8dun9sHrdpprguPM8x+1/x6tOcwNQPwd+51rj5x9vq2XcnFhVkV8IHbo59FHhBBCCCGEECIeCX9CiJzgC0YQCEVN9lS5WpZNhTeL7IxsXpMuiRaRrC/DMWiJE+sms+l8+eo2bD0wiCd392JuQ40JUPpDEZPNxrYy84+BrXSyByZkfESjwNe+dlj0W7UKuP320e8pWDW3HkfPqzcBNKdjNNuQtpn/2nHQiGjEEZeFyCAaA2as/8d+oCiXqq3pBEZfeuRsPLK9G798dLfJ2KPwyQBfp6nrM9pPrNHXWusea3Ote7S+j51F/WIxkwVAhy9m+/HnQJQ2oza8+8VL4TgkEJZC0LTca4sJUQkUM1ur0snUQjnZBpZ5DdUYHByY8jjWvXztokbzmFWDjfbRHQN+bOkYNPNLsuOney/m3PT0nv6U2eGFtlytxDlkqnUC/32Po8Os5/jZZD0/niOtN7lWogbX7HXjopMXjYmtufh8sw/7fCFTz7ijP4CDvqCxG+XmqLaGGsypd5vfl1NfCyGEECI9urq6MGDFVDLA1AUeHERdXd2EtZrFrl27EA6Vb3xOCDE1Ev6EEDmBlpFupy3vlmXFrIeWTXZGvjI6kllEMvstEIlgJFQFb5LXxI8BX3//pgOmHzsHAyZrjgEpWpK9aHkLjpxTN5YBlyp7YNKxsNmAX/8aOOEE4KyzgP/7P6A2edaE9T4ULik+7j44giPaRsUw9hEtSQ8MjBj/zLb66rEsRP5uJBQ12RRNXhd2dA2jo99v6u0xwHbWqraxLAmSTmCUgVUG745b0Dg2VrQZXdzswY6eYdNvJy1pHvsdA7y022qocZog7yAzPUIRcP3MHfjMAFw5uw6r5zaUVNC0EmqLCVEJFCNbq9LJ1kI5cQML55ipSHYvj7ed5ntOdi9P515savc+utvMTZNlhxfScrVS55DJ1glcq8Sv5yjcUYzjOoCuA3zNyUuacfry1px+vq2+5nqGWYSWsGw5D3DNs7N7uOz6WgghhBBTi35ve9d7cHDQl3lXxYBIJAK73X7YOSAB/4gPe/e1Y1FotGSJEKLykPAnhMgJcxvcJiCycf9A3izLilkPLdvsjHxkdKSyiKRg1j0YhG8kiJZ6T8oxGAmFcfMju8zrKfQd2VZn6sTw9163A2evno0j2upNhkIqkSzZWKxsdOHlaxceHouFC4Ennhj9nmKXWeL7BMNRU7OPx2QmHPtqToMbe3q52I2Zne0Mco0EwmP99+ZTFpmAGDMi/rypE+39Iya4dueT+/DMnv5x18dkgdFUYhz/vaKt1uyyp0C6oKnG1PfjGD7fNYQap93UATw4HMLB4cDozn8Gf902HL+w2YiBiQG5YgdNvRVSW0yISqDQ2VqVTKEtlKd7L/dOcS9mvVlaT3NKit+QUmxLzUqeQ1KtE1Kt5zgkvb7QIVvxORPGYbqf78S+nlDPOBAu274WQgghRGqY6UfRb9aL3ghvc1tGXcV4RCQUgt3pTKX7oXP7BuzacxMiYQl/QlQq+gtBCJETbFVVeOXRc4wYk6nAlU4WXzHrocWTze7tXGZ0TGYReUSbw/Rh7+AIth4YwrzGmgljcPaqNty/ceLr5zV6jN0nx47i2YpZqbMHJoyFsxrH3vojHHPfHfi/a36Ot7z8mMPntGhRynPh+9z0jxfM2Dd5XGj1ukEXT9qVDoyEsPugz9TPY1/RlpSr176RkNnZnth/fK8/begwbZrfVGMsZzO9PiYL4NK+68TFTXh8V68R+GhtyzYcPa/BWIwyE5Ei9OGd+FVwIoJwFWsCxiYE5IodNFVtMSFKi0Jma1UqxbBQ9k7zXj7VvZj1drlNm9bThHNjfLZXsSw1Z+ocUowM3UL2dTFdNYQQQgiRHIp+9bMXZCz8hUMhOCYR/oZ6OtTlQlQ4Ev6EEDljxezajAMi6WTxFbse2sTzzHz39lSvSTfYMpVF5MrZXmyPRUwAsGcoOG4MmMnX5wuaWnXN3okBynQsJhPHwu0bwiuu/TRW/uM+8/tzv3UF7pt7vTnXyfqD7/PLf+02Qhor3+3rHTE1BSkALp/lNRkOi1u8eP3x88w4WwGtVPZbubg+pgrgUuA7em69yTDkjns+f259Na5/aIcJyPHYh3fixzAyQsE1gGPmNSAai2Fzx8BYu4sdNFVtMSFEpVEMC+Xp3sunuhfzPWnxGQjHsHlnr6knF45Ex+bLJa0eYzNZaJvHmTyHZLoGnK5bRTZ9nY2AV2xXDSGEEEIIIUSJCH9DQ0PYvXs3VqxYgWAwiNoUtZuEEDOLTAIi6WbxFbseWqoASqbHmiyDLt1gC9swEoqgNuIw4pi169/qlxqXwzx23vHzUVvtOJQtMOq0SfHrqd29xo6VNen29vqNWMugUbq2ZPFj0bpzK879/IfQtG/n2O+Hlq3E9gMDU47Fw9u78dctnYjGYOrzOe1VplZe16DfWGVSwKTlJwW4+PdJ9p65uj7SDeCuW9w87npOHpALY3ePD9VuN3qGAvj2n7dNGNtiB01VW0wIUUkUw0I5FwLYZPdi2kjf/MhOPLHrICLRGGqrnXBWO8bmS9pLc17zFsHmcSbPIemuAXPlVpFJX2cj4JWKq4YQQgghhBAid2T8V2IgEMAXvvAF3HHHHebne++9F9dccw1GRkbwjW98Aw0NDTlsnhCiUgMimWRpFbMeWr53QGcabOkeDGBXzzC2Hhg0Yp7DZkMzs+Rme40dJQUn2mP2DAfx1y1dpt0UCPcc9MFpt2HZLK8R/ey2qjGR7fiFjWPi31S2ZNZYrHvoPrz8u1fCGfCbx/219bjnk1/DtpP+A/7u4UnHgmP/l+cOGAGT9fLsNub8AW5HFVxel+mLfX1+tHidaY1prq6PbAO4VkDung0deHZfv7EB9bjsmF3nwkAAaB/wpxzbYgdNVVtMCFEpeItkoZwLASzVvZjz5Q0P7jA214uauOno8Hzp9Dixu3cEbeGoyT4vBont9jjtxlqK8zvXHTPZKjLXbhXpzNfZCHil5qpRKGRrKoQQQgghKp2M//L92te+hueffx533nknLrroIvPYBz/4QVx++eX44he/aH4vhBBTkUmWlrdIwbx0AigMhGRbDyXTYAvbc/ez7QhHYwhHYphV5zL/7hz0YzAQwnELGtAzHEJzjQN/erYdvSMhzKl3Y3/fiMmsi0Sj2Ns7YsSsIX8YTR4nen0hMw5NniZz7KlsybyxCN76k6/i9D//ZuyxAytW44+f/Q4G5i7EiD805Viwv3gcr9th2s+6fhbsA2YqUqxsPGSnORW5vD6mFcBltDPG/8cQjUaxvSsAl8uFtQsbU47tZWcux/sztI3NNaotJoSoBIppoZzJJopUgkOyezGf53baxuZrzo/cxBOKRM08znnS5bCZDSbFqhFptZtrlD883T6ldftMqSGXyTqX/ZBOv0w2X2cr4GXqmlAJYyhbUyGEEEIIMRPIOEp+33334fvf/z6OPPLIscf4b2YBXnLJJblunxCiQskkS+uI2XUFD+alE0C55d+7jU3ljq7hrLIBMw0KsT0M/J28pBlP7+1H36EgYKPHaWwxH32hFycubkIsFjaiH9s96A+bTAG202WvMudTZ3eYenV8LwYMKbK1949gKBCZ3JZs1y4seNObsPDxx8ceevZVF+Cv//1ZRFzutMeCY2qrqsKsWveoXanXNu78HbYqDAfC5vxjCbXxkrUr18HebOr3WALx/KYaeFwOHBgYwbN7+9HoiZqaTMzGnCyQVqyArRBCVArFrjuXziaKTAUHzkGcp09Y1ISd3T4c9AXN/MhM+dn11VjS4kH/SKjgNf6y2ShFZlINuXTWuR39I/j7ti5saR/EC93DiCCKWpfTrFnOWTMno37J1vY8k/V4JQhmsjUVueDSSy9Fc3MzvvrVr5qfN23ahCuvvBJbt241pXCuvvpqHHPMMepsIYQQQpSX8Dc8PIyamol/GDC7IRKJ5KpdQogKx5tBllYxgnlTBVBqnDY8sLkTi1o8JuiRTT2UTIIt8e1hf9GekwEcikrhaBQOu818nbS0CQ9sbMfcRq9pZzASRTgSNTWBrGy6kVAUq+bW4UB/AN3DAQyMhHBwOGREw0mz2n77W1QdEv1CLjduufiT2Hnuhahx2E2mX7pj4XU5UOO0o6ax2pwbA4XxWQy9w0HYq6owHIzgW0lq4yVr33ELG7CxvR9P7+3DslYvPG7HtK6PdLPgUgnEDNTyGuH5bO8aRpPHNe46yqc9rRBCzFRKue5cNoKD99BaiZt11i1pMpt5OK9b9X1p1+0PRXPieJBtJle6G6W49uCaZabUkPNOsc5t7xvBlgNDeGJ3nxFzCddB7LMXeoax+cAgPnL2yrT7JVvb83TX47Sa/9OGjrKuAzhTbU1Fbrnrrrvw4IMP4rzzzjM/+3w+IwSee+65Rgi85ZZb8L73vQ/3338/PB5t7BNCCCFE8cj4r8SXvexl+OY3v2nq+lns2bPH2HyeeeaZuW6fEBVJJdjkTJdMs7QKHcybLIDC9nH8WMOG7bMCJZkGDrwZiJ+J7aGYdVJcEJCH6RkKmOBgIBw1NeaI65AgGIrERmsC2W0mwMSstHVLPKafDw4H8L4zl+GEhU3GLixlht2HPgQ89BCwfj3ab/wpBtGGvizGIn7saU+6o+twFgNdP8NRwOmwGQtT9uE8d+rgUvzuc9qeMYOwazCI1loXWmvdeQ/2phKIrX53OuwmwMRxqq9x5t2eVgghZjqlWLs0W8Ehfr7k6+LnkVw6Hkwnk2uqjVK0HP/njoPGnvy4BY0zRmyZbJ3L9dpjO3vN2iAUiZi1GdcMtD9nnWDy9J4+I5he8ZrVafWLN0vb83TW48fMa8D63X1lL5hlmxUphEVfXx+uvfZarFmzZuyxu+++G263G5/4xCfMdXTFFVfgoYcewj333IPzzz9fnSeEEEKIopFxxPFzn/scPv3pT+Pkk082WX5vfOMbMTg4iDPOOAOf/exn89NKISqISrDJyQXZZPEVMpg3WQCFgZruoaCpUccgSraBg0zET75XYnv4fCsIOOgPodrpMIKX22EzgaO66tGMAGabdQ364fK6TAYaLcIoTBFmC5y4uNnYhV7/0I5x1+XKRhdevnbh4euS7fvxjxnBxKLGRrw/SwE7fux7hoM4ck4tItFDAZnOQSMA0u6zo9+PUDiG5bO9xiozMbi0o3toXPbEvMYa81o+zrE574T5OH15a16DUKkEYvY7ay8d9IVRVRUz4myhak0JIcRMp9Rql2YrOBTC8WC61odTZZpRzOofCeLIttqMzr3cSTV2vkAYj+48aGo1IxaDw2Yzm7HYNa5YzGRGcp1AS3QKpnt6fVjc4p3yeNnanqdzjR27sAF3Prmv7AWzbLMihbDg5vfXv/716OzsHHvs6aefxoknnjj22eD3E044AevXr5fwJ4QQQojyEv56e3vx3e9+12T5bd++HeFwGEuXLsXy5cvz00IhKgjVlRhPNll8hQrmTRZACYQjRjBb2uo1Ak+2gYNMAnrpBnTWLmjCQy012H7QP/a8FbNrTXspstH2c64J+sTMMXmMI+fU4eZHdo0L+jVufApv+ODH8Pv/uhL4r4sOj0V9fU7GInHsmam356APVbYq06dsF0+RWX+DgZCxNqX4ZwWXGAhLnj3hwNIWL57vGjJ1c160tCVvwh8zOGiTGghFTU2/uQ014/7oX9pSg4HAEAb9EQTDUWPJWqhaU0IIISpDcMin40EurA+9U2SacbMUYqPvmem5lzvst3OOmYO/PHfAiGK0MY9EY3DaqrC01WPqNbudNvOY3VZl+p9W4RT/ZtW5jWDK2n/pCH+ZrCkTnUfYzsmuMYq3lSCYebPMihSC/POf/8Tjjz+OP/zhD7jqqqvGOqWrq8vU9YunpaUF27ZtU8cJIYQQoqhkvKp985vfjOuvv94UK164cGF+WiVEBaK6EuVjyTVVAIVt9TjtmJdk53OmgYN0A3rpBnQcDhtedkQLep/pGXtefY0DK2d7sWH/AKLRKpPt1z8SNsc4e1Ub7t8UF/QDcOxdv8KZP/gSHKEQLvjGJ3DH6qOw7E1n5HxMrLHf2+vDTf/YaYQ+9intrxj44m53l9dm2mbVybOCSwyEJWZP0LJ0e+ewsQ0dCYWxq8cHxKpw4UkLcp5Na2Xu8jsFy+faw1jc4jHH4ViQxhoHZtdVY3Y9jOC6s3vYjO0x8+px3MJGE0jja0vhehdCCJE/vNMUHPK1VsqF9eFUG5NY14+uAhS2klFqYkuu7PjjHT64JqH4Obu+2rgc3L2hHV0DAbORbNSJocpk/tW4bMbxIBSLIRI77BSQLumsKROdR9x2mxEZ1y1txmuPm2vWgb5QZNy5c61SCYJZtlmRQgQCAVx55ZXG/aq6unpch4yMjMDlGl37W/DnYDCYccfxOuSXyKy/1GelgcYjP33K9QPvCpnfGaxXxBAzs3vqZ1jHyDXmPY3BgT6n+nyUFrEynz8yaXfGq/PW1lb09PRk+jIhZjyqK1E+llyJAZR7nu3As/v64QuF4XE6cNLiJhM4YICAN9zpBg7SDeilE9Dh8Ze1evDO0+vMLv34573+uHlGcGqtc48dI/66dPpHcPZ3rsSqv/x+7Jh985dgZ89I3uybeI7svwF/yPQp56/4moT8XW21Y6xOHrvasleN331O0W/9nj4TfOLzvW43eoaC2NTejx8/HJ7Sqmw6mbvrljThyd292NE9bB47YXETapw27O7xYVFLLS4+bTFqnKN1GrsGA6Zuzx1P7pvRVr9CCDGTyIXgkI+1Ui6sD6famGSdO//NrPypzr2YdbBzZcefuE6Yd8g+lee6u3cYO7qGTTCMYt+orSeMABgJRFHjtJu1js8fRqPHhWWtU2f7pbumTGyXP2TDlo5B/PuFg7hnYweOaKvD2oVN5nzjr7VKEcwKYZ0rKpPvfe97ZuP7i1/84gm/Y32/RJGPPycKhOkwMDAAm220HIOYGt5/fD6f+XeyzbiisGg8cg/LakUiEURCIYRDoYxfz9dORjQUMuMWjkayev8pjx8KmTbwPPr7+zGT0eejtIiV+fzB0nt5E/5Wr16N//qv/zIFjefPnz9hd9NXvvKVTN9SiBmB6kqUMZwHrLmgipuWqow9ZseAH0/v7TNBGQYOKOowcNBS68bZq2dnFDhIN6CXvkhYa4I01vNMICnJLm7rupzf2YHXf/HDaN25dew9njzvYvz13f+Lzr5gXu2b4j8bPI34moSchJ12m6ndx53xvb6QCS6xz63d5wxCMdOPgZtRi9Aq89xqpx0rZtXiwGBgSquy6WTucvf7SUua8fyBIew66MOTu3qxam4dVs2pw+tOWIyVbaPBQgbc7tnQkXUdJSGEEIfvxaXmFFCOgoM3R9aHU21MIhScpjr3bIS3ZNdCNn+/58qOfzKHD6/LbtYB/lDU1AGmI0OfL2QcACgChiMRDEVjh2r+VeGUZS1Y0OTJ6rNgbe7i4/w+t756XLuYiclNbRyHWXUuDPkjhx7rm3C+pXr9ZkM+rXNF5XLXXXehu7sba9euNT9bQt+9996L1772teZ38fDn2bNnZ3yc+vp62O3j68eLqTMeGhoayjJwW2loPHJPXV2duSfYnU44nM5MR8T81+HkGi7558PmdJrPjsNmz+L9p4btZvt5HvyczmT0+SgtYmU+f0wl6seTlR/H6173umxeJsSMxqu6EmUX/IsPAvF9GYjZ3+fDH57eb3Zmt9S64AtGsLd3xNRn4ZfHZTeC0/0bO41VZT4CCOmKhNbzeB5/fLo9aSDN63LgpCf/hrf84Eq4R4bN64I1Htz/0S9h65mvxrA/lHf7psTAo1WTkP3udTuMiOcPRswOebabgRkGwqzd5211bmPvyUw/TtqcxIf8YWOpVV/jPBRMnNyqbLqZu6w/eNJSFxY0e0z24VtOWYQVjXY0NdZmbPVrHadcAtpCCFFIcpWVVWhKUXDIZSbXVBuT0rGgzFR4S3UtnL1qNsIBP9pHqlDrdk45j+bSjn8yh4+hQATcn8u1osNeZdaLNc6oaTvXldFDXl78/fGLmsxaYrLjpTr/o+bWYXP74LjHW2vd2NE9hEWH1kGJG6b4NRyIYM286qQbpgp9/eZzfV+qZQZE6fKzn/0M4fDhTZBf//rXzfePfexjeOyxx3DjjTeOucDw+5NPPonLLrss4+NYn0WReZ+p30oDjUfu+5OaXfw+9HQ5bO9ZlfK1Y48fOkauqbLeW5/R0f7Q/aqkqCrj8cikzRlHcpXRJ0R2VIpNTjkF/6YTNEgWBKKgw+BPJDoanOHu7CNm1+DRF3oRRQzHL2jE8tm1GAlFSiaLa7JAWkfPAP7ngR/jXT/83tjzexYtxx8/910cXLS8YNdl4meDQajjFzaaXed7D44YEdBpZ2YdRUjbhN3nzx+qn0N7T4qEFP1qXA7znhy3dKzKcpG5y2PNrnePCZi2qljGVr+PbO/G03v6yy6gLYQQhSBXWVnFEiPSERwKmc2Y60yuyTYmTXbu2Qhvqa6Ff73Qg/s2daCx2gZvtduIa1PNo7m0459snRCMUPaLmTrGdAOgJbndNoJ+XwjBMGv9ja4tz17dhrefunjSa3my879z/T6T4beyrXbscVqf04J8dp3b2KrHb5gidFfgeisUjaU830IJZjy2ZVefr7VQqZYZEKUJna7i8XpHLXgXL16MlpYWXHfddfjSl76Eiy66CL/61a9M3b9XvepVRWqtEEIIIcQoWaVw/PnPf8b//d//YceOHSa9cOnSpXjb296GN7zhDdm8nRAzgkqyySmH4N/Ljpo9YbdzJkGDxCAQg1Ib9w8YSyaOFenzBU2gpsZlY2QIA4Ew7LaqrHaI54OpAmm9z25G7c0/Hnv+Yy96Jf78kS/A0VCHEX+oYNdlss8GxVVfIGx2iM1pqMaxCxrR4nWifcBvxt0K7vL7rY/twa4enwmgMcDHTD+OtTVO6VqVpUO6tmjsXyCUkdUvA12/fHS3CcjJClQIIfKXlVXMTMPJBIdcZjOmKyAWMpMr1blnKryluhaYNdc7HEDXUBCIuXDMgiaMhKJJheH4/uno95tNW6zFl4xqpw29voB5HzKZ2OWdZJ3gorJ3aE/9rFq3sS0f9NeZTUtcT7L9tAF952lLjAC4uWMgpTic7Pz5OQiHoxj0hzCr1jW20dC4KcyqNc4JWw4MGrv6cDQKp/3wuojH5jHZxsk2TOVbMNvR7cPtz/QYYVJrIVEO1NbW4vrrr8eVV16JW2+9FUceeSRuuOEGeDwSloUQQghRXDKOgnIH0zXXXGOEvksvvdQUFKSVwdVXX41QKIQLLrggPy0VogIoRZunSgz+PbW7D9/5yzbMbajBvMbsMgLihRpm+lH0Y9CJh6K9Z7XDhlgV4A9H0egZDeywPYP+sLGXzHSHeD6YKpDmPGIFbnnflXjH969A99VfxqMnvx5d3cMIdA8X/LqM/2ww8LmxfcBYYnF8+TtLxOMYxwd3+btPvPIoE0jjbnYGtqz+J7nOWkw3c3deQw0GBw8Lf94pBEOKnN1DAXN9HbegMW8B7XKriyWEEPnIyirFTMNcHiNTAXG6mVyZzC3JnptpHexk1wLnYNpXUjibU18NXyBk1mv1Na4J8ygtL+P7JxKJYU+vDzVOGxY2j2byWHA8Nu3vR+dgAL9+bA/u9xyYtC8nWyfUuu2wH7Lt4r/5O65ZAKdpP9u4oKkGdz3TbkS6VGOX6rPANWjvSAgtXpepiWytSQm/8/ntfX4safEYkY9iH9d78RbpddUOk/k3nQ1T2a41+LoHto6KfsUQ94VIl69+9avjfj722GNx5513qgOFEEIIUVJkvJpnph93M8Vn95199tlYuXIlfvjDH0r4E2IKVFciv8E/wkBZ12AAaxc2joksmQYNvIeEGtb042uY6cdDse4KbT4ZFInEYqivdsBpd5vX8LFRG6dRcmkxmU1QZUIgLRaDLRJG1OEca9+j616G0x95CivWHY33ZxGoyaWQZH02Ht91ENc/uAPNXgapasaNcbLgrsNhw4UnLcCPHw6bujQ8fr6yabPN3J1KMNzRzfqKVWb3f74C2uVaF0sIIUim4lApZhqmmjNzeYxsBcRsM7kymVtSPffYhQ1pZdOzz1JdCxS5LPtK2oMPjsTG1mTx8+jD27txz4aOcf0zHAjhhZ5hPLaz16zzWmqrzev4nKd296JrKGAEuaPn1k9p5z7VOuGIOaPPf75reMLv6BrBdcz+fv+kY5fqs8DzZSZfQ40T/SOhcWtS9gGPzXPp6A/A67Ib54pYNTAcOGyRTqazYWo6aw2e486eEcxtzN9aSAghhBBCiJlCxsJfT08Pjj/++AmPr127Fu3t7blqlxAVjepK5C/4x8DPYCAMl6PK1CnJNmjAYMeyWV78fv1+YztJQYc7x/mW9qrRMUQMo9ZM4ajZvW1ZJFnk0mIy3aCKFbQhPK4VSGuJ+PGK6z4Nf10j/vw/XxjXPveypVldl/kQktgG7kp3O21oqx8v+k0W3C1kNm06x6KYl0kgkIFdvsTrnhjwTDznbMTWYtfFEkKI6eJN02qZz5suo/dZHzq6hxHrDZt76HQzDSebM9nuXGQzFtoONZO5ZbLn8rwaa5xj8+FUdbC9Sa4FS/SifSUz2Siixa/JOI929I/gL89N7B9mBZ68pBkPbu0ydZtPX9Fins9MPwpltM1cPbceDrsNdXbblH051TqBJP7umHn16BkOmnOdauySnT/h+XItys9C4prU9IHTjiPa6swmI2444rlxo9zcxmrzOAVTHqfZ48KaBQ3Y2jmY0aau6a41uIEuEI4a8TUZ+dxQJ4QQQgghRKWR8V/Gq1atwm9/+1t85CMfGfc4rQ1WrFiRy7YJIURSvJME/xj4oRjHIEpiwCOToAEDHMctbMTtT+w1Yh+hvSeDEvyd025Ds8eJ7uGgsQJ1OuxoO2SRlA+LyXSDKqwLM8s9Psus91+P4y3f/xSa9u8yj+8/ei02vvy8ae/ozqWQFC9mDYyE4LbbMg7uFjKbNptjTRYIZIDtzif3TXnODND9ZVNnRmJrsetiCSFELkjXanm6c64l0D3fNYghXwCRKhv2HhzBuiVNSe/P6awrppozzzxyVk6yGQtph5rJ3EKmei7b1uRxppVNn+xasESvYDiC4UDErNGsNRnhezEBju/H1yf2T0utGyctacLmjiGTccf3ob0nM/0o+jV73Rn15VTrhMTf8Rr+1p+3pTV2qT4LPN+mGid29AwbcS/+/K3PCN0wXnPsXOzs8aG9b8RYitJqnGuvQChqjsONbVyTZLKpKxdrDT7P7eD6L4K66olr+HxtqBNCCCGEEKISyXjV/PGPfxzvfOc78e9//xvHHXeceWz9+vXYvHmzsfrMhEAgYGoD3nfffaiursYll1xivpKxZcsWXHXVVdi4cSMWL16MK664AqeeemqmzRdCVHjwz2mrMsJfS61rXMAjm6DBrDq3Cebw/fpGQrDbq8yxeDTaUHrdDgz4aaUUQwysKeM29p8jgXDOLSbTDqpsOoA3H99iHudx3/TcA2i6+sNwBf2j51/bgB5Pw+iO7izbl2shKTELgqJf91DQiKoMUGUS3C1kNm02x0oVCCTP7OmfNKA9r6Eaf3q2A72+zMTWYtbFEkKIXJGt1XIyUmVOJwp0LdU29Adj2Nw+iCd39+KkJc3jBKB01hXpzJmP7zyY1YaXqRwROH/QCYGboiiMsb8C4cwzppL1VyZzC2Hfsq4ds9rYFq7RzJrq0HNpqX7+CfPx9J7+KTP3U10LtK/c2zeCWbVuLGk+LO6NzaONNegY8MOToh/nNtbAH4rgwpMWGUtP1vQ7+lCmXzZi7GTrhMTfbe4YMGNX46w2Ipw1ZlY/xR9vss8C7c/rq51GBOVmtUQrUfb/d/7y/JioR3eL/zhyllnzdg8GcPez7aY+YKabunKx1mB95CUtNdh+ML3Mz2KheslCCCGEEKIihT9aet5xxx247bbbsH37drjdbpx00kn45je/iblz52b0Xtdeey02bNiAm2++Gfv378cnP/lJzJs3D+ecc8645w0ODhpB8GUve5kppPy73/0OH/jAB3DvvfeipWU0wC2EmDlMFvBgQIfBi2RBnUyDBl6XA621bjTU8L2qTBDGF2DwZMQIgT1DQdhtNpy+vAV1Lod5bGf3cN4sJtMLqgyivb8WTTUB4H/+B21xGzL2LF2FGz/4VQzNW4Q1s2uzbp/Vjjn11eMCilZwKhMhKVUWBIU/jhXQZwKl+arZVwxSBQInC2gzC4KJpxT9MhVbi1UXSwghck0ubJ1TWW6+fHUb7t8UL9ABfn8EcxvcWNziMdaInNtOWuKaIChNtq5IZ+7uGghgVl019vT6piV4eOMcEWh3ub1z2NS9owUmhSAKY01eV0YZU6n6a+Wc2rTnlt0HfdjYPmA2TkWiMSOkNXlcWDG71szp1nNb69x4/0uWp5VNn3gtUNDkuYWjrL/sNLaV/PdI8PBmrLNWzcYdU2TXVzsP17q733PACIC090xXjM1WFOJzudHsXzt6MByMIByJjusnnk/88VJ9Fl60rAVHzqkzYnX849w8xPqB7Iv49dbG/QPmsYtftMSIrhT9stnUlYu1Bt/3ZUe0oPeZnmmL+/lC9ZKFEEIIIUS5kJVPRjgcxqtf/Woce+yx5uebbroJAwMDGQl/Pp/PiIc33ngjjj76aPO1bds2/OIXv5gg/NFG1OPxmIw/u92OD33oQ3jwwQeNaHjmmWdmcwpCiDInVcDj2AWNuGBdHR7Y3DntoEF8ZuFYEKQWWNhcY3ZjP981hKPnNeDjrzjSvF++LSbTCap0DEQRfmEXcMG5wOOPj/0u9p73AFdfg7fYHNNuH9tBW6j9faMCqBVQZE2Y5bO9pkZfOkLSZFkQaxc1Arv7zM+9w0EcGIjmTVAth4D2sQsaTLAym5303gLWxRJCiHwzHVvnySw3tx4YNO+3qNlz6D476vPNf/OYfM2uHh8WNHkwu96d9roiPUEkaqxE+dzprF2sdcu/XuhB73AA/lAUtdUOU/eO1pXMhjNiWCi9jR5T9ReFqsS5xcoy5EaVcCRm5rK7nm7HkD+MRo/TrBFCkRi6Bv0mI+34hY3jRK1MsumTXQs8NwpUm/f1ojcwbOY/a+1A0YriVrp2sZlay05HFOJY086bG9jm1lfDWe0Y66dBf8gIgC9a3jLueJN9Fl565Oyxx1nb7w9P7zcWpqlEvd88uccI0Nlm7OVqrbGs1YN3nl5nxjDfNZszRfWShRBCCCFEOZFxlO/uu+/Gpz71KXz0ox8dE/6effZZfPvb38Z1112Hs88+O633oTUoBURmEFqceOKJxi40Go3CZju8s/LRRx/FWWedZUQ/i9tvvz3TpguRNbJ0KU0mC3hwd/50MgKmyizkrunFLV5csG6BsVUi+bJJtK6/jn4/IpEYhgMh1Ne4JjyP7Tpuwz9x9Ac+h6q+3tEHq6uBH/wAVe98JxbmqB1P7erFjq4h2KuAplq3CSgys6CTwanA6E7xdII7fK/JrL9WttUa0e/NpywygcJ81uwr9Wt6a+dg1jvpC1UXSwghCrX2ysZqeSrLTVp5Ung5sm3iGoHC2wmLm/Dkrl5T15fiRrrrinQFkVVz643t4nTWLuwXZi7et6kDXUNBk5nPmsSco1n3jhaYzIb786ZOrJhVN+l8OlV/bT0wZGrCcRPQEW2jcwufS3GIomPvSAgtHidufGiHyZ5c3OxB11AAtW6YOm4ur+vQ8wfRUOM0G7eymYeSXQvLW2uxeU8nbO4a1Lqd466dTOxirefyXLk+oVUmMxYpbNJSPv650xGF2NfMNuVaJxKNGkG0toqCrQ1eNzd1Bcyxz149e8KYpfosxD++56DP1PKbTNTb3jlk7OrnN3myytjL5VqDGY58r0LUbE4X1UsWQgghhBAVL/x95zvfMXX5zjvvvLHHaPNJ+09+T1f46+rqQlNTE1yuw8Hr1tZWU/evr68Pzc3NY4/v2bPHiIyf/exn8cADD2D+/PnGFpRCYabwDw9+TQfrPab7PgJlMQ4MYNy7sWPURigUhdtpG929e/Qc84epKO5ngnGFBU3jgwhsB8fosjO9JthiAihuh6kdwqBBJu3k+7zztCVj1wAz6hiwOoaBuNVt5vf5PO/46491Z2gD9kLPME5e0oQWRs/igyp9I3jXfb+E45DoF1u+HLjtNuD44/mEnLSD3zft70f/SMhYUNXXjPaHFcTrGQpgw74BvO74ecZWarK+2dTen2D9VTXB+ov9zWBbfCC2HO690/lMJLumac/GPh4NHCerXRmGyzFq45Z4TL4fg5MMzo4GOt2oYVaEsT8LmL5moJjPK4e+LdRYVGJfCFEu5MNOb2rLzRqT0cdNLPMaJ4ofzJpaPbc+480omQgifK9ssxnH2umyG8tzh63KWEbyfZiVP7u+2rSD2XXp2HHH9xdJrDs3r7HaWHi6nXYzt9Q4bdhyYMhk9lUhhtZaFxY01uDZfQOor3HgiLY6DAXDRhgbzUK0mXmLfX7S0uacWjjyfeY3VqOhoX7CWGdiF8sMwTULGvDrx3bj6b1+s5Riu5cc2vhlPXe6opDV13xtKOIZs2gdDoSNpTzXBFwf1Tizy8xPJ+s0GgPsVdnXmcxlDU7r/Uqp7rDqJQshhBBCiHIj478eOjo6xmXpWVCEoxVnuoyMjIwT/Yj1czAYnGALesMNN+Ad73iHsQa966678O53vxt/+tOfMq4rSEvS+GzCbOAf6WwTSfxjUhSOQozDjm4ffvn4fmNn2FbnRks1LYQiWL+rGzs7+/GWdfOMJU2uiZpAEHeU8490uwnU20r4Wivlz0SdDagzcY4QBgdDWb3HLDfwlrWtaO+vSxiTCPr7+5EvJl5/Tthj1Xhq7wD+urkTaxfUmd38vCaZgdhY48LB7/0/zDvvHEROOAEjP/gBYg0NwDTbGN+OWpfDZGW3eJ3oGQ5hZ48Pc+rcqK22G0svWonZqqJY3uTA4ODApO/52yf2YMAXRGONA3Xu0dd30D50OIA18+pMcNIWjSAaGEF/f3mJMLn+THirYphf58DmAwNY1mLZ0B0+1u4eH1bNqYO3Koj+/lDSa/iNx7bgga09ZswC4VHBdkWrBy9d2YxZ7vxey+U4FrzOhRCVY6c3mfjB+0S10wb+icBafpxb4wWKeIFu3eLmjASqTAWR6QoePE8KaqcuazFrlsQ6vLTnTseO2+ovf8hm6sXF1wqktfeSVo+ZR16zZi62dgzi7g0dJhuS2XvcmLR8lteISR7XMELhqKndy6y+59oHTDZ/DLGxdvE9CmnhmI5dLK/DX/5rN/66pXM0w9NpR2ONc0w4pqU83SX4XtMVhdgGruVqIw7TZ0fMGd1YSKtP9hGvl109w1nX4k0n65TnNt06k7mowVmqqF6yEEIIIYSoeOFv9erV+PnPf47PfOYz4x6/9dZbcdRRR6X9Pm63e4LAZ/1cTWu6OGjxuWrVKlPbz2rDww8/jN/97ne47LLLMmp/fX39OMvQbLCyABoaGkpO5JhJ5HscuHv3kSe7MByuwur5TWPH8AJoqfdgW+cw/rnHh+OWzsmp9Uw5ZhgW6zPBMUqW0ZcvmhoLdw6prr/lnmo01lbj3y/0YsfBAFPl4Kypxtolsw5lIHoxcP/9qF+1CvXTvNdZ7YtvBy05UTWMWfUuEzza1+9Hrz+MaNXoLvh5TV4TCFwyp9nstJ/sPWNVdixp9ZpgoNPhgMsJ1LgdODgcwp7+oAkerlnQjKMWTrS2KnVy8ZkYf204ce7axej95y7sGQiOz9obCKCtsRavO2ExmhpT3yPWNjSY+1UhPzPlPBaRSCSPrRJCFNpOz5tC/KBYxQyrA4P+USvvfj/u3XgAx8yvR3O1zdRXs7Kjs81KK6QgYp0nhSRmJmZba42/Zw0/WqByY45VK9Cy9u4ZDhgRixalR82pw7P7+3FkWy0aPVwfjApHA4fcAdhl7f0jxrnAFwiD2ypsqILLYTciK9+j0EwmsFL0u+kfL+DxXb1GiOPzWBuR2Yysk3fcggazHrKuxemKQt2DASPssW4iL/nEusm8BqdTizedrNNj5tWb7MZfPebD03v7sKzVC4/bkXHG3nRqcJZyaQa+n+olCyGEEEKIciLjvx5Y34/Zdg8++KAR48iWLVuMPSez8tKlra0Nvb29ps6fw+EYs/+k6EdxLp5Zs2Zh2bJl4x5bsmQJ2tvbM23+WO2o6WK9j4S/4pLPcWBw/HA9DFvKehgMAOTKioaBhp88Er/L3WECVBv3D5g/urPd5V4ICv2ZyIcNWKGZ7BwY4El1/bXUVuOM5c1YecfP8YYHf4PeP/8Nc5ctOGxjunAhquz2nIxF4ufAZbebIB4Dfx63EwubbCYQRutTBqmAGPpHRoWqVMe33nNeY42xIxsO9qW0/nrl0W2w26eXpV2On4lU18bLVs02mRejgeNAxoFju52BTm5fmFlkMxaa34UoPKkypzi3sa4aN5Y8vafPZCWxzu50xQ+Kfuv39BkxKhwdtXbkxoqN7YN4ancf5ta70NboyYlAVyhBJFe11ubWV5sNaL2+EBY1sZ2jczHnHaenCrt7R9AWjprnPd89ZGrQsT4cv1tQAKRF5d5eH/qYMRiJmdp4dTVO4xBg1a4bCWWXyZZK+BkKhBAN+FFXxw2fVVmJz3wfnnGT12XsNrkUcXltZr1C1wKKnFYWn3caohDn+7ufbTfCIvtnVp3L/NuqmzwqMoamVYt3qqxTjgGFzN8+td+s6bqHAugaDBq71tZad1Y1sgtt05nvvwtUL1kIIYQQQlS88Mdae/feey/++Mc/YufOnUa0O+WUU/C6170OdXXpL6opGvK169evx7p168xjTzzxBNasWTPBivP444/HY489Nu6xHTt24LWvfW2mzReiZC1dVDS++DZgpXQOZx45K+X15xjx4YJvfw6r//oH87PnA+8F7rqLsk7ePwcM4lHgY0CKATCKdNQlGVzk7xhQmio4Ff+eDDYdv7BxXD0bBimLYf1VLtfGxactxuuc8wq+k14IIYqx9uK9kAJLry9oNp0w0/k7f9lmnBCYKWbdA6fK9kkUP+bUu7HtwNBYVhrr0K1sqzOZTQuaPHhmXz/m1Tlx2UtXmg0TubjPFkIQiT9PZpBxPuVcy1q6FE9pw5lO5lY7sxKdNmMBSfHP2pzDMaA4xMw+rgH4PG8K4YvzOZ0ItnUOGttKrhWs9xgORDCr1o36aif+vKkTK2bVZdXH1rjTQvTxnb3oGvQbO2tbLIKj5g/inGPmZLSWsMRnCpb7ekeM7Xj8+bAfeE1GokAgPFpD8YjZdVmJrdban/178pJmPL23H32H+rrR40TXYACPvtCLk5ZMvwZiqqxT1mOmXTzbyDUHN2VxLbaje+j/s3cecI5V5d//pZebZHrdne2dZZe+9A6CgEhRmiigL6KAFCkCUqSDXUFAAUFAkCL4l15FpMNSlu1tdmd3ek0mmfS8n+dkMpvJJDM3mZvkJnm+EnfSbs4955Zznt9TIJn0OGG3KdhvdrWq5xm5WBekk7I3m5GHDMMwDMMwDCOXjPKFVFZWinp7BEXt2Ww2GAxjvRvHw2Kx4Jvf/KaoC3jrrbeis7MTDz74IG677baR6D8SEikC8NRTTxXpRf/4xz8KgfG5555DS0sLjj/++EyazzCykHKc0oWLxpeOQCpnHz5p7oVJpx1z/JVv24zjfnEhqres37FBir6memQKpPZMREo4D4QRr1YSXujUfjL6Uf1J8tyndstJBZW4zUrJhIoZRmGQpFpElFosGArnJfVXvqMN5BwbZCA976DZqj2+GYZhMkVKuD/QtZAi8kjss5kNCEfCGAqE8c76Lny8uRfz6u3YtakCCxrsI9HQJBzS/ZMiyveYWYmF9TvEwXjx48vt0chBs0GHOodZCDd0DyPICZEEq85+j/hesuutHON+vgQA2s9DF9TioXebRdYIEtpIcKP02t9aUCtLBKE203fm1ztEGkrXEDnmQIiktQ6zqG9HoulEwpdeqwE9q5QMQgQjAZdSWdI26DskrI1X/05OlNdnLX2iziBFypEgM7/eDk1YI/a9tX8IX9+5AdV2k6wxiInP1ZJpOMNBBCb9js9Tn5Aw5oxLv5luHcdkc3863skRKiZyi3qKOq14HLVzeuKl3KhTi0GHf3/RKrKXxM85KL3o0qnlYl9WbBsQwl+2iZ4rHrRTjc2wAVPKrbLOlVyuC+Sk7C2GjCQMwzAMwzBMcSBbsXjttddEHb+bb75ZpOncunWrqLlHaT6NRiPOOOMMXH755WmlxrrqqquE8Pe9731PiIcXXnghjjzySPHe/vvvL0TAE088EVOmTMH999+PW265RaQTnT17tviX2lFqsAdh7sh1SpfxIgzp98ho0zXoFQvJUvYcLQaBVM4+dDl9qLGbhVEydvzNeecVHPnrq2DyuMVn/RYJ+r8+CO0p387peUBCnTBOdQxiS69HRBNQeiq5qaCSbZMeZGiiY11O1KAar72jjD2BUEbRBsVwfDMMw2RK/P1BMurE9Y5EPxJOSERpH/BBr9OI+qRU94wEkvc39eDZz7eL6yMZ/r0BLda2u/Dh5l68vLJdvEbbjImAJAD86GAb/ru+C/f/bxNmVVFdurHpqamOKkWOUU3UROQY9/MpANBvv7mmU0Rs7TOraiQKyekNitdJtJuoDbG6c9QHlMY7Ao24Z1PtN7r/UL9QKlBpAuFrQ9egEJj2m1MFs0EvHHyMOu1IHUASuDLJoBGL8uoZ9KPP7RcCIh0nA0MBrNg+gIW1VlRJBnzU3CfSw06rkkQ7JhoD2h8aK0rtSVF/FEFolIwjxwfNx8nhiY69ZTOrRuYqmdRxTJz7U/v3nFEx4ghF04yeQZoPmqAU8VGnLb2euHTu+ZtzxM6VDV0uDHp8sFmjEaByzpVcz5vGS9lbDBlJGIZhGIZhmBIT/l544QVceeWVOOGEE4TIR1x88cWixh4JcBSZd+2116KqqkrU/0sn6u+OO+4Qj0RIUIxn9913xz//+U+UMuxBmFsy9d7NFClFhGEsxRWlVvT6Q3j8o61Yud1Zsp6juU7Bmg1RXt4+hLHHjArx2Y2t/fjOv+7BPs89PPKZjqbZ8D7+D0zfb3fk4zwgj/cyqxF7lplxzJKGUREV6aZby/a5NVnkGnhHG3vM6HN50q7Pqdbjm2EYJhfE3x8o1SbNfUhsopSKdF8hppSZYTLoQGFklHKS7jkkAtbYjCJinEQfup9QrbRed0CkgFzV6hQi4Ly6aIQg/QZdx2ttZiEkJnNcJMGRagrS78cjx7hP5EsAiI+Amle3IwKKqB92rpkoAipV3TnqbxLyJJNuTN25VMLXTo1lIqqShFSlMmjE7yOlbG3ucYu6gbQdykRAr69uH0REoxHiZEinEWlFaawnGoN48ZmiPkngjNUhpuhFEhnpd6aWW8fMVdKt45hs7h9zhCLouCaxNJ2+SQc1zDkSz6cqsxZhrV72uZKPfUiWsrcYMpIwDMMwDMMwxYWsVcRDDz0kovMoqo/48ssvsWrVKlxyySU44IADxGuXXnopbr/99rSEP0Y+7EGYHzLx3s2UZFFQsRRXZBAIhcJoqrIKL/dS9hyVcpyCNRuivNx9oFSXc8MumM44B40rPhl5f92hx0J3/58xe2YD8nkeLJk69jyQ2xe5PLeyfe0lI85YY0+0llGVw4j1nW7Zxh5Jhcc3wzBMLondHx59f6uILNcggnAkmm6z0WGC1RS9NpIDSn/QL8S+SosB2/o8aB/witTTVKeMItXoWkr/NlVY4A9G00yu2N4frZe6z4wJMjv4MKc6Ou9Kx7j/ylftiAw7buVDAJhsBNRk6s4lE74aHGbc999NimbQiN9HGl+KGjToovdF2j5FOm7r9Yg2U7QcRQGGIhFUmI0TjkG8+NwjxlASv9c9GK1DTFGD+8+txunLpiWdq6RTxzE296djst4RQSAcGYmGJJTOLpKIlOc5x9jzCfB6Q5DMethMNlnnSr73IQZnbGAYhmEYhmHUhqwZ8Pr163HggQeOPH/nnXfEouqwww4beW3u3LlobW3NTitLHCU8CDlFaOak672bKYlRUOTBvK7DKeqn6LUQnsw0/uQFTAaBUvUczXUK1myI8unsg/a5d4Bh0S9iMKD/5jsw56cXQUs5qFR2HqTbF7k6t7J97T12iVaxNFNqO74ZhmHyAd0fztl/BtqcQ7AadAhHgJWtA6MM+5RykcL+KCKrezAEtz+ESAQiPeKANyjq/JHYYxiuk2YyaOD2hbBzoxkdLh9eX92BI3aqHTf6/JC5laPuSXKM+19uGxDRiHSdzkf6xMlGQE227lwy4UvpKP/4fYxEgqJmIB0PJPDE7peiTp/BJCIVdVqtENTkjkGic1KVZES5xSgE5cMW1mLf2dWKzFVoG1Sf8tVV7eK4oWhFethNeliNekyrGhtVqCT5nnOMPZ9IMk/vXMn3PqgpepJhGIZhGIZh0hb+KL2nz+cbef7uu++ioaEBc+bMGXmts7MTDodDzuaYHHsQcorQyZOO9+5kiDc0fLmtH9v6hkR6pDqHWaQbotpqpV7rS01pIjMV5dPah7PPBt5+G3jzTWiefhoVy5ZBjefBZPpCrcev3Gvvpm63YsYeNR3fDMMw+WRqhRVLppQLg36dndI0krgTgUmvEQZ9SjtJl0KKRiNxJyYZhCLAoC+EQYQgGbQwG/XQaTRCACSRkKKqYtfv45Y2pow+P2JRHWpMobSN+55A9FpPwk069wSlnPQmGwGVjbpzSkf5j95HPSqtRpEW1ihpxf2ZogCp54x6jThOah0kYurTui+n45yU6djFajGSUx+lERV1E4MhtHmDon8PXVCb1QwI+Z5zKCGWZXsf5I6tWiIPGYZhGIZhGCaGrJnn3nvvjccff1zU8fviiy/w2Wef4Zxzzhn1mQceeEDU4WPUtSjiFKGFR8zQ8N/1XXjgf5sws8omUislCg+l7DmqljSRkxHlU+3D0loLDt+lacc+0HbvuQdwu4GaGqiVYkxxJPfaSyhp7FHL8c0wDJNP4g367U4vJKNOiHwRs05E7pEA2OH0jxL9Ynef2HN3IAyzgdJAakREmH448it+DrWg3pFU4KFb2cDAwKg20XsTXe+tBr1oSDr3BCWd9CYbAZWtunNKRvnH7yM5G82uleDyBYTzEdUfHAqERD0/pycAh9UonOfi+0HufVmOc1L82NHvhiNRYfmwhXXYb5zIwGAwjCc/bsGWHjfm1NhEX5PwR+KqQatBu9OHte0uHDK/NqvOPvmcc0gKiWXZ2od0zku1RB4yY/nggw+wbNmypLVcGYZhGIZhihlZK7bLLrsM3/3ud/H888/D7XZj9uzZOO+888R7L730Ev7yl79g27ZtQhxklEfKcFHERcYLF1rg0+KxxmYWhotkC5VS9xxVQ5rIyXoqJ+5D+frVqPv+t6H51a+Ab3xjxwet1uhDxRRTiqOYdzfVigqFKKrED41GK4xxsdo7dE7GzsGZ1ZLixh46NmYcKGF5S5+oMURpxnZrqoCe8v4yDMOUCPEG/c9a+tA16EOXK4SGcrNwilrX6R4R+cTtPwJQAtB4+j1BYbg36bWYUU0Ci14ILPFzqGQCD12/E5Fr3B/wBrC6zSkEHRLMYp9Ldk9Q2klvshFQ1K5Z1RI+3tIr/qZ+it33JitgKBXln2wfqU0klFH7dFoNyi0GGPV6LJ1aNpIxQ2kRJn7sLAYt+tx+cYx+0dKPt9d2CdHu9L3H1gKk7z358Ta89FU7KAMp1Q+kqEUSMKttppF9zJXDVL7m1GPPpx3vhcNhcd5SpggaM5qbUXuSReARdJwesrAGe86sENuiNfNk9iHd8zLf0ZNMai666CIYDAYcddRROPbYY7HLLrtwdzEMw+SIgN+PLVu2ZG37lHmwRsUO8gyTb2QpBtOmTcPLL7+M9957D1qtFvvuu69I/0kMDg5it912w+9//3s0NTVlu70lSaYehMUYgVNKsOfoxOQ7TaSkgKfyyD787W8AOVQMDQHf/S7w6afA7NmKtjeTVFSZpjiia1MsLVi0rk5E1UJ1bD/JUPtJcx+6XF54g2Fh+PlkSx8cZr0wJFKquYrh6AES5Oja21RhTWrsIcPy1oFARsaeZF7mH2/uyyj6g2EYppCJFyVWtzvxyeZedLl8WNc5iGAoArrDGET6T4jov7gyYQJK1tnrCYrP6XUeIWrR9Xt6lSSi11p6PbIFgomM+3SfIKFga58HW3s92NTlFp+ZX28XqdsTBYBsOelNJgJqU/cgej1+bO3xYE27S7Sj2mYUfTQUCKtGwEjcR0qROa3Sit1nVGD36RUI+714Z5MLPe4AjHqd4iJM/NhVSQZ8sW1AbJ9E0gqrAV0uP/63sVvcw8/Zf+ZIn8cEJYr0o+OlymZEKBwRqUopapFqKpJQKddhSs48Tc5n8jGnHns+maANR8Q5+VWrE4FgWJzXv3t9vVgLUz3ENW2uUXMjcgCgc75/KDAmKm8y6T0zOS85Y4M6oTI19CB71rnnngubzYajjz4axxxzDBYtWpTv5jEMwxQtvsEBNG/ehIuvvgEmk/wU8elQabfi0b/ez+Ifw6RAtgXWbDbj0EMPHfUaiX5HHnkkvvWtb8ndDJMBmXoQFlMETinCnqP5ZyJDiSLirNdLrqjAn/+84zWqn6rTKbov46UrIsNFsv3MNMWRP0he2m70efwIitRqGhGBccCcalWmOIrtJ0WTULQAGQ+rJBPqy8yiVhSJmfTalHKziBhp7R/Ctj4PljaVj1x7E409lJZOGw5h8dRKfC3NNFOcork42bhxI2pra2G32/HOO+/gzTffFAYnnkMxpcJkatjFRAl6HL6gTmznuc+2YX2HS9xvqX4fGf8jERIKdqT+HPX7ALb1efHM8u3i+k4i4V1vbUg7rWYq4z7NzztdPrQ5vUKAqrWbsbbdKeYCFAU2r86O3aZVjBLesumkl0kUV/z9Z9dp5Wjtj7Z9S48HnU6fqDl32rKxEWz5ItU+xtK0zmmsFgJNNlJYxsau3kHj7BLrMlqTxcaxQjLA6w+Jz8VEIiImKFE0KEX6hcLRaDWqT0iv0/yJHIzkOI/F5i/0b99QADoNxLF88u5NmFdvVzyNbDaIP582dLnQ3udGmysgnMboGGwst4p52Aebe/Ds59vR4DBjbp1NrG9b+z14bVWH2A7VoaQ+nky0rFKp/POdkYQZjV6vx0EHHSQewWBQOLPTHOz0009HXV0djjvuOJx44olobGzkrmMYhlGQgG8IYY0e1XufiKrG6Yr3rbu3A13vPwOn08nCH8OkIKPQi4cffhj3338/uru7xfPKykqcdtppuOCCCzLZHCODTDwIJS4yXvCUkufoZAyC2UCOoWTS4mxzM3DyydHovhjnngv8/vfkbaHovqRKV0TRE7V2k6ibFL+f5FX95prOtFMc0fbeXtcFrUYjvLCN+miNHRLQOlw+EUmgpuM21jc9g3609g1h0BcQ3uUUqbG52w2TQYup5WYRMUAP0i3Neg38YY0QNMnYHEs/FW/soe2EfUNY0FQLnYh4lAenaC5O/vGPf+DGG2/EX//6V+Fp/qMf/UjUT37ttdfQ2toq0lAxTDGjpPgQEwGPXdqIh95rFvevUDgMrUYr6quNB71L0dwkZFHNwAPn1sAXCqctFCQa960GHf7v81Zx749FCNnNQLWtGs6hADZ0DYr9PfeAWaNSNmfbSW+8KK7EeRcJKolRTlMrrCJ6n5xf6LMUiRYTsNTCeGla51D9v5rsiDCxsbOF9SJC0jacDjUGzQ8GI0Eh4sVEIiImKNHxZzXqRPRqpdUAk0EntkH9T8cMzZnGcx6LzV9ovuLxBUWWARqn1W0ufLi5Fz85bC6mV1kVTSObLWLnU0ufG/e+uRZGowFLppSJTEMEOddRTUSK0K2xGcVzon3AByOpnZpoTUQ6XicbLavEeZnvjCRMcvx+v3C8evXVV/Gf//wHFRUVwrG9ublZRP/99Kc/xXe+8x3uPoZhGIWxVtTAUTs1K/3alZWtMkwJC3933303Hn30UWGk2nXXXUX+/eXLl+Ouu+4S6T8pfQKTHdL1IORUkcVBKXiOqs0bOZ2Iq4zF2ZdeAs44A+jriz4noe+ee4CzzlJ0X8YTkigyj0Q6i0GH/eZUo9EU3c8V2wfw6qp2OMwG4W0tN8URPScRkbZHX6Ft6bRaNFZYMavaKoSzTI0w2SC+b8wGjRhbshWajToYdGH0DwWFtz79S/sVCEcwrcoqjMxBjx8fNffi1hdWY8nU8pFjNWbsIaPjwEBUEEwHTtFcnJCz1B133IG99toLN910ExYuXChe+/jjj3HJJZew8McUNdmKYp5eKQnh7oUVbfAHI9Brw8LJJBnD5f9GoL9XtrmEg8eyWVXinp2uUBBv3KfUhJu6o2k948Uf+rvMahTRfl3D0YDxgoCUJye9ZPMuSudJ+0DRirF9oH+pRiFgEKlK6fOFViIgWyKMNDx2JEYFw2EYdKPHKCAyHkTrAtOxHxOJqL+9AZ0Q6CgzwsBQAP0ePySTXjiMeQNBIRRTKtpUzmOx+QuJfn1uH7yBsBANaaz8wZDIOvCHN9Zjt6ZyxdPIZgtqAzmNubwhsQaIiX4Eic8U0Uj1jvs8AfGcIMHVLo5PiP2k12M1NScTLSvl4bxUmwNkMfH666+LNJ8k9lGtv6997WvCprXHHnuMfOaxxx7Db37zGxb+GIZhGIYpKtKerT755JO45ZZbRqX9JAMWpUmg11n4U8/ilVNFFg/F7Dk6WYOg0gvlTCKuUomzMWPgqLZFwsAvfgHcfDO5pEd/lGr5PfMMsHQplCaVkETCFKWTIiNL7GWqNUP7We+I4Mtt/dCTF3UC4xlT6DmJYiQiErH6fmT0ou9RjR011RWNT9O1fGsfAqEIHBa96JNARCPqQVG7feRl7gtCp9EIIxtZjCWzHvCFhNe3kp7znKK5OOno6MDuu+8u/n7rrbdwyimniL/r6+vhdrvz3DqGyR7ZjGKmz59/6By09HmwYtuAuIanItU7nkAY/1sfzWAys1rK+B6V6bU7H056qeZdq9qc4h5HKUopWlHuPpQqsbH7qLlHzA9I6CMxKDZ2g94gah1mkR0gXiQip6tPt/SKun5lFqN4vdvtE5+nqD06DhY1OvDtPZpGzSni57sUEbi+0yUi/Uj0i08xajboUe/QoG1gCO/4QjhgblXOar1nUm+QIk1JEKfn7QNDw+fR6HT3NJ8kcbXMYhBCKT0n4gVX6rvY65M9XnN9XqrNAbLYuPLKK3H44YcLYW+//faDLkk5hcWLF+Pss8/OS/sYhmEYhmFUI/xRXb8ZM2aMeX3mzJno7e1Vql2MQpRSqkim9AyCSi2UE40ptN1063okirOp2vb1qhBm3nXXDtHv+OOBhx4CysuRDWifhgIh2EJ6dA/6RoQ44T3t8Yt0nGTwizeWUGSbQa8RRqiY93Q8qYwpMcMnRQ6SiKh2o2F8mi7aTzLOkUGOPPSp9TT8VCmKBFAyrtELDo0edQ6z6C9K40UpvKg/lfKclzhFc1Eya9Ys/Pvf/xap0Sm1JxmgAoEAHnzwQSxYsCDfzWOYrJHtKGa6199+0hI88t5mPPd5GwaGI4FGfmMc0S8G1fpbvqUPC+rsIlViJvcoKcNrd66d9FLNu2jOVecwYW3HoHD8OWR+zaiIq/H2oVSJjR0du239XvS5/aixm8TxRPMni1GPWdWSSEEZE4mo/30ByigQwLQKEsW0onYwCV0U6betP1of8rLD58MYJ34lzilpG5u6BsUcpdy6Q/SLYdRrxVxmwButIZgMpedkqea9RyyqE79Fv9Pt8uHzrf0ispQ+Q3Mu2hdKCx+KRPumY8ADu8WEaVU7UsrS3JX2h45B+peeE/Q3Ca6xv2OvT/Z4zeV5yXWdsw/V9CMbFtWAiol+L774Ivbcc8+RmlBLly4VD4ZhGIZhmGIi7ZkwpfckQxXVqoktCEOhkHhtyZIl2WgjM0mSRSPFvCvXtDs5nQhTkAZBpRbKyYwpFKW3x4yKpMY7OYaS8dtmxPl/vA+NZ50O3HILcPnlUYUpS5CRZUuPG+s6XOJnyDBSaTWi0mZAkCLy9BqRjjPeWEJ/k7GEIt3iBcFkxpRE0dSk0+Y8ZVmmSMOG2mikol/sq8cfFfpIBKRjkDzyya7jDoZh1keFPiLmyR+LZlTKc55TNBevt/nFF1+MgYEBnH766Zg9e7aYR1GNv3vvvTffzWOYrJGLKGa6159zwGy0DfhEfdWvWp1w+0IIRyYW/WJQtNC7G7thMxsw4PGLe1s6t+bJXLtz6aSXbN7V6/ZhY6db/OsPhMT7Bp0Gi6eUC4FDzj6UKuLY238GzAYt3lrTiW19QyJlZ7XNhCmiPrB/lEhE/U+1gyusBpGyktJzkhMRiVcefxg1NpNwtuoY9I3MJZLNKTucQ/hy27Bjl8mA4ZJ3I9D2qE0hXxhObwAVw+OYrTlZqnnvB5t7ROp4EkRJ5KP5tUGvxeJGB8otRnzS3INOl09sg/pNr4HoszfXdOHAeRHMqoke+zTXqrAYsKnHLcRUek7QfJb6gk5WcsqKva7E8ZqL85LrOucGKktz/vnn46yzzsJPfvIT8drf/vY3XH/99WIOFsvIwDAMwzAMU2ykPdO/6qqrcMYZZwjPqZ122km8tnLlSlEsmerVMOokPhqJFmf3/XcTpxNhCtYgqNRCOZUxZXVbUKR+3HNGJSolU1qGkjFto/MvGIDdbBxp23NTdsV569ZDO3Ns9LSS0P69uKJNeJ8HQxHU2I3i706XFz1unxC1nJ6AqMEXM5YQ9LfdpEeb1wtDQv/FG1OGAkHc85+NI9cSEv26B/3odvuxa9OO2oBqNRpSOyji8YNNPSLKg4xkPoRFv/hCYUQ0VG8mKvLRcUT1jUgGpbElT34y8sb2USnPeU7RXJzss88+eP/99+FyuVBWViZe+/GPfyzmVFRvhmGKFSlHUcwkgOj1WuxWX4Vquxnvru8WNcFiwfWpiEUEUpZQSnVpNehww/+txD6zq3HaXtNQM3oKkLVrd67qOSfOu0js+7ylX7STRKgpFRaR7nNLrwcefwi7Ta8QdXuzEX1YLNDY/fyYRTh0QS1eX9UpUmxGfak0Y0Qi6n+KxtttWgWauz2iRp2bUolrtcKZaMZwHWGaV9Fnqe9f/qp9zHy3ocyCqRUWUSewe9ALq1EaeS+WZpTmNxRNSNkd4us2Kj0nSzUnJ/GR6g92DfpFFgiaT9Lv0hxrXcegeL/DSfUJQ2Ju6g2GUWk1oMpqQKc7gP+u6xbOao0Vlmikn14rak/TayTU0/lVX2YSqX7pLK53mETU4JAvqNjxGjsvt/VFa3jGUgI3VSiTGpXrOucGqrF83nnnjSpJ88QTT+C+++7Drbfeimeo3ALDMAzDMEwRkvYqm7zUX3rpJZGyatOmTTCZTCJX+nHHHQdJkrLTSkYxOJ0IoyakDA2CSiyUUxkqyJgyvcoqFvi0jT1n7EihJMdQEt82g3cIh//+OmgiEbz0s1+NbtvSeWhC9ojtH3mU7zWjEl9sGxDGJDLskTGo0+mF00epmLSotY/1BLea9MJDu93pFUaTRAPm/Ho7Hn5vyxjvbhL+6DNAv+jX2PdahZe7DnNqo4bNbBg0MyISrW1IbQuFIpCMOlHziaL/yGBMnvh6nRYWgxbhSARubxB1ZWYh+sUiIZT2nOcUzcXBxx9/LPuzlG6KYYqRyUYxy63jGz+fmFltEwLBexu7hbiSItNhtA1xf9M1vL7cLK7nr63qEKLE95fVY9dhsT7b1+5c1HOW4vqJxoMi/Wh/42vE0b2/3GxAh8snHGNmVlkxp86Ok3cbXXOOGT12+8+twb6zq8c9XmP9T45ElFmC0ozH10Mmgam5x43HP9wKnU4j5iUkbC2ot486d+jvnRrL0NJHGQuCqLAGxfyOxDQS/Wj7ktGAXZoqhLCWzXSVyebkoo50p1vUH6Q6ygOegDjXyiWj2FeKjKTIvtgZSNkn6Dtuf0gIhJR2tmeQoncHhh2z9NhnVpWYe65pc406vyiVKG2G0qc2d7sVj8rb1D2Ytfp7XNc5NzQ3N+Ooo44a8/rRRx+NP/3pTzlqBcMwDMMwTO7JyEJZUVGB7373u8q3hskqnE6EKRaDoBIL5VTiIf1NC3kStLb0eDC1wopah0m2oSTWtikdbTj+5otQvWW9eL110a744vjv5KzOHUUdxPaPRNVdmsqF4Eie32TwG/SFEAyGEdJq8NHmPrT0DgmDChmLaD/JO5y81xMNLDQehy+sE0bRZBGXu04rB7b2i+dU76bDGRYpQ+lBHt3Pfb5deK8rZTSZDCLF51AAe86oEEIvGYhJ9COxjwxoJNi6fCFIRi0ayy3ocQeE+DezyjJK9MtGNGOuoj+Y7HHmmWfK+hydP6tXr+ahYIqSyUTCpVPHN3E+UWUz4dgljfiqtR//W98Nf2jHZzVJRD+dBphRZYHNbBTX9J5BH9a1O/HclxqYLRLsFoOsa7Dar93Ullk1Ej5u7kUZpZR0eUWEP12HYpFi5AA1s9qKQMuAqA3sDoTQ5fSJ+z5VeWDxL3PxNv44pflTfA3lnkEvPm7uE+dHY7kZkskghEASyNZ2uEQqzPgsFHSM7zWzUkS30jhR1CtFE5ZZDbAa9JhWZcXpy6aJz2YzXWWyOTkJmhTNOJLKNBwW5xv9TVDaT0o3T08NOp1Iq0uZKYw6DQKhiHhUWMkBzYxv7zlN9FnsPDpkfu2Y84vIxjmXbYfZXEVElzpUZ5kc13/4wx+Oev3NN9/EtGnRc4RhGIZhGKYYSXsW+cknn+Dmm28W0X6BQGDM+2y8Ui+cToQpFoOglLBQJmNVvNc0mfMmWiiPJx7S71J6q+Vb+kQaLPoduYYS+s29Pn0Lp917A0xD0bRAfosVnorqnC7iKQ1S/P7RPpHARfVVyGABkw4asx6LGstE9B/1d9egD/Pq7CIFVWw/kxlYJrqWzK2zCdHvtGXThLD2whdt0GvDwpBlNeoVNZpMhtgxQClhSeCdWTWEjd2DwvAZCIXg9IaEMWpBgwMLG8rQ2u8RRrn/ru8RfdlQHk0/la0UaLmI/mCyx5o1a7h7GSbDSLh0De6p5hMzqmwY8ASxsm0A3kBkTIrP2N90byPRTzzXaEQdMor4e2V1N7YO+FFpNcl2WFHztZuil3oH/dja4xG13ygabMhiEBGS5JxDaayrbUZ8uW0AQ/5o5NjMKhusRp0q7tuFTqrj1OMLCicsgrI0OCzRY5HqClNtO8o2sLHLLZ7Hz7somo4iB2vtJnS6/AhHwqJ23tw6+6hzK5tidDLxiubjwTA5UkWjEA1arTjf6G/6g94jIqB6yuRAFS13rdVQzWmqdxgaSVVaX2YedT6lOr+UPudy4TDLdZ1zA9VYpvTq77777kipmrVr1wq71h//+McctYJhGIZhGCb3pG15vuaaazB37lxceumlMJvN2WkVkxU4nQhTLAbB+IWyPxjCpq5onRQyJOiE1zqw/9zqcaOvpAm8bKmuyqIGhxCvyCNblqEkEMDUm3+Os37725GXuqfPxfPX/QF9TbNyWueOjBLJ9o8MmdQ/FZJJROGR0YgMGs6hADZ0DYp+PfeAWaKWSioDi7xrSVh4en+8uU8YgObVZcdoMhmkhGOAvOObKi2iLz5r6RdGH2rntEpJpANtqpSEcPlRcy/WtrtECisyiirpOc8UL8FgED09PQiFoqFHdD2g+sjkMPX1r389381jmKySTiRcpgb3VPOJwxbW4byDZ+Ohdzfj0y198AcjI6IfRfpRO8iRIwY5dPQM+kVUkkmnE/dJuvZnQ/iSm8pUCeLFVIrOj6U0pzTgJLTMqJawuLEMm7qi6T9tZoOYJ9B8SC337WIg2XFKoiulFd9zikNE8sWg9J80X6N06RSFSk5usSjB2Jxy9+mVYt7WNpxNQoo7jhKPr3m1dsXHLZl4RU54VIuP5uhuX0hkzqCTjhzMaN5E81C9ViNq8kXr/kGI7TTXolukf/i4Kx+efyuJ3HMuFw6z+a7rnMvrTz458MAD8eyzz4pafuS8rtfrsWDBAvziF79AU1M2Cy8wDKMGurq64HQ6s7Z9h8OBmpqarG2fYRhmMqQ9k+7s7MS9996LmTNnTuqHmdwjcToRRqWkmxortlBe3e7E2+u6QR+j1EZG6EUdEUrH2OnyCc/2VMY5uV62e0yvlLcIbm0FTjkFmv/9b+Slj/Y5Cm9cciP0DjuGvAHFFvFyFuqNZWP3L5Z6STLp4PYFUeugNKDR98qsRhHt1+XyCePReEYMuamJKHIuE6NJrgwRyY6B2IOiIPQ6Hars0T6KQQa5/WZXobXfi2/v2TQq/RTDpOL111/Htddei/7+aBrceGihqJTw5/P5hCHr1VdfFc5Z55xzjngkY9WqVbj++uuxbt06zJkzR3xv8eLFPIhM1pAbCTcZg/t484nDFtShuWcQr63qFCkUv9jaB5c3gLK49Il0/6dIf3JYMegAs0GbNeErnVSmkyWZmEr9ooFGiDEUj0X7qddpks4TlBQ7ihm585fE47R9wIt/fLwVjeWj+zSaft4mojNJ+KN07VbTWGGInLUSxyNbx1eyfUwmXlHN5G39Q6ixmYZ/L4JBfxADHj8C5FhlpgwQIeFEZdBpRM1pEgIpZSmJoJTalCIX03WUG28M0umTXDnM5quucy6vP2qAHNd/9rOf5bsZDMPkQfT7ztk/QK/Lk7XfqLRb8ehf72fxj2GY4hD+jjvuOLzwwgu44IILstMiJmtwOhFGzaSbGouMbrU2k1h4U2waGQ/Iu3hKhQWzqiVRE2U845yiXrb/+Q9w6qlAR0f0ucGAzptux8d7HIeubjd83W7FFvHJFuq0v7tMK0e13SQMLZImknT/yJgyFAgiENTCatKLBX68UVWuEUPutYTeS9dokktDRKpjgAxrA0MBVNuiqd0SDc/Ud2QcTUw/lS1KxSO7mPn1r3+NI444AmeddRZOO+00/PnPfxYi4E033STSTynFnXfeia+++goPP/wwWltbceWVV6KxsRFHHXXUqM95PB6ce+65Yk53++234/HHHxe1b1577TVYrWzMZ/LLZA3uqeYT9PqsGjt+eJBdXFf/9NYG/N+XrUL8M0rRFIoUaUT3SgpJ0mq1qLEZRxxclBS+sl07TI6YSvu3eEoZPm/pF5Hu5DBFzi1KzBOK5d6Vzj6kO3+JP05p2xaDPqlDFc1H59fZsCYCcWw2y5hTZuv4Gm8f48UrX9CLCskoIhkpjSwJe5RGlkTnFdsGYNSFhOhcaTWg3xsUEYAktmspA6hGg3KrUXx2onl44vjQsfvays6k7SPS6ZNc1t/LdW3QXF9/8g1F+jz44INYsWKFyL5Aa5V4/va3v+WtbQzDZP/8J9GvZp+TIFVG7wVK4u7tQNf7z4jf4ag/hmHUSNoz1R/84Ac4+eST8c9//hNTpkwZYxDliZN6yXc6EYZRElocU/04ir6iCj2x+n6xCDajXjuhcS7mZfvyinas2D4ATyAIq0GPJVPL8LXF9fIXvb/73Q7Rj1LGPPUUapctw48yNHqlMjQlW6hT3TkyXD6zfJvYzyqbEVPsehy/e9RTOt4QQ4IWlVUpdxiwqKFMnPOZGDHkXktoW+kYTfJhiEiVcqtSMon0pIl9lKzd2aTUPLKLlZaWFtx3332YNm2aiKoj79PDDz9cGN5JrDvxxBMn/Rsk5j311FP4y1/+ImrY0GP9+vV47LHHxgh/L774IkwmE6644gpxvaQ07v/973/x8ssvK9IWhpkMUg4M7nQfO2rneqzpcOGLln6RBpsyB5BwEHUk0gjnoplVVlF7TMkon1zUDpMrptI9bpemcqzrcGJb35DYNyXmCcVw70pnHyY7f5nIoWooEMYxO9fjuKWN8ARCWUmVK6c/JtrHHx08O6UQF4tk++auU1FlN+K/67pEVGmFxYjmXjd6XD4MBcOwm7Q4bEEtTl82bdw+SxwfEu0pawUJjVRrOr592/s9IsVoOn0SGxNaH9Q7IiJKMbbOIJRO3Z+r2qD5uP7kG5rrkOhHzk42my3fzWEYJg+Q6OeonZqVbXdlZasMwzDKkPaK+bLLLkNlZaUwWHGNv8IjX+lEGEZpD+uYEavRZBE1QRJJyzhHX49tQiPKkKTVzqHbf49Zn30O3bx50Dz+d6C6OuNFfCpD0xE71QrjSfxCnf5e3+lGKBytkULiZ7nFiDUdTvS924yz958xyouYohqe+6wVW3vdqLCONqamW39QzrWE+kdOZCD9Xj4NEYme1madFo99uFWkkiUDEtXTibUnl3UaS80ju5ih2g9DQ0Pib0qVvmbNGjGPmjVrFrZt26bIb9A2yZN91113HXlt9913F+nZw+GwEBljfPHFF+K92HFN/+622274/PPPWfhjSiZDBV0/Lz58Lv7+wVZ8sLlXpFIMDjsRUfaA3adXwKqLKC46KlE7LN1ouvHEVBL3qKYxzR9O3asJ72/sndQ8odDuXcn6klLFy90HJeYvchyqyCFtWpU04f5kozad3H087yDb2PS7Nfakx+oe0ytG5pCUnr7OYY7Wna40YNfZUecx+t1kfZZ4jFkMZnywqQftTq+YEwdCEbE2iLXvi2396Hb5sNfMKtl9Qr+7oMGOV1e148tt/TDoNaJNdpNeRMNOq7QWpMNsLmoXqo333nsPjz76KJYsWZLvpjAMwzAMw+SUtFeta9euFdF+s2fPzk6LmKyT63QiDJMND2tJgYiAeMMBnQNWYzTN0spWpzC0pDRO+f3Y0O8b1c76K+5F9byZODJswpwMjXTjGcvWdbqEZzQZGmhhTgY4WpgP+YOokoxC9Ov3BEQNlVlVVrQ4R6c6jS3eKRKSfkOJqN+JriXpRBm39HryaoiI9RGNwQsr2rG5x42tPR5s6nKL355Xbxf1j3IVHV2KHtnFzEEHHSRq6N14441YtmyZiPI75JBD8Morr6C2tlaR36AowoqKChiNOyJ0qqurRd0/SitKTlvxn6W6fvFUVVWJCMF0iCxYgMiwoJmS3XYD/vWv0a8dfzywfPnEP3DJJcCll+547nIBixbJa9xzz5HyueP5888DP/rRxN+jaIDVq0e/dvnlwBNPTPxdqtV4332jX9tzT6C9HQ4Ko9JSJbUU3HEHcPrpO56vXQscfjhk8dFHQEPDjud//jNw000Tf2/ePOCNN0a/9p3vAG+/PfF3f/AD4PrrR79GEe9yeOQR4OCDR6fLPvPMkad0RTs3HIHHF0Q4Aui0GLnvXfm7F8U1+IhFdSISL3LDDcD990/8mwcdBDz66OjXDjsMs9etw7WAEAuEEw3d4oNh8TeldKbf/PA75+OrY04ZEb72Mvswdcm8kbGMfY/aPcYR6fXXgfnzdzz/+99Rf/kVuNYbFNtPRa+9EoMHvj86Jd0Pf0jhuiIq3RcIwU510iIiMyI8Wg1MVKOPfp9Sj//yl6O2N3Xf3XBjT78QRJL9bjAUiaZjvP/PmLr3IXhoeJ6wW9cGnHrrRaIdITqENdF01xqtZuyxvGoVwpINL3/VLu5dp7zzFHb/50NJfydi0mf9GjHhOffcc9jQNB+vrGwX84+5H72N0x+6TfRlbQS4bPgYSMRtMOOZx17HzCpJ3H8pmmzhb2/Eme+/Oio6NAb1HR3HYeq3Y49JeY2glfUNw2NLY0xDT9vTx8b2l3ciIuMaUR+OjDm+Hv/jU3BXRe81NA+b/dzfUX/JQ4hMNH8YvkbQPm7ocon50NG3X4apKz5OvY+xbQ5fI2gfplZYRl0jaExof38cd/7QvCcQCovHX390E1qW7BWd/+9UjzmrPhl1jaj3BXFZ3LFMv39WMCyuE6f+/Els7HKhwlohnu/z6F0454UnxXltMmihTTZIAFbP2xWDBz4xcs7RnHPGt4/DX7c1R9s3/Dr9Q+NOczGTfvj4uvZa4Nxzd2ysrQ3Yay/IIsk1AldeOfH36uuBj0ePQ+waMe7XwhEcveth+OInVw+PRJTvnXM0DF7PyHlKNRiTHh/33AMce+yO559+CnzzmxOebxGLRd59NAvU1dWNcn5iGIZhGIYpFdIW/shDfOPGjSz8FTi5SifCMOmQjpf4ZCMCMhZWHn4YgetvwNPXPoAtprId7XSYsaJjENsp0i5BMJQjZk7UnuVb+0QKo/l10c+7vEGRutNmjkajGXRaIQyKlKd6EspMSYUypaN+J7qWyP29ydZ0Uvr4I4G11m7C2naXOJa6Bn2YV2fHbtMqchIdXYoe2cUMpdK85ZZbRP29448/Xgh+lDad6un9MsFAnykUURgv+hGx536/X9ZnEz83EZq2Nmjc7nE/E2xsxODAwKjXbO3t0G/fPuH2vV1d8MZ/1+lEuYzvEa7eXoTivmvo6YEk47sRux0DCe21dHbCJOO7/s5OeBK+62hrg7a1dSSoPBWenh74476r7euDQ+a+DvT1IRJXm9HU3Q2LjO+G7Ha4EtortbfDkMnYALLHZrC3F8G47+p7e2FL+C6585Ql+e6cKhMOmVuJGlNIjJO5qwtmGb872LId/v7+UUZ/e1sbdMPf1cctisyJX3YOoHvAjQ6XT0TF7VFnhCbuN8dbTDn7+hAe3lcSDoZa2jGlrRUVE7SXIg8HfUMYGNhhRrd2dsK4fbvom7HuTjvwdXZiKGFsylpbYSNRbALcfb2ib09aUoU31/XAuW4Q9u7hVOYTQA4G23s9WLO9D5UWPXTOAVnfncw1YqizE5u2dIj0rFajDg0aHyqHvzfRObd2cyv+sgEibXyd3YQ6XQDlvZ0T/qbBImH1tl6sabFhSrkZ7d1uGAb64ejpmNQ1Qmx7nLGVe42g7yceX/4hL7xen/h70BfE7CE3DG3R35RzjaB9HPT4UGXWwtTfI2tc5V4j4s8f0/C/9YYQenQRfL6lG82dA/jhUBvmxn13vGSNFr0GXU4vugc8Ii2nztkva1zt9X0I+4bQ1x9G64AXj37cigt6ulDZP3ESt6Hubvji9lXT14cymdfD+GsEYezpgVXGd0kg/Xx9a/S4LzOJa1vsGjEedHxI8wbQ5/KI9UUMqacTpqHx7+eEu6cHgbj26np7Yd++fcLzTSNNHK2azVSfN9xwA37yk59g+vTpMBhGn2VUC5lhGIZhGKYYSVv423///XH11Vfj1VdfRVNTE3Q63aj3L7jgAiXbxzBMiZCuEDfZmpVpCyteL3DRRSKSgpaLJ/3yMjz/64fhDEEIcJQabE6NhA1d7lHtlCtmymnPlh6PEP8ayi1C4CPDoGG41ggZAHRarWgHEIbFqBc1i5IJZdS245Zqsak7usCfWS2hqcKatcgxOVHGuajplO7xR+2otpngHApgQ9cgZtVIOPeAWdDrs+81rAYhlFEOqilz2223jTz/1a9+JYxQVGcv0QCVKbStROEu9jwxNXuqz6abwj3S0DBhxJ+uvh5lZQkSTn09IlOmTLh9U00NTPHfpWgCGd8jbBThGP/dqip537XZxra3tlbWdw21tWO/S31E0WrhMDTjRBxYqqpgif9uRYXsfXVUVIze1+pqWd/VNjQoNzZ0PMhsr5Q4NpWV4343PqLu4iMXjb5X1dQk/W4wIXJqU9iK9z/rjkYP1dp2jE0KMSz2fbq3dsIMT0iDXWfU4MhFdZgTciHQ0BgXkaiJRh9Gom2NRcVRpJZ9eGxoPkGRZWXbfTi2onZ4n6I1wxLvvRRtE6ipxYKm2lHvRWprMVhdN2HUnrWmFsbEcW1sRGRwcEy/jIoo02pgraoS7d21rAxLZ9ajyzyAwP2NyaMZEygrL0ebO4KwRocKuxVhRxlc1XVJ20nRRCI6cRLXCNqHT51aPPNhG3yBaDTXAgk4p6FRbHuic+7znhDcNg0WTYlGhulI5KquE/MBX5DmVNF60Yn4zVaEtTpoTRaUlTlQHzZgfVk5nFXRKNREYtFwNJcd7xoxEelcI8g5jOaIOp1GjN1gWAt/RAubSYfegQAqGtK7RtA+2qydCGv18JVXjRnX+H2MHSfpXCPIcS12XNO29JIN1WUSqhxWkdL+q/4I5gx/l8Z9MCGikb5DY0bjaDbpMRQKQKPXw2w2IeSgsamFP0hpQyEc5ZIdk7q6WmhNVvz9sw5R12/FtgGcYq2ApdwtfiveaSBxf83V1TDH76vHI/t6GLtGyL1Xxc7hPms5/vpRuzjuRyIjZd6rzHU16PVGUOUwjqw5KCLU7/WMXEek+KjcOGLXiMTr90Tnm4j4yxMXXnih+Pfc4ajM+PT99PfqxCh/hmEYhmGYIiFtC+pbb72FhQsXoqOjQzziSTRWMwyTP9Kt/5JvMolwmkz0WlrCSnMzcPLJ0XQ2w3Q1zcLy5j50BaKe+XqdFhVW46hIO+pzuWLmRO2psZuEVy+JhfVlZmEspN8kQ4lRB2EEqXWYxbYptR+lAE0mlMlNpao0E0UG5qqmU7rHH/1dZjWKaL9ulx9tTm9OIuykPAuhjLI8R2knx+Gb3/ymIqms+vr6RJ0/vV4/ktKTxDyqMZj42e7u7lGv0fN0045q1qyBJsEBTBb/93/ICNqPTGsiHndc9JEJv/pV9JEJn3wirmHOgQFhQJc9V16wIPN9pXRv9MiExx5DxmTa3kMOGfe7417lKNUnPeLmPu9u7MbjH20VYgLdX8mATdfStsQ03m++mXKzdNXVhsLY0tKJ3UwWHGgyjMyjwmEb/vzo2+J+FX9vJ2is6d5O96vzDpo94gD00HvDDkBHHo8Hjj0Jrf0efNzcJ76z54wK4dAT77hEbaxNECi23f47/PawH6Pcakh6X6A6vpTy+5Ij5qEp8Thbs2Zkv3Qy54ckGtUfuj/QKi9yibAFPTAb6N4VwvKTzxGPlG0c7146wTVilFOV1TiSqv3zfi9uuPtlnLXvDBG5GDvnEufEIoXr6+vRYKWsCdF+3rz3obh/70OFs89/10ejvA6cWyPq/Cbug9kTgM0UzbgwpdyK/7vkOjx1ykUTHg8jaTDj+eQTZESSa0RsjvdZSx9Wbh8Q0X0kdEndGhj7u4VIRfOZpisvgubXP5f9U7SPVKuPjvmXfvar9PcxRpLznFK9//a1dcPHtV5EJpJgR1J/bP7/jmEn7PHlOnHMtI/6vGGkDZ8096HT5YUUjEAvHOHo3qTB+9+5AH878iw0lpkxFAgLZ71kzoKHLqjFmx9sEceU1aCDxajFDRf/QVxHyJlul6Zy8TkiGA6juduNCw+biwX1o++vAoogy/R6eMYZ0UcSEp0JZyWWKLj515hDqZ4nwNHpQqVI5+se6Yu7/vTvUdcf2WuCPfZApKVlwnucJhQCPv8c+eCNxJTWDMMwDMMwJULaFsNHqC4HwzCqJl/izmRIR4hLNOD88MBZQpBJR+SUK6xUvf068KMfAH1RA13YbMFfTr8c/7f0cPi8IZFqk6LuSIDrcnnh9AZEzT1qSzpi5kTt8QbCwuBBnyMDS73DhDKLHu0DPpBDOkUXzK6RhqMOImhz+sYIZemkUs01k43gLLYIu3wLoYyy/OEPfxj1PBQKoaenRwh0S5YsUUT4I6cs2t7nn3+OPfbYQ7z26aefYueddx5T22bp0qX4y1/+MuLtTv8uX74c55133qTbwTD5gu5xL69ox4uixpwPZRYDAsEIZtdKqJRMaddHpfcplSNFdcVfg9O5t6dyAGqqlIRY9VFzr0gpTfd4EszGc1xS6j6VTrr/dJ3IcnHvkpUhYlUHTtulKuWc2GE2oHvQh8Yk7SDxqdpmFFkWfMHQqOSbyfYh3/OXZHM8h1kvBG8SumifKXKVhDKLITNnoWzuY7rHdbJjjB50nju9frQ7vaKmIAl3JNLG2nfasmni+8mcBQ9fVIvXVnaOHFMUMWnQ6cScmr5Lr9N3YnUD8+F8pWTtZ6XT/qudKcNRkFTHuLm5Gfvtt5+Yg02dOpUd1xmGYRiGKWr0cj3Vv/71r4v6L7nwWmcYJnPULO6MhyRTiKNUl2+s6kwqaib1us3QONXe58bZr/8NNY/cveNLc+ag/YFH8a/P/HB7g6hzRKuR+INhhCIRSEYd+jwBkT7LYtClZcyYV2uf0FhG9eUOX1iH11ZFF+rUH7S2pxSfZAQgr3Qycmzt8aCu3DbKCKOkwSBb5NMQIakswk4thkRGGd5MElnkdrtx3XXXYf78+Yr8hsViEXMwSiF66623orOzEw8++OBIilGK/rPb7SIC8KijjsKvf/1rUXfw1FNPxRNPPCHq/h199NGKtIVh8jX32dYXFWvqHCTKQUQAuXyB4WgdkyL1UdO5t48nElbZTNhvdhVa+7349p5NYg4wnrAm5fg+lYkTWbbvXTSX+WRLr6h7XCmN7YMdwivV57Whxz+4I9oybk5M+0SRZiTwkQibuA0ah06nT4wfCbIT7UO+hZT4OR6lnf9kS794fW6tBH8oIl6nzBH7zqrCxu7RKenlkq19lEYd1/oJj+tUxxhFNlZIJjEnpgwcJNwma1+y1POJ5ym1o8JqQGv/kDjXKMtG76BPCIL0Xj6cr9LNjDKRaC8nDX+xQPVgL7roInz00UfiOdVZpvlPS0sL/vznP48IgwzDMAzDMMWGXq6n+kEHHSSEv0Sv9cRJJwt/DJM/CkHcmYyXOKXpeWlF+0iansmImuMZp5xbW/GT+67DghUf7PgCOTU89BCCQT3w2afQICI+S20hj+pwJFrXh2pjGIdrqkhpGOnkGsto/6g+UWyhTkLoFy392NTlFmmHqB7Nwno7vrHb9FF9kUkq1XyQL0OEGiPs8m1IZLKLJEmi7sxpp502Undmslx11VVC+Pve974n6grS9o888siRGs0kAp544onivfvuuw/XX389nnzySSE+kvHLas3fuc+ok0JIGx4/9xFG/L4hcS+kmlxGSTscreMWYoAS0dtSGvf2iURCUQuQUmqWmSe89+byPjUZJ7Js3btiQuTyrb0itSFFdG7r84o5USwFI0Fj3O4MY9AfxMeb2pPOiZdMKRP99dV25/AxrR3VlzSvo9SPFZJRzK/k7EM+hZT4Od6gLzo3pYwUtF9mLYnMRpF+1e0PTWq+l419HH1cjxZhUx3XqY6xfWZVCQc5OgZStS9ZxGvieRqd24cwMBRA96Bf1Lyj68nWXppn6/LifJWOw4Fc0T6d6N9C5uabbxbOUR988IGwaRHkIHX55ZeL9+655558N5FhGIZhGCZ/wl+8p3oyr/UY5F3OMLkyQg36Agj7vLDbHaIOCVM44k4yJhK+yPM2MrwYV0rUTGY48AXDWLrioxHRL6TV4cMf/BS1N16DOWUOeNqdqLaZ0BoMYUuvR0QU0IKa2uYjARARuANhrOlw4fAFdWkZ6eQay+IX6gvqgf1mV8cZYXSQNH5UlNtUncpyPPJhiFBrhF0peWSXImvWrEE4HFZse2TYuuOOO8QjkbVr1456TilGn332WcV+myk+CiVtePzchyLuY/VvTfpoCkCbWS/EH4rWodvwZKPi0hHgRMSYQlF6ubpPKeFEpvS9K16IrJIo1blB1KujFOtUxy6+/lq0T7Vwe0Mp58QkiC1udOCzrf34cvuAGM/EvqTUkLSP6eyDkvOXdET3+DkezZMDwZBwQvP4w9BpNEJcDoXD8A+n/JzMfE/OPqbT9tHHtRuVZg30RqOoVT3eca3kMUbfjZ2nlBb185Z+cSyQIE/XDaqj7QmERFrer+1UL46NXF8D49s43rWk2+XDSyLdcWFlfskm77zzjihXE1/vuLKyUjhLUdYDhmEYhmGYYmXSuWD8fj9ee+01YTx6//33sXLlSmVaxjATGaECIWgjISyY4sJRi+tLbhGTbJFN/dI56BWGmVjtJrWKO8kYT/haMrUM/1y+XXFRM95wsLrdiRe+aMPK/Y7Cx1tXYNEHb+Dpy3+JD5p2RuV7W0TbJKNe1PCj2jBkSCHFj4wEIjWQxQBJ1BQJ4ZPmXiH8pWuky8SQEW+EoXEfGAiM+YzaUlmqEbVG2JWKR3Yxc+aZZ465blGqTxLjzjrrrLy1i2GKIW14vOhBt0qK7CNByCgZxXlHKQDdvqBIAUrpuCcbFZeOAKd0lF4u7lNKOZEpde9KFCKJbX0mkcaVnMJoTGP11wjq08VTyiCZdMIhi2opJqOh3CKiuWZWS+j3BFL2ZT7uv+mK7lLcHM/jC2LAG0SvJzoXpEg1g14jUtBTyspsz/cycRiIHdcvf9WONdv70Odzi+9NdFwrdYzFztMV2wcwQNF+/pA4j8Xc3qRHp9YvBFOqrU0pg0kQzjVyriWLG8vw+db+gsz8km18Pt+Y13p7e0VtZIZhmMkQ8PuxZcuWrHQibTcYUKftjmGYwiDjmc6nn34q6v29/PLLGBwcxOzZs3H11Vcr2zqGGdcIZUafyyPS/dBiR01GqFwTW2R/ub0fmzvdaOv3otZuHpP+aLzFvlrSeaUSvtZ1urIWsaYNBsRv/N/nrcIbel6dDe+f/3N89t0L4K6qxdxIZGSxfO4Bs1BjN+PDzb2YVhE1NlB9P/KoptRi4vgsN6NruDYMLa6PXlyP11d1ivRjOi1gNuhHGTOS9b3ShqZ8p7JUy/E1ERxhx2SDZcuWjXmN0qdfdtll2GeffbjTGVVRaGnDpQTHFpr7UBQYtZ+i/SgVdzgSFbSmVlgViYpLJ0Jf6Si9bN+n1JYhIJkQObtWErUbSfSjuRc5Y7UNUDaQqGBz5KI6+IfcMBm04zo8UQaHs/ebKcSxTPtS6flNuqI7/T4d4w6LHl9ui0aqiWM+HIHVqBPHvmsoKKJh/cGQEASTzfeU2I/Jpoj90UES1rR0QmuywGYy5GyuGDtP13W4RDYPEvkokwf1F0X7UQ3tJVPLRcpPOhbzkTlFzrVkSVMZns2Ck2Shc+yxx4qafjfeeKPoB4/HI9J+Urrzr3/96/luHsMwBYxvcADNmzfh4qtvgMlkUnz73iEPtm1vw7TAWMduhmEYxYW/7du3C7HvX//6lyiGTOkSSPT7zW9+g6OPPjqdTTGMAkaoiDBAVTmMIjWMmoxQuSR+kd1YZsGAJ4D2gSHhCR2f/mg8cUdt6bySefBK2YpYW7MGOPlk9F10GTY6dhlZLIeMRiH6JS6W25xe7DGjAi9/1QaXNyCi/KhdFPVHY0CL8Pl1dlEXZHWbU4iJ1K9UK4QK/9U6zDhsYZ1Iz0n7OVHfK2VQymcqSznHl5qEQY6wY5Tmggsu4E5lCoZCSxue6NhC9zOa+1Ab+9w+9A8FRKT+XjOqFJ3XyBXgshGll837lKSyDAHJhEiKuqIx3tjpRrfbB+dQAL3uAHafXiH6lI6Hvv6g+JccBMdzeGqqsE4qBWmy+c0Ri8avM6eU6B7/+xTluqHTjWA4jGqbEW5fSNT1IywGrXBQ+3hLH/YY7qP49iixDlDCYSAaJWtGWZljzLUn29B+HrO0QWT/CIUjImWqXqsV83bqC7quUN/mM3PKRNeSYDiiKtFeLVxxxRXCXkU1jgOBAI4//njodDp861vfEu8xDMNkSsA3hLBGj+q9T0RV43TFO7Jz41fY0vIgQkEW/hiGyQxZK7ZnnnlGCH6ffPIJamtrceihh+LII4/EnnvuiaVLl2Lu3LkZ/jzDFKcRKlckW2TPrbOJBR2l+iFDCHmvLmqwo93pSyruFEo6r6xErD31FHDOOcDgICouOh8V1/8Vll2WTrhYXtjgwLx6O/rcfrj9IZFCTDdiHJBEWrFOlw8vrGiDPxgW/do43K/UTkplRK8R4/X9oQtqsabNpZggm49UlnKOL0JNwrPSqEnUZHIH1Y6Ry2233ZbVtjBMIUd8ZeLYQtFPC+pt2NStwaxaG07faxr2HXa4Ufq35cw7CymaXG0ZAihFZTIhksS/ihlG0Z5etw8/PGgW9pheKfqU2klRfFSPjd7PhsPTunYX7n5rA3rcPuF4N7NKEk5eH2zuwaur2lFjN4loxHTmNOmsdyh1Lc2vegZ9sJv1KLcahcBHdf0odSntawRa8jkTf9Pc1KDV4Os7N4xqh1LrgGJYqy2sd2CnBodI5W/UR1OjUt/G9kcNafHHu5a09HpUJdqrBcqw8LOf/QwXX3yxcF4PhUJoamqCJEn5bhrDMEWCtaIGjtqpim93sKdd8W0yDFNayJr1XXPNNZg+fTruuOMOfOMb38h+qximwI1QuSLZIjveC7rD5cW2Pg/KLQYsbSofI+4UUjovRSPWKFXClVcCv/3tyEuh6dOhN5pkLZZpgb1rU4WoBbKzw4RAODJiHCDWdQyKujJ6bQjz6uxJ+5X6nQxTqfr+s639+MMb69FQZkFjuXKCbC6Nj3KOr8c/3IqhQFh4VqtZeM6UDcPnULGKmow8hoaGRGr0nXfeWTwMBgNWrVqF5cuX45vf/CZ3I6MqJJVFfE3GsWXZzKq81mgtxGhytWUImFUjiXks/XaiEElQdovdp1eOiH7xUNrXbDg8retw4qbnV4ttWoyUatSPSqsR1XajiDLtGvQL8WjvmVVCDJxoThMTO+lzvcPzofHWO5Rx4q01Xdja4xFRaM09HuHw5/IF4Riei1LKf5r7U3cFQtGU9JQStdpuyso6oBjWajQfpvGhcZhbZsm56D3Za0m+RXu18vHHH495jeZgMciZnWEYhmEYphiRtWK/9dZb8cILLwjvdfJKP/jgg3H44Ydj//33z34LGaZAjVC5INUiO+YFTR6/m3vcOG3ZNBw4t2bMop2MDGRkocL1PW7/KM9WNXrnKhKxtn07cMopwLvv7njtjDOgu+deOD5ul7VYjjeKdbh8I0YxMj7R56imTDCsRWP5aKMBEetXqsdIBUSmVIz9DEHHepfLh12bykeOeaUEWbnGx8lGqk3k/V3vMOH9Tb2osRuxdGq5qoXnTNjU7cEzX/aMGPGKTdRk5EfxkZc5pftMTPl5//334/333+euZFRFoRqPCymqTg2Md4/PVoaA8X4zVeQZperUaTXikYkQqfRxQe28+62Nol+oFpxk0ot07+RsR6/RHLDeYR5JtUn14cab08SLnb0en3Dccw0FsKjRIebzydY7NN/8rKVPpPWntJQ2swFGnQZObxBuPzmeaTDgDYioR/p9gsRCs2H0WknJKL1iWKvRuByxU62oK758a5/Yf4rc9AbCWRe9C120VzNnnnlmykjAmpoavPHGGzlvE8MwDMMwTC6QNfOmfOj06O3txUsvvYQXX3xRGK/MZjPC4TA+/PBDERFIHuwMkw0K1QiVbaRxFtnUR+RtXGMzib5LtsijGnRkUKHuDEUiopYFeSzPrpWEsUGN3rmTMuC89RZw6qlAZ2f0OV2zfv974Lzzoimh0lgsj2cUm1Nnw3OfbYCLQl4AAK6QSURBVIc1hXGDtkvGoAgiST/j8ka9to16jYgmjCdXgqwS9V4m8v6mWiQDQ37Mr9vhZR5DjcJzusbNN9dFRb9MvOg5PWhx8Z///EeIf4kcdthh+OMf/5iXNjFMMRqPCyWqLt/IucdPZr6V7B62qXsw5W/SvXCiyDM6DmmOuqnbnbYQqdRxEYuQo/SaVqNOiH40f6S2REwQ7dJq9TDoNEKA84fC485pEsVOeriGgtg2nMpz12kVI+Jf/HrHatJha68HoVAEVTaj2H4kohF9NegLgH6W0v3TNgBDyrWSklF6xbBWo/F4bWWnSOHf6fRhS49HjDON127TorUR1e6wlY+0/mpnDdVzj4NSfW7duhU33XQTjjvuuLy1i2EYhmEYJtuk5XJXWVmJM844Qzza29vx/PPPCxGQJk1kuKJCyenUtGGYyRqhyON160BA1UaobDKZRTYtbqkGHfUheSw7TAbhsUzewy5fQKQLpXogavTOTduAEw4Dd95JeYujfxNNTdEaf8uWZbxYTmUUo+cv69vH9XomQwJF/CX7DBmKqDYg/TZFYSaSbUFWqXov0gTe3yRwUh8ke49Qo/AsF+qn5p4hNJRLaYuaSoiujLqYOXOmqJf805/+dNQ1+rHHHsP8+fPz2jaGSQYbj4uXdO7xmQhmye5hlKqzc9AnotOS/ebRi+snjDyjLBZn7TtDPM9XRGd8hByl96QUmiZ99PfDkYiISqT5m8cXEs508XO4xDlNqjSbixrL4AuG0TXow6o2p0hX6w0Mi+5WI3aeWobVrS4RFVhhjYp+sX6i9RDNIYf8QQTDgNcfFpF+qQR7JaP0CtlhIPG8mFZpxfw6u8i8QfsjGfU4fGHhzME4+nl8dDqdmJdR3b9zzz0XJ5xwQo5GhmEYhmEYJrdkbM2vr6/HD37wA/Fobm4eEQFZ+GNyZYRqJ6/acAiLp1biayXqwZjpIjtmbPAFQpheZRULW5sJUaFJ0opFL4kSZRYjlkxVt3eurMio3l7gd7/bIfodeSTw2GNAdfWkF8vJjGJyBNklU8rF3yvbnGM+Yxg2HJEXd6xuYK7SJSlZ72WifqC6fiQ6k6EsGYWQFioVJKiT4U4IvGmImpMVXTlSUJ1QreTzzjsPr7766ojQt3LlSni9XpHuk2HUSLEZj/n6mP3azsnuYW5fAP/b2C3u6QfNq06avvyN1Z2iFl7jBJFnnkAIC+odyBexCLmZVRIqrF50ubwwSlHxjWro0XyGnOgoawPNDePncIlzmlRpNmnuTpF+q1oHRNQZZecggU/U/YsAzy7fLpz0aJ5BbdHpNCPZI6if6hwmbOsLiWjAzkEvoEFKBzalo/QK1WEg1XnRUG5BfZlZHKOvr+4QNSML5frH0c8T09PTA6fTmYPRYBiGYRiGyQ+KWFNnzJiRtHYNw2TTCEWpbMK+ISxoqoUuSVRUqZDJIjtmbKAadDV2MwZ9IbHYtZkpPZEWRr1WpLfZc6ZZ9d65siKjSOB74gngiCOAq68GrruO3D2ztliWI8jS+0Sb0zvmMyRqU02RZGlAs50uScl6LxP1Q8zgRH/Hakvmaj+zDRnQTHqtSOlqN2tliZqTNchypKB62WOPPYToR+nSN27cKF4jx6ljjjkGDkf+jNgMUyrGY74+Kn+PTyTVPYyUJ7oL6jTR2reUujI+So1+c3vfkBCo1F4fjn6f5pokUpIIROJbbP5M6fX1Gg08QUrjHp2PxvYz2ZwmPs0mvU9ZEChaj6IEK6wGLJtVKUS/b+/ZJGpxv7iiDX2egOgvmhPQPJ0cqOjfxnKz6DcSHamvaG5P88gfHDBLtCOVYJ+JA+FEAnohOgxk87xg8k8yx3S324333nsPRx11lOztbNmyBTfeeCOWL1+OsrIyfOc73xFzOaKlpQXXXnstPv/8czQ2NuLqq6/G/vvvr+h+MAzDMAzDpEvhhVEwJU/MCEWL5IGBiKoXkrki1SKbaOn1jFl4xxsbyDuZ0nrSgpYMCGTEoHolJMQcs6RBtd65E0ZG7dmIOVOrdnzh4IOBDRuA6dNVJcgm+8ySqeX41h52vLmmc0JDTKIBprHMLNJNbeujcQ+lbXBRst6LnH4gaBwLMS3UeDSWWTCjyoKNvV7ZXvSTMTwplZ6VyR6xdOkMw+QWvj5m7x4fT6p7GIlZVNPXYTWIexQJXA6LYdRvkv9ercMs7o1qrg8XHyFH4mb8/DkYClNAnshkQMIb1fkLhsMp5zTSsIjY2u9B+4BP1ASmz8fqbdeXmVBhNWGnBgf+/UVU9IsJqtQnUyui84BBb0CkHQ2GqFa3Bg6KMtRosFOjA/vProZer1XMgVCugF5oDgPZPC8YdVJeXo4rr7xSlKqRQzgcFmlBd955Zzz77LNCBLz00ktRV1eHY489Fueffz7mzZsn0rq//vrrwiGesmGRCMgwDMMwDJMvWPhjmCIhcZE93uJcSqjpQcaIPWdUjHgb+4MhYUBYOEE6pZjoFI2+9MJud4iUQ9lmvMioMk0Iu/36euh8Awj/91Vo9XGRfTkS/dLxeh7vM5SGdTxDTLIxLrMY4PP7MBTSiFST6daHU7Lei9x+KMS0UBNB+3bovCr0fdkjW9TM1PCU7dRtTGYcdthhePrpp1FRUYFDDz10jJgbzxtvvMHdzDBZgK+Po5GycI+f6B5GEWx6nRYaaBAKh8Q8M/E3zQY9DltYh5e/ale1I1BihFy9w4TZNVZ0OHVCuFvU6MBxSxuxrn1wwjkNzYNIJHxtVQeMOg3sFgMMOr2I2utwDqGlz4MjFtUJMTFRUKV/YxGHsS6ZWmERAmC70yeiDzd1uXHffzfJmv/Jma8Ws4AuZfG8yDec4hi47bbbJt2P3d3dWLhwIW644QbYbDaR8WqfffbBp59+iurqahHx98QTT8BqtWL27Nl4//33hQh44YUXKjKODMMwDMMwmVB4s1eGYSZkosX59/aZMaamBz3IA5u8iMmYEfOsTrVgHCU6BULQRkJYMMWFoxbXZ33hn8qr3NHWgmNvugh1G1aK5/033oLyG69DPpHj9ZzqM+MZYpKNMXmNUw0S8kpdNqtKCD3pGmWUrvcipx8KMS2UHGZVW3HWfnYhuskRNaUMDU+cokqdkLe3JEnibzb8MEx+4Ouj8vf4VPPCVPcwyiBBNepa+4dgNmiFEJjsN/ebXS3mM2p3BIpFyP39g634YHMvBob8ovYeiXjVNhNmVks4bEGdvDkNqXpEomOIeB6h7Kdw+5ILqiSGUsThug4nNne7sabdJTJ2NJSbMb/OIfo6nfnfePO0RAGdiDkL1tlNIkV9ITsYpXteFIqYximOo9x1112y+yxV6Zra2lr8jurFDx8TlO7z448/xvXXX48vvvgCixYtEqJfjN13312k/WQYhmEYhlG98DeRp3o87LXOMOr3bidx6Iidaies6bGpezBp1OCChmgayh2ikxl9Lg9WtjrF97Pt9ZvMq3zGR2/j6Dsuh9k1IJ77jSZ4aupRjsImmSEm2RjTIpRSRZHXeFijFUYYSgOVbtRXJvVesrWfxQB55NM5I8dAlKlBllNUqZMTTjgh6d+Ez+fD2rVrMXPmTNjt6jBmM0wxwtdHZe/x4wkJNL9Idg+jf2fXSCIFeUQIXZGUKTALyRHIGwyjxm7E/DqbmGtR6nzaH3LKkjMPpn3sHwqIjBttA76RdPuU6rPOYRbRhJTek15L5RREfbew3o6eQT/KrAbs3FgmnPhifa9U1H+8gE5tik9vStGcklGH5Vv7slIDLxciWzrnRaGIacUcoZkulJbz5ZdfFuk9Fy9eDKPRiDVr1mDr1q3YZZddoNdHTWJy7V1kG2ttbcUhhxyCr33ta7j11luFMBhPVVUV2tvb024rzffpwaTXX9xn6kCN4yHaEv1vxNdG0e3H/aG+7ce+ERl2JVJ6+/JbkNXt07ZVdtwVyvlRykQKfDzSabcs4S/eU50mSA8//DBOO+00kePcYDBg1apVePTRR/G9730vsxYzDJNz73ZKRSSn9lrignHF9gG8uqodDrMBu04rH/6NiDAuVDmMWN/pzrrXrxTnVe4waLH3I3/E3n+/Z+T9noZpePCSX+HUM46BGlDaaJFsjMnzmtJMUaqoUDA0qo7ORPXhJlPvhVFO1MzUICsVcYqqYmHDhg24+uqr8bOf/Qxz5szBKaecgs2bN8NiseCee+7B3nvvne8mMkxRIhXJ9VHJeUSm93g5QkKqe1iP24+lTeWotZvQ7wmg0+VL+ZtqdwSKOV+R8LV0amwevCO6kfb9la/aYVyqhSeQvNYybYP6vmvQi5lVNuwx3YJBXzQNKkVE0nZCkQiau92wmfXjOgVt7vHASPWhp5DoZxzV1nTnfxMJ6N6ATqwDhvxB2MwGGMyUmjQixrRr0IfV7U5Fxy6XIpuc86JQxDROcTwaEvqOO+44/OIXvxC2qxh33HEHBgYGhHCXDn/4wx9E6k9K+0lpRIeGhsRvJP6m3+9Pe+ycTie02vHrcjIYdQ30eDxpCbdMaY2Hy+VCKBRCKBBAMBBQfPvhQEDsdzAcUuX2ad+zuf2JyPb2aVxpH2mc6XquZtR4fpQykQIfD8ryJhdZq9x4T/UTTzwRt9xyC44++uhRdWwo5zmlP/jxj3+cbnsZhsmTd/uCekdSz2rinv9sTBo1WO+I4Mtt/aJ+SCJKGRgmIhYZ1bymGd+7/3pM/+y9kffW73cE/vTdazB37pS001Fmg2wYLZKNMRmLyIOe6sNoIuRJHx5VRydVfbhUFJLXfTGRiUE2W+lZGeUgY1NTU5OoCUN1/2hx8r///U/UfyHD07PPPsvdzZQEuU6RVwzXx2zMI9K9x8sVEs47aPa49zByCiv0ecVEDnYWgxYvrGjHl9sHRBRg4njFxpPm0hu73Gjt96LObsbsWkmkCo0x5AuKvrObDOM6BVH/k9OvZBorbGcy/0uGZNTDpNNibbtTiH7kiBTbd5Neg4hZhy5XCJ809+LwBcpkhciHyDbeeVFIYhqnOB7Niy++KOZb8aIf8e1vf1vYudIV/sj5PZa94bLLLsNJJ50kxL94SPQzm81pj53D4YBOF1efnpEV8VBWVlaQhttiQ43jQZlV6JzSGQzQJ1wDlEBriDpZ67U6FW4/Oh56A5n9NQXY/omhcaXxpXGm407NqPH8KGUiBT4eE4n68aTt3koe6vPmzRvzOhm0tm/fnu7mGIZRGClN7/ZkntUtvZ6URo1AOAKDXoNBb3AkokxpA8NEUJu/4d0C+3XfQXlPh3gtrNXhje9djH8ecioqbaZxU1XlyvCYLaNFsjE26DSIhAHnEHlVhaHXjK6jk0lUg9q97ouVdA2y+UrPysjnyy+/xPPPP4/Kykq8/vrrOOKII1BdXY1jjz0Wf/rTn7grmZIgHynyCv36mE3xI517fDpCwkT3sEKfV4znYEfjtLZjEL1un0gBOqXCOmq8Dl1QO5Iqv7HcjIGhgDgOO5xDcPkComZfpWQaI0pT36USVHeeWoZnl2/PalQrtaHGbsaHm3tF1GaigO72hURtwS6nTxHHP5qnv7yiXaSHpd8m2wwdPrkQ2VKdF4UkpnGK49HU1dXhnXfewaxZs0a9/sorrwgblhwowo9q9h1++OEjr1EGh0AggJqaGmzatGnM5xPTf8qBjqVCNEDmk1ifcb+pA7WNh2hH9L8U0tcktx/3h9q2vyO9pybld9Xcftnbp22r6JgrpPOj1NEU8Hik0+a0VwBUqJi8ouhBkyiipaUFN998Mw444IB0N8cwjAq928dbMJKYRAYEX3B0RFmu02Y1/f2vwLDo5yyrwgMX3IqWnffCzrW2CVNV5cLwmE3P4MQxpnRTZGwY8Abg8QVBP0WGo8Dw+BRKVAOTuejK6VnVDXkhkhGI6siQ4eiHP/yheH316tWiDgzDFDv5TJFXqNfHfEYYJTpIkSglN5tEsTsOSSkc7GiuRXMxcowrsxhQbjWKiL/YeK3rGMRD7zZDMukwr84uxnNunR1uf0hsixy3aEwX1mvQ7vSNEqVpPOiYPWRhDfacWSG2R9uNzem+bBnIalQrtWGPGRV4+as2uLwBYWQz6LRinkn7S+M/v84uhMzYMTAZJ7v3NnXjxa/a4QuGsL1vSNQRrLAaRd1k6pd8iGyFJKZJRZLiWCl++tOf4uKLL8Z//vMfLFiwQLy2YsUKUa7m3nvvlbWNbdu24YILLsDbb789YgP76quvhEMX2ccefPBBeL3ekSi/Tz/9VLzOMAzDMAyTT9Ke7ZHg95Of/AQHH3ywCImkBQXlIt9nn31w0003ZaeVDMPk1LtdGmfBSHVH7CY92rxeGBK2kS2BKanx4J57aFWFSE0NXPf+FUdX1kxoWMil4TGbnsHxY/xZSz86nV4EQ2GUWfTwBUIIRyIIhcPiPfI4HwqEVR/VwEweTs+qXihN+o9+9CNR82Xq1KnYf//98fjjj+POO+/ERRddlO/mMUxWUUOKvEK8PlJbad5iM+lEjbxY7beYZ2q2xI9kDlLVNiP8wTALCeM42FEWjD63DxpEUGUzibGKQZ+h5ytbB7D3rMqR79DcjKL8aBw7XV6RcYNEQ6odGF9XLpXDWuz4zUVU68IGB+bV29Hn9gux0u0LQqfVotZhxuwaSQiB3kBYnFuTcbLb1O3B4x+1iajJOocZRj0JjBF0ubwY9AVFfzks+pyLbFIBiWnFkOJYSSjLwj//+U/x2LhxoxDn9tprL/z2t78V0Xpy03vutNNOol7zVVddJTJd/fKXv8R5550nttXQ0CBep7I3b731lsj0QPX/GIZhGIZh8knaM1NKWfDEE09gw4YN4kHMnTsXs2fPzkb7Sopc1z1hipfJerePt2AkrCY9auwmtDu94hglAwMtxrcOBBQXmGLGg+a2PrihHW08eP11aGprMUVGvvBcGx6z7RlMY/i9fWbgpudXCWOT1agTHtGza20IBoMIhIGeQR/WRIBjdq7H1xbXqzaqgVGOYo6yKGQuvfRSYTQiQxGl96RaBI2NjfjNb36DQw45JN/NY5isopYUeYV2fVzd7sTKNqdIYxQKR8ZEPWUjwiiVg9TW3iF0uXzwBcLYdVq5LCGhWNc1qRzsKPtC31BAiKQkhCUe6xT9RxFyJJbFQ2O554wK8f3mHjdO22saDpxbI35HrsNaLqJaafx2barAiu0D2NlhEqn/Y2I0QX1Bv0cC2MPvZ+ZkR8fMm+t6hKhIAih1oVajEXUEjZJRbJP2j5zaci2yFZKYVugpjrPB/PnzhTA3MDAAm43Wetq00mTRvI1Ss5Oj+ymnnAKLxYIzzzwT3/3ud8V26L1rrrlGOHpNnz4dd999t5jnMQzDMAzD5BN9pkUEKd1Be3u7mNxQ3T+XyyVSWTGFU/eEKW5IwDp2qRabu93DzyVMrbDKWuRNtGCcVmkVdUrWtLnEMSsEwHAIi6dW4msKps2KGTxmvPkCrnnyj3jyl4+g3VE32nggs0hwrg2P0gSewZSSMxiKoH3Am7FBjMaEDEz1ZVUw6nXDBhgdvD4fAhEyQgUwFAjhuKWNmFYlTXqfGIaZnMf54OAgtm7dCofDIVJAkfGJYTKlUISVQkqRN7Z/vWgb0sBmMuS0f2n+88IXbSKNYrnVIOopJ0Y9UW1fJcWP8Ryk5tXpxfhQOsp1HS40llvGFRKKfV2TTGijOV21ZBQpLyndeiIk3lJUHGVkSIT6mt6rsVH0XNQBLV2HtWxHtcavDTpcvpG1AR2PsWPg8EW1eG1l5k52tO3mniHxfiAYEVGQRikq0NDDZtajd9CHTToNls2syqnIVmhiWqGmOM4GJMxSSs+HHnpI2Kyott/vf/97WK1W/PznPxfZGORAKT7vuuuupO+R2Pfoo48q3HKGYRiGYZjJkfZKsa2tDeecc47wlqLHYYcdhvvvvx+fffYZHnjgAeFNxRRO3ROmOFHC4CJnwXjI/FphYBj0BRD2DWFBUy10utGezJkaKulzr32+DYfedxsOe+Vx8do3brkIT/7mcdhqbWlH6ClpeJSzD+N5BlMk3kfNvSJV6j8+boHFkJlBjH7fFwpjSoVNeJLvKOOsEUZCisxs7nZj0B8U6aPUbhxmmGLF5/MJL3FKM0WQ0emOO+7A0NCQiPqj1OkMkw5qEFbk3s8LKUVefP++/FU71mzvQ1ijgznD+3QmxAQfqqU8vdKKrkEfbCbApNeORD1R+ygiasnUcsXEj4kcpEjI2drrwbRKCd2DvpRCQqmsa2gfZhwoYXlLn0jFWmE14OPNfVjV5hRCQ2JEGGVnmFEliX+TvZ8YMZaJw1q2o1onWhvQ35NxsiMRkY57qoM4u1YStSXpOCLBj4RRSmXfPxTArOF63rmeyxaamFaIKY6zAUXfvfDCC7j99ttxySWXiNdOOOEEXHfddSLlOol/DMMwDMMwxUjaK+wbb7wRe+yxB2644QbxL0FGK0ptcPPNN+ORRx7JRjuLFjXUPWGKCyUNLhMtGGMGBjJYDAxEJjxG0zFUtq/aiKMuPA0z130x8lpf0yxowiFoNMa0I/SUMjzK3YdUnsFt/UP4uLlPfGbxjAo0llszHh85+0QGlOeWb0f3oF9x43ChRJswTL6hOjCUHv3ZZ5/FqaeeKl678MILRdopmjvR+0xpk871VA3CSjr380JKkZfYv5UWPSrsdJ8O5ax/Y4JPY7kZNXajcN6JFz+o5tmWHg/2nFmpqPghx0GKxMdv7too5hzJjtVCXNdkOpdJdg6UWwzCEStZRFiVzYhv7TEVb67plBUxptZI2fHWBmvanZNqMx0jdIzR+UZRkxTZurHTjV6PX6T/DEeAKsmI0/ealjeRrdDEtEJLcZwNaO5Fot+ee+45ck3ab7/9hAMW1Vlm4Y9hGIZhmGIlbeHvk08+wZNPPinynMcwGAyikDF5TjGFWfeEKQ6yYXBRasGYlqHyzTdRe8qp0Hd3iadBgwFv/+gafHnMqXRiZGTwUMLwmK6xNdEzuH04hRFF+O01swJVNvOkxmeifVrfMQinNwC9VisMiEoah9UQbRIPi5CMmnn11VeFx3l8VgT6m6IAKYsCU9qkcz1Vg7CS7r2wkFLkje5fCT6fXwg5uezfeMGHfjtR/KAxp7pqx+zcoOj9VpLpIEXvpZoXFtq6JtO5TKpzgI5nGjN6rd8TSBoRNr3KKitiTFJxpGyqtcFk29xYZsGMKgs29nrF+UbiX8UMo4iS9AVD4rjZa0YV9p5ZlddMFmoT03gOPD49PT2ora0d8zqlXfd4PFkbF4ZhGIZhmHyT9krBbDaLydPMmTNHvU51/rhWTfqo1ZuTKUzUanCRbaistEL7q18C11wD/XANlP6aBrx47R/QsWBJxgaP2IJ4bp0N6zpdsurTZLwPCcbAeM9gGpvHP9oqDBuUinOy45PKmEqpkrb0+4XoR78zr05Z47Aaok3yKUKygYVJF7fbDYtl7H0+HA6LuslM6ZLu9TTf9/nJ3AsLIUXeZPo3nVTm430uUTyJFz/8oTD8wTCCoTAWNjgU3XclHKQKaV2T6VxGzjlAUWln7TsDnkBozBjLjRgrtEhZJdpMfXDovCr0fdkzal5Lm6G61VSrfEGDHff9d5NqHM/yzURzYJ6zAnvvvbcoSUOZq2JQzWXKWrVs2bK8jh/DMAzDMIyqhD9KUUX50K+44ooRwe+jjz7Cb3/7W3zrW9/KRhuLGknF3pxM4aFWg4scQ9q2zW3w3XkxLC+/MPLelj0PwB/Pvh6Ns6dCk2Asp+3NrJZEvQ9a1I6XEi1+QUwGM18gLOrUUDohuYbHyRgDY57B1O/kCS6Z9IqNz5ioQqcX2nAI06rsCIYjmFZpVdQ4rIZok3yKkGqLdGQKg0MPPVTMkyitVIyWlhaR5vOggw7Ka9vURikZKTO5nub7Pj+Ze2EhpMjLtH/l3hvkfC6ZeEIPcuQR0fydg1kRfJSIzJRUvq6JXV+odhylQe8Z9KftHCXnHNjY5RZ/L6h3ZBwxlu9I2UyuxUq0eVa1FWftZxf9n+gkML/eLlKlqsXxLN9MNAc+dEEt1rS5Sn7OSiVqLrjgApHek2ouU6aq1tZWNDY24p577sn3MDIMwzAMw2SNtFdd559/vkiLQBOooaEhnHvuuaiqqsJZZ52F73//+9lpZRFTiN6cjHqRVGpwkWNIq161fIfoR+fB9dcjcO5FMH3QMqZG3lfbnQiEIohEgN+/vj6l8JJqQdzaT0YELY5Z2oCF9Q5ZxgwljK2SAuOTzBATb0wd9AUQ9g1BY7Dgrv9sgDXFtjI1Duc72iSfIqTaIh2ZwoEcpq6++mrstddewnHhpJNOgsvlwv77749rr702381TDaUmrGdyPZXyfJ+f7L1QbSnyEpFG9a9eVv/KvTfI/Vw+BZ/JRmaqeV0Tf33p9fhE+tQamxEWgxZWkx5GnVaM+URzmVyK7/mKlF3X4cTTn2wXvxmKhFFhMYrfknMtjrX55RXtWLF9AJ5AEBa9DtOrrdhzZpVo/3gOe9Ft2MRxFD/fbXCYRaSfWhzP8s1Ec+DPtvbjD2+sR0OZRfF0/4UG2a6efvppvP/++9i0aROCwaDIXkVzMK1Wm+/mMQzDMAzDZI20rQLkHXXGGWfgzDPPFDnRKUWV3W4X/65evRo77bRTdlpapCi9uC8lT/lSJtU4q9XgIsdQ2bbnQXBeeAkcjz0MPPYYcNRRmAPg7P10IwYPMsJQTQ+DXotdp5WhsdyachE73oJ4Xl3UQLChYxCHL5B3filhbB1vfOREMU5kFCfjFI3zwEAErrC89lK9wXTqpOQ72iRfIqTaIh2ZwoHSSen1evzxj38UUX4bN24cMTrR/OnWW2/FnXfeiVKnFIX1TK6n+b7PSyp1MFKK0f0rjXovWf/KvTfMqJTSuofkMzXqZCIz8x2lJvf6YtRrsa59EJt7PNjU7RbRlOQoVWElgcsGh0Wfci4j5fgcyHWk7BurO4Rg1OXyiX4iRznXUBDdg/70rsXUPA3g8YXQ3u/Dtr4hrG0fRLXNJMuhI9FJgOaqanE8UwPjzYEJOj5pDHdtKh85Tkt1znrsscfirrvuwj777CMeDMMwDMMwpULaK5LDDjsM7777LiorK2G17phUb9u2Daeffjq++OILpdtY9Ci1uC81T/lSZaJxVqPBJZmhUhvwI6w3IAKMGNJsv7oDuPKnwJQpYwwe2/o8ePB/zSIYcMmUshEPzVSLWKVFISWMrakMYnKiGNM1ilMdwYna21hmxr+/aMWmLrfsa4akIqNvLkVINUU6MoVBe3s7fvazn+HDDz8Uzw888EAh8B188MHCWeqhhx7Cn/70JyEKljqlKqxLGVxP8y2s5Ft4zDaj+9eNSrMGeqMRQ/5g0v6Ve29Y3tKX9j0kn6lRJxOZqbZ6jsmuL31uPzz+ECI0C40AoXAEZr0WXS6vqJM8t1ZKOZfJxzmQq0jZde0uIfpR2niKsCNHO5qb9g8F4PIF4fYH8OQnLbjiyAXQ65NHSsXPVyWjDtuCIQRCIfhDGmjcflH/8KPmHqxsG8Bpe03DfrOrZR3TanI8UwPj9QfVA6XxMuo1CIRppVXac1ZaMwYCgXw3g2EYhmEYJufIsjY99dRTuPfee0cWNJSiKjEtgtPpxOzZs7PTyhJgsov7UvSUl0sxRUHKHed8GlxS9Xe8oXLhUBdOueNSfHTUKXhx72N3GNKMhlGiXwz6Pi1Und6AMLYkXn+SLWKVNhAoZWxNHB85UYxk7JZrFI/ZnyZqL9Ua7HD50DrgTeuaoSajr5RDEZINTky63Hjjjdi+fbsQ+wwGA/785z/jtttuwyWXXIIf/ehHWLNmDU4++WTxvNQpVWE90+tpPu/z+RYec8FIqsKv2rFmex/6fG5xr0nWv3LvDT1uf0ZzErWnRk2Fmuo5Jl5f6NwS9ZC1NGcFTAYtvIGw+CwdvzRWX7U6cfzSxqRzmWI9B2j+/vSnLSJKrN5hgsmgG349BK8/JObgtE+dTh8Q0eDbe04dc62JF1nn1Ej4dEu/qKtd6zCL96nfP93SB7NBC6c3iOZuD76+uB5H7Vw/4XVLUpHjmRqQxukPfygsappTf1AK21IXScnh6uyzz8YhhxyCKVOmwGg0jnqf6v8xDMMwDMMUI7Jmxt/85jeF0YpS0VGNGpo4UXqqGLSIslgs2HvvvbPZ1qIn08V9qXrKl1oUZDrjnC+Dy4bhNqTqbzKkrfnL4zj0tstgdbtw9H23wLvzUux65GETjsdExjUyIvR5fMKASlgNOsUNBEoZW9ONYjx2iVa2UXxqhWXC9i5udAjDFhmo0r1mpGPwyrbonksRUmKDE5Mmn376KX73u9+NpJVatGgRTjjhBCH40fH5j3/8AzvvvDP3awkL65MREPIprOTbwSgX0D786CAJa1o6oTVZYDMZkvavJPPeQFFOpSZaqEW0TLy+UDRUnyeAWrtZzKlJIAkjEo2MCoURDIURDmuwtKk85flUjOdATCClKDGjPir6UaQriXUU9UdCIM3rKH5sVdsA/vpucIyTWLzIOugLodfjh224biJty+0LwhcMi+OCxEB6/vGWXrQ5vWJbNKdLhZocz9IhW3Ph8frDoNWI47rKZpRdq7SYWbt2rShH09nZKR7xJEuTyjAMwzAMUyzImu2R6EfiHzF16lTstttuGBgYQFVVlXjts88+E5OpRO8pJjeUqqd8qUVBpjvOuTa4bOr24Jkve8QiP2l/792EOXf/CnNuuWXkO5Hp03HSPrOhlTEO0jjGNRrjVa0D6HT58I+PW/CalUQrCeVWgzAEyDUQyFmcK2VsTSeKkerPZGoUT9Ze2v/fvb4+42uGHINXLkR3OUbzwxfVKmJwKVSDE5M/EjMhTJs2TaSaIm9zEgRpbsVEkUpYWJ+MgJBPYUVNEV3ZIlo72YyyMkdK47Dce8NuTRX4eHNf1u4hxZTdQmmkhOuLf1jcq5CMIhoqlt6z3+OHQacVr9tNelTbTRP28w8PnCVEq2Lod9qHUATi+hMIhUXf9LoDQvSjetCUE9UdCos+mlNjE1kjEp3E4kXWPo8fwTB9PjrvpG1RSlX6vl6rEbUDPf7oOUTzeNrWDw8cXVez0CMtszkXHq8/SKytsZtE3cpESmXOesYZZ+Cee+6Bw+HAI488Il7zer0wm6PRpwzDMAzDMKVA2hYUivSjOn/HHHMMrrjiCvHaZZddJiaR9913H+bOnZuNdjLjUKqe8qUWBanmcab+fnNdVPRL1t9tG1pgOvY8YPl7O7504okwPPggUFYm6zdSGddojD/b2oeuQZ+IdtupwYGhQAgr25winSU95BgI0lmcK2VslTumxGSM4ontXdPunPSxNJ7RN5ei+3hG8/n1dry2slMRg0shGpyY/ELzIp0uGjURg55feOGFLPolUOrCeqGKaGqJ6Moncu8NVA8tW/cQtWe3yLcomXh9IUFLr4vWrqNsEfQ3RUWRIEXhbK6hAPzBiEh5uaBeXj8vqHeg0JGMelRYDGL/B4YCkEx6MZ826rUiM0UwFK2FSMeqw2IYnu+NdhKjbcTmq6KfqbZaKCz6lbZFfU21rHUajXid3qc5W0OZTmyLzg978tKBqom0lHs852IunKo/lkwtx7f2sOPNNZ0lO2elrAuJdf323Xdf/Otf/0JTU1Pe2sUwDMMwDKNq4Y9q1hxxxBGjatK89tpruPXWW8V7MY8qJndIJewpX0pRkJKKx5kWsM09Q2gol8b0d+Pqz/GDmy6Co6cj+gIZwu+4A7j0UhqMSRnXyGBDkX4k+tXYjFjU4IgacHTaEYG3scwsvLc3dblTGgjyFR0qyRzTmdWSokZxub9Ln0vX6JsP0T2Z0Zz24eH3lR1TNRicmMJHklJHNJQqLKyziFbIyL03ZOMeMtH85Xv7TofFoM+b6KYGUTLx+kL168oserQP+EQZC7c/JNJRlluN0GuBbpdPRAS+tKJd9Gksi4GasohkQ0ylbdA+dLv98AVDYl8pYo/SfpJI5/ZF+4nm2qLMRxInsXiRlWr8VVqN6HR5YTboEKKCihoNbEYSWTXRdKsOsxBdQ5GI2BZFXtot6nWUkHs853IuPF5/TK+y8pw1DlozMQzDMMVFwO/Hli1bsrZ9ihyvqanJ2vYZJtukrRCsXr0ad9555yhvdUpR993vfhfHH3+80u1jZFDqnvKFFh1XjOM8OFyzw2qMi26JRLDLc4/gwD/fAV0o2s/B2jron3oSOPDAjH4n0WhGNf0ovSdF+pEholIyjRF4ybDw3X1nQKvRJDUQ5DM6VO6YNlVYZUcKyFnUZvNYypfoHi9C0pje85+NWRnTQo3MYfLDSy+9BJttR80iMjK/+uqrI6nSY8TSqZcyLKwzhYzce8Nk7yHxgg/VMn55RXvKe91nW/tx0/OrUS0Z4QuFcy66qUksS7y+kOCqQQSeQFiIUrV2E4LhCPo9JDwZsHRqmaiFTHOFGZWSqrKIZEtMjRdIo2hE+tNBb3QOT6LfsplVqLKZUjqJxW9jQ5cb9WUmDHj96HP7husEamAz68Tc3GLUi3aL+n++oNgW9ScQkNXWXDhuxp9vFAFKYjClMJ3oeM71XDhVf/CclWEYhilmfIMDaN68CRdffQNMprEp2pWg0m7Fo3+9n8U/pnSEv4aGBrz//vtjUiQsX74c1dXVaW3L5/PhF7/4hTCCUb71c845RzzGY9u2bTjuuONw7733YtmyZek2vyhhT/mxSCqOjpvMonNpUxm293tUl7aFFurRWh0h2M2UxicCf08fdn3qgRHRb+OCXWF+5ilMWbSj5lUmxC9iabFNNf12Go70SyXwUnqhVGmY8hkdOtG5W2E1YMnUMqzrdIljlTz3Y6krJxMpkM1rhhpE92yPqdIGp3ynQWOyQ2NjIx6kdMZxkOD32GOPjTkmWfibvJGSzyMm38i9N2R6D0kUfCjtYkvvEBbU7xCjYpCwQpFWLm8QDXOqMaXCmlPRTY0p9xOvL6tanbj/nU3CcY1SW+q0WhGBNpsi1SSTiHSjucLylj7VZBHJtpgaL5Cu73SJfiLhr4kc7BrLRkS/8ZzEEkXWKskECvYbCoTFMesPhlHniEZS0nwzfluNZRa4XBMLf7kg/nwbCgSxpWdIRILuNbNiZG2Z6nhWw1w4BqdkZhiGYYqVgG8IYY0e1XufiKrG6Ypv393bga73n4HT6WThjylY0lY9zjvvPFxzzTX47LPPsHjxYvHamjVr8H//93+4/vrr09oWRQ5+9dVXePjhh9Ha2oorr7xSGMqOOuqolN+54YYb4PF40m120cOe8oUTHTdZr95yqwENDh36PQHVpBqkhfqMKgs29nrhD4awqcsj6v1tO/1a/Obui/GvA07E2p/8DFcvmKX4IvY1a4cQ9ii9ZyIkZFGNEedQQNS1k5IYkfO9OE917lKKUord++fy7aM8uo9YVIdvGBsnLRJl65qhBtE932NaaGnQmOzw5ptvctfmyEjJ5xFT7CQTfLb3edDr9mFtByCZDEJEic1zSYgKhiKwGrUw6LWi3nEuRbdsOuBMRuRPvL5Mr5JQYzOJVJM0X6S0k7H2xuYKFPmnhjlFrsTUeIF0dZsTL6xog2+41h+l/pTjJJa4jY+be7GydUCk3acsIeXBkNiWyxvIu/OinPPNFtJjXccgQqEwvtg2gF2aNCNZRpIdz5IK5sJM8qwLVKKmsrJyVPew8xXDMExhY62ogaN2ala23ZWVrTJM7kh7tknpPGmy9OSTT+Lxxx+HXq/H9OnT8cADD2CPPfaQvR0S75566in85S9/wU477SQe69evF57wqYQ/Ehfdbne6TS4Z0vWUL2bv+GKIgkzl1RuNBDPihN2moMZuUsXY0W8fOq8KW99twdvrBkBNKbMasHXuEpx52cNorajD0qEwNnUPKipmTCTw0tiTevb4h1tTprmSVLA4Tzx35aQTShXBOJnflRQ4ltQguksqGNNCS4PGMIUKn0dMsZNK8KGadGUWg4jIIpGtwloh3qMoP5o/mAxahCMQglauI9Sy5YCjpMgvGfWwGHTQ6zSoMEdF02RzhSrJmJU5RbrrsFxmqIgJpPSYVSNl5CRG26BagW+v6xLHLs1bZ1RJWNvuEnPB7sFuzKuzY7dpFSPbUkMNtmTnW/egD9Tj1XaTcLzc2OUWa7FEkTh2PKthLlzqpMq68Oijj456jbMuMAzDMAxTzGRk9TzggAPEYzJQlGAwGMSuu+468truu+8uUniSNxbVDYynr68Pv/zlL8UE7thjj53Ubxczcj3lS8E7vpCjIOV49a7YNoDzDpqtDvHS78eiX92Iiz74AuefeQugJQNJCHqtFrbZM3FQtTRSK2WynsiJhhKKgEsm8NLz9gEv6h1mVEhGWI36pKJKrhfnqQw9sXOX3n9jVacw2uUiPZbSKYDUILoXgsFFjWnQGKbQ4POIKQVSCT4UnUZpFCkFfO+gTwh+DosB/lBYpCSk+11dmUV8LtcRalIWHHCUFvnlzhV2a6rAx5v7FJ1TZLIOy1c2g0ydxJJdn+lYqLaZRCaODV2DQlQ894BZ0OvHZu1Q0/lG4jmVFAiGo7UOaZ9i51uy41kNc+F0KEZnYM66wDAMwzAMI1P4u+qqq0R6T0qVQH+Px2233SarX7u6ulBRUQGjcYeHJdUIpLp//f39Y1Iw3H777TjhhBMwd+5cHrdJUkre8YVa1DyfdefSZts24Nvfhvn990HV+66e+wQeP/5ckcqHDCSzq23Q6bQiRdBk25zKUHLoglqsaXONCLzCuz0CIfrtOq18QlElV4tzOYaeghp7lYruhWBwKYZxZph8w+eReihGw7FaSCX40L1idq2EAa8fPYN+4TBkNelEynVyvnJY9KJeXeI9JhdR70o74GRD5Jc7VyBRSsk5RabrMCmP2QwycRJLdX2mv8usRhHt1+3yo83pVdU8J9n5RuI5Rfh1ubyi5EIoHBYC+3jHc77nwnIpBWdghmEYhmGYUiVvec6GhoZGiX5E7Lnf7x/1+nvvvYdPP/0Uzz///KR/lybnk00jEtuGGtKRpAstnF/+qn144bzDGEALGptJwvpON15Z2YGZVZLqDTZyx4F2cWrFaMOC2sdu0BeAN0CLTjO1dsz7ZHBod3rF5/K6L2+8AZx+OjRd0czXAb0BHwYlvLuhB6FwRNSU+Wq7E7s0lWNalXVSbSYR5CEylIykvzQLw5YwlPQP4bv7Tsc3jA1CcKSaIX//cKuovxE9xHf8Hj1vKDNhfadLeMlPrbCKBe5Z+87AKyvbxcK33RmGSa/FYlqcL6oT70+2nydq/1nC0GOb9Nir5fpEfXbeQZIwYsVEYKoFSdeVXLQtF2M6HhONQ8Gc40VApucE97v6SScChoWp7MGG4+wijSP40Dxnfp0dayIuIfw0d7uF89Ps2mhdKxIr4slV1LvSDjjZEvnlijPJPkf93FRpwR4zKsV36BqTSRScXAGzELIZFGq95XikJOcb9XV0jk7p+P0iPaxOpNUdv0ah2h1QS8kZmGEYhmEYphSRJfzFR/HJjeibCJPJNEbgiz03m8kQGsXr9eK6667D9ddfP+r1THE6nWPSiKYLLa6oRiGRuPhUO9v7vVizvQ+VFj18vtH9T1SaNVi9rRdrWmyYUj75/s4mhTwOExH2eaGNhNDn8ojFfSK08NSGQwj7hjAwkAdRIByG6Xe/g/mWW6AJRz1eXbUN+H/HXYnP6+dC0gIWgxbBUATdLi/+s7YT82ollJn1CHo9abc5HIngX59uQ8fAIGZVWaFBCH5fEF5fCJIugubuAfx7+Racs89U2C0aDLp8cA/5UW3RwesNjdmeNhzBoMeH9u5+2LUB8VqNCTh912q0DdiFIGc16oRAqNWEMDAwMLnuStL+gD8EMic0OfTY1DOI/1u+BWfvPQVhn29SY6+W84L2uW3AN9KXktkElyva17kim2M6ERONg+rP8SIi03OC0o4z6kaSGQHT7fKJFMoc0aA8bDjOPhMJPkOBMI7ZuRHHLm3AUCAkzgs69h9+vzmvUe9KRjwpLSIlOgL88MBZIvJsPHEmXsRZ3ebEJ8196HJ68dxn2/Gyvl1WlNRkBMxCyGYQj1Qg9Zblnm/Uv0unluGj5l4YtNG6f2bDxMez0in1lYJTZTMMwzAMwxQ/smbad911l+wNXnDBBbI+V1dXJ+r2UZ0/vV4/kv6TxD2HwzHyuS+//BItLS34yU9+Mur7/+///T9885vfxI033oh0oG3rdDpMhlgUQFlZWcEJTm1DGoQ1OlTYrSIaKxG90Yg+nxtakwVlZTvGQY0U8jhMhN3uwIIpLqxsdaLKsaN4fGy/tw4EsHhqJRY01eZ+gd/XB5x1FjT//vfIS+Ejv4aLD78AK1x6mHVamAxa0eYIwtDrIkJ0+bLVhTk1Nvxn0yCOWmwTnrNy2dbnwXZXENOqHbAM19bY0OkWaa1IXKT/vbm+D8vm1mH/OTWoDxtgs3YirNVDSqhtQ5CHrs1qQn11OcrKRi/GK8on2T8y2p/ItGodtjkDcEeMWNBUNqmxV8N5QUarWKSdLxAWx4MwiO1Un9a4K0U2xnQiJhoHVZ/jRUam50QoNNZpgFEXciJgyDj+4oo29HkCHNGgMGw4zg1yBB96f3qVNOp7akgzqFTEk5Ii0ngRqgvqx1/7ULt9wRDeXtcVFyWVvIZ0NgTMQkkfSdcGugY7zAbRziVTykY53qoxQlHO+Ub1yveYXoGv79yAartJdRF86cCpshmGYRiGYYofWcLfhx9+OMoDntJu1tbWYuHChTAYDFizZg3a2tpw4IEHyv5h+i4Jfp9//jn22GMP8Rptd+eddx61MFiyZAleffXVUd898sgjcfPNN2O//fZDupBRSAljeGw7hSY42UwG4Z1IQkzyhXNQLIDpc2ret5inbnu3B/URI6aUWwty0ZUKnU6DoxbXi0UxpV9NauTZqU7Uzsspn30GnHQSsHlz9DkdIzfcgE/OOA9rnvwS9Q6dMISQgZUW9eEIQKNCQxMJR1BjN2FVm1OkMEwnfYzbH4IvGBbGlV53AJ+3DIhj1WY2wGDWwB8MC+PH4x+1oKHMIlIkzamxDxuDd6RS2mFs8A0bG6w5Oc7j2x/tkdFYjHp0OH3iczSmkx37fF6fyKD20HvNYwxiJHBR+0spbdB446Dac7xIyeScUPM9kJEpiFCawwjEPUmpumDMDthwnDsyEXzUkmZQiYgnpdJcTjZCdbJit6SAgKmWcZUjrFJUXEuvR4zP4kYHGsotqo1QLESBtRRTsTIMwzAMwzAKC3+PPPLIyN833XQTZs+eLdJvxiL1aMF1++23o7u7W/YPWywWEbF3ww034NZbb0VnZycefPDBkVSiFP1nt9tFBOD06dOTRgxWVVXJ/j2mMOtDjLeg3NDlEukaKbKLRJ5iK0KeatFJC+elTeUIhiNiMZ3Txf6f/7xD9KusBP7+d+BrX0P3ilaRXsrlDcLpGxslY9JpoNVpRC1JOv7SNbZKw4YSty8goslI9CODQez4pX/KLAa4fUGx3fMOsqkqHVK6hp5CNThw9Ed6FOo4M0yhnEc7Ty3Ds8u3K14XjInChuPckongo9Y0g+miRJpLJeYokxW7lVqHqXVcE4XVxnILqm1GUe/7s6396B70o9pmKoh5jtoF1skiFWgqVoZhGIZhGEY+ac/k/vnPf4pHTPQjaNFy6qmn4oQTTkhrW1dddZUQ/r73ve/BZrPhwgsvFNF8xP777y9EwBNPPDHdJjLjUGj1ISZaUFaZtSKdY7EWIU9cdHa5fPiipR//XL59THqinOz3b35DIcAAnf9PPQUMi/LeQAjOoSCCKUqR+UIRmDRR71G6XtQ7TPhiWz/+u75LtH+ihXTMUPJRcw/63D4R6RczlpChZNAbRK3DjFnV0ojBRU2iSiaGnkI0OHD0R/oU4jgzTKGcR+s6XRzRkEWon9lwnFvUKvjkgsnO65SYo0xW7C70ddh4pBJWmyolcT3+cvsAZlZLOHu/mWiqKIxMLcV8vhWDMzDDMAzDMAyjsPBHKT7feecdzJw5c9TrlI6zqakprW1R1N8dd9whHomsXbs25ffGe4+ZGDUJIpNbUAJeb0jUcKN0jsWasiu26CTR8+Wv2jNOT5SYJlWWyBAIAIY4L1CLBXjhhWi0n8k0sr3PmntTin4xqBZfrWRCr9uH9R2DaOnz4P7/bUKtzTyheBkzlKxsG0DfUAB1Bi3CEQ0CobAQ/choMrtGgtWkR6fLN2JwUYuokqmhp9AMDhz9kRmFNs4MUyjnkcTCVFZhwzGTayYzr1NijqJUqk6as9OcfsX2AVF+wWrUYcmU8oLOXjKesEplPGiu3+8JQKvRFNU6rVApZhGaYRiGYRiGyVD4u+yyy3DJJZfgrbfewoIFC8RrK1aswFdffYV77rkn3c0xeUItgsjkFpSRkknZpVQKxfi6GxNGDP7738AFFwCvvQbMm7fj9YaGUR8jAe/NdROn+aV6f1+2DoioRedQAAa9FjMrJfGvHPGSXj99r2lo7nbD7QuJhalOqxWRfiT6VUomuLyBMQaXdEWVtITREhHc5fZHtqI/sjUmDMMUNyxMZRc2HDOF5CwjJcxRKKqJUtT7Q2EYRT3dyIRzFEWvKbSMidB/4v/E9wsZdv4qPAp1bcIwDMMwDMNkSfg74ogj8Nxzz+GZZ57Bpk2bxGu77LKLqNM3bdq0dDfH5JFCizIp5QVlJumJEsUSEl0efr954ojBUAi47jrg1lujP3DSScAHHwCSNPKb8dtesW0A/W7/hPtA5gz6bCgsTBxivDZ0DYrfJDFTjni57+xqfH3nBnzc3CuMKrQ4pbqB1AdKpKVJSxjNkeCeT9Er3f7IhpE922PCMEzxwsJU9mHDcWHADjSj5yj+YAibujzo9fgRDIehE/NIYP+51ePOUZS4psSXLZhSYYHVqBfz8ZVtTrQ5vQVbtkDiCOuCpBCdgRmGYRiGYRh5ZFStec6cObjyyisxMDAgavNR+o5EMYJhlEYq4QVluqJnolhi0mnRPegHNMCuTeWpIwbDHmjPOB14880dG58/nyxGI08Tt0019zyBsLz98AVh1GthNuhQJRlF9N+gL4RdmsplRWzSIvSoxfXCuBIVMHUIRSIY8gUnnZYmsX5kpqlUlRTc8yl6ZdIfShvZczUmDMMULyxM5aaP2XCsXtiBZvQcZXW7E2+v6wZNRcqsBhihx4AngHAkItLFb+qOOqVl45qiVAYPNVJIEdYshBe2MzDDMAzDMAwjj7QVEpq433vvvXjooYfgcrnwyiuv4Pe//z2sVit+/vOfw2g0prtJhpHF2AUlVLugVBopDdEzmVjS4YxGDDosevR5/CItZmLEYPCd/yF8xjXQtrVG39DpgDvvBC65hD4kXkq27Y2Uw1MmoUg05Sc9SASssBox5A+Ktu3SVAZfMDRhxGY2jLhqNMTkU/SaTH8oNT5qHBOGYQoTFqaybxxnw7E6kTOXoPtoqUT70L7W2kzCKYmSe1J9Pb1WKyLvZlVL6HH7Zc0tMr2mZJLBo1AolAhrFsIZhmEYhmGYUiFt4e/uu+/GCy+8gNtvv13U+iNOOOEEXHfddbjzzjuF+McwuVlQmqANU32OANoGfKpZUObTi7bBYcZ9/900Riwx6nWwGnUIBMPY2OUWgtvINiIR7Pfi33HwX+6AjtJ8xur4/eMfwAEHTCjEVEhGGPUa+IITC4AmvQYOs16Mkdsfgj9E42YQ26ToP7kRm0obcdVmiMm36DXZ/lBifNQ2JgzDFDYsTKUHG8cLHzlzib9/uBWVViM2dbtLIp02zRn6hwLYb3YVzSZG6vvF0sZTVgq5c4tMrilqKVtQqvWsOZMEwzAMwzAMU0qkLfw9++yzQvTbc889RxaQ++23H+644w5cdNFFLPwxWSV+Qbmhy4VBjw82q0k1C8p8e9FSbZBkYgkZNfQ6rUhrRAYglzcIh8UAg2cQR/z255j/9ks7fuygg4AnngDq62UJMbRtnUxbgWTSIxCOwKLTwmLQYigQFm0x67ViP6iGn9yITSWNuGoxxKhF9FKiPyY7PmobE4ZhmFKBjePFwURzCZqHvbWmE9OqrELsK4V02rG5RaPJAl0SoSvbcwtJBWUL1FjPOhfk26mOYRiGYRiGYXJN2quKnp4e1NbWjnnd4XDA4/Eo1S6GkbGg9KC9ux/11eWYUm4t+kWaHC/aNe3OpGIJeTJTlF+n0wuNJiI8nIm69Ssx778vj3wucvnl0Nx6K6DXpyXEaGRm+7TotfCHIxgKhIRXNYmGJPwFDFostpnGjdjMZj0ONRhi1CR6SSroDzW0gWEYptRg43jxMN5cgrJFtPZ7xXyM5lOx+2yxiyBSnucW+a6Dp8Z61rki3051DMMwDMMwDJNr0l7V7L333njggQdw4403jrw2ODiI3/zmN1i2bJnS7WOYlAvKqRVW2LUBlJVZxyzgipWJvGhTGTSof+bU2tDr9sHlDcEfDCMYDmP1/N3w7xN/iCNfehR9d9+HhrNOT/nbqbZNEXwGgw4ITixC6XRa1NsotWdAGJtCYWpLRHjenn/I7JTGhmx7J+fbEJOIVOKGKbW0gWEYptRg43jxII0zlyCnq65Bn8jEQPOJUhFB8j23yGcdPBL1X/6qHdv6PGL/IhGITCDFLvaqxamOYRiGYRiGYXIN1TVPixtuuAGrVq0S6T19Ph9+/OMf46CDDsL27ds5zWceoEVcS69HRHrRv/Q8m99j8k/Mi3ZBvUP8G784jxk0yHhABox4KqwGNFj0mF0jIRgKo7nbjX5PANt+dAna3/lwXNFvvG1T1J7JIO9SQmIftbe+zIw6hwkWox7VdhMuOmwe5tU5xvVOJiNNudUgDBL0Lz2n1+l9pQwxZHAhwwfVjSRhlP6l57muHzneOMYMUyTkZtswla/+iEV3zq2zicjQdR2uvI8JwzBMKbDDOK5PaRz3BUNsHC8AxptLiDH0BVFjM4msEKUyzvme38Rn8FjcWCbm4bH5OAmO2Uyv+t7Gbry4og3b+obwUXMv3t/Ug0+a+4RTYKLYW4xIcUJ4MjiTBMMwDMMwDFNspB0uQik9n376abz//vvYtGkTgsEgZs6cif333x9abdo6IjMJMo2Cynb0FJM/xvMkHtq8Bb/409WwnH4KfBdclHbKzFTbBiIwySjyRx9pLLPAGwgjFA5Cq9HAbjJg/7nV4pHvlGNyUqnminx6hOe7PxKvTxSd6guEsbXXA5Nem7cxYRiGKQUkTrNcNIw3lyBxx2LQo7F8bNrDYhdB1DDfy2UdPJpLk+h37383otPlQ0OZCWaDHoFQGJ0uL1y+AHZpKhe1v4s54i3f0Z4MwzAMwzAMk2vSXs0de+yxuOuuu7DPPvuIB5MfYlFQPYM+4anrMBsQCoexYnv/uDUaclXbgVGXQWOn1R/je3ddA2mgF5GbViJy8P7QHniAYsaSvWZWocPZBl8odeSoXkfpRiVYjQY4vQH0efyYWm7F6cumpTR05DrlWC4NMXLaUkqGqfGuT1SHiES/Y5Y2YGG9I29jMh6JNSgby8z5bhLDMEzasHG8uEg5b5tRhdnVPrQ5o9GApSaCqGG+l4s6eDSvovSeFOlHop8/EELXoB+1Nq0QgY2SVsy5Nna5Mb/OprjYm8363IXoVMcwDMMwDMMwuSTtmT1F9QUCgey0hpFFLApqa49HpKdppn9DYeh1WpHO0e0LJY2CymX0FKMSg0avG96bb8HsP94JbTgs3usrr8brK7ux2wJXRuJRMmPJgNuP/63vQrc7gFCYYgBHQ7HAdES19A2h2hYWhoVlM6smFLDyUY8jF4YYuZSKYWqi69O8uuj1aUPHIA5foD6jTLIo6lk1EvadJmHXsrJ8N49hGEY2xW4cV5MQke+5xKbuQeFsU4zjXGjzvWwc17HxpZp+vmBYOCR1uvxwDQUQCg2hocwixtxm1gtH0k06jZibKyX2qjHDjBqc6hiGYRiGYRhGtcLfwQcfjLPPPhuHHHIIpkyZAqPROOr9Cy64QMn2MUmghd1nLX0iPUuA0uAFQwhGItBrNMKT06DXYvnWvjFRULmOnmLyi3agH5Wnnw7ptZdHXtu8xwF4+uLbsClixhfvNmcc4ZloLGkb8ECn1WJ6pRX9QwEMeAKgspE6LUT9P61GC38wBINWi+N3mYKFDfKitiROOVZUhqnxUPv1KZWxOFWU4spWJ5o7B2C32zG3jg1JDMMUDsVqHFejEJHPuUSxjnOpkdT5qFpCr8cv5iY0X6H5i8mgQ63dJDLEePwhdA56MbXcIubrA0MBUTtaKbFXzRlm1OBUxzAMwzAMwzCqFP7Wrl2LnXbaCZ2dneIRT7IaEYzyUC0GqndFKVucJLAkRFZRjYbY5/IdPcXkieXLETn5ZEibN4unEY0G7595AT48/cfQa7WYG4koGuEpmfQwG6JxfSadFlaTXqRmpM3SYygYgdWoRwQRId4cvlCeYYFTjpUOar4+pTIWH7GoDq+tShVFrcOq7X14dVWH+CwblBiGKSSKzTiuZiEinxTbOJcaqY7rj7f0iswwu04rF2Iuzf2pph/NpSjSj5xHPT5K++kT71VKJpy61zRFzgElMszQNui8zNYxWSpOdQzDMAzDMExpk7bw98gjj2SnJYxsBr1BtPVTMfYdBnBaClF6RRIBKeIqFI6Iz8UjcfRUafDAA8D550Pj84mnHns5Xr7qV9iyxwFZi6CiGpNTy81o6feJ45K8ig06DajknzcYhk6jgcOiR2O5Ja3fLPaUY8wOJJVen8YzFq/rcAmj1LRKa9IoxTq7SXyfo6gZhinEdJXFYhznVPelMc6lxnjHNV0T1rS70DrgxZRyKyqtRiH2UU0/mkdPrbCge9CPRQ12uP0h7DWjEvvNrlZFBodN3R68t7wLm7rcikTmlmJ6X4ZhGIZhGIYhZFtQ//Wvf+G1116DwWDA4YcfjmOOOYZ7ME8YNBoMDot+tGyJramE+BeJCoD0Pn0uHo6eKgGGhoDbbweGRb/Ns3fCq9f/EZ76KVmNoGoss2DnRjuc/jD6PAFEIhF4AxGxwJeMOmjFQt+CGrsJW3o8af0mp6IqDdR4fZrIWEwplbtcPsxPkcrTYtChzxfkKGqGYRSjlNNVFmsqaYZR+rgmRymap9AchdaEs2slkQmG5jNU0y+ajl8jRL+pFVZ8bXG9YmLYZDI40Hn4909a4Q5qFInMzcb1koVEhmEYhmEYpqiEv4cffhh33nkn9tlnHwSDQVx55ZUi5eell16a/RYWALleALy9oVOIeyOMerLjJfrcrjMqR17j6KkSwGIBnnkG2HtvuE47E3865Puwl0lItrRVMoKKjq1D51WhZSCA9n6vSP1JUX/hSETUnbSaDGKh7Q2EM/pNTkVV/Kjx+jSxsdgihGzyom8sH2ssHgrQOabNeZQiwzDFCaerVFcqaRYAGLUc1+Qg5fIG4Q+FYdRpRbrxaptRzFGoFnyN3YxdmsqxsdONHrdP1PSj9J4U6Uein5JOA1KGGRyEs9XKdpG5ZtGUCmg02rRThGb7esmOFwzDMAzDMEwhIcsa+cQTT+CWW27BN7/5TfH81VdfxVVXXYVLLrmk5Ov65WMB4PaGdkT7Jeh+sWVQJO5z8XD0VBESCACGuIX1kiXAqlWQpk3HjP9szFkE1axqK3588Bz0uleL84HQ67SoK4tGclVYDWLRnulvciqq4kdt16eJjMUUwUoGYzqXSARMPMc6XD7sOqMmp1GKDMMUJ5yuMnOkLKSSZgGAyTfS8HHd2u9B+4APvR4/guFwtGaf1Qi7WS8yD5ATk9mgEzXg59fbsKlbgzm1NlHTj9J7Ku1QlWkGh5izFaVJn2xkbjaul+x4wTAMwzAMwxQasla4LS0tItovxqGHHoqhoSF0dnairq4OpQotPh56T1lPQjlMrbRAOyzu0Tomfr0iUn1GIN6nzyWDo6dQHB7dwSBw3XXAf/8LvPXWaPFvxgxxDOQ6gmpevR3XHrcQd7+1ET2DPvGbJI5QpB+1odRq8qn22FExaro+TWQs9gZCor4fRbgmO8fKLUYcuah0jncmv5BB9de//jWefvpphMNhnHzyybjsssug1UajJhL5/PPPcfvtt4sMDrW1tfjBD36Ab33rWzlvNyMPTlepnlTSLAAwaoCO13KrAa+t6oBRp4HdYoBBp0cgFEaHcwj+UAR7zqjArBqbqJcXc6ZaNrMqq85UmWZwoDmfLxBGlVk/6chcpa+X7HjBMAzDMAzDFK3wR+k99fodH6W/TSYT/H4/ShVKYUjpSJT0JJTLKbtNw29e3QCnNzBS34/EvpgISHUbyKuTPpcKjp4qcI/ujg7gtNOigh9xxRXAb3875mN0/B21uB5vrO4Qi1udRiO8frMZQTWvzoELD50z0m+UZiifUVv5QrXHTgGgluuTHGPxbtMqcPiiWry2snNUlOLiKWXYp8kqvOoZJhf89a9/xfPPP4+77rpLzNsuv/xyVFVV4fvf//6Yz3Z1deH//b//h9NOO02IfytXrhSZHGpqanDwwQfzgJVQuspSQMlU0iwAMHKOkZw5L8XSviSIW9HnEVRYjTjvwNloG742ZL09k8jgQG0zGbQiTbqUZJvpROYqfb1kxwuGYRiGYRimEOHCQxnSNuBT1JMwHcxmPb6773Tc+/ZGBEMR6LWUUhEIhYFgGDDoNDhzn+nic0zmqNaj+913gW9/G2htjT7X6YCmpqTtjy24hwJBYRyodZiFSLFvFlL7qDVqKx+o9thhsmIsprGcU2Mfdbw3lpnhcjm5x5mc8be//Q0/+clPsMcee4jnFO33+9//Pqnw9/rrr6O6unqkVvOMGTPw4Ycf4t///jcLfyoVCbKRrrKUUCqVNAsAjFqcvuhYpHp4FNVH69I+jx+DvqBI9VnnMKPeYUKfJyBEv3w4U6W7Fog5W32+pRtVDuukInOVvl6y4wXDMAzDMAxTiMi2Drz00kuw2XZELlAaqddeew2VlZWjPherA1jsePwhkY7EmmLBkG3P658eOV/8+7f3tmDQFxBZH2kdVWYxCNEv9j6TGar06Kawzt//Hrj88miaT6KhAfjHP4ADDhhXeGocFp5o0fzSV+2oLzNnXXhSS9RWrlHlscNk3ViceLyTkYphckVHRwfa2tqw5557jry2++67Y/v27SItO6XyjOeAAw7AwoULx2xncDBan5VRn0igdLrKUkQJpyQWABi1OH3FjkWaT06tsMLlDcIfCsOo04r6fqFIBM3d7pxEAadyYEhnLSCcrXaqR3PnANZ3uicVmav09ZL2iR0vGIZhGIZhmKIU/hobG/Hggw+Oeo3SRz366KOjXqNJdakIf1ajTqQjyafnNYl75x84G/9YvhXb+7yYUmEW6T050m/yqM6j2+UCKGrjqad2vEbp2B5/HKivH/VRFp7yi+qOnTxRTPUNSz2ClVE/lLqTiBf4KKKPaG9vHyP8TZ06VTxi9PT04IUXXsCFF16Y1u+SAZVFbvn9FN9Xok40iQSemEhgFk5lQiToH8JZQiTY4XBHtxMyetN70QhkEyxGPYaEU49PGMWPWFQnPsdjkhrqn6kVo439qfor2bhJNP/Xx+b/Y+f4NB5GvVZ8jschfyQbu2zPeV7+KlYCQopz+tLDZpKEkPXKyg7MrJIUmzskHosOy+jjcciXm2ORrmVU/oLmvuQUS+tj4cCwU33a6c5n10g4bfcGvN/iEdtrd4bFPlL6dKqZTNuVsy9KXy8pi8OsGgkrW52QjFoM+kIjIqvNpBNCIrWRPleK572c860U+4VhGIZhGCbfyFKl3nzzzey3pMCgBQQtPmgBkE/PaxL5vrfvrKz+RimiKo/ulSuBk04C1q7d8dqVVwI330wFN8d8nIWn/KKqYydPFGN9w1KNYGXUg9frFZF9yfB4POJfo9E48lrs74nqMdN2SfAjofCUU05Jq01OpxNarTat75QiNC+MjRHNF6lO9L8+3YaOgUHMqrJCgxAC/hDIjazJocemnkH83/ItOHvvKdDGzS9rTMBJS6rw5roeNPd44AtGjeJzqq04ZG4lakwhDAwM5HFPi3vcCEkTwRS7Hms6nNGxS5j/b+3xYGG9HZLGj4GBQN7aXuokG7tssr3fizXb+1Bp0cPnG3vNrTRrsHpbL9a02DCl3KzIb6rhWNzU7cHfP2kVKUfr7CZUmfWiRh+l66TIvdP3aMSsavlzJ2p3vRU4bZcqtDvtwhmCnG1p3a3VpHd9U/p6ue80CV9u7cGLK1oRDu94nW6Bs6ttoq5zqaZ4l3O+UbYohmEYhmEYJrdwIZAMIUMMeTKSwDde7SeOCClMJDWldHnooR2in8MBPPww5dRN+XEWnvKLpKZjJw9wfUOGyQ5ffPEFvvvd7yZ973JKAT0s8plMppG/CYsltQOS2+3Gj3/8YzQ3N+Pvf//7uJ9NhsPhgI7qzDLjEot0KCsrE0bRbX0ebHcFMa3aAUuSqLFp1TpscwbgjhgxtXy00XzXsjIsnVkvUgdSPS9yPmss4wjkXIxbjON316Pv3Wa0OP2jI4mcPtSV2/CN3aajojy9SCcmN2OXLdqGNAhrdKiwW6FLEtGnNxrR53NDa7KgrMyh2O/m81ikKMf3lnfBHdRg0ZSKHeI4ZQZyWEWUI0Xu0fVK7no4ftwqKyY/bkpeL+0+HQwGI7RaH6DZIWLpNFoYDAbY7XaUlZXmeS/nfAuFQjluFcMwDMMwDFOcluccQelL5NR+YgovJaCqaunccgvw3ntUfAl45hlgzpxxPy6VsPCkhmNJVcdOjuE0swyTPZYtW4a18ZHfcVAk4C9/+UuR8jOWwjOW/rOmpibpd6ie3w9+8ANs3boVDz/8MGbMmJF2m+j6lgujejEQ6yt6uKlOdDBWJ3ps/5HxvsPpE59L1r86HUUgk3mdyeW4xZhbZ8fZ+8fP/308/y+QscsWNpMBZgPNvUMp5t5BMTenzynZnnweiySmbeqK1uLTaLRJU9tv7BxE64A3rYwJSo+bEtdLmt9SfW6K1j5qp7oxqT43dLnx2qoOMf/P9xo2X0w0bjxXYBiGYRiGyT3FZ/nPMVz7qThTAooC84vrxKI25xGdgQBgiDMaULq2Z58FbDbAOvHCuVSFJ7UcS3k9dvIMp5llmPxQV1cn6jF/+umnI8If/U2vJdb3i6XcuuCCC7Bt2zY88sgjmD17dh5aXbpIJeygUyzw/J+Jp8FhRrXNiFVtTsypscFh2SHwZXvuna9jsZQyjMTPbym9tcMyWugslfrdpQ45Wd1yyy344IMPRHaFr3/967j00kvF3y0tLbj22mvx+eefi7nX1Vdfjf333z/fTWYYhmEYpsRhi4ICcO0n9aUEVCLyi3475xGdr78OfP/7wL//DSxZsuP1JIbbVJSi8KS29JJ5OXZUQCkZgRhGbZx22mn41a9+hfr6evH817/+Nc4555yR93t7e4VxSpIkPP300/jwww9xzz33iHSdsehASldWXl6et30oFUrVQafY4Pk/E+94tqnbja29npEouPn1dhEFmIu5dz6ORamEHBh4fsvQvfknP/mJmDM99thjoj4kiXskBF9xxRU4//zzMW/ePDzzzDN4/fXXhXPViy++KERAhmEYhmGYfFH4M3GmIMlmSkAlI79y5kVLBc9vuw249lqy+gEnnQR88gkVS8hoc6UkPKk1vWQpRgNIJWQEYhi18f3vfx89PT3C2ER1904++WScddZZI+/T8xNOOAEXXnghXnnlFRH198Mf/nDUNvbaay8RAchkl1J00GGYYiTe8WxapRW1djPWtjvFedw16MO8Ojt2m1ZRdHPvUnNgkHh+W/Js2rRJRPO9++67qK6uFv1BQuAdd9yBAw88UET8PfHEE7BarSKLwvvvvy9EQJpzMQzDMAzD5Au2vjJFlRIwG5FfWfei7esDzjwTeOGFHa/NnRsVAydBqQhPak4vWWrRAKVkBGIYtUFi31VXXSUeyXjzzTdH/n7ggQdy2DKm1B10GKYYSeZ4ZjcD1bZqOIcC2NA1KOZE5x4wC3r96NSQxUApOTDw/Jahesn333//iOgXXy/5iy++wKJFi4ToF2P33XcXQiHDMAzDMEw+YeGPKZqUKWqN/BqX5cuj0X3NzdHn1OZf/AK45hpaUU9686UgPHH6HfVQSkYghmGYyVIqDjoMU4ykcjyjv8usRhHt1+Xyoc3pLdq5eKk4MPD8lqEUnwcccMBIR1DWhEcffRR77723SJeeWE+5qqoK7e3t3HEMwzAMw+QVFv6YvCBlIWWKmiO/kkIRF+efD/h80edVVcDjjwNHHJHvlhUUEqffURWlYgRiGIZRglJw0GGYYoQdz0rLgYHnt0w8v/zlL7Fq1SpRM/mhhx6C0Wgc9T499/v9aXcaZUihB5Nef3GfqQM1jodoS/Q/8VB8+3F/qG/7sW9EEIGmANuvku3TthU4rtV4fpQykQIfj3TazcIfUzQpU3KxAKeowkkvbIeGooLfX/+647Vly4AnnwSmTcu4baUKp99RH6ViBGIYhlELisxPGIaRDZ1nXNdYvQ4M2bgm8vyWiYl+Dz/8MH77299i3rx5MJlM6O/vH9U5JPqZzea0O8zpdEKrQNafUoHsRh6PR/yd6PjN8HgQLpcLoVAIoUAAwUBA8U4JBwLiOAyGQ6rcPu17Nrc/EYW+fTpuqA/pOBoYGJjUtvh6pS4iBX7/oMwDcmHhj8nLwikbKVOyvQCn+oGxKCYSGOm3SLyk/UgrimnFCuBvf9vx/IILgF//mlwDM2pXqcPpd9SJGo1ADMMwxYhi8xOGYWTDjmeleU3k+W1pc9NNN+Hxxx8X4t/XvvY18VpdXR02bNgw6nPd3d1j0n/KTSlKNZuZ9CIeysrKCtJwW2yocTzsdrs4p3QGA/SGsTbCyaI1GMS+6rU6FW4/Oh56A9k/NQXY/vxvn44bOn7oOKLjutjOj1ImUuDjMZGoHw8Lf0zeFk5Kp0zJ5gKc+uGv7zaL+oEkUlJUIQmM9FskXtJ+yG7vXnuRqyDw858Df/kLcPrpabeHGQ2n32EYhmFKEUXnJwzDyIYdz9QZiczXRCZb3HXXXXjiiSfwm9/8BkcdddTI60uXLsWf//xneL3ekSi/Tz/9FLvvvnvav0H2i0I0QOaTWJ9xv6kDtY2HaEf0vxTS1yS3H/eH2ra/I72nJuV31dx+1Wyftq3QMa2286PU0RTweKTTZhb+mLwunJRMmZKtBTgtWkmcpH6YW2sbOcEoqpAERvqtV1d2YFa1Lfm2g0FqXPQR4+KLgRNPBKZPT3s/meRw+h2GYRimlJj0/IRhmEnBjmfqikTmayKTLTZu3Ig//elPOPfcc4Wg19XVNfLeXnvthYaGBlx11VX48Y9/jLfeegtffvklbrvtNh4QhmEYhmHyCgt/TN4XTkqmTMnGApxESdoWCYmJqjo9p9c3dA6Kz43Zj44O4NRTgUMPBa69Nv6LLPplAU6/wzAMw5QKE81P6h0mfLGtH/9d3yUM7lz3j2GUhx3P1BN1N6k1G8OMwxtvvCHSat1zzz3iEc/atWuFKHjNNdfgxBNPxPTp03H33XejsbGR+5RhGIZhmLzCwh9TdAsnpRfgtA3yVKVFazIoqpAERvrcKN59F/jWt4C2NuDtt4G99waOOCKjNjAMwzAMw8idn/S6fVjfMYiWPg/u/98m1NrMBV/3Lx9pAxlGDux4po6ou4zXbAwzARTpR49UkNj36KOPcj8yDMMwDKMqWPhjinLhpOQCXDLqRXoa8lSlRWsilEqUogrpcwIqEvq73wFXXBFN80nU1wNWdQmkDMMwDMMULlKK+QmJfp+39MM5FIDZoMOsKhv0Ok1B1/3LR9pAhmEKy3lUSnfNxjAMwzAMwzBFTFzRMYbZgRS3cEpGKS2cyKOcjEtUJzBCol4c9Jxen1MbTaEFlwv49reBSy/dIfodfDDw2WfAfvvlZwcYhmEYhimJ+Qn9u7HTDY8vCL1OizqHGeVWgzCCU/QNReFQtA1F5RRa2kASLmlfKFKI/qXn9Dq9zxQXdHy29Hqwpt0p/i2k47XU2eE8qk/pPOoLhrLiPJrWmo1hGIZhGIZhipziV22YSS2cyKhCaVniPTZjCyeqm1cKCyeKHiSPcvKSp/Q05KlKi1YSP6kfKiWjqB+oXb0KOOkkSvS/48tXXgncfDOg51ONYRiGYZjszk+CoQg6XF4Ew4DDohdzudgcTu2p2tWWNpDJDxzdWdhIeYy6k71m42sFwzAMwzAMUwJwxB8z7sKJFki0cHJ5AwiGw+Jfel5qCydKI0WpsRY3lqHfE0Bzt1v8S+KnSJn1xvPAXnvtEP3KyoDnngNuv51FP4ZhGIZhcjI/2dzjxlAgJAzeuzSVi/larqJt8p02kCl8OLqz8Ml31N2EazZODcwwDMMwDMOUCByGxEy4cIrVVKGafuShSQsnEv1KbeFE+zvrYJswLpHBTDLqxaJVGwoCt94KeDzRDy5ZAjzzDDBnTp5bzDAMwzBMKc1PaL72+Idb0VhuhsMyWvQrxFTthV5zmpEPR3cWB2qIuku5ZisRh1WGYRiGYRiGIQpj1c/kDV44jYYWjGNSY2kNwNNPA3vuCZx4IvCnPwFW9afPYhiGYRimuOYnZNxeud0pUrVTmr1CS9Xu94fw6pp2tA/4UF9mwqIGR97SBjLqje4shDS14wmcxS5IqcF5NOmajWEYhmEYhmFKCF4lK0CxL+B44ZSEQAAwxBmg5s8HvvwSmD6drBM5HB2GYRiGYRj1RNtkyiPvN+P+dzaj0+VFKBwRYk+VZMDCBrtIX1rqNaeLnVKI7iyl+oXsPMowDMMwDMMw+YWFv0lSSgs4Rqi80bSeVL/vnXcAS5xxYsYM7iKGYRiGYVDq0TaZiH6/fGWtEPh0GoDkvXA4jDanD92DAcytk8TnCknIZNJDMuqLOrozVr+w1+0XxzEJnLSvFJ1LQn0x1p9j51GGYRiGYRiGyR+FuXJSCZRu5qH3SmsBV9L09gJnngm8+GL0+YUXAvffn+9WMQzDMAzDFGy0DaX3pEg/Ev30GiACDfQ6jUigoA+F4Q2GsbFzEPNr7ehz+9HhDKteyGTSh45Pcp6kdVSxRXdy/UKGYRiGYRiGYXINC38ZEo5E8MrKdiH6zamRMOgLoc/jh1GnFc83dLnx6soOzKq2qdLIwqTJp58CJ58MNDdHn5MxgiL8IhFO7ckwDMMwjOoolGgbqulH6T118aIfgFAkglAk+hlvMIIPm3vw9Z0bsefMSiysd6hWyGRKL03tRJRK/UKGYRiGYRiGYdQDC38Z0jbgEws4i0GLT7b0C9EvGApDr9OiwmpEQ5mJF3DFAAl7FNV3wQXkkh59rboa+PvfgSOOyHfrGIZhGIZhCpr2AV+0ph8tTOJEP38wAvof6TwkALp9IXy2tQ+dTh9mVEoFKQAxyqSpLbT66qVQv5BhGIZhGIZhGHXBwl+GePwh9Lj86PH44QuEYDMbYDDrEQhF0OXywukNoEoy8gJumEJboAs8HuD884GHHtrx2rJlwFNPAU1N+WwZwzAMwzBMUVBfZhJRT1TTj4KhKMgvGBoW/YQIGP0cpQIlcaS134ubnl+Fa49biHl1jnw3n8lxmtpCrK8uFXn9QoZhGIZhGIZh1AevLjLEbNCi2+0T3sd1jqjBgjDpNTBKRnQ4fSJYzGLQFb9ANgGFuEDHhg3R1J5ffLHjNarp96tfAUZjPlvGMAzDMAxTNBy5oB7V0hq0Or0wCPFPI1Lqk+gXjgBhSodIc289ZdUwIRgOiznl3W9txIWHzlHvXJJRPE0trSn++m7h1Vcv5vqFDMMwDMMwDMOoExb+MiS2XtMIv+RkUMqiaNqiohbIJqBQF+gilWdM9LNao+k+Tzst361iGIZhGIYpKoxGHX540Czc8uIaDAXDMGgjCJPaR8Lf8GfMBg3sFqNwvCNJ0B8Mo2fQx/W0SwhyjqR1Eq0p5tbaRsQziqAjMY3qAsbqqyeU0cs7xVy/kGEYhmEYhmEYdULOtEwGDPnDqLaZIJn1YgHqC4aEdzL9S89tZj2qbCZ4AqG0BDISxMqtBrFopX/pOb1O7xf6Ap0W5jqtRvxLz+l1WqDT51THNdcAhx0GzJ8PfPQRi34MwzAMwzBZ4rv7zsS5B86CZNQhGIoKfiORfiT6mQ2otBqE2BMYrqlN4smGzkGRKYMpfmicyTmSxj0+Yo6g52o/HmL1Cxc3lqHfE0Bzt1v8S5F+qnWEZBiGYRiGYRimYOGIvwyxGnWoshlRbTOifcCHXo8fbl8QOq0WtQ4z6h0mYa6QZNRqSMeDtZA8QdNZoCdL55NTAgHAEFdzQ6cD/vGPaFpPOy/EGYZhGIZhsslPj5yPo3eqx5/+swEfN/fC7Q+Jun8VkknUzbYY9SIt4qA3KObaNXYTtvR4uJ52iUBlECgjCmUPSQZF0FENSPpcodYvZBiGYRiGYRiGUQoW/jKkocwk0nCubHVi9+nlGPSF4A+FYdRpYTPpsKHLLbtWQ0EJZMW4QP/f/4Azz4wKfXvtteP1qqp8tophGIZhGKakWDSlDH84bTe8u7EbD/xvM1a1OlFmNsBk0ImsGiT6kQBIc3BvIAyTXifLyS6zWts6SBoVZqUoUSSjXpRBoJIB5ByZCKXNVPp4yGX9QoZhGIZhGIZhGCVR98pIxWg1Gnxtp3pRl4FEPhLnKDUnLTrpeTq1GgpGIEsTSe0L9EgE+N3vgMsvB0Ih4OSTgeXLgerq/LSHYRiGYRimxKG58wFza1BnN+Om51cJ5zj/cHpPivQj0a/CahAZMeQ62WVSa9uk12KKXY/jd9djbh1nf8g3NM409lQGgTKixDtLUiQorcmUPB4YhmEYhmEYhmEKGa7xNwnm1NoUqdUgxQlkyci7QDbJBTotxGlBHk9sgU59mJcFutMJfPvbwKWXRkU/Ys4ccvXOfVsYhmEYhmGYUcyrt+Pa4xZiz5mVqC8zY+cpDuzSVAaDTiNEv3Sc7DKptV1hNWJNxyAeKtBa28miGVt6PVjT7hT/qrLG9jjQOH9tcZ0Ydxp/lzeAYDgs/lX6eGCUp9CPP4ZhGIZhGIYpNApLSSrSWg3F6sEaW6C3DgyJBTlFRVL0IgmZtE95W6CvXAmcdBKwdu2O1666CrjxRkDPpwTDMAzDMIwamFfnwIWHzhmJxKOafuQMR/NimkPKdbLLrNa2HrOqrGhx+guy1vZ40YzkcEhrD5qnK9GHuYLaSs6VsX2hjChKHw+M8hTL8ccwDMMwDMMwhQSrHCqo1aBagWzcuifyBE7VLdAfeww491zA44k+LysD/vY34BvfyG07VEomY8wwDMMwDKNmJ7vJ1do2FWSt7cRoRhI2aR+ptABlGSGHQ1p7pJOlpBSOB0ZZiu34YxiGYRiGYZhCgYU/lYglqhPIFPTUVMUC3ecDfvpT4O67d7y2yy7A008Ds2fnrh0qhr1xGYZhGIYpRie7ydXa1qPD6Su4WtvjRzMaRJYRcjgsxGjGbB4PjHIU6/HHMAzDMAzDMIUAC38qEktUIZBlyVMz7wv0deuAv/xlx/Ozz46KgJbCSp+aLdgbl2EYhmGYUkSKq7VNgkQiQ/5gQdbalhfNaC7oaEZG3fDxxzAMwzAMwzD5Q5vH3y54aKFMghgJYOVWg/BWpH/pOb1OYkq6xASyBfUO8W++Rb9ET00yiOi0GvEvPafXyVNT9QXad94ZuOsuwGQC7r8fePBBFv2KbYwZhmEYhmHSJFZrm9LrU23teKK1tn2YU2sruFrbo6MZk4uWVFrAFwwVZDQjo374+GMYhmEYhmGY/MHCX4aEIxG8srK96MWSdDw1VUU4DAQTjBg/+AGwZg3w/e/nq1WqpGDHmGEYhmEYZpLEam1TTW1KPejyBhAMh8W/m3o8qqm1nQlSXDRjMqieeKFGMzLqR+Ljj2EYhmEYhmHyBq/yMoS8f0shdc7EdU90oh6hqjyFe3uB73wnGuV3xx07XqdxmjEjny1TJQU5xgzDMAzDMAqRrNa2Ua/Fwno7vrHb9LzX2p5sNCNlI6GaavFrlmg0o1fUEy/EaEZG/XXs+fhjGIYpfLq6uuB0Oif8HM0rXC4X7Hb7GBvpePj9fhiNRmSDLVu2IBhgOxbDMKVLXoU/n8+HX/ziF3j11VdhNptxzjnniEcy/vOf/+C3v/0ttm7diqlTp+Liiy/GYYcdhnzh8YfgC4THTZ1TDGKJNGHdE5V5Cn/6KXDSSXSHB156Cdh7b+CEE/LdKlUjFdoYMwzDMAyDUhcVlGZsrW0dJI0fFeU2FHo0I9XkpmhGckykNQrN7Uj0K+RoRkb9dez5+GMYhil80e87Z/8AvS7PxB+OAKFQCDqdDpA5rQj4/di+dQumTp8JvUF5e5N3yINt29swLRBQfNsMwzCFQF4t+XfeeSe++uorPPzww2htbcWVV16JxsZGHHXUUaM+t2bNGlxwwQW44oorcNBBB+F///sfLrro/7d3J/BRVef/x5/se8KWRAFFAa0IuKJopT/toqKtC4sKLijgXrC21Vq0Km4VRdtqtVXxB+KugEu1qGitrT93UUDwrwIKIkuIAlnIOsn8X98TJ5mEELLMPp/3yxjmzs2dm3uSzHPPc85zfmXz58+3/fbbLyznnpmaZGkpiTGfLImakZpak2XWLLOpUzVkqGFbr15mubnhPa8oEDVtDAAAYkIgkgrB4Ftr2xcDlZTUxuRsRt2jKLZT0i9aZzMiuL+fWq9eS1coWayqILrn1b2Cksj6eWrvzw0/fwAQvTTTT0m//CPHWFaPwjb31SJHdbW1lpSS0t68n21evdy+XDPbuh9+ivXs3S8g59zy+GvXzbY6T/THcwDQGWHLSlVUVNi8efNs1qxZNnjwYPexcuVKe+yxx3ZI/L344ot2xBFH2IQJE9zjfv362euvv24vvfRS2BJ/u+eluQ6KFRtKYzpZEhUjNSsqzH75S7O5c5u2aabfvHlmffuG77yiRFS0MQAAiAmBTCqgs7MZwz/DEpE7E1dJYt869r57XA101T2v7hW0jn3/Xtnt/vnh5w8AopuSfrkFfXeZ+PPU1lpyBxJ/5d9tcp8zu+fv8vid4Ts+AMSrsCX+NIvP4/HYwQcf3Ljt0EMPtfvuu8/q6+stMTGxcfuoUaOstpWp2aofHS6JCQl2/ODdXGIk1pMlkTxSM/HLL80mTjRbtqxpo2b93XGHWZDqhMeiSG5jAAAQG4KRVEDHZzMCO6PkcDDWsQ/Uz1+klQgGAAAAIlVyOGtFd+/evdkirr169XLr/m3bts169OjRuH3AgAHNvlYzA9955x0bN26chdPAguy4SZZE5EjN556znHPPtQRfAjgry+zBB83C/HMRrSKyjQEAQMwIVlIBQGDoHkDldzUTN9LWsY/UEsEAAABAJApb4q+ysrJZ0k98j2t8a7S1YsuWLTZ16lQ75JBD7Kc//WmHX1dlOPXRFb5j6EM3GxcfneVKE5VXe9xo5d55DcmSrr5OpFH/TN/uzW8Cw/Y91tebzZjRmPTzquTr/Plm++/fsN4fQtrG/r8TCC/aIjLQDtHfFvw9A+IrqQDA3MA/JdQibR17SgQDAIBYo0lRWkszGHJzcy0/Pz8ox0b0CFviLy0tbYcEn+9xenp6q1/z7bff2sSJE11n3N13392sHGh76ReqM1/nT6+vNQqlsURRolmO68OotbIyFo4NhYRZsyzn6KPNc8wxVnH33WY5OWYlJSF5bez6dwLhQVtEBtoh+ttCZccBBFZWhCYVADRQtQ8NbNWam8FYx74zpTopEQwAAGIx6Xf2xPNtS1lDX0Wg9cjJtEfnPEjyL86F7a66sLDQtm7d6tb5S05ObvyhV9JPWemWioqKbMKECe7fDz/8cLNSoB2hYyclJXXp3H2zAPLy8khyhJLWeUxp6iTyDhliZW+8YTlDhlheF5O56Bp+JyIHbREZaIfob4u6urognhUQn4KdVEB8Yb23wFMSTqUzVc0m0OvYd7ZUJyWCAQBArNHEJCX98o8cY1k9CgN67O1biqz4nQXuNZj1F9/ClvgbNGiQS/gtWbLEhg0b5rYtXrzYhg4dusOMPI3UP//88912Jf268kOrDoZAzEjyHYfZTSGgTts//9nsoYfM3nqrYWaf76l+/SwhMZF2iAD8TkQO2iIy0A7R3Ra8vwPRlVQIJxJQoddWEkmfAyFe21VJuECvY9+eUp07azdKBAMAgFilpF9uQd+AH7c44EdENApb4i8jI8NOPfVUmz59uv3xj3+0zZs32+zZs+3WW29tnP2Xk5PjZgDef//99vXXX9sjjzzS+JzoOe2DGKZax5MmmS1Y0PD4ggvMnniiYTE6AAAAWLwnFcKps7OY0LVr3lYS6bwf7mX5aV27wvHervoe+x+THZDEZ3tLdV70P1mtfr1emxLBAAAAQMeEdQGNadOmucTfueeea9nZ2TZ16lQ77rjj3HMjRoxwScDRo0fbK6+8YlVVVXbaaac1+/pRo0bZjBkzwnT2CLrly83GjDH74oumbf37N8wAJPEHAABg8Z5UCKf2zGKKhyRRKLUrifRpkY0/qGenX4N2baDfxz16ZHa5zdpbqlO/MzmtrN5AiWAAAAAgyhJ/mvV32223uY+WPv/888Z/v/zyyyE+M4TdY4+ZXXih6rw2PM7LM9OMz5NOCveZAQAAIEKSCuHS3llM/XtlR11CM5K1L4lUZhtLsq17t44fn3YNvPaW6iyv9lhORvyUCAYAAABiNvEH7KC62uzXvzb7+9+bth10kNn8+WYDBnDBAAAAEHbtncWk/aI5wRmNSaRNpfVWUVPXqePTroGX1c5SnUqYm9XGRYlgAAAQ+Wpramzt2rVdPo7X67WysjK3XJnvvkHH9dR6AnCWwM6R+EPk+Pprs7FjzT74oGmb1ve75x5NDw3nmQEAAAAdnsWk/RA4We1KIiVaZmpSp45PuwZee0t19s7LsLKy1hN/sVQiGAAARL7q8hJb89WXdvnV0y0trYuLR3vN6urqLCkpyez7sKWqssK+Wb/R9qzdeewDdBWJP0QOzerzJf30R/Xee80mTw73WaGNUkhNN95JlpXg5VoBAIC4kNXOWUzaD6FNIg3pk2e753WugyaLdg24QJbqjPYSwQAAIDrUVldafUKy9TpitPXs3a9Lx1JvaV1trSWlpPjyfrZ59XJbu2621XlI/CF4uBNF5Lj8crP//Mfsk0/MFiwwO/jgcJ8RdkJrp/hK7Wi0u0ZW98lJtlMOTbZ9Cim1AwAAYlt7ZzFpP4Q4ibR/oSUmdK7UJ+0aHO0p1anfGwAAgEiS2T3fcgv6dukYinA8tbWW7Jf4K/9uU0DOD2gLiT+Ej6Yzp/iNkE5MNJs7V70lZt270zIRnPSb89Ya27K9xnW2qMSVRrt/VlRqW99aYxNH7MU6GwAAIKYFchYTAptEUkK2pKSEdo0wlOoEAAAAQofEH8Ljww/Nxo0ze/BBs2OOadrerRstEuHlPdXJoqTfPgXZjaPbc9KTrX/PTFtXWmOLVhRZ/17ZdHQBAACL91lMCN6139l6b12dOUa7Bg+lOgEAAIDQIPGH0NKN+AMPmF12mVlNjdkZZ5h9/LFZ7960RBRQ54o6tjSq3b+kleix1lNZtbnc7cf6GwAAINYxiyk2k0i0KwAAAIBoRuIPoVNRYXbJJWYPP9y0bcCAhmQgooJGVGtNP5X3bE1GarIVlVa7/QAAAOIBs5hiE+0KAAAAIFolhvsEECdWrjQ78sjmST/N+nvjDbM+fcJ5ZuiArNRkS09Ocmv6taayxuNKXGk/AAAAAAAAAAAQWiT+EHzPPWc2bJjZsmUNj7OyzJ580uyuu8xSU2mBKKK1UwbkZ9vGkqod1k/R440l1TawINvtBwAAAAAAAAAAQovEXwDU13tt3ZYK+2xTqfusxzAzj8fsqqvMRo0yKy1tuCSDBpl98EHD2n6IypJHxw8ptB5ZqbZyc7mVVdWap77eff7yuwq3/bjBhW4/AAAAAAAAAAAQWtTj66JVm8vsleVFtrq43K19pjKImhGl5IgWhY9rX31lds89TY/HjTObNcssOzucZ4Uu0s/1xKP2avy5LyqtstTkRBu0W46dfEg/fu4BAAAAAAAAAAgTEn9dsGpzuT309hrbsr3Gds9Lt8zUDLf22fINJbahpNIlR+I6+bfPPg2JvvPOM7vzTrMpU8wSmAkWC/Rz3f+YbFu/rdK213gsKzXJshJqrHs3kroAAAAAAAAAAIQLib9Oqvd67ZUVm1zSb5+CbEv4PqGVk55i2WnJrgziohVF1r9XdvyUPdSabyrvmZLStO3MM81++EOzvfYK55khCPRzvUePzMb1/UpKarnOAAAAAAAAIVJcXGylvuV1Amjt2rXmqfUE/LgAgNAg8ddJG0uqXZlDzfTzJf189FjbNSNQM6J8yZGYVlJiNmmS2W67md17b/PnSPoBAAAAAAAAAU36nT3xfNtSVhHwq1pVWWHfrN9oe9YyyBsAohGJv06qqKmz6tp6y0xNdrOdyqo8VlNXb6lJiZaTnmwZqUlu7TOVQYx5n3xiNmaM2cqVDY81w++ss8J9VgAAAAAAAAFRU1Njo0ePtmuvvdaGDx/utq1bt849XrJkifXu3duuvvpqGzFiBFccIaGZfkr65R85xrJ6FAb02JtXL7e162ZbnYfEHwBEIxJ/nZSZmmRpKYm2YVuFm/23taLGPHX1lpyUaN0zU233vDRLS06yrNQYv8SPPmp24YVmlZUNj7t1a/gAAAAAAACIAdXV1fbb3/7WVvoGPH+/5MUvf/lL23fffW3BggX22muv2ZQpU2zhwoUuCQiEipJ+uQV9A3rM8u82BfR4AIDQSgzx68UMJfa6ZaTYB2u22uayKktPSbLuWanusx5re/fMFOvTLcNiUnW12aWXmp1zTlPS7+CDzRYvNvv5z8N9dgAAAAAAAF22atUqO/300+3rr79utv3dd991M/5uvPFGGzBggF100UV20EEHuSQgAABAOJH465Lv1/bzevW/77d5v3/ctCXmrF1r9qMfmf39703bJk82e+sts/79w3lmAAAAQMSrr/faui0V9tmmUvdZjwEAken99993pT2feuqpZtuXLl1q+++/v2VmZjZuO/TQQ13ZTwAAgHCK8TqUwaPyntsqa+ywvbrbppJq21JRY9urPZaUmGiFeRm2W26abauotfXbKm2PHk1BYNR75RWzM88027Kl4XF6utm995pNmhTuMwMAIG6p1NSdd95p8+fPt/r6ehs7dqxdccUVlpjY9hivsrIyO/HEE+3Xv/61W7MGQPCt2lxmrywvstXF5VblqbP05CQbkJ9txw8ptIEFOTQBAESYM9UH0ori4mIrKChotq1nz562adOmTsVy+kDHrle8XzP3/Tf8F/DJB43H+/747dvba17fJImAHr/j4vv4u26PyD7/WDv+ju0RzPP3Ns5L4m9kLL5/dOS8Sfx1UkVNnVXX1lv//Gzr2z3Tyqo8VlNXb6lJiZaTnmx1Xq+t+Xa7ba/xWMzQD9aMGU1JP83umz+/ocQnAAAImzlz5tiLL75o99xzj3k8Hrvyyitdx9Nkzchvw8yZM23z5s0hO08g3inpN+etNbZle43tnpdumakZVlHjseUbSmxDSaVNPGovkn8AECUqKystNTW12TY9rqmp6fCxSktLdzlgC807PisqKty/ExLal2iKRRrEV1dXZ3W1teaprQ3osetra9119tTXtevYOo9gHr+j4v34u2qPSD//WDt+y/YI5vnr74FeT38fSkpKAnrsWOCN8vcPDfRuLxJ/nZSZmmRpKYnuRj0nPcVyM1KaPV9Z7bG05CTLSo2hS6xfhscfNzvkELPDDjN7+GGzbt3CfVYAAMS9hx9+2C677DIbNmyYuxaa7XfXXXe1mfj78MMP3do0+fn5cX/9gFBQOU/N9FPSb5+C7MYbTd1LZKcl28rN5bZoRZH175VtiYnRdxMKAPEmLS3Ntm3b1mybkn7pqozUQbm5uZaUlBTAs4ttvhkPeXl5UdlxGyg5OTnu5yYpJcWSU5r3S3ZVYkqKu7bJiUntOHZDeySnqA80IQjH77j4Pv6u2yOyzz/Wjr9jewTz/PX3QH8X9PdBfyMRW+8fHRlkEUNZqdDaPS/NleRZsaHU3aj7/6DoB2hjSZUN7ZNnfbplWFTTqAP/P0C7764VrM322MOM0WgAAIRdUVGRbdy40Q7ToBy/9WXWr1/vZvO1LEHl65S69tpr7brrrnMfAIJPSwCovKdm+rW8ydRjbV+1uTz2lgoAgBhVWFhoq1atarbt22+/bTX22hW9D0RjB2Q4+a5ZPF839703/NfOdFsHju33j10du6mcZEK7z6Mjx++MeD5+e9ojks8/1o7fWnsE8/wTfMeN87+Psfr+0ZFzpo5AJyUmJNjxg3ezHlmpbnRuWVWteerr3Wc91vbjBhdG72hdZb/vu8/sgAOaSnv69OtH0g8AgAih9WXEv5OpV69e7vPO1pi57777bP/997cRI0aE6CwBaAkAremXuZOKIBmpSVbtqYutpQIAIIYdeOCBtmLFCquqqmrctnjxYrcdAAAgnJjx1wUDC7LdOhwq2aPRu0WlVa68p2b6Kek3sCDHopLq3F58sdkjjzQ8njDB7B//INkHAECYqENJM/ta46tP77/GjO/fra0xo5HpTz75pP1D7+1dEM0LYodStC8eHq+C0W5ZWiog2bdUwI63YZU1HktNTnT78fPSefzORSfaLXbbLZb/nh1++OG2++6727Rp0+zSSy+1f//737Zs2TK79dZbw31qAAAgzpH46yIl9/b6nyz7aN1W+257jfXMSrVD9uhuyclROply5UqzMWPMPvmkadvAgSogS+IPAIAwWbp0qU3QQJxWXHnllY1JPq014/u3ZGRk7ND59oc//MGtB+ibFdhZpaWllkjZ75hfPDxeBaPdshK81icn2T4rKrX+PTN3WCrg6+8qbNBuOZaVUGMlJbUBec14xO9cdKLdYrfd6uvrLVZpDaW//e1vds0119jo0aOtX79+du+991rv3r3DfWoAACDOkfjrolWbyxpn/Kl0T3pykn3w1VY7fkgUzvh75hmziRPVk9fwOCvLbPZss9NPD/eZAQAQ14YPH26ff/55q89pJuDMmTNdyc++ffs2K/+Zn5/fbN8NGzbYxx9/7I512223uW2VlZV2/fXX28KFC+3BBx9s9znl5ua6Di/E9uLh8SpY7XbKocm29a01tq60xq0ZnpGa7Gb6bSyttsJu2XbyIf2se7fsgL1ePOJ3LjrRbrHbbnUaRBxDWsZjSvY9+uijYTsfAACA1pD464JVm8vtobfX2JbtunFPt8zUDFe6Z/mGEttQUunKgEZF8s/jMZs2zeyOO5q2DRpktmBBw2cAABCxCgsL3chyrSnjS/zp39rmv+6fb99FixY123bOOee4j5NPPrlDrxuti2GHQzQvHh7PgtFu+xTm2MQR/ksFVMfGUgERht+56ES7xWa78d4HAAAQeiT+Oqne67VXVmxySb99CrIbg9mc9BTLTku2lZvLbdGKIuvfK9sSEyO4k2fjRrNx48z++9+mbXo8a5ZZNqONAQCIBuPHj7c77rjDdtttN/f4zjvvtEmTJjU+v2XLFlcGNCsry41M95ecnGw9e/Z0SUEAwafkXv9jsm39tkrbXuOxrNRk69MtI7LvGQAAAAAAUYPEXydtLKl2o3Q106/lCDY91nbNCNQN/R49Mi1ivfBCU9IvJUU9hWZTpuibCPeZAQCAdpo8ebJ99913NmXKFFd+c+zYsXbeeec1Pq/Ho0aNsqlTp3JNgQigJF9E3yMAAAAAAKIWib9Oqqips+raestMbf0SZqQmWVFplRvFG9EuuMDs3/82e/NNs3nzzI48MtxnBAAAOkjJvmnTprmP1rz++us7/dq2ngMAAAAAAEB0IfHXSZmpSZaWkujW9FN5z5Yqa+rceh1ZO0kMhk1tbcPMPh/N7FNZz4oKsxbrAAEAAAAAAAAAACB6JIb7BKLV7nlpNiA/2zaWVJnX6232nB5r+8CCbLdeR8T45BOzoUPNFi5svl1r+ZH0AwAAAAAAAAAAiGok/jp74RIS7PjBu1mPrFRbubncyqpqzVNf7z7rsbYfN7jQrd8RER55xGz4cLPPPzc7+2yzNWvCfUYAAAAAAAAAAAAIIBJ/XaAZfROP2suG9M6zbRW1tubb7e7z0D55bvvAghwLu+pqs0suMZswwayysmHb3nuH+6wAAAAAAAAAAAAQYBG2AF30UXKv/zHZtn5bpW2v8bg1/VTeMyJm+q1dazZ2rNmHHzZtu+ACs7vvNktPD+eZAQAAAIgR9fXeyLwfAgAAAIA4ROIvAHRTu0ePTIsoL79sdtZZZlu2NDxWou9vfzObODHcZwYAAAAgRqzaXGavLC+y1cXlVuWps/TkJLcW+vFDCiOjAgoAAAAAxBkSf7Gmrs7sppvMbrzRzOtt2Na/v9mCBWYHHRTuswMAAAAQQ0m/OW+tsS3ba2z3vHTLTM2wihqPLd9QYhtKKiNn+QMAAAAAiCOs8RdrNmww+8tfmpJ+J59stngxST8AAAAAAS3vqZl+SvrtU5BtOekplpSY4D7rsbYvWlHk9gMAAAAAhA4z/mLNHnuYzZ1rNmaM2S23mF15pWqRhvusAAAAAMQQremn8p6a6ZeQ0Hw9Pz3W9lWby91+EbcsAgAA3ysuLrbS0tKgXY/c3FzLz8/negMAQorEX7TTzD6PxywlpWnbKaeYrVxptvfe4TwzAAAAADFqe43Hremn8p6tyUhNsqLSKrcfAACRmvQ7e+L5tqWsImiv0SMn0x6d8yDJPwBASJH4i2bbt5tdfLGG1DbM8vMfaUvSDwAAAECQZKUmW3pyklvTT+U9W6qsqbO05CS3HwAAkUgz/ZT0yz9yjGX1KAz48bdvKbLidxa412HWHwAglLgLi1ZffNFQznP58obHRx1ldtFF4T4rAAAAAHGgT7cMG5Cfbcs3lFh2WnKzcp9er9c2llTZ0D55bj8AACKZkn65BX2DcuzioBwVAIC2sfhbNHrmGbNhw5qSftnZZj17hvusAAAAAMSJxMQEO35IofXISrWVm8utrKrWPPX17rMea/txgwvdfgAAAACA0CHxF01qa82uuKJhpl9ZWcO2/fc3++ADs7Fjw312AAAAAOLIwIIcm3jUXjakd55tq6i1Nd9ud58100/b9TwAAAAAILQo9RktNm40O+MMszffbNo2frzZAw80zPgDAAAAgBBTcq//Mdm2flulba/xuDX9VN6TmX4AAJjV1tTY2rVrg3IpdFxPrYfLDCBkf3ckNzeXdUujAIm/aPCf/zQk/YqKGh6npJj9+c9ml15q5reWBgAAAACEmpJ8e/TI5MIDAOCnurzE1nz1pV1+9XRLS0sL+LWpqqywb9ZvtD1VIQwAQvB3R3rkZNqjcx4k+RfhSPxFgzvuaEr69e1rNm+e2RFHhPusAAAAAAAAALSitrrS6hOSrdcRo61n734Bv0abVy+3tetmW52HxB+A0Pzd2b6lyIrfWWClpaUk/iIcib9o8NBDZoccYvaDH5g99phZfn64zwgAAAAAuqy+3kuZUABATMvsnm+5BX0Dftzy7zYF/JgAYkOw/u5IcVCOikAj8ReJNEVf5Tx9evY0++9/G2b7JSWF88wAAAAAICBWbS6zV5YX2ericqvy1Fl6cpINyM+244cUurUDAQAAAAAdl9iJr0EwPfyw2eDBZps3N9/erx9JPwAAAAAxk/Sb89YaW76hxLplplj/Xtnusx5ru54HAAAAAHQcM/4iRVWV2eWXm91/f8PjcePMFi0yS6aJAAAAAMRWeU/N9Nuyvcb2Kci2hIQEtz0nPcWy05Jt5eZyW7SiyCUDExMbnot3lEQFAABAPCguLnZrCAaD1+t1n/Py8izWkVWKBGvWmI0da7Z4cdO2gQPN6upI/AEAAACIKeu3VbrynrvnpTcm/Xz0WNtXbS53++3RI9PiHSVRAQAAEC9Jv7Mnnm9byiqC8wJes9zMVHvi4TlWUFBgsYzEX7i99JLZWWeZbd3a8Dg93ezvfzc777xwnxkAAAAABNz2Go9b0y8zNaPV5zNSk6yotMrtF+98JVE1O1IJUV2zihqPK4m6oaTSJh61F+shAgAAICZopp+SfvlHjrGsHoUBP375liIrevNp9zok/hAcms13ww1mN9+sOaYN2wYMMJs/3+ygg7jqAAAAAGJSVmqypScnuQSWynu2VFlTZ2nJSW6/eEZJVAAAAMQjJf1yC/oG/Lheix+J4T6BuPTtt2YnnGB2001NSb+TTzb78EOSfgAAAABiWp9uGTYgP9s2llQ1rrPho8faPrAg2+0XzzpSEhUAAAAAfEj8hcOiRWavvvp9CySazZhh9uyzZt26heV0AAAAACBUEhMT7PghhdYjK9VWbi63sqpa89TXu896rO3HDS50+8WzppKoyTstiVrtqaMkKgAAAIBm4rt2SriceabZG2+YPf+82VNPmR1zTLjPCAAAAABCZmBBjluf7pXlRW5Wm9b0U3nPoX3yXNJPz8e7LEqiAgAAAOgEEn+hUFtrltJi7Yq77zabPt2sd++QnAIAAAAARBIl9/ofk+1KVWp2W1ZqsivvGe8z/VqWRF2+ocSy05Kblfv0lURVojTeS6ICAAAgdGpramzt2rVBObaO66n1BOXY8YbEX7B98YXZmDFm111ndtppTdvT00n6AQAAAIhrSvLt0SMz3KcR0SVRN5RUuhKoWtNP5T0ra+pc0o+SqAAAAAil6vISW/PVl3b51dMtLS0t4Mevqqywb9ZvtD01kQpdQuIvmBYsMJs40ayszGzSJLOhQ8322y+oLwkAAAAAiA2URAUAAECkqK2utPqEZOt1xGjr2btfwI+/efVyW7tuttV5SPx1FYm/YFBGeto0szvvbNq2555mfqVZAAAAAADN1dd7Kf3ZAiVRAQAAEEkyu+dbbkHfgB+3/LtNAT9mvCLxF2gbN5qdcYbZm282bRs/3uyBB8yyswP+cgAAAAAQC1ZtLrNXlhfZ6uJyq/LUWXpyklvjTuUulfyKZ5REBQAAANBeJP4C6T//aUj6FRU1PE5JMfvzn80uvZTZfgAAAADQRtJvzltrbMv2GreWXWZqhlXUeGz5hhK3xt3Eo/aK++QfAAAAALQHib9A8HrN7rijobxnXV3Dtj32MJs3z2z48IC8BAAAAADEanlPzfRT0m+fgmxL+H6JhJz0FMtOS7aVm8tt0Yoi698r2818AwC0X3FxsZWWlgbtkuXm5lp+fj5NAgCICrW1NbZ27drGe45YfV8Ma+KvurrabrjhBlu0aJGlp6fbpEmT3EdrPv30U7v++uvtiy++sIEDB7qvGzJkiEWE4mKz229vSvode6zZ44+b9eoV7jMDAAAAgIi2flulK++pmX4tb8D1WNtXbS53++3RIzNs5wkA0Zj0O3vi+balrCJor9EjJ9MenfNgRHRyAgDQluryEvt67Rr79dU3WFp6Wky/L4Y18Xf77bfb8uXLbe7cubZhwwa76qqrrHfv3jZy5Mhm+1VUVNiFF15oJ510ks2YMcOeeOIJu+iii+zVV1+1zMwIuPErKDB74gkznfc115hdd51ZUlK4zwoAAAAAIt72Go9b00/lPVuTkZpkRaVVbj8AQPtppp+SfvlHjrGsHoUBv3TbtxRZ8TsL3OuEu4MTAIBdqa2utPqEZOt1xGjr2adfTL8vhi3xp2TevHnzbNasWTZ48GD3sXLlSnvsscd2SPwtXLjQ0tLS7He/+50b8XnNNdfYf//7X3v55Zdt9OjRFhF+9jOzlSvN9t473GcCAAAAAFEjKzXZ0pOT3Jp+Ku/ZUmVNnaUlJ7n9AACd+Dvbo9ByC/oG5dIVB+WoAAAET2b3/Jh/X0wM1wt/9tln5vF47OCDD27cduihh9rSpUutvr6+2b7apud8ZV/0+ZBDDrElS5ZYRCHpBwAAAAAd0qdbhg3Iz7aNJVXm1frpfvRY2wcWZLv9AAAAAABtSw5nnfHu3btbampq47ZevXq5df+2bdtmPXr0aLav1vXz17NnTzdDsKN049jyZrKzx+jqcdA1tEPkoC0iB20RGWiH6G8L3uMBIHQSExPs+CGFtqGk0lZubljrT+U9NdNPSb8eWal23OBCtx8AAAAAIEITf5WVlc2SfuJ7XFNT0659W+7XHqqvmpjYtYmO6gxUqVJpufg8Qod2iBy0ReSgLSID7RD9bdGy+gAAILgGFuTYxKP2sleWF9nq4nK3pp/Kew7tk+eSfnoeAAAAABDBiT+t2dcyced7nJ6e3q59W+7XHrm5uZaUlGRd4ZsFkJeXR+IvjGiHyEFbRA7aIjLQDtHfFnV1dUE8KwBAa5Tc639Mtq3fVmnbazxuTT+V92SmHwAAAABEQeKvsLDQtm7d6tb5S05ObizpqWSeknMt9/3222+bbdPjgoKCDr+uOv0CMUvPdxxm/IUX7RA5aIvIQVtEBtohutuC93cACA8l+fbokcnlBwAAAIBO6lrNyy4YNGiQS/gtWbKkcdvixYtt6NChO5TiPPDAA+3jjz9uHLWvzx999JHbDgAAAAAAAAAAACCMib+MjAw79dRTbfr06bZs2TJ77bXXbPbs2TZhwoTG2X9VVVXu3yNHjnRr891yyy22atUq91nr/p1wwgm0IQAAAAAAAAAAABDOxJ9MmzbNBg8ebOeee67dcMMNNnXqVDvuuOPccyNGjLCFCxe6f2dnZ9v999/vZgSOHj3ali5dag888IBlZlICBgAAAAAAAAAAAAjrGn++WX+33Xab+2jp888/b/b4gAMOsGeffTaEZwcAAAAAAAAAAABEj7Am/gAAAAAAAABEp9qaGlu7dm3Qjl9TU2OpqanNtnm9XisrK7OcnBxLSEjo9LF13p5aTwDOEgCAyELiDwAAAAAAAECHVJeX2JqvvrTLr55uaWlpQUkqrv96rfXtt7clp/h1YXrN6urqLCkpyazzeT+rqqywb9ZvtD1rawNyvgAARAoSfwAAAAAAAEAnVFdX2w033GCLFi2y9PR0mzRpkvuIB7XVlVafkGy9jhhtPXv3C/jxN69ebl+umW3dDz+l2fG9ZlZXW2tJKSldyfu5469dN9vqPCT+AACxhcQfAAAAAAAA0Am33367LV++3ObOnWsbNmywq666ynr37m0jR46Mm+uZ2T3fcgv6Bvy45d9tavX4Svx5amstuYuJP9/xAQCINST+AAAAAAAAgA6qqKiwefPm2axZs2zw4MHuY+XKlfbYY4/FVeIPAABElsRwnwAAAAAAAAAQbT777DPzeDx28MEHN2479NBDbenSpVZfXx/WcwMAAPGLxB8AAAAAAADQQcXFxda9e3dLTU1t3NarVy+37t+2bdu4ngAAICziptSn16sK4GZ1dXUBOZZGbulYCQldqSYO2iE28DsROWiLyEA7RH9b+OIFX/yA5tfU/xohOD+DCC/aLXrRdtGJdovddov1mKqysrJZ0k98j2tqanb59b7rolmDwbhGap/01DSrLS22yqTAxyF127dZZkaG1ZVtscrv1ofw+F6rq/WYJ0XdmglReP6Rf/yOHbvj7RHN1ybyj7/r9ojs84+14+/YHpHzuxt/x6/fvrXh+OXBOb7eb/W+q/dfvbcHWkfiqgRvrEZfLSjg+uSTT8J9GgAAIIoMHTp0h86ceEdMBQAAOipWY6qXXnrJbr75Znvrrbcat61evdpOPPFEe++996xbt25tfj1xFQAACEZcFTcz/pKTk90FSUxMZLQ1AABo1wh2xQ8gpgIAAJ0T6zFVYWGhbd261Y3q932PKv+Znp5uubm5u/x6+qoAAEAw4qrYjLxaoYRfLI4uAwAACCViKgAAgAaDBg1ynW9LliyxYcOGuW2LFy9uHHhOXAUAAMJh11EIAAAAAAAAgGYyMjLs1FNPtenTp9uyZcvstddes9mzZ9uECRO4UgAAIGziZo0/AAAAAAAAIJAqKytd4m/RokWWnZ1tkydPtvPOO4+LDAAAwobEHwAAAAAAAAAAABADKPUJAAAAAAAAAAAAxAASfwAAAAAAAAAAAEAMIPEHAAAAAAAAAAAAxAASfztRXV1tV199tQ0bNsxGjBhhs2fP3ulF/PTTT+20006zAw880MaMGWPLly8PVnvFnY60wxtvvGGnnHKKHXzwwXbSSSfZv/71r5Cea6zrSFv4fPPNN6493nvvvZCcY7zoSFt8/vnnNn78eDvggAPc78W7774b0nONZR1ph1dffdVOOOEE9/ug9lixYkVIzzVe1NTU2C9+8Ys2/+bwno1gIF6JTsQ20YtYKDoRO0U34iyEk9frtTvuuMOOOOIIO/zww+3222+3+vr6XX5dWVmZ/ehHP7JnnnkmJOcZLzraHkuWLLFx48a5++Hjjz/e5s2bF9LzjUX0W0cW7gcjC/d5DUj87YTetJTAmzt3rl1//fV2zz332Msvv7zDfhUVFXbhhRe6jl8FEnoTu+iii9x2hK4dPvvsM5syZYpLvD733HMuoPjVr37ltiO0beFv+vTp/C6EsS10kzNp0iQbOHCgvfDCC3bssce635PvvvsuGKcVd9rbDitXrrTf/va37r3h+eeft0GDBrl/V1ZWhuW8Yzmw+81vfuOu987wno1gIV6JTsQ20YtYKDoRO0Uv4iyE25w5c+zFF19091x33323u7/Vtl2ZOXOmbd68OSTnGE860h7FxcV2wQUXuAThs88+a5dddpnddNNNbvA+Oo9+68jC/WBk4T7ve17sYPv27d6hQ4d633333cZt9957r/fss8/eYd958+Z5f/KTn3jr6+vdY30+9thjvQsWLODKhrAdZs6c6Z08eXKzbZMmTfL+6U9/oh1C3BY+zz//vHfcuHHefffdt9nXIXRtMXfuXO/PfvYzr8fjadw2evRo7xtvvEEzhLAd5syZ4x01alTj47KyMvd7sWzZMtohQFauXOk9+eSTvSeddFKbf3N4z0YwEK9EJ2Kb6EUsFJ2InaIXcRYiwdFHH92sn+25557z/vjHP27zaz744APXP3fUUUfRRxfG9nj88ce9I0eObLbt2muv9f7mN78J9GnFDfqtIwv3g5GF+7wmzPhrhWaJeTweN3vP59BDD7WlS5fuMHVd2/RcQkKCe6zPhxxyiJvGjtC1w6hRo+yKK65odcYTQtsWsnXrVjey7sYbb+Tyh7Et3n//ffvpT39qSUlJjdsWLFhgRx99NO0Swnbo1q2brVq1yhYvXuye0+zw7Oxs23PPPWmHANHP+vDhw+2pp55qcz/esxEMxCvRidgmehELRSdip+hFnIVwKyoqso0bN9phhx3W7N5r/fr1O53Np9K01157rV133XWWmpoawrONfR1tD5VavfXWW3fYXl5eHvRzjVX0W0cW7gcjC/d5TZL9/g2/aejdu3dvFhz06tXLlbfYtm2b9ejRo9m+KqPnr2fPnm2WGkPg22HAgAHNvlbX/5133nElPxHatpAZM2a4ZOw+++zD5Q9jW6xbt86t7acbntdff9369OljV111lQvKEbp2OPHEE931P/PMM10SNjEx0e6//37Ly8ujGQJE17a97cZ7NgKNeCU6EdtEL2Kh6ETsFL2IsxAJfz+koKCg2b2XbNq0qdl2n/vuu8/2339/txY7wtseffv2dR8+Wnrkn//8p02dOpWm6UIb0G8dObgfjCzc5zUh8dcKrbvUckSQ77FGDbVn35b7Ibjt4G/Lli0ugNDMS812Qmjb4u2333Yzm1TvHeFtC61n9sADD9iECRNs1qxZLriePHmyvfTSS7b77rvTPCFqB82AVeCh0aYHHnigPfHEEzZt2jS3voEGiiB0eM9GKH+uhHglchHbRC9ioehE7BT7iLPQFVVVVW4mWWt0Xyv+8VZbsZaqrTz55JP2j3/8g0aJgPZoeVz11ylReMYZZ9A+nUS/dWThfjCycJ/XhMRfK9LS0nZ4s/I9Tk9Pb9e+LfdDcNvB59tvv7WJEydq7Uq3wLBm1iB0baEgTsmN66+/nt+BCPi90OyyQYMGucWzRSMe33rrLXv++eft4osvDtYpxoWOtMMdd9xh++67r5111lnusRYyP+GEE1zZ1QsvvDCEZw3esxEMxCvRidgmehELRSdip9hHnIWuUEl+DVhtzZVXXtl4v6WfM9+/JSMjo9m+6gv6wx/+4O6BfbPQEL728Ld9+3a79NJLbc2aNfb444+3uS/aRr91ZOF+MLJwn9eExF8rCgsL3QwNrd+UnNxwiTRbQ525ubm5O+yrZJM/PW6t1ACC1w6i0Ui+wOThhx/eofwkgt8Wy5Ytc+UlfYkmnwsuuMBOPfVU1vwL8e9Ffn6+9e/fv9m2vfbay9XjR+jaYcWKFXbOOec0PtaAhP322882bNhAM4QY79kI1s8V8Ur0IbaJXsRC0YnYKfYRZ6ErtF73559/3upz6uuZOXOmu9/ylYz0lZvUPa8/3WN9/PHH7li33XZb4+wPDU5euHChPfjggzRUCNvDfz2/888/377++mubO3eu65dA59FvHVm4H4ws3Oc1YTpUKzRDRh25S5Ysadym0oVDhw7dYQaZyrYpqNCoItHnjz76yG1H6NpBpQYURGj7o48+6n7JEfq20HpyixYtsueee67xQ26++Wb71a9+RZOEsC3koIMO2iFY//LLL91afwhdO2ggyOrVq5tt++qrr5qtc4DQ4D0bwUC8Ep2IbaIXsVB0InaKfcRZCBb17/Tu3dvdb/no39rWctC99m3ZJ6F9NDj5lltuoZFC3B5SX19vU6ZMsW+++cYeeeQR22effWiHLqLfOrJwPxhZuM9rQuKvFZpurtlJ06dPdzOYXnvtNZs9e3bjbDKNZFFJQxk5cqSVlpa6AEJ1xPVZo4lUxg2ha4f777/fjRzyjejSc/ooKyujGULYFprt1K9fv2YfvsCQtcxC/3sxbtw4l/j761//amvXrrW77rrLzcg85ZRTAnQ28asj7XD66afb008/7W461Q4q/amRqKNGjQrzdxEfeM9GsBGvRCdim+hFLBSdiJ1iE3EWQmX8+PHuPuq9995zH3feeWezUpRbtmxxpSQ1OLNln4S2qT+CAeKhbw+ZP3++20cDwlUdx9dft23btgCeUXyh3zqycD8YWbjP8+NFqyoqKry/+93vvAcddJB3xIgR3jlz5jQ+t++++3oXLFjQ+Hjp0qXeU0891Tt06FDv2LFjvStWrOCqhrgdjj/+ePe45cdVV11FW4S4LVrSc++++y7tEKa2+PDDD72jRo3yDhkyxHvKKad433//fdoiDO3w9NNPe0eOHOn2HT9+vHf58uW0Q5C0/JvDezZCgXglOhHbRC9ioehE7BT9iLMQLh6Px/vHP/7RO2zYMO/w4cO9M2fO9NbX1zc+/+Mf/9h79913t/q1em5n/RUIfntMmjSp1f66s88+m8vfBfRbRxbuByML93kNEvQ//0QgAAAAAAAAAAAAgOhDqU8AAAAAAAAAAAAgBpD4AwAAAAAAAAAAAGIAiT8AAAAAAAAAAAAgBpD4AwAAAAAAAAAAAGIAiT8AAAAAAAAAAAAgBpD4AwAAAAAAAAAAAGIAiT8AAAAAAAAAAAAgBpD4AwAAAAAAAAAAAGIAiT8AnfLMM8/YD37wA5s3b167v2bdunX2n//8JyBX/Pe//7372NU+Osevv/662fZvvvnGbdfnYHjrrbds3LhxduCBB9qhhx5q559/vi1fvjworwUAACLHT37yExdj+D4GDx5sI0eOtIceeiigr3POOefYX//613bHRFJTU2NPP/10l2I/fX+djQ/1tXo+GNauXWtTp061ww47zMVfY8aMsRdffDEorwUAAOJPyxhvv/32s8MPP9wuueQS27hxY5eOvasYq72xXnvo3N97772AHAtAZCPxB6BT/vnPf9qee+5pzz//fLu/5uqrr7Zly5aF5IpXV1fbq6++6s7xueeea/bc7rvvbv/3f//nPgeaEnyXXnqpnXTSSfaPf/zDnnjiCevdu7dNmDAhaIlGAAAQORTvKM7Qx2uvvWYXXXSR3X777TvEI4FyzTXXuI/2xG733XdfUM6hPfHh/Pnz7cQTTwz4a1ZWVro4q2fPnvbYY4+5+Gv06NF21VVX2SuvvBLw1wMAAPHJP8bToPY///nPtnLlShdzdIXiI8VJABBIJP4AdNh3331n77zzjv3yl7+0Dz/80M3kizQKwlJSUuzMM890HW1er7fxuaSkJMvPz3efA+2FF16wo446ys466yzr16+f7bvvvnbDDTe411u4cGHAXw8AAESWnJwc976vDw0yGjVqlB155JG2aNGioL2ePnbFPxYKR3zYo0cPS09PD/jrvv3221ZRUWHTp093cZfiL8Vhp556apdmOAIAAOwsxissLHR9P5dddpmbQVdWVtbpi6X4SHESAAQSiT8AHfbyyy+7gOfkk0+2goKCZqO61fFy3XXX2fDhw93Htdde62bfqSzB+++/b/fcc48rT9VauU2VrNJzPioTpfJYQ4YMccdSAq2urq5d56jyTsOGDbMf//jHtn79evvggw8an2v52vr3Sy+9ZCeccIIrD/Wb3/zGdVZp9LgeK3lYVFTU+PX//ve/XSfeAQcc4EZm+XfkJSYm2ueff+46v3wSEhJs9uzZdvrppzdu0zXT96bjqyzop59+2qzMg85Fx9eIdf9zV/mHmTNn2ogRI1yHljrxvvjiC3fdtP/xxx/vRrsDAIDIkZyc7AYkid6zb7rpJvvpT39qxxxzjJWXl7sSURdffLGLC/Rer3jJP+ZRFQO9xx900EF24403NnuuZfmn1mIMdUhNmzbNxUS+GEgxxL333utiCsVMev0NGzY0Hkexj8qV6zUV97Qsnd6R+LBlqU9dg//93/+1iRMnuvhl7Nixrlyn4saDDz7YjjvuOBc3+qxevdomT55shxxyiP3oRz9y16e+vr4x9tq+fbstWbKk2ev99re/tZtvvrnxsapOjB8/3l0XXUvNTvT5+OOP3XP6XnWeqtjQ8vrq+1ICd82aNVZaWmpXXnmlOx9dP7VnVVXVLn4KAABArElNTW2MR3YVH/zpT39y2xX7KBbSbMHWSn1qAJX6e7Tfr371K1fdYGf9Zi1jLMWVivkUs6gvTTGhKlC0RgO2TjnlFBs6dKiLS5988skAXx0A4UTiD0CHqaNEHVUKbBRg+M+o+8Mf/mCLFy+2v/3tby7ZpX//5S9/cSWo1JEzadKkxjVp2qLOHnXWKAmnjiQl/VT64F//+tcuv1adP5rxp6TfXnvtZQMGDLBnn322za+5++67bcaMGXb//fe7RJ46f/ShwKe4uNhmzZrVGBhpDRkFR+rQOu200+zXv/514xp+6rjasmWLe23Ven/kkUdcR1mfPn2sW7dubp8333zTXY9zzz3XlaNSMKYyYFp7R8GagkM91nX94Q9/aBdeeGGzxKNmFaqzTOerpOoFF1zg1hLUsVRiQtc+WOXEAABA+9XW1rq4Quv/qkPFR+/3GsijBFZWVpZNmTLFlapUvHLrrbe693pfWc5Vq1bZ5Zdf7uKSBQsWmMfjcfFVa3YWYygGU3mq3XbbrbHc+aOPPupe584777SnnnrKvb7iNJ2zqKNJyTUNxFKsMXfu3E7Hh61R0lGDonQtNEpeMVSvXr1cvLfPPvs0Ju0UV2kQlpKJOpfrr7/enfvDDz/snlestPfee7skp66RrunSpUvdyHlfWXcNyNL3NmjQIHeNdU0UM3322WcuqajrpfUBdS6K82677TaXbPVRzKc2UJyo2FLXWOesBKHirk8++cQlZAEAQPxQX88DDzzgBiUpnmsrPlBcoXhL/WMaqK6YRwm6lhT3KE5RfKNYauDAga5PrL1uueUW++qrr1x/nG9AvM5L/U3+NIhMsY0SgxoIr7hP/W6KOwHEhuRwnwCA6KIR6R999JEboS0aka2gRh1Q6qRRQDJnzhyXiBIFOf/v//0/NwJcI90zMzNdAkyjkNqi/RSw6PjSt29fd1yNiPJt2xmNZlKnlZJvcuyxx7oEnGYiZmRktPo15513nhsBLuoUUgeSZt35vkd1DIlm02mUuPYX7acR5AqqNHpLSUZ1Sqmz7o033rDXX3/ddVwpmFKiTq+vYO8Xv/iF65yS3/3ud+7alJSUuPPU6C2N7pIrrrjCzfhTB5dGrotGnGu0vui11FGngE3UGaXR/OoM8x0DAACEjhJTGsQjGuWt8k1KLOn920cJMo0G9w0q0kw7vacrada/f3+XlFJnkMpmKtmnThtf7KFZcao+0Jq2YgzFYr5y5/Lggw+6c1VVBV/MplHoSh7usccebhacXkdrFSvG0yCnnXU8tRUf6txbozjNF2v97Gc/cyXRVS5LlRKUENT3Luq0Uvyka6qZk4q1NChLiUNdk7S0NHv88cdd7KXz0wAzfey///5u7R3FRkpK5uXluQFqvmusa6L2USJQ+2qwmeg5JQN1fRRDikbC+0biq5NPsaYGqflKrOrcFHepzdpTdhUAAER3jKeBWIqxNLBLg6t2FR+on0b7K67Sh+K5L7/8cofXUBJOg5c0c1AxkQYkaWB7e2kgk+IxlT8XDXxSjKlBUL4BUaIE5bZt21wCUv1t+tAgK1+cCCD6kfgD0CHqOFEHizqG5PDDD3cdKeo0OeOMM9yoocGDBzfur86enXX4tEUj1NVRppl4GnGk8pkqAeV73V2dozrTfDXS1fmkziCNuNdMvdaog8tHr6sZev6PfaOj1BGkEeX+NIpenXI+GpF1xx13uEBQnWY6H60xowBKHU4afeV/DJWG8C0GreP7Orp8VHZK2338z02BopKSOgcftUEw1i8EAAC7puSVb5CSYqbW1hX2fy/Xe7w6XnyDpkQz7ZSU2rp1q3teg5J81Gnk/9hfWzFGy+oImzZtclULlAjz0WuqlKUqCmigljqmfJT82lnir634cGdxoDqY/GMtvZY6uHyPfTMP9f0rtlTSz0dxj5J/KqmVm5vrXkvfpz5UAl0VIjRgTG2hmY+6Lkru+X+vviSlZgiqlJY/Hd+/3FXL9lL7/M///E+zr9E2xaqKYQEAQOzGeIqjNMhIyTwN0O7evbsrOd5WfPDzn//cDehWolB9PBr0pGoHLan/a7/99muMiXwxmH+5z7Yo0agEpPqg1F+0YsUKt73lsjmK8zRQTH1Ump2oAVljxoxxMRWA2EDiD0CHqGNHnUL+nVMKINQR1FrQsjP+QYyPEmU+Gm2uBJiCFpVN0L9VdmBX1EH29ttvu2Opg8efyiTsLPHXskPOv2PInzq1WlIg51tnRqWh9BoK1NRBpdFW+sjOzm4cne/fcdWe4+v6+o7fch99n6rdrtmMAAAg/DQTv1+/fm3u0/K9XLPM1OnSkm/EeMuSmb71AltqK8bw5+v8ueuuu1z1An/q8NEsxPa+5q7iQ41oVyJvV+fa0djL9xrq2FKcpXWXRSPc9aFkoUqUqmRWR2MvHd+/g8x/H21Xu/gP+vIpLCzc6esAAIDYifEUQ6kP7NJLL3UVF3YVHygW0mw+lX9X35CWb1EM09oyLa3FYL7E36760lTtQQPQ1S+lxJ4GoGmQfmumT59uZ511lksU6kPfh+LRo48+uhNXB0CkYY0/AO2m0dKffvqpGxGk4MT3oTJKKt2pUUxKoPnKYoqCh1GjRu1wLF/nkUZK+XzzzTeN/1YpAo02UtkpraOnsk4qndDWWjGiWX3qrFFJTv9zVHmDd999141u7wp1jmndGH8KqnydZlo3p7VAT6PRfTMQFSj6XyMFiCofpXJYrR1fj1t2yvmfj9pFo+Z1XH1opJlKhgIAgMin93KV+lSc4HsvV0ykqgfq3FGZTa0R46M4xz+O8NdWjOHfUaS4RJ1XmjXne02Vf9K6g4orlDhTKUzFdj4q3d6Z+NB/rbzOXh+NVvfNAPTFXrpeGq2uGX5ai9l/kJTve9SMRyUFVe5T1SP840iVSVc5z13Fdq2dj8pj6Xr6rp2SnrfffvsO6+cAAIDYpBhDy7ooPnrooYd2GR9oKRj1c6ncuwa1a/1gVVlQHONPcZ/iKv8BSP4xmPrS/PvR9G8NchLFXSqRrhhMsxNVslzxnLTsS1MMqPPQeV5yySWuH+uII45wy9UAiA0k/gC0m0Zzq4NFo4V8o6n1oRHWKm/5wgsvuBl6WptP696pk0oBh4IH37p9CmxUW1x1xNXBpFFO69ats2eeecYFQj56HXW6qJNG6/r9/ve/d4HJrjpUFORohqBGnPufo9aA0UhyBVddoeO88sorNnfuXPe9KMBTh5ZvLR2N9lL5BpX61LmrtML8+fNdx5JvbR6t4aeyUyp/pQ61W2+91QVhGpmuffT16jBTR5qOow68nc2m1HpBCiY140+lp1T7XddfnXkAACDyqTymSklqLRfFDh9++KGbJad17TSgSuvdaX29v//97y6uUHUBJQpb01aMoeOp80fxi0aGK+b4y1/+4jp4tE2JO63Tp9mHGnCligJas0ZxiAZyKT7pTHzY2kj2jjjppJNc/OeLdXQuKq+l2EudaxMmTHCx5JQpU1yCU//WSHpdQ41iV8ecjqFyqup80/equFPlQI866ig788wzXYea1mpW7KVrpzUD9bWt0bVRrKl1mBXvKimptXsqKipcshEAAMQHlQpXX41myWmgUVvxgQYoKQ5R/5EGeCkWUWymwUn+VBJUs/vUr6O4T31Jim/8y34qNtPsQcUtio98VRMU8+iYGhCv11AlLQ2ml5Z9aarwoHP54x//6AbZf/DBB+64LStnAYheJP4AtJs6dtRxomCiJXW+qMSmSnKqzKXWTVF5peHDh7v1Y0Qz9xR4nH/++S4w8SUI1TGkUlAXX3xx4/HUeaPklTqRdCyVWNJr7Gy0uRQVFbnOstaSZCqtoFrq6szpigMPPNAFa0888YT94he/cKOi1GmmzjE54YQT3FoxSlqqI0mJUJVLUDCl1xeV/tSi0Pfee69L3Ol70hqEKv2ga6HrpVH+ek4LQ8+ePdt1MrVGwaVGuasTS6+lTjt1VF100UVd+j4BAEBoKLmnpJ46hJTkmzp1qiuxpPd00UhsPa84TO/1Ggi1sxJMbcUYGoilYymW0/bJkye7mEkdRjqukokakOVb20WDt7RmjdYMVFJMScXOxoeK0TpLsY46vdQppfO86aab7Nxzz3Wxouy5554uLlNsqW2KxZTw1DkpmSrqcLv//vtdnKj4TbHTnXfe6dZK1NqCek4xqr5G11oDzlR5YmcUC6ragpKnilM1yl/XCAAAxBf132gWnqomtBUfqAKDZuEpRlGssnDhQpcwbLmmnh4r7tFAepXrVBzlv2SN+p50fMVvitE0Q1D9VKJYTOehwepKIM6YMcPN5lO5z5Z9adpXr69kn2JGVUJQXKh+OwCxIcG7q7p5AAAAAAAAAAAAACIeM/4AAAAAAAAAAACAGEDiDwAAAAAAAAAAAIgBJP4AAAAAAAAAAACAGEDiDwAAAAAAAAAAAIgBJP4AAAAAAAAAAACAGEDiDwAAAAAAAAAAAIgBJP4AAAAAAAAAAACAGEDiDwAAAAAAAAAAAIgBJP4AAAAAAAAAAACAGEDiDwAAAAAAAAAAAIgBJP4AAAAAAAAAAACAGEDiDwAAAAAAAAAAALDo9/8BVGVdXHbf92AAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualize baseline predictions\n", "fig, axes = plt.subplots(1, 3, figsize=(18, 5))\n", "\n", "# Actual vs Predicted\n", "axes[0].scatter(y_test, y_test_pred_baseline, alpha=0.5)\n", "axes[0].plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2)\n", "axes[0].set_xlabel('Actual AimoScore')\n", "axes[0].set_ylabel('Predicted AimoScore')\n", "axes[0].set_title(f'Baseline: Actual vs Predicted (R²={baseline_test_r2:.4f})')\n", "axes[0].grid(True, alpha=0.3)\n", "\n", "# Residuals\n", "residuals = y_test - y_test_pred_baseline\n", "axes[1].scatter(y_test_pred_baseline, residuals, alpha=0.5)\n", "axes[1].axhline(y=0, color='r', linestyle='--', lw=2)\n", "axes[1].set_xlabel('Predicted AimoScore')\n", "axes[1].set_ylabel('Residuals')\n", "axes[1].set_title('Residual Plot')\n", "axes[1].grid(True, alpha=0.3)\n", "\n", "# Residual distribution\n", "axes[2].hist(residuals, bins=20, edgecolor='black', alpha=0.7)\n", "axes[2].set_xlabel('Residuals')\n", "axes[2].set_ylabel('Frequency')\n", "axes[2].set_title(f'Residual Distribution (RMSE={baseline_test_rmse:.2f})')\n", "axes[2].grid(True, alpha=0.3)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4: Feature Selection - Correlation-Based\n", "\n", "**What we're doing:**\n", "- Computing correlation of each feature with target (AimoScore)\n", "- Removing weak predictors (correlation < 0.05)\n", "- Keeping only features with meaningful relationship to target\n", "\n", "**What to expect:**\n", "- Visualize top 15-20 features by correlation\n", "- Remove 5-10 low-correlation features\n", "- Test R² similar or slightly lower, but **better generalization** (smaller overfitting gap)\n", "- Much simpler model, easier to interpret\n", "\n", "**Domain insights:**\n", "- High-weight FMS/NASM features should have high correlation\n", "- Time features may have lower correlation\n", "- Identifies which movement angles actually matter for scoring" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "CORRELATION-BASED FEATURE SELECTION\n", "================================================================================\n", "\n", "Top 20 features by absolute correlation with AimoScore:\n", "EstimatedScore 0.571022\n", "No_12_NASM_Deviation 0.489057\n", "No_11_NASM_Deviation 0.473923\n", "No_13_Angle_Deviation 0.418670\n", "No_10_NASM_Deviation 0.408648\n", "No_10_Angle_Deviation 0.379893\n", "No_12_Angle_Deviation 0.332944\n", "No_6_Angle_Deviation 0.318481\n", "No_8_Angle_Deviation 0.302376\n", "No_2_Time_Deviation 0.296228\n", "No_5_Angle_Deviation 0.292375\n", "No_11_Angle_Deviation 0.288521\n", "No_9_NASM_Deviation 0.273587\n", "No_1_Time_Deviation 0.267340\n", "No_17_NASM_Deviation 0.262281\n", "No_22_NASM_Deviation 0.248195\n", "No_16_NASM_Deviation 0.242770\n", "No_18_NASM_Deviation 0.238921\n", "No_7_Angle_Deviation 0.238315\n", "No_25_NASM_Deviation 0.228025\n", "dtype: float64\n", "\n", "Bottom 10 features (lowest correlation):\n", "No_3_Angle_Deviation 0.151341\n", "No_8_NASM_Deviation 0.148498\n", "No_4_Angle_Deviation 0.143498\n", "No_1_Angle_Deviation 0.133244\n", "No_7_NASM_Deviation 0.131405\n", "No_23_NASM_Deviation 0.110539\n", "No_19_NASM_Deviation 0.108068\n", "No_13_NASM_Deviation 0.076349\n", "No_2_Angle_Deviation 0.065751\n", "No_15_NASM_Deviation 0.001390\n", "dtype: float64\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAJOCAYAAAAUHj4bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd0FOXXx/FLR3qvho4U6VWaBUWRJl1RFLEhCmKnWBAURRH0rygWrIBYUFCaFRXpKKAUUWnSe+8lec/v4Z11s0nIhpTNJt/POXtIdmd3Zp5ZYGbuc+/NEBUVFWUAAAAAAAAAAABhIGOoNwAAAAAAAAAAACBYBDYAAAAAAAAAAEDYILABAAAAAAAAAADCBoENAAAAAAAAAAAQNghsAAAAAAAAAACAsEFgAwAAAAAAAAAAhA0CGwAAAAAAAAAAIGwQ2AAAAAAAAAAAAGGDwAYAACESFRXF2KdRHFsAABCOOIdhfPlu8HcBCBcENgAAQRkwYIBVqlTpnI+bb745WUdz5cqVduedd9oll1xiDRs2tNtuu8095+/06dP28ssv22WXXWY1a9a0G2+80X7//fdzfu7mzZvPuV9t2rRJ8n357bff7K677rLUzBuXL774ItnWsXz5cnvkkUfs8ssvtxo1athVV11lTzzxhG3atMlCbeHChW7/9WewTp48ac8++6xNnTo12t+d5s2bJ9NWAgCA9Hju/fXXXyfp+mI7hwklzhFDS9d1/td2n332mT3//PO+33V9oO+hrheC9eqrr8Z7PZlazplff/11e+edd0K9GQDikTm+BQAAkHvuucduuOGGaCd7q1atstGjR/uey5UrV7IN1r///mvdu3e3atWq2bBhwyxDhgz27rvvusDF5MmTrVy5cm654cOH26RJk+yhhx6ykiVL2nvvvWe33nqrTZkyxUqXLn3OdfTu3dvdYA+UPXv2JN8fXRysXbvW0rMJEya4C2gFqXS8ihQp4o6zLiK+/fZb++CDD6xy5coWTnbu3Om2+7nnnov2d+eWW24J6XYBAIDwU7hw4Wjn2v7KlCmT7OcwocI5YugNHjw42u9jxoyxBg0aJOozu3TpYs2aNYt2PaTrtk8++cT3XNasWS01+N///md9+vQJ9WYAiAeBDQBAUEqVKuUengIFCrgTz1q1aqXICI4bN84uuOACe/PNNy1HjhzuOWVuaFbP+PHj7cknn7Rt27bZxIkT7bHHHnMBD2natKldc8019vbbb9szzzxzznVo/1Jqf9I7ZawoQHXTTTe54+VRkENZG+3bt7dBgwYla7ZISvH/ewMAABCslDzXTi04R0wdKlSokOSfWaxYMffw/PLLL+7P9PYdB5B0KEUFAEhSc+fOdUGFunXr+mbiK+AQmLas8lAdOnRw5Yfatm0bbzq9MjJUesoLaoh+1snxxo0b3e/z5893pahatGgR7YJQWRg///xzkuzf/v37XRClcePGVr16devatatbr7+9e/fakCFD7IorrnAZJprddO+99/pStVVaQFkmW7Zs8ZV6iqvsUWAauAI5ynLo0aOHGzsvKBDMdunY6PnatWtb/fr1XYZKMFkjO3bssF69ern1qcTXK6+8YmfOnHGvKSVdzx86dCjae5TRo+/AsWPHYv1MZWXkzp3bHnzwwRivKWimMbryyivt6NGj7jmtT7P39F3R+nRMX3zxRTtx4oTvfXqPxkUzzOrUqWOtWrVy79O4arZjx44d3Xu9mY9bt25169fxUdkyvVdZSOfy/fffu++3xlDHtmXLlm67RMdX2ywDBw70pdIHlqIKdl+UafT555+7wJzWdd1119ns2bPjPV4AACB90fmJznN0DtikSRM3mcc7h0rMOUzgeagEnrPqPLZq1apu9r3WrfOqNWvWBL1dgThHTPpzRGUetGvXLtpzOu/Ve48fP+57TpOO9JmBx17fB1236PolsPyUrumU1a9jrO0dO3asJda5vqv+38GPP/7YXW/pvF/XOaJt1DWAtkf7rOshfT/9J0vFdw2gzxZdM3g/A0idCGwAAJKMyj0p+FC8eHEbNWqUuzBaunSpXX/99bZnz55oy+pGuS6gdMJYtmxZu//++88ZfNDJ7R133BHtOZUt+ueff6xixYrud92kz5kzp0vb96cSVEqvP3LkyDm3PzIy0gVG/B/eDXzRRYVOfH/44Qd74IEH3LYrsKLt8oIIariofdPJ9cMPP+wuznQxode9lG6VJlKAQNup1OvYyl+di07sdbKu4EHnzp2D2i71rNB6dXGgVHJduKxfv971+dB+x1cPt2DBgvbaa69Zp06d7I033vDV2PXWHxiY+vLLL91FhbJsAmmM5syZY40aNYr1ddF7FQzyAlkK2qg0grI5tP3K9FCmjvbJv8nlr7/+6gJp2lYF1TJlyuSe1zbrIlFBGV2wKfikizD1aFFPj5EjR7px0OfGFez56aef3DZdfPHFbuw1LhERETZ06FB3UadSWl7QREGjuEpHBLsvK1ascN+f++67z+2P9qVv37524MCBcx4vAACQdgSem+rhf76gnhg6P9EkIJ0v6Lzzq6++inZekVTnMHHR+bJKxOr8Uuf/5cuXD2q7AnGOmDzniLru+Pvvv33XYzp31zXaqVOnbNmyZb7lFBxRoCCQvg+6btHn6NpF3xfPU089Za1bt7a33nrLBSJGjBhhP/74o52v+L6rgdvVv39/d26tdetaVIEfBTr0Xp3za+z8r+eCuQbwSmPpOse/TBaA1IdSVACAJKETQs0oUuknnSB6vJnzOvl+9NFHfc9rBpBOWkW1VpW9oRNznTAHQ7OLdCKrjAz13hBlDcTW50PBDjl8+LDv59go+8G/LJLo89W80LtZv3r1avv000/d7B659NJL3b5o3zVzSgEU3azXttWrV88to8wVZZV4J8YqTZSYUl4lSpRwQROPtie+7frjjz/cmCnoUrRoUbeMgh8Khmjm3Ln6o+j4KEvE+1nj+NFHH7kLBV246kJCY6O6ubJkyRLbsGGD63cSm3379rkLqgsvvDCo/dWsP69vitdwXbP+dFGl75QuwrzvjS72deHjn+YuOhY9e/b0/f7SSy+5LBeVLlMvFm/M9F1VTV0FQGLbDn1P/b8j2ncdX80c09hXqVLFd4w1Oywx+6Lvs2aXeaWsFOTRd33BggW+2XQAACDt0ix53eAN5J1H6Ga3zvV0fqY//ftvaFa/Jg1pAk1SnMPE5+677/ZN1gl2uwJxjpg854je+zThqU2bNu5cXcEQTS5bvHixK++rSVA6f48tsKHvg65bdP0SeO2izIdu3bq5n/Xad99957Yjts8JRjDfVf+Jb8rm8OgcXuv1yg/r+5clS5Zo16bqIxPfNYC3j7qeoEwWkLoR2AAAJAnN/t+1a5c7GfenE26djC5atCja8zph9agRuMpHaUaObr7H16xbN9YVFFHAQSeg3klpXLO/PBkznjtRUTPJAi+y/N+jiwHNVtIFpm6ge3QC/cILL7hZUgoafPjhh25blKatrJJ169a5C4iTJ09aUvAuPBOyXboIyJYtm5t5pAsAncDrAkFp7vG59tpro/1+9dVXu4sCzZrShZKyODTjSRffOhZKAdeFko57bLwsCv/ZU+fifXc0G8yfftesQF3keBds+fLlixHUiGvM9JyOlzdmOtYaF80mjI2XMaTMH33fFazygl7BHtuE7IsuHv37c3j7FVd5LwAAkLbo/E4z9wN55wQ6x9y+fbubuOJ/DqiSo5q0ogxindsmxTlMfPzPtYLdrkCcIybPOaKCIwpOzJs3zwU2dB6syWeaLOWdmypwkidPHldKNiG8iVyiyV2FChWygwcP2vlKyHfV/zunay6VmOrXr1+M8fMPbJzPNQCA1IvABgAgSWjmi+hkNpCeC+xd4J/CLCp1pGCAToTPFdhQmSFdJOlEV7Pulart0YVSbOWmFAgR9XQ4F92UV4mnc+2jgjexzZwTvZY3b153UqxSXNpW3WjXyXN8wZqE8O8zEux2qQGgUtmVJq6MAQVfdPGimU4qA6bgUlwCS3vpYkq8dHfNcFJGh7I2br/9dps5c6ZvpllsNEbKnNHFR1yURaL0eC3rrSdwOzJnzmz58+eP1t8jroyc2MZMF0BxjVlsF4ZKXVc5MdX91XipxJl3MRdfUM2TkH0JLNPlHaP4SocBAIC0QbPk4zs3FfV20yOQMomT6hwmPv7nWsFuVyDOEZPvHFFBEZ2rezf3NalM5YP1nAIGauStDAetLyECt0VBgsR8pxLyXfX/zul93jWlv8Br02CuAeIqlQsg9SGwAQBIErqBL7t37471xrpOyANPKv1PNPU+zdLyPic2f/31l7txrjJGquOrWV/+VMNXQQyd2Ho330UnrwpaJDa4oMCIUuj9U+r9qbSSejyoDJXKQGlbvbJPypz47bff4vzsuC5IFKg5V/msYLdLvMbZunjRtqg0lnpPVK5cOUZWhr/Aer3eMfYuHLR9ygJRQOOiiy5yQQk1MTwXlSzTzDMdS2WSBFJZLfXxUBBGF7ne98jLzhEFPlSyIPC7FQyNmRoG+pdHC7yREEjlvzQD8f3333fZKFpGFz/a1mAlx74AAID0SZNUROczOq+J67wjMecwgRm28TX/Tsh2xYZzxOQ5R1SGjPpOqLeEHir1pIwNnYvr+kXn5bEFoVLa+X5XvayVwL6Ogb+fzzUAgNSL5uEAgCSh0kOaYTRt2rRoz6teq5rSKd3Zn2bheDT75ttvv3Wpz3GdTCr7QT0SFABQTdTAoIY0btzY/enfyFo38dWETjVqE0snwdoO3dDX7DnvoXT6sWPHusCMGvEpOKEGfl5QQxeESv32D1wElsXyelwobd8/oBBXI+uEbpcuDlSaSuOhMVbj7qefftq9/1yZE6Lx8zd9+nQ3k8m/xq1KXKkpoUpU6Th4+x4XNZlXcOvll1+O8Zpu+itwpSwTzabyLoi13sDt0NgmNGVe9JnK+tH31n/MNGtNwRSvFII/BYNUhkslvLzvqdL2/Y9rbO8LXG9S7wsAAEifNKlH538qf+p/PqPzMJXf8TKmz/ccRuen/uem3mcl1XbFhnPE5DlH1Phr4peCG5pUVK1aNZdBr2OliU8KcKgc0/mW9E0qwXxX4wpsqDyXenz40zXm+VwDpNT+AkgcMjYAAElCJ39qHqcasOqz0a5dOze7SCfKmpXl37jZy2DQCbROKj/77DN3A183xeOiJnCacaOZRMrKULDE/6JLN8E1u0m9O5577jn32cpieO+991x5K69ea2J07NjRlXPSvqhBotK3FbB4++23XcM+NafzelaogbV6Tyg4MWHCBNfcW7xG3ZrJpswHNU9UqapKlSq5z1MDdb2uAM6bb74ZVCp0MNulpoDK6FBvEj2nk/aPP/7YXTDE19xPFwS6EFXAYs6cOS7TQ/Vr/RuO62JLx1J1elUiLD5qxKfPUGBDx759+/ZuJto///zjGs3r+HlBDx1bHVc189OMLQW1/vzzT/fd0kWP0uYTSo0rdQGjP3UBrXXPmDHDzQbTdzg2OrZTp051wRZdPKlvikp76Vh5pau8cmdK8Vdjdf/gT3LtCwAASJ90PvfAAw/Yk08+6X7WOZ3Oe3XzeseOHb5yO+d7DqPPmzVrlju3bt68uZvZP2XKlCTbrthwjpg854heHwkdP2XFeCWn9NmaNKZyT+fKnNe1iwJSOtcPpkff+QrmuxobvX7fffe5jA+VslKpLV1/6drKP1AR7DWA9lfrVnN1jc25yvYCCB0CGwCAJKMb7CpLpBvyuoGuG986CVfAI7Be7FNPPeWWU0aHmtlphr5/8zl/XtaF6EQ1kGbejBs3zhdQ0ImobuoriKCTYgU3VJ81sVTHVUEKzTQbMWKEq3WrYIoCOTox9i4OdBGndSpzROW29JwuSjQmmoWkGrcaKwU19JxOwtWTQje71atC46X39ejRw6Via1ZRYrdL5aZUdkon9/p8zfzSTC2Nu2ZqnYtS1TVbTFkfOo6DBg2yW265JdYUd5UB8+97ci69e/d2x17brv1WEEhBGX2OF6DxDBs2zB3Dzz//3B1bzTDTNtxzzz3nNaNKgRoFdjRm+i56gTCtR9knsRk+fLjLcvEyXbS8Am3qqaILfdF3XgEmBX90fJU1Eyip9wUAAKRfXbp0ceffytLV+YfOC5UprQktERERiTqH0SQdNW+ePHmyO2/SzXadr3br1i1JtisunCMmzzmirkEU2NC1iccLbMTWzN2fril0vq5Su7rOSS7BfFfj0rZtW3f9p0lSOs+uWLGiu47Rw+vHEew1gK5FFIi78847XeBDZbsApD4ZopKqUxQAAEH44osv3GyYH374wdf7AeFPpxOtW7d2M8AU+AAAAACAlKKSyJo05T9pS5PjevXq5bI0NNELQNpCxgYAADhvKgumTI7ly5e77Bs1TQcAAACAlKSsDpXEvf/++13m97///usyjJTdT1ADSJsIbAAAgPOWPXt2l86tZn5KT4+vtAAAAAAAJLXnn3/eV5pX5XFV2rdly5au7C+AtIlSVAAAAAAAAAAAIGzQoRIAAAAAAAAAAIQNAhsAAAAAAAAAACBsENgAAAAAAAAAAABhg+bhCDtqUHv69GnLmDGjZciQIdSbAwAAgDQsKirKnX9mzpzZnX+mN5x7AwAAIDWeexPYQNhRUGP58uWh3gwAAACkI9WrV7esWbNaesO5NwAAAFLjuTeBDYQdL1pXrVo1F71D+EVeDx48aHny5CHjJgxx/MIbxy+8cfzCG8cvfJ05c8ZNqkmP2Rri7bcuLjNlypSi6+bvDWMbjvjeMrbhiO8tYxuO+N6mzfFNyLk3d4URdry/TLqwSumLKyTNP4z6x0nHjlJi4YfjF944fuGN4xfeOH7hL72et4Ty3Ju/N4xtOOJ7y9iGI763jG044nubtsc3mHWmz2lHAAAAAAAAAAAgLBHYAAAAAAAAAAAAYYPABgAAAAAAAAAACBv02ACQ4uiNEt44fgAAAAAApA9q5nzq1ClLjT0gTp48acePH0+3vdDCcXyzZMmSZPeVCGwgbPGPVvget9y5c4d6MxDGx+9MZJRlyshJCwAAAAAAyXlje/v27bZ///5UO8iRkZG2Z8+eUG9GmhWZTOObL18+K1asWKLv7SYosFGpUiVr06aNjRw5MtrzX3zxhY0ePdpmzZplSeHzzz+3t99+23bs2GEVKlSwAQMGWN26dd1rBw4csAYNGsQYjIULF8b7udrOgQMH2rvvvmtNmjSJ9trNN9/sPrdv374xnl++fLnNmTPHcuXKFe21w4cP2//+9z/75ptvbO/evVaiRAlr166d3XXXXZY1a1a3TPPmzW3Lli02fvx4q1+/frT3z5492+68807r0KGDDR8+PN7tf/XVV904+0e4ihYt6tZ5zz33uN8TS9vbp08f69ixY7zLbtq0ydatW2eXXXaZbd682a688kr74Ycf7MILL7SUMGrq77Zh15EUWReA1CGiUC4b0KF2qDcDAAAAAIA0zQtqFClSxHLkyJHqJhgr8KJsEs3+T23blhZEJcP46jOPHj1qO3fudL8XL148ZTM2pk2bZp07d7ZGjRpZctDN/qFDh9rTTz9tNWvWtMmTJ7tAwYwZM9xN/DVr1rhAhrbDkzFjwlqF6POnTp3qCz7ERYGVpUuXur/ACl506tQp2usKuOgv+Msvv+yWWb16tfvsffv22RNPPOFbTgEHBX0CAxvff/99gr8YtWvXdgEOUSqQgi7Dhg2zbdu2BRUcic+kSZPcP1bBGDRokAsGKbChL6KCPwUKFLCUsmXPEVuz/WCKrQ8AAAAAAABI63RD2wtqFCxY0FIjAhvhOb4XXHCB+1PBDX2/ElOWKsHNw0uWLOlu3qvGVnJQIKN9+/YuC6F06dJ2//33W6FCheznn392rytDoGzZsla4cGHfIyF/wfLmzWu7d++2t956K95lFUy56KKLXBbDlClTor126NAhF5h47LHHrE6dOi5L4aqrrrKHHnrIBQeUquOpV69ejGwWfTn0XK1atSwhFCTx9jsiIsJatWplL774ohu3FStWWGIpMJE9e/YEv09fQm0TtfcBAAAAAACA8OX11Ah28jOQEN73KrG9WxIc2FCgQZkM77zzzjlTlfr16+dm8zds2NCeeeaZoAMhd9xxh/Xs2TPG8wokiDI2ypQpY+dL5aS0bQpsbNy48ZzLKitEWRZXXHGFLV682JVb8ihSpce8efOivefqq692QQb/SNbll1/u3rt27Vrfc8uWLXNBlsTsi0fZM6VKlbLvvvvO99zHH3/sAjLK8FA5rb/++ss9P3HiRPe8v08++cRtt+g1lezySm2pdJc+v1q1atayZUsXzPGyVRYtWuRKY+nztX8qVeaNkUqGKWulcePGrozYI4884p4TlQ3Tej766CNr1qyZC+7o9eQKlgEAAAAAAABIGEo8ITV/rxJcikrloO677z576aWXXL8NZQ34083pHj16uGyLcePGud4TXlmmxx9/PN7Pv/jii2OUptqwYYNdcskl7ncFB06fPu3KYSnAomwI3XxX6kqwbrrpJhd8UObJ2LFjY11GQQ9lQOiGu27MKyCirA31nxD9rt4YL7zwgn322WeuHJNu4isIUK5cuWiflSdPHvcZytAoX768e05BCGV4aB+Sgj7XC5xoPQo4qJyXslu03bfccot9++23ds0117hAk/ZNwQrR89dee22Mz1SJq/Xr17ueJEoT0lgpQ+XSSy91f+q4KHDSq1cvFwTxp3E6duyYvfHGG+73p556ygVDxowZ40s3UnkvfaZ+1vIKInXt2jVJxgNA2qZ0SCScsgWVUajx4wQ1/HD8whvHL3zxfw4AAACQ+iQ4sCGaoa9Z/brx7d249vzyyy/uZv2nn37qMhLkySeftN69e9sDDzxgOXPmDHo9Ci4oaNG2bVtfwEOlqFQuSc/rAlEBlrvvvtsFF4Itg6TldKP9hhtusK+//tplIsSWraFeHrrZruWVdfHll1/6AhuiAEGVKlVcs/P333/fPVQ2S+Oi5f2psbbWpWbhoibbKiE1YcIESwoKtHhd6hUsULBBmSZelo0CRF999ZU7dgoSKZihwIayKJRB8eijj8b4TO27smdUjktuu+02N85aj3pqqCyWUoc0Tv6BDfUaUTaH9leBFRkxYoQrm6Xj56UaKdBVsWJFl+mhzA31CyGwASAYykJT8BQAAAAAAEA0qVqT2ePy4Ycf+l5Pil7FwWzP+a5LVXF0P1n3kNUCIdAXX3zhJrYHtj/wN3fuXLe/ugft3e9Wr+hdu3ZZ06ZN3aT4uPolnzhxwoYMGeIm56ttge4L6+F/X1xJDf6U3NC9e3d3v17tLJL7Pu95BTa8wMCNN97oK03kUdaAyit5QQ1RDwplWShQoUBAMJQpoJvqygjRQHmmT5/uZpl6fSBeeeUVdyB+//13t55gqTF5ly5d7LnnnnM31QNpPQpOeMESlWpSw/Fff/3VZYl4TcsVKNBDwRwFD9577z2X0aKDruwWj76Izz//vMtg0UNfjurVq1tSUWBBwQ3vGCiQMGrUKN/rWp8yLKR169auFNeDDz7o/nIou0bBhUDqdaLjqyCVAhIrV64MataallWWihfU8DJK9J3Qa7lz53bPab0ebbu+IwAQjNj+zUL8NCHg4MGD7t9oMjbCD8cvvHH8wpfOfTUBBwAAAKmbKsyo/7HXO1lVaNQL2aN7k+cKfKQlJ0+edPfUvaSEP/74w42PghWVK1d2E/OVOPDmm2/G+n5VKVLFH03k37Ztm/Xv399KlCjhSxDQ/WeNtSoaebx707fffrt7vkWLFpY/f/7UFdgQBRE6derkBkF9MTzZsmWLsax3IzzYNO5//vnHbr31VhfUUPaBfzNrr3O6R43DlTFwPiWdNPgKQLz66qvRnlfGgXp56Ca8ghn+VNZJgQ1lOSxZssRlooiCGAqU6ICpLJVe8y/vpMhahQoV7KeffnKll1SGKin9/fffLhDhjfOgQYNcWSx/3pdL2zh48GA3znGVoRJlcSxdutSuu+4669atm2sOfv3118e7LVmzZo31eW2X/3cgcDld8ANAMILN0IPF+HdWQXmNH4GN8MPxC28cPwAAACB5aTK1N6Faf+raV/cz06MZM2a4QIQ3sXz8+PHuHrB3/1iBC1X72bRpU4xWE0ePHnUBIQVFVEVJVX90H1mVh/wDGwpgxDa+mkypRAT1V7733nuTbR8T3Dzc38MPP+x21L+RuGbpKzNg//790RplZ86c2TW4jo9u+iutRYOuz/VuxntZCSqPtGDBAt9zCmjs27cvRl+LYChKp5v3SpvxbySuA68DoAieAhneQ5kOM2fOtOPHj7sSTq+//rpL3fGn0kz6SxNbGo+yNhTYUJZEUgY25s+fb1u2bHH9M7xjoAbuGkPvoS+ijoP3F1tZKtoXNT/XfgXSWCs9SalDykBRMMRr/h1fAELr14xgr+yUKFCkz/TP4gAAAAAAAACAlKR7lGqZoIo+qtjjP7G9efPmrhKObswrCKD7oJpQroo9NWrUcPdf/VsL6B5o37593UR43bfW/XL/kv3nWpcq7GhdmiRfq1Yt125B2RGx0T1wJRdoOWVDbPS7lx2biRMnRrv/rGpHXhUiUZsBBT70fCBN+ldlHa3Lo/7RWlZ9O7VP2h5VbYqLxvGTTz5xy6fKwIZSSXSwdFPd06RJExflUcBANdAVhFC9LjUaV7AgPirXpB1WJoiCJgoc6HHkyBEX5NAgqnyU0mdUGklfDN2kP9+yJPoi6CApEOBfhkp9PZSWo/4S3kNZJDpwKs+kiJbKK6lclmqZqe6ZylQpC0Q37/VFji2woR4kioTF9now1JvCGxN9jgIuOgbKFvHGQNv0wQcfuNf0JddfEAUxvMblomCGymYpIBRbsEHZFMqOUUaH9k3brWbrXiqTF8RREMvr7eHRetRgXClKOk566Gfts9evAwAAAAAAAECYOXIk7sfx48EvG9g3M7Zlkokq+CgTQZO6lcWgyjeHDh3yva7ggybcqzeGgg/qmax70upfrHucmuyu+65emwTdp1UgQT08FBTQ68GsSxV19Lruh3/88ccumHDPPffEGgzo16+fe179j7U9H3zwQZz7p8npCkLoPr1/MkGRIkViVELyvyfu0f7ovr9/tR31ldZYKJlB2RqqAqGJ9LoH3K5duxglvtTjeffu3S4olOpKUXk6d+7smmdrcETZCjp4CmaoQYiahStIoH4O8VEETEEDZUQENvRW025Fv3Sg9aW666673A12BQvUhDox1C/EqwemrAbdyNd+BVJUTl9EHSgFalRjTF9e7asOuDJAFAnT7yr1EUhpOwruqETU+ZZRUWkoRQy9wIJKXOnLrKihR0269cXRtulPlcAaM2ZMtCiaAjMaby0bG31xFRDReCujRetR2S01mPnzzz9d8ELBFP1lVLQwsJyX3qc6bgoGaV91nFS3LSmVLJjTTiVf0A9AKhRR6L8sPgAAkHadiYyyRev32IYd+6xM0dPWoGxBy5QxQ6g3CwAA+FXXiUH3GadP/+933Ug/ejT2ZS+7zOynn/77Xfctd++Ovkwyla2vXbu2r7WCAgnqxaHKM8qqEN2o9yaQK5CgAMD999///5tZxk3yVxBDGR36Wfe/de9Uk8T/97//BbUufc6XX35pb7/9tgsCiJp8K6tDTb/9J6KrDJTuCf/4448uy6JixYqu/8XXX38d6/7p3m2WLFmiNR3X/fbAtgD63ZvA7u/YsWOxLitaXtuvwIYmzKtZ+OLFi13jcCUlqOqP165CyQ+rVq1yyQMhD2woAyOQdkIRJX/aaDWnTih9VmzpL/4UPFDGxvno2LGjewTyvgzn2k//jvMe9fZ48skn3SMugZ3pf/7552i/K0gTLAV29AjGLbfc4h5xUVDEK00V1/YqSBNYMss/4BP4uv+4qRSXf/Nyfw0bNowxxgkZB8+DbWtSZx9Ipzc6uLEBAEDa9fWKbTZk6irbduC/WZ/F82a3wW2rWstqxUO6bQAAIPz595TwenIoG8FTsmRJ38+6ia8sDAUoPOoh7E1a1/1XBSw0kV0PlarSJP/41qUqOMrA8IIp3r1mBTSUEeEf2FCJf72moIanevXqcQY29u7d6+6h+0+8V6AhMIih3wP7WZ9rWVEvbAV0NGle2yQKXGh/lLXiBTa8/Qms9JOqMjaAUKHZePgeN5V0UxSX5sXhJzUcP4IaAACk7aBG7/FLLHB+5vYDx93zY7rXIbgBAEAo+fWPiCGwQs3/V/iJVWC1mw0bLKXEVknH/z6jbux7VB5KAYu4JrbrNU1kV09l9VbWcnPmzHHZF+dal/86/CloElspqsD7oFmyZIlz/3S/JvAzihYt6ir7+NPvsTX/1rLqaa1997Zf1YoU1FA1In2+F9TwKHvDvy+2aBtiq2oUloEN9XRQeaS4KJrl9XFIqG+++cYGDBgQ5+uqgzZ27FhLrdRTRN3m49KrVy/XQAZIC/SPNMIXxw8AACTLOUZklMvUiK3ohJ7TlAq93qJqMSY6AAAQKjlzhn7ZFKTMCQUtVNbJu8mvElLLly937RHUqkBlq9TmQA/1bg6mHL8yOTJnzuwq6qh/tCiY8O+//8boh6yexeqboddKly7tKzcVF/XDUFNzBUO8SanKDPntt9981YzUpFwP/4wRT5UqVdy2qbJSgwYN3HN6r7JEFKhQuS2VxtK+e5TVouCGP+2PtiVNBDY6derkOqLHRTOAz5f6TnhNW2KjiFJqpv4VqkkWF6UPAQAAAEBatWj93mjlp2ILbuh1LdeofMEU3TYAAJA+qd/G6NGjXSbGbbfd5noza4J6z5493etqvv3JJ5+41gnKYtDk+6pVq8b7uerLof7F6tWsh+79KsujWLFirum3189a1OtYmSHqdaxeFtqG8ePHu8+IjQItypZQSSv1XpZu3bq5Hs21atVyAQrtg/p5eKWy1NBcE1m1DypPpXJTSkDQfmlb1BvEaw+hMlRqQ6EG6yo9pQwV3ZdX3xGPqn2o/4j6VaeJwIZSVfRIDjqQcR3McKCeFHoAAAAAQHq089DxJF0OAAAgsTQRXw2+n332WXezXzf+b7rpJlddR/r16+eCApq0fvToUatfv76NGDEiqM/u37+/Pf/883bfffe5HhaNGzd2WRCBjbvlpZdeckGNG264wfXauPnmm6P1gvan++81atRwWRZeYEM9QhSoUDUlZX8oeKKAikeBDgUixo0b535XZaTBgwdbjx493Bio7/PVV1/tXtNnK2tDn6U/1ZNk5MiR0fqQKKNDQRpv/ckhQxSNChBmFD1UmpZSpZQWhfCif3L0D6gi0fTYCD8cv/DG8QtvHL/wxvEL/3NPzW6LrUZyWpeS+z9/7R7r9nb02syxmXjnJWRsJBL/JiUfxpaxDUd8bxnbQMePH7f169e7kkiptQqOvrdeE2/uL8WkoEdgFkVKjq/KcSkbRI3VE/L9Ssi5Z/J17wAAAAAAIEgNyhaw4nmzu14asdHzel3LAQAAIG5t2rSxrVu32rp16yylqbfG3LlzXfmr5ERgAwAAAAAQcpkyZrDBbc/WpA4Mbni/63UtBwAAgLipnJVKV7322muW0tSPQ6W58ufPn6zroY4PAAAAACBVaFmtuI3pXseGTF0VrZF4kTzZbEi7i93rAAAAiN9ll13mHintoYceSpH1kLEBAAAAAEg1FLyY07+5tapezPfc462qEtQAAACAD4ENAAAAAECqonJTXetG+H6fv35PSLcHAAAAqQuBDQAAAABAqlO/bH7L/P/9NOat2R3qzQEAIN2JjIwM9SYgDYpMou8VPTYApLhMmTIx6mGM4wcAAFJCjqyZrUaJ3LZk80HbsOeobd531C7Mn4PBBwAgBRpPZ8yY0bZu3WqFCxd2v2fIcHayQWoRFRVlZ86ccfcoUtu2pQVRyTC++syTJ0/arl273PdL36vEILCBsMU/WuF73HLnzh3qzUA6OX5nIqNcKQsAABCeGpbJ6wIbMm/NHutan8AGAADJTTedy5Yta9u2bXPBjdQ881/bivAa3xw5clipUqUS/dnJGtioVKmStWnTxkaOHBnt+S+++MJGjx5ts2bNSvQ6mjdvblu2bInxfN++fa1Pnz5Bf86rr77qtun999+3Ro0aJXq7/D930aJFNm7cuER/1oABA2zy5Mm+3xXVioiIsOuvv95uueWWJLnRr2P24YcfWsOGDeNd9s8//7Rjx45ZnTp1bOHChW4b/vrrL0spo6b+bht2HUmx9QEILxGFctmADrVDvRkAACARGpTJZ2PmbHI/z12727rW/6/vBgAASD6676ibz6dPn3Yz91Mbzf4/dOiQm3zJ5OfwGV9lgGTOnDlJPjPZMzamTZtmnTt3TtJggb9JkyZF+8v1zTff2Msvv2wdOnRI8HbqL+uUKVOSbVuTwrXXXmuPPfaY+/no0aO2YMECGz58uB08eNAFcxJrzpw5ljdv3qCWvffee13wSIGN2rVru/empC17jtia7WdnbwEAAABIe6oVz2U5s2ayIyfP2Nw1e9xFNjcvAABIGfo/N0uWLO6R2uic4MSJE5Y9e3bODdLp+CZ7rk7JkiVt6NChrn5WcihQoICr9aaHBvq1116z/v37u/UGa+XKlbZx40br3bu3ffvtt3bkSOrNAtA+evtbunRpl60xaNAge/PNN23Hjh2J/nyvbl5C6T16LwAAAAAklSyZMlrDsgXcz7sPn7C/dxxmcAEAAJD8gY3777/f3XB/55134lxm+/bt1q9fP2vQoIErgfTMM8+cVyBE69DN9U6dOiU4W6Ny5cp2zTXX2KlTp1xwI7A805dffunKalWrVs1uvPFG27TpbDq0rFixwrp27Wo1atSwG264wf73v//ZzTffHOu6fv31V+vYsaNbtm3bti7DJLHatWvnIqezZ8/2RdQU4GnatKnVq1fP7r77bl89vBdffNG6d+8e7f2jRo2yW2+91bevKislOm733Xef1a9f3+23smB+++0395r2TyXABg4c6Epk6T16bzDHVKXI9P5XXnnFvaZtfO6559x2AwAAAIC/xhUK+X6eu2Y3gwMAAIDkL0VVtGhRd3P8pZdecoEB9YTwp5vdPXr0cNkH6kOxd+9ee+KJJ9xrjz/+eNDrUa+H8ePHu+yQhDQe0c30mTNnumBDzpw5XRkq9bEILGWlXhlPP/20FSxY0N2wV7kr9Q5RrbE77rjDlYhSSah58+a5m/QqzxRIHd979eplDzzwgDVr1syWLVvmggL6TN3cP1/ZsmWzCy+80NasWeN+1zhMnTrVbV+hQoXs3Xfftdtuu80917p1axcA2rNnj1uvKLiifQj08MMPW548eezjjz9246SgyFNPPeU+R+Nx3XXXuc/V2K1atSpBx3Tp0qVu2yZOnGjLly9343DppZdakyZNznscACA2qbEWaKjo33I1/9KYpNZUUsSN4xfeOH7hi/9HQq9JhbPXLV5g47amZUO6PQAAAEgHgQ3R7HzN0h82bJi98cYb0V775ZdfXGbAp59+6uvt8OSTT7qyUAoAKNgQjBkzZriO6ldffXWCtk0ZCNu2bbOrrrrK/a736ya8shH8y1n17NnT13ujW7duNmHChGjr1Q17NT8pV66cLVmyxAUxAuk9jRs39mVM6Ma/GnB/8MEHiQpsSK5cuXwltMaOHWuDBw/2NQBXsEfZGxprNVsvU6aMff/9966MlZp9a19btGgR4+JbY6IslmLFirnnbrrpJrvrrrvcz/ny5XP7qwYyeiTkmHoXiAoUabs1ZmrargAHgQ0ASU3/zin4DQAAwlOlormtUK6stvvwSVu4fq+dPhNpmTMle/EBAAAApPfAhm6Aa6a/Sjjphrq/tWvXuhvt/g2rle1w+vRp1/eiSpUqQa1DWQetWrVyXdUTYvr06S6AUbVqVff7lVde6W7Cq/TUPffc41tOQQiPbsarZJV3w+ziiy92++ipVauWfffddzHWtW7dOvvxxx9do22PPqds2cTPODp8+LAvuKEyUAog+GeuHD9+3DZs2OB+1jip3JYCG/pTwRYFKvxpJq8COArcKFCzfv16V3JLM33jE98xFWWLaHs9+lmvA0BS8y+Tl94paH3w4EGXjUfGRvjh+IU3jl/40oQcTcBB6Oj/rEblC9nU37fa4ROn7ffNB6xu6fwcEgAAgHQsRQIb3o1t9b5Q1oZ/2SOVUYor3TvYtG+VPlq0aJEvmyBY+vyvv/7a9u3b5wtsiG7eBwY21MMiNgpoBPaGiKtXhG7cq6+Gel74S2gwJpA61CtooT4Z3pipz0dgwMQLNCiwoWbjurmlwMbtt98e4zM1BiozpWW0vDI9FITp06dPvNsTzDGNrUE5PTYAJAf/wHN6p39nFfTWmBDYCD8cv/DG8QMSp2mFgi6w4ZWjIrABAACQvqVo/q56Nhw9ejRaI3HdfNdN+f379/ueU+8J3ewvVapUUJ+rrAkFDdSQOyHmz5/v+j+oifWUKVN8D/V70DYpUyE+FStWdOWk/DMZVq5cGeuy2td///3XZX94jx9++MH1rEgMvV83qK644go3C1fZECqF5a2jePHiNmLECJd1IeXLl3cP9c7QfnpluPypX8fixYtdiSgFYi6//HLbuXNnUAGIpDimAAAAAOBpXJ4G4gAAAAhRYCN//vwuuKGeDh71VFBD8UcffdQFKBYsWOB6L6jRuG7SB+Off/5xzbNjywKIrwyVAhPqq3HRRRf5HiqZpdJMCnLER824VQZKDcMVOFBfCZVvio0+V+Wc1EhdN/4VkBg1apSVKFEi6G1WSSkFLfRQkESNwp999lnXv6JAgQJuGWVuqLn5rFmz3HrU/0NBGvWy8N/uMWPGuIbd/iWhPBp7zerVGOl4KbNFDcO9DBlRbxGV1/IPYCTVMQUAAAAAT0SBHFa6YA7389KN++3oScrYAgAApGcp3nGtc+fO0XpMqBzG66+/7n7u2rWrPfjgg67PhRpeB2v37t3R+jkEQzfn1QdD2xNbKaWOHTvazJkzXZmnc1FzczVEV3aDykxNnjzZ/RlbkEW9PLSsmmvrJr+CD8oOadeuXdDbrW1SI3A9tI0KvihwocCGR6WltF/qFdK+fXvbunWry5LxHyOVl1L2jAIcsVHDcPVFefvtt922vvXWW249yrpYtWpVtCbqet5fUhxTAAAAAIgta+PkmUhbvGEfgwMAAJCOZYiisUGibNq0yXbs2GH16tXzPTdkyBA7duyYDR8+PPFHCDGoT4dKW83alME27DrCCAGIVUShXDagw3+BdJwtJXjgwAEX6KbHRvjh+IU3jl/4n3vWqlUrXfZtCuX+B/69mfbHVuvz0VL3Wq9Ly9nAVlVSdHvSEv5NYmzDEd9bxjYc8b1lbMNVVIjuHyTk3DPFmoenVSpD1bNnT9fDonr16q6/hhqPq8QUkteDbWumy4tLAME7ExllmTKm3H/AAAAgZfpszFmzm6EGAABIx1J1YOO9995zjb3jopJPcZU32rNnT6xNsf0tXXp2tk9iVKlSxZV8UiBj27Ztrl/GwIEDXbPthLj33ntt3rx5cb6uLJCElKxKD0g2Ct/jpoCgerswYzz8hNvxI6gBAEDaUSBnVqtaPI+t2nbQPfYdOWn5cyaszyIAAADShlQd2OjUqZM1b948ztdja3rtCbb5d1Lo0qWLeyTG4MGDXfmquBQsWDBRnw+kJkorQ/ji+AEAgFBpUqGgC2pERZnNX7fHWlUvzsEAAABIh1J1YCNPnjzucT5Uoqh06dIWLooUKRLqTQAAAACAVK1JhUL29i/rfeWoCGwAAACkTxlDvQEAAAAAAASjQdkCliXT2XKY8+izAQAAkG4R2AAAAAAAhIUcWTNb7VL53c8b9hy1zfuOhnqTAAAAEAIENgAAAAAAYaNJ+UK+n+et2RPSbQEAAEBoENgAAAAAAIRVA3HP3LW7Q7otAAAACA0CGwAAAACAsFEzIp/lzJrJ/Tx3zR6LiooK9SYBAAAghRHYAAAAAACEjSyZMlrDcmezNnYfPmF/7zgc6k0CAABACiOwAQAAAAAIK43L+5WjWkM5KgAAgPSGwAaAFJcp09nSAQhPHD8AABBqTSv6NRCnzwYAAEC6Q2ADYStDhgyh3gSc53HLnTs3xy9MhePxOxNJ3W0AANKaSkVzW6FcWd3PC9bttdNnIkO9SQAAAEhBmROycKVKlaxNmzY2cuTIaM9/8cUXNnr0aJs1a1aSbtxXX31ln332mY0bN8733IkTJ+yFF16wGTNmuN9btGhhAwYMsBw5csT7edrOgQMH2rvvvmtNmjSJ9trNN99sDRo0sL59+8Z4fvny5TZnzhzLlStXtNcOHz5s//vf/+ybb76xvXv3WokSJaxdu3Z21113WdasZ0+ymzdvblu2bLHx48db/fr1o71/9uzZduedd1qHDh1s+PDh8W7/q6++6sbZkyVLFitatKhb5z333ON+Tyxtb58+faxjx47xLrtp0yZbt26dXXbZZbZ582a78sor7YcffrALL7zQUsKoqb/bhl1HUmRdAMJTRKFcNqBD7VBvBgAASGKaZNGofCGb+vtWO3zitP2++YDVLZ2fcQYAAEgnEhTYkGnTplnnzp2tUaNGlpwWLFhgTz75pFWvXj3a87qxv2jRInvrrbcsKirKBTVGjRpljz/+eNCfPXToUJs6daov+BCXHTt22NKlS61IkSIueNGpU6dor2vd+/fvt5dfftkts3r1avfZ+/btsyeeeMK3nAIOCvoEBja+//77BM96rl27tgtwyPHjx13QZdiwYbZt27aggiPxmTRpUlBBIhk0aJALBimwUbx4cRf8KVCggKWULXuO2JrtB1NsfQAAAABSj6YVCrrAhtdng8AGAABA+pHgUlQlS5Z0N+9PnjyZPFv0/8ELZTJERETEeO3nn3+266+/3gU8atSoYd26dXNBkGDlzZvXdu/e7QIj8VFWyEUXXeSyGKZMmRLttUOHDrnAxGOPPWZ16tRxWQpXXXWVPfTQQy44EBn5Xyp0vXr1YmSzKCij52rVqmUJoSBJ4cKF3UPj06pVK3vxxRdt8uTJtmLFCkssBSayZ89+XjX3tU3U3gcAAACQEhqX/6/PBg3EAQAA0pcEBzbuv/9+l8nwzjvvxLnM9u3brV+/fm42f8OGDe2ZZ55JUCBk7ty57vOvvvrqGK/ly5fPZU8cOHDAPb799lurUqVK0J+tclLaNgU2Nm7cGG92irIsrrjiClu8eLErt+RRpoUe8+bNi/YebbOCDP6ZGJdffrl779q1a33PLVu2zAVZypQpY4ml7JlSpUrZd99953vu448/dgEZZXionNZff/3lnp84caJ73t8nn3ziG2u9ppJdXqktle7S51erVs1atmzpgjletooyZxSE0udr/1SqzBsjHRtlrTRu3Njq1q1rjzzyiHtOFi5c6Nbz0UcfWbNmzVxwR68nZ7AMAAAAQNoSUSCHlS54Ntt86cb9dvTk6VBvEgAAAFJrYEM9He677z574403XI+FQLo53aNHDzt27JjrjaEyTT/99JPrixEs3XxXUCQ2jz76qLt5roCJHrpZPnjw4ATtw0033WTly5d3mSdxUdBDGRAKamhbFBDxz9rQ7+qNof3SDf/nnnvOZZMoY6FcuXLRAht58uRxN/f9szYUhFCGR1LR/niBE61HAQcFFhRk0bpvueUWN1bXXHONC0z5Z3coOHTttdfG+EyVuFq/fr3rSaIgjzJPlKGiY6w/FTS57bbbfKWx/KlPx59//um+J++9957bNgVDPDt37nQBqrFjx7r3axsCs2IAAAAAIJisjZNnIm3xhn0MFgAAQDqR4B4bohn6mtWvG9+6ce3vl19+cTfOP/30U5eRIOqV0bt3b3vggQcsZ86cidpgBRzUz0H9JE6fPu2CE/pZWSHBUvDhqaeeshtuuMG+/vprF5gIpBv5yg5RxoaWV9bFl19+6W7Ye7ROZYt8/vnn9v7777tHoUKF3LhoeX9qrK11qcSWqMm2SkhNmDDBkoICLXv27HE/K1jQq1cvF5TxsmzUqFzN2HXsLrnkEhdIUBaGgh3KoFDAKJD2vWfPnq4clyiIoWbuWo+OgcpiqR+HxknZHR71GlE2h/a3bNmy7rkRI0a4sllqNi6nTp1yfVEqVqzoMj2UuaF+IV27dk2S8QAAf2fOnGFA/r8MokolajwS2uMJocfxC28cv/DF/yGpW5MKBW3iorOZ+PPW7LbLLioc6k0CAABAag1seIGBG2+80VeayKOZ+Sqv5AU1RD0oFIRQUCIhZaMC6ea5MgUUQKhZs6Z77tlnn7Xu3bu7LBI18A6W3t+lSxeXaaGb6oGmT5/ughNezwiValLD8V9//dVlLkjGjBldoEAPBXMUPFB2grZFGRnKbvEPbDz//PO2d+9e9zhx4kSMxuiJobFRcMM7BgokqKm6R+vbsGGD+7l169auFNeDDz7oAiylS5d2wYVA7du3d8dXQSoFJFauXBnUxZ2WVZaKF9TwMkr0ndBruXPnds9pvR5tu74jAJAcVI5PmYQAACAN99lYuzuk2wIAAIBUHtjwghWdOnVy2Ql33HGH7/ls2bLFWNa7EZ7Y2U66KX706FGrXLmy77mqVau62afq65GQwIao0bcCEIGllJRxsGbNGrc+BTP8qVySAhvKcliyZInLRBEFMRQoadGihV122WXuNf/yTmouXqFCBVeWS2WYkrIMlfz9998uEOGN86BBg1xvDH9e4EPbqPJd//zzT5xlqERZHEuXLrXrrrvONWlXc3A1bo9P1qxZY31e2+X/HQhcTjMZASA5xBa8TY/07+zBgwdd8JmMjfDD8QtvHL/wpfNXZRYjdSqQM6tVLZ7HVm07aCu3HrR9R05a/pyxX48AAAAg7TjvwIY8/PDDroyTfyNxzdJXZsD+/ftdiSKvUXbmzJldg+vE8AIXCjpcfPHF7mevtJECBwmlDALdvFdJJJWQ8vp6zJgxw930UY8QZWV4VHZr5syZbnmVcHr99detc+fO7oa/R6WZlOVRoECBGOtT1oYCG9u2bXNBlaQyf/5827Jli+uf4R0DBXr8MyLUBFzBFG2DMiaUpaJ9UfPz/v37x5oBonJcytaoUaOGe049RIIJQGj9unGmY6N+I94x02fqtX37qH0LIGV52Xfpnf791v9rGg8CG+GH4xfeOH5A8pajUmBDlynz1+2xVtWLM9wAAABpXIKbh/vLnz+/C27oprqnSZMmFhER4QIGKv2xYMECe/rpp61NmzYuWJAYxYoVczfk1RRbza81c0o/q7RSbIGEYKgBeK1atVwgwL8MVdu2bV1miPpLeI9bb73V3ZxXeSb1r1B5JfWgULNuNTRXmSoFLHTzXv0pAimooB4karoe2+vBUG+KXbt2uYc+RxkkOgbKFvFmJGubPvjgA/eayn+pLJWCGNpej8ZMZbMUePAvGeWfTXHBBRe4jA7tm7bba7au5uFeEEdBLK+3h0frufTSS13A5I8//nAP/ax99vp1AAAAAEBSaFLBrxzVGspRAQAApAeJCmyIMhZq167t+12zQJXJIGoErT4OuqHv3RRPrJEjR7ob+HfddZfdfffdrgG2AieJoX4haoTtZZfoRr72K5AyF5QpMnnyZLe8en0oy0PrV+ZKv379XIBFGSz+mR4ebauCO/69OxJKpaGaNm3qHu3atXPrUkPyIUOG+JZRk241an/llVdcQEkZHWPGjHG9TzwKzGjmoJaNjQIbCoh88803LgiiBu0qu6XslD///NMto2CKAh7+pcg86ieiAJeCQbfffrtrEv7aa6+d1z4DAAAAQFwalC1gWTJlcD8T2AAAAEgfMkTR2ABhWOdYAahZmzLYhl1HQr05AFKxiEK5bECH/4Lv6Z3+y1cpRZVipBRV+OH4hTeOX/ifeyrLOz2WNgzl/ifk703XN+fbovV73c9zBzS3kvkuSKGtDE/8m8TYhiO+t4xtOOJ7y9iGq6gQ3T9IyLlnonpsAKH0YNua6fLiEkDCnImMskwZU+4/YQAAkPKalC/0X2BjzW7rWi+CwwAAAJCGpWhgQz0dVB4pLuprcb4lq1QyacCAAXG+XrduXRs7dqylVsOGDbNJkybF+XqvXr1c6S38h2Sj8D1u6lWTK1cuZoyHoXA8fgQ1AABIHw3EX/r+7M8ENgAAANK+FA1sdOrUyZo3bx7n67pRdr7Uc0LNsuOSPXt2S83Uv6J79+5xvq60HyCtUFoZwhfHDwAApDY1I/JZzqyZ7MjJMzZv7R43GSNcJmEAAAAglQc21Dhbj+SQM2dO9whXajquBwAAAAAgYbJkymgNyxW0Wat32q5DJ+yfnYftoqK5GUYAAIA0KmOoNwAAAAAAgMRqXL6g7+c5/+xmQAEAANIwAhsAAAAAEGZOnDhhgwYNsnr16rmyvO++++45y95WqlQp2uPHH3+0tKZpxUK+n+etJbABAACQlqVoKSoAAAAAQOK98MILtmLFCvvggw9s69at1r9/fytRooS1bNkyxrJr1661ESNGWKNGjdJ0D79KRXNboVxZbffhk7Zg3V47fSbSMmdiLh8AAEBaRGADAAAAAMLI0aNH7bPPPrO3337bLr74Yvf4559/bMKECTECGydPnrTNmzdb9erVrXDhwpaWqVl44/KF7Kvft9rhE6ft980HrG7p/KHeLAAAACQDpq8AAAAAQBhZvXq1nT592mrXru17rm7duvb7779bZGRktGXXrVvnbvhHRERYetCkwn99NuatoRwVAABAWkVgAwAAAADCyK5duyx//vyWNWtW33OFChVyfTf2798fI7CRK1cue/TRR10vjs6dO9vPP/9saZUyNjxzCGwAAACkWZSiAgAAAIAwcuzYsWhBDfF+V+mpwMDG8ePHXVDjrrvusu+++841E//kk09ceapgRUVFuUdK8taZkPVemP8CK10gh/2796gt3bjfjp44bRdkzZSs2xmOzmdswdiGGt9bxjYc8b1lbMNVVIjOFRKyPgIbAAAAABBGsmXLFiOA4f2ePXv2aM/fc889dvPNN/uahVeuXNlWrlxpn376aYICGwcPHrSMGTOm+IWt+omIymkFq16p3C6wcfJMpP20apM1LkufjaQaW8SPsU0+jC1jG4743jK24SoqROcKgWVVz4XABoAUlykTs+bCGccPAIDQKlq0qO3bt8/12cicObOvPJWCGnny5Im2rIIRXlDDU65cOVuzZk2C1qnPTelzAG/GnrY/IRfUl1cpYZ8v2+F+XrbtuF1bK/r+4/zHFvFjbJMPY8vYhiO+t4xtuIoK0bnCmTNngl6WwAbCFifg4XvccufOHerNQDo+fmcioyxTRi7gAQDhq0qVKi6gsWzZMqtXr5577rfffnMZGIFZFQMGDHD/fz/33HPRmo9fdNFFCVqnPiMU59/eehOy7iYV/uuzMW/tbq4bknBsERzGNvkwtoxtOOJ7y9iGqwwhOFdIyLoSFNioVKmStWnTxkaOHBnt+S+++MJGjx5ts2bNsqT01Vdf2WeffWbjxo2L9vyECRPs7bffdunQqhU7dOhQy5cvX7yfp+0cOHCgvfvuu9akSZNoryk9u0GDBta3b98Yzy9fvtzmzJnjmu75O3z4sP3vf/+zb775xvbu3WslSpSwdu3audq1Xo3b5s2b25YtW2z8+PFWv379aO+fPXu23XnnndahQwcbPnx4vNv/6quvunH2ZMmSxc3W0jqVYq7fE0vb26dPH+vYsWO8y27atMnV7L3sssts8+bNduWVV9oPP/xgF154oaWEUVN/tw27jqTIugCkDRGFctmADrVDvRkAACTKBRdcYO3bt7ennnrKnn32Wdu5c6e7xvGCF8re0EQEZXDo/P7BBx+0hg0bWu3atW3q1KkuCKJrqLSqQM6sVrV4Hlu17aCt3HrQ9h05aflzRu9JAgAAgPCW4IyNadOmWefOna1Ro0aWnBYsWGBPPvlkjLqvM2bMsBdeeME9ypYta4899pg7KR81alTQn63ldUIf2HAv0I4dO2zp0qVWpEgRF7zo1KlTjNlP+/fvt5dfftkto5lP+mylhT/xxBO+5RRwUNAnMLDx/fffJzjipYsRBThETQAVdBk2bJht27YtqOBIfCZNmmQ5cuQIatlBgwa5YJACG8WLF3fBnwIFClhK2bLniK3ZfjDF1gcAAACkFpqwpcBGjx493AQsTdC6+uqr3Wua/KUghyYr6bnBgwfbmDFjbOvWrVaxYkUbO3Zsik1GCpUmFQq6wIaqKLwy6x+7umoxa1C2AFmbAAAA6TWwUbJkSXfz/ssvv4w3MHC+lJXw5ptvWpkyZWK8pkwNZTlcc8017vdHH33UhgwZ4upvBVPzVXXBdu/ebW+99ZbLTDgXBVGUol2nTh2bMmVKtMDGoUOHXGBi8uTJLhVcdHFw5MgRF5BRwMVLA1d6uAIb/fv3j1anTM/VqlUrASNzNkhSuHBh3+8RERGWP39+u/XWW6179+5WrVo1S4zzDUxo7P23CwAAAEDyZm08//zz7hHor7/+ivZ7ly5d3CM9yZb5v5Jc783d4B7F82a3wW2rWstqxUO6bQAAAEi86AVYg3D//fe7TIZ33nknzmW2b99u/fr1c7P5lfL8zDPP2MmTJ4Nex9y5c93nezOO/Es/rVq1ylq0aOF7TlkQyiIJtpGdZjNp2xTY2Lhx4zmX1efq86+44gpbvHixK7fk8eqLzZs3L9p7tM0KdvhnYlx++eXuvWvXrvU9p3q4CrLEFrxJKGXPlCpVyr777jvfcx9//LFLO1eGh8ppeRc3EydOdM/7++STT3xjrddUsssbb80E0+crYNKyZUsXzPGyVRYtWuSCUPp87Z9KlXljdODAAZe10rhxY6tbt6498sgj7jlZuHChW89HH31kzZo1c8EdvZ6Q7wgAAAAAxObrFdvstR//u/bybD9w3HqPX+JeBwAAQDrL2FBPh/vuu89eeukl129DGQP+dHNa6dClS5d2vTHUe8Iry/T4448HtQ7dfPdugAf2dBB95g033OBuoqtXhrIj8uTJE/Q+3HTTTS74oMwTpWHHRkGPFStWuBvuujGvgIiyNrwsD/2u3hgqiaU+ICrHpJv4CgKUK1cu2mdp2/QZytAoX768e05BiKuuusoFiZKCPtcLnGg9Cjg8/fTTrlyXtvuWW26xb7/91mW6KNCkffOyO/T8tddeG+MzVeJq/fr1rl6vZoRprDTWl156qftzw4YNLnDSq1cvFwTxp3E6duyYvfHGG+53pckrGKIUeFEdYJX30mfqZy2vIFLXrl2TZDwA4FyU5ZceKVswMjLS7T+NQsMPxy+8cfzCV3r9PyNcnYmMsiFTV1lULK/pOU0/0+stqhajLBUAAEB6CmyIZuhrVr9ufHs3rj2//PKLu1n/6aefuowEUWmm3r172wMPPGA5c+Y8741VmSdRQOLhhx92DcO1DSpHFbgd56LsDt1oV3Dk66+/dpkIsWVr6PN1s13LK+tC5bf8y1cpQKAyVJ9//rm9//777lGoUCG3TVrenxpra10qoyVqsv3iiy+6RuhJQYGWPXv2uJ8VLFCwQZkmXpaNGpWrGbuO3SWXXOKCGQpsKItCASSNYSDte8+ePV05LrnttttcEEfrUU8NlcVSPw6Nk39gQ71GlM2h/VVgRUaMGGGtWrVyzcbl1KlTLtClGr/K9FDmhvqFENgAkBKUxabgKwAASFsWrd9r2w4cj/N1BTf0upZrVL5gim4bAAAAQhzY8AIDN954o680kUdZAyqv5AU1RD0qTp8+7bIgvH4U57Wxmc9u7l133eUCBaIgQvv27V0wRdkkwapZs6arM6umerqpHmj69OkuOOGVuFKpJjUc//XXX13PDFEPDQUK9ND6FTx47733XEaLMjL8t0fbq/q3yjbR48SJEzEaoyeGAgsKbnjHQIEE/4bqWp8yLKR169auFNeDDz7oAizKrlFwIZDGVcdXQSoFJFauXBnUrDUtqywVL6jhZZToO6HXcufO7Z7Tej3adn1HACAlxPZvXnqZMX7w4EH3bzQZG+GH4xfeOH7hS+e+moCD8LDz0PEkXQ4AAABpKLDhBSvUTFuBhTvuuMP3fLZs2WIs690IT2wat9ec2r/Uk3fzXH09EhLYkIceesgFIF599dVozyvjYM2aNe4mvIIZ/lTWSYENZTksWbLEZaKI1q1Aifp/qCyVXvMv76TG4hUqVLCffvrJlV5SGaqk9Pfff7tAhDfOgwYNcmWx/HmBD23j4MGD7Z9//omzDJUoi2Pp0qV23XXXWbdu3dz4X3/99fFuS1xN5bVd/t+BwOV0wQ8AKSHYvkxpjf6dVVBe+09gI/xw/MIbxw9IGUVyZw9quSMnmFQFAACQrpqH+1M5qKNHj0ZrJK5AgzID9u/fH61RtrIt1OA6MUqUKGFFihRxgQePshN0c0avJZQyCHTzXr1A/BuJz5gxw81mVR8OBTK8hzIdZs6cacePH3clnF5//XXbtWtXtM9UaSbdMCpQoECM9SlrQ4ENZUkkZWBj/vz5tmXLFtc/wzsGCvQoI8J7qFSXjoMoY0JZKtoXNT/XfsWWAaJyXOqlogwUBUO85t/xBSC0fs0I9spOiQJF+kz/LA4AAAAASEoNyhaw4nmzu14a5/Lklyvs9Z/WuJ4cAAAASGeBjfz587vghm6qe9TMWw3FFTBQDfMFCxa4JtZqNJ6QBt+xUQDj1ltvtVdeecXmzp3rAhwqiaUggZfNkVBqAF6rVi0XCPAvQ9W2bVurXLmy6y/hPbRu3ZxXeSb1r1B5JfWgULNuNTJXmSplgejmvfpTxBbYUA8SNUGP7fVgqDeFgil66HMUcNExULaIV1pF2/TBBx+41xSwUVkqBTG8xuWiYIbKZin7JbZgg7Ip1DBcGR3aN223ept4DeK9II6CWF5vD4/Wowbj/fv3tz/++MM99LP22evXAQAAAABJLVPGDDa4bVX387mCG6cjzV74+i/r9tYC27T3KAcCAAAgvZSi8nTu3Nk1z1Z5JVG2gjIZFMxQI2g1C1eQQP0ckoIaWKtfhAInyhZp3ry5C24kht6vAIcoq0E38rVfgWrUqGEXX3yxy+RQoEbNwhVk0b4q0KAMEAVZ9LtKfQRSs24Fd1Qi6nzLoKg0VNOmTX2BBZW4UkNy9fnwqEn37t273bbpT5XAGjNmjOt94lFgRpkXWjY2CmwoIKK+IMpo0XpUduvll1+2P//80wUvFExRySuVIgss56X3qbm6gkHaVwV1Bg4caEmpZMGcdioyST8SQBoXUehsST4AAJB2taxW3MZ0r2NDpq6K1khcmRyDWlWx1dsP2us/rTUloi/asNeu/d8vNvS6i61D7ZKUagQAAAgTGaJobIAwoz4dCkAp0ya91skHcP5UckKzOdMj/ZevsoIKxNNjI/xw/MIbxy98pfdzz1Duf2L/3uj//EXr97pG4eq9oTJV3jmAnn/gk2W2Zf8x3/Ktqxe3YR2qWb4csfcMTEv4N4mxDUd8bxnbcMT3lrENV1Ehun+QkHPPRJWiAkKJmFz4HrdDhw5x/MJUWjh+6TWoAQBAeqP/8xuVL2jX1Srp/vQ/B1CQ4+v7m1mnOhf6npu+fJtd8/Jsm/PP7hBtMQAAAFKsFFVCqKeDyiPFRSWrvD4OCfXNN9/YgAED4ny9bt26NnbsWEuthg0bZpMmTYrz9V69etndd9+dotsEJGf0FeGL4wcAANKC3Nmz2MiuNe3KKkVs4BfL7cCxU7bj4Anr/s5Cu71pWXvkmkqWJVPGOLM+AAAAkE4CG506dXI9MeKSK9f51z5X3wk1y45L9uzZLTVT/4ru3bvH+brSfgAAAAAASatV9eJWp1R+e2TS7/bL/2drvDNnvc1cvs1Onom03YdPRuvToebk6uMBAACAdBLYUONsPZKDmpTrEa4KFCjgHgAAAACAlFUsb3b7oGcDe3/eBhv+9Wo7eTrStvo1HvdsP3Dceo9f4pqTE9wAAAAIHXpsAAAAAADSvYwZM9htTcval/c2scxxlJvyuowNmbrKNScHAABAaBDYAAAAAADg/+0/espOnyNooVe2HTjuem8AAAAgNAhsAAAAAADw/9QoPCmXAwAAQNIjsAEAAAAAwP8rkjt7ki4HAACApEdgAwAAAACA/9egbAErnje7xd5lw9zzel3LAQAAIDQIbAAAAAAA8P8yZcxgg9tWdT9niKPHhl7XcgAAAAgNAhsAAAAAAPhpWa24jelex4rljVluqlrJPO51AAAAhE7mEK4bQDqVKVOmUG8CEoHjBwAA0gMFL1pULWaL1u+17QeP27Bpq2z3kZO2autB23bgmBXPe0GoNxEAACDdImMDYStDBlK/w/W45c6dm+MXptLy8TsTqcISAAAA/1G5qUblC1qH2iWte6PS7jmdMkz6dTPDBAAAEC4ZG5UqVbI2bdrYyJEjoz3/xRdf2OjRo23WrFlJslGff/65vf3227Zjxw6rUKGCDRgwwOrWreteO3nypL300ks2ffp0O3bsmDVo0MCeeOIJK1asWLyfu3DhQrvlllts6NChdv3110d7TeuQ4cOHx3h+8uTJ9t1331mpUqWivXbq1Cl74403bMqUKW5bCxUqZNdcc4317dvXcuXK5Za5+eabbdGiRfb8889b+/bto71/7dq11qpVK7cP48aNi3f7Nc4DBw70/Z45c2YrWLCgXX311Xb//ff71pkY2l5tj/YhPnv27HH7du211/q+Hx9++KE1bNjQUsKoqb/bhl1HUmRdANK2iEK5bECH2qHeDAAAkIp1qRdh//vhH4uKMvvk10127xUVLCN9NgAAAMKjFNW0adOsc+fO1qhRo2TZoNmzZ7vAw9NPP201a9Z0QYW77rrLZsyYYUWLFrVXXnnFvv/+e3vxxRetQIECNmLECOvTp4999tlnQc8gHjVqlLVo0cK9/1xOnDjhC2goeHHfffdFe13bMG/ePHvmmWcsIiLCNm3aZMOGDbN///3XBTw8WbJkcUGfwMCG9iOhs54VwJk0aZIvyLNmzRq3zr///tvef/99y5gxcUk4r776qtveYGj/o6KifIGNOXPmWN68eS2lbNlzxNZsP5hi6wMAAACQfpXMd4FdWrGw/fz3Ltu875jNW7vHmlYsFOrNAgAASJcSfBe8ZMmSLvCgm+rJQYEMBQDatWtnpUuXdpkIyoT4+eeffa8/8MADLqtA2RwKgCxfvtwFE4KVM2dOFxCJj9apm/w33nijC2zoJn7gtvbr188FeS688EL351NPPWU//vij7dy507dcvXr13E3/wDFTYKNWrVqW0Nr2hQsXdg8di8suu8wFUX777TcXhEmsfPnyufEJRuB4aJuyZs2a6G0AAAAAgNTohvoRvp8/XrwxpNsCAACQniU4sKFAg8ouvfPOO3Eus337dnfDX8EHlSVSRkOwgZA77rjDevbsGeP5Q4cOWWRkpAtING7cONbXg/XYY4+5oISCAfFlpygoccUVV9iWLVts8eLF0V5XtsWCBQvcdnlq167tymTlz58/2nPZsmVzy3o0hgrGJEXZpnLlyrnt9A9s6GeVuVLWizJsVDLKy4jRcyrj5VHQpU6dOnb8+HFXikpZG6Jj9txzz1mzZs3s4osvtubNm9snn3ziXtMyGkM99LxXikrlvrxsFx0rBV4UvLn77rtt27Zt7rXNmze7Zb/99lu76qqrrHr16tarVy/bv39/oscCAAAAAJLLlVWKWsGcZydzfbtyh+09kjwT/gAAAJDEpahUDkolmdTnQv02VILJn26G9+jRw2VbqG/E3r17XQ8Mefzxx+P9fN1A96cb8Rs2bLBLLrnElVkKDGqop4OCCLpRHqwrr7zSBSuUXaEb8+pVEejIkSMuY+PJJ5+0MmXKWPny5d2yCtZ41K/DK42lG/jatqZNm7pMEn/a7ssvv9yVo7r00kvdc3qPAgaxrft8aJ1LlixxP69evdr69+9vQ4YMsRo1arj9uPPOO+2rr75y23jBBRe4cVU/EFGAQcGJ7NmzR/vMt956y3766ScXxFAvD+2/MmQ0frfddpvrESIao0CDBw9226PeIsoCUdmqe+65x/VP8SjTRGXBlPnRu3dve++991w2DgCEypkzZ9L04OvfWwXjtZ9psQF8WsfxC28cv/CV1v9vQMJkzZzROtW90N6avc5Onom0yUu32O1NyzKMAAAAKey87qprVr8aWau3g38vCfnll19cNsKnn37q67egG9+6ca2b1sGWOZKNGze6Ztlt27aNEfDwggPvvvuuu4Gf0BJICrK0bt3aPvjgA7v99ttj/Ww1B1cARNSTQ4Ea7YsCA3Lvvfe6wM5HH33k9vfjjz92+6eMkE6dOkX7PAUDFBRQMEV++OEH69q1q/3zzz+WFNQ4XMEYUTaNPlvj5gVglG0yceJE1wxdzcYVzFBgQxdq2ldl1QSqXLmyCyh55bKUdfHaa6+5QJMyRLxASGCvkgMHDtiXX37pGsDr/aLAhoI7c+fOtbJlz574K0CmwItoW1VSDABC6a+//oqW0QYAABCoa70IF9iQTxdvstualGHCAAAAQDgENtTnQTfo1XtCN8X9aRa/Mhz8m0irzNHp06ddoKJKlSpBrWP9+vWuJJUCB7HddNd6VRare/fu1qVLlwTvg/pTKINg9OjRLsARSOWktN3eTXsFAxTEUUDguuuu8y2nXiB67Nu3z5V0Gj9+vAtsKIOkWrVqvuWaNGniSi2tXLnS7dOyZctcJkRSBTYU1FBwwzsGM2fO9JWNEgVplE0i2l/tu7Jrli5dGu01fyoTpUDE8OHDbd26dbZq1aqgZq0p8KEZwSp55VHWhgIa2jYvsKGsHo+2XdsBAKGUkOy/cJ0xfvDgQcuTJw83YMIQxy+8cfzCl859mYADfxWK5LJ6pfPbr//us792HLJlm/Zb7VL/lSIGAABA8jvvOki66a+sBGVtqC+GR70kAnk3woNN49bN/ltvvdUFAMaOHRujRJKCDo8++qjdcMMNNmjQoPPdBRc4UVNw7YN/JomCFPPmzXPBmKpVq0Z7j5ZXYEPlnvSzMiBE5bCUdaAsCAVB1E/DP7ChLA+VgVI5KgV+VNIqIdkrwcwyrlixom+cVXpKTdj9eeNYv359y5Ejh9tHZdgogBFbxovKjX322WfWsWNH91kqL+X10ziX2L4D3nb59yNRY3YASE0UuE/rN1ZVHlH7SSmq8MPxC28cPyBtub5+hAtsyCeLNxHYAAAASO3Nw/09/PDDdvTo0WiNxDUbXzP2/RtBKztBvSRKlSoV72fu3LnT9W/QbH59rpeF4Jk/f74Latx0002+3h3nSzfWdbNeWRhec23R77oBP2HCBBe88B7aLgUs1BxdN+nVE8LLYvAoQKAAQmB5Jq8c1Y8//ujKUKm0VVLReP/666/WsmVL3zFQg26NofdQ9ob6aohuamlZ9c/QtsSWsSIqraUx1nFWI3KvPIsuzCWum2IKSOl467j7B4vULN3L1gAAAACAcNW6RnHLle3sPMGvft9qh0+cDvUmAQAApCuJCmwoS0E3vbds2RKt5JJubCv4oCwCBQLUW0KNxlX6Ij5qNq2ggrIoFDTZtWuXe6jUkjIolKGhjANlJHiv6aGySuejYcOGrpSU/z5MmzbNNfauW7euXXTRRb6HskgUFFD/CPX8UM8IlXSaOnWqCyToRr4CJdoWZW0EUr8OjYlKVnm9OxJKARVvn7du3epKcmksGjVq5PtMbeeMGTNcY3WV/3r//ffdQ5kiHgUztB8nTpzw9cEIpPJRCsRs2rTJBU50TMUba2WhaNzUU8WfMlFUHkzHfeHChS675ZFHHrFixYq57wcAAAAAhLMcWTNbu1ol3M9HT56x6X9sDfUmAQAApCvnXYrK07lzZ/v8889dpoWovMXrr7/ubmqrgbVucqtE04MPPhjvZykTQDfqjx8/7ss+8PTp08cFG3QzX4/AnhC6ia8gxfno37+/y14Q3aTXTfxXXnklxnJFixZ1WReTJ0+2Xr162csvv+z6bqhPh7ZJ5Z20XeqzEZhpIgULFnTNspXNEFtGRzCULeLtu0o+lShRwo2vfzkwNft+4YUXXA8P/alMmZEjR7qAkP8yCkxpTLU9sXn22WddLxUFQbTvClbo+P7555926aWXupJcaqCuwJACWIFjqiCVGoQrEKIyXAquJLTJOwAAAACkRjfUj7CPFm50P3+8eJNdXz/+CgUAAABIGhmivLpCQJhQ1oqyY2ZtymAbdh0J9eYASAMiCuWyAR1qW1qn//IPHDhgefPmpcdGGOL4hTeOX/ife2piUFrvxZTa9j+1/73R9rV6ZY79ue2g+/2b+y+1SsVyWzhI7WMbzhhbxjYc8b1lbMMR39u0Ob4JOfdMdMYGECoPtq2ZLi8uASSPM5FRlikjF/YAACA4ushX1sbgr1b6mog/2bYqwwcAAJACUjSwoWbbsZV48qik0tChQ8/rs//44w/r0aNHnK+rZNP06dMttUrOsUmrSDYK3+N2+PBhV66N2WHhJy0fP4IaAAAgodrXKmnDZvxpJ09H2hdLN1v/aytZtsxMvgIAAEhTgY1OnTpZ8+bN43w9tr4UwapcubJNmTIlztfj6iORWiTn2ACpjdLKEL44fgAAAGflzZHFWlUrZlOWbbX9R0/Ztyt3WNuaZ5uKAwAAIPmk6N3+PHnyuEdyUFPq0qVLW7hKzrEBAAAAACQPNQ1XYMMrR0VgAwAAIPllTIF1AAAAAACQJl1SroCVKZjD/TxnzW7btPdoqDcJAAAgzSOwAQAAAADAeVLfsa71I3y/f/brJsYSAAAgmRHYAAAAAAAgETrXudAyZczgfv701812JjKK8QQAAEhGBDYAAAAAAEiEInmy2xWViriftx88brP/3sV4AgAAJCMCGwAAAAAAJNINfuWoPl68kfEEAABIRgQ2AAAAAABIpMsrFbYiubO5n3/4c6ftPHScMQUAAEgmBDYAAAAAAEikzJkyWpd6F7qfT0dG2RdLtjCmAAAAyYTABoAUlylTJkY9jHH8AAAAYte13n/lqD5ZvMmiomgiDgAAkBwIbCBsZciQIdSbgPM8brlz5+b4hSmOX9zORHLjAgCA9K50wZzWuHxB9/P63Uds0fq9od4kAACANClzQhauVKmStWnTxkaOHBnt+S+++MJGjx5ts2bNStKN++qrr+yzzz6zcePGud83b95sV155ZazLjh8/3urXr3/Oz9N2Dhw40N59911r0qRJtNduvvlma9CggfXt2zfG88uXL7c5c+ZYrly5or12+PBh+9///mfffPON7d2710qUKGHt2rWzu+66y7JmzeqWad68uW3ZsiXW7Zs9e7bdeeed1qFDBxs+fHi84/Hqq6+6cfZkyZLFihYt6tZ5zz33uN8TS9vbp08f69ixY7zLbtq0ydatW2eXXXaZ79j88MMPduGFZ9Ovk9uoqb/bhl1HUmRdAHAuEYVy2YAOtRkkAABg19ePsHlr9/iyNhqWOxvoAAAAQIgCGzJt2jTr3LmzNWrUyJLTggUL7Mknn7Tq1av7nitevLgLMPhTQODff/+1WrVqBf3ZQ4cOtalTp/qCD3HZsWOHLV261IoUKeKCF506dYr2+oABA2z//v328ssvu2VWr17tPnvfvn32xBNP+JZTwEFBn8DAxvfff5/gWeu1a9d2AQ45fvy4C7oMGzbMtm3bFlRwJD6TJk2yHDlyBLXsoEGDXDBIgQ3v2BQoUMBSypY9R2zN9oMptj4AAAAAiM81FxezvBdksQPHTtn05dtscLuL3e8AAAAIYSmqkiVLupv3J0+etOSirARlMkRE/Fef1KvrXrhwYd9DGQMKODz//PNBZyvkzZvXdu/ebW+99Va8y86YMcMuuugil8UwZcqUaK8dOnTIBSYee+wxq1OnjstSuOqqq+yhhx5ywYHIyEjfsvXq1YuRzaJaq3ouIQEZ0X56+6/xadWqlb344os2efJkW7FihSWWAhPZs2dP8Pu8Y0PtfQAAAADpWfYsmaxD7ZLu5xOnI+2rZTQRBwAACHlg4/7773eZDO+8806cy2zfvt369evnZvM3bNjQnnnmmQQFQubOnes+/+qrrz7nciqJ1bVrVytfvnzQn61yUto2BTY2btwYb3aKsiyuuOIKW7x4sSu35FGmhR7z5s2L9h5ts4IM/pkYl19+uXvv2rVrfc8tW7bMBVnKlCljiaXsmVKlStl3333ne+7jjz92ARlleKic1l9//eWenzhxonve3yeffOIba72mkl1eqS2V7tLnV6tWzVq2bOmCOV62yqJFi1wQSp+v/VOpMm+MDhw44LJWGjdubHXr1rVHHnnEPScLFy506/noo4+sWbNmLrij15MzWAYAAAAAKVmOyvPJr5sYeAAAgFAHNtTT4b777rM33njDZUwE0s3pHj162LFjx1xvDJVp+umnn+yFF14Ieh26+a6gyLn89ttvLjjQq1evhO6C3XTTTS4YosyTuCjooQwIBTW0LQqI+Gdt6Hf1xtB+6Yb/c889Zz///LPLWChXrly0wEaePHnczX3/rA0FIZThkVS0P17gROtRwEGBBQVZtO5bbrnFBRauueYaF5jyz+749ttv7dprr43xmSpxtX79eteTREEeZZ4oQ0XHWH8qaHLbbbf5SmP5U5+OP//8031P3nvvPbdtCoZ4du7c6bJtxo4d696vbQjMigEAAACAcFSleB6rGZHP/bxiy0FbseXsJC8AAACEqMeGaIa+ZvXrxrduXPv75Zdf3I3zTz/91GUkiHpl9O7d2x544AHLmTNnkmy4Pr9FixYu0JJQCj489dRTdsMNN9jXX3/tAhOBdCM/X758LmNDyyvr4ssvv3Q37D3KRKlSpYp9/vnn9v7777tHoUKF3LhoeX9qrK11qcSWqMm2SkhNmDDBkoICLXv2nG1Qp2CBAj4KynhZNmpUrmbsOnaXXHKJCyQoC0PBDmVQPProozE+U/ves2dPV45LFMRQM3etRz01VBZL/Tg0Tsru8KjXiLI5tL9ly5Z1z40YMcKVzVKzcTl16pQ9/vjjVrFiRZfpocwN9QtRBg4AhKszZ85YaqYyiCqVqO1MaI8nhB7HL7xx/MJXav+3HanXDfUj7PdN+31NxKuVPHt9DAAAgBAFNrzAwI033ugrTeTRzHyVV/KCGqIeFKdPn3ZZEAoEJJY+S4GBhGSBBKpZs6Z16dLFZVropnqg6dOnu+CE1zNCpZrUcPzXX391mQuSMWNGFyjQQ8EcBQ+UnaCMFmVk+AddFNhQL5C9e/e6x4kTJ6I1Rk8sBRYU3PCOgQIJo0aN8r2u9W3YsMH93Lp1a1eK68EHH3TjWLp0aRdcCNS+fXt3fBVEUkBi5cqVQV3caVllqXhBDS+jRN8JvZY7d273nNbr0bbruAJAOFPZP2UsAgAAtKlR3IZOXWXHTp2xKcu22KBWVeyCrGevLwEAABCCwIYXrOjUqZPLTrjjjjt8z2fLli3Gst6N8KSa7aQSVLoJ3qRJk0R9jhp9KwARWEpJGQdr1qxxN+EVzPCnckkKbCjLYcmSJS4TRRTEUKBEWSSXXXaZe82/vJOai1eoUMGV5VIZpqQsQyV///23C0R44zxo0CDXG8OfF/jQNg4ePNj++eefOMtQibI4li5datddd51169bNNQe//vrr492WrFmzxvq8tsv/OxC4nGYyAkA4iy1InJro39mDBw+64DMZG+GH4xfeOH7hS+evyiwGEip39iwuuPHZb5vt0PHTNnPFNutY50IGEgAAIJSBDXn44YddGSf/RuKapa/MgP3797sSRV4gInPmzK7BdVL4/fff7eKLL441iJIQyiDQzXuVRFIJKa+vx4wZM9xNH/UIUVaGR2W3Zs6c6ZZXCafXX3/dOnfu7G74e1SaSVkeBQoUiLE+ZW0osLFt2zYXVEkq8+fPty1btrj+Gd4xUAN3/4wINQFXMEXboIwJZaloX9T8vH///rFmgKgcl7I1atSo4Z5TD5FgAhBav26cKTCkfiOiQJE+U6/t27cvyfYdAFITL8svtdK/3/p/TdtJYCP8cPzCG8cPSJ9uaBDhAhvy1ux1liljBiuSO7s1KFvA/QwAAIAUah7uL3/+/C64oZvqHmVRREREuICBSnIsWLDAnn76aWvTpo0LFiQFZRqotFFSUAPwWrVquUCAfxmqtm3bWuXKlV1/Ce9x6623upvzKs+k/hXaBvWgULPuzZs3uzJVCljo5r36UwRSUEE9SNR0PbbXg6HeFLt27XIPfY4ySHQMlC3izRTWNn3wwQfuNZX/UlkqBTH8x0zlqFQ2S4EH/5JR/tkUF1xwgcvo0L5pu71m62oe7gVxFMTyent4tJ5LL73UBUz++OMP99DP2mevXwcAAAAApHV1SuW3Ynmyu59Xbz9k/T5eZt3eXmBNn59lX6/YFurNAwAASJ+BDVHGQu3atX2/axaoMhlEjaDVx0E39L2b4klh9+7d0Xp4JJb6hagRtpddohv52q9AylxQpsjkyZPd8moWriwPBW6UudKvXz+XqaEMFv9MD4+adSu449+7I6FUGqpp06bu0a5dO7cuNSQfMmSIbxk16Vaj9ldeecUFlJTRMWbMGNf7xKPAjGYOatnYKLChgMg333zjgiDDhw93ZbeUnfLnn3+6ZRRMUcDDvxSZR/1EFOBSMOj22293TcJfe+2189pnAAAAAAhH36zcbtsPHo/x/PYDx633+CUENwAAAM5ThigaGyDMqM6xAlCzNmWwDbuOhHpzAMAiCuWyAR3+C/KnVvovX6UUNTmAUlThh+MX3jh+4X/uqSzv1F5yMK3tf7j/vTkTGeUyM7YdiBnYEO1RsbzZbU7/5ilelircxzY1Y2wZ23DE95axDUd8b9Pm+Cbk3DNRPTaAUHqwbc10eXEJIPXevKBWNgAA8CxavzfOoIaoc6Fe13KNyhdk4AAAABIgRQMb6umg8khxUV+L8y1ZpZJJAwYMiPP1unXr2tixYy21GjZsmE2aNCnO13v16mV33313im5TakeyUfgeN/WqyZUrF7PDwhDHL24ENQAAgL+dh+IOavib9sdWq1s6v2XNnOhK0QAAAOlGigY2OnXqZM2bN4/zdd3oPF/qOaFm2XHJnv1sw7bUSv0runfvHufrSdlTBAg1pZUhfHH8AAAA4lckd3DXoBMWbrRZq3fa7U3LWrcGpSxnNgorAAAAxCdFz5jUOFuP5JAzZ073CFdqOq4HAAAAACD8NShbwIrnze4ahavs1LmoJNUz0/+0V2etsVsalbYejctYoVzZUmhLAQAAwg+5rgAAAAAAJEOZysFtq7qfA1tuZvj/x8NXX2RXVSnie/7AsVMuuNFk+Cx7YsoK27jnaLR+XvPX7rEvl21xf+p3AACA9IocVwAAAAAAkkHLasVtTPc6NmTqqmiNxIvlze6CHnpd/t5xyN78eZ0LWpyOjLITpyNt3IJ/bcLCf611jRJWvUQee2/ehmifUTzgMwAAANITAhsAAAAAACQTBR5aVC1mi9bvdQ3F1XtDZaqU0eG5qGhuG9m1pj109UX2zpz1NnHRRjt68owpKWPq71vdI5BKXPUev8QFTghuAACA9IbABgAAAAAAyUhBjEblC8a7XIl8F9gTbapa3+YVbNz8f+29uett79FTsS6rQlQKjSgbRIET/0AJAABAWkePDQAAAAAAUpF8ObJa3ysr2ks31DrncgpuqDyVskEAAADSEwIbAAAAAACkQvvjyNYIpBJXAAAA6QmBDQAAAAAIMydOnLBBgwZZvXr1rGnTpvbuu+/G+57Nmzdb7dq1beHChSmyjUg89eNIyuUAAADSCnpsAAAAAECYeeGFF2zFihX2wQcf2NatW61///5WokQJa9myZZzveeqpp+zo0aMpup1IHDUZL543u2sUrrJTsSmUK6tbDgAAID0hYwNAisuUKROjHsY4fgAAhJaCE5999pk99thjdvHFF1uLFi3sjjvusAkTJsT5nq+++sqOHDmSotuJxFND8MFtq7qf42oNruePnjzNcAMAgHSFwAbCVoYMcZ3aI7Uft9y5c3P8whTHL+HORMY1vxIAgPOzevVqO336tCsr5albt679/vvvFhkZGWP5ffv22YgRI2zo0KEMeRhqWa24jelex4rljV5uKkums9dDuw6ftIFfLLeoKM45AABA+pHipagqVapkbdq0sZEjR0Z7/osvvrDRo0fbrFmzknR9mpmk2Uzjxo0LavkBAwbY5MmT43z9ueees4EDB9oPP/xgF154oaWkm2++2RYtWuT7PXv27FauXDnr2bOntWvXLtGfr5q7V155ZdD7Nn/+fCtSpIiVL18+2Y7fuYya+rtt2MWsMwCpV0ShXDagw383nQAASAq7du2y/PnzW9asWX3PFSpUyPXd2L9/vxUoEL0s0fDhw61Dhw5WsWJFDkAYBzdaVC1mi9bvdY3C1VOjWJ7s1u61OXbo+Gmb9sc2u6RcQet+SelQbyoAAEDa7bExbdo069y5szVq1ChZ17NgwQJ78sknrXr16kG/R+ncDz30kPt5xowZrgnfpEmTfK/nzZvXmjVrFuNiIaXcdttt7qHZOIcOHXJBCAVaNGOrY8eOifrs4sWL25w5c4Let1tvvdU+/PBDF9ho1aqVXX755ZaStuw5Ymu2H0zRdQIAAAChduzYsWhBDfF+P3nyZLTn582bZ7/99pu7BksMXX+kdEaAt04yEc7KmMHsknLRr9Ve6FTDek9Y4n4eOm2V1YrIaxeXyMvYhhDfW8Y2HPG9ZWzDEd/btDm+CVlfSAIbJUuWdGnQX375ZYwT8qSi7IE333zTypQpk6D3qUSOHt7PqiVfuHDhaMsE/p6ScuTI4Vu/ly2hGrtKLW/durVly5btvD87tn0NlrJH9AAAAACQvHTOHxjA8H73Pyc/fvy4m+g1ePDgRJ+rHzx40DJmzJjiF7Zes3PK0MauUcQF1q1ucZv42zY7eTrSeo//zSbeWtNyZTv3pT5jm3wYW8Y2HPG9ZWzDEd/btDm+sZVVTVWBjfvvv9+eeuope+edd6x3796xLrN9+3ZX9knljjR4bdu2tUcffTToQMjcuXPd5y9cuDBa+aakLtek0lovv/yyvfLKK7Z161b32gMPPOAyP1TjVs38XnrpJStatKh7/3fffed+37Jli0sF1z41aNAgUdt0/fXX25gxY9xMrMaNG7uLmhdeeMGmTp3qXleGyeOPP2758uVz26YxfP75533vV4aKLnR0LPz3bc2aNe4YLFmyxGWEKPPl6aefdsGU5s2bu/fecsst1qdPHxes8i9FtXbtWnv22Wdt6dKlljNnTreN99xzj7sYevXVV23Dhg2WK1cut426MFMWyp133pmocQAAAADSA11bqG+GztEzZ87sK0+lc/o8efL4lvvjjz9s06ZNdt9990V7v86727dvn6CeG/pcTYQKxYw9Zc0T2Ijb4PY1bOX2o/bHlgO2ad9xG/7DRnvlhlrnHDPGNvkwtoxtOOJ7y9iGI763aXN8z5w5k7oDGzoR18m1bvCr30ZERES013VjvkePHla6dGnXG2Pv3r32xBNPuNd0gz4YEydOdH8qsJHcFNRQ3VqlhN9xxx0ukKLAhkpEaT/ffvttt91q8te/f38bMmSI1ahRw37++Wd3UaE+INrXxJSQUiaHAhEKbIwaNcpWrFjh1quggca5X79+9sEHH7isjkGDBtmpU6csS5Ysbqx//PFHF5QIjI7dfffd7vM0w0tlr3Tho8yQN954w5XnUikxBSmaNGli33zzje+9Ol433nijC36ov8n69evd/iuQofJVouW1jPqZKNijz73qqqusbNmyiTgSAJA6JeQ/5uQ+MdG/79oebhCFH45feOP4ha/U8m+4vypVqriAxrJly6xevXruOU1y0kQk/6wKXXN8++230d579dVX2zPPPOPO4RNC/2+E4v8Ob738vxW37Fky2+gb61jrV39JUL8Nxjb5MLaMbTjie8vYhiO+t2lvfBOyrpAENrxG2Go4PWzYMHej3N8vv/xiO3bssE8//dRFhUQp1MooUMaBMgBSE92sr1mzpu8iQzfnr732Wt+FgwIaogySrl27uuwTL9th8eLFLgijpuWJobJZR44cccGV8ePH2+eff+6ySUTZGw0bNrS//vrLLr30UndTSwGfpk2bup4amtml17dt2xYtbf2GG25wwQcFTUQNB8eOHet+9vpw6PgEHg/V773gggtcdocuuJThoRlkr732mi+woewRBXk060vBIAVhFIwhsAEgLdK/v/r3GQCApKBzbWVcKAteWdI7d+50vQGVbS0699b1gc7zY5tApYlmBQsW5GCkIaUK5rARnWvY3eP9+23ks2ol4++3AQAAEI5CFtjQDW2diOvG+ffffx/tNZUxUm8ML6ghderUcanWGzdudMGD1MQ/40QXDyrL5P+7V+9W+zVz5kz75JNPfK8rc0IBhsRSUEMZEUo112cqKOFPwQyVf1KwQ5kRmrml9erPa665JkZauYIZ3bp1sylTpriAw7p162zVqlVWqFCheLdF+6kSXF5avNSuXdtdYKk2r6jUlf86FRzR8QWAtMgLNKeGGeP6d1jlRJj5Gn44fuGN4xfeGRvLly+31EbZ4bqeUqa7rgP69u3rJlWJzvMV5OjYsWOoNxMpqGW14nZr4zL2/rwNrt9Gn4+W2NS+TS139iwcBwAAkOaELLDhBSs6derksjY0a98TWwNsLwU8NaaCBwYF4mqqp2336tn6S2wjP/X9OHz4sOvZ4Y3PRx995Mu08Hizslq1auUuhFQeSj0xlEkRW6Ckc+fOlj9/fldSSiXDFNzQTLD4xHb8vMYv3vapDFZiut4DQDhJ6ZrkcdG/s/o/SttDYCP8cPzCG8cPyZG1ob55/r3z/DMF43Ku1xD+BraqbEs27rM/Nh+wDXuO2sAvltur3Wrz/z4AAEhzYr8Dn4Iefvhh12FdZZo8Kkek7IL9+/f7nlP9WGUAlCpVysKV9ktBCKWDew9lb8yePTtRn6uyU4ULF3b1dZU9ohtWGjtvHZrBpRlbe/bsccurb4YCDO+9954Lqnh1ef2pT4hS2j/88EMXdNJ71Bw9mOCD9nPlypUuc8SjJuIqX6USVAAAAACApJctcyYb3a2O5c5+dg6j+m1MWLiRoQYAAGlOyAMbyghQcGPLli2+59TITjfoH330UTejaMGCBa5fg7IGVD4jXKm/xIwZM1ywQCW13n//ffdQ2a1gKQikkk56qOSTsi3Un+KRRx5xgR8FMbp06eLS0tVHQw3FNY7//vuvK/8kWk5p6upt0rJly1hn7ygAoXWpTJiCMWoCPmHCBF9ZLVFGyD///OMai/tTDxEtp74o2kZ9hpqMq7QVM4QBAAAAIPn7bXjUb2PFlgMMOQAASFNCWorKo5JHyjpQhoAo4+D11193wQw121b/Bd0sf/DBBy2c1apVyzXy1k1+/ansk5EjR1r9+vWD/gyVgvLKQSn4oPJTr7zyiisX5VEjcqWk33fffS5rQp//1ltvRSuF0rp1a5ctoj9jo54Y9957rw0ZMsROnDjh6sMrUPHYY4+5xu5qOKgG8NoPBWkqV67se6+CK2oyrhJjKrulTA3V/u3Vq5clpZIFc9qpsxWuACBViiiUK9SbAAAA0iH6bQAAgLQuQxSNDRBmVEZLpckUKEotdesBIC5nIqMsU8aYmXGhoP/yDxw4YHnz5iWDLgxx/MIbxy98pfdzz1DuP39vEufE6TPW5Y35rt+GtKlR3Ndvg7FNPowtYxuO+N4ytuGI723aHN+EnHuGvBQVcL6IyYXvcVP5Mo5feOL4JVxqCWoAAID0hX4bAAAgLUsVpagSQg2vVXopLipZNXTo0Dhfb9iwYbQ+EYGmT59uJUqUsJTWsWNHW79+fZyvq49GbE2+gXCk6CvCF8cPAAAgvPpt3D1+ia/fRvWSee3oydO2Ycc+K1P0tDUoW5CJGAAAIOyEXWCjU6dO0fpJBFJ/h3OZNGmSRUbG3ZihSJEiFgqjR492/TDiop4WAAAAAAAkpt9GxzHzXKlMT/G82W1w26puOQAAgHARdoGNPHnyuMf5ioiIsNQoFFkiAAAAAIC0b2CryvbjXzvt3z1HowU1ZPuB49Z7/BIb070OwQ0AABA26LEBAAAAAEAaljljRjt6IvZysF6YY8jUVTGCHgAAAKkVgQ0AAAAAANKwRev32q7DJ+J8XeGMbQeOu+UAAADCAYENAAAAAADSsJ2HjifpcgAAAKFGYAMAAAAAgDSsSO7sSbocAABAqBHYAAAAAAAgDWtQtoAVz5vdMsTxup7X61oOAAAgHBDYAAAAAAAgDcuUMYMNblvV/RxXcEOvazkAAIBwQGADAAAAAIA0rmW14jamex0rljdmuameTcq41wEAAMJF5lBvAID0J1OmTKHeBCQCxw8AACA8KXjRomoxW7R+j81aucXenrfZPb9g3V6LioqyDBnI2AAAAOGBjA2ELU66w/e45c6dm+MXpjh+SetMZFQSfyIAAMC5qdzUJeUK2j3NSlnNC/O651ZtO2hz1uxm6AAAQPrM2KhUqZK1adPGRo4cGe35L774wkaPHm2zZs1KkvVMmTLFxowZY7t27bJGjRrZU089ZYULF06WbdTzAwcOtGeeeca6dOkS4/OmTZtm77zzjq1Zs8Zy5Mhhl1xyiT344INWunRp9/qrr77qPrdjx4723HPPRXuvZsQ0a9bM7cdff/0V77Zv3rzZrrzySt/vGTNmtDx58ljdunXt0UcftTJlylhiaXsXLVpk48aNi3fZkydPumPRtWtX9/vNN99sDRo0sL59+1pKGDX1d9uw60iKrAsAklpEoVw2oENtBhYAAIRswspdl5azez9a6n5/8+d11qxicNfVAAAAaa4UlW70d+7c2QUcksMvv/xigwYNcg+t44033rA777zTBSB0oz+pt3H69OlWqlQp+/LLL2MENr7//nsbPHiwDRkyxGrWrGkHDx50AZfu3bvbzJkzLVeuXG65LFmy2M8//2yRkZHRtnHZsmW2e3fCZ8V89tlnVrx4cTtz5ozt2LHDBSO0To1BkSJFLDFuu+02F6AIhsZG4+8FNrQd2teUsmXPEVuz/WCKrQ8AAAAA0pJrLi5mpQvmsH/3HHUZGyu2HLBqJc9mcQAAAKSrUlQlS5a0oUOHutn8yWH8+PHWtm1bdyO/fPny9vTTT9u2bdts7ty5Sb6Ne/bssfnz59u9995rv/76q23atCna68pWUCaGMkAiIiLs4osvdpkghw8fdoEMT9WqVe3YsWMukBEYGKlVq5YlVIECBVyGSrFixVxA5bXXXnPZIm+++aYlVs6cOS1fvnxBLauME396n94PAAAAAAiPslR3NCvn+/2t2etCuj0AAAAhC2zcf//9LotA5Znisn37duvXr58rW9SwYUNX5inYQIiCCzVq1PD9nj17dpdRERg0SOw2ytdff+16AbRr185lQihrw5+yL37//Xc7cuS/ckjZsmVzAY/LLrss2nNNmzaNUeZKgY2rrrrKEkuff91119l3333ne+7vv/92mRcaq2uuucYmTJjgnj906JBVr17dFixY4FtWgRg9p+CNsi78MzaUHdKyZUurVq2aO1bKTlGmyMKFC12Jri1btrjyXiqTpffp/R5lkFx77bVuGxQAWrx4se+15s2bu21StofWre1fsWJFoscCAAAAABC8LnUvtII5s7qfpy/fZpv2HmX4AABA+itFVbRoUbvvvvvspZde8mUy+FMAo0ePHq4Hhfo47N2715544gn32uOPPx7v5xcsWNB27tzp+13lnRSk2LdvX5Jto3+ppcsvv9wFMHQjXgELZW94TatvvPFGV7rp0ksvdY/GjRu7P73+Gv7UG+Ott96yhx9+2P2unhzHjx93AYOkUKFCBTcOClJkzpzZlefq0KGDy2hZt26dG2NlU7Rv39719VAQRP1A5KeffnJZIOrVoQwVj3ptKOg0YsQIl3WiwMMjjzziSnhpXFQO7N1337VJkya59/tTUEPrVqkuBTb0+1133eWCRRp/URBEn6/MG22ffv7444+TZDwAIFwoWJxSlGmn/ze1Tu//MoQPjl944/iFr5T8dxoIhexZMtktjcrYS9//bWcio+ydOevtqXYXczAAAED6CmyIZu7rRvawYcNcD4bAHhm6Af/pp59a3rxna3c++eST1rt3b3vggQfiLWXUqlUrF5DQjXUFBd5++21XMurUqVNJto2i8lZLliyxnj17ut+vvvpqmzhxov32229Wr14995wCA8o6GDt2rMvGmDFjhmXKlMluuOEGF6Tx76ehDA4FAv79918X+FC2hoIdSXVjSZklouyR2bNnuwCQMlNETcWVWfHhhx+6wEbr1q3t+eefd9uo9X/zzTcusyJwW1TeSuOjfZcLL7zQ3nvvPfvnn3/cc1qn9je2xu0KWmmMtT5RQEcZGyol9tBDD7nnFHjxMlY0zsriAYD05q+//nLlCgEAAELllkal7Y2f19qxU2fsk8WbrN+VFS3//2dxAAAApJvAhm52P/XUUy6jQTfw/a1du9bdaPeCGlKnTh07ffq0bdy40apUqXLOz1bpIpVZuummm9zvKrOkLAmvUXdSbKOXreGVkBKVzdI2T5482RfYkNq1a7seFydOnHAZDsrqULBD5bFuvfVW33L58+d3GREKgOgmvtbp3eBPCsrUEAWGlKGxevVqt23+M820z3LFFVfYY4895spoqYyUgk0KegRS4Eilvl555RWXYaKbbwrMeGNyLjrOym7xp34iet6j74FHxy+hwSkASAv073BKzhg/ePCg5cmTh4yNMMTxC28cv/Cl8+jly5eHejOAZKUgxvX1I+z9eRtccGP8gn+t75UVGXUAAJC+AhtesKJTp05uxv8dd9zhe17BgrjSu4NJ89bNeZU3evTRR10wQQ2rO3fubE2aNEmybfQCGyoVpWCE/3aqlJLKJulnNQpXeSU18dZ+qcSTHirzMW/evGiBDVGGxg8//OCyTtQrpH79+i4DJCko6FCiRAkXIFCQSOWilAkTG2ViKLihTA1lzxQqVCha3xKPAh4KTnjlq/SzemwEI67jrLHxZMmSJUH7CABpkRd0Tqkbq8om1DopRRV+OH7hjeMHbzKSJgzpfF3fCX+6NgBC6famZe3D+RssMspcgOPOS8u5MlUAAADpKrDhlR9S42n/Jt1ly5a1DRs22P79+11QQtT4W30hlOUQn/fff9/16VBA4YILLnD9Nv7880979tlnk2wb169fb6tWrXKlmtQw26OLEJXLUn8KBSemTp0aIzNDVKIpthv7CmyoX4WyPlRKS/ucFDQeX331ldsPb4wVQFHpKO+GmRqfa6aZ18dE5ahGjRplu3fvdvsSGzUOV+BHgSTxsmq83hznuimmbVBGiH9zdP3un+0CAAAApBc6H1fGeGzlB3VerWsaIJQiCuSw1jVK2NTft9qeIyft8yWb7aaGMftHAgAApAb/NYFIBiq/pMCB+jt4lFmhZt3KuFCWwYIFC1yTaTXxVmmM+Ohmvfpq6H3q9aAm4OpfcdFFFyXZNipbQ0GX66+/3n2u91AAQE26VW5KAYO7777bBQfUFFzln1QiS4EXBTy6d+8eY13a73LlyrnlW7RoYedLDdd37drlsi2WLl3qtkMXSGoYLu3atXPZJsrYUOmnn3/+2WWlqO+GR+W7FBRSSay4AhsaA32+jpPGesCAAW69CqSIAksHDhxwgSoFPfwp2KN+GhorBYpefPFFVx5L2TUAAABAeqM+gV26dLFff/3VnRf7PwhqILXodWk5389vz17nmokDAACku4wN0Y3szz//3N1EFwUEXn/9dRfMUL8M9YRo27atPfjgg0F9njIAdLNewQiVotLv6heRlNuowIa2KWvWmM3SunXr5oIECircfvvtru+GmoqPGTPGve41NNefsWnevLkLfpxP6SyPLoi8sSxSpIgrOzV06FArUKCAe17lqLQNymJRGSkFKNSTpFevXr7P0L5p7JRFUbly5VjX06dPHxs4cKAL8OgzFUDS/nsXXsrcUCN0jdVHH30U7b0KligbRP05FAxR75R3333Xypcvf977DQAAAIQrZazfcsstCe4NCKSkaiXzWpMKBW3umj22Yc9R+27VdmtZrTgHAQAApDoZogKLuwKpnHp1qHzZrE0ZbMOuI6HeHAA4LxGFctmADrVTdPT0X74y7RSUp8dG+OH4hTeOX/ife9aqVStRfZFU0rZ69ep22223WXrc//PB35vQjO3sv3fZLe8ucj/XjMhnU+5pzHlDEo0tku97C8Y2teJ7y9iGq6gQ/ZubkHPPZM/YAJLLg21rpvjFFQAkJZV3yJSRizIASA+KFi3qylHNnDnTZT1nyZIl2uvPPfdcyLYN8NesYiGrUjyP/bntoP2+ab8tWr/XGpb7r6wxAABAapCqAhvvvfeeK10UF5U8UsmluKjRt9f/ITYqMVWiRAlLjf744w/r0aNHnK9ru7X9+A/JRuF73A4fPuzKMDDLJvxw/JIWQQ0ASD804019BYHUTufo6rVx/yfL3O9vzV5HYAMAAKQ6qSqw0alTJ9eDIi7x1aOdNGmSRUZGxvm6+lGkVupzoUbbccmcOVUdKiDRaWUIXxw/AAASjowMhJPWNYrbC1+vtq0HjtsPq3faPzsOWcWiuUO9WQAAAD6p6m55njx53ON8RUREWLhSM2+lpAMAAABIm77//nsbO3asrVu3zk0UKFu2rHXv3t3at28f6k0DosmSKaPd3qycPT1tlS9rY0SXmowSAABINTKGegMAAAAAIK37+OOP7ZFHHrH69evb8OHD7fnnn7cGDRrYkCFD7LPPPgv15gEx3FA/wvJkPzsXcsqyLbb9wHFGCQAApBqpKmMDAAAAANIiZWoMHjw4WnbGVVddZRUrVrQ33njDunTpEtLtAwLlzJbZbm5U2l77ca2dOhNl781dbwNbVWGgAABAqkDGBgAAAAAksz179litWrViPF+7dm3btm0b449UqUfjMpY189nbBh8t3GgHj58K9SYBAAA4BDYAAAAAIJlVqVLFpkyZEuP5yZMnW4UKFRh/pEpFcme3TnVKup8PnThtExduDPUmAQAAOJSiAgAAAIBkpv4at956qy1cuNBq1jzbhHnZsmW2evVqV4oKSK3uaFbOPl68yaKizN6du956Ninry+IAAAAIFc5GAAAAACCZqeTUF198YTVq1LC1a9fa5s2bXSPxmTNn2iWXXML4I9UqXziXtahS1P284+AJ+3LZllBvEgAAABkbAAAAAJASypcvbwMHDmSwEXZ6XVbevl21w/389i/rrFOdCy1jxgyh3iwAAJCOUYoKQIrLlCkTox7GOH4AAATnlltusdGjR1uePHns5ptvtgwZ4r4R/OGHHzKsSLXqls5v9Urnt1//3Wd/7zhsP/2905pXPpvFAQAAEAoENhC2znVhiNR93HLnzh3qzcB54vilLmcioywTsyUBINVq0KCBZcmSxf3csGHDUG8OkOisjV8//NX9/MbP6whsAACA8A5sVKpUydq0aWMjR46M9rzqx2p20qxZsywpffXVV/bZZ5/ZuHHjYrz2+OOPW9GiRa1v374J/twBAwbY5MmT7bvvvrNSpUol0dae/VwZPnx4oj9Ls7wWLVrk+z179uxWrlw569mzp7Vr1y7Rn686v1deeaX98MMPduGFF8a7/Pz5861IkSIupT65jve5jJr6u23YdSTF1gcAqUlEoVw2oEPtUG8GAOAc+vTp4/tZ59etWrWyrFmzRlvm6NGjNmnSJMYRqd6VlYtY+cI5be2uI7Zo/V5bunGf1S6VP9SbBQAA0qkkydiYNm2ade7c2Ro1amTJacGCBfbkk09a9erVY7z29ttvu4CH/8VDsE6cOOELaEyZMsXuu+8+S61uu+0294iKirJDhw65IITq9J4+fdo6duyYqM8uXry4zZkzxwoUKBDU8rfeeqtLmVdgQxdpl19+uaWkLXuO2JrtB1N0nQAAAECw9u7da8ePH3c/65y9YsWKlj9/9BvBq1evthdffNGVrQJSM/XUuOvSctb/8+Xu9+dm/Gk3XVLaiuTObg3KFiCLFAAAhF9go2TJkjZ06FD78ssvY8xASirKBnjzzTetTJky0Z4/fPiwDRo0yAU9dGP+fPz8888uRfzGG290mSDK+EitZY5y5MhhhQsXdj972RKa5TVixAhr3bq1ZcuW7bw/W3Xzvc9OKGWP6AEAAADgLGVb33///b5rC00G86fJSpIU2ddASmhfu6QNm/6nHTx+2hZt2OceUjxvdhvctqq1rHZ+1+QAAAAJldGSgE7Wd+zYYe+8806cy2zfvt369evn6syqvuwzzzxjJ0+eDHodc+fOdZ9/9dVXxyifpIwLlUKKiIg474yTevXq2RVXXGFbtmyxxYsXR/t8ldv69ttv7aqrrnLZIr169bL9+/f7llGWQ9u2ba1GjRp2xx132NNPP+0rQRVImSHKbqhZs6a7sPEvLXW+rr/+ejcb7LfffnO/a1w1vhpnPR5++GHf9j7wwAPWv3//aO9/6KGH7LHHHvPtq/6UNWvW2O233261a9d2+63Az9q1a91rzZs3d39qZtmrr77qxt97TrSc3lunTh1r1qyZC0xFRka617S81jl48GD3ujJ9lHEDAAAApCUtW7Z0pVp1DaAgxqeffmrff/+976HXVN71hRdeCPWmAkH5cfVOF9QItP3Aces9fol9vWIbIwkAAMInsKG+Firf9MYbb9imTZtivK4b7T169LBjx465jIiXX37ZfvrppwSdwE+cONEFRQJVrlzZZXIE0xMiNkeOHHEZGwpqKBtEGRDqtRFI+zZq1CgbP368LV++3N577z33vPa3d+/edu2117oyVgoATJgwIdZ1Kc1cQQUtr14hmpl155132r///muJoUwVZXIoECHazhUrVrhggUpFKatFQSVRVsePP/5op06d8h0b/a7n/SkIcffdd7tsHGXifPzxx3bmzBmXGSJeHWAFKVQay5+CLAqCKKNE5cEUwNC4aVs833zzjcsu0VgrAKL0+/Xr1ydqHAAAAIDUpkSJEu5aRdcCulbQ+bX30GsqTeWdmwOp2ZnIKBsydVWsr53NPTL3upYDAAAIi1JUXmNrzdofNmyYCwL4++WXX1xGh2Yo5c2b1z2nXhm6wa8Mgpw5c1qoaKaULiQU2JAWLVq44Iu274ILLvAtp8CNMjJE2RkKbohu3Ov5e+65x/2uAMK8efNiXZcyTrp27ere72U7KDtEQZu4MjyClTt3bhekUfBIQYTPP//cZV+IAkjK3Pjrr7/s0ksvdUGLhQsXWtOmTV22iUpI6fVt2/6bXaNawDfccIMLUChoIh06dLCxY8e6n70+HDqegcdPGTAaO2WuZM6c2QWLdu3aZa+99prryyH58uVzQR6Vv1KWi4IwCsaULVs2UeMAAOmNgs7B0mxh/R+g96TWkouIG8cvvHH80se/s+eye/duNyFLk5G8z9T3Qtciynb2zxoHUiM1DN924GzPmNgonKHXtVyj8gVTdNsAAED6k2SBDd2gfuqpp9yNcAUL/OlEXdkQXlBDVIJIDa83btxoVapUsVCZPn262xbvRr1KXSkwo9JT1113nW+50qVL+37OlSuXb1aVggWBzcxr1aplBw4ciLEujcPMmTPtk08+8T2nz1GAIbEU1NB2KYNEn6mghD/dyNqwYYMLdqiklvZP69Wf11xzjTt+/hTM6Natm8tCUcBh3bp1tmrVKitUqFC826L9vPjii11Qw6NyVgpuHDx4ttm3Zq35r1PBEX0fAAAJo/+HFNQGAKRu6guoax9db7z77rvWs2dP97vKVCV2khOQEnYeOp6kywEAAKSKwIYoQNCpUyeXtaFZ+J7YGlp7s5SSagbU+di3b5/LrtAN9apVq0Z7TTf0/QMbai4eG92c95r+eQJ/92hfVXqqffv20Z5PbNNt9cRQuamKFSv6xvOjjz7yZVp4ChY8O2tGPT4GDhxojz/+uKvrq0yK2AIl6gGi1Hj1zmjTpo0LbugiLD6xHW+vv4a3fbGNZ1zjBgCIm5edFwz9O6sAc548ecjYCEMcv/DG8QtfOn/1srUTQxkZOpfWhB/1D7z88sutbt269tZbb9ns2bNdNjeQmhXJHdx1646DBDYAAECYBTZEjarVJM+/kbjKCylbQA2sVYJIli1b5mb0lypVykJF2Qq64a6eGCrl5FHfh/fff981PI+Pggle027PypUrY21krnFQEMI/+0NlovR8ly5dzns/VHaqcOHCrgG6Skgp2KKx9jJh9uzZ45qDK5ihrI7GjRu7CzT1CVFQRe8LpKbmO3futKlTp/oyL1S2Kpjgg/ZHY6vMES+AsXTpUpcV4x1/AEDSCMy4Oxf9G54xY0b3HkpRhR+OX3jj+EHfAfUmlAoVKrhsaAU21KvP/9oJSK0alC1gxfNmd43Cz3VV+OyM1bZhz1Eb1KqK5cqW5LccAAAAkq55uD/N8FdwY8uWLb7nmjRp4m70P/roo65kxoIFC1z/BWUBaNZoqKgXRLNmzdwFxUUXXeR7qA+EbvyoaXZ81DNDQRrNtFLza5Wx+vXXX2O9YaTPnTFjhmuirbRzBU/0UJmuYB09etSVdNJDJZ+UbaH+FI888ogLQChwoSCJyoKpj4Zq+Grc1aDca7Cu5bySWwpCxbatCkBoXSorpmCMeokoAKRm4x5lhPzzzz926NChaO9VDxEtpz4l2kZ9hpqMq7QVN9IAAACQHilD3Lu+0AQkZW2IzrWBcJApYwYb3PZspYP4OnV9tHCjXfPSbJu3ZneKbBsAAEh/kjywISphpBRrj2aGvv76675AwIMPPmhXXnmlDR061EJFzcwVgNC2BtJMKm2fMjfiU7JkSXvllVdc1oRu6CszQe+NrdSSem8oQ0NlolQOSs3UR44cafXr1w96u5W+rt4Yeqifyfz58936/ctmqUZvo0aNXMNzjbcCGQq8+M/qbd26tQtc6M/Y6Pjde++9NmTIEGvXrp1rDK9AhbI/NHZew3jtj4IW/hRcUZNxBW9UdktBrB49elifPn2C3k8AAAAgLXnooYfcubwmNuncXX3sdP2gc2RdGwDhoGW14jamex0rljd6WSplcoy5qY49076a5ch69rpzy/5jduPYhfbElBV25AT9FAEAQNLKEEVjg0T5+++/Y/TouOuuu1xD8b59+yb+CCEGldFSlsysTRlsw64jjBCAdCmiUC4b0OG/SQTB0H/5Bw4csLx585JBF4Y4fuGN4xf+556apJSQ8n+xUV88lY4tVKiQmyykzGZlSqsclTLG0/r+JxR/b1Lv2J6JjLJF6/e6RuHqvaEyVcrokE17j9ojk363Bev2+paPKHCBjehc0y4pd7bvY1rG95axDUd8bxnbcMT3Nm2Ob0LOPSl4mUjKSlD/ilGjRrmSUmpGriwKZaUgeT3YtmaKX1wBQGqimwreTQQAQOqnzGY9vCzxm266KdSbBJwXnX80Kh97kCKiQA776I5LbNyCf234zNV27NQZ27T3mN3w1gK7tXEZe7RlJcuRNXO8ARIAAIBUHdhQA2uVUoqL0rPPp2TVH3/84cofxaVEiRI2ffp0S6yrrrrK9ZlQcENlmtQ4+6WXXrLKlSsn6HM6duzoenTERX00YmvynZ6RbBS+x02zFXVRT8+V8MPxS1248AeA1E3XBMGe7/z555/Jvj1ASsmYMYP1aFzGLq9U2B757A9btOFs9sb78zbYj3/tdNkbe4+csCFTV9m2A8ejlbRSHw+VvAIAAEjVgY1OnTpZ8+bN43zdm9F0PhcRU6ZMifN19Z1IKr1793aPxBg9erSdOnUqztc1owtIK5RWhvDF8QMAIDgffvghQ4V0rXTBnPbxXZe4gMYL36y246ci7d89R63rm/NjXX77gePWe/wS18eD4AYAAEjVgY08efK4R1LLmjWrlS5d2sKFMkgAAAAApB0NGjSI8ZwyV1XOtkKFCnby5MnznsgFhFP2xm1Ny9oVlYvYI5/9br/+uy/OZaPUCNTMZXK0qFqM7FQAABCn1NmhDgAAAADSEAUxHn/8cRfs6Ny5s2sePmDAALv99ttdY0YgrStbKKd90quRdb+k1DmXU3BD5anUewMAACAuBDYAAAAAIJm98MILtmbNGps8ebJly5bNPde3b1/bt2+fPfPMM4w/0k1/sPplCgS1rBqKAwAAxIXABgAAAAAks2+//dYee+wxq1Spku85/fz000/b7NmzGX+kG0VyZ0/S5QAAQPpEYAMAAAAAktmRI0fsggsuiPF8ZGSknTlzhvFHutGgbAErnje766URl5xZM1mtiHwpuFUAACDcENgAAAAAgGTWvHlze+mll1zzcM+mTZtcGarLLruM8Ue6Kkc1uG1V93NcwY0jJ89Yt7cX2Ka9R1N02wAAQPggsAEAAAAAyezJJ5+0jBkzuubhx44ds06dOtnVV19tefLksSeeeILxR7rSslpxG9O9jhXLG73cVJ7smS1zxrPhjmWb9lvrV36xb1ZuD9FWAgCA1CxzqDcAAAAAANI6NQl/9dVXXZbG2rVr7fTp01a2bFkrX758qDcNCFlwo0XVYrZo/V7XKFw9NVSmatXWg3bvR0ts496jdvD4aes17jfr2aSMDby2imXNzNxMAABwFoENAAAAAEhm3bp1szfffNOqVatmERERjDfw/2WpGpUvGG0sql+Y16bd19QGfr7cpi/f5p57b+4G++3ffTa6Wx0rVTAHYwcAAChFBSDlZcqUiWEPYxw/AAASrlChQrZnzx6GDghCnuxZbPSNte3p9tUsa6azWRp/bD7gSlPN/P9gBwAASN/I2EDYypAhrlZzSO3HLXfu3KHeDJwnjl/qdyYyys1+BACkLlWrVrV77rnHqlevbiVLlrSsWbNGe/25554L2bYBqfW88+ZLSlvtiHzW56MltmHPUTt04rT1nrDEejQqbYNaV7FsmZkwBQBAepWsgY1KlSpZmzZtbOTIkdGe/+KLL2z06NE2a9asJFlPu3bt7K+//or23NSpU+2iiy4K+jNU71bb9P7771ujRo2SZLu8z120aJGNGzcu0Z81YMAAmzx5su93XQwpjf3666+3W265JUlu9OuYffjhh9awYcN4l/3zzz9d48M6derYwoUL3TYEHofkNGrq77Zh15EUWx8ApHYRhXLZgA61Q70ZAIBzXLcASJhqJfPa1L5NbdDkFTb1963uuQ/m/2u/bTxbmiqiQI4YfTqY5AEAQNqX7Bkb06ZNs86dOydpsMDfmTNnbMOGDTZ+/HgrU6aM7/n8+fMneDtLlSplU6ZMSbZtTQrXXnutPfbYY+7no0eP2oIFC2z48OF28OBB69u3b6I/f86cOZY3b96glr333nutT58+LrBRu3Zt996UtGXPEVuz/WCKrhMAAAA4H2oSrklfxYoVS5IBPHHihA0ZMsS+/fZby549u912223uEZuvvvrKXnvtNdu2bZvLHBk0aJDVqFEjSbYDSAm5s2exV26oZY3KFbSnpq60k6cjbcWWg9by5dmWPWsm23/0lG/Z4nmz2+C2VV1zcgAAkHadLVaZjJRmPXToUDt58mSyfP7mzZvt1KlT7sS8cOHCvkfmzMHHbFauXGkbN2603r17uwuDI0dSbxaALlq8fSxdurTL1tCFiRoR7tixI9Gfr88NTIsPht6j9wIAAACI6Y033nDXLUnlhRdesBUrVtgHH3xggwcPdtnnX3/9dYzlfv31VzcxSmWwpk+f7iYk3Xnnnan6mgeIjSoU3NiwlH15bxMrVyine+746choQQ3ZfuC49R6/xL5eQS8OAADSsmQPbNx///3uhvs777wT5zLbt2+3fv36WYMGDVwJpGeeeSboQMiaNWusePHili1btvPeRmVrVK5c2a655hp3saHgRmB5pi+//NLNsKpWrZrdeOONtmnTJt/ruqDo2rWrC67ccMMN9r///c9uvvnmWNelC4uOHTu6Zdu2bWvffPONJUVKe5YsWWz27Nnu96ioKDcjq2nTplavXj27++67bevWsym7L774onXv3j3a+0eNGmW33nqrb19VVkp03O677z6rX7++2+8OHTrYb7/95l7T/m3ZssUGDhzoSmTpPXpvMMdUpcj0/ldeecW9pm1UTWFtNwAAAJAW6VpizJgxLts8sZO+lLn92WefuYDFxRdfbC1atLA77rjDJkyYEGPZXbt2uaDGdddd58rYKut6//79tnbt2kRtAxAqVYrnscn3NrHsWWK/neFdVQ6Zusr1HgMAAGlTspeiKlq0qLs5/tJLL7mTeZ1M+9NJfY8ePVz2gfpQ7N2715544gn32uOPPx7v5+uEXDf1e/Xq5QIMZcuWtUcffTTo1GrdTJ85c6YLNuTMmdOVoVIfC93ED+yV8fTTT1vBggXdDfuXX37Z9Q45dOiQu4hQiSiVhJo3b567Sa/yTLFdVGg7H3jgAWvWrJktW7bMBQX0mbq5f74U1LnwwgtdkEdUlks9RrR9hQoVsnfffdelpeu51q1buyDTnj173HpFwRXtQ6CHH37Y8uTJYx9//LEbJwVFnnrqKfc5Gg9dHOlzNXarVq1K0DFdunSp27aJEyfa8uXL3Thceuml1qRJk/MeBwDAf2UaY6N/yyMjI93rSdGXCSmL4xfeOH5p79/UhNIkJE028u+ZF9i/LlirV6+206dPu+wLT926dV1WiP6dz5jxvxu+uk7xHD9+3PUU1HWASmMB4WrV1oN2/FRknK8rnLHtwHEb8c1fdnvTslY497knQioAQp8OAADCS7IHNkSz8zVLf9iwYe5k298vv/ziMgM+/fRTX2+HJ5980pWFUgBAwYZzWb9+vR04cMC6dOniAij6HN1UnzFjhsvkiI8yEFRr9qqrrnK/X3311e4mvLIRVEbL07NnT1/vjW7duvlmQ2k9OXLkcDfsM2XKZOXKlbMlS5a4IEYgvadx48a+jAnd+NcFjNLHExPYkFy5cvnSyceOHevS0b0G4CoFpuwNjXXz5s1dL5Lvv//elbFSs2/tq2Z5BV58a0yUxeLVAb7pppvsrrvucj/ny5fP7W/u3LndIyHH1LtAVKBI260x0wWWAhwENgAg8fRv+7FjxxhKAEhFNAkqqehaQz0F/UvIatKQ+m4oG6NAgQIx3jN//nw3KcmbsBTfdVYgvS+lM6y9dZLZzdgG2nnweFCD8sbPa92jWok8dlmlwnb5RYWtVkQ+y5zpv+Df1yu225Bpq1wJK08x9elooz4dCe+Jw/c2+TC2jG044nvL2IarqBCdhyVkfSkS2NANcM30Vwkn3VAPzLjQjXb/htXKdtAMJPW9qFKlyjk/WzfHNfNIN8hF61FgQaWjVIIpPqozqwCGmujJlVde6W7C6/1K2fYoCOHRurz6uLp5pPRv7aOnVq1a9t1338VY17p16+zHH3+MNrNKn6Msk8Q6fPiwL7ihMlAKIPjP1NIYKe1dWrVq5cptKbChPxVsUaDCn2byKoCjwI3GUwEkZcRoBlh84jumolli3jET/azXAQCJ518aMPAE4eDBgy4bj4yN8MPxC28cv/ClCTmagJNYKtEqOifX+bLOq3UdUKFChQR/loLXgX3xvN/jKnNVsWJFN9lM1yPKllbGt65bgqX/P/yvL1Lq743Kbgn/bzG2/nJkTNi144qtB93jtR/XWu5smaxR2XzWpFx+OxMVZU/PXOsrX+XZceC43TNhib3YobJdWelspQO+t6HHvwmMbTjie8vYhquoEJ2HBXPvOUUDG96N7U6dOrmsDf+yR7H1xvDSvYNJ+1aTcP8b5BpoZQAE00hbn68Ge/v27fMFNrwBDAxsqNxVbBTQCIwkxRVZ0o179dUIDLgkpNF5bDQzSxdI6pPhjZn6fAQGTLxAgwIbajauixMFNm6//fYYn6kx0IwuLaPllemhIEyfPn3i3Z5gjmlsDcqZiQUAScM/2B7476xuSul1bhCFH45feOP4QefV6k/3ww8/uPNynRdrUpL62ak/XmAWdHzn24EBDO/37Nmzx/oeZXTooYljv//+uys3m5DAhoLicf3/kly86wONF/9vMbb+rqiWx4rlXeMCELFdfev2S4GcWa1LvQvtl39228qtB32vHTpxxr5dvcc94vzu/f9nvDhrg11Xr6xlyhj8DR2+t8mHsWVswxHfW8Y2XEWF6DwsIWVgUyyw4fVsaNmyZbRG4rr5rpvySpn2sgbUe0I3+0uVKhVUmSuVXPJuuOuGvLIoVDYpPkrHVv8H9YtQhoFn7ty5LlVcmQqx9coInPk0a9asaLVsV65cGeuy2lf1lvDP/lD/C12EBJNdEhf1vNAX7IorrnAXHMqGUHr65Zdf7l7X5z/44IMugKFsEdXT1UMXMxp7rwyXP/XrWLx4sRsjL5XdK7+lL/a5vtDxHdO///77vPcVAAAACEfPPPOMy6xWRrQmYnnn3MqeUI++Z599NkF9DDU5SxOnvElSOv9XUEPXA/7++OMPF5BQlrlH1wIJbR6u8/9QBBe89RLYYGz9Zc6UwZ5qW9V6j1/iAhD+wQ3vWzqsQzVrWa24Dbj2bOmqn//eZT/9vct++XuXHTwef8aH16djzprddnmlIkEdAK9Xx4Yd+6xM0TPWoGzBBAVFED/+TUg+jC1jG4743qa98U3IulI0l1h1YBXcUE8Hj3oqqKG4Gn4rILFgwQJXXkqNxgNPymOjTAL1Z9DMJ5V6Uj8JNfQObP4dVxkqBSbUV+Oiiy7yPVQySzfkp0yZEu9nqBm3ykDpYkTlmtRXQhcrsdHnqpyTGqnrxr8CEqNGjbISJUpYsFRSShctevz777+uUbgugtS/wgtAKHNDzc0VcNF61P9DQRrvAsrb7jFjxriG3f4ZLx6NvQI1GiMdL2W2KADkPxtMvUU05gpg+EvsMQUAAADSGp2bq2yu/zm5ylCpDK6uZRJCWRcKaGjykH/vwOrVq8coFzVp0iR3zeFPE7H8twMIRwpajOlex/XD8Kff9bxe9xTJk9261Iuw126sY0ueaGGT7m5kV1ctGtR6bn1vsV0+4ke7e9xv9vL3f9vXK7bZht1HLDIyeq6Inm/6/Czr9vZCG/jV3+5P/a7nAQBA0kvRjA3p3Lmzff7557Zz5073u2YPvf766+7Gd9euXV0TO5VrUoZBMHQTX6WYNANq9+7dVrNmTXvvvfdivVnvTzfn1QcjttJKSu3u2LGjuwh47LHHzvk52l41RB8yZIhNnDjRXUxo+73986deHlpWzfqUtaKZVpqh1a5dOwvWzJkz3UO0j8qOUOBC2+tRZobS2nWRpKBLtWrV3Pr8e16ovNTIkSNdgCM2ahiuCy+lxetCyFtP//79bdWqVS7zQz04tC8KnihzxpPYYxqskgVz2qngy64BQJoXUejc//cBAEJH1xix9ajQrLSEpNzLBRdcYO3bt3fn65rkpGsPZYJrspVoEpRKWymDQ331dE7+wQcf2GWXXWZfffWVy+J44YUXkmzfgFBR8KJF1WIuS2LnoeNWJHd2a1C2wDmzJNQ4vF6ZAnbqTJR9uyr+EtayYc9R9/h65XbfcxdkyWQXFcttVYrltsioKPv0180x3qeG5MoqCQy0AACAxMsQRWODRNm0aZPr51GvXj3fcwpyqKGfylkh6enCT7PTVBM4pev8AkBqpxIIcV3M67/8AwcOUKs8THH8whvHL3wl1bnnE0884bKZNTHIK7mrCUKaOKRG3pp0lBC63lBgQz3zNOFJk5s06UsqVarkghze5Cc1DNdkJWV8K2Ndk7fiK7mbGs69+XvD2Cb3OZMyKhR8iL1L5tngRcUiOe3vnYfteCJm1RXPm93m9G8eVFkqr5xVsIGa9IR/ExjbcMT3lrENV1Ehun+QkHPPFM/YSGuUEdGzZ08bMWKEy9ZQWrcajwemeyPpEZML3+Omvze6AKdWcvjh+KV+XPgCQOr0yCOP2L333mvXXHONrzyrGoo3a9bMBT0SSlkbzz//vHsEUgDFn3rx6QEg+jnT4Hj6dLx0fU2XaaFgw797jthf2w/Zn9sP2eptB+2vHYfs3z1HgxpS9epQOau6pfNb5eJ5rLIyPYrnsSK5s0W7JlLZqiFTV7nl/YMi2k4yPgAACKPAhkpKvfLKK3G+rvJG6qkRmz179sTaFNufGnknlurbquSTAhnbtm1z/TIGDhzoa9wdLF3kzJs3L87XlQWSkJJVQGqW0HILSF04fgAAJJyCGePGjXNBBzXuVmkqlXul1wUQ+j4dgcGEYgHBBAVByhXO5R7XVv+vpNThE6ftnTnr7KXv/ol3XZv2HXMPW7bV91y+HFlckKNysTx2JjLSxi3YGON9lLMCACAMAxudOnVyzcHjcq4+GsE2/04KXbp0cY/EGDx4sEsnj0vBggUT9fkAAAAAQkMloDQBKkuWLK5MlB7z588nAxkI0z4dnlzZMluDMrpWjz+woY8L6Ddu+4+esgXr9rpHXPQWbYmCL9pOsnMBAAiDwIZmNXlp2gmlGlylS5e2cFGkSJFQbwIAAACAJC7hOGzYMPvoo4/s/ffftwYNGvheU/aGel/06NHD9dmgRCcQOgoWNCp/fpMJFQRRuai4enVk+P8MkB8eusw27D5qq7cftNUqZ/X/Ja12HjoR7zr0ucooUfDlfLcTAIC0JlUHNgAAAAAgXH344Yc2Y8YMe+2116IFNeT111+3WbNmuTK2aiZ+4403hmw7ASRvrw69niNrZqtaIo97+Ntz+IS9N3e9jf5xbbzrUkYJAAA4K+P//wkAAAAASEKffvqpawweV+Nuld19+OGHbeLEiYw7kAZ6dSgzw59+1/PnavxdMFc2a1KhcFDrUfNyZYIBAAAyNgAAAAAgWWzZssVq1KhxzmUuueQSV64KQFrp1bHHNuzYZ2WK5rcGZQsG1RMjvnJWntd/Wmvrdx+xYR2qW4GcWZN0+wEACDdkbAAAAABAMihYsKALbpzL9u3bLV++fIw/kAYoiHFJuYJ2bdXC7s9gG3175awk8B2Bv89csd2ueXm2/bh6ZxJtNQAA4YnABgAAAAAkgxYtWtirr75qp06divX106dP2+jRo61p06aMP5DOnauc1Rvd69jrN9WxfDmyuOd2HTphPd9fbIMmL7cjJ06HaIsBAAgtmocDAAAAQDK45557rHPnztaxY0e7+eabrVq1apY7d247cOCArVy50saPH29HjhyxF154gfEH4FfOaq9rFF4kd3ZXpsrL/KhXOr89+vkf9tNfu9zvHy3caHPX7LZRXWtZ3dL5GUEAQLpCYAMAAAAAkkGePHlcA/EXX3zRhg8fbseOHXPPq/mvAhytWrWyvn37WqFChRh/AI6CGI3KF4x1NIrkyW7v3VrfJizcaMOm/2nHTp2xf/cctS5vzLN7Lq9g911Z0bJmpjAHACB9ILABIMVlypSJUQ9jHD8AAIKn/hnPPPOMPfnkk7Zp0yY7ePCge65UqVL8nwogwTJkyGDdLyltTSoUsgc/XWZLN+63yCiz0T+usR//2mkvX1/LKhbNbWcio+LM/AAAIC0gsIGwPqFDeB43zVBEeOL4hR9d1HIRCwChlzVrVitfvnyoNwNAGlG2UE77rFcje+Pntfby9//Y6cgoW7n1oLV+dY61q1Hc5qzZY9sPHvctXzxvdtegXOWuAABIC1I8sFGpUiVr06aNjRw5MtrzX3zxhWucN2vWrCRZz+eff25vv/227dixwypUqGADBgywunXrxvs+LTd58uQ4X3/uueds4MCB9sMPP9iFF15oKUl1eRctWuT7PXv27FauXDnr2bOntWvXLtGfv3nzZrvyyiuD3rf58+dbkSJF3AVaUh+/YIya+rtt2HUkxdYHAOEmolAuG9Chdqg3AwAAAMkgc6aM1qd5RbvsoiL2wKfLbM3Ow3bydKRNWrIlxrLbDxy33uOXuAblBDcAAGlBSDI2pk2b5proNWrUKFk+f/bs2TZ06FB7+umnrWbNmi5Qcdddd9mMGTOsaNGi53zvY489Zg899JD7Wcu/++67NmnSJN/refPmtWbNmlmBAgUsFG677Tb3UF3eQ4cOuSCEAi2nT592TQkTo3jx4jZnzpyg9+3WW2+1Dz/80AU2VB/48ssvt5S0Zc8RW7P9YIquEwAAAACA1KT6hXltWt+mNnzmant/3oZYl4lS9rWZDZm6yjUoJ6MXABDuQtJVqmTJki7wcPLkyWT5fAUy2rdv77IYSpcubffff79ryPfzzz/H+16VyClcuLB76GfVkvd+10Mp5PozVDXmc+TI4dbvZUooYHPnnXfaiBEj7MSJE4n6bG9fz2fflD0SqmAPAAAAAADpWfYsmeyai4udcxkFN7YdOG5z/tmVYtsFAECaCmwo0KASUe+8806cy2zfvt369etnDRo0sIYNG7qGe8EGQu644w5XnimQMhySolyTymnpT9HPM2f+H3v3AR1F2YUB+JJQQg0QILRQpfcOCkrvvWOhiSAiooh0pSgKKEVERFBAelFA6dKlN+m99xoghBJa8p/38s+62WzIJptNdpL3OWdJsjs7O/vNksx8d+69K6ROnTqaHdKzZ09tCti2bVv9+c0339T3ali9erVmN+AxZK1Yl5aKqlatWsnt27dlz549+jPGCeOFccOtV69ecvfuXX3sk08+kT59+oR6PjJUkKli+95OnTol7777rpQoUUKKFCmi7+X06dP6WNWqVfUr3ucPP/ygpaiM+wDL4bklS5bUDBeUqQoODtbHsDxec9CgQfo4MndQNoyIiIiIKC57/vy5bNiwQaZNm6ZNxPfv3x8t5yhERIBG4Y5497fd0n7qTpm+7ZxcvP3wpb3atp32lz/3Xdav+JmIiChel6JCOaiPPvpIxowZo/02/Pz8Qj2Oifl27dpptsWMGTN00v7zzz/XxwYOHBjh+gsVKhSmNNW5c+ekfPny4grjxo2T4cOHy6NHjzSogmAFAgUoEYX3iUl7bPexY8c0qDBkyBApWrSoZpAg2+Kvv/7S9+pMCSlkciAQ8eqrr8ro0aPl0KFD+rpJkiTRcUaQ6LfffpN69epJ//795enTp5IoUSId6/Xr12vgwRqCEO+//76uDwEInHAhywaZIRMnTtTyXAhIIEjx2muvyapVqyzPxf5CEASBjgULFsjZs2f1/adIkULLVwGWxzLIrkGwB+utXr265MyZ04k9QURE4U2kAcoY4vc7fkYjeDIX7j9z4/4z/+9QZ129elUv/MEFRwEBAdrb7pdffpG9e/fqBV+4wIiIyBkZUno5tBwajW84flNvIocld/rkUiVfBqmSP4OUyZFWEif0kJWHrmrZKmR4GNiAnIiIJL4HNoxG2LjKf9iwYTpRbm3Tpk2a5TB//nztaQFffPGFdO3aVTMOkidP7vDrXLhwQQMMDRo0CBPwiC6YrEcGBhQoUEAn55HBATVr1tSABuCEpWXLlrotRrbDrl27ZM6cOdq03Bkom/XgwQMNrsycOVObpxsnRyNHjtTMjePHj8vrr7+uk1o7duyQihUrak8NlJHC4zjZMgQFBUnr1q01+ICgCTRp0kRPvsAoO4X9Y7s/0EMladKk2uMkYcKEWjLr5s2b8uOPP1oCG6lTp9YgD8peIRiEIAyCMQxsEBFFP/z+x98HIiKKPbhIqFSpUjJ48GApXbq03ocLknBBFLKtcUEXEZEzyuZMq8EHNAoPL7ciWWJPSZHEU24E/lcR4/TNB3L65ln5ZfNZSZ7YU/L4ppB9FwPCPJcNyImIyJ3EWmADE9o4qMfE+Zo1a0I9hjJGOXLksAQ1ACWL0CAbgQoEDxyBTAGUpEJGCE4WXMU64wRBAvQQsf7ZKKGF94WyVfPmzbM8jswJBBichaAGMiJQBgvrRFDCGoIZyFpBsAOZEX///be+Lr7WqlUrTF8NBDPatGkjixcv1oDDmTNn5MiRI9qrJCJ4nwgiIahhQDkrBDeQcg9Zs2YN9ZoIjmD/EhFR9DMC3bhiHL+HU6VKxYwNE+L+MzfuP3NnbBw8eNDp9ezevVsv3LI+BkYG9QcffKAXEBEROQsNwQc1KChdZ/6rjcKtgxtGru7olsW0F8fRq4Gy/vgN2XD8huw5f0eMKlMPnjy3G9QANiAnIiJ3EmuBDSNY0axZM83awFX7BpRPCi8F3NFU8JMnT2p2AIIOyDJAgMFVbIMCHh72W5dg21F6Co3NrTm7beiJcf/+fcmTJ49lfGbPnm3JtDD4+PjoV/T4QBYLykOtW7dOMynsBUrQAyRNmjRaUgolwxDcmDJlSoTbY2//Gf01jO3DSZy9E34iInLd3yn8nsXfKPzMUlTmw/1nbtx/hGN+f3//MBnKuBgLFygREUWH2oUzyU9vlwxTRiqjt5cGPfA4FMycSm/dqrwidx8+kX9O3pINx27I6qPXJTDoWYQNyMesPi5tymWXLKmTRrhN6M2x8+xt7QGCclnILEEQhoiIyLSBDUBj69q1a4dqJI6DfWQXoP4sShbBvn37NAMgW7ZsEa7zxo0b0rFjR+1bgRJHkSld5Up4XwhCWPfTQJko3N+iRYsorxdlp9KnT68p7SghhQkrjJ2R2YITKKPnB06a0DcDAYapU6fqCZaRCm8NfUIwjkuWLLFkXqBslSPBB7wfZIIYfTwAtYNRvsrYn0RERERE8QkyqlFet3fv3paABo650Q/PmXMBIiJbCF7UKJjR4WBC6mSJpWGxzHpbvPeyfDxvX4SDOn79ab1l9vaS0jnSSpkcafRrXt+UoV6HvTqIiCjOBjaQEYDgBrIHjBJOaEaNTAsc9H/66ady584d7deArAGUz4jIiBEjNEMAmSAPHz7UGyCDITaDHMggeeutt6RIkSJSuXJlzZaYNm2aNvV2FN4LSjoByomsXLlSgzd4rwhAIHCBEyOU+UIdX2RpfPPNN3LlyhUt/wRYDr0/0NsEy9q7ahcBCLwWyoQVLlxYtm3bJrNmzQp1NRnGE5kxBQsWDPVc9BBBU3GcuCETBydt+Bllx3iFMBERERHFR926ddNzGRyno+9R586d9Vgd5whoKk5EFJ0QXKiQ+0XVhsjwTRW5ihJXAoLkr/1X9AYpvRJKqexptAk5MjXGrD4Rpt8He3UQEVGcCGwASh4h6wAZAoCMgwkTJmgwA822EYzAZHnPnj0jXBcyCjAZj8wFZIJY+/DDD6V79+4SW4oXL64ZGpjkx1dkn4waNUrKlCnj8DpQCsooB4XgA8pPjRs3TstFGdCIHMGdjz76SLMmsP5JkyaFKplVr1497fWBr/agJwZOvoYMGSKPHz/W+uwIVCDzA43dfX19tQE83gf6nuTPn9/yXAQ/UP4LwRaU3UKmRrt27aRLly5RHDkiIiIiInPDhUa4yAnH0LiACBnUKVOm1K9Hjx7VHnVERO7egByXRaZJnljeKpdN/r1wR/49f1cePf2vZDjKWG04flNv4WGvDiIiig4JQtjYgEwGJ38oTbbuYgI5d/NBbG8OEZHb8kuXQvo2KWH5GX/yAwICxNvbmxl0JsT9Z27cf+Y/9sRFSra99SIDZWK3bNmiF/1YO3/+vDRs2FD2798vcfn9RwX/33BszSgufG5RPgoNyCWcBuTo4WH06nj6PFiOXr2nZa92n7sju8/fllv3nzj8WnPeK+9wZklcGFt3xbHl2JoRP7dxc3wjc+zpFhkbRFHRs0GxGD+5IiIyG5QAYHNGIqLYsWDBAi3/apwcNmvWTDw8PEItg/KyuXPnjqUtJCKKegNySOTpIUWzptZbp0ovfted838ok/45LXN2XoxweNEDhIiIKCpMF9hAw2uUXgoPSlaht0R4ypUrJ0+ehH/1wLJlyyRz5swS05o2baq9KMKDPhr2mnzHZ0w2Mu9+u3//vpYs41U25sP9Zz4MahARxR6UZU2UKJH2/+vfv7906NBBy08ZcCyUNGlSKV++PHcTEZm6Abn177Wc6ZJLw2JZHApspE6WKBq3moiI4hPTBTZwlZN1Pwlb1s2t7fn999/1xCI8GTJkkNgwfvx47YcRHvS0IIorkFZG5sX9R0RE5BgENRDcgKxZs0rJkiUlYULTnYIRUTwV1QbkjvTqMAz567B82yKRNhwnIiKKDNMdVadKlUpvUeXn5yfuKDayRIiIiIiIKGbs3LlTb+H58MMPuSuIKE4FRVC2Cr06kOMRXnDjzK2H0nziVunwak7pVSuvJEtsumkqIiKKJfyLQURERERE5GI7duwIkwF56dIl7bFRq1Ytjj8RxZteHcjk6FQpl/y177LsvxQgISEiU7aclTVHr8vwpkXk1VfSxep2ExGROTCwQURERERE5GIzZsywe//XX3/NvmNEFC97dbSrkF0DGqP+PiGPnwXLhdsP5c1fdkibsn7Sr24BSeXF/htERBQ+j5c8RkRERERERC70zjvvyMKFCznGRBTne3U0Kp5FvxoNyBN6ekjn13PLyo9fl7I50lqWR9PxmqP/kbVHr1vuex4cItvP+MuKIzf1K34mIqL4jRkbREREREREsWTjxo2SJEkSjj8RxVs50yWXuZ3Ly6wd52X4imPy4MlzuXYvSN79bbc0Lp5ZXnslnYxefSJMOSv08EBGCBERxU8MbBAREREREblY1apVw5ScevDggQQEBEifPn04/kQUr3l4JJB3KuSQKvkzSL+FB2XTyVt6/+J9V/Rm61pAkDYmRw8PBjeIiOInBjaIiIiIiIhc7MMPPwwV2MD3iRIlksKFC0v27Nk5/kREIpI1TTKZ3rGs/L7nkgxdclgCHz+3Oy4oRIXfqGhMjh4eRnkrIiKKPxjYICIiIiIicrGmTZtyjImIHIDAb4vSfpIiSULpOuvfcJdDcAPlqdCYHL07iIgofmFgg4hinKenJ0fdxLj/zI37j4goZhuD25afCs/06dNdvj1ERGby5HmwQ8sNWHRQ6hfNJOVz+UjJ7GnEK5H98000HEcQ5EZgkGRI6SVlc6ZlpgcRkYkxsEGm5ehJIrnffkuZMmVsbwZFEfdf3Np/OLlj2j4RkeuUK1eOw0tEFEUIPjjizK0HMm7dKb0l9vSQ4tlSa5CjQi4fKZEttQY6Vh66qmWr2ICciCjucGlgI1++fFK/fn0ZNWpUqPsXLlwo48ePl3Xr1kXL68yZM0d++eUXuXPnjpQoUUIGDx4sfn5+kVrHDz/8oNs0bdo0qVChQrRsl7HenTt3yowZM5xeV9++fWXRokWWnxMnTqzvs1WrVtK2bdtomejHPsPVYo6chB09elQePXokJUuWlB07dug2HD9+XGLK6CX75dzNBzH2ekREcYlfuhTSt0mJ2N4MIqI431fDnvv378vz58/F29s7xreJiMgskFGRydtLG4Wj7JQ9uEgHF+tYZ3kgKwO3cWtPSuKEHpI9bTI5eeN+mOeyATkRkbm5PGNj6dKl0rx582gNFljbtGmTfPvttxo8yZEjh4wePVq6desmf/31V6S3M1u2bLJ48WKXbWt0qFOnjgwYMEC/f/jwoWzfvl2GDx8u9+7dk+7duzu9/s2bNzt8goVxxskaAhsIKOG5Memy/wM5de1ejL4mEREREVFU/fbbb3pB1q1bt/TntGnTSps2bcINgBARxWcIWgxqUFC6zvxXG4VbBzeMyzp/fLOEFPNLLTvO3JZtp/1l+1l/Oe//0LLck2fBdoMaYrW+wZFsQB4dJa1YFouIyASBjSxZssjQoUPlzz//1AyD6LZx40apWLGiVKlSRX/GSUHDhg3l9u3beqLgiMOHD8uFCxdk2LBh8uWXX8oXX3whyZMnF3fk5eUl6dOnt/ycPXt28fDwkCFDhkjLli3F19fXqfVbrzsysG+j+lwiIiIiorjuxx9/lJkzZ0qPHj30oqDg4GD5999/NWscx9KdO3eO7U0kInI7tQtnkp/eLhmmjFRGby8NeuBxaFwii97gyt1Hsv2Mv97WH78hNwOfvPQ1kLlRaeQ6KZEtjRTImFLyZ0wl+TOllCypk4apjBEdJa1YFouIKHp4iIt9/PHHcv36dfn111/DXebatWt6gF+2bFktgfTVV1/Jkycv/8NjSJ06tezatUtOnz4tz54904wLBFMik9aNbI38+fNLrVq15OnTp/L333+HKc+EwAzKahUuXFjefPNNuXjxouXxQ4cOaVChaNGi0rp1a/n++++1UaA9u3fvlqZNm+qyDRo0kFWrVomzEMhJlCiR/PPPP/pzSEiInjgh4FO6dGl5//335cqVK/rYd999J2+//Xao5yPLpX379pb3irJSgP320UcfSZkyZfR9N2nSRPbs2aOP4f1dvnxZ+vXrpyWy8Bw815F9ilJkeP64ceP0MWzjN998o9tNRERERBQXzZ8/Xy+kwvkCjpsLFCggb731ll5YhdK6RERkHwIGm/tUlTnvlZNvGubVr/g5vEBC5tRJpWnJrDKyeTEZWK+gQ8N65W6QLDtwVb77+4R0mr5bKo5YL0UH/y3Nf9oqAxcflBnbz8v4dSc1e8Q6qGFd0goBi4hgGWfXQUREMRTYQAYBJscnTpwYKhhgwGR3u3bttFcD+lCMHTtWNmzYICNHjnRo/Zggz5Url9StW1eDBThhmDBhgnh6ejr0fEymr1ixQjM+kKWBMlTWfSyse2WgBBQm5dHLA9sJgYGB0qlTJylUqJAGVRD8mDRpkt3XunnzpnTp0kUDG0uWLNHnISiAYIczkiRJIlmzZpVTp07pz7gSDOtHea558+aJj4+PdOzYUYM29erV0+CEv7+/5fkIruB+W7169dLav3PnztX3hn2J/iXGeGTMmFH69+9vKY0VmX26d+9eOXv2rJ7Eff7559rXY+vWrU6NAxERERGRu0JfDZTOtZUzZ07NNiciovCh1BMagtcpmF6/Olr6ydEG5AntrC/w8TPZff6OzNx+QT5ffEiDHvYuxwz5/+2zBQfkpw2nZOqWszJrx3lZsPui/Lnvsqw8dE3WH7shm07clAGLDoW7DkA2iHXPECIiisVSVEbwAQEBXKGEAIdtjwxkBiAgYWRZoBRU165d5ZNPPomwJNSNGzfk8ePHmomAskwIanz22Wfy+++/64R/RDDJf/XqValevbr+XLNmTZ1oRzYCMj8MHTp0sPTeQB3cWbNm6ffLly+XZMmSycCBAzWYgiALUsoRxLCF57z66quWjAlsLxpwo9YushackSJFCnnw4EUjbdTtHTRokKUBOEqBIXsDY121alU9oVqzZo02HUezb7zXGjVqhAn4YEyQxYIABuCKMiNFHpkyeL8pU6bUW2T2KSBggqvTsN0YMzRtP3jwoLz22mtOjQMREUUOfh+TOeBvM0rXYJ/ZlkUg98f9Z17R9XsS5aemTJmix+YoJWusG/fhAi0iIor5BuQJ/l/Wan2vynLx9kM5ei1Qjl+7J8euBsqxa4Fy+e4jh18LgZARK49HeVuxfcjkQP+OCrl9orweIqL4IkYCG5gAx5X+KOGECXVrKCGFiXbr0lFoRo2yUuh7gRTtl8EEPoIRKOsEyFKoXLmyrF27VrM4IrJs2TINYBQs+CI9sVq1ajoJj9JTH3zwgWU5BCEMmIxH9gMgMIBsDesMkeLFi8vq1avDvNaZM2dk/fr1elJjwHpwlVZ0XAFmBDdQBgoBBOOECYKCguTcuXP6PcYF5bYQ2MBXBFsQqLCGCRMEcBC4QaAG2RUouYUJlYhEtE8BWSTYXgO+x+NERBSz8HcMGXZERORaKOGKC4WQpYzzB6PXH7KdcWESERHFTgNyPO6VyFPy+KbUmxTLbFkm4NFTOXE9UObvuigL9lyKkV10417oMlVERBSLgQ1jYrtZs2aatYESTAZ7WRXGVVGOXB2FkwH0kDAgwwNBCGQhRATrX7lypZaWMgIbgMl728AGeljYg4CGbW+I8HpFYOIeARjr7YWECZ3bDchYQdACfTKMMUOfD9uAiRFoQGDj559/lnv37mlg49133w2zTowByldhGSyPTA8EYdCcPSKO7FN7jeTZY4OIKOZZ90ci94a/k/i7nCpVKmZsmBD3n3nh+BWZxc7KnTu3lsBFyVhc8IRjZmQr4/wgoix1IiJyfQNye7yTJpIyOdLKs+chDgU2PqmeR3KkSy6PnwXr7YnV7eyt+7J434v+py/z44ZTkippIqmcLz2P+YiI3CGwYfRsqF27dqhG4ph8x6T83bt3LVkD+/bt08n+bNmyRbjODBkyaIbA66+/rj/jiqdLly5pz4mIbNu2TevZol+Edb3bLVu2yPDhwzVTAQGZl8mTJ4+sW7dOAwFGhgSCLfbgvaK3hHX2B1LPsc22wY7IwMkRMizQJwSTHciGQCksZK4A1t+zZ08NYCBbBCdVuKF3BsbeKMNlDf060JQdY5Q2bVq9zyi/hRPzl5XAiGifnjhxIsrvlYiIopejPako9uHvL441sM9Yisp8uP8I0qRJo2Vp8X8ZJXVRFhdfoyODm4iIwofgRY2CGbXM043AIO29gTJVjvbqcLSk1YdV84S7TvTO2HH2drjrMJy4fl86TNslBTKlkm5Vckudwpkc3k4iovjE5c3DbQ/kEdywzqbAVUp+fn7Su3dvLYexfft27b2AJtyYpI9IixYttG8HSjzhyif0x8AVT8gwcKQMFQITKGWVN29eyw0lszAhj4bZEUHTbZSB+uabb7RcE/pKoHyTPVgvyjmNGTNGJ/4RkBg9erRkzvxfmmNEUFIKQQvczp8/r43Cv/76a+1fYQQgkLmBht0IuOB10P8DQRr0srDe7p9++kkDQtYloQwYe5xwYYywv5DZggCQESgB9BbBmCOAYc3ZfUpEREREFNcgiFGpUiXZuXOnBjOaNm2qJXCRsYFMDiIici0EB9C7olHxLPo1MsECo6QV2D7LuqTVy9bpyDoQPDEcvXpPPpy9V6qP3qilsJD1QUREsRTYgObNm4fqMYGrDtHwG1q2bKmZBehzgaZ6jkAWAm5fffWVBjn8/f21EXVEjcMxOY8+GNgeW3guTjRwgoEyTy+DIAoCK8huwEnJokWL9Ku9Ukvo5YFl0Vwbk/wIPvTt21caNmwojsI2oRE4bthGBF8QuEBgw3pM8L5wotS4cWO5cuWKZslY97xAeamHDx9qgMMeNAxHX5TJkyfrtk6aNElfB1kXR44cCdVEHfdbc3afEhERERHFNbgQCsfgxYoV04uhcM6BTHFcADRu3LjY3jwiInKwpBUyM6zhZ9z/spJWjqxj4tslZUufqjLpnVJSLOt/8zdnbz2Q3n8ckDe+XS9Tt5yVR0+eh8oC2XbaX/7cd1m/4mciovgiQQgbGzjl4sWLcv36dSldurTlviFDhmgjVpSzItfUOUZpq3UXE8i5mw84xEREUeCXLoX0bfLfhQbk/nDIFhAQoBcqsBSV+XD/mf/Ys3jx4k6V7ytatKhmQSNbGxcolStXTvr06aPZ0Qh47N+/X+Ly+48K/r/h2JoRP7dxf2wRPIhqSStH14H3uuWUv/y4/pRsO+Mf6rk+yRNLx4o5Nbvj21XHQ/UNyeRA3xB3Htu4iGPLsTWrkFj6vRCZY88Y7bERF6EMVYcOHeTbb7+VIkWKaH8NNB5HiSlyrZ4NirE2PBGRE3BCxXq9REQxI126dNrHDlnTyIBG5jZs3bpVMmWK3AQUERHFfkkrV64Dk4gV86TT257zd+SnDadkzdEb+pj/gyca0LAH/Tu6zvzX4QwSIiIzc+vAxtSpU1+alo2ST+GVN0JJKntNsa2hkbezChQooCWfEMi4evWqXoHVr18/S+NuR3Xr1k1PasKDLJDIlKyKD5hsZN79hoAgervwShDz4f6LW/uPQQ0iopiDPng45kcfO1wQVbZsWS1TO378eC1TRUREZE+p7Gnkl3ZltOfGTxtOy5L9V8JtPo77cV31kCVHtFk6j/eJKC5z68BGs2bNXtoE3F7Ta4Ojzb+jA3p74OaMQYMGafmq8Pj4OHc1AJE7QVoZmRf3n7lx/xERxY62bdtq+Vr0v0O/PChfvrxeEJU/f37uFiIieqkCmVLJuDYlpEq+9PLJ/PDLFyK4gfJUXy07Iq3LZJM8GVKIx0tKZb0oi+Uv567fkRy+z6Rszsg1Viciii1uHdhIlSqV3qICNbiyZ88uZpEhQ4bY3gQiIiIiInKhggULStKkSWXz5s2SKFEiyZUrl/j5+XHMiYjIYS8LUlibuuWc3tIkS6Q9PMrl9JFyudJK/oypLIGLlYeuanZHdPTpICKKaW4d2CAiIiIiIooLULYWzcJ37dqlF2+hPGBgYKBmqA8bNkwzzomIiCKCZuORcefhU1l1+LreIJVXQimTI614J0skC/+9HGZ59ukgIrPwiO0NICIiIiIiiusGDhyo/TXWrFkjO3bskJ07d8qKFSvkzp072rOPiIjIEci+QFZFeHkbuD9disTSv25+qV7AVwMZ1u4FPZO1x27YDWqA0b8DmRwoU0VE5K6YsUFERERERORiyNRYuHChZMmSxXJfjhw5NKjRunVrjj8RETkEZaRQKqrrzH81iGEdejCCHV81LqylpDq//qKHxrFr92THmduy46y/7Dx7W7M4Xsbo0zFu7UlpUzabZPSOOEvkRa+O23IjMEizShCAYa8OInIlBjaIiIiIiIhcLHfu3HLixAl55ZVXQt1/8eLFUMEOIiKiiCBo8dPbJcP0x8hopz8GgguFMnvrrWPFnBIcHCKT/jkjw1cei/B1vl97Um9ZUieVUtnTWG75M6aUhJ7/FYGJrl4dDI4QUWQwsEFEREREROQCixcvtnxfvnx5GTBggBw5ckSKFCkinp6ecvz4cZk2bZp06NCB409ERJGCgEGNghkjnSWB5uPF/CLX1+ny3Ud6+2v/Ff05aSJPKe6XWoMcIRIiE9afDpU5EpVeHWxkTkSRxcAGERERERGRC4wbNy7Uz2nSpJHly5frzZAyZUr56aef5IMPPuA+ICKiSEEQo0Junyj36UDwwV4XDYRG0iRLJK3K+sneC3dl38W7EvQ02PL4o6fPZdsZf72Fx1jvwMWHJH/GVOKTIrGkSJJQEiRIYDeogSCIs8ERIopfGNggIiIiIiJygXXr1oX72OPHj2X16tWyaNEiuX79OsefiIjcqk/H102LWIIJT58Hy7GrgbLn/G3Zc+Gu7Dl3W65YlZ16mVv3n0jl7zbo94k8E4h30sQaNEmTLLGkTpZIvJMmkuUHr9oNsIT8f3tQ5grZKezZQUTWGNggIiIiIiKKIXv27NESVStXrpT79+9r743+/ftz/ImIyG37dCTy9JAiWb311v61F/dduftIJv1zWqZtPe/waz59HiK37j/Wm6OMRuYouRWV7BQiirsY2CCiGIea0mRe3H/mxv1HRBTzLl++rMGMP//8U5uFp0qVSoMao0aNkrp163KXEBFRLPfp8Jdz1+9IDt80Ujanj0OZEZlTJ5VahTI5FNgon+tF7487D57K3YdP5M7Dp1rOKjLQR4SIyJqHuFC+fPnk008/DXP/woULpWrVqtH2Ojt37pRGjRpJsWLFpGXLlnLs2LFIr+OHH37Q7d22bVu0bZex3nfeeSda1tW3b1/dRuOGpoM4Efrtt98kJMRe0l7kYb07duxwaNmjR4/Kv//+q9/jOXhuTLJXl5HcH/Ybaklz/5kT95+5uWr/PQ+Onr9BRERxzR9//KHnAtWrV5f58+fLa6+9JlOmTJEtW7aIh4eH5M2bN7Y3kYiI4jkEHMrn8pE6BdPr18iUezJ6dYT3DNyPx2d1Kq+35T0qydZ+1eTol7Xl2Je1ZXu/ajKiWRGHXgvN0YmIYjRjY+nSpdK8eXOpUKGCS9aPK57ee+89vdWvX19+/fVXbbyH1O7EiRNHajuzZcumV1K5alujQ506dWTAgAH6/cOHD2X79u0yfPhwuXfvnnTv3t3p9W/evFm8vb0dWrZbt27y4YcfSsmSJaVEiRL63Jg0esl+OXfzQYy+JhERheaXLoX0bVKCw0JEZAeO27Nnzy4jRoyQhg0bcoyIiCje9erA4/aCJV6JPCWjt6c0L+UnY9ecDLeROaAnB4IoREQxGtjIkiWLDB06VNOuIxNocNTMmTOlaNGiOsEOqE/boEEDOXPmjOTPn9+hdRw+fFguXLggw4YNky+//FK++OILSZ48ubgjLy8vSZ8+veVnnCjhaq8hQ4Zotoqvr69T67ded2Rg30b1uVF12f+BnLp2L0Zfk4iIiIjIUV9//bUsW7ZM+vXrJ998841UrlxZszcqVqzIQSQionjXqyOywRHDvaCnsuH4DalWwLk5LyKKW1xaigo+/vhjuX79umZShOfatWvSo0cPKVu2rJQrV06++uorefLkicNlqGrWrGn5OWnSpLJmzRqHgxpGtgaWr1Wrljx9+lT+/vvvUI+jxBICM8gIKVy4sLz55puaKWI4dOiQBhUQYGndurV8//334Zaf2r17tzRt2lSXRQBm1apV4ixc/ZUoUSL5559/9GeUpfrxxx/1hKl06dLy/vvvy5UrV/Sx7777Tt5+++1Qzx89erS0b98+TCkq7LePPvpIypQpo++7SZMm2uwQ8P5QKxgnaSiRZVuK6mX7FKXI8Pxx48bpY9hGnOhFVzktIiIiIiJ3gON+nAdt2rRJL8TCxVT4Wr58eQkODtZjaJx/EBERmRmCF5v7VJU575WX71sX16/4OaKghm1wBMEQa0kTvZi2fB4sGvhYd+y6S7afiMzJ5YENZBBgcnzixImhggEGTHa3a9dOHj16JDNmzJCxY8fKhg0bZOTIkQ6tH+tEFgNe49VXX5W2bdvKqVOnHN4+TKavWLFCqlSpolkaKEO1aNEiu70ykEqOSfk7d+7odkJgYKB06tRJChUqpGWsEPyYNGmS3de6efOmdOnSRU9wlixZos9DUADBDmckSZJEsmbNannfyGLB+tGMcN68eeLj4yMdO3bUk6Z69eppcMLf39/yfARXcL+tXr16yfPnz2Xu3Ln63rAvBw8ebBmPjBkzaoaMURorMvt07969cvbsWZkzZ458/vnnMn36dNm6datT40BERERE5I7Spk0rb731lsyaNUvWr1+vJV0LFCig2eKVKlXSi3yIiIjMDJkXFXL7SKPiWfRrZHp1hBcc2T+oljQqnlkff/I8WN6f8a+sP3bDRe+AiMzG5aWoAFfnIyCAUk8IcFjD1UvIDEAzPaO3A0pBde3aVT755JMIS0KhzwSyEHDlE4IGmCBH9gEm6x0pJ4VJ/qtXr2pKOCD7AxPtyEZAGS1Dhw4dLL032rRpoyclsHz5ckmWLJkMHDhQPD09JVeuXNpQG0EMW3gOgi9GxgTKSKEBN5p/I2vBGSlSpJAHD170m/jll19k0KBBmg0BKAWG7A2MNZq258iRQ7NaWrVqJcePH9f3WqNGjTABH4wJslgQwACcjHXu3Fm/T506tb5fNKHFLTL7FBAwwYkcthtjNm3aNDl48KA2VCQiIvPB73VyLfxtxhXeGOvobgBPrsf9Z17R/fsNx9a4wAm3c+fOafY4zimQCU1ERBSfGcERa6NaFJPgEJEl+69ocKPLjD3yc9tSUiVfhljbTiKKR4ENTIDjSn+UcMKEurXTp0/rRLt1w2o0o3727JmmauNKpojWjcl6o/QTJstRu3bdunVa6ikiqHmLAEbBggX152rVqukkPEpPoQm5AUEIAybjjZRxBAaQrYHtMBQvXlxWr14d5rXQ9wNXaKHRtgHryZkzpzjr/v37luAGykAhgIDeG4agoCA9cYK6detquS0ENvAVwRYEKqxhwgQBHJxkIVCD7AqU3MKESkQi2qeALBJsrwHf43EiIjIn/D1Eph4RETkOx8y4QMvoF0hEREShJfT0kDEti+lFIksPXLUENya9U0oqM7hBFK/FSGDDmNhu1qyZZm3g6iTrMkrhXRXlyNVRaFhtHRhAE2sEKpCFERGsf+XKlVpayghsACbvbQMb6GFhDwIatr0hwusVgYl7BFvQ88JawoTO7YbHjx9r0AKZKsaYoc+HbcDECDQgsPHzzz/LvXv3NLDx7rvvhlknxgDlq7AMlkfwCEEYR066HNmn9hrJs8cGEZF5WfdZItfA30n8XU6VKhUzNkyI+8+8cPyKzGJ3g3OAIUOG6PE8SvPi2B03e1AWdsyYMXqREUrYog8iLugiIiIyS3BjbKvigum2ZQevypNnwdJ5xh75pW1peT1v+tjePCKK64ENo2dD7dq1QzUSx+Q7JuXv3r1ryRrYt2+fTvZny5YtwnUiOwJXiVr3d0DfDRywR2Tbtm1y+/Zt7ReBq6UMW7ZskeHDh2umAgIyL5MnTx7NDkEgwMiQOHz4sN1l8V7RW8I6+2PKlCm6zbbBjshAPw1kWKBPCCY7kA2BUljIXAGsv2fPnhrAQLZI7ty59YbeGRh7owyXNfTr2LVrl44RagKDUX4LJ+YvK4ER0T49ceJElN8rERG5J+vMRXIN/P3FsQbGmqWozIf7j6Ib+tchoxplba9cuSJ9+vSRzJkz6/mWtWPHjunFSb1795Y33nhDNm/eLD169JDff/9d8ufPzx1DRETmCW60Li4hEiLLD17T4MZ703fLL+1KS6U8DG4QxUcubx5uLU2aNBrcQE8HA3oq+Pn56YE2AhTbt2/XclJowo1J+oigSTX6acyePVsn09FPAhkDxqR+RGWoEJhAX428efNabiiZhQl5NMyOCJpuowwUGv6hXBP6SqB8kz1YL04+cLUUthUBidGjR+sJiKNQUgpBC9zOnz+vjcK//vpr7V9hBCCQuYGG3Qi44HXQ/wNBGvSysN7un376SV5//fVQJaEMGHtMnmCMsL+Q2YIAkBEoAfQWQXktBDCsObtPiYiIiIjo5X0GFyxYIAMGDNCyuOiXh6x440Ika+jhUb58eWnbtq1eYIW+eejFt2LFCg4xERGZSiJPD/m+dQmpU/hFL9jHz4Kl02+7ZfPJW7G9aUQU1wMb0Lx581A9JnDV4YQJE/T7li1bamYB0qIRoHBEsWLFdBIfTcNR5gn9HdA8G5PuL4PJefTBwPbYQmCkadOmerCPFO+XQYNyNERHdgNef9GiRfrVXqkllMjCsmiujUl+bHffvn2lYcOG4ihsExqB44ZtRPAFgQsENgzIzMD7Qq+Qxo0b6xVcyJKx7nmB8lI4IUKAI7ymhuiLMnnyZN3WSZMm6esg6+LIkSOhmqjjfmvO7lMiIiIiIgofsjBQ5tb6vKpUqVKyf//+MD3xmjRpoheX2QoMDOQQExGRKYMb49qUkFqFfC3BjXd/2yVbTjG4QRTfJAhhYwOnoOzV9evXpXTp0pb7UOsWDVRRzopcU+cYpa3WXUwg524+4BATEcUiv3QppG+T/ybWyHVwyBYQEKAXKrAUlflw/5n/2BMlcN2l7B4y1nHREEroGnCBFy5esi4la8/JkyelUaNG2pMPmR6Ovn9cUBbT75//bzi2ZsTPLcfWjMz4uUUpqu5z9srfR67rz16JPOTXdqXl1dzpxJ2YcWzNgmMbN8cXx564WMeRY+8Y7bERF6EMVYcOHeTbb7+VIkWKaH8NNB5HiSlyrZ4NYv7kioiIwnoeHCKeHjxIJyKKKbiIyjZD3PjZKBtrD/oLdu/eXfsIRrZ5+L179yw9BWPyhBpZ5sDJII6tWfBzy7E1I7N+bofVyyVPnj6VDSdvS9DTYHl32m75vlkB8fBIILcePJF0yRNLSb9UsXquYtaxNQOObdwcX9vsY9MGNqZOnSrjxo0L93GUfAqvvJG/v7/dptjW0MjbWQUKFNCSTwhkXL16Vftl9OvXz6EeH9a6desmW7duDfdxZIFEpmRVfMBkI/PuNwQE0duFf9TNh/vP3Fy1/xjUICKKWSidaxvAMH728vKy+5xbt27pBVn4W4BzrMgGKdArLzYyNoBXuXJszYSfW46tGZn5c/tz27Lywex/Ze3RGxL0LFi6zDsc6vGM3l4yqH5Bqf3/vhwxzcxj6+44tnFzfJGxEScCG82aNZOqVauG+7i9ptcGR5t/R4cWLVrozRmDBg3SK6/C4+Pj49T6idxJZH5Jkfvh/jM37j8iIvPz9fWVO3fuaJ8N9MCDmzdvalADAQhbKJ2L5uGA3oQvK1UVHpzQxsaEjPG6nAzi2JoJP7ccWzMy6+c2SSJPmfBWSWn+01Y5ePlemMevBwTJB7P+lZ/eLim1C2eKlW0069iaAcc27o1vZF7LrQMbOCi3d2DuCFxNlD17djGLDBkyxPYmEBERERGRCSBrHAEN9L4wev3t2bNHS+PaZmKghECnTp30fgQ10qdPH0tbTURE5BoJPTzkZuBju4/hmnNMkw5ZckRqFMzIbHOiOCRmi6QSERERERGRU5ImTSqNGzeWwYMHy4EDB2TNmjUyZcoUS1YGsjeCgoL0+59//lkuXLggI0aMsDyGW2BgIPcCERHFCTvP3pZr9+wHNozgxtWAIF2OiOIOt87YICIiIiIiorDQ1w+BjXbt2mmJXjQFr1mzpj5WsWJF+eabb6Rp06ayatUqDXLYls5t0qSJDB8+nENLRESmdyMwKFqXIyJzYGCDiIiIiIjIhFkbyMIwMjGsHT9+3PL9ypUrY3jLiIiIYlaGlF7RuhwRmQNLUREREREREREREZEplc2ZVjJ5e2kvjfCgH3FKL17fTRSXMLBBREREREREREREpuTpkUAGNSio34cX3AgJEWk3ZaecvM4eU0RxBQMbREREREREREREZFq1C2eSn94uKRm9Q5ebypjKS3KmS6bf+z94Im0m75DTN+/H0lYSUXRiDhYRERERERERERGZPrhRo2BG2Xn2tjYKR08NlKm6//iZvPPrDjlwKUBu3X8sb07eLvM6V5Ac6ZLH9iYTkROYsUFERERERERERERxoixVhdw+0qh4Fv2Kn72TJpLpHctKwUypdJnr914ENy7efhjbm0tETmBgg4hinKenJ0fdxLj/zI37j4iIiIiI4pvUyRLLzE7lJH/GlPrzlYAgaTN5u1y++yi2N42IooiBDTKtBAnCawlF7r7fUqZMyf1nUtx/5uau++95cEhsbwIREREREcVxaZO/CG68kiGF/nzpziPN3LgWEBTbm0ZEMd1jI1++fFK/fn0ZNWpUqPsXLlwo48ePl3Xr1kl0+uuvv2TBggUyY8YMy31PnjyRMWPGyLJly+TRo0dStmxZ+fzzzyVjxoyRWnffvn1l0aJFsnr1asmWLVu0bTPWC8OHD3d6Xe+8847s3LnT8rOXl5fkypVLOnToIA0bNnR6/ZcuXZJq1arJ2rVrJWvWrBEuv23bNsmQIYPkzp3bZfv8ZUYv2S/nbj6IsdcjIqLo55cuhfRtUoJDS0RERERELpcuRRKZ3amctJ60Xc7ceiDn/R9qcGNu5/KSIVXoxuNEFMebhy9dulSaN28uFSpUEFfavn27fPHFF1KkSJFQ948bN07WrFkj3333naRNm1a+/fZb+fDDDzUA4ugVqY8fP7YENBYvXiwfffSRuKuOHTvqLSQkRAIDAzUI0a9fP3n27Jk0bdrUqXVnypRJNm/erOPoiPbt28v06dM1sFG3bl2pXLmyxKTL/g/k1LV7MfqaRERERERERERkXghgzH6vvLSatE0DGwhwvPnLDg1uIPBBRPGkFFWWLFlk6NChmjnhKsgEeO+998TPzy/MY8iy+OSTTzRT45VXXpEvv/xSDh48KOfPn3d4/Rs3bpREiRLJm2++qYENBA3cVbJkySR9+vSWTInOnTvr2CCggwCNs3XXse6o1F9H9oijAREiIiIiIiIiIqLYktH7RXAja5qk+vOpG/fl7V92yO0HrpvfJCI3C2x8/PHHcv36dfn111/DXebatWvSo0cPDT6UK1dOvvrqq0gFQrZs2aLrr1mzZqj7g4ODdUL/1VdfDfMcZDNEJuukdOnSUqVKFbl8+bLs2rUrVHkmlNz6+++/pXr16pox0qVLF7l7965lGWQ5NGjQQIoWLSqdOnXS4IpRgsoWMkOQ3VCsWDHNdLEuLRVVrVq1ktu3b8uePXv0Z4wtxhhjjVuvXr0s24sgUJ8+fUI9/9NPP5UBAwZY3iu+wqlTp+Tdd9+VEiVK6PtG4Of06dP6WNWqVfVr27Zt5YcfftBSVMZ9gOXw3JIlS0qlSpU0OIX9BVgerzlo0CB9HNk+kydPdnociIiIiIiIiIiIHJEldVKZ8155yeT9ogTVsWuBGty4+/CJ9gHcdtpf/tx3Wb+yLyBRHAxs+Pr6aummiRMnysWLF8M8jkn2du3aaf8L9MYYO3asbNiwQUaOHOnwa8yZM0eDImE23sNDgxqpU6e23IfSSGnSpNEJekc8ePBAMzYQ1MiRI4dmQSALxBbe3+jRo2XmzJmaETJ16lS9H++5a9euUqdOHc32QABg1qxZdl/r2LFjGlTA8ugXgr4YyLaITHZJeCWkkMmBQARgOw8dOqTBAozH/fv3NbAE9erVk/Xr18vTp08t+wc/435rCEK8//77mpHz559/yty5c+X58+caSILff//dEqRAaSxrCLIgCIKsEpQEQwAD44ZtMaxatUqSJEmiY40ACEqJnT171qlxICIi88LfGN4iHgP8feY4mfezwv1n3hsRERHFTX5pk2lwwzfVixJUR67ek0Y/bpFXh6+VNpO3S4+5+/RrxRHrZOWhq7G9uUQUnT02jKbWuGJ/2LBhGgCwtmnTJs3omD9/vnh7e+t96JWByX1kDyRPnlyiC3ptTJkyRYYMGSKJEyd2+DmY5EdgA2rUqKEBGGxj0qQv0tEAwRtkZACyMxDcAEzc4/4PPvhAf0YAYevWrXZfC1knLVu21Ocb2Q7IDkHgJrwMD0elTJlSgzQIICGI8Mcff1iCOwgiIXPj+PHj8vrrr+tJ9Y4dO6RixYqabYIyUnj86tX/fkEHBQVJ69atNUCBoAk0adJEfvnlF/3eKDuFfWq7D5EBg7FD5krChAk1WHTz5k358ccftS8HIBiFIA/KXiHLBUEYBGNy5szp1DgQEZE54W8U/oYRERERERHFpBzpkr/oufHzdrl1/7H23bB1LSBIus78V356u6TULpyJO4gorgQ2MDk9ePBgnQRHoMAaShIhE8IIagDKD6HZ9YULF6RAgQLRsQn6uiiL9fbbb0uLFi0cft6yZct0e4yJepS7QnAGpacaNWpkWS579uyW71OkSGHJeMBEjG1D8+LFi0tAQECY18JYrFixQubNm2e5D+tBgMFZCGpgu5BBgnUiKGENwYxz585psAMltfD+8Lr4WqtWrTB9NRDMaNOmjWahIOBw5swZOXLkiKRLly7CbcH7LFSokAY1DChnheDGvXsvmn1nzZo11GsiOILPBBERxU+OZlrGZ+gBhr+jqVKlkgQJEsT25lAkcf+ZFzI2jIuaiIiIKG7KnT6FzHy3rNQdt0mC7bTexV04Ah+y5IjUKJhRPD14PE4UJwIbgOBAs2bNNGsDV+AbUG7IlpHOHV1p3QhO9O7dWyfz+/fv7/Dz7ty5o9kVmFAvWLBgqMcwoW8d2EBzcXswOW/bbDy85uN4vyg91bhx41D3I2PCGeiJgXJTefLksYzp7NmzLZkWBh8fH/2KHh/9+vWTgQMHyrp16zSTwl6gBD1AUNYLvTPq16+vwQ1kxETE3j43+msY22dvPN25aTsREbmWbYCdxO7fSZThxFgxsGE+3H9ERERE7u3Ow6d2gxoGPHQ1IEh2nr0tFXK/mGMjojgQ2AA0qa5du3aoRuIoLYRMATSvNnph7Nu3T6/mz5Ytm9OvuW3bNg1qvPXWW5EKagCyFTDhjp4YKOVkQN+HadOmadPziCCYYDTtNhw+fFj8/PzCLIuxQBDCOvsDZaJwf2SyTGyh7FT69Om1ATpKSGHCA+NtZMP4+/trc3AEM5DVgb4kCDCgTwiCKnieLTQ1v3HjhixZssSSeYGyVY4EH/B+MLbIHDECGHv37tWsGOt+KERERERERERERO7gRmCQQ8vN3H5OEif0kKJZvSWRZ/jti9FwfOdZfzl3/Y7k8H0mZXP6MNODyJ2ah1vD1f0Ibly+fNly32uvvaaT/Ag+oGzT9u3btfcCMgBQSsEZyLRAMKNMmTKaCYFSR8YNTbEjgl4QlSpVklKlSknevHktN/SBwBWRaJodEfTMQKBm0qRJ2vwaZax2795t90pKrHf58uXaRBtluBA8wQ2luhz18OFDy3tEySdkW6A/xWeffaYBCAQuECRBaTD00UBDcYw9GpSj/BNgOaPkFgJR9rYVAQi8Fkp8IRiDXiIIAFmPKzJCTp48KYGBgaGeix4iWA59SrCNWAeajKO0Fa8wJSIiIiIiIiIid5MhpWMVVZYdvCbNftoqxYf8LR2m7pTJ/5yRQ5cDJNgq3QONxtFwvM3kHdLvrxP6lQ3Iidw4YwNQvggZBLjaH5A9MGHCBA1mIAiAXgqY+O7Zs6fTr4XeD1euXNGbbZ8KBA/QEDs8aGiOAMS4cePCPObr6yvVqlXTzI169eq9dBuyZMmi6xgxYoR+RSAHz7VXagm9N5ChgUl+fEXGyqhRozQw4yiUgjLKQSH4gIwRvC7KRRnQiBzbg4bnyJrA+hF4sS7zgfeFXh/hvT/0xOjWrZs2Yn/8+LHWPkegApkfGDuMEZrG430gSJM/f37LcxFcQZNxlCVD2S1karRr1066dOni8PskIiIiIiIiIiKKKWVzppVM3l7aKNyRYukPnjyX9cdv6g1SJ0sk5XP66Ne5uy6GWZ4NyImiV4IQNjZwyokTJ8L06OjcubM2FO/evbvze4jCQBktZMmsu5hAzt18wBEiIjIxv3QppG+TErG9GaaAQ7aAgADx9vZmBqQJcf+Z/9gTFynFx35Asfn++f+GY2tG/NxybM2In1sJlWnRdea/L8bF6n6j1smXjQtLIs8EsvW0v95uBj6O1FhjPRm9vWRzn6osS8XPrVsLiaXzz8gce0Z7xkZ8g2wFZDGMHj1aS0qhGTn6fkRHRgq9XM8GxeLlySURUVyD2rOeHjF3oERERERERGRP7cKZ5Ke3S8qQJUe0UbgBwYhBDQrq49CqTDad+D198/6LIMcpf9l2xl8CHj196cCyATlR9InVwAaaV9srBWVAyaqhQ4dGad0HDhzQ8kfhyZw5syxbtkycVb16de0zgeAGmnSjcfaYMWNClWZyRNOmTbVHR3jQR8Nek+/4jMlG5t1v9+/f15Jl7LliPtx/5uau+49BDSIiIiIichcIXtQomFF2nr2tDcXRewNlqmzPW3BO9UqGlHprWyGHXrA1ceNp+XbV8WhrVE5EbhrYaNasWajeELYw8RJVCCwsXrw43MfRQDu6dO3aVW/OGD9+vPbDCA96WhDFFUgrI/Pi/jM37j8iIiIiIqKXQxCjQm6fSD+nZLY0Di2bPAmL6BA5K1b/F6VKlUpvrpA4cWLJnj27mAUySIiIiIiIiIiIiChuNyD/YvEhSZ00kZTOkTYGt44obvGI7Q0gIiIiIiIiIiIiMjtkbaAXB7ys+O+VgCBp+fM2+X7NSXn2PDjGto8oLmFgg4iIiIiIiIiIiCgaG5Cj4bg1ZHIMa1JYyuR4Ua4qOERkzJoT0mbydrl05yHHniiSWNCNiIiIiIiIiIiIKNobkPvLuet3JIdvGimb00czOlqV9pMJG07L92tPasPxXefuSJ3vN8nwpkWlXtFM3AdEDmLGBhEREREREREREVE0QhCjfC4fqVMwvX7Fz5DQ00M+qpZH5ncpL1lSJ9X7AoOeSbfZ/0rv3/fLwyfPuB+IHMDABhEREREREREREVEMKpU9rSzvUUkaFMtsuW/+7ktSf9xmOXQ5gPuCKAIMbBARERERERERERHFMO+kiWRc6+LybfOikiyxp9535tYDaTJhi0z+54wEB4douaptp/3lz32X9St+JiL22CAiIiIiIiIiIiKKFQkSJJAWpf2kdI600mPuXjlwKUCePg+RYcuPysK9l8T//hO5Efg4VBPyQQ0Kah8PoviMGRtEFOM8PV9chUDmxP1nbtx/RERERERE7idnuuTy+/uvSpc3clnuO3o1MFRQA64FBEnXmf/KykNXHV43sz4oLkoY2xtA5ExEm8y531KmTBnbm0FRxP1nbtx/MQcnDkZzQCIiIiIiIkckTugh/eoUkNdypZP203aKvapTxl0DFh+S4n5pxDdVkpfOkSEAMmTJEbkaEGS5j1kfJPE9sJEvXz6pX7++jBo1KtT9CxculPHjx8u6deskOv3111+yYMECmTFjRqj7p02bJr/++qvcv39f6tSpI59//rkkTZo0Uuvu27evLFq0SFavXi3ZsmWLtm3GemH48OFOr+udd96RnTt3Wn728vKSXLlySYcOHaRhw4ZOr//SpUtSrVo1Wbt2rWTNmjXC5bdt2yYZMmSQ3Llzu2yfv8zoJfvl3M0HMfZ6REREjvBLl0L6NinBwSIiIiIioihJlNDDblDDGkpUlf9mrSRN5Cl+aZNKtrTJxC9tMv1qfH/06j35eO4+SzDENuvjp7dLsqQVxd+MjaVLl0rz5s2lQoUK4krbt2+XL774QooUKRLq/lWrVumE+rfffis+Pj7Sr18//R7LOurx48eWgMbixYvlo48+EnfVsWNHvYWEhEhgYKAGIfCenz17Jk2bNnVq3ZkyZZLNmzdL2rRpHVq+ffv2Mn36dA1s1K1bVypXriwx6bL/Azl17V6MviYREREREREREZEr3Qj8L7siIo+ePpcT1+/rzVEIdCDHA5kcNQpmZLY5xc8eG1myZJGhQ4fKkydPxFUQuHjvvffEz88vzGOYWG/Xrp1UqVJFihYtKkOGDJE//vhDHj165PD6N27cKIkSJZI333xTAxsIGrirZMmSSfr06S2ZEp07d9axQTAHARpn665j3VGpv47sEUcDIkRERERERERERGRfhpReDg1NMT9vyZU+uZawiizMfqI81bi1J+X6PccCKezVQXEqsPHxxx/L9evXtRRUeK5duyY9evSQsmXLSrly5eSrr76KVCBky5Ytuv6aNWuGuv/58+dy8OBBKV26tOW+4sWLy9OnT+XYsWORyjrBOhAcuXz5suzatStUeSaU3Pr777+levXqmjHSpUsXuXv3rmUZZDk0aNBAAyudOnWSL7/80lKCyhYyQ5DdUKxYMc10sS4tFVWtWrWS27dvy549e/RnjC3GGGONW69evSzb+8knn0ifPn1CPf/TTz+VAQMGWN4rvsKpU6fk3XfflRIlSuj7RuDn9OnT+ljVqlX1a9u2beWHH37QUlTGfYDl8NySJUtKpUqVNDgVHBysj2F5vOagQYP0cWT7TJ482elxICIiIiIiIiIiMruyOdNqH4zwOmfgfjy+sOtrsu7TynJsaG3Z3q+azO9SQb5rUUx6VMsjZbKncei1vl97Usp9vVYqjlgnn8zbJzO3n5dj1+5JsE0tLPTqwDJtJm+XHnP36Vf8HJkm5kRuFdjw9fXV0k0TJ06Uixcvhnkck+zIqEAGBXpjjB07VjZs2CAjR450+DXmzJmjQRFb9+7d0ywFZC8YEiZMKKlTp9ZgiiMePHigGRsIauTIkUOzINBrwxbe3+jRo2XmzJkaTJk6darej/fctWtX7e2BbA8EAGbNmmX3tRBsQVABy6NfCPpiINvi/Pnz4mwJKWRyIBAB2M5Dhw5psAAZLeg9gsAS1KtXT9avX6/BH2P/4Gfcbw1BiPfff18zcv7880+ZO3euBpKQGQK///67JUiB0ljWEGRBEAT7BT1REMDAuGFbrEuIJUmSRMcaAZDvvvtOzp4969Q4EBERuRP83YzuG/4+u2K9vMXMGHD/mfezRkRERBSTPD0SyKAGBfV72+CG8TMex3Lg4ZFAMnp7aUCkeams8kmNvNKzZr5IvealO49k0d7LMnDxIak9dpMUH/q3tJ+6U8avO6lZHejJYd2A3LpXB4MbZMoeG0ZTa1yxP2zYMA0AWNu0aZNmdMyfP1+8vb31PvS/wOQ+sgeSJ08e5dcNCnrxnylx4sSh7sfPjmaErFmzRif5EdiAGjVqaAAG22jdgBzBG2RkALIzENwATNzj/g8++EB/RgBh69atdl8LWSctW7bU5xvZDsgOQeAmvAwPR6VMmVKDNAggIYiAclzIvgAEkZC5cfz4cXn99df1pHrHjh1SsWJFzTZBGSk8fvXq1VBj27p1aw1QIGgCTZo0kV9++UW/N8pOYZ/a7kNkwGDskLmCQBOCRTdv3pQff/xR+3IAgk8I8qDsFbJcEIRBMCZnzpxOjQMREZG7wN/dyJTGJCIiIiIiMtQunEmbe6MPhnVAAQEMBDXwuCNZHwg+2Cu6j5BImmSJpVXZrPLv+buy7+JdefzsRbUVuBf0TDYcv6m38LBXB5k+sIHJ6cGDB+skOAIF1lCSCJkQRlADUH4Iza4vXLggBQoUiPLr4op/sA1i4GfroMTLLFu2TLfHmKhHuSsEZ1B6qlGjRpblsmfPbvk+RYoUlowHTFrYNjRHOayAgIAwr4WxWLFihcybN89yH9aDAIOzENTAdiGDBOtEUMIaghnnzp3TYAdKauH94XXxtVatWmH6aiCY0aZNG81CQcDhzJkzcuTIEUmXLl2E24L3WahQIQ1qGFDOCsENZNlA1qxZQ70mgiP4TBAREcUVxgUG0QU9wPB3NFWqVJIgQXhJ6eSuuP/Myyh/S0RERBTTELxAc++dZ29rQ3H03kDAwsjUcCTrAxkVWNo6uGE8++umhS0BkifPguXwlQDZc/6O7Dp3W7/euv/E4V4d2MYKuX2i/F6JYiWwAQgONGvWTLM2cAW+bfDBmpHO7WxaN676x/pv3bqlWQGAyXH0k0AT7IjcuXNHsyvwnIIFX6R3GTChbx3YQHNxezA5b9tsPLzm43i/KD3VuHHjUPcjY8IZ6ImBclN58uSxjOns2bMtmRYGH58Xv1zQ46Nfv34ycOBAWbdunWZS2AuUoAdImjRptHdG/fr1NbgxZcqUCLfH3j43+msY22dvPN25aTsREVFk2V404Cz8nfTw8ND1MrBhPtx/RERERBQVCFBENWAQmawPNCAvkS2N3jpVyqXHr+f9H8qkf07L7J1h2w/YuuFgA3IitwtsAJpU165dO1QjcZQWQqYAgg0IRMC+ffv0av5s2bI59Xo4uUe2BJpmo5SS9brz588f4fORrYAJd/TEQCknA/o+TJs2zaE+HQgmGE27DYcPHxY/P78wy2IsEISwzv5AmSjc36JFC4kqlJ1CIAcN0FFCChMeGG8jG8bf31+bgyOYgayOV199VQMM6BOCoIp183UDmprfuHFDlixZYsm8QNkqR4IPeD8YW2SOGAGMvXv3alaM8RkgIiIiIiIiIiIi98z6wMVUOdIllwbFsjgU2Bi1+oR4eiaQOoUzOZRRQhTrzcOt4ep+BDcuX75sue+1117TSf7evXtr2abt27dr7wVkAKCUgrNQ/gqBFJTAOnDggJbEQh8LR0pRoRdEpUqVpFSpUpI3b17LDX0gEDRB0+yI4LUQTJk0aZI2v0YZq927d9u9khLrXb58uTbRRhkuBE9wQ6kuRz18+FBLOuGGkk/ItkB/is8++0wDEAhcIEiCcUAfDTQUx9ijQTnKPwGWM0puIRBlb1sRgMBrYVwRjEEvEQSArMt+ISPk5MmTEhgYGOq56CGC5dCnBNuIdaDJOEpb8QpTIiIiIiIiIiKimM/6aFQ8i36NTODB6NUR0TMu3H4oH87eK9VHb5R5uy5oaSsi0wQ2AOWL0E/BgOyBCRMmWIIAPXv2lGrVqsnQoUOj5fXq1asnXbp00Un0jh07aiNvTPJHBA3NEYDA9try9fXVbUTmRkSyZMki48aN06wJTOgjMwHPtVdqCb03kKGBMlEoB4WG6qNGjZIyZco4/H5RCgq9MXBDUGfbtm36+tZls9CIvEKFCtrwHGOOQAYCL9YlMTBuCFzgqz3Yh926dZMhQ4ZIw4YNtTk8xhjZHxg7o2k83g+CFtYQXEGTcQRvUHYLgax27drJhx9+6PD7JCIiIiIiIiIiothl9OoA2+CG8XN2n//K4Z+99UD6/HFQ3vh2vUzZfFYePgndU/d5cIhsO+0vf+67rF/xM1FUJAhhYwOnnDhxIkyPjs6dO2uJrO7duzu3crILZbSQJbPuYgI5d/MBR4mIiNyKX7oU0rfJfxd5RBccsgUEBIi3tzczIE2I+8/8x564SCm6e+eYQWy+f/6/4diaET+3HFsz4ueWY+uIlYeuhunVgUwOBD1qFcooW0/7y4/rT+lXa2mSJZKOr+WUthVyyLYzt8Jdh3W/D35u4+/vheeROPaM1h4b8RGyEtC/YvTo0VpSCs3IkUWBzBRyrZ4NisXLk0siInJ/uOqIdWWJiIiIiCi+9Op47ZV0ett74Y5M2HBaVh95UfHlzsOn2n8DQY8gO+WprgUESdeZ/2qTc0eDGzjf2nnWX85dvyM5fJ9J2ZyRK69FcUOsBjbQvBpllMKD0k5RLVmFfhsofxSezJkzy7Jly8RZ1atX1z4TCG6gTBMaZ48ZM8ah5uXWmjZtqj06woM+GvaafMdnTDYy7367f/++lixjzxXz4f4zN+6/mMODaiIiIiIiiqu9Ol6mRLY0MrltaTl+LVB+2nBK/tp/RVBtyl5QA1CICiEJZHIgcBLRudTLMkcim/VB5hargY1mzZpJ1apVw30cE59RhcDC4sWLw30cfSeiS9euXfXmjPHjx8vTp0/DfRx9P4jiCqSVkXlx/5kb9x8RERERERG5Wr6MKWVs6xLSs0Y+Gbr0sKw5eiPcZRHcQKCi3vebJGf65OKTIrH4JE8i6VIklrTJk+jP+H7fhbvy2e8HdHlnsz7I/GI1sJEqVSq9uULixIkle/bsYhbIICEiIiIiIiIiIiKKK7L5JJMGxTK/NLBhOHY9UG+RFdmsD4obPGJ7A4iIiIiIiIiIiIgobkI/Dlczsj7QA4TiBzYPJyIiIiIiIiIiIiKXQJNx9MFAySjbMlKA/IqM3l6ypucbcvfRU/G//1j87z8R/wdPXnz/4Ik2Jd917k6Er4XG5hQ/MLBBRERERERERERERC6B0lBo7o0+GAhiWAc3jKJReDx5koR6y5I6aZh1bDvtL20mb3eL7BByDyxFRUREREREREREREQug6beaO6NzAxr+NmRpt9G1kdE3TNuBT6Ohq0lM2DGBhERERERERERERG5FIIXaO6NPhgoGYXsCgQsHGn2/bKsD2s95u2VZyHB0qRE1mjffnIvzNggIiIiIiIiIiIiIpdDgKJCbh9pVDyLfnUkqBFR1gcyOV7L7aPfB4eI9Jy/X+btuhDt207uhRkbRERERERERERERGSirA9/OXf9juTwTSNlc/poFsegvw7LjO3nJSREpM8fB+Xxs2BpWyFHbG8yuQgDG0QU4zw9PTnqJsb9Z27cf+bG/UdERERERPEdsjzK5/KRAj4JxdvbWxIkeJH1MbRRIUmS0EN+2XxWf/7iz8Py5FmwdKqUK5a3mFyBpajItIxfWmS+/ZYyZUruP5Pi/jM37r/4s/+eI/+aiIiIiIgoHsG50oB6BaRbldyW+75adlTGrzsZq9tFbpCxkS9fPqlfv76MGjUq1P0LFy6U8ePHy7p166J14/766y9ZsGCBzJgxI9T906ZNk19//VXu378vderUkc8//1ySJk0a4fp27Nghbdu2laFDh2Cfm18AAGPMSURBVEqrVq1CPda3b1/9Onz48DD3L1q0SFavXi3ZsmUL9djTp09l4sSJsnjxYrl+/bqkS5dOatWqJd27d5cUKVLoMu+8847s3LlTRowYIY0bNw71/NOnT0vdunWlbNmyYd6jPRjnfv36WX5OmDCh+Pj4SM2aNeXjjz+2vKYzsL3YHryHiPj7++t7wz4wPh/Tp0+XcuXKSUwYvWS/nLv5IEZei4iIyCz80qWQvk1KxPZmEBERERERxUpw47Na+cUroaeMWn1C7/vu7xNalqpnjby80DY+l6JaunSpNG/eXCpUqCCutH37dvniiy+kSJEioe5ftWqVBlG+/fZbndTHRD++x7KOGj16tNSoUUPSpk370uUeP35sCWggePHRRx+Fevy7776TrVu3yldffSV+fn5y8eJFGTZsmJw/f14DHoZEiRJp0Mc2sLFmzZpI/2fKmDGj/P777/r9kydP5NSpU/qaJ06c0ICPh4dzSTg//PCDbq8j8P5DQkIsgY3Nmzdr+ldMuez/QE5duxdjr0dERERERERERETur3u1PJI4oYd8s+KY/vzDulMa3OhXJz+DG3FEpGfBs2TJohkPmFR3FQQu3nvvPQ0W2EJGQLt27aRKlSpStGhRGTJkiPzxxx/y6NEjh9efPHlyDYZEZOPGjTrJ/+abb2pgA5P41pDJ0aNHDw3yZM2aVb8OHjxY1q9fLzdu3LAsV7p0aZ30tx0zBDaKFy8uka2tnT59er1hX7zxxhsaRNmzZ48GYZyVOnVqHR9H2I4Htilx4sRObwMRERERERERERGRM7q8kVsGNyho+XnSP2dk8F+HJZile+NnYAMlj1B2CaWgwnPt2jWd8EdJI5QlQkZDZAIhW7Zs0fWjxJK158+fy8GDBzVQYEBgACWhjh17EX1zxIABAzQogWBARNkpeC0EUS5fviy7du0K9TiyLZBZEhwcbLmvRIkSsmzZMkmTJk2o+5IkSaLLGjCGyOyIjrJNuXLl0u20Dmzge5S5KlasmGbYoGQU/PPPP3qfdSAIQZeSJUtKUFCQlqJC1gZgn33zzTdSqVIlKVSokFStWlXmzZunj2EZjCFuuN8oRYVyX0a2C4JHCLxgH73//vty9epVfezSpUu67N9//y3Vq1fXrJwuXbrI3bt3nR4LIiIiIiIiIiIiImj/Wk75ukkRMYrm/LbtvPRfdJDBjfgY2PD19dWSTMgSQOklW5gMR0YFJs7RN2Ls2LGyYcMGGTlypMOvMWfOHA2K2Lp3755OmGfIkCFUnwlkGSCY4qhq1appsALZFc+ePbO7zIMHDzRjA8vlyJFDcufOrZP41tCvA+8RE/uDBg3SMlkIDrzyyiuhyjmhPFTlypVD9SBBtgYCBtj+6IDXRM8OQJCnT58+0rVrV+1T0rBhQ82AQSDl1Vdf1X4kCHAYEGDAe/Dy8gq1zkmTJum+QxBj5cqVWkrryy+/lFu3bknHjh21BBVuRmksaxgPBFfQW2Tu3Lk6zh988EGoIBA+QygLNnPmTA1YTZ06NVrGgoiIiIiIiIiIiAjeLJdNvmteTDz+H9yYu+ui9FqwXx4/fS7bTvvLn/su69fnzOQwlSg1ZMBV/dmzZ9feDrY2bdqk2Qi4Wh9X5aM8E/pfIFiBYIEzEDQA23JH+DmypbEGDhyogZnffvvN7uMIPCATBIENQE8OBC6sMx26deum7xN9L+bPn68BHwQrUBrLXjAFJaoMa9eu1XVGFzQON8YX2S4tW7aUBg0a6H5CAOb111/XfYBACjJhEMwwsmDwXpHdYSt//vy6j5FxgbJgyLrAmJw7d07LVSEQgpttr5KAgAD5888/db+XL19e14N+HGfPntVsHAPGC+XEkEGCbUVwg4iIiKIH/sbz5l5jgAs8YnsbeIvaGBARERGRuTUrlVW+b11CPP8f3Vi497IUG/q3tJm8XXrM3adfK45YJysPvag4Q+4vSukC6POAbAf0nsCkuDVkDSDDwbqJNMoc4Yr9CxcuSIECBaK8sSjnBLZBDPyMLITIQH8KZBCgn0e9evXCPI5yUthuY9IewQBkGCAg0KhRI8tyyIbA7c6dO1rSCdkHKHWFoE7hwoUty7322mtaaunw4cMaJNi3b59mQpw8eVKiA4IaCG4Y+2DFihWWslGAgETFihX1e7xfvHeM2969e0M9Zg1lohCIGD58uJw5c0aOHDmi90d0cofAB07cEbAwIKsmZ86cum34Cgi6GLDt2A4iIiKKHsePH49UDzIiIiIiIqK4rEGxzNpQ/INZe+R5sEjQ0/8qy8C1gCDpOvNf+entklK7cCaH1oksj51nb8uNwCDJkNJLyuZMawmekGtFuQ4SJv2bNWumV/R36tQpTPDBmjER7uzVTpgcx/pRCgmloQABEwQM0Lg6sjp06KBNwfEerBtmI0ixdetWXXfBgv81mAEsj8AGyj3h+759++r96KmBrINatWppEAT9NKwDGwi8oAwUylEh8INSW4426XZ08iJPnjyWcUbpKZSOsmaUmipTpowkS5ZM3yMybBDAsNf0e8yYMbJgwQJp2rSprgvlpYx+Gi9j7zNgbJd1KSrrcl1EREQUvXCRBbmPkJAQLauaKlUq7dNG5mH0+SMiIiIi86tewFdSeSWSOw/DXmAd8v+vfRcelNTJEkvWNEnFN5WXJPK0X/QI2R1DlhyRqwEvqgxBJm8vGdSgoMOBEYo6pxo89OrVS2rXrh2qkTiuxscV+wg2IBAByE5ACaRs2bI583LaqwKNptH022i6bawb5Y4iCxPrmKxHqSZkcBh9PZCVgQn4WbNmScqUKS3Lo8fGtGnTtJ8HTnDQEwLZGtbBDwQI7JVnMspRzZ49W8chOstQYbx3794tEyZMsOwDNOi2zohAjxPc36JFCx1H7Df0z8ANzd3tQW8MZOagjwacOnXKcmIOOCk3vreGjBTsE+wblOYygkXo8WFkaxAREZFrIcOW3AeOmXAMhv3CwAYRERERUexAdoW9oIa1uw+fSutJ2/V7JF8gEyNTai/JnDqpZPb2kkzeSeX6vSD5+Z8zYZ4blawPisEeGwZkKSC4cfny5VAllzCx3bt3b80iQOYCGk7Xr19fr1BzFspfIZCCElgHDhzQiXf0k4hsKSoDAiQITli/h6VLl+qEfKlSpSRv3ryWW/v27fWEFP0jChUqpA3BUdJpyZIlGkjARD4CJSjxhKwNW+jXgTFBySqjd0dkIaBy8+ZNvV25ckXHAdkZ6GVirBPbuXz5cpk+fbqW/0IwBjdkihhQjgrvA83Y0QfDHgSm0BcEvUgQOME+tS4FhjHHuKGnijVkoiCAgv2+Y8cOzW757LPPtBcJPh9EREREREREREREMQ0loyID/cSv3QuSvRfuyrIDV2XyprMydOkRu0ENMC4BRyYHm5G7ccYGNG/eXJtl37hxQ3/GVWjIHMCkNgIOmORGiaaePXtGx/bqhDwm09GY2gggYNLcGX369NHMBcAkPSbxx40bF2Y5X19fzbpA5kaXLl1k7Nix2ncDfToQZEB5J/SqQJ8No9+FNR8fH22WjWwGexkdjkC2iNEPAyWfMmfOrONrXQ4Mzb6RoYEeHviKDJFRo0ZpCSrrZRCYQgAH22PP119/rYEjjDneO4IV2L9Hjx7VZuQoyYUG6ggMIYBlO6YjRozQBuHYTyjDheCKvZJXRERERERERERERK6G7AtH1C7sKxKSQK4EPJIrd4Pk1v3HDr8GghsoT4XskAq5fZzYWnqZBCH2agkRuTFkrSA7Zt3FBHLu5oPY3hwiIiK34pcuhfRtUiK2N4Ns4JA7ICBAvL29WYrKpMeeuDAoPpZ4i833z/83HFsz4ueWY2tG/NxybOPT5xZZFBVHrNOSUfYmxbGmjN5esrlP1VBNwB8/e67PQZBj2cErMnP7hQhf6/vWxaVR8SxiRiGxdP4SmWNPpzM2iGJLzwbF4uXJJRERkSMH69YH4UQU96Ck7JAhQ7Q/IHr8dezYUW8vg8x0ZFavXbs2xraTiIiIyJ3gPAnNvdEHA2dM1sEN4wwKj9ueTyVJ6CnZfZLrDRwJbDiaHUJRE6OBDTTbtlfiyYCSSkOHDo3SutFvo127duE+jpJNy5YtE3flyrGJq5hsZN79dv/+fS3Xxuap5sP9Z27cf/Fn/zGoQRT3oeTsoUOH5LffftOyuAhY4Jyndu3adpdHr78ePXpoOVsiIiKi+AxNvdHcG30wUDLKgEwNBDUiavpdNmdayeTtFW7Wh64rVRJdjuJIYKNZs2ZStWrVcB+315fCUfnz55fFixeH+3h4fSTchSvHhsjdIK2MzIv7z9y4/8yN+4+I4OHDh7JgwQKZPHmyFCpUSG8nT56UWbNm2Q1szJ07V/vf+fn5aYCUiIiIKL5D8KJGwYzaBwMNxZFdgUCEIxeJvSzrw5ArfQpecOZiMTrbnypVKr25AppSZ8+eXczKlWNDRERERERxx7Fjx+TZs2dSosR//XRKlSolEydOlODgYPHw8Ai1/D///KOBDQQ1xo8fHwtbTEREROR+EKCIanPv8LI+jEDH1tP+svbodalWwDcat5isuXcaAxEREREREYVy8+ZNSZMmjV7cZUiXLp323bh7966kTRu67MGECRP068KFC50qhxfTpWCN12QJWo6tmfBzy7E1I35uObZm5A6f21qFMkr1Ar6y69xtuXHvsWRIlUTO3nog/Rcd0sf7Ljwoq3qkljTJ/ztmM4uQWBrfyLweAxtEREREREQm8ujRo1BBDTB+fvLkiUte8969e2EyQWLixBZlt4C92Ti2ZsHPLcfWjPi55diakTt9bgv4JNQb5E+bSpbnTiObT9+Rm4GPpf8f+2R4o3xiNiGxNL7IPnYUAxtEREREREQmggbgtgEM42cvLy+XvCbK5np6ekpsXLHn7e0d6xMWcQ3HlmNrRvzccmzNiJ/b+Dm237UsIbXGbpKAR09l5dFbUq+4n9Qv+vKG5O4mJJbGNzJ9JRnYICIiIiIiMhFfX1+5c+eO9tlImDChpTwVghqu6tuHE9rYmDQwXtfdJiziAo4tx9aM+Lnl2JoRP7fxb2wzeieVoY0KSY+5+/TnL/48JOVypdUG5WaSIBbGNzKvFbO5xEREREREROSUAgUKaEBj374XJ8uwZ88eKVKkSIyXiyIiIiKisBoWyyx1i2TU7+88fCr9Fx5i37BoxqNeIiIiIiIiE0maNKk0btxYBg8eLAcOHJA1a9bIlClTpG3btpbsjaCgoNjeTCIiIqJ4C5kHXzYqLOlSvOiDtubodfl9z6XY3qw4hYENIiIiIiIik+nXr58UKlRI2rVrJ0OGDJHu3btLzZo19bGKFSvK8uXLY3sTiYiIiOI1nxRJZFiTIpafhy45IpfvPorVbYpL2GODiIiIiIjIhFkbI0aM0Jut48eP231O06ZN9UZEREREMaNWoYzStGQWWfjvZQl8/Ez6/H5ApncsKx4e7tUXxIyYsUFEMc7T05OjbmLcf+bG/Wdu3H9ERERERETmMqhBIcnk/aJx+OZTt2TWjvOxvUlxAgMbZOpadWTO/ZYyZUruP5Pi/jM37j9zc9X+ex4cEq3rIyIiIiIiov94J00kI5oVtfz89fJjcu7WAw5RbJaiypcvn9SvX19GjRoV6v6FCxfK+PHjZd26dRKd/vrrL1mwYIHMmDHDct/Dhw/l66+/ltWrV0twcLDUrl1b+vbtK8mTJ4/UuvGcRYsW6XqyZcsWbduM9cLw4cOdXtc777wjO3futPzs5eUluXLlkg4dOkjDhg2dXv+lS5ekWrVqsnbtWsmaNWuEy2/btk0yZMgguXPndtk+f5nRS/bLuZv8JUBERBRVfulSSN8mJTiARERERERELvR63vTydvlsMnP7BXn09Ln0WrBf5nWpIJ4sSRV7PTaWLl0qzZs3lwoVKogrbd++Xb744gspUuS/hiuAoMahQ4fk119/1SsY+/fvr0GEL7/80uF1P3782BLQWLx4sXz00Ufirjp27Ki3kJAQCQwM1CAEGgc+e/bM6Xq5mTJlks2bN0vatGkdWr59+/Yyffp0DWzUrVtXKleuLDHpsv8DOXXtXoy+JhEREREREREREVFk9atTQP45cUsu3H4ou8/fkV83n5HOr+fmQMZWKaosWbLI0KFD5cmTJ+IqyAR47733xM/PL8xjiRIlks8//1wKFy4shQoVkmbNmsmePXsitf6NGzfqet58800NbCBo4K6SJUsm6dOnt2RKdO7cWcfm22+/1QCNs3W7se6o1O9G9oijAREiIiIiIiIiIiKi+CR5koTyXYtiYlQX/m7VCTlxPTC2Nyv+BjY+/vhjuX79umZMhOfatWvSo0cPKVu2rJQrV06++uqrSAVCtmzZouuvWbNmmMcGDRokpUqVspRSQgYJXicy8JzSpUtLlSpV5PLly7Jr1y7LY1gnSm79/fffUr16dc0Y6dKli9y9e9eyDLIcGjRoIEWLFpVOnTpptohRgsoWMkOQ3VCsWDHNdLEuLRVVrVq1ktu3b1sCOhhbjDHGGrdevXpZtveTTz6RPn36hHr+p59+KgMGDLC8V3yFU6dOybvvvislSpTQ943Az+nTp/WxqlWr6te2bdvKDz/8oKWojPsAy+G5JUuWlEqVKmlwCqXCAMvjNbHv8DiyfSZPnuz0OBARERERERERERG5q7I500qnijn1+yfPg+XT+fvl6fMXc6YUw4ENX19fLd00ceJEuXjxYpjHMcnerl07efTokfbGGDt2rGzYsEFGjhzp8GvMmTMnwmAFJuvRH+LWrVvSrVs3h9f94MEDzdhAUCNHjhyaBYFeG7bw/kaPHi0zZ86UgwcPytSpU/V+vOeuXbtKnTp1NNsDAYBZs2bZfa1jx47pdmJ59AtBXwxkW5w/f16cLSGFTA4EIgDbifJcCBagVNT9+/c1sAT16tWT9evXy9OnTy37Bz/jfmsIQrz//vuakfPnn3/K3Llz5fnz55oZAr///rslSIHSWNYQZEEQBFkl6ImCAAbGDdtiWLVqlSRJkkTHGgGQ7777Ts6ePevUOBAREVHU4G88b64fAxxfcZzN+VkjIiIiIooun9bMJ69kSKHfH7wcIBPWv7iQnGK4x4bR1BpX7A8bNkwDANY2bdqkGR3z588Xb29vvQ+9MjC5j+yByDb5Dg8CBG3atNFG5vge2+PhEXHcZs2aNTrJj8AG1KhRQwMw2MakSZNalkPwBhkZgOwMBDcAE/e4/4MPPtCfEUDYunWr3ddC1knLli31+Ua2A7JDELgJL8PDUSlTptQgDQJICCL88ccfmn0BCCIhc+P48ePy+uuv60n1jh07pGLFipptgjJSePzq1auW9QUFBUnr1q01QIGgCTRp0kR++eUX/d4oO4V9arsPkQGDsUPmSsKECTVYdPPmTfnxxx+1LwekTp1agzwoe4UsFwRhEIzJmfNFxJKIiIhiDo4RcAxBREREREREruWVyFNGtSgmTX/aKs+DQ+SHdSelcr708vDJc7kRGCQZUnppZgcbi8dAYAOT04MHD9ZJcAQKrKEkETIhjKAGoPwQml1fuHBBChQoEB2bIK+88op+HTNmjJY+QsAAk/URWbZsmW6PMVGPclcIzqD0VKNGjSzLZc+e3fJ9ihQpLBkPmAiwbWhevHhxCQgICPNaGIsVK1bIvHnzLPdhPQgwOAtBDWwXMkiwTgQlrCGYce7cOQ12oKQW3h9eF19r1aoVpq8GghkIFCELBQGHM2fOyJEjRyRdunQRbgveJ/qdIKhhQDkrBDfu3XvR7Dtr1qyhXhPBEXwmiIiIKOYZF0OQ66CHG46DUqVKJQmMorpkCsjYMC5qIiIiIiKKDsX8Uku3yrll3LpT8iw4RJr9tFW/GjJ5e8mgBgWlduFMHHBXBjYAwQE07kbWBq7AN6DckC0jndvZtG6jjNJrr72mk/qAiXdkA9y5cyfC52MZZFdgQr1gwYKhHsOEvnVgA83F7cHkvG2z8fCaj+P9IpukcePGoe5HxoQz0BMD5aby5MljGdPZs2dbMi0MPj4++hU9Pvr16ycDBw6UdevWaSaFvUAJeoCkSZNGe2fUr19fgxtTpkyJcHvs7XOjv4axffbG052bthMREcVlthc4UPTDcQ6yiTHWDGwQEREREdGHVfPIor2X5eKdR6GCGnAtIEi6zvxXfnq7JIMbruqxYQ1Nqh8+fBiqkThKCyFTwLrZ9r59+/Rq/mzZsjn1ejg5RAkn9OwwXLlyRQMWKH8UEWQrYMIdPTEQyDBu6Bmxfft2bXoeEQQTDh8+HOo+25+txwJBCGR/GDdkb/zzzz/iDJSdSp8+vTZA9/Pz0xNmjLfxGgj6fPPNN+Lv76/Lv/rqqxpgQJ8QBFXwPFtoan7jxg3ti4FAFZ6DsXUk+ID3iTEwslpg7969mhWDoBMRERERERERERFRfIZSU4+e2r/w35iBHbLkiJarIhcHNnB1P4Ibly9fttyHbApMtvfu3VvLNiFggN4LyABAKr4zEBxp1aqVNsvevXu3lkxC3w40EUfAISLoBYGyVaVKlZK8efNabugDgaAJmmZHBD0zEKiZNGmSNr9GGStsi70r8bDe5cuXa7AAZbimTZumN5TqchQCRyjphBtKPiHbAv0pPvvsMx0PBDFatGihpcHQRwMNxTH2aFCO8k/GuBklt2rXrm13WxGAwGuhtBiCMeglggAQsmQMyAg5efKkBAYGhnoueohgOfQpwTZiHWgyjtJWvEKRiIiIiIiIiIiI4rudZ2/Lrfv/zbXaQjjjakCQLkcuLEVlQPkiZBDgan9A9sCECRM0mIEgAHopYOK7Z8+e0fJ6WA8myz/++GOdiMeEPUosRQQNzRGAGDduXJjHfH19NTiyaNEiqVev3kvXkyVLFl3HiBEj9CsCOXiuvVJL6L2BRt6Y5MdXZKyg2XmZMmUcfr8oBWWUg0LwAQEcvC7KRRmQxYLtQcNzZE1g/Qi8WJeZwPtCtkh47w89Mbp16yZDhgyRx48fa+1tBCoGDBigY4cxQtN4vA8EafLnz295LoIraDKOsmQou4VMjXbt2kmXLl0kOmXxSS5PX1S4IiIioijwS/eilCcRERERERHFLDQKj87l4psEIWxs4JQTJ06E6dHRuXNnbSjevXt35/cQhYEyWsiSQaCINcGJiIicg7RmpECTa+GQOyAgQLy9vZnBajLx/dgzNt8//99wbM2In1uOrRnxc8uxNaO48Lnddtpf2kzeHuFyDYplkkENCkm6FGH7Gse18Y3MsWe0lqKKj5Ct0KFDB9myZYuW4ELJpm3btkmNGjVie9PiPMbkzLvfUL6M+8+cuP/MjfvP3Fy1/xjUICIiIiIiinllc6aVTN5eElHYYMn+q1JxxDr5aukRuXGP2RsuK0UVGWheba8UlAElq4YOHRqldR84cEDLH4Unc+bMsmzZMnFW9erVtc8ESjShOTcaZ48ZMyZUaSZHNG3aVHt0hAd9NOw1+SYyI0Rfyby4/8yN+8/cuP+IiIiIiIjiBlxkNqhBQek6818Nbti7hC2hRwJ5FhwiQU+D5ZfNZ2XG9vPSpmw26fJGLsnknVTis1gNbDRr1ixUbwhb6NUQVQgsLF68ONzH0UA7unTt2lVvzhg/frz2wwgPeloQERERERERERERUdxQu3Am+entkjJkyRFtFG5AJgeCHsX90sjP/5yW2TsuyONnwXqbtvWc/tyyTFbpWvkVyZI6qaXMMBqNoydHhpRemhESlzP0YzWwkSpVKr25QuLEiSV79uxiFsggISIiIiIiIiIiIqL4FdyoUTBjuEEJ9NfoWjm3TP7njMzcfkEePX0uT54H6/fzdl2U5qWySqHM3vLj+lN2gyNYf1wUq4ENIiIiIiIiIiIiIqL4DEGMCrl9wn0cwY4B9QrK+2/k1pJU07eekwdPnsvT5yEyZ+dFEcEttGsBQVrmChkhcTG4webhRERERERERERERERuzidFEulTO79s7lNVuld9RVIk9gx3WaNnB8pcoUxVXMPABhERERERERERERGRSaRJnlg+rZlPxrYu8dLlEM5AeSqUuYprGNggIiIiIiIiIiIiIjKZB0+eObQcenfENQxsEBERERERERERERGZTIaUXtG6nJkwsEFEREREREREREREZDJlc6aVTN5ekiCcx3E/HsdycQ0DG0REREREREREREREJuPpkUAGNSio34cX3MDjWC6uYWCDiGKcp6cnR93EuP/MjfvP3Lj/iIiIiIiIyFrtwpnkp7dLSkbvsOWmBjUsqI/HRQljewOIoipBgrgXaYwv+y1lypSxvRkURdx/5sb9Z27cf9HreXBInLxqiYiIiIiI4p/ahTNJjYIZZefZ2zJv1wVZvO+K3h/4yLHm4vEisJEvXz6pX7++jBo1KtT9CxculPHjx8u6deuic/vkr7/+kgULFsiMGTPCPDZw4EDx9fWV7t27O7SuHTt2SNu2bWXo0KHSqlWrUI/17dtXvw4fPjzM/YsWLZLVq1dLtmzZQj329OlTmThxoixevFiuX78u6dKlk1q1aun2pEiRQpd55513ZOfOnTJixAhp3LhxqOefPn1a6tatK2XLlrX7/mxhjPv162f5OWHChOLj4yM1a9aUjz/+2PKazsD2YnscGVN/f399b3Xq1LF8NqZPny7lypWTmDB6yX45d/NBjLwWERERxR1+6VJI3yYlYnsziIiIiIiIoo2nRwKpkNtH/NImtQQ2lh28Kt2r5YmToxyljI2lS5dK8+bNpUKFCuJK27dvly+++EKKFCkS5rHJkydrwOPDDz+M9HpHjx4tNWrUkLRpX9405fHjx5aABoIXH330UajHv/vuO9m6dat89dVX4ufnJxcvXpRhw4bJ+fPnNeBhSJQokQZ8bAMba9asiXTWQcaMGeX333/X7588eSKnTp3S1zxx4oRMmzZNPDycqy72ww8/6PY6Au8/JCTEEtjYvHmzeHt7S0y57P9ATl27F2OvR0REREREREREROTOsqZJJsX9Usu+i3fl2LVAOXXjvrySwfkL4t1NlGbBs2TJolkPmFh3FWR/vPfeexowsHb//n0NMCCwkSlT1OqDJU+eXL799tsIl9u4caNO8r/55psa2MAkvjVkcvTo0UMDPFmzZtWvgwcPlvXr18uNGzcsy5UuXVon/W3HC4GN4sWLR7q2dvr06fWG/fDGG29oEGXPnj0ahHFW6tSpdXwcYTse2KbEiRM7vQ1EREREREREREREFDX1i/43b7784NU4OYxRCmyg7BFKL/3666/hLnPt2jWd9EdZI5QmQlZDZAIhW7Zs0fWjzJK1S5cuaSYFyjLZBj0cNWDAAA1KIBgQUWYKghJVqlSRy5cvy65du0I9jmwLZJUEBwdb7itRooQsW7ZM0qRJE+q+JEmS6LIGjB8yO6KjbFOuXLl0O60DG/geZa6KFSum2TUoGQX//POP3vfo0SPLsgi6lCxZUoKCgrQUFbI2APvrm2++kUqVKkmhQoWkatWqMm/ePH0My2AMccP9RikqlPsC7CMEjxB4QfDm/fffl6tXr1r2IZb9+++/pXr16pqR06VLF7l7967TY0FEREREREREREQUn9Up8l9gY9mBuBnYiFIpKvS1QNbEmDFjtN+GbYABE+Lt2rWT7Nmza++I27dvy+eff27pi+GIOXPm6FdjotyQP39++fnnn8UZ1apV02AFsiswMY9eFbYePHigGRsohZUjRw7JnTu3LotAjQH9OsaNG6eZF5jAf/XVV6VixYryyiuvhFoXykNVrlxZy1G9/vrreh+eg4CBvdeOCrzmv//+q98fO3ZM+vTpI0OGDJGiRYvq+0D2C/qVYBuTJk2qAQ70AwEEGBCc8PLyCrXOSZMmyYYNGzSIgV4eeP9ffvmljl/Hjh21RwhgjGwNGjRItwe9RZAFgrJVH3zwgfzxxx+WZZBpgrJgyPzo2rWrTJ06VT755JNoGQ8iIiKiiDx//jzGBgnHO7gYBq8Z2VKkFH8+J27twQOkj4e9H/dZn0dgufCgbG7SpI4va73ehw/xH8n+svg/lSxZ1JbFBV9WF6qFYZ3NHpllg4Lw4YmeZbG9xu+Nx49Fnj1zflmMj/V7wUWIT5+Gv17sN6PscUTLYr8Zn5XILIvlXnYxZJIkaDQZ+WUxBhiL8KDqgFGOOTLLYp9h39kbW3y2MWbYjpcta8A6jeoH2C9WFyI6tSzGwNgGbBf+b0THspH5fx+dvyOMscW2Yr3Wy/J3hHO/I6zH1ng8Mv/v+Tsi/N8R9sbW9v8yf0eE//8+ot8R9sbW3rLx8HdElkQiFXyTyLZrQXL8OspRBcor3okj9zsivPF15e8IB1skQJRn1XFlP7Im0N/Bup8EbNq0STMS5s+fb+m5gMlvTF5j4trRUkeuhABLvXr15LfffpN33303zOMIPKA5OAIggJ4cCNLgfSAwAN26ddOgzuzZs/W9zp07V98bMkKaNWsWan0IBiAogGAKrF27Vlq2bCknT56MlveDxuEIxgAyXbDuBg0aWAIwyDZBsAjN0JEFg2AGAhs4UcN7RUaNLQSRypcvbymXhayLH3/8Uc6dO6cZIkYgxLZXSUBAgPz5559aLgzPBwQ2ENxBJk7OnDn1PgTHEHgBbOvBgwejZSyIiIiIHHH8+PFQWaxE9BKZM9ufbKhbV2TZsv9+zpAh/AnRN94Q2bDhv59z5BC5dcv+sqVLi/w/61wVLChy/rz9ZfHY4cP//VymjMiRI/aXzZ5d5Ny5/37GhWe7d9tfNl06kZs3//sZvQU3bgx/IsB6fHA+uHy5hMt6wuSdd0T+30fRrvv3/5vA6NJF5Lffwl8WJZHTp3/xfc+eIhMm2F0M0xMe+/eLGJUGBgzASVv46z10SKRQoRfff/21yJAh4S+L/YZ9AN9/L9K7d/jLrl8vUrnyi+8nTRJ5WQ/NpUtF6tV78f2sWSIdOoS/7Pz5Ii1avPh+0SKRli3DX3bqVJH27V98v2qVSP364S87fjwmAl58v2mTyP/nC2zHNjV28YgR/713XIRodZFkGIMGifx/rkCOHhUpXDj8ZXv1EjFKa1+4IPL/82u7PvhA5McfX3yP/2v4/xmedu1Epk178T3+D6d4SS325s1FFiz47+eXLRuNvyOMsbX8jrCuqsHfEU79jgg1toazZ1/sA+DviCj/jrA7tjBypMhnn734nr8jovY7ImdOSf2y4wj+jhCkDRT45Hd5lNhLlh24Jj1mDovU74jUP/0U/rKu/B3hYA/pKAc20OsBk/ToP4GJcWu4kh9ZDtaNpFHq6NmzZ3LhwgUpUKCAxDb0p0AGAXp5IMBhC+WksM3GpD2CAQjgICDQqFEjy3INGzbU2507d7Sk08yZMzWwgVJLha0ORl577TUttXT48GENhuzbt08zIaIrsIGgBoIbxvivWLHCUjYKEKRBNgng/eK9I7Nm7969oR6zhjJRCEQMHz5czpw5I0f+f3IQ0VVrCHzgikSUvDIgawMBDWybEdhARo8B247tICIiIoopOF6LyYyNe/fuSapUqZixYTI49uUFOERERERkZssOXpEeErc4VQcJE//ITEDWRqdOnSz3o5+ELWMy3J1SuTt06KBNwbH91lkkCFJs3bpVAzEFEfW3guUR2EC5J3yPDAhATw1kHSALAkEQ9NOwDmwgywNloFCOCkEflLSKzswVXHGYJ08eyxij9FTjxo1DLWNkWJQpU0aSJUum7xHZNQhg2Gv6jVJjCxYskKZNm+q6UF7K6KfxMvb2v7Fd1v1I0JidiIiIKLbgQp2YDGygPClek6WoyJSuXAm/FJXtlX7hsb36zjpzIqJlcZHVy8pCWMMVmo4u+88/Ly8LYW3FCseXRQleR899Z8z470p5e6xLXqAss3EFfkTLjh794org8MrjWZdyGjbsv4wBe6zLefTv/99VxvZYlx3q0eNF1oAjy3bu/F/mhD3W55lvvfVfRkZEyzZp8iLrJTzW58Io1+zospUq2V0WY4sqBt7I+DGULPny9VqfG+NCUEeXzZbt5ctal77G9ji6LD5HL1vW9v99ZJZ14neEZWy9vSWB7Xr5O8Kp3xGhxta6FJWBvyOi/DvC7tja/l/m74io/Y44e1bu2htbe8vG498RBX/bJ3su3JUT1+/LyaHfSZ5I/I64O2CA/fF15e8I/N9wsKqP0w0eevXqJbVr1w7VSBxX5OOqfWQo4Ep9QIYC+klkwx9eN4GJdUzWo1QTMjiM/hnIysAE/KxZsyRlypSW5dFjYtq0adoYHZP06AmBbA3r4AcCBAgg2JZnMspRoWwVxgClraILxnr37t0y4f8phBh/NOi2zogYOXKk3t+iRQs9qcY+Q/8M3OyVoQKU1kJWTh2kXIvIqVOn9Ct+KQM+1Mb31pCRgn2NfY4+IkawCM3SjWwNIiIiIiIyEVyU5UgwMDIXb0W0rPW5hvWJdkQis6z1iXZ0LmvTvzDalsWEfTgXkkVqWYytdY1tTMbZudjNLlcti4kMRy9+i8yymLB3tLdlZJbF/wd7n2FjbK3fd3jL2oPJOFcsi0kpVywLMbWsMba433aSjb8jnPsd8bKxBf6OiPrviIjG1npZR/B3xH8wZhGNrSEe/46oVzSzBjZg6fHb8kmNvI6tF78fMLaOjG90/o6IRFKEYwWrXgKZCghuXL58OVTZJUxu9+7dWzMJkL2A/hJoNI70e3dSrlw5DU5Yb//SpUt1Qr5UqVKSN29ey619+/YaFED/iEKFCmnPCJR0WrJkiQYSMJGPQAlKPCFrwxb6dWA8ULLK6N0RWQio3Lx5U29XrlzRMmDIzqhQoYJlndjO5cuXy/Tp07X0F4IxuCFTxIByVHgfjx8/tvTBsIWg1Pr16+XixYsaOMH+BLw/IwsF44Z+KtaQiYIACvY5mr8ju+Wzzz6TjBkz6meDiIiIiIiIiIiIiFyrbpFMlu+XHbwap4bb6cAGNG/eXEqUKGH5GSn2RvYAmlj37NlTsxWGDh0q7qhPnz6WgAsm6TGJj/dky9fXV98HMjdg7NixWpYKfTqQ1dClSxe5f/++9tkw+l1Y8/Hx0WbZ6DFiL6PDEcgWQT8M3JB1gabcKIGFbTCg2TcyNJAdUrduXW1sPmrUKC1BZb0MglIIwCC7wp6vv/5ajh49qkGQfv366eth+3Ef4L2fPXtWA0O2mRsYU5TeQoPwNm3aaHkqBFfslbwiIiIiIiIiIiIiouiV0dtLyuRIo9+funFfTlwPjDNDnCDEXi0hIjeGrBVkx6y7mEDO3XwQ25tDREREJuOXLoX0bfLfRTkxIdz6ymSaY09cGBSTfVncRWy+f/6/4diaET+3HFsz4ueWY2tG/Nw6buqWszJkyRH9/qNqeaSnA+WoYmt8I3Ps6XSPDaLY0rNBsXh5cklERETOex4cIp4eDDAQEREREVHcVqdwJhm69Ii2fFl24Ip8Uj1PnLjYKsYDG2i4PW7cuHAfR1mlqJSsOnDggLRr1y7cxzNnzizLli0Td+WqcYnLmGxk3v2Gkm0o1xYXfonGN9x/5sb9Z27cf9GLQQ0iIiIiIoo35aiyp5Wd527L6ZsP5Pj1QMmf0b36YJsisNGsWTOpWrVquI/b603hiPz588vixYvDfTy8PhLuwlXjQuSOkFZG5sX9Z27cf+bG/UdERERERESRVa9oJg1swPIDVxnYiAo06TYadUcnNKXOnj27mJWrxoWIiIiIiIiIiIiI4q86hTPK4CWHtRzV0oNX5ZMaeU1fScUjtjeAiIiIiIiIiIiIiIhcI0MqLymTI61+f+bmAzl2LdD0Q83ABhERERERERERERFRHFa/aCbL98sOXBWzY2CDiIiIiIiIiIiIiCgOq104oxjVp5YdvCohqEtlYgxsEBERERERERERERHFYRlSekm5nC/KUZ299UCOXjV3OSoGNoiIiIiIiIiIiIiI4rh6RTNbvl928IqYGQMbRERERERERERERERxXO1CGcXDKEd1wNzlqBjYICIiIiIiIiIiIiKK49KnTCLlcvro9+f8H8rhK/fErBjYIKIY5+npyVE3Me4/c+P+MzfuPyIiIiIiInJGvaKZLN+jibhZMbBBppUgwf/zpsh0+y1lypTcfybF/Wdu3H/mxv3nfp4Hmzdtm4iIiIiI4qfahf8rR7X8oHnLUSWMzML58uWT+vXry6hRo0Ldv3DhQhk/frysW7cuWjfur7/+kgULFsiMGTMs9z158kTGjBkjy5Ytk0ePHknZsmXl888/l4wZM0a4vh07dkjbtm1l6NCh0qpVq1CP9e3bV78OHz48zP2LFi2S1atXS7Zs2UI99vTpU5k4caIsXrxYrl+/LunSpZNatWpJ9+7dJUWKFLrMO++8Izt37pQRI0ZI48aNQz3/9OnTUrduXX0P1u8xPBjnfv36WX5OmDCh+Pj4SM2aNeXjjz+2vKYzsL3YHryHiPj7++t7q1OnjuXzMX36dClXrpzEhNFL9su5mw9i5LWIiIiIrPmlSyF9m5TgoBARERERkamkS5FEKuT2kS2n/OX8/8tRFc7iLXE6sAFLly6V5s2bS4UKFcSVtm/fLl988YUUKVIk1P3jxo2TNWvWyHfffSdp06aVb7/9Vj788EMNgDh6Bf/o0aOlRo0a+vyXefz4sSWggeDFRx99FOpxbMPWrVvlq6++Ej8/P7l48aIMGzZMzp8/rwEPQ6JEiTToYxvYwPuIbNYBAji///67Jchz6tQpfc0TJ07ItGnTxMPDuSScH374QbfXEXj/iOgZgY3NmzeLt3fM/Se47P9ATl0zbx04IiIiIiIiIiIiophWt0gmDWzA0gNXTRnYiPQseJYsWTTjAZPqroLsj/fee0+DBbaQPfHJJ59oVsErr7wiX375pRw8eFCDCY5Knjy5BkQisnHjRp3kf/PNNzWwYZuWg23p0aOHBnmyZs2qXwcPHizr16+XGzduWJYrXbq0TvrbjhkCG8WLF5fI1tZOnz693rAv3njjDQ2i7NmzR4MwzkqdOrWOjyNsxwPblDhxYqe3gYiIiIiIiIiIiIhco3ah/8pRLTt4xZTlqCId2EDJI5Rd+vXXX8Nd5tq1azrhj+ADyhIhoyEygZAtW7bo+lFiyVpwcLAGJF599dUwzwkMDHR4/QMGDNCgBIIBEWWnIChRpUoVuXz5suzatSvU48i2QGYJtstQokQJLZOVJk2aUPclSZJElzVgDBGMiY6yTbly5dLttA5s4HuUuSpWrJhm2KBkFPzzzz96H8p4GRB0KVmypAQFBWkpKmRtAPbZN998I5UqVZJChQpJ1apVZd68efoYlsEY4ob7jVJUKPdlZLtgXyHwguDN+++/L1evvmhGc+nSJV3277//lurVq2tWTpcuXeTu3btOjwURERERERERERERhc8nRRJ5NXc6/f7i7Udy6PK9uB/Y8PX11ZJMyBJA6SVbmAxv166dTpyjb8TYsWNlw4YNMnLkSIdfY86cORoUCbOxHh4a1EBWgQE9HRBEwES5o6pVq6bBCmRXPHv2zO4yDx480IwNLJcjRw7JnTu3TuJbQ78OvEdM7A8aNEhWrVqlwQFkkliXc8J2V65cOVQPEmRrIGCAPhnRAa+Jnh1w7Ngx6dOnj3Tt2lX7lDRs2FAzYBBIwfglTZpUAxwGBBjwHry8vEKtc9KkSbrvEMRYuXKlltJChsytW7ekY8eOWoIKN6M0ljWMB4Ir6C0yd+5cHecPPvggVBAInyGUBZs5c6Zm3UydOjVaxoKIiIiIiIiIiIiIwlevaCbL90sPXhGziVJDBlzVnz17du3tYGvTpk2ajYCr9RFsQHkm9MpAsALBguiE4MCUKVPk008/jXQJpIEDB2pg5rfffgt33WgOjsAGoCcHAhfWmQ7dunXT94m+F/Pnz9eAD4IVf/zxh91gCkpUGdauXavrjC5oHG6ML7JdWrZsKQ0aNND9hADM66+/rvsAgRRkwiCYAc+fP9f3iuwOW/nz59d9jIwLlAVD1gXG5Ny5c1quCoEQ3Gx7lQQEBMiff/6p+718+fK6HvTjOHv2rGbjGDBeRYsW1QwSbCuCG0RERERmgmMpR2+4wCMyy/PmPmNARERERBTX1CqUUTz/X49q2YGrpitHFaV0AfR5QLYDek9gUtwasgaQ4WDdRBpljnDF/oULF6RAgQLOb/X/Aw8oi/X2229LixYtIv189KdABgH6edSrVy/M4ygnhe02Ju0RDECGAQICjRo1siyHbAjc7ty5oyWdkH2AUlcI6hQuXNiy3Guvvaallg4fPqxBgn379mkmxMmTJyU6IKiB4IaxD1asWGEpGwUISFSsWFG/x/vFe0d2zd69e0M9Zg1lohCIGD58uJw5c0aOHDmi90d0cofAB07cEbAwIMsmZ86cum34Cgi6GLDt2A4iIiIiMzl+/HioC1+IiIiIiIjMIG3yxPJqbh/ZdPKWXLrzSA5cCpBifv9VSnJ3Ua6DhEn/Zs2a6RX9nTp1styPXhK2jInw6LraCUGH3r17S+vWraV///5RXk+HDh20KTjeg3XDbAQptm7dqsGYggULhnoOlkdgA+We8H3fvn31fpTDQtZBrVq1NAiCfhrWgQ2Uf0IZKJSjQuAHpbYcbdLt6El1njx5LOOM0lMoHWXNKDVVpkwZSZYsmb5HZNgggGEv42XMmDGyYMECadq0qa4L5aWMfhovY+8zYGyXdSkq63JdRERERGbkaDlUXP107949SZUqlfZpI/PAMSwzi4mIiIgoLqpXJJMGNmDZwavxI7ABvXr1ktq1a4dqJI6r8XHFPrITjF4YyE5ACaRs2bI5vcHbtm3ToMZbb73lVFDDmFjHZD1KNSGDw+jrgawMTMDPmjVLUqZMaVkePTamTZumzdFxgoOeEMjWsA5+IEBgrzyTUY5q9uzZOg7RWYYK4717926ZMGGCZR+gQbd1RgR6nOB+ZLeg5wf2G/pn4Ibm7vagNwYyc9BHA06dOqVfjbQknJTbS1FCRgr2N/Y7SnMZwSL0+DCyNYiIiIjiAmQyOwLHTDgGw/IMbBARERERkbuUoxqw+JA8Dw7RclT96uQ3zflKlHpsGJClgODG5cuXQ5VcwsQ2gg/IIkDmAhpO169fX69QcwYyKBDMQMYBMhJu3rxpuaGsUlSUK1dOgxPW72Hp0qU6IV+qVCnJmzev5da+fXs9IUX/iEKFCmlDcJR0WrJkiQYSMJGPQAm2BVkbttCvA2OCklVG747IQkDFeM9XrlzRklwYC/QyMdaJ7Vy+fLk2Vkf5LwRjcEOmiAHlqPA+Hj9+rH0w7EFgCn1B0IsEgRPsUzDGGlkoGDf0VLGGTBQEULDfd+zYodktn332mfYiweeDiIiIiIiIiIiIiGJXmuSJ5bVX0un3l+8+kv2XAkyzS5wKbEDz5s2lRIkSlp9xFZqROYAG1j179tRMhaFDhzr7UnLo0CGdzEfWBnpCWN/QKyKq+vTpYwm6YJIek/h4X7Z8fX31vSBzA8aOHatlqdCnA1kNXbp0kfv372ufDaPfhTUfHx9tlo0+I/YyOhyBbBHjPSPrAk25UQIL22BAs29kaCA7BE3B0dh81KhRGhCyXgaBKQRgkF1hz9dffy1Hjx7VIEi/fv309bD9uA/w3tEQHIEh28wNjClKb6FBeJs2bbQ8FYIrkW3yTkRERERERERERESuUb9IJsv3yw5cMc0wJwgxW7tziveQtYLsmHUXE8i5mw/i/XgQERFRzPNLl0L6Nvnv4p6I4JA7ICBAvL29TZPaTaGPPXFhkKOlx+KS2Hz//H/DsTUjfm45tmbEzy3H1oz4uY0+dx8+kdJfrZFnwSGSJXVS2dznRVWg2Dh/icyxp1M9NohiU88GxeLlySURERG5B9Sh9fRgkIKIiIiIiMwrdbIX5ag2nrip5aj2XbwrxU3QRDxGAxtotj1u3LhwH0dJpaiWrDpw4IC0a9cu3MczZ84sy5YtE3flyrGJq5hsZN79hpJtKNfGK1bNh/vP3Lj/zI37z/0wqEFERERERHFBvaKZNLABaCLOwIaNZs2aSdWqVcMdQHt9KRyVP39+Wbx4cbiPh9dHwl24cmyI3A3Sysi8uP/MjfvP3Lj/iIiIiIiIKLrVKphRBngelKfPQ2T5wavSr05+cXcxOtuPBt1Gk+7ohqbU2bNnF7Ny5dgQEREREREREREREdnjnSyRVHwlnaw/flOuBARpOarcqT3Enbn31hEREREREVEYjx8/lv79+0vp0qWlYsWKMmXKlHBH6ciRI9KiRQspVqyYZoofOnSII0pEREREodQrmtny/S+bz8iKIzdl+xl/7S3ojhjYICIiIiIiMpmRI0dqgOK3336TQYMGyfjx42XlypVhlnv48KF07txZAyALFy6UEiVKSJcuXfR+IiIiIiJDjYK+4vn/aMGKQ9el318npM3kHVJxxDpZeeiquBsGNoiIiIiIiEwEQYkFCxbIgAEDpFChQlKjRg3p1KmTzJo1K8yyy5cvlyRJkkjv3r0ld+7c+pzkyZPbDYIQERERUfy17fQteR4c9v5rAUHSdea/bhfcYGCDiIiIiIjIRI4dOybPnj3T7AtDqVKlZP/+/RIcHPpsFPfhsQQJEujP+FqyZEnZt29fjG83EREREbmn58EhMmTJEbuPGYWo8Lg7laViYIOIiIiIiMhEbt68KWnSpJHEiRNb7kuXLp323bh7926YZTNkyBDqPh8fH7l27VqMbS8RERERubedZ2/L1YCgcB9HOAOPYzl3kTC2N4CIiIiIiIgc9+jRo1BBDTB+fvLkiUPL2i4XkZCQEL3FJOM1Y/p14wOOLcfWjPi55diaET+3HFuzuHEvyOHlXHlsFpl1M7BBRERERERkIuiZYRuYMH728vJyaFnb5SJy79498fCI2YR/nNgaTc6NUlrEsXV3/NxybM2In1uOrRnxcxu9knk8c3i5gIAAcRXbsqovw8AGERERERGRifj6+sqdO3e0z0bChAktJacQrEiVKlWYZW/duhXqPvxsW54qIlivp6enxCTjij1vb28GNji2psHPLcfWjPi55diaET+30atK4VSS0fuUXA8IsvTUsIZLTDJ6e0mVwn7i6eG6C06eP3/u8LIMbBBRjIvpk2KKXtx/5sb9Z27cf+bG/UfRpUCBAhrQQAPw0qVL63179uyRIkWKhMmqKFasmEyePFlP/pH1gK///vuvvP/++5F6TTw3NrImjNdlxgbH1kz4ueXYmhE/txxbM+LnNvok9EwggxsUlK4z/9UghnVwwzgCHNSgoCT0dG0Gb2SO+dg8nEyLJzfm3W8pU6bk/jMp7j9z4/4zN+4/c+P+c87zYPZYsJY0aVJp3LixDB48WA4cOCBr1qyRKVOmSNu2bS3ZG0FBL+ok165dW8tIDRs2TE6dOqVf0XejTp06Tu4VIiIiIopLahfOJD+9XVIzM6zhZ9yPx90JMzZsVK1aVS5fvmx3sKZPny7lypULdzAvXrwoZ86ckTfeeEMuXbok1apVk7Vr10rWrFmjdafdv39fT15wMhMVP/zwg+zcuVNmzJhhSUUfNWqUbNiwQdedPXt2adWqlbzzzjvizkYv2S/nbj6I7c0gIiIiIhfyS5dC+jYpwTG20a9fPw1stGvXTlKkSCHdu3eXmjVr6mMVK1aUb775Rpo2baqP/fzzzzJo0CCZP3++5MuXTyZNmiTJkiXjmBIRERFRKAhe1CiYUXae9Zdz1+9IDt80Ujanj0vLT0UVAxt29O/fX+rWrRvmftR2jeh5ZcuW1cBGpkyZZPPmzZI2bVqJbtOmTZMdO3ZEObBhDanonTt31uDLL7/8orVz9+7dK0OGDJGnT59Kx44dxV1d9n8gp67di+3NICIiIiKKlayNESNG6M3W8ePHQ/1ctGhRWbRoUQxuHRERERGZladHAimfy0cK+CR0615nDGzYgTI56dOnd7qGsrPriKg5TnTASc/hw4c1WGI0GvTz89OME1zR5c6BDSIiIiIiIiIiIiKKf9hjI5K2bdsmjRo10sZ8KDU1d+5cvb9v375a3mn8+PFawgmBAaR54yvg+xUrVmgtWzTw69mzp5auQh1c/Pzmm2/K9evXLYGLiRMnalmswoULayo51gsLFy7U7/FaWCc8efJEvvrqKy2ThVuvXr3k7t27lm1GLd02bdro6+D17ty5898H4P/NBbds2RLqfb799tvaZNBw/vx5effdd6VEiRJSuXJlLctlOH36tD5WsmRJqVSpkm5fcHCwpezVBx98IG+99ZZms2C7I9peIiIiIiIiIiIiIqLwMLARCc+fP5ePP/5YG/AhSNGjRw8t2YTAwYABA3TSHxkOmMy3Z9y4cTJ8+HCtcfv3339rsAE3BEfQ4M8IJCxevFh+++03bey3cuVK6datm64TmRUokYXXwGuh1BWMHj1aDh06pM9HwAF9MrBtgCACSk0hCwNBkVq1asm8efMs25Q3b14pX768vq8mTZroulDmKnny5PocePz4sb4m7kMWxxdffCFjxoyR9evXy+3btzUokyFDBlmwYIHW7p05c2aowAf6jNSvX1/fE9LgX7a9REREREThHYvH1o2IiIiIiNwLS1HZgcn5L7/8MtR9mTNnllmzZmlmQbp06bQnBW6Y0EfJKZSvSpQokTbhS506tU7W22rfvr1mTUCBAgUkZ86cmsEBaPR37Ngx/R79OdDsr0KFCvozgh8//vijnDx5UgoVKqSvgdfC6z569EgDCX/88Yclg2PkyJGaCYEyU1evXtVtRmNBPC937tyaNYGAhAHNA3/99Vf5888/NeiCG4IaaCiO7UUABct//fXX2nwwT548MnDgQM32WLp0qdb3xXglTJhQ148gDbYX7xcwXngPENH2GvcREREREVnDsSKOJYmIiIiIiBjYsOOjjz7SQIM1TNojYIEJekzqT5gwQapUqSLNmjWLsKm4wciAAC8vL8mSJUuon5FdAcig2L9/vwYWUObp6NGjGiwwyjtZQzkrNPlu3bp1qPux7Llz5/TxHDlyaFDDgDJaGzdutPycJEkSLReF24ULFzQTY8qUKdK1a1f9/uzZsxqEQVDDgPdtBIEQbMH4GJBNgu29d+9FY2/r9xnR9jKwQURERET2xNZxIjI2Dh48GCuvTURERERE9jGwYYePj49kz57d7oAh8wH9ItasWaM3lHVCkOONN94QRxqKWzP6W9hCSSdkR7Ro0UIDLH369NHeGPYYqfGzZ88OFbww3gfKXNk2G0e2h2HVqlXi7++v5aQgW7Zs0q5dO+3rgbJXuDLOOmhhC0ERW0YAxtg262Ui2l4iIiIiIkeOpYmIiIiIKP5ij41IQBYCemog6IFsBpRTQnbFunXronWnzJkzR/tq9O/fXxo3bixp0qTR4IMRoEiQIEGoLBCc5KHcFLYLN2RWoJQVnoOyUciECAwMtDwHGSCGK1euaGAmKCgo1DakSpVKv6ZNm1YzPtA83Dr1f8SIEdoAHJkc6P2BLAzD3r179XnIcLEV0fYSEREREREREREREb0MAxt2IAiAIIbtDeWiVq9erdkUKNm0a9cu7YtRsGBBfR4yEBBEcHaCHoGMbdu2aQkoNNn+5JNPNHBglKpCT4sbN27IpUuXNCiAzA5kkqDpNxqZ9+7dWwMR6AHy6quvas8ONDdHWSs0EF++fLnltdAwHBkZaA6O18Q6t27dqq+JbBGsA9kb6JOBpuFYB5qBIxME9zdo0EC3y3gMWSxodI6SXdYBGENE20tERERERERERERE9DIsRWUHAhe42erRo4dmN+Cxhg0bSvLkyaV58+Y6UQ/4iiyLTp066eR+VGEduDVq1EjLM6HBOIIZRqZFjRo1NLBQr149zRbp27evZlCgNwgCIGXKlNGG4MiMwA3NwNEXBEEM1CZGKS0ETABZFSgLNXbsWPnss88szdERsEDWiH5IEibU9z106FBdBx5HMKJy5cr6+C+//CLDhg3T7BJkaqCUVZcuXcJ9fy/b3sjI4pNcnoZtO0JEREREcYhfuv/6vBEREREREUGCENsGDERuDn069u3bJ8WLF2etZSIiIqJ44HlwiHh6JIid147nx56x+f5xqhoQECDe3t52s8GJY+uO+Lnl2JoRP7ccWzPi5zZujm9kjj1ZiopMizE58+43lHvj/jMn7j9z4/4zN+4/c+P+c05sBTWIiIiIiMg9MbBBRDEO0VcyL+4/c+P+MzfuP3Pj/iMiIiIiIooeDGwQEREREREREREREZFpMLBBRERERERERERERESmwcAGERERERERERERERGZRsLY3gCiyDKaTqNOdYIEbCRpxv0XHBzM/WdS3H/mxv1nbtx/5sb9Z/7eKMYxaHw+9o6N1+ZxI8fWbPi55diaET+3HFsz4uc2bo5vZI69Gdgg08F/Kjh06FBsbwoRERERxbNj0Pj6vg8ePBjbm0JERERE8USwA8feCULi66VHZOoP9rNnz8TDw4MZG0REREQUI1erJUyYUI8/4xseexMRERGROx57M7BBRERERERERERERESmEf8uOSIiIiIiIiIiIiIiItNiYIOIiIiIiIiIiIiIiEyDgQ0iIiIiIiIiIiIiIjINBjaIiIiIiIiIiIiIiMg0GNggIiIiIiIiIiIiIiLTYGCDiIiIiIiIiIiIiIhMg4ENckuPHz+W/v37S+nSpaVixYoyZcqUcJc9cuSItGjRQooVKybNmjWTQ4cOxei2knP7z7B7926pVq0ah9Nk+2/Dhg3SqFEjKVGihDRo0EDWrl0bo9tKzu2/v/76S2rVqiVFixaV1q1by4EDBzikJvz9eenSJf0/uGPHjhjZRoqe/de1a1fJly9fqNv69es5vERR/F1Ijlm9enWY3z0fffQRh89JT548kfr164f6W3zx4kVp3769FC9eXOrWrSubN2/mOEfT2H711VdhPsczZ87k+Dro+vXr+v++bNmyUqlSJfnmm2/09y4/t64dW35unXP+/Hl599139byncuXK8ssvv1ge4+9b142tu39uE8b2BhDZM3LkSA1Q/Pbbb3LlyhXp06ePZM6cWWrXrh1quYcPH0rnzp11QnX48OEyZ84c6dKlix6wJ0uWjIPr5vvPcPz4cenRo4ckSZIkxreVor7/jh07Jh9++KH07t1b3njjDT1Zw378/fffJX/+/BxaN99/CCYOGDBAD1RKliwps2fPlvfee0/WrVsnyZMn5/5z8/1nbfDgwfr3kMy1/06fPi3ffvutVKhQwXKft7d3DG8xUdz5XUiOOXXqlFSpUkW+/PJLy308BncOJi0//fRTOXnypOW+kJAQ6datm+TNm1f++OMPWbNmjR43L1++XD/LFPWxNf6G4v4mTZpY7kuRIgWH1QH4bGLiPVWqVDJr1iwJCAjQQLKHh4ee1/Fz65qxxd8xfm6jLjg4WOf+ihQpIosWLdKJ+J49e4qvr68GPvm5dc3YYq7V3T+3DGyQ28HkzIIFC2Ty5MlSqFAhveFABn8YbE9mcGCIA3H8AU6QIIFO0v3zzz+ycuVKadq0aay9h/gsMvsP5s6dKyNGjBA/Pz+5f/9+rGwzRW3/LV26VMqXLy9t27bVn7Nnz66T4itWrGBgwwT77+bNm/LBBx9oxg3gYBBXxOLABRkc5N77zzrr5sGDBzG+reTc/sPVp8i0wQlE+vTpOZxEUfy/RJGHv/OYbOfvnugLFGHCBxOa1rZv365XEONcBxfc5c6dW7Zt26ZBju7du/Oj68TYGp9jXF3Mz3HknTlzRvbt2ydbtmyRdOnS6X2YjMc5+euvv87PrYvG1ghs8HMbNbdu3ZICBQroBV2YVM+RI4deHLRnzx4da/6+dc3YGoENd/7cshQVuR1cBf7s2TNNgTKUKlVK9u/fr5FEa7gPjyGoAfiKK4/xx4Tcf/8BAlH4Q480bTLX/kPEvlevXmHWERgYGCPbSs7tvzp16mgpHAgKCpJp06aJj4+PnniTOX5/3rlzR6/4Hzp0aAxvKTm7/3Dii2MWBPWJKOr/lyjyMEGBSQuKHjt37pRy5crJvHnzQt2Pz2vBggVDVRHA55jnqc6PLS6GQ7kffo6jBpOTKDNjTLxbjys/t64bW35unZMhQwYZO3asTrwj2IlJ9127dmnJL35uXTe2ZvjcMrBBbgdXEadJk0YSJ05suQ9/GJCGevfu3TDL4j+hNUzMXbt2Lca2l6K+/2DChAlSs2ZNDqMJ9x8mwK1LTuFqSlyJZl1Whdz7/x9gn2HyaPz48ZoqzTJU5tl/KMGIAGOePHlieEvJ2f2HwAZOHpBxiv4BzZs3l40bN3JgiaL4t4wcgwmLs2fPavlQ9NiqXr26fPfdd5pFRlHz5ptv6vFT0qRJQ93P81TXjS2Cc7g4YOLEiZph0LBhQy2fQo5BmST0fjAgYIx6+cjE5+fWdWPLz230qVq1qv5+wDks/pbxc+u6sTXD55alqMjtPHr0KNSJDBg/2x50h7csD85jT2T2H8Wd/Xf79m1Nq0fGFJvAm2v/YVJ84cKF2rS4b9++kjVrVm1ySe69/7Zu3apX06AkHJlv/yGwgUwpBDVQ0xa9wZBBhatSUZ6KKD7jsaTroF+JMb64OhMl8dBrC7+PBg4c6MJXjn94nuo6RtZjrly55O2339Yriz///HO9YKBGjRoufOW4Cdm/R44c0T6JyODm/Iprxvbw4cP83EaTcePGafkklE5Cc3b+vnXd2KIcqLv/vmVgg9wOembYTgAYP3t5eTm0rO1y5J77j+LG/sMfvg4dOuhVgPhDiOZoZJ79h6tgcUNdTaTxohY0Axvuvf8wAfXFF1/IoEGD+HvVpP//0N/mnXfesTQLR/YbTnjnz5/PwAbFezyWdJ0sWbLIjh079HcPJirwtx9XFH/22WfSr18/8fT0jPefv+j8HNtmGPE8NXo0btxYqlSpIqlTp7b8DT137pzMmTPHbSbazDTx/ttvv8mYMWO09w4/t64bW1xMxs9t9DAuAkImJ0pjN2vWTIMb1vj7NnrG9t9//3X7zy1nn8jt+Pr6at1w1NY1ILUMkwJI7bNdFpOq1vCzbXkqcs/9R+bff6i3+NZbb+mBw/Tp0yVt2rQxvMUU1f134MABnUi1LS+G55N77z/sOzTIQzNCpAkbdejfe+89DXiQ+///QwDYCGoYcCUUfqcSxXc8lnQtTE4Y/QmNv/2YwAgICHDxK8cvPE91HXx+jUk2A/+GRt6XX34pU6dO1Ql4lJwBfm5dN7b83DoH83xr1qwJdd8rr7wiT58+1d4mnBd0zdiix4a7/75lYIPcDq4cSpgwYajGaii3gcih7ZXgxYoVk7179+qV4oCviCjifnL//Ufm3n8PHz6UTp066f2oHYoDYTLP/kNK9OjRo0Pdh0AHDlTIvfdf0aJF5e+//5bFixdbboByIj169IiVbafI/f9D2TdcHW3bMJn//4h4LOlKmzZt0mbM1le2Hj16VCcteHFK9ML5KI6rkGVp/TeB56nO+/7776V9+/ah7uPf0MhBbz1kaeNcoF69epb7+bl13djyc+sclE788MMPQ02oHzp0SP92lSpVir9vXTS2M2bMcPvft5xlJLeD5mBIL0VNN1yVisjhlClTpG3btparH40DxNq1a8u9e/dk2LBhcurUKf2KA/U6derE8ruIvyKz/8jc++/nn3+WCxcuyIgRIyyP4RYYGBir7yE+i8z+a9WqlWzfvl1TpJFOijJieI7tgQu53/5DBkD27NlD3QDBRR8fH+4yE/z/Q2O+JUuWaFDq/PnzehKMCS/UriWK7yL6v0RRhww/lJpBPw30Kdi4caOMHDlSL1Sh6FW2bFnJlCmTBrFPnjwpkyZN0s9z8+bNOdROQlkU1Hn/9ddf9Vxk9uzZ+ve0Y8eOHFsHoBnwhAkTNNMXE8LGORxu/Ny6bmz5uXUOLhRCv4f+/fvr3B/+fiEj5v333+fn1oVja4rPbQiRG3r48GFI7969Q4oXLx5SsWLFkKlTp1oey5s3b8gff/xh+Xn//v0hjRs3DilSpEhI8+bNQw4fPhxLW01R2X8G3FelShUOoon2X61atfRn21ufPn1icespMv//1q1bF1K/fn39/dm0adOQPXv2cABN+PvTeGz79u0xuKXk7P6bP39+SM2aNUMKFy4c0qRJk5CdO3dyUIkc+L9Ezjlx4kRI+/btdWxfe+21kB9++CEkODiYwxoNbP8Wnzt3LuStt97S3/P16tUL2bJlC8c5msZ29erVIQ0aNNBj2Nq1a4esWrWKY+ugn3/+2e45HG783Lp2bPm5dc61a9dCunXrFlKyZEn9+/XTTz9Z/n7x963rxtbdP7cJ8E9sB1eIiIiIiIiIiIiIiIgcwVJURERERERERERERERkGgxsEBERERERERERERGRaTCwQUREREREREREREREpsHABhERERERERERERERmQYDG0REREREREREREREZBoMbBARERERERERERERkWkwsEFERERERERERERERKbBwAYREREREREREREREZkGAxtERBRlCxculHz58smCBQtC3V+1alV9LLr98MMP8s477zi07JMnT2T+/PlOvV5AQIAMHz5c30+xYsWkTp06Mm3aNAkODpaYsmPHDh1jR61YsUL8/f0jPV6ugm3HewBsF7bP3mPOfuZc+bmD8+fPS/fu3aVMmTL6WWjWrJksXbrUJa9FRERERC+O7XDcZ3tr06ZNtAzPtm3b5PTp0zE61Fu2bJFevXpF+3pDQkJk1qxZ0XLOgfOoJk2aWM4piIjcFQMbREQUZcuWLZNs2bLJn3/+6ZbbNnHixCg//86dO9KiRQs5dOiQDBs2TCexMbH9888/68/u6PLly/Lxxx/Lo0eP9OeOHTtqcCM2bd68WUqUKKHff/fdd7Jx40aXfeZ+//13qVu3rkQ3jGfbtm3Fx8dHTxj/+usvadq0qfTp00dWrVoV7a9HRERERC/0799fjyetbz/99FO0DE/79u3l1q1bMTbUCBh89dVXek4R3Xbt2iVDhw6NlnUlTpxY3n77bfn222+jZX1ERK6S0GVrJiKiOA1X8OAqp6+//lr69u0rFy9eFD8/P3EXuGrJGaNGjdKD+l9//VWSJEmi9+H9eXl5yQcffKAH+zlz5hR3YvuekydPLrEtffr00bZPIvrMpU2bVlxh69at8vDhQxk8eLDlvuzZs8uRI0c0K6hWrVoueV0iIiKi+C5lypShjifNbPny5ZI5c2Y9joxuzh5n22rQoIGMGDFCL5zKkiVLtK6biCi6MGODiIiiZOXKlXqi0bBhQ8mQIUOYK+hPnjwpjRs3liJFisi7774rV65csTw2ffp0qVKlij6GK993795teQzp4Fi+ZMmSUqlSJRk/frzd0k8oOYT0dGsou4QMBaRS9+vXTw/EkVJ96dIlPdj/8ccfpWLFilK6dGl5//33Q22T7dVUyAx46623LEENA7Yb5aiMA3yUq/r888/l1VdflVKlSslnn32m9wG2A9s4aNAgfWzSpEk6IY8bxq1ChQpy7tw5uXfvnj4P7xnb9+WXX0pQUJDdbduzZ4+m36McUvHixeW9996TGzdu6GPVqlWzfMX42Jai2rt3rz4Xz8N2zZkzx/IYtumbb77RjA+s+4033pDFixfb3YauXbvqiY5h4MCBOi4GXEmH51uXm8K2LFq0SG/W+w37HidO+CwgWIR9FtXPnHUpKrxvBKU6dOggRYsWlebNm2s5KewrZJDUrFlTdu7c6dDnzsPDQx48eCD79u0L9XqffvqpXnVnOHDggGXfINiBz5CjY+/MZ4KIiIgoPoro+P7UqVN6fIdjPxxrvvnmm5bSU8bxKLJycZz6snOL6Dpew/Ff9erVLT8fO3ZMWrdurceOxvGn4fHjx5oxgWNqHD/ivV29elUfw7kNjrHx3lEmtUuXLvo+bEu9zp07V98T3j/ey/Hjxy3rv3//vvTs2VMfw3HrwYMHQ20rLvDC+c28efOitG+IiGICAxtERBQlmLStXLmyTvrigBmT4NZXCuHAvVOnTvLHH3/Is2fPtGwP4Cr3kSNH6mQ/+i3gJAST6ZhEvn37tp5wYNIaPRSwzMyZMzUQEhk4QEfaesaMGXWSPVOmTLqeJUuWaCYGDtBRVgilmp4+fRrm+RcuXNAr9HECZCtBggRSvnx5PdiHDz/8UI4ePaplr6ZOnaonSzjpMWCiHoESnCzVr19f78OEPN4zylrlyJFDBgwYIIGBgTpmEyZM0BMLe6nkWAYnLq+99pqWxsLEPbYVARMw+k7gq21JJmxXu3bt9OQH24IUeAQnVq9ebVkGZZYKFSqk68bEP8Yfr2kLJ27WvTGQ+o4TrWvXrllqB2MZaxhr9CjBDSWjDNhWBEZwHwJCKFcV1c+cLZzstWzZUt8v3geCG+nSpdPXypMnjyUoEdHnDid1yM7BiSeCEzjp3L9/v2aI4LNlZJPgPRYoUECDN9hP+MzjhNWRsY/qZ4KIiIgovnrZ8T3OLRAMwMVIOM7CJP/z588t5ZWM41EELvAcRzhzvIbjXBw/4jje0Lt3bz12xLE3St3+8ssvlrKtOB7FsSKOGbHtOJ9C1rj1BV///vuvnmvhmNMIwBhlYNetW6fHrLioB8emuMgKwQ/jAiys/8yZMzqGOBbHeYwtbOumTZsisUeIiGIWAxtERBRpmMTGgbRxxREmwVEWCNkEBkwAYyI/b968eqCOq+MxwYuJfgQHkIadNWtWPTnACQYO0nFQnzRpUr3aKXfu3Lr+Hj166EF+ZCDogCv7PT09NXUdX7EOnDyUK1dO142TDhzY2ztYx9VXgHW8DCat8b6w/cgKwA3f40QCJwoGBHiQco73DAiYYGIeyyMwsWbNGn0errDCfXj/OAGxDSrgCjCc0HTr1k1LMOEEBWOP7BjrUkz4ipJZ1lAyqWDBgnplVq5cubQhIDIkrMcWr48MEKwb447XM9ZtDUELvHds382bN+Xu3bt6pRk+E4ByUbjqzLYsFrYJN+uSUcj+wD7BayPwgPVG9TNnC1kkCKS88sor+rwUKVLIRx99pPsfAQ9jH0X0uUPWzuzZszX7A8EbnDji+RhDXK1nBF28vb31xBDji0wkZHRgDB0Z+6h+JoiIiIjiMkzAY6Le+oYLkOBlx/c4BsNFKbjgCP3ZcPEOjsGQxQHG8SiO3xwt3+rM8RouhEqUKJGe/xhwXpQ6dWoNvrz++usaXMAxI94DgihffPGFXlCVP39+vfjn7NmzegGRARfO4L3h+BLvA3Dug3MhjA0utMHxMIIwOOfC66BXHLYPF5jhuBXjguN2nGPYwpji2BwBISIid8QeG0REFGmYxMVkr3FVftmyZfVgGgfyyMAAHNwbcACPg3ZMJOM5CHag/BAO3FE2CU26EyZMqIEPHFzjewNOXjB5bgQbogJlhDAh/cknn+jV/gac8BgT09awrWBc0RQevJ9UqVKF6rWBEwCMBR4zAiPWJzBgXacW7xlBHZzMWMN9KJ1kDScqKO+FUlg4OcKJGVLKkf4eEbyO9T4xxhZXgBlw0mNAEABwdZgtI0iDMlJorI314LkIMuDkC9uFLAdH4GTMgPFC2n1UP3O2rMcdARVsM4Jqxs9Gtk5EnzvsY7wWrobD7cSJE7J27Vo9+USgBCeIONHE59n684VACOBquYjGPjKficKFC0cwqkRERERxA461cEGLNVyQEtHxPQIQuNAKGb6HDh3SY3NkjiN7N6qcOV5DhjCOJ623FYGH0aNHa7YJspIbNWqkx/vI7MB6cOGQ9fkJzjnwusa5x8t6X2A5BF2wfgOOszE2OG5FsAIBE4O9THW8JrYDFzEhG4aIyN0wsEFERJGGSWacNCBjwICDY/RAQLozIEvCGg6KcZUSTkRQ7geZDuvXr9fSPEjfxlfbfhbG84z1WzMmqK3Zm4S3fu73338fpuG3cXWT7WQ7JtkPHz4cZkLayDJAnVqjHJW917PeXtv3Zf0zlsNrIY3clq+vr57YGK5fvy7NmjXTSXgEDpA1sGHDhlDLhCe8sbXeTuwfW+GVekJqOvYhTpAQWMG4IgV/+/btemKEYIAjrE/unPnM2WaogHWg4mWvFdHnDhkXCPQY5b0QmMMN+wEZLjhRtX0tR9Yf3mckos8EERERUXyBCXV7zbYjOr5H4APZwGnSpNEgBzLJEdyYMmWK3ddx5NzCmeM1rN+2b2Dnzp01uxiZH8j4RgYGsj7sBRmM17Reh71jTOtlUZoX/UCs4ZjWXk87e+c1xnmAvbEhInIHLEVFRESRgit8cLUTUpdxBZRxGzNmjDahM/oG4Kp2g9FcDycdaKKMurS4sh8NvjExjclxXO2PxxFMsO57geWRKm5kUVhPwuOExfrAG430DNYH4Jhkx0kRrsDHiRFu6I2Aq5jwfmxhkhqT2Og5gf4Y1nDSgRv6MWB78b6sy04hWwHjYHuCFR4sh3RwbK+xbZjARx8S29fG2OJEDeOHEx9kKqAckyMnHf9r745V4tqiAAx7W58grYXvYZcubYpYCJa2+gA2kRRCSJMipBAfwUo7G8Eu+BiC5BHu5T9wZDJGxxnxMoPfB0JiJuOZ4ynW2muvtTc2Nh4UQLq3z73OabWsV9hoPFTXUcGh3/n5+fmDMVSjRZOi5z5zi5r13PW5fvz48SAZ7bkqCSxBrGOl7pnJQlAt/40BmPfez/NMAAC8RbPi++LU29vb4cy0xsK2KaiDxR/btDMrt3hpvFanSHnD+PPLfzrvrViyLt/T09Nh01KxdGNhy0d+/fp1//9///49dII8Fj9Ox9m9ro6W8dr66kzA3rPRVX3eyQPDi7Wn9TO7jopDAMtIYQOAubRzvsXejx8/3u9c76tCQGcZtOCcxvRcXFwMc1krYDTftYC6nfUd6lzXRslC79ec3GbTNp6qRKB5srVPt3up8wxqI58O1mvvri26JKDF/aOjoz9GR9UZ0t8rqrTbamdnZ+3r169DUaLvtUjeonyB/d90wHOL5ru7u0Ni1Bzdrrk5vR2812dt7FTt540nurm5Gb76c4dEd0+eo/eoELC/vz/8/xbYu1/dk+muh+57CVlnWPSZOzS8ezwmT33mdM8nE7N0OHbjq2pHL9lrhFPnRnz69GltERWmWvAfW+0rAtTp8lRho+trh1idJ6/xzC1q1nPX77v73UHxFeD6c91GdYp0/0pIe4+ex5LZnq86kBpXVWfLvPd+nmcCAOCteiq+L3YsdiquK+cojp/etLS+vj6cJ1eBYlZu8dJ4rVynTTLFmmO3Rddah0abpCoyNOa10aad+dGo3v7t+vp6iO0PDg7W3r1798fh45PGPKCxWxVNKpacnJwMcXJ5TAWfztXoutuU09ir3r/NN/2MRqdOa9NOh5vr2ACWlcIGAHMvMreI+7d25RaCr66uhoXrgukSjXYetZvq8+fPw2sKjjtMvJ3stV63c6hAewyy+37Bd2dJFGzXmdCC8rR2yFdE+P79+/Dadj+9f//+j4X3Cilda4vKFShqR2/xutdXIPj58+dfR1Gl+baNyGrHVAlL7eslB835rbgx+vLly/CaEqt+xubm5lC4mUeL4Z0H0Xt039phNTkPd9T9+vDhw3ANjaQqCekelCCVpFVc6N/rFCh5m9T5EnV6dJhi96T71ufofRbR76o2+ZKv8Vmoc6MdXY+dAVEC1cJ+1/jYbrmXPHOLmvXcVbDpWWiUVd/r91Cy2zWVZKYEtvtbQtqzUofH8fHx8Lwvcu+f+0wAALxVT8X3nWe2t7e3dnh4OMSebTrpdXd3d/dxY6Nli7na0DIrt3hpvFas2IjbNsmM6j7uvLo+Q5+lWHo8xLtrqcukuL94t0JI5+w9Ngq3wklFjw5Mv7y8HDYAdf7It2/fhti0jVF9tvFMvTbodI+67uLS7e3tB+/ZtU6fIQKwTP75d56VBQAAAABgLhVX6qBoPNayq/OkokbXW/EGYBnp2AAAAACAV1TnRF0lk+fzLauzs7O1ra0tRQ1gqSlsAAAAAMAraoxUI6DmHVv7f2vEbeeRNA4LYJkZRQUAAAAAAKwMHRsAAAAAAMDKUNgAAAAAAABWhsIGAAAAAACwMhQ2AAAAAACAlaGwAQAAAAAArAyFDQAAAAAAYGUobAAAAAAAACtDYQMAAAAAAFgZChsAAAAAAMDaqvgP+MPIaE2iscgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Calculate feature correlations with target\n", "correlations = X_final.corrwith(y_final).abs().sort_values(ascending=False)\n", "\n", "print(\"=\"*80)\n", "print(\"CORRELATION-BASED FEATURE SELECTION\")\n", "print(\"=\"*80)\n", "print(f\"\\nTop 20 features by absolute correlation with AimoScore:\")\n", "print(correlations.head(20))\n", "\n", "print(f\"\\nBottom 10 features (lowest correlation):\")\n", "print(correlations.tail(10))\n", "\n", "# Visualize correlations\n", "fig, axes = plt.subplots(1, 2, figsize=(16, 6))\n", "\n", "# Top 20 features\n", "correlations.head(20).plot(kind='barh', ax=axes[0], color='steelblue')\n", "axes[0].set_xlabel('Absolute Correlation with AimoScore')\n", "axes[0].set_title('Top 20 Features by Correlation')\n", "axes[0].grid(True, alpha=0.3, axis='x')\n", "\n", "# All features sorted\n", "axes[1].plot(range(len(correlations)), correlations.values, 'o-', linewidth=2, markersize=6)\n", "axes[1].axhline(y=0.05, color='r', linestyle='--', label='Threshold (0.05)')\n", "axes[1].set_xlabel('Feature (sorted)')\n", "axes[1].set_ylabel('Absolute Correlation')\n", "axes[1].set_title('Feature Correlation with Target')\n", "axes[1].legend()\n", "axes[1].grid(True, alpha=0.3)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Correlation Threshold: 0.05\n", "Features selected: 35 (from 1675)\n", "Features removed: 1\n", "\n", "Removed features:\n", " - No_15_NASM_Deviation: r=0.0014\n", "\n", "================================================================================\n", "CORRELATION-BASED SELECTION RESULTS\n", "================================================================================\n", "\n", "Training R²: 0.6140\n", "Test R²: 0.4842\n", "Test RMSE: 0.1605\n", "Test MAE: 0.1220\n", "\n", "Comparison to Baseline:\n", " Δ R²: -0.0022\n", " Δ RMSE: +0.0003\n", " Overfitting gap: 0.1299\n", " Features reduced: 97.9%\n", "================================================================================\n" ] } ], "source": [ "# Apply correlation-based selection\n", "corr_threshold = 0.05\n", "selected_features_corr = correlations[correlations >= corr_threshold].index.tolist()\n", "removed_features_corr = correlations[correlations < corr_threshold].index.tolist()\n", "\n", "print(f\"\\nCorrelation Threshold: {corr_threshold}\")\n", "print(f\"Features selected: {len(selected_features_corr)} (from {len(X_final)})\")\n", "print(f\"Features removed: {len(removed_features_corr)}\")\n", "print(f\"\\nRemoved features:\")\n", "for feat in removed_features_corr:\n", " print(f\" - {feat}: r={correlations[feat]:.4f}\")\n", "\n", "# Prepare data for correlation-based model\n", "X_train_corr = X_train_scaled[:, [X_final.columns.get_loc(col) for col in selected_features_corr]]\n", "X_test_corr = X_test_scaled[:, [X_final.columns.get_loc(col) for col in selected_features_corr]]\n", "\n", "# Train model\n", "corr_model = LinearRegression()\n", "corr_model.fit(X_train_corr, y_train)\n", "\n", "y_train_pred_corr = corr_model.predict(X_train_corr)\n", "y_test_pred_corr = corr_model.predict(X_test_corr)\n", "\n", "corr_train_r2 = r2_score(y_train, y_train_pred_corr)\n", "corr_test_r2 = r2_score(y_test, y_test_pred_corr)\n", "corr_test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_corr))\n", "corr_test_mae = mean_absolute_error(y_test, y_test_pred_corr)\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(f\"CORRELATION-BASED SELECTION RESULTS\")\n", "print(\"=\"*80)\n", "print(f\"\\nTraining R²: {corr_train_r2:.4f}\")\n", "print(f\"Test R²: {corr_test_r2:.4f}\")\n", "print(f\"Test RMSE: {corr_test_rmse:.4f}\")\n", "print(f\"Test MAE: {corr_test_mae:.4f}\")\n", "print(f\"\\nComparison to Baseline:\")\n", "print(f\" Δ R²: {corr_test_r2 - baseline_test_r2:+.4f}\")\n", "print(f\" Δ RMSE: {corr_test_rmse - baseline_test_rmse:+.4f}\")\n", "print(f\" Overfitting gap: {corr_train_r2 - corr_test_r2:.4f}\")\n", "print(f\" Features reduced: {100 - len(selected_features_corr)/len(X_final)*100:.1f}%\")\n", "print(\"=\"*80)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5: Feature Selection - Recursive Feature Elimination (RFE)\n", "\n", "**What we're doing:**\n", "- RFE systematically removes least important features\n", "- Testing with 5, 10, 15, 20, 25, 30 features\n", "- Finding the \"sweet spot\" between model simplicity and performance\n", "\n", "**What to expect:**\n", "- Performance curve showing improvement then plateau\n", "- Optimal features typically 15-25 (domain-specific)\n", "- Better generalization than baseline\n", "- Clear ranking of feature importance\n", "\n", "**Domain context:**\n", "- RFE respects feature relationships (unlike correlation-based)\n", "- May identify unexpected important features\n", "- Accounts for multicollinearity better" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "RECURSIVE FEATURE ELIMINATION (RFE)\n", "================================================================================\n", "\n", "Testing different feature counts...\n", "\n", "Features Train R² Test R² RMSE MAE Gap \n", "--------------------------------------------------------------------------------\n", "5 0.5356 0.4156 0.1708 0.1329 0.1199 \n", "10 0.5844 0.4822 0.1608 0.1215 0.1022 \n", "15 0.6023 0.4845 0.1604 0.1217 0.1178 \n", "20 0.6096 0.4859 0.1602 0.1222 0.1237 \n", "25 0.6134 0.4876 0.1600 0.1226 0.1259 \n", "30 0.6150 0.4870 0.1601 0.1222 0.1280 \n", "35 0.6156 0.4865 0.1601 0.1222 0.1292 \n", "\n", "================================================================================\n", "BEST RFE CONFIGURATION: 25 features\n", "================================================================================\n", "Test R²: 0.4876 (Δ +0.0012 vs baseline)\n", "Test RMSE: 0.1600\n", "Overfitting gap: 0.1259\n", "\n", "Selected features:\n", " - No_1_Angle_Deviation\n", " - No_3_Angle_Deviation\n", " - No_4_Angle_Deviation\n", " - No_6_Angle_Deviation\n", " - No_8_Angle_Deviation\n", " - No_9_Angle_Deviation\n", " - No_11_Angle_Deviation\n", " - No_12_Angle_Deviation\n", " - No_13_Angle_Deviation\n", " - No_6_NASM_Deviation\n", " - No_8_NASM_Deviation\n", " - No_9_NASM_Deviation\n", " - No_10_NASM_Deviation\n", " - No_11_NASM_Deviation\n", " - No_12_NASM_Deviation\n", " - No_13_NASM_Deviation\n", " - No_15_NASM_Deviation\n", " - No_17_NASM_Deviation\n", " - No_19_NASM_Deviation\n", " - No_21_NASM_Deviation\n", " - No_22_NASM_Deviation\n", " - No_25_NASM_Deviation\n", " - No_1_Time_Deviation\n", " - No_2_Time_Deviation\n", " - EstimatedScore\n" ] } ], "source": [ "# RFE with different feature counts\n", "rfe_results = {}\n", "n_features_to_test = [5, 10, 15, 20, 25, 30, 35]\n", "\n", "print(\"=\"*80)\n", "print(\"RECURSIVE FEATURE ELIMINATION (RFE)\")\n", "print(\"=\"*80)\n", "print(\"\\nTesting different feature counts...\\n\")\n", "print(f\"{'Features':<10} {'Train R²':<12} {'Test R²':<12} {'RMSE':<10} {'MAE':<10} {'Gap':<10}\")\n", "print(\"-\" * 80)\n", "\n", "for n_features in n_features_to_test:\n", " if n_features > X_train_scaled.shape[1]:\n", " continue\n", " \n", " # Create RFE selector\n", " rfe = RFE(LinearRegression(), n_features_to_select=n_features)\n", " \n", " # Fit RFE\n", " X_train_rfe = rfe.fit_transform(X_train_scaled, y_train)\n", " X_test_rfe = rfe.transform(X_test_scaled)\n", " \n", " # Train model\n", " model = LinearRegression()\n", " model.fit(X_train_rfe, y_train)\n", " \n", " # Evaluate\n", " y_train_pred = model.predict(X_train_rfe)\n", " y_test_pred_rfe = model.predict(X_test_rfe)\n", " \n", " train_r2 = r2_score(y_train, y_train_pred)\n", " test_r2 = r2_score(y_test, y_test_pred_rfe)\n", " test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_rfe))\n", " test_mae = mean_absolute_error(y_test, y_test_pred_rfe)\n", " gap = train_r2 - test_r2\n", " \n", " # Store results\n", " rfe_results[n_features] = {\n", " 'model': model,\n", " 'rfe': rfe,\n", " 'train_r2': train_r2,\n", " 'test_r2': test_r2,\n", " 'rmse': test_rmse,\n", " 'mae': test_mae,\n", " 'gap': gap,\n", " 'features': [X_final.columns[i] for i in np.where(rfe.support_)[0]]\n", " }\n", " \n", " print(f\"{n_features:<10} {train_r2:<12.4f} {test_r2:<12.4f} {test_rmse:<10.4f} {test_mae:<10.4f} {gap:<10.4f}\")\n", "\n", "# Find best configuration\n", "best_n_features = max(rfe_results, key=lambda x: rfe_results[x]['test_r2'])\n", "best_rfe = rfe_results[best_n_features]\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(f\"BEST RFE CONFIGURATION: {best_n_features} features\")\n", "print(\"=\"*80)\n", "print(f\"Test R²: {best_rfe['test_r2']:.4f} (Δ {best_rfe['test_r2'] - baseline_test_r2:+.4f} vs baseline)\")\n", "print(f\"Test RMSE: {best_rfe['rmse']:.4f}\")\n", "print(f\"Overfitting gap: {best_rfe['gap']:.4f}\")\n", "print(f\"\\nSelected features:\")\n", "for feat in best_rfe['features']:\n", " print(f\" - {feat}\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAASmCAYAAACN2ZLOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4FPXWx/FfekILvaMU6YJ0LFiwYkevoK8NVGz3ir3rFbADlqtiRVFQbNgRxUaxoTQBQUGaSA+9hSSkvM/5J7tsGikk2Z3k+3meNTuzszuz809wZs6cc8IyMjIyBAAAAAAAAAAA4AHhwd4AAAAAAAAAAACAwiKwAQAAAAAAAAAAPIPABgAAAAAAAAAA8AwCGwAAAAAAAAAAwDMIbAAAAAAAAAAAAM8gsAEAAAAAAAAAADyDwAYAAAAAAAAAAPAMAhsAAAAAAAAAAMAzCGwAABAiMjIygr0JAAAAgB/Hp97G+LGPgPIsMtgbAAAV2WWXXaaZM2dmmxcWFqZKlSqpadOmGjBggM4999wDLh/ogw8+UIcOHXT33Xfr448/zne52rVr66effirUNj733HMaNWrUAZdp1KiRpkyZouL66KOPdM899+i7775T48aNFSrK4rv7TJgwQcuXL3djl5/8xtV+X2y/nX/++briiivcvN27d+vOO+90n5mamqoTTzxR9957r/v9AgAAQG4cm5fu8WngPu7cubPefffdPD/zlltu0RdffKHzzjtPjz/+uH/+nDlzNHr0aP3222/as2ePO6c5+uijdf3116tJkyYFblNxzoVKSkHb9Mwzz6hPnz4ltr6UlBQ98cQTOvzww3XOOeco2H7//XeNGzdOs2bN0tatW1W3bl0dddRRuuaaa7KNXVl74YUXFB0drUGDBgVtGwAUH4ENAAiydu3aaciQIf7ptLQ0bdiwQW+88Ya7MF29enUdf/zx+S4fqEWLFv7nderUyfeifFRUVKG3r1+/fjr22GOzneBYAOW9997zz7ODwYNxwgknuM+zA9xQUhbf3efFF19Ujx49Clwu57jaXVibN292J4Z24hcTE6OLL77YnTTEx8dr8uTJ2rRpk/sedmLZtm3bEtleAACA8ohj89I7PvUJDw/XvHnz3DlP/fr1s31WYmKipk6dmmsdM2bMcBefTznlFD3yyCOqWrWq/vnnH40ZM0YXXHCBO04/5JBD8t2m4p4LlaQDbZPd1FaSEhISNHbsWD322GMKtvHjx+vRRx9Vz549ddttt7lzvlWrVum1117T119/7bazTZs2Qdk2CyjdcMMNQVk3gINHYAMAgqxKlSrq1KlTrvnHHXecu4vFshkCAxv5LZ+TXXAvzHIFsZONwBOOH374wf0sic/2qVmzpnuEmrL47kWV37hacOjkk092vy924ti7d2/3MB9++KGqVavmsksAAACQP47NS+/4NDB4tGzZMncDzsCBA7O9x4IacXFx7tg10EsvvaSOHTvqf//7n3+eXSi38yQLdrz++uvZbv4qqXOhkhSK21TaLMvGAlGXXHKJ7rvvvmxjZ78bffv2dVnl9jsCAEVFjw0ACFF2Z5Md/JZ26SA7iGzdurV+/fXXg/oce799jt2ZZRfUu3Tp4k/xtjuoLFvADuTthMTKa3355Ze5tmHNmjX+VG07ybEL8qeddppLobb3fP/99/mu3052bLkdO3Zkm2+ZL+3bt9eWLVuUnp6up59+2pVlsmXt55NPPql9+/Yd1Hf/66+/dO2117rvbI///Oc/Wr16dbZl7E4kSy+3UmGWPTF06FBXLsrYdqxdu9alpwfuh6KwO8/sJDDw98U+3+5Aeuutt/Tyyy/nOkEEAABA+Tw2D9XjU1+ZKgtIWGAjJytBZcf/kZHZ78O1DJC8+kXY3f/333+/jjnmGJUEW/eNN96Ya76di1jJK2OZItddd527OH/EEUfowgsv1PTp01VSvv32W3fuZONi3+vhhx92mSw5l7FgkZX0svMaG0fLjDA2VieddJJ7buV+bSx9ZcDskdc5nO/3zX7/LPBk52+2bsvYsSBUYbcrJ8vKsOyaW2+9NddrdmObnffZtvo+x6oX2Pc4++yz3XmjBcespFZycrL/fUX5HvPnz3fjY9ts56i2PT62vLEsGt9zAN5CYAMAgswO0K0Hgu9hB20rVqxwB6FWOzawx0Zey/seeR3o57VczmV9ZaDs4n9JsAPDu+66Sw888IA70LYDU3tud+TYxXU7MLWTwttvv92ln+dn4cKF7sDTTiyef/55RUREaPDgwbkCFz528GvfzdKZA02aNEm9evVSrVq1XE3ed955x53YWdr6//3f/7l1WJp9ca1cuVIXXXSRC5wMHz7c3ZFkJ4322TbPfP755xo5cqS7U8nWZ+v/9NNP9dBDD/n3maWm2wleYUpyBY6l1c+1kxdLM7dtsbuejNWute2yk0A7IbUTWgAAAJT/Y/NQPT4NdMYZZ/jLUflYUMVuZDrrrLNyLW/7xXpr2AVtKw0bGKSx8rF2rnGgbSpobHysH4UFKXwBHmN9RhYvXuzG3m6UsoDR3r17NWLECNejwUoHW9DDyisVpKDtmThxohuL5s2bu3Mgu0nps88+07///W//ctOmTXPL2O+Ird/6AlqfigcffNBdyLex8pW8su0qqGdgThZcsHMl+72x33srd1yY7crJ5v/444+uCoEFuPJivwf2uRbsMnbeaL83Np52jma/n3aT1oHWkx8bq5tvvtmt45VXXnHnQzZmvix8X3lhK2UWWGoYgHdQigoAgsx6IeQ8cbG7mlq1auVqfvrKCR1oefPUU0/pzDPP9E/bHVb5nRBZ746rrrqqVMpA2Z1DgY3v7KTD1mUHoz5WEsnu9rHU5MBtDrRr1y53p42vVq4d7F566aX65Zdf3J1UOdlndu/e3Z2k2cmN726qBQsWuCwNY40K7Y6mf/3rX27a7kCyg2y7i6i47ETBPsMyQ6x0gbGDdzsYf/XVV12Qx9ZrzRPtwNxqCtt67fv4gjR2N5EFe2wcCkpPz29crS6vpd/bCauxIM62bdvcCcDVV1/t5tmJyZFHHlns7woAAFDelYdj81A9Ps0ZqLBtDCxH9c0337ibkbp27Zpr+ZtuusmdH1hQw7bdWMlYC7zY++2Ce2G2Kef+ziuwYYECy07wBWTs/MIyny3zwQJDFuiycxtfuWDLLLB9bgGd4uwn6zthTbTtuN1uArPsGfsZuB/tO1rAxfabZVBYY/XA0k52Q5llkFjGgmWR+Prq2bmUjWVRWUaKrcsUdrtysnMRCwza71lh2Pey8fXtD2OZIRaosTGzoFdgieaC2HbbOPnODe33yn7HLDBk38X3e22/RxWtRBhQXhDYAIAgs4PbYcOG+Zu8Wd1YK41kP3MeoOdcPlBgszxjd1jll4nQoEEDlZaczaktvdjs3LnTnQTYnUy+FOEDHfzbSVTgd/L1urC7o/JjJyJ28mTNsu37W7aGncz50q/tYN9KT1nwxebZAbgFSw6GBVrsRDA2NtbdcWVsnd26ddPPP//spi2YYHcBWTDHTijtgNwyTIpTyiBwXG2f2l1aFsCxxox2QuNjJ6z2AAAAQMU6Ng/V49NAtm12PB4Y2LBj99NPPz3PbbAgi2UkWAa3XUi372jnFPYd7GYoCySdeuqpeW5TUfa3ZT7Ynf1WEssX2LDtshu3bBtq166tww47TP/9739dNoJlhltvRLuBqCj7KZDvPMfOlSyDxTJCfONm7OYtGz8r82vnL9ZE3VgGkWXE2L7+/fff3byCgivFOacr7HblZBn3vgyQwvAFrHLe+GbTtn9tvIsS2DCBv3++QF1B5bMAeAeBDQAIssqVK7uanz52h41doL/yyivdQXrOO7ZyLp8fO3ArzHIlzZdG7GMH2pZSPGPGDFdn104I27Rp4147UDpxznRl3wmOpRTnx044LH3e+ndcfvnl7iTEsjvsxMnYSYDtP+vdYXcbWfp9y5YtXV3e4mYybN++3Z342CMn39hZ+rNt99tvv+1PF7cMEyvHZa8VRc5xtRMvy0CxrAyrhdusWbNifQ8AAACUj2NzrxyfWhDDShrZRXPrYWLnC1Y6qKDggJUOsoexAMcdd9zh+oNYgMayT/LapqKwklN2TmEZB1ZSy27MevTRR/3nJFamyQIUdvf/J5984s5xbN0W4IqPjy/0fspr3Ix9Tl7BMgu0+UrO2s1cllVi23PooYe6oJUparmmwpzTFXa7crJ9YX8f69aty3c9FmSwwKEt68sWsjEOZP1WatSo4TJ2isp3Huhjvx8ltY8ABB+BDQAIMXYXkAUCLN3a6ppahoFX2cmSpRHbwb6lFdudP3ZgamnGVsO3pFlJKbvzywIbFqhYunSpu5sq8EDW0u3tYWnkdreXNR23O7/sTiM72SjOOo8++mhdccUVuV4LbHpotYLtYQfkdneXlYqykzBLia5Xr16xv7MFgOxuOGuKZ3cyWQ+R0m5qCQAAUFF48djcK8enlulgF74ta8MupFvJIisbm5P1jbBeEXZTUs4m4XbMb2WlrC+DBSKslNXBsoCLNca2wIFlK1jAJ7A8lu0bC6RYcMF6b9j2276zi+82r7is3JWxskuWcZOTL2hiwSfbLis1ZhkJdg5jWe3vv/9+gevImT1RmOyFwm5XXiyjxTItrCSVBa9ysm22PjB2ruj7HMu+t33uY4EPG1vbvwfzPQCUPzQPB4AQZJkHVvfT6rn6UnK9yA5ALT3a7qiyu5N8J1JWH7Wg7IvisjusrBGhnUA1bNgw28G3NVG0kxRjJz2Wem9BDkuZD2wQWBT2+RaosaCNfUd72AmZnWjYXVzG7jyzpni+E007WbJ6r5bK7bvDyXd3WXFYXd/+/fu7hop21xgAAAAq7rG5V45P7YK8ZTp89dVX7sak/HrvWS8Hu3A/bty4PM8f7HzD7vIvqb6BdiHfeql89913btssY8cXmLHvY0Ej6+Nn82wf33LLLa4Hy4EyEwrDMtvtHMWyRHzjZg8LpFhA7Y8//nDLWZ9CK7tlZXZ9N2blPL/ylYEKZGWjApu1+z6rpLYrL5bpZBkfVsotJwtgWPaLlfaykm6+8zbLug9k0xbI8AWXivs98nIwv+MAgo+MDQAIUffee687iLYL8R9//HGeB6cHYvVV7QJ/flq3bu3uprJUZisXZQeUvuaCJcUOgO1um/Hjx7vasXaS8MMPP7iTkoL6ZRSXnXRWr17d1du10lOBd4dZHVg7eLY77+zupo0bN+r11193B9HFPRGyE0ALmFjNWWuMaHci2brtDq9nn33WfyeZ3b1ldyPZnWkWSLEGg3aS5ivLZfvGTgrsZNlOBHOmTRfETk7thNBOLk455ZQSH0sAAICKzEvH5l46PrWyV7addoHZysPmxe7kt95xtr3WK88CJtYLwzJNLFBj42FlZgOP+wu7v/NjY33jjTe6C+p245SPNeK2/WDZC5b1becV1rfkzz//dKVwD4b9TlmQxDKE7LkFV3w9S+y8xdd43MZi4sSJbtrOsebOnatXXnnFfX/f+ZUFq4yV92rRooUrqWafN2XKFJfdYlnus2fPLtRNUYXdrrxYU27LdrLAxvLly13fEsu8sMz61157zWVy+IIe9jtvTdHtd9S+h5272X6130sL4th5ninu98iL/Y7b/ps1a5Yr50XmO+AtBDYAIETZnTGXXXaZuxBv2QdFbXJtd8BY+nd+7ODP7jCaNm2aSxG3YIMdMJY0O+C1tH1rIm53FNkBq9WktTq1dhBq37EkWVaI3e315ptvuhOSQHZQbdtgPTaef/55f+mq2267rdjrsxM/C9w8/fTT7gTHarbaHVv2+SeddJJbxk4sLYX63XffdXWM7WToqKOOcqn+VqbLdzeT7RNLpbdgi69ObmHZCYJ9P2uqaOumcTgAAEDFPDb30vGpZT/YxWVr6G0X4PNj22u9JGy/WKNwywKwMlZ2kX/s2LG59lVh93d+rEm1nStYACWwR4gFiex3wII1do5jF/gtGGTf0bLBD1a/fv3c93r11VddMMpKdFnPEgvc2LYYK/NlPUDsYWz91vvis88+c+dXxoJIVorMPsPK71rZXet7YkEzCwTZuFvgwIIIFvwqie3Kj5URs4CQ/U7a75P10rDxtobj1113XbZm7rZPbZztfM3Ke9WtW9cFjCxY58uuOJjvkZOt385XrR+M9aSxjH8A3hGWQdccAAAAAAAAAADgERSTAwAAAAAAAAAAnkFgAwAAAAAAAAAAeAaBDQAAAAAAAAAA4BlBDWwkJyfr3nvvdQ2oevXq5Row5WfJkiWuEZA1hjr77LP1yy+/+F9LSUnR8OHDddxxx7mmQf/5z3+0YcMG/+vffPONWrdune1x4403lvr3AwAAAAAAAAAA5SiwMWLECC1cuFBjx47VkCFDNGrUKE2ePDnXcrt27dKVV16pww47TBMnTtQpp5yiG264QVu2bHGvP/vss/r222/1xBNP6J133lFqaqp73dcXfdmyZerdu7d+/PFH/+Phhx8u8+8LAAAAAAAAAAAOTqSCJDExURMmTNDo0aPVvn1791i6dKnGjx+vPn36ZFv2448/VqVKlTR06FBFRES4bIvp06e7oMjxxx/vXr/vvvvUo0cPt/xDDz2kY489VqtWrVLTpk21fPlytWrVSnXq1AnStwUAAAAAAAAAAJ4ObCxevNhlVnTu3Nk/r2vXrnrppZeUnp6u8PD9ySQzZ87USSed5IIaPh9++KH7acuOHDlS7dq1yzPTw1hg4+ijjy72tto6bFttm8LCwor9OQAAAEB5YhnSdqwcGRmZ7fgdBeMcAwAAACj++UXQAhubNm1SjRo1FB0d7Z9Xu3Zt13dj+/btqlmzpn/+6tWrXW+N//73v5oyZYoaNWqku+66ywVC7AvmDFqMGzfOfbb10rCdsXLlSld+6uWXX1ZaWprLCLGsj8B1H4gFNX7//fcS/PYAAABA+dGhQ4dCH1sjE+cYAAAAQPHPL4IW2Ni7d2+ujfNNWzPwnGWrXnnlFV1++eWudNWkSZN01VVX6csvv1SDBg2yLWu9NqwJ+bBhw9znrV271r+u//3vf1qzZo3rr5GUlKT777+/UNvqiw4dfvjh2bJGypIFaHbu3Klq1aqRNeIBjJe3MF7ewnh5C+PlLYyXt4TCeNlNQ1YelmyNovPtMztpC8Y5Rij8/qDwGC9vYby8hfHyFsbLWxgv78kI8jGinV9YgkFhzi+CFtiIiYnJFcDwTcfGxmabbwf6bdu2dVkWxspO/fTTT/r000913XXXZQtq3Hzzzbr00kvVr18/N8+yO3799VfFx8e7wbDPsXSWO+64Q/fcc0+hTiJ8g7hnz56gnbTZL5UFYyiH5Q2Ml7cwXt7CeHkL4+UtjJe3hMJ42XG14cJ40fn2mZ2PBCuwYb87tm7GL/QxXt7CeHkL4+UtjJe3MF7ekxEix4iFWXfQAhv16tXTtm3bXAq21czylaeyoIZFhAJZ0+/mzZtnm2dNwdevX++ftiyOO++8UxdddJHuvffebMtWr14923SLFi1cyasdO3ZkK3lVENuuYGZsGF+ABqGN8fIWxstbGC9vYby8hfHyllAYL7ujCgAAAADKWtACG5Y5YQGNefPmqVu3bm7enDlzXCp2zqyITp06adasWdnmrVixQmeddZZ7PmPGDBfUuOSSS3IFNX744QfdfvvtmjZtmuLi4ty8P//80wU7ihLUMHbCGOxIVbC3AYXHeHkL4+UtjJe3MF7ewnh5S7DHi+NSAAAAAMEQnLpKkgsy9O3bV0OHDtWCBQv8vTGsj4Yve8NS641lYSxZskTPPfecVq1apWeeecY1FD/33HNdxocFM7p3766rr77avc/3sNJWnTt3dmWvrJ+GBUOmT5+uESNGaNCgQcH66gAAAAAAAAAAwGsZG8Z6XFhgY8CAAapSpYoGDx6sU0891b3Wq1cvPfbYYzr//PNdn4xXX31VjzzyiGsibqWk7KeVs7KMj3Xr1rmHvSfQuHHj1LNnT7322mt69NFH9a9//UuVK1d2gZLSCGxYKv6+fftUWqUGLFBjwR7ujCscaxhPI0sAAAAAAACgYrKecDn7PCN416CjoqJKrNVDUAMblrUxfPhw98jJMjQCde3aVR999FGu5axMVc5lc2rZsqVef/11leaAb9iwQdu3b1dp/yFu2bKlVNdRnlhQo1mzZi7AAQAAAAAAAKDisAv0K1eudNdUETrXoK1FRP369Q86cBLUwEZ54Qtq1K1bV5UqVSqVaJYFTywjJNgd6b30B2hZPNZg/pBDDmGfAQAAAAAAABWEXUu164J2LbVJkyZUdQmBa9D22YmJiUpISHDTDRo0OKjPI7BxkGygfUGNWrVqqbQQ2Ci6OnXquOCG9WGxNCcAAAAAAAAA5Z9dD7SL6A0bNnQ3oiM0rkFbBSdjwQ27nn4wZamC1jy8vPD11OAPJPT4SlDZHyMAAAAAAACAisF3PZAS9aHHdx39YHtVE9goIZSHCj2MCQAAAAAAAFBxcX2w/I4JgQ0AAAAAAAAAAOAZ9NiooO6++259/PHH+b4+btw49ezZs0ifedlll6lHjx4aPHhwkbfH3jtz5sxs8ypXrqzDDz9c999/v1q1alXkzwQAAAAAAAAAr2jdunW26Ro1aujkk0/WPffc466VlqbnnntOv/76q9544w199NFHev755zVlyhSFKgIbISQtPUMzV25Vwq4k1a0aqx7NaioivOSbtJj77rtPt912m3v+xRdfaMyYMfrggw/8r8fHxxfrl/9gmnRfeeWV7uFrVLN69Wo98sgjuuGGGzR58mTt2bNHN954o3bv3u2a/wwbNkzdunUr9voAAAAAAAAAIJTYNdbOnTsrPT1d69ev1wMPPKARI0a4a6Fl5YwzzlDv3r0VyghshIjJC9dr2MQ/tH5Hkn9eg/hYDTm7nfoc3qDE11e1alX38D23DvR16tQ5qM+sXr36QTeOCdyGunXrugDMxRdfrL/++ktxcXHq37+/Tj/9dI0cOVJfffUVgQ0AAAAAAAAA5YbdcO67RlqvXj1de+21LqhRloGN2NhYdy02lNFjI0SCGte/NTdbUMNs2JHk5tvrZW3NmjUu9clSjrp3764HH3zQZVG89NJLOvHEE12JqF69emnUqFHZyklZRNFX6uqxxx7TzTffrCOOOELHH3+8PvnkkyJvR3R0tPtpgZdDDz3UBTXsc7755htdcsklJfiNAQAAAAAAACC05AwwbNy40VW1sWu2do32vPPO05w5c7K1GLBsiw4dOuj888/X7Nmz/a/ZzeN2Dbdjx4467bTTNH78+DzXaaWo7BqwsfJU9vztt9/Wscceq06dOumOO+5QSkqKf3m7VmtZHnYd+IILLsjVcqA0ENgIgfJTlqmRkcdrvnn2ui0XDHPnztWHH36oyy+/3AUUxo4d68pDWWmo//znPy6QsWjRojzfa38Y7du31+eff65TTz1VQ4YM0a5duwq97oSEBP3vf/9Ty5Yt1bx5c5d+ZalXth32h9S0adMS/KYAAAAAAAAAEDq2bt2qN998U+ecc45/3u233660tDS9++677jqpZXUMHTrUvfbHH3+4slV2HfbLL7901W7sxnO7rpqUlKSrr75aXbt21Weffaa77rpLL7zwQqFuRrfrtFY959VXX3XXg7/++mv/+xYvXuw+6/rrr3efa9tq61m1alUp7hlKUZWaSQvW66lvlmhPctoBl0tOTdO2xH35vm7hDMvk6P7It4qODFeY8u65UTkmQred2lpndCjZslUDBgzQIYcc4p5v2LDBZWEcddRRbvr//u//XEbH0qVLXQAjJ8v4sF9ic9NNN7looS3bpUuXPNf18ssvu14fxv44zdFHH+3mW8bGxIkT9eOPP6p+/fq65ZZbXHNz678BAAAAAAAAAAV66qnMR0Hs+uVnn2WfZ8GFuXMLfu+tt2Y+ismup9q1UKues3fvXlf+3xe4sHnWTPy0005z10iNVbW55ppr3PO1a9cqLCxMDRs2VOPGjV1Qw7I3LLBh11Zr1arl5hm7adyWt2u2ffv2PeA27du3T/fff7+7Ad2u+Vrmxu+//+7aBrz22mvu59lnn+2WtRvkZ82apXfeecdV9Skt9NgoJa98v1zLN+0psc87UPDD5+XvV5R4YKNRo0b+50ceeaTmz5+vJ598UsuXL9eff/6pTZs2uT+MvARmVFSpUsX9TE1NzXddF110kUuFsjQmywz5+eefXQDDtw32x+H7AwEAAKjILJt35sot+nvjNjWtl6oezWopIjzvG2AAvz3/SMmbM59nZChi924prYoUlvW7E1Nbqpx5UxMAAEC5tHOnXf0veLkmTXLP27SpcO+1dRyEhx9+2JV0siDGtm3b9NZbb7kbzH2BCXv+xRdfuEo7K1eu1MKFC/3XZ611QKtWrdw11Hbt2umkk05Sv379FBkZqRUrVrjsCmtM7mM3l1sQpTCsTUDgtV7fdV67TmzZIe+99162QIhtS2kisFFKrj2+hZ78+uAzNnxqVIoqMGPj2uOaq6TFxMT4n0+YMEGPPvqo+2Ow0lKWYmQRuPxERUXlmmd/kAdqjOP7A3nooYdcdNKa49gfra/ROQAAKB1cKPcO679mpUoD+7M1iI/VkLPbqc/hJXuTC8pZUGNiayk98/fGzipyHWGHx0pnLyG4AQAAyq9q1exO7oKXy2renWteYd5r6zgIVlrKd43Ubhy3SjlWucaCBxdffLGuvPJK7dy50/W0sN4XFkTwVbWxfhx2Ddd6XEydOtX1yrDMCftpgQirxGOl/ovD1ws553VeC47YddycWR/WgLw0EdgoJZY5UZjsCbuI0Gv4FNcoPK9L/nbCUT8+Vj/c2VvKSHcRNEsnCgb7I7C+GoMGDXLT9ge0ZcuWAwYrisu+ozUsP/PMM12GiC/dCgAAlDwulHtrrK5/a26u40Y7lrT5L17aheAG8maZGllBjXzZ67YcWRsAAKC8OpgyUTlLU5WR8PBwd/3VAgjLli1zZZ5mzJihmjVrutd9DcBtmXnz5umXX35x/S6s+s5tt93mSv1bc/FmzZrpu+++cyWqfFkan376qSspZWWmiss+d82aNdkyOqzPh823G+RLC4GNILOSAXZ3nZ2IWrgi8CTVF76w1225rLYTQVOjRg33R2MpTHv27NHTTz/tIoJWOqo0WC04y9h45plndOGFF6pt27alsh4AACqyinqh3J0YpGcoNT3zZ5o7Ucj6mTU/PfB19zxdluHtfmZkKDVt/3vzWj7X57h1pGfOO8B78tuu1LR0TV60Ic+bYTKyjh0tk+OUdvUpSwUAAAB41I4dO1z5f2PXYK0nsQU1LDvDKuRYoGPSpElu2oIS1szb2DVay5Kwnsi1a9d22RkWBElMTHR9MSwTZNSoUS5jw7I+LBjxyCOP6Iorrjio7R04cKDr89GhQwedcMIJmjJlit544w3XaqA0EdgIAXaxwC4a5CwpUD+gpEBpZEUU1b333use5557rqvndvrpp7v0Juu1UVrsj+zDDz90panefvvtUlsPAAAVjWtEty9NQz5blO+FcnPfxwtVJTpSGWE64IX4tBwX79MyLDM16yJ+voGC/Rf48w4qpCstPeBzsoIJ/vccKCDg2xabl2aBCOUITKjcsa9kx5IzV27VUS1qBXtzAAAAABTD4MGD/c/t2uvhhx+u0aNHq0lW3w+rbPP888/rqaeeclkRlm1hLQP++OMP1z/DghUvvPCCq4ZjN46PHDlSLVq0cO+1z7FWA1Y2ypqSW0DCbiw/GJ06dXIZGhZgsZ+HHHKIq8DTvXv3Uh3/sIxQuGIe4iwiZmk8Nkg5m6kkJSW5Ji32S3SwdcMya1tvVcKuJNWtGqsezWr677bzpRsFsxSV15Tk2BSVjZdFV61vCOMV+hgvb2G8vNqzoQbNjQ9gX1q6kvalKTk1+8+kfemuH1dy1k+bPtByOX/a+5ICfuZ8L0eB5dMzF3XSuZ0KUfu3lI+TEWL7butcaXLXgpfrM0eq2aX0twdFwvGPtzBe3sJ4eQvj5S3BHK9gXhf0sowyuAZ9oLEpyjEyGRshxIIY3F0HACgPvNqzwYIxeQcOcs8LDDYcMOiQmq7kgJ+5PifVshK4z6Q47P6PyPBwhYdn/bTpiHB3TBURFpb5MzxMkVk/A6fDfT/DwhQZYfPDFRFmx2P2/szPC3yP+7yIgPfk83m+9/s/LyI8c37YAbYhcBuztidzHdm34fc123XL+/ML3C92gwwAAAAAlGcENgAAQMj1bLAyRHbBv1CBgxzzAoMI2d6bRwZDzuDEPqufVM7YTTaxkRGKjQpXTNbP2KgIxUSGu/21eMOuAj/j3CMa6pBalfK+iJ918d5dkM8RQMjzwn/WBf7Ai/e+wER+gYj8ggoVLSuyWe3KGvHVEve3lNdvalhWKVPL+gUAAACA8ozABgAAKJFSStv2pChhV7Lu/XjhAXs23PTuPHU99G8lp2bkG7BISU0vl6NiwQQLKgQGGXIGG2KyfrrlIiMUY6/5f2Ytl21e5s/Mz9n/Xt9rURH5BwAsU6TX8CkFXih/6sJONKMOARbMsawnCxDa2ASOmW+E7XVfKVMAAAAAKK8IbAAAgFys2fK2xH3asidZW3enaPOeFG3dnawte1Lcw+bZa256d4p27N1X6L1ogYufl28N6l6PjrAAwv5gQuDPvIIO9jNnMKHQ7/UFLCLDQy7DgAvl3mPZTpb1lLPUW30PlHpDkMXUlsJjpfT9vze52Ou2HAAAABDiCGwAAFAB2J352xJTtHVPijbvTnY/LSCRGZgInM58vn3vvjJpLG0lhQIDAvszD3JnJPjLKblMhuyZDbkDDPkHHWzayiIhExfKvTlmp7Srr5krt+jvjdvUtF4N9WhWi0wNHFjlQ6Szl0jJm91kRlqqNKW3wtISpehaUu+vpNg6mcsBAAAAIY7ABgAAHg1UbPcHKjJ/bt2T7H/usimyAhc2bUGN0ghUVImJVK0q0apZOVq1KscoLS1dU//aVOD7Xh/YXce2rO0aPSP4uFDuPZZtc2TzWmpbK1Lx8fEhlw2EEGVBC1/gIiNDqTWPUdSmb6SULVJkZYIaAACg3Mkoizv2UCTp6SVTeprABgAAIcCaZVs5p8CARLZsihyZFRaoSC+F47PK0RGqWSUzSFHLghUuaBGj2lnBC3vUrhLjf26ZEMXp2XBcqzrcXR5iuFAOVDyptXplBjZMwjQpvk2wNwkAAKBEREVFuZt/Nm3apDp16nAjUBECQWlpaYqIiCjxfWafnZKS4sYkPDxc0dHRB/V5BDYAACilQMXOJAtUZAYismVT+HpV+LMrMgMVFhQoaXFRES44kRmkyAxI+Kcrx2QFMTJfq5VHoKKo6NkAAN6RWrPX/omN06SW1wVzcwAAAEqMXZhv3Lix1qxZo7///ps9W8SMCgs8lJZKlSrpkEMOOeh1ENgAAHiGXfjfX1M+tUxrytudBTv3pvp7UOQKUmSVggos/1QagQrrE+GyKQLKP/kCFTmzKWx+peiy/189PRsAwBvSqnVURlQ1he3bmZmxYaUaKGsGAADKiSpVqqhly5bat29fsDfFMzIyMrRr1y5VrVq1VLJcLOAUGRlZIp9NYKOCuvvuu/Xxxx/n+/q4cePUs2fPYv3yv/3227rkkkvyfP25557TqFGjss2LjY11UbrBgwfr1FNPLfI6AVQMkxeu17CJf2j9jiT/vAbxsRpydjt3Ib1Y/7NOTs2VTZFfc23LqNiXVvKBiujIcNW2QEQe5Z8CMy18gYtK0SWfDloa6NkAAB4QHinVOVZaN0lK2ijtXEI5KgAAUK7YhXR7oPDXSpKTk9312lC/9kBgIxRsXy0lbsn/9Uq1pPjGJbrK++67T7fddpt7/sUXX2jMmDH64IMP/K9bE8rimDVrlh588MF8Axumc+fOLsDhs23bNo0ePVq33nqrJk2apEMPPVQPPfSQ5s6dq8TERF1++eUH/DwAFSOocf1bc3P1bLA+Djb/xUu76LT29bU7OTXvbIqs4EVg+Sd7pKSVTMOqQNER4f5sisAMipzln2pn/bSeFqF+sFBc9GwAAA+oe3xmYMMkTCWwAQAAAE8gsBEKQY1RXaXU5PyXiYyRbpgtVWlYYqu1dCJ7+J5b5NIa6ZREVK8wzXsC12XPH3nkEX3zzTeaNm2aLrzwQpfBcf/99+v777/XU089RWADqMCsnNPQz/7IsxG1b96/x891F9FLI6MiKiIsW8mnvMo/+TIqbF6VmJJJqQQAoEzUPSFHn43r2fEAAAAIeQQ2gs0yNQ4U1DD2ui1XgoGNgqxfv17Dhg3TjBkzVKtWLZ1//vm6/vrrXQDE6tLZaxaIsE72VrLKpm2+ZVeY1q1bF6mcla++mj0s1WnAgAH6/fff9fjjj+uWW24p5W8LIFTsTUnT8k27Mx8J9nOPFqzZrg0795efyou1skgvZFAjMjws32yKnOWf7LVqsQQqAADlWI1OUlQ1iT4bAAAA8BACG8gz6+KGG25QmzZtXB+OTZs26YEHHnB3IP/nP//R+PHjXckpK19lQYihQ4fq0UcfdZkVVmLKemX8+OOPhS5nZeWmXn75ZRckOf744928Dz/80JWnGjFihDp27MgoAeXs3xgrCWWBi2UugLEn6+durd2+t9if2zA+Vk1rV96fPeHvW7E/SGHln6rFEagAACB7n43jpHWfS0kJ0s7FUnxbdhAAAABCGoGN0rLoY2nqo1Ly7gMvl5ZSuM976wJFRERJyqe8SUwVqfd9Uvu+Oli//PKL1q1bpwkTJig8PFzNmzfXXXfdpXvuuccFNtasWaOYmBg1atRI1atXd1kV27dvd1kXvmDGgcpazZ492/XZCGxI065dOxfIaNy4sVatWqUXXnjBffbIkSPdZ+ZsOA7AGyWkVm9N9GdgLMvKwLCfO/buK/TnhIdlZmQU5Mn+nXRUi1oHt9EAAFRE9U7IDGyYhGkENgAAABDyCGyUlp+elTb/VWIfF5a4+cAL7JL087MlEthYvny5C1R07drVPy89PV1JSUmu0bf1wLAm37169VKPHj108sknu1JVhXX44YfriSeecJ/5ww8/6Nlnn9UVV1zhL1tlzcO/++67g/4eAMpGYkqqVmzak618lAUvVm7eU6Tm3FVjItWibhW1qFNFLepW1mHuZxU1qh6n3k9Mc43C84pvWLi3fnysejSrWaLfCwCAChXY8Nk4lT4bAAAACHkENkrLMTdJUx8pXMZGQUELy2yoVFvKytgIyy9j4+gbVRJSU1NdloZlTeRkjcZr1KihKVOmuEbf9rASVJ9//rkrUVUYVr7KghemWbNmLmBiGSFNmjTREUccUSLfAUDplI/KzLrYn31RnPJRDeJjXfDiMBfEqOx/XqdqTL5Nt4ec3U7XvzXX/fsXGNwIC3jdmocDAIBiqB7QZ8MaiGdkSPn8PxkAAAAIBQQ2SotlThQme2LdPOmVzL4SB3TpB0qr28GVeyrtkwwLNlgpqpo1a7pAhvnpp5/00UcfuZ4Xn3zyiaKjo3XGGWfo9NNP17x581wWx5YtW/K9KHkgV111lb744gvdf//97rPddwQQ9PJROYMYRSkfZQ26rd9FZtZF5awgRhU1r1NFVWKK/r+ePoc30IuXdtGwiX9o/Y79jcQtU8OCGvY6AAAopvCI/X02kjdJO/+U4tuxOwEAABCyCGwgFysxZf0z7rjjDt1yyy3atWuX/vvf/+roo492QQebfumll1zmhvXEmDhxourXr++m4+Li3GcsXLhQLVu2dL04CmKfaZ9/8cUX6+2339Zll13GqABlXD7K18T7YMpH+TIw7GeTmpUUFRFeottswYtT2tXXzJVb9PfGbWpar4Z6NKtFpgYAACWhXu/9fTYsa4PABgAAAEIYgY1gq1RLioyRUpPzX8Zet+XKiAUaXnzxRT300EPq37+/KlWqpD59+rhyUeaSSy7Rhg0bXOBjx44drmeGLW/va926tY455hhddNFFrkTVqaeeWqh1Wj+Pc845x/XbOPPMM122CICDLx+1eXdKtuyLgykf5cu6cOWj6lZx2RgHKh9VGqzc1JHNa6ltrUjFx8eX6boBAKgwfTasgXirfwdzawAAAIADIrARbNWbSDfMkRK35L+MBTXiG0tpaaWyCdb4O2fzb+t38corr+S5fHh4uAtq2CMnK1E1ZsyYfNc1ePDgfF8bOXJkkbYbQKbUtHSt2bY3R+moopePiooIU9Na+3teWAmpgykfBQAAPKT6EVJUvLRvB302AAAAEPK4UhUqwQ17HIg18ANQofnKR+0PXGQGMf7enFi08lGxkQGlo/aXkCqN8lEAAMBDfTbqHietnZjZZ2PHH1L19sHeKgAAACBPBDYAIATLR+UMXlhAo6jloxrGx/r7X7QI6H9Rp0rZlo8CAAAeUfeEzMCGrxwVgQ0AAACEKAIbABCk8lGrt+0NaNy9P4ixMym1yOWj/P0v6lbWYXWqqnmdyqpM+SgAAFDUBuI+1kC81X/YfwAAAAhJBDYAoAzLR/l+Fqd8VPbSUZkZGIfUrKRIykcBAICSUL2jFFVd2rc9M2PDyuGS5QkAAIAQRGADQIWWlp6hmSu36O+N29S0Xqp6NKuliPCwIpeP2rQ7WcsT9mRv3p2wW+t2JB1U+ajDsrIwKB8FAADKrs/GZ1LyZmnHIqn64ex4AAAAhBwCGwAqrMkL12vYxD+0PiD40CA+VkPObqc+hzfIt3xUzuyL5cUoH9WsduWsrIv9GRiUjwIAAEFXz/psfLa/HBWBDQAAAIQgAhsAKmxQ4/q35iojx/wNO5Lc/LtPb6N61WKzBTH+3rJH+9JyvqPg8lGZWRf7gxhNasRRPgoAAIRuA3EfK0fV+oZgbg0AAACQJwIbACpk+SnL1MgrROGb99iXi4tVPiqwiTflowAAgOfUOEKKriGlbJMSpksZ6VJYeLC3CgAAAMiGwAaACueXFVuylZ8qavmowCbeNq9yDP+UAgAQKpKTkzVs2DB9/fXXio2N1ZVXXukeBzJ79mzddddd+u677/zzWrduneeyw4cPV9++fYu1Hk+wIIb12VjzaVafjT8oRwUAAICQE9SrcUU5GViyZImGDh2qRYsW6dBDD9V9992nI4880v/6G2+8oddee027d+/W6aefrv/+97+Ki4sr8noqkpwnazVq1NDJJ5+se+65R5UrVy7VdT/33HOaOXOm3nzzTX300UcaNWqUpkyZUqrrBFZvTdSEOWv05oy/C7UzzjmioXtYNgblowAA8IYRI0Zo4cKFGjt2rNatW+cCFg0bNlSfPn3yPc+46aabFBMTk23+jz/+mG3azje+/PJLnXTSScVaj+fKUVlgw2ycSmADAAAAISeogY3Cngzs2rXLBSJOPPFEPf744/r00091ww036KuvvlKtWrXcT7swPnLkSDdtF+bt+QMPPFCk9VREFmDo3Lmz0tPTtX79erfPbH9ZIKisnHHGGTrhhIBavkAJStqXpq8WbdCE2Wv00/LNyih8iwz9X49DdFSLWowHAAAekZiYqAkTJmj06NFq3769eyxdulTjx4/P89j/3XffdRkYTZo0cTdIBapTp47/+erVq90NOS+99JKqVq1a5PV4soF4tj4bg4O5NQAAAEAuQSuW6jsZsMwLOxE45ZRTNGjQIHcykNPHH3+sSpUquYwNy9a48cYb3U8LVphx48ZpwIAB6t27tzp27Oguyn/44Yfau3dvkdZTEcXHx7uTtnr16qlTp0669tpr3Z1oZcmyaGrWrFmm60T5t2jdDg35dKF6Pvqdbnp3nn5ctj+oESYpJjL/f/7s9QbxserRjN9LAAC8ZPHixUpNTXU37vh07dpV8+fPdzfy5PT999+7wMbAgQMP+LnPPvusjjrqKB199NHFWo/nVO+Y2WfD+PpsAAAAACEkaBkb+Z0M2F1QdjIQHr7/oqOVLLKU74iICP88C1yYtLQ0/f777y6Dw8cu0O/bt8+tIyMjo9Drgfzlu3w2btyoRx55RDNmzHCBopYtW+r+++93+9AXVHr99de1efNm99q9996rbt26udf++usvPfTQQ+4Er0GDBrr88st1ySWX5NrNgaWofv31V5dxY8GnF1980WXrWDDKtiE6Otot/8033+jpp5/W2rVr3TrvvPNO9ejRg+GDdiTu06fz1+q9Wau1aN3OXHvk0FqV1L9bE/2rS2PNW71N1781183PyBHUMEPObqeIcN8UAADwgk2bNrnyqr7jRlO7dm1Xmnb79u25bqZ54YUX/Mej+bGM788//9xldxR3PQdi5yv2KGu+9ea97jCp7vEKW/OJlLxFGdsXStU7lPk2orDjhVDDeHkL4+UtjJe3MF7ekxHkY46irDdogY2inAxY6rdlYljfDLv43ahRI1dOyi6u79y5072nbt26/uUjIyNVvXp1bdiwwQUuSvOkwzddlgNekusJ3O5t27a5FPuzzz7bP+/2229XtWrV3ImcBYKefPJJlznz2Wef6Y8//nBlq6yc1WGHHebee/PNN2v69OlKSUnR1VdfrfPOO08PPvigVqxY4cpcWe+Oc889N9sfSc5HQkKCKy9mqf32fPDgwS5Y0r9/fxessrG3bbDfCVuXrcfKk1kWT177KRh/jMH+R6AiSU/P0IwVW1ypqS8XbVBKavY7Ci0z4/TD6+vC7k3Uo2lNhWcFK05rX18vXNJFwz7/QxsCGonXj4/VA2e1c68zfqGJvy9vYby8hfHyllAYr1D7f6XdiBN43G9803Z8WhwffPCBDj/8cB1xxBGlsh47nwnGzVY2dpbdbsLCct/MEV21pyrpE/d876rJSgk7pMy3EYUfL4QWxstbGC9vYby8hfHynowgH3MUJfs5aIGNopwM2M585ZVX3B3/drF70qRJuuqqq7KVTMrrs+xzbDBK86TDPsN2uGWO2CNQ2NNPK/yZZwr83AzrcfHxx9nmhZ93nsJ++y3bvP35Kvul33STMm65RcV1zTXX+L+TjYkFhCwjw76L7Tvra2IZE/Xr13fLXHTRRbr++uvd6xZwsl9we80yMixr5rjjjnPZMhb4sKCRL5PG6hbbuqzPyVlnneU/CbbP8f3C+p7b+y1rw4Il9ujVq5cWLFigf/3rX65B/AUXXOD6chjLALGMnrfffttlbgTyfZ5lfVggqyL9I1ARbNiZrM9+T9CnCzZq7Y7c49uufhWdd0Rd9WlbR1VjM/+p27UrexbHUU3iNOnaLpq7eofWbt2tRjWrqEuTeJepsWPHjjL7Liga/r68hfHyFsbLW0JhvEKt7JI1AM95jO+btvKnxWE33NgxcGmtx24iCsxMLyu+43ErTZvn78+hfaQ/73FP43b+orj4O8p6E1GU8UJIYby8hfHyFsbLWxgv78kI8jFHzuvrIRnYKMrJgB3ot23b1vXWMO3atdNPP/3k7tK3u/gD3xv4WVZWyXZGaZ50JCUlacuWLW5+rhOS3bsVtnZtwR/cpEnu927eXKj3hluTw4M4EXr44Ydd5oP90lrGhvUeueyyy1xgwhqxX3zxxfriiy/022+/uayLRYsWuRNY214LYrRq1Up9+/Z1Y2JBkH79+rmxXblypZYsWaLu3bv712Vj4dtPvj8Me+4LrAQ+b9asmX+fVKlSxf9e24bJkye7vik+Fgg55phjcu1D3+dZg8finsh69R+B8io5NU3f/pmg92et1g8BPTN8qsdF6bzOjdSvW2O1bVCt0J97UvV4F8hgvLyBvy9vYby8hfHyllAYr6KceJQF6xtnx7RWitayuH2Z4nYsaMfyRbV+/XotW7bMlcUtrfXY2AVr/HzrznP9NbL6bKRsU5j12bDinWGU8Q2mA44XQg7j5S2Ml7cwXt7CeHlPWBCPOYqyzqAFNopyMmDNrZs3b55tXtOmTd2JhmUY2IV06/HQokUL95p9ppWZsvf5LtiX1kmHbzrPwY6Plxo1Kvhz69SxD8g+0+YFvDevHgDuua3jIH7JbBxsX/qCCZZm37NnTxc8sKCGZcZYpoplSFjgwoIIloVh39UauluAwTImpk6d6pq8W8kqq1FsJ7nWYNHKTx3ojyOvh7ExDVze99M+10pPWTAlkI1nkcamDPAPd8lZvGGn65vxyW9rtS1xX479LB3bso4u7NZEJ7erq5jI4gX6GC9vYby8hfHyFsbLW4I9XqF2gdVuhrJj/nnz5vn7vs2ZM0cdOnQoVrknX6+4hg0blup6QpIFMeoeL1mfjZStkvXZsGAHAAAAEAKCFtgoysmANQOfNWtWtnl2576VNLJl7T32Xrsgb+wz7bPbtGnjpoN20nHrrZmP4vjss+zTGRn+rIWDCWQUxPZJRta67O402+/WONzXi8QyOjI3J8Pt019++cWVpjryyCN122236eijj3b714Ik3333nRo3buzPpLAMG2v0bqWuiss+d82aNdn6aVifD5tv2SIoP3Ym7dNn89ZpwuzVmr8md1moxjXi1K9rE13QrbEaVc/e9B4AAFRMlrFtN8BYP7ZHH33U9WsbM2aMHnvsMf8NTkXJ5l26dKn/5qmirKfcqNc7M7BhEqYR2AAAAEDICNrtRIEnA9Y/4dtvv3UnA9ZHw3fSYWWejNW0tbJG1qR61apVeuaZZ1x/B2tCbSyzwHov2GfYZ9lnWokqW0dB66norPyO7Wt7/P33367RtwU1LDvDMlos0GE9TdauXeuyOGwMfOW87ITw+eefd1kbFmyw5azOc+vWrXXOOee48bOMjeXLl7sm34888ogrb3UwBg4c6EpjjRs3Tv/884/eeOMN9/BlncDbLGA2Y/kW3frePPV45Fvd/8nCbEGN6MhwnXNEQ40f1FPf39FbN53ckqAGAADIxnq1tW/fXgMGDNCwYcM0ePBgnXrqqe41691mx5KFZVnhVuqrqOspN+qesP/5xmnB3BIAAAAgNDI2fCcDFnCwkwHro5DzpMPueDr//PPVqFEjvfrqq+7CuDURt7um7KeVUTJnnnmmu/BuF9Htgrt9xh133FGo9VR0ti98LAhkpaisQbs1+za23yx48dRTT7msCMu2uOuuu/THH3+oc+fObkxeeOEFFxCxFP2RI0f672qzz7E72CywZCXDrNH3tddee1Dba9k7lqFhARb7ecghh+jJJ5/M1ssD3rNhR5I+nLtG789erVVbMpugBmrfsJou7N5E5x7RSPGVooKyjQAAwBvsmHb48OHukZPdLJUXO+ewR04WsCjOesqN6odL0TUzS1FZn42MdPpsAAAAICSEZfi6DiJflsFgZZfsonpezcOtUbZd9C/NBtW+8lCBjbdxYGU1NvmNF82oDywlNV1TFm90vTOm/7VJ6Tn+JYqPi1LfTg3Vr1sTHd4o7zslSwrj5S2Ml7cwXt7CeHlLKIzXgY6TEdr7rtC/P9+fL635OPP56fOkGkeU2TYitP7eUXiMl7cwXt7CeHkL4+U9GUE+5ijKMXJQMzYAVDxLN+5ywYyPf1urLXtScr3e67Da6tetsU5rX1+xUVwgAQAACKp6J+wPbFg5KgIbAAAACAEENgCUul1J+/T5gvWu1NRv/2zP9XrD+Fhd0K2J+nVtrCY1KzEiAAAAodRA3McaiLe5KZhbAwAAADgENgCUWurarL+3uWDGpAXrtXdfWrbXoyPCdUr7erqwWxMdc1htRYSTUg8AABBy4ttLMbWk5C302QAAAEDIILABoEQl7LRG4Gs1YfZqrdi8J9frbepXdY3A+3ZqpBqVo9n7AAAAoSwsXKp7vLT6Iyllm7R9gVSjU7C3CgAAABUcgQ0AB21fWrqmLk5w2RlTl2xSWo5O4FVjI3Vup4bq362JOjSi4SEAAICn1D0hM7Dh77NBYAMAAADBRWCjhKSnp5fUR6EESyGhdC1L2O0yMyxDY/Pu5FyvH9W8lvp3b6w+7RsoLppG4AAAAJ5tIJ6tz8bNwdwaAAAAgMDGwYqOjlZ4eLjWrVunOnXquOmwsLBSuUiflpamiIiIUvn88sb216ZNm9y+ioqKCvbmlCt7klNdzwzLzpi9aluu1+tXi9UFXRurX7fGOrRW5aBsIwAAAEq6z0ZtKXmzlPC9lJGeWaIKAAAACBIyNg6SBTWaNWum9evXu+BGaWeF2PpQOBbUaNy4sQsG4eADRXP/2ab3Z63R5wvWaU9K9kbgURFhOrltPfXv3kTHtaxDI3AAAIBy2Wfjw8w+G9vmSzU7B3urAAAAUIER2CgBlqVxyCGHKDU11WVVlNaF5V27dqlq1apkbBSSZWoQ1Dg4m3Yl6+Pf1uj92Wtc2amcWtWr4vpmnNe5kWpViTnItQEAACC0+2x8uL8cFYENAAAABBGBjRLiK3lUWmWPLLCRnJys2NhYAhsoValp6Zr+1ya9N2u1pixOUGqORuBVYiJ19hHWCLyxOjWpzu8jAABAReuzYQ3E29wSzK0BAABABUdgA4CzcvMe1zfjwzlrlLArdyPwHs1quuyMMzrUV6Vo/ukAAACoUOLbZe+zkZ4mhVPyFQAAAMHB1UmgAktMSdUXv29wAY2ZK7fmer1u1Rj9q2tjF9BoVptG4AAAABW7z4aVo/pA2rdd2r6AclQAAAAIGgIbQAVjZc3mr9nhSk1NnL9Ou5NTs70eGR6mE9vU1YXdm+j4VnUUGUHDegAAAGSVo7LAhtk4lcAGAAAAgobABlBBbNltjcDXuuyMvzbmbgTeok5lF8w4r3Nj1alKI3AAAADkYBkbPtZAvO2t7CIAAAAEBYENoBxLS8/Q90s36f1Zq/Xtnxu1Ly17I/BK0RE6q2MDF9DockgNGoEDAAAgf/TZAAAAQIggsAGUQ/9sSXSZGR/MWaMNO5Nyvd710Bq6sFsTndmxgSrH8M8AAAAACiEsLKDPxg5p+3ypZhd2HQAAAMocVzSBciJpX5omL9zgemfMWLEl1+u1q0TrX10aq1+3xjqsbtWgbCMAAAA8rl7vgD4b0whsAAAAICgIbAAebwS+cO1OvTf7H306b512JWVvBB4RHqbereuoX7cmriF4FI3AAQAAcLANxH2sgTh9NgAAABAEBDYAD9q2J0WfzFvrsjMWb9iV6/VmtSu7zAzL0KhXLTYo2wgAAIByqFpbKaaOlLxJ2vS9lJ4mhUcEe6sAAABQwRDYADwiPT1DPy7brPdmr9Y3izYqJS092+txURE6o0NmI/DuTWkEDgAAgFLqs2FZG/9MkPbtlLbPk2p2ZVcDAACgTBHYAELc6q2Jrgm4PdZu35vr9U5NqrtgxlkdG6hqbFRQthEAAAAVSN2swIa/zwaBDQAAAJQtAhtAiDYC//qPjXp/1mr9tHyzMjKyv16zcrTO79xI/bs3Uat6NAIHAABAGTcQ97HARtvb2P0AAAAoUwQ2gBCyaN0OF8z4ZN467di7L9tr4WHS8a3qqH+3JjqpbT1FR4YHbTsBAABQgVVrI8XWlZISsvpspErhnFoCAACg7HD0CQTZjsR9+nR+ZiPwRet25nr9kJqV1N8agXdtrAbxcUHZRgAAACBbnw1Xjur9zD4b2+ZJtbqxgwAAAFBmCGwAQWoEPmPFFr0/e7W+XLhBKanZG4HHRIa7RuCWndGzWU2FW7oGAAAAECpcA/H3M58nTCOwAQAAgDJFYAMoYWnpGZq5cov+3rhNTeulqkezWorICkys277XNQGfMGe1Vm/N3Qi8Y+N4F8w4+4iGio+jETgAAABClGVsZOuzcXswtwYAAAAVDIENoARNXrhewyb+ofU7kvzz6leLcYGKJRt364elm3I1Aq9eKUrnWSPwbk3UtkE1xgMAAAAe6bNRT0raKG36gT4bAAAAKFMENoASDGpc/9Zc5YhbaMPOZI3+YWWussS9DqutC7s30Snt6ikmMoJxAAAAgAf7bLyX1WfjN6lW92BvFQAAACoIAhtACZWfskyNnEGNnBpVj1X/bofogm6N1ag6jcABAADg9T4b7+0vR0VgAwAAAGUkvKxWBJRnM1duzVZ+Kj8jLzhCN53ckqAGAAAAylefDWsgDgAAAJQRAhtACUjYVXBQw2zancz+BgAAQPlQrbUUWz/zeUJWnw0AAACgDBDYAEpAWCGXq1s1lv0NAACA8tNnw8pRmdRdmX02AAAAgDJAYAM4SAk7k/TE10sKDHw0iI9Vj2Y12d8AAAAon+WoNk4N5pYAAACgAiGwARyErXtSdOlrv+qfrXsLzOYYcnY7RYQXNrcDAAAA8ABfxoavgTgAAABQBghsAMW0K2mfBoyZqb827nbTjWvE6bHzD3eZGYHqx8fqxUu7qM/hDdjXAAAAKF+qttrfZ2MTfTYAAABQNiLLaD1AubI3JU1XvTFbv6/d4abrVo3R+EE9dWityurf7RDNXLlFf2/cpqb1aqhHs1pkagAAAKB899lY9a6UulvaOleq3SPYWwUAAIByjowNoIiSU9N0zZuzNfPvrW66RqUof1DDWLmpI5vX0unt6riflJ8CAABAuVav9/7nCZSjAgAAQOkjsAEUQWpaum585zf9sHSzm64aE6k3r+qplvWqsh8BAABQMdFAHAAAAGWMwAZQSOnpGbrzgwX6atFGNx0XFaHXr+iuwxvFsw8BAABQcVVtKcVl9ZPb9KOUvi/YWwQAAIByjsAGUAgZGRl64LOF+ui3tW46OiJcr1zeVd2a1mT/AQAAoGKzPhu+rA1fnw0AAACgFBHYAAoR1Hh88mK99cs/btp6Zjx3cWcd27IO+w4AAAAw1kDchz4bAAAAKGUENoACPD91mV6evsJ/M9qT/Y7Qae3rs98AAAAAn7oBDcQ30kAcAAAApYvABnAAr/+0Uk98/Zd/+uG+h6tv50bsMwAAACBQ1cOkuIaZzzf9QJ8NAAAAlCoCG0A+3p+1WsMm/uGfvveMNrqk56HsLwAAAOCAfTb2SFvnsI8AAABQaghsAHn4fME63f3RAv/0jSe11DXHtWBfAQAAAIXps0E5KgAAAJQiAhtADlMWb9TN785Tekbm9JXHNNMtJ7dkPwEAAAAH4svYMDQQBwAAQHkObCQnJ+vee+9Vt27d1KtXL40ZMybfZa+//nq1bt0622Pq1Klas2ZNrvm+x6xZs9x733jjjVyvDR8+vAy/Kbzg5+Wbdd1bc5WaFdW4sFsT/festgqz1HoAAAAABfTZyOpHt+lH+mwAAACg1EQqyEaMGKGFCxdq7NixWrdune666y41bNhQffr0ybXs8uXLNXLkSB111FH+efHx8YqIiNCPP/6YbdnHH39cq1atUqdOndz0smXLdPHFF+vf//63f5m4uLhS/W7wlt/+2aarx85WSmq6mz6rYwM9en4HghoAAABAYdjNQFaO6u/xmX02tsyW6uw/dwMAAADKRWAjMTFREyZM0OjRo9W+fXv3WLp0qcaPH58rsJGSkuIyMzp06KA6derk+qzAeXPnztVXX32lTz/9VFFRUf6gSN++ffN8L/Dn+p0aMGam9qSkuZ1xUpu6evrCTooIJ1MDAAAAKFI5Kgts+MpREdgAAABAeStFtXjxYqWmpqpz587+eV27dtX8+fOVnp5517zPihUr3J3zTZo0KfBzn3zySfXv318tWrTI9v6mTZuW8DdAebB8025d9tqv2pmU6qaPblFLz1/SRVERQa/UBgAAAHgLDcQBAABQBoJ65XbTpk2qUaOGoqOj/fNq167t+m5s374927IWmKhSpYruvPNO14vjggsu0PTp03N95pw5czRv3jxde+21/nmbN292n/fxxx/rxBNP1Omnn67XXntNGRlZ3aFRYa3ZlqhLX/1Vm3enuOnOh1TX6Mu7KTYqItibBgAAAHhPlRb02QAAAED5LkW1d+/ebEEN45u20lM5AxtJSUkuqHHNNdfom2++cc3E33vvPVeeyuf999/XKaeconr16mV7r6lVq5ZefPFF/fnnn3r44Yddb46BAwcWenstEBKsYIhv3QRjSk7CziRdMvpXrd+R5KbbNqiq1wd2V6XoiIPez4yXtzBe3sJ4eQvj5S2Ml7eEwnhxbIq8+2z0lv5+S0pLpM8GAAAAyl9gIyYmJlcAwzcdGxubbb41/b7ssstcs3DTpk0bLVq0yAUyfIENK2v13XffuYbkgXr06KFffvnFZYeY1q1ba+vWrXrnnXeKFNjYuXOnwsPDg3bSaD1JjJXkwsHZvnefrhq/UKu2Zu7TpjXj9PwFbaSURO3I/itZLIyXtzBe3sJ4eQvj5S2Ml7eEwnjlLB8LOK6B+FuZzxOm0mcDAAAA5SuwYVkV27ZtcwGJyMhIf3kqC2pUq1Yt27IWUPAFNXyaN2+uZcuW+aetBJV91jHHHJNrXb6gho/139i4cWORtte2ybI8gnk3nO0DAhsHZ1fSPt345kwt35x5IaBR9Ti9fc2RahAfp5LCeHkL4+UtjJe3MF7ewnh5SyiMV1paWlDWCw80EPfZOE1qf28wtwYAAADlUFADG23btnUBDQtIdOvWzd8jwzIwcmZG3H333e6E7bHHHsvWfLxVq1b+aWs63r59e5cJEmjChAl69dVXNXnyZP9Jn5WjssBIUdh7gxlU8K2fwEbx7U1J06Cxc7Rg7Q43XbdqjN6+uqcaVq+kksZ4eQvj5S2Ml7cwXt7CeHlLsMeL41LkqUpzqVJjKXGNtOknKS1FisheghgAAADwbPPwuLg49e3bV0OHDtWCBQv07bffasyYMbr88sv92RvWV8NY0++JEyfqk08+0apVqzRq1CgXBLn00kv9n7d06VKXiZHT0Ucf7T5r+PDh7r2TJk3S6NGjNWjQoDL8tgi25NQ0XfvWHM38e6ubrlEpSm8N6qlDa1UO9qYBAAAA5YcF2nxZG9ZnY+vsYG8RAAAAypmgBjbMPffc47IsBgwYoGHDhmnw4ME69dRT3WvWKPyLL75wz23ekCFDXPPvs846S1OmTHFZGI0bN/Z/1ubNm3OVqzKNGjXSK6+8ot9++03nnHOOnnzySd1+++0644wzyvCbIphS09J10zvz9P1fm9x01ZhIjbuyp1rVq8rAAAAAACXNGoj7JExj/wIAAKD8lKLyZW1YJoU9clqyZEm26X79+rlHfizQkR8rdfXee+8d5NbCi9LTM3TnBws0edEGNx0bFa4xV3RXh8a5g2AAAAAASqiBuM/GqfTZAAAAQPnK2ABKu6nmkM8W6aPf1rrp6IhwvXJZN3VvWpMdDwAAAJSWys2kSk0yn/v6bAAAAAAlhMAGynVQY/jkJXrzl1VuOiI8TM/+X2cd16pOsDcNAAAAqEB9NvZKW2cFe4sAAABQjhDYQLn1wrTlemn6cv951RP9OqrP4fWDvVkAAABABSxHRZ8NAAAAlBwCGyiXXv9ppUZ+tb9Hy0PnHq7zOu9vNA8AAACglNFAHAAAAKWEwAbKnfdnr9awiX/4p+85vY0uPfLQoG4TAAAAUOFUbipVOiSgz0ZysLcIAAAA5QSBDZQrkxas190fLvBP33jiYbr2+BZB3SYAAACgQrJ6sPUC+mxsoc8GAAAASgaBDZQbUxcn6KZ3f1N6Rub0Fcc01S2ntAr2ZgEAAAAVl6+BuEmgzwYAAABKBoENlAszlm/RdW/NUWpWVOPCbk30wFntFGZ3iQEAAAAIDhqIAwAAoBQQ2IDn/fbPNg0aO0vJqelu+qyODfTo+R0IagAAAADBVqWZVDmr391m+mwAAACgZBDYgKf9uX6nBr4+S3tS0tz0SW3q6ukLOykinEwNAAAAIKTKUaUlSVtmBntrAAAAUA4Q2IBnrdi0W5e99qt27N3npo9qXkvPX9JFURH8WgMAAAAhg3JUAAAAKGFcAYYnrdmWqEtf/VWbd6e46c6HVNerA7opNioi2JsGAAAAIBANxAEAAFDCCGzAcxJ2JumSV3/Vuh1Jbrptg2p6Y2APVY6JDPamAQAAAMipStOAPhs/S2nJ7CMAAAAcFAIb8JRte1J06Wu/atWWRDfdvE5lvXlVD8VXigr2pgEAAADIT73eAX02fmU/AQAA4KAQ2IBn7ErapwGvz9RfG3e76UbV4/TWVT1Vu0pMsDcNAAAAQGHLUW2cxr4CAADAQSGwAU/Ym5Kmq96YrQVrdrjpulVj9PbVPdWwelywNw0AAAAhJDk5Wffee6+6deumXr16acyYMQW+Z/bs2TrppJNyzZ88ebJOO+00derUSVdeeaXWrl3rf239+vW69tpr1aVLF5144ol64403Svy7lCt1j9//PIHABgAAAA4OgQ2EvOTUNF371hzN/Hurm65RKUpvDeqpQ2tVDvamAQAAIMSMGDFCCxcu1NixYzVkyBCNGjXKBSjys2TJEt10003KyMjINn/u3Lm67bbbdMUVV+ijjz5SdHS0br31Vv/rN998sypVquRes0DK//73P33zzTel+t2832ejaebzzTMyS1IBAAAAxURgAyEtNS1dN70zT9//tclNV4mJ1Lgre6pVvarB3jQAAACEmMTERE2YMEH33Xef2rdvr1NOOUWDBg3S+PHj81z+3Xff1UUXXaRatWrles0yPc455xz3evPmzd1nbtq0SVu3btWOHTs0b948XX/99WratKlOPvlkHXvssZoxY0YZfEsPq3dCQJ+NmcHeGgAAAHgYgQ2ErPT0DN354QJNXrTBTcdGhWvMwO7q0Dg+2JsGAACAELR48WKlpqaqc+fO/nldu3bV/PnzlZ6enmv577//XsOHD9fAgQNzvTZz5kwXGPFp0qSJpkyZopo1ayo2NlZxcXEuW2Pfvn1asWKFy/Bo27ZtKX67cqBuVgNxs3FqMLcEAAAAHhcZ7A0A8mKlAIZ8tkgfzc2sYxwdEa5XLuumHs1qssMAAACQJ8uoqFGjhisb5VO7dm3Xd2P79u0uKBHohRdecD8tQBFo586dLisjLS1NV111lQuYdOzYUUOHDlW9evUUExOjBx54QA899JDGjRvnljv//PPVr1+/Yh335iyDVRZ86y3Tddc9TmG+9VsD8cMfKLt1e1xQxgvFxnh5C+PlLYyXtzBe3pMR5GOOoqyXwAZC0oivlujNX1a55xHhYXr2/zrruFZ1gr1ZAAAACGF79+7NFtQwvumUlJQilbQyDz/8sG655RbXg+OZZ55xzcItCBIeHq7ly5erd+/ergfH0qVLXZDjqKOOcuWrisKCKPZ5wThp9H3PsDBfuKG0VVfVuEMVsXeV67OxY+tGKSK2jNbtbcEZLxQX4+UtjJe3MF7ewnh5T0aQjznyyrLOD4ENhJznpy7Ti9OW+6ef6NdRfQ6vH9RtAgAAQOizTIqcAQzftJWPKqyIiAj30zIw+vbt654/8cQTOuaYY1xvDcsA+eCDDzR9+nT3uR06dNDGjRv14osvFjmwUa1aNf/6gnE3XHx8fNmetNbvLa18Q2HpyYpPXSzVPL7s1u1hQRsvFAvj5S2Ml7cwXt7CeHlPRpCPOSwTurAIbCCkvPHTSo38aol/+qG+h+u8zo2Duk0AAADwBisTtW3bNtdnIzIy0l+eyoIPFkAoLCtnFRUV5ZqGB86rXr26NmzYoLVr1+rQQw/NFixp166dXnrppSJvs50wButCtW/dZbr+epmBDbf+hOn7G4ojNMcLxcZ4eQvj5S2Ml7cwXt4TFsRjjqKsk+bhCBnvz16toRP/8E/fc3obXXbkoUHdJgAAAHiHNe+2gIZlVfjMmTPHZVQUpdyTfUb79u1dbw2frVu3uqBJo0aNVLduXa1atSpbdog1EG/cmBtyChQYyKCBOAAAAIqJwAZCwqQF63X3hwv804NPPEzXHt8iqNsEAAAAb4mLi3Olo6zJ94IFC/Ttt99qzJgxuvzyy/3ZG0lJSYX6LOud8eabb+rLL790/TTuvfdeFzixJuInnniiy+i4//77tXLlSk2ZMsVla1x22WWl/A3LgcqHSFWyMmE2/yKlFW48AAAAgEAENhB0Uxcn6KZ3f1N6VtP7K45pqltPaRXszQIAAIAH3XPPPS7bYsCAARo2bJgGDx6sU0891b3Wq1cvffHFF4X6nD59+rjPGjlypM4//3xX7/eFF15w6fFVq1bVG2+84QIlF1xwgR577DFdf/31uvDCC0v525UTdbOyNtKTM4MbAAAAQBHRYwNBNWP5Fl331hylZkU1+ndrrP+e2Y66sQAAACh21sbw4cPdI6clS/b3cgtkgQt75NS/f3/3yMthhx2m119/nVEqbjmqFWMyn2+cRp8NAAAAFBkZGwia3/7ZpkFjZyk5Nd1Nn9mxgR47v6PCw2mGBwAAAJT7jA2TMC2YWwIAAACPIrCBoPhz/U4NfH2W9qSkuekT29TV0/07KYKgBgAAAFC+VW4iVcnqp7d5hpS6N9hbBAAAAI8hsIEyt2LTbl322q/asXefmz6qeS29cEkXRUfy6wgAAABUmHJUJj1F2kKfDQAAABQNV5JRptZsS9Slr/6qzbtT3HSnJtU1ekA3xUZFMBIAAABARSxHZX02AAAAgCIgsIEyk7AzyQU11u1IctNt6lfV2Ct6qEoMPewBAACACqXu8fuf02cDAAAARURgA2Vi254UXfbaTP29JdFNN69dWW9e1VPxlaIYAQAAAKBC99n4hT4bAAAAKBICGyh1u5L2acDrM7Vk4y433ah6nN4a1FN1qsaw9wEAAICKql7v/X02rIk4AAAAUEgENlCq9qak6aqxs7VgzQ43bcGM8YN6qmH1OPY8AAAAUJEF9tmgHBUAAACKgMAGSk1yapque2uOZq7c6qarV4pyQY2mtSuz1wEAAICKrl5Anw0aiAMAAKAICGygVKSmpeumd+Zp+l+b3LQ1CB93ZQ+1qleVPQ4AAABAqtRYqnJY5p7Y8quUmtmPDwAAACgIgQ2UuPT0DN354QJNXrTBTcdGhWvMwO7q2Lg6exsAAADAfvVOCOiz8Qt7BgAAAIVCYAMlKiMjQ0M+W6SP5q5109ER4Xr5sm7q0awmexoAAABA3g3Ezcap7B0AAAAUCoENlKgRXy3Rm7+scs8jwsP07P911vGt6rCXAQAAAORWN6DPBg3EAQAAUEgENlBinp+6TC9OW+6fHnlBR/U5vD57GAAAAEDeKjWSqrbMfE6fDQAAABQSgQ2UiDd+WqmRXy3xTz/U93Cd36UxexcAAADAgdX19dnYJ22ewd4CAABAgQhs4KC9P3u1hk78wz999+ltdNmRh7JnAQAAABS+gbjZOI09BgAAgAIR2MBBmbRgve7+cIF/evCJh+m641uwVwEAAAAULWPDJNBAHAAAAAUjsIFim7o4QTe9+5vSMzKnBx7dVLee0oo9CgAAAKDwKjWUqmadR2yZKaXuYe8BAADggAhsoFhmLN+i696ao9SsqEb/bo31wFntFBYWxh4FAAAAULxyVPTZAAAAQCEQ2ECR/fbPNg0aO0vJqelu+syODfTY+R0VHk5QAwAAAMBBlqOizwYAAABCObCRnJyse++9V926dVOvXr00ZsyYfJe9/vrr1bp162yPqVMz66/u2LEj12s9e/b0v3fbtm0aPHiwOnfurBNPPFGffvppmXy/8ujP9Ts18PVZ2pOS5qZPbFNXT/fvpAiCGgAAAABKooF4Ag3EAQAAcGCRCqIRI0Zo4cKFGjt2rNatW6e77rpLDRs2VJ8+fXItu3z5co0cOVJHHXWUf158fLz7uWzZMlWvXl2ff/65/7Xw8P0xm3vuuUdJSUl67733NH/+fN1///1q1qyZOnbsWOrfsTxZsWm3LnvtV+3Yu89NH9W8ll64pIuiI0n8AQAAAHAQ4hpI1VpLO5fs77MRWZldCgAAgNAKbCQmJmrChAkaPXq02rdv7x5Lly7V+PHjcwU2UlJStGbNGnXo0EF16tTJ9VkrVqxwgYq8Xvvnn39cZsd3332nxo0bq1WrVpo3b57efvttAhtFsGZboi599Vdt3p3ipjs1qa7RA7opNiqi6IMPAAAAAHmVo7LAhvXZ2PSz1OAU9hEAAADyFLRb7RcvXqzU1FRXHsqna9euLqMiPT2zd0Ng4MKaUjdp0iTPz7KMjaZNm+b5mn1egwYNXFAjcD2//fZbiX2X8i5hZ5ILaqzbkeSm29SvqrFX9FCVmKAm/AAAAAAor302KEcFAACAAwjalelNmzapRo0aio6O9s+rXbu267uxfft21axZM1tgo0qVKrrzzjs1c+ZM1a9f3/XMOP744/1lqixIcsEFF2jjxo2uZ4eVn6pbt65bj/0MVKtWLbdcUWVkZLhHMPjWXdbr37YnxZWf+ntLoptuVruyxl3ZQ9XiIoO2L7wgWOOF4mG8vIXx8hbGy1sYL28JhfHiWAclql7m+Z1DA3EAAACEYmBj79692YIaxjdtpacCWWDDemRYg/FrrrlG33zzjWsmbj0zrDyVvW6BEAtm2MnV008/reuuu86VuspvPTnXURg7d+7M1rujLNn3svJdxrJXysLu5FRd884iLdm42003qBajF/u3VXR6knZkZW8gdMYLxcd4eQvj5S2Ml7cwXt4SCuOVM9MaOCj02QAAAECoBzZiYmJyBRd807Gxsdnm//vf/9Zll13mbxbepk0bLVq0SO+//74LbEyaNMmdzPne9+yzz7ogiJWhym89OddRGNWqVVNERERQ74azfVAWJ657U9J063uz9MeGzKBGnaoxevvqI9W0Ng38QnG8cHAYL29hvLyF8fIWxstbQmG80tLSgrJelGN1e2f22chIlTb9JDU4NdhbBAAAgBAUtMBGvXr1tG3bNldCKjIyczOsbJQFHCyAEMiyJHxBDZ/mzZu73homLi4uV6mp6tWru3JTtp7Nmzdne92m82o0XhA7YQzmRWrf+kt7G5JT03T9+LmauXKrm65eKUpvXdVTzepUKdX1ljdlNV4oGYyXtzBe3sJ4eQvj5S3BHi+Oc1Di6p0gLXtpfzkqAhsAAAAIpebhbdu2dQGNefPm+efNmTPHZWDkLPd09913uzJTOZuPW3Bj9+7d6t69u3755Rf/axbQsKCJvd6pUyetXbtWGzZsyLYem4/cUtPSdfO78zT9r01u2hqEW0+N1vWrsrsAAAAAlK66AX02aCAOAACAUAtsWJZF3759NXToUC1YsEDffvutxowZo8svv9yfvWF9NcyJJ56oiRMn6pNPPtGqVas0atQoF5y49NJLXVPxrl276rHHHnOfYyWqbrnlFh177LFq3bq1mjRp4spS3XHHHS4YYn03Pv/8c11yySXB+uohKz09Q3d+uEBfLswMAsVGhWvMwO7q2Lh6sDcNAAAAQEUQV1+q1ibz+ZZZ0r7M0rgAAABASAQ2jGVhtG/fXgMGDNCwYcM0ePBgnXpqZg1VC0Z88cUX7rnNGzJkiF588UWdddZZmjJlil599VU1btzYvT58+HC1a9fONRa3XhyNGjXSE0884V/PiBEjVLlyZfXv318vvfSSHn30UXXs2DFI3zp0azQPnbhIH81d66ajIsL08mXd1KNZzWBvGgAAAICKpO4JmT+tz8bmn4O9NQAAAAhBQeux4cvasKCEPXJasmRJtul+/fq5R16s/4ZlbOTHem5YQAP5G/HVEo2bsco9jwgP03P/11nHtyp6HxIAAAAAOCj1egf02ZhKnw0AAACEVsYGQsPzU5fpxWnL/dMjL+ioPoc3COo2AQAAAKigAvtsWANxAAAAIAcCGxXcGz+t1Miv9mfHPHRue53fJbPEFwAAAACUubh6UrW2mc+30mcDAAAAuRHYqMAmzF6toRP/8E/ffXobXXZU06BuEwAAAAConq/PRpq06Sd2CAAAALIhsFFBTVqwXnd9uMA/fUPvw3Td8S2Cuk0AAAAAkK2BuEmgHBUAAACyI7BRAU1dnKCb3/tN6RmZ0wOPbqrbTm0V7M0CAAAAgOwZG74G4gAAAEAAAhsVzIzlW3TdW3O0Ly0zqtGva2M9cFY7hYWFBXvTAAAAACBTbF0pvl3m862zpX272DMAAADwI7BRgcxbvV2Dxs5Scmq6mz6zQwM9/q+OCg8nqAEAAAAgRMtR0WcDAAAAORDYqCD+XL9TA8bM1J6UNDd9Ypu6evrCToogqAEAAAAg1MtR0WcDAAAAAQhsVAArNu3WZa/N1I69+9z0kc1r6oVLuig6kuEHAAAAEKLqHr//OX02AAAAEIAr2+Xcmm2JuvTVX7V5d7Kb7tSkul4d0F2xURHB3jQAAAAAKKDPRvvM51vnSPt2srcAAADgENgoxxJ2JbmgxrodSW66Tf2qeuOK7qoSExnsTQMAAACAgtFnAwAAAHkgsFFObduTostenam/tyS66ea1K+vNq3qqeqXoYG8aAAAAABS9z8bGaew1AAAAOAQ2yqFdSfs08PWZWrJxl5tuVD1Obw3qqTpVY4K9aQAAAABQeHWP2/+cBuIAAADIQmCjnNmbkqarxs7W/DU73LQFM8YP6qmG1eOCvWkAAAAAUDT02QAAAEAeCGyUIymp6brurTmauXKrm65eKUpvXdVTTWtXDvamAQAAAEDx1Oud+TMjTUr4kb0IAAAAAhvlRWpaum569zdN/2uTm7YG4eOu7KHW9asGe9MAAAAA4OAbiBvKUQEAAICMjfIhPT1Dd334u75cuMFNx0aFa8zA7urYuHqwNw0AAAAASq7PBg3EAQAAQGDD+zIyMjR04iJ9OHeNm46KCNPLl3VTj2Y1g71pAAAAAHDwYutI8YdnPt82R9q3k70KAABQwdFjw+NGfrVE42ascs/Dw6Tn/q+zjm9VJ9ibBQAAAAAlp15WOaqMdCnhB/YsAABABUdgw8Oen7pML0xb7p8eecER6nN4g6BuEwAAAACUWgNxQ58NAACACo/AhkeN/flvl63h89C57fWvro2Duk0AAAAAUCrq0GcDAAAA+xHY8KAJs1dryGeL/NN39Wmjy45qGtRtAgAAAIBSE1tbqt4h8/m2uVLKDnY2AABABRYZ7A1AwdLSMzRz5Rb9vXGbNuzZqGe/W+Z/7Ybeh+n6E1qwGwEAAACUb3VPkLb/ntlnY9OPUqMzg71FAAAACBICGyFu8sL1GjbxD63fkZTrtYFHN9Vtp7YKynYBAAAAQJk3EP/rucznG6cS2AAAAKjACGyEeFDj+rfmKiOf13s0ramwsLAy3ioAAAAACIK6x+9/TgNxAACACo0eGyFcfsoyNfILalg446FJf7jlAAAAAKDci6klVe+Y+Xzbb1LK9mBvEQAAAIKEwEaImrlya57lp3wsnGGv23IAAAAAUGH6bBhfnw0AAABUSAQ2QlTCrqQSXQ4AAAAAykWfDZ+N04K5JQAAAAgiAhshqm7V2BJdDgAAAAA8r+5xWYV5sxqIAwAAoEIisBGiejSrqQbxsb5D9lxsvr1uywEAAABAhUCfDQAAABDYCF0R4WEacnY79zxncMM3ba/bcgAAAABQ8cpRZUgJPwR5YwAAABAMZGyEsD6HN9CLl3ZR/fjs5aZs2ubb6wAAAABQIRuImwT6bAAAAFREkcHeAByYBS9OaVdfM1du0d8bt6lpvRrq0awWmRoAAAAAKnifjQwaiAMAAFRQBDY8wMpNHdm8ltrWilR8fLzCwig/BQAAAKCCiqkpVe8obZ8vbftNStkmRdcI9lYBAACgDFGKCgAAAADgLfV6Zz2hzwYAAEBFRGADAAAAAODRBuKiHBUAAEAFRGADAAAAAOAtdY7N6rNBA3EAAICKiMAGAAAAAMB7fTZqHJH5fNu8zD4bAAAAqDAIbAAAAAAAvKfuCQF9Nr4P8sYAAACgLBHYAAAAAAB4uIE4fTYAAAAqGgIbAAAAAMrcqFGjtHfv3mzzNmzYoPT0dP/0zp07deWVVzI6yFtd+mwAAABUVAQ2AAAAAJS5559/XomJidnmnXHGGVq7dq1/OiUlRTNmzGB0kLfoGlKNTpnPt82XkreypwAAACoIAhsAAAAAylxGRkah5hVVcnKy7r33XnXr1k29evXSmDFjCnzP7NmzddJJJ+WaP3nyZJ122mnq1KmTyxzJGXQZNmyYunfvrqOPPlpPPfVUiWw/DqLPxqYf2H0AAAAVBIENAAAAAOXGiBEjtHDhQo0dO1ZDhgxxJa8sQJGfJUuW6KabbsoVlJg7d65uu+02XXHFFfroo48UHR2tW2+91f/6ww8/rJ9//lmvvfaannzySb3//vt67733SvW7IQ/1TgjoszGVXQQAAFBBENgAAAAAUC5YaasJEybovvvuU/v27XXKKado0KBBGj9+fJ7Lv/vuu7roootUq1atXK9Zpsc555zjXm/evLn7zE2bNmnr1q3avn27PvzwQz300EPq2LGjjjrqKJfRMX/+/DL4lsim7nGSwjKfb5zGzgEAAKggCGwAAAAAKHNhYWHuUZIWL16s1NRUde7c2T+va9euLuAQ2JTc5/vvv9fw4cM1cODAXK/NnDnTBUZ8mjRpoilTpqhmzZqaM2eOqlSpoh49evhfv+aaa/TYY4+V6PdBIURXl2pkjff2BfTZAAAAqCAig7lyq39rdWm//vprxcbGuruc7JGX66+/3p1IBHrppZfUu3dvV9/26aef1qRJk7R37153gvHf//5X9evXd8t98803uuGGG7K912rlPvvss6X47QAAAADkx0o/WTmnmJgY/7x9+/Zp5MiRqly5sv98oSgso6JGjRqubJRP7dq13edYloUFJQK98MIL7qeVmgq0c+dO7dixQ2lpabrqqqtcwMQyM4YOHap69epp9erVatSokT755BN3TmLbff7557tzlvDw8CLvh2D05vCtt1z0Bal7vMK2zXV9NjISpkuN+6q8KVfjVQEwXt7CeHkL4+UtjJf3ZAT5mKMo6y12YGP37t36559/dNhhh7nAgt2xdDD1b9etW6e77rpLDRs2VJ8+fXItu3z5cneSY2nePvHx8e6nBSi+/fZbPfHEE+5kxZazQIalodtdYMuWLXMBEEsV9wk8gQIAAABQts4777xc884+++xs03bM3rdv4S9S201OgUEN45u2c5ailLQyFni55ZZbXA+OZ555Rtdee60Lgtjrq1atcqWsLEvDAioPPPCA4uLi8r1RKz8WRClqMKSkThp937OkM2fKWmSV7vKdjaas/lp7q/ZWeVOexqsiYLy8hfHyFsbLWxgv78kI8jFHXlnWJRbYsLudLEDgu6vpq6++cunbdhLx1FNP+YMNha1/O3r0aFf/1h5Lly519W9zBjbsJGTNmjXq0KGD6tSpk+uzPv74Y1fz1pcKbtt37LHHupONpk2buqBIq1at8nwvAAAAgLJXGmWbLBCSM4Dhm7YM8cKKiIhwP/v16+cPrNhNVMccc4zmzZunyMhId6OXNQ23zA1jN2q98847RQ5sVKtWzb++YNwNZ+dvnr9QHtdHGXPDFZaRrujtPyu6kOekXlKuxqsCYLy8hfHyFsbLWxgv78kI8jGHZUyXWmDDsiEsA8KCCdZIzwwePFj33HOPu6PJXj+Y+reWym2RmcC7llasWOF2pNW1zcmWtXW2a9cu12u7du1yPy2wcfTRRxf1qwIAAAAoZZs3b3blo3wX9//44w/98ssvLhP71FNPVaVKlQr9WVYmatu2be48w4IPxrIpLKhhAYTCsu2JiopyTcMD51WvXl0bNmxwN0xZEMUX1DDNmjXT+vXrFQq9Roq6bs9fKI+pkdlnY+schVmfjZStUkzuhvBeV27Gq4JgvLyF8fIWxstbGC/vCQviMUdR1lnkwIb1w3j++efVunVr/zx7blkSRbk7qSj1by2wYaWu7rzzTtfEz3pnWDDl+OOPdwGQnEGLcePGuc+27bIo08qVK/Xjjz/q5ZdfdlEfywi58cYbc6WpFyTY9cWoqeodjJe3MF7ewnh5C+PlLYyXt4TCeB3Muvfs2aPbbrtN06dP1+eff64WLVq4rPD777/fBSgsGPHcc8+5jG5f77yCtG3b1gU0LKuiW7dubp41+rbM76KUe7LPsIxyuxnrjDPOcPO2bt3qgiYWzKhatao7b7HzDAto+M5ZAgMdKGN1T3CBDSfhe6lJ7lJnAAAAKD8ii3MCYrVj88qcKEqqSFHq39pJQlJSknr16qVrrrnGNQO3xnzvvfeeO0kJZL02xowZ45qS2+etXbvWv67//e9/rqSVZZbY59lJkxfq34ZCfTMUDePlLYyXtzBe3sJ4eQvj5S2hMF5FqYGbkwUt7Fj9rbfecpkR9l0eeeQR16T7zTffdBkTQ4YMcSWg7FEYdp5ipaOsyfejjz6qhIQEd27gK3tlN1dZUKIwZamuuOIKl5VuwRIra2tZ4vbcts/29wknnOBet3XZ577yyivuHAVBUu8EafGTmc83TiOwAQAAUM4VObBx4okn6umnn3Z9NXxWr17tggWWQVEa9W///e9/67LLLvP372jTpo0WLVqk999/P1tgw4IaN998sy699FJXD9fYXVO//vqrvy6YnYzYCdgdd9zhTkSKUs82WPVvQ6G+GYqG8fIWxstbGC9vYby8hfHyllAYr6Lc2JRXJrgFH6wcrbEMa7uJyo77Lahhzj//fNewuyh8wYYBAwa4rG/L9LaSVsZulLIgh31uQSzL225ssoDGli1bXD+/F154wb+vLdhiWev/93//5wIql1xyidt2BEmdXlJYuJSRLiVMYxgAAADKuSIHNh544AHde++97sDeAgT/+te/XC8LO0n473//Wyr1by1LImdTcrury3p9+EyaNMmVqrK+H7Z9gawWbiBLc7fU8R07dmQreVWQYNczpSadtzBe3sJ4eQvj5S2Ml7cwXt4S7PE6mPXasf8hhxzin/7555/dTUR2XhFYqtayr4vCggx2E1bgjVg+S5YsyfM9FujIK9jRv39/98iLZX6MGDGiSNuGUhRd3d9nQ9ZnI2mzFFubXQ4AAFBOFTmwYcEISxu3LA1rym2BCasra8GCoihK/du7777bnTT5UsiN1bu1lHAzY8YMF9Swu6RyBjV++OEH3X777Zo2bZq/hNaff/7pgh1FCWoAAAAAKDl2o5OdUzRs2NBln1ivjSOOOCLbDU2//fabGjRowG5HIX+peu/vs7HJ+mwUnJkDAAAAbypywwhLtV64cKGaNGni6sqefPLJRQ5q5Kx/u2DBAn9vjMsvv9x/B5f1wfCVv5o4caI++eQTrVq1SqNGjXJBECs5ZYEVC2Z0795dV199tXuf72GlrTp37uzKXlk/DevVYSdMdmfVoEGDirzNAAAAAErGueee63pqfPfdd64k1fr163XxxRdnu5HpqaeeciWhgEI3EPexPhsAAAAot4qcsWHp4FZjtiQUtv6tzbPGgS+++KLWrVunli1b6tVXX1Xjxo1dxofNs0dg2roZN26cevbsqddee82dLFnZrMqVK7tyVQQ2AAAAgOCxRtu7d+92NylZdvaNN96os846y71mZaRef/11dyMVDblRaPTZAAAAqDDCMnxdB4sQjPjss89cyShrzB0dHZ3t9cByUeWFNUW0AEqnTp2C2jzceoLQPNwbGC9vYby8hfHyFsbLWxgvbwmF8Sqt42TrhWGf3a5dO5VXwT7HCIXfn1Ixubu0dXbm8/M3lZs+G+V2vMopxstbGC9vYby8hfHynowgH3MU5Ri5yBkb5pxzzinutgEAAADAAbVu3Zo9hOKpd8L+wEbCdOmQf7EnAQAAyqEiBzbKY0YGAAAAgLLVtm3bQi/7559/luq2oByp21v684nM5wnTCGwAAACUU8XK2LBG39bjwppxW3pIs2bNXCNvawYOAAAAAAWpVauW6913xBFHuJ567du3p8QODl7dXlJYuJSRTgNxAACAcqzIgY13333XNfOzQMY111yj9PR0zZ07V8OGDdO+ffvUr1+/0tlSAAAAAOXGjz/+6Orn2k1T77//vpKTk3XSSSfp5JNPVo8ePRQeHh7sTYQXRVWTanSVts6SdiyUkqzPRp1gbxUAAACCHdiwTI0hQ4Zky86wk4+WLVvqpZdeIrABAAAAoFCsKaA9br/9di1fvtwFOZ588kmtWbNGJ5xwgjvP6NWrl2JiYtijKGKfjVmZzxO+pxwVAABAOVTk26AsXdxOPnLq3Lmz1q9fX1LbBQAAAKACadGiha699lpNmDBBn3zyiZo2bao777xTRx55ZLA3DV5T94T9zzdODeaWAAAAIFQyNqzJn51o3Hzzzdnmf/zxxzrssMNKctsAAAAAVCCrV6/Wd999pylTprhyt9bLz8pTAUXvsxEhZaRlNhAHAABAuVPkwMYdd9yhgQMH6tdff3WN/ozVxl28eLErRQUAAAAAhWXnEhbIsIDG33//rS5durhgxiOPPKImTZqwI1G8Phs1u0pbZko7FklJCVJsXfYkAABARQ5sWMmpjz76yKWIWx1cq3fbvXt3Pf3002rQoEHpbCUAAACAcuW+++7T9OnTlZiY6PpoXHPNNTr++ONVvXr1YG8ayks5Kgts+PtsXBDsLQIAAEAwAxsmNTVVZ5xxhjp27Oimx4wZo507dxLYAAAAAFAoH374oSIjI9W+fXtt27bNTdsjL+PGjWOvougNxP8csb/PBoENAACAih3Y+OKLL3T33Xfr1ltv9Qc2fv/9dz3zzDN68skndfLJJ5fGdgIAAAAoR2644YZgbwLKszr02QAAACjPihzYePbZZzVs2DCdd955/nlWhsrKU9lPAhsAAAAASiqwYdkcQJFFVZVqdpO2/Crt+IM+GwAAAOVMeFHfsGHDBtdnI6euXbtq9erVJbVdAAAAAMo5O39488039fbbb2vdunXZXsvIyND48ePVp0+foG0fykE5Kp+E6cHcEgAAAAQ7sNGuXTu99dZbuea///77atOmTUltFwAAAIBy7JtvvtHpp5+up556ymV+Ww+/2bNnu9cWLFigvn376qGHHnINxYFiNxD32TiNnQgAAFCRS1FZf42rrrpK06dPV9u2bd28JUuWaPv27XrllVdKYxsBAAAAlDPPPfecC2Y88sgjCg8PdyVvhw8friuuuEJ33nmnWrZs6TI5unTpEuxNhVfVOUYKi5Ay0jIbiAMAAKDiBjasYfhXX32lzz//XH///bciIyPVs2dPnXPOOapatWrpbCUAAACAcuWff/5x2RpRUVFu+rrrrtPo0aM1dOhQ3XjjjRo0aJALeAAH12eju7TlF2nnn9LejVJcPXYoAABARQxsmJo1a+ryyy/3N/OrUqWK/4QEAAAAAAqSlJSkGjVq+Kfj4uIUExPjghqXXnopOxAl12fDAhu+PhuH9mfPAgAAlAPhRamBe/XVV2vjxo3+O6ys7u3RRx+tbt26acSIEa7BHwAAAAAU17HHHsvOQ+n02UigzwYAAECFCmxMmjRJt9xyi+rXr6/o6Gg37+abb9b69etdX42xY8fqhx9+0JgxY0p7ewEAAACUA2FhYe6RE+WnUCp9NgwNxAEAACpWKao33nhD99xzjy655BI3vWDBAv3xxx8u2OG7o+rWW2/V448/7hqLAwAAAMCBWLb3f/7zn2wlbZOTk3X77be7klSBxo0bx85E8URVydFnY4MUV5+9CQAAUBECG0uXLtVxxx3nn7bsDLu76qSTTvLPa9mypdatW1c6WwkAAACgXLnhhhtyzevRo0dQtgXlXL3eOfpsXBjsLQIAAEBZBDas/JTdPeXz008/qUGDBjrssMP88xISElStWrWD3R4AAAAAFTSwAZRaA/E/HttfjorABgAAQMXosXHkkUfqnXfecc/nz5+v3377Taeffnq2ZV577TV17dq1dLYSAAAAAIDiqH20FJZ1Tx8NxAEAACpOxobVub388sv1+eefa8+ePWrRooWuu+4699qXX36p0aNHa82aNf7gBwAAAAAAIdNno1Z3afMMaedi+mwAAABUlMDGIYccosmTJ+vnn39WeHi4jj76aFeeyuzevVtdunTRM888oyZNmpT29gIAAAAAUDR1T8gMbPjKUTW9iD0IAABQ3gMbJjY2VieeeGKu+f369SvpbQIAAABQgcyaNUudO3dWZGT205OUlBR9//33Ovnkk4O2bShHDcR9fTasHBWBDQAAgPLfYwMAAAAASouVvd25c2eu+UuXLtWtt97KjsfBq0OfDQAAgAqZsQEAAAAAJeXtt9/Wgw8+qLCwMGVkZOiYY47JczkrgwsctMjKUq0e0uafpZ1LpL3rpbgG7FgAAACPIrABAAAAoMxdfPHFatmypdLT0zVgwAA9++yzio+P979uAY+4uDi1atWK0UHJqGd9Nn7OfL5xOuWoAAAAKkJgY+XKlfrhhx90zjnnqHr16powYQL9NQAAAAAUW/fu3d3P7777Tg0bNnTBDJ+tW7eqRo0a2eYBB91AfNGjmc8TphLYAAAAqAg9Nm677Tb99ttvrv5tYmKiJk6cWLpbBgAAAKBCsKbh1kvjzz//VHJysi699FJXmurEE0/U4sWLg715KE99NsKjMp9vnBbsrQEAAEBZBDaioqL09NNPu4yNBx544GDWCQAAAAB+Q4cOdRkalhn+0Ucf6a+//tK7777rAhsPPfQQewol22fD7PpLSlzHngUAACjvgQ1LAf/pp580aNAg7d69W+vWcRAIAAAA4OD98ssvLrjRoEEDffvttzrppJN0xBFHaODAgVq4cCG7GCVbjsonYTp7FgAAoLwHNixbw2rcGmvsd9FFF5XmdgEAAACoIGJiYlwJqh07dujXX3/VCSdkXnxes2ZNtobiQIk0EPdJoBwVAABAuQ9s2N1ThxxyiPbu3avo6GiXuRFo06ZNuvPOO0tjGwEAAACUYyeffLJuvvlmDRgwwAUyLLDxxRdf6I477tC5554b7M1DeVI7sM/G1GBvDQAAAEozsLFhwwaXBt69e3d16dJF1157rbubyqSlpem1117TaaedpunTSeUFAAAAUDRWhsoywu18Y+zYsS6DIyUlRdddd51rKg6UmMhKUq2emc93LZUS17JzAQAAPCiyMAs9+OCDWrt2rUaMGOGaiL/yyit67LHHdMstt+j666/X4sWLdcEFF7hpAAAAACjSSUlkpLuRytgNVOnp6S5Tw/r8AaXSZ2PTj/v7bDS9mJ0MAABQHgMbc+bM0f/+9z8dddRRbrpdu3Y677zzXEAjIyND7733njp06FDa2woAAACgHLJzipdeeklvvPGGdu3apa+++krPPPOMKlWqpPvvv9+VwgVKtM/Gooczn2+cRmADAACgvJai2rlzp1q0aOGftl4b+/btU6NGjfTBBx8Q1AAAAABQbM8//7w+++wzPf744/4ght1I9dNPP7mscaBE1T5qf58NGogDAACU38CG3UEVERGRbZ5NDx482JWmAgAAAIDi+vjjj1352969e/vLTx1zzDEaPny4vvzyS3YsShZ9NgAAACpGYCM/lStXLrktAQAAAFAhbdmyRXXr1s01v1q1akpMTAzKNqGcq9d7/3MrRwUAAIDy12PD2J1SVapU8U9bQ7+vv/5atWrVyrZc3759S3YLAQAAAJRrRx55pF577TWXteGze/duPfXUU+rZs2dQtw3luIG4HtpfjqrZJcHeIgAAAJR0YKNhw4YaM2ZMtnkW0Bg/fny2eZY2TmADAAAAQEFmzZqlzp07KzIyUkOHDtUNN9zgyk8lJyfr3//+t9atW+fOQ1588UV2Jkpe7SOl8GgpPYWMDQAAgPIa2JgyZUrpbwkAAACACuPyyy/Xjz/+6G6Yql+/vj744APNmDFDK1asUGpqqpo1a6ZevXopPPygqucCB+6zsekHafcyKXGNVKkxewsAAKC8laICAAAAgJKSkZGRa95RRx3lHkCZqHdCZmDD12ej2aXseAAAAI/g9icAAAAAQWGlbIGQaCBufTYAAADgGUHN2LD6ucOGDXNNyGNjY3XllVe6R16uv/76XCWxXnrpJfXunXkw+sYbb7iGg9Zk8PTTT9d///tfxcXFFXk9AAAAAMrGv/71r0KVmvruu+/KZHtQwdSizwYAAIBXBTWwMWLECC1cuFBjx451zQHvuusu1yCwT58+uZZdvny5Ro4cmS01PT4+3v386quvNGrUKPe61ei955573PMHHnigyOsBAAAAUDauuOIKVa1ald2N4IiMy2winvC9tHu5tGe1VLkJowEAAOABQQtsJCYmasKECRo9erTat2/vHkuXLtX48eNzBRxSUlK0Zs0adejQQXXq1Mn1WePGjdOAAQP82RuWnXHVVVfpjjvucLV7C7seAAAAAGVXhurMM890NyYBQVP3hMzAhkmYTp8NAAAAjwhaj43FixcrNTVVnTt39s/r2rWr5s+fr/T09GzLrlixwp34NGmS++6ZtLQ0/f777+rWrZt/XqdOnbRv3z63jqKsBwAAAEDwmocDQWkg7rNxKgMAAADgEUELbGzatEk1atRQdHS0f17t2rVdP4zt27fnCmxUqVJFd955p3r16qULLrhA06dPd6/t3LnTvadu3br+5SMjI1W9enVt2LChSOsBAAAAUDbOO+88xcTEsLsRXLWPksKzfg9pIA4AAOAZQStFtXfv3mzBBuObttJTOQMbSUlJLqhxzTXX6JtvvnHNxN977z0XpAh8b+Bn2efYnWCFXU9B7LOCdWeZb93c2eYNjJe3MF7ewnh5C+PlLYyXt4TCeB3Muh977LES3RagWCJis/psTJd2r5D2/CNVPoSdCQAAEOKCFtiwu7NyBhZ807Gxsdnm//vf/9Zll13mbxbepk0bLVq0SO+//75uueWWbO8N/Ky4uDhXqqqw6ymIZYeEh4cH7aTR+pIYK8uF0MZ4eQvj5S2Ml7cwXt7CeHlLKIwXpV1RfvpsTA/os3FZsLcIAAAAoRrYqFevnrZt2+b6X1jpKGNloyzYUK1atWzLWjDBF9Twad68uZYtW+ZKTlmQZPPmzWrRooV7zT7TykxZo3E74Svsegpiy0dERCiYd8PZfiCwEfoYL29hvLyF8fIWxstbGC9vCYXxspuIgHLRZ2PhsMznG6cR2AAAAPCAoAU22rZt6wIN8+bN8zf+njNnjjp06JArK+Luu+92J2uB6erWFLxVq1ZuWXuPvbdnz57uNftM+2zL7DCFXU9BbBuCGVTwrZ/AhjcwXt7CeHkL4+UtjJe3MF7eEuzx4rgU5YKVorI+G+nJNBAHAADwiKA1D7cyUX379tXQoUO1YMECffvttxozZowuv/xyf1aF9dUwJ554oiZOnKhPPvlEq1at0qhRo1xw4tJLL3WvX3zxxXrttdfcZ9hn2Wf279/fraOg9QAAAAAAKnqfjaMyn+9ZKe1ZFewtAgAAQKhmbJh77rnHBRwGDBigKlWqaPDgwTr11FPda9Yo3DI0zj//fDdvyJAhevHFF7Vu3Tq1bNlSr776qho3buyWPfPMM7V27Vo98MADrn+GLX/HHXcUaj0AAAAAgArOylElTMt8vnG61Jwb4QAAAEJZUAMblk0xfPhw98hpyZIl2ab79evnHvm55ppr3KOo6wEAAAAAVHDWQNzHAhwENgAAAEJa0EpRAQAAAAAQEmr3zOyz4WsgDgAAgJBGYAMAAAAAULHRZwMAAMBTCGwAAAAAAFCv9/59QNYGAABASCOwAQAAAACANRD38TUSBwAAQEgisAEAAAAAQK0emSWpDBkbAAAAIY3ABgAAAAAA2fps/C3t/pt9AgAAEKIIbAAAAAAAYOpSjgoAAMALCGwAAAAAAGBoIA4AAOAJBDYAAAAAAMjZZ4MG4gAAACGLwAYAAAAAACYiRqp9dOa+2LOKPhsAAAAhisAGAAAAAAB59dnYOJX9AgAAEIIIbAAAAAAA4FOPBuIAAAChjsAGAAAAgHIjOTlZ9957r7p166ZevXppzJgxBb5n9uzZOumkk3LNnzx5sk477TR16tRJV155pdauXZvn+6+55hrdfffdJbL9CJU+G3GZzzdOkzIygr1FAAAAyIHABgAAAIByY8SIEVq4cKHGjh2rIUOGaNSoUS5AkZ8lS5bopptuUkaOi9dz587VbbfdpiuuuEIfffSRoqOjdeutt+Z6/6RJkzR9+vRS+S4IgT4bif9Ie/5mKAAAAEIMgQ0AAAAA5UJiYqImTJig++67T+3bt9cpp5yiQYMGafz48Xku/+677+qiiy5SrVq1cr1mmR7nnHOOe7158+buMzdt2qStW7f6l9m+fbsLpHTo0KFUvxeCXI7KsjYAAAAQUghsAAAAACgXFi9erNTUVHXu3Nk/r2vXrpo/f77S09NzLf/9999r+PDhGjhwYK7XZs6c6QIjPk2aNNGUKVNUs2ZN/zx777nnnqvDDjusVL4PgogG4gAAACEtMtgbAAAAAAAlwTIqatSo4cpG+dSuXdv13bDsisCghHnhhRfcTys1FWjnzp3asWOH0tLSdNVVV7mASceOHTV06FDVq1fPLTNjxgzXm2PixIlufnFZCaycZbDKgm+9wVi3J9Ts5vpshKXtVUbCNMkCY2FhQdscxstbGC9vYby8hfHyFsbLezKCfIxYlPUS2AAAAABQLuzduzdbUMP4plNSUopU0so8/PDDuuWWW1wPjmeeeUbXXnutC4Ls27fP9e944IEHFBsbe1DbbEGU8PDwoJw0+r5nWBAv2IeyytV7KmrLNIUlrtbODQuUXqlp0LaF8fIWxstbGC9vYby8hfHynowgHyPmlWWdHwIbAACgZG1fLSVuyZrIUMTu3VJiFTssypxVqZZUvQl7HUCJi4mJyRXA8E0XJQARERHhfvbr1099+/Z1z5944gkdc8wxmjdvnqZOnarDDz9cxx577EFvc7Vq1fzrC8bdcPHx8QQ28tPoJGlLZn+NqolzpAZHKFgYL29hvLyF8fIWxstbGC/vyQjyMaJlTBcWgQ0AAFCyQY1RXaXUZDdph0FVcx19xEg3zCG4ESoIRKEcsTJR27Ztc302IiMj/eWpLKhhAYTCsnJWUVFRrml44Lzq1atrw4YNmjRpkjZv3uzv5eELnnz11Vf67bffirTNdsIYrIwJ37rJ2MhHvd7791XCdOmwqxRMjJe3MF7ewnh5C+PlLYyX94QF8RixKOsksAEAAEqOZWpkBTXyZa/bcmRtBB+BKO8hEHVAbdu2dQENy6ro1q2bmzdnzhx16NChSOWe7DPat2/vemucccYZbt7WrVtd0KRRo0Z68803XfDEx7I5zO233168cUVoqtnd9dlQ2l4pYardwhjUPhsAAADYj8AGAAA4MLuQk7ZPSt0r7ct6pCZJ+xKlfUkB85OkzX8Vbm/+Nk5aMVUKi5DC7REphYVnPnfzIgOeZz3yWtY9jyjGsuE51uF7XsEuWBGI8hYCUQWKi4tzpaOsmfejjz6qhIQEjRkzRo899pg/e6Nq1aqFKkt1xRVX6J577nHBklatWmnkyJHuuTURz3knWeXKld3PQw89tLiji1AUES3VOUba8K2UuEbavUKq2iLYWwUAAAACGwAAT+AO5dysoZYFF1yAwRdsKCjw4JtfjGUyCt/Aq1BmvabQFJY7CBIYKPEHQcLzCMBkBUsKDNbkDKrkFYzJ+ryiBHmKExDauqJwu2XPJmnXxoB1BfwMDBa5RwULDpUlAlGFYsEIC2wMGDBAVapU0eDBg3Xqqae613r16uWCHOeff36Bn9OnTx/X2NsCGlu2bFGPHj30wgsvULapIpajssCGSZhGYAMAACBEkLEBAAhtXrpDOS01MwiQK9iQFRzIFTA4iGXsgVKQIaWnZj6w3/gLCr83fMGOwICLe54zCBIQvCnUsgHBk2zL5jH/oNYRlj2QVSrryO97ZK0/z3VESMm7+K0sZNbG8OHD3SOnJUuW5PkeC3TkFezo37+/exTk8ccfZ2zKq7on7H++cZrUIrh9NgAAAJCJwAYAoPzeoWwllOy1YmUs5FFmKd+gRdbz8nAxPDxKiorLfETGBjy3nzZdKWt+4POAZezO/h8ya80f0GmPSdUPydxnGWmZGSjupwUV0rKep+V4HrCs/3ley/o+Iz3H+3Is7182r3XnWId7np7POgLfVw5+Bw6W7RNfhk9asDcGAA5SzW5SRCUpLTEzY4M+GwAAACGBwEZRtGkj7d174GW6dJE++yz7vHPOkebOLfjzb7018+Gza5d1QPRPVjvQQfSnn0pdu+6f/vxz6brrCl5nlSrS4sXZ591xh/TOOwW/98wzpZdfzj7PmjRu2FDwe0eMkC6+eP+03T130kkqlFmzpAYN9k+/8or04IMFv69VK2nKlOzzLrlEmj694PdefbU0ZEj2eY0bH/At/vF66y3phIA7vaZNky69VIWyZk326WHDpNGjC37f8cdL48dnn3fiidJfhah9/8AD0jXX7J9ev17q3r1w2/vdd1Lr1vun335buvPOgt9Xv740e3b2eddeK02aVPB7/+//pJEjc/+t7t594PfZBchH75FOOc7doR1hy//yj3RF1t+g7y7b/Pz5p1Q1IG/gqacyHwUpxX8jDijY/0ZYJoMFBI7qJW3c6G6Kd/+xvxM3kZF93o39pVO6SGkp0taV0uY0aVzigdf3vx6ZP28+VIrLWp8FHOYkS9MLCIyYWuHSgMwa6X4fJUp/F+LKbJdo6YSY7POeKuSd1efHSU0D/nf8d6r0UY7/17h/+8Ny/3z65IAARCXpg/nS14vyX97388gu0gvDswckzrpAWrY8a4U2GLa/E4v+b4T14tiTz3e/vJJUO+vv6tCjpWl/hO6/Eeall6Szzto/PWeOdO65eSxo3ynHvxcLF0iVK+0PjvzvOem5F7JedL/s+3/n/TKkw9tIY57KHlS5+m5poe/f74DlM3K89+LTpItP3h+A2b1Huvih/Jc3tpz9nVxUSWoY8B3+2id9npQ9K8p+f/wfkfUkJkJ69PjMbfWtd8Jf0qyE7OvK+T7TprL0r9oBAaN0adRGaXdaHtubwymxUoeo/dOF+TfC5+rKUtWAJtJzUrz/b0ROL58mRUSVzXFEXJz07rsFfybg+T4b32T12VguVT0s2FsFAABQ4RHYKAq7eLNnz4GXaZJHGZRNm6S1awv+/J07s0/bCX3W+7IuReUvJSX7tAVgCrPOwAuzPtu2Fe69W7fmnmdBjcK8NzHHxYfU1MK9z6TluIBgF6cK8974+NzzNm8u3Ht37Mg97wDvyzZeyTkulth0Yb9rXttRmPfa98rJLiYX5r05L/bZ/i7s9to45hzn4n5X+/0qzHvt9zWndesyL/oX5PO7pZVR+0sbrU6VNhTywljOC27291uY7S2lfyMKtGeHlLh1fwmjDUsL995KMdLUx7LelyylJUvzJhfuvTPekh75LPO9vru3l+2Sdh3gYqXPr29I+97eP21vL/B9+zJ/7LTgasBFy5SMwq0zNo9lEgv53vDqUoNW2bMadhXyQt+x90onHrv/vT/MlsZemWOhfLZh4OfZp3+8Vdrya8HrtGuiDTtln7dpc+n/G5GzTUeo/xuR82YG+39tYbfXeljYePokpUrr1hf8vkObS40DgpBmT7q0MY9/13OKby11vyr7vxmbbi/c9qZl5P5zyva7n5T/ccQVOQJMvw6SvilED5Ump0h3TMg+7/nG0s5C7OOTh0sDL92fbbPoD+n53iqUi96V6tXeHzja9670uS/odAB16kvnDg/I+EmXJj8l7fqj4PfW7iwdc0rW+yzQkybtGlG47W3QQ2pVL/M9e7dLy34u+N+lXYGBpVI+jshqmg2Ua/VOyAxs+MpREdgAAAAIOgIbRWFZAgVlbNSpk/e8Ro0K/vxq1bJP252RWe9z9zNnZLhmhXkGOKKjc989V5h12t3YOdWoUbj31qyZ9121hVGpUvbpyMjCrdNEROT+DoV5b716uefVrl249+YVFDnA+7KNV0yOOzRturDfNa/tKMx77Xvl9f3zCtAU9Dth+7uw22vjmHOcC/PevH5v7PerMO+139ecGjY88N3Y7o7yTVLAzb5ORJhUNeAvrHKdzDte85Ize8r+fvPdXl9mgqTqlaWExZkX+y0bwX7an0O9WgHZC77ASUBGg/1YM1X6JCGrtFKStGu3VCM293LZprM+761zpCk57sYO/K75id4nTc9RN3xPUuHeG7Uvs3RToCqFbCoclWM5i1MUtE5fNkKVulKNqvszGepvlmosKziL4dAG0vnDsrIYYjMDDfMflhJ/y2P5HI6/Wro2R1bXHT8U7ru2OEZqZplDWeps8fa/EXbxdXdC3nfbhwfc/V+pVuj+GxH4/9Kc/68t7NgU6d+I0j+OKPDfQ/v3L5D901eYfw+DdRwRX0uKCxjb6tsKPzaNu2TP/Dz0z8K999BWUudLss9rMUVaU4i/mw59pFNy/BvRKEdGRH5OG7I/83PdPOnHYwr+9zC/8SqNfyNy/p0A5VHdgMCplaM6bFAwtwYAAAB2ypthV19xQGlpaZo3b546deqkiJwX1cuIDdOOHTsUHx/vLpYjtDFeIcrulLXGq6tnSW8XohFu1ysyL5z5Agm+n5a1kG1ezumAoEVFqrdvvRkskGAXrf2PrOmIHNPuZ3TWzwKW2ble+vq+gtd/zfTcWQgIXsN363niwmsZ2r17t6pUqSJ/aN6CGsFu9I79YzWq64H72Njf4w1zGLNQYIGNV44PqX8PQ+E42auCve84Xi2C9H3ShOqZfTbiGkl9V+dfIriUMF7ewnh5C+PlLYyXtzBe3pMR5GvQRTlGJmMDQOiyvgwpu6Tk3VKKPfZkBibsuX+e7/mePJa1n7v2P7fmzkUx53V5hpW9CQwIWD3oPIMIOYMNJbVMjBQeUXoX8uAtFrTwBS4yMpRmd3nbneIE5kOPjZMFLQhEeYMFBe3f24ICUbYcgJK9eaNOL2nD19LetfTZAAAACAEENoBSuEPZ34w60Up0VKA7lFNTsgINWcGEXM9zBBqyBSbyCFZYZoQXWJPxnBf7D5ixUJSshjzm5QpalGJQAUD5RyDKOwhEAUHus/F15vONU+mzAQAAEGQENoBSKOXhb0YdyqU8rAqdbW+uTIcDBBoKyoqw8kuhxAIA0VUyHzEBP62m/N+F6H9w+gipTpuCyydF8E9pqeIOZQDYj0AUEBx1s3rd+BqIH3Y1IwEAABBEXI0DSoJlahyoLISx12254gY2XCAiaX8gwR9oOIisiFDr/2DBgujKWQGIqllBicpZQYmqAc99r/uWzZqX87kFIQ6mRnmTnvRsCAXcoQwAAIKtVjcpsrKUuiezgbgdm1NiEQAAIGgIbABlaf18affGHAGGnH0jArMiAoMVu6WMtNAar6hKBQcX/M8r7w9W5Ho96zMiooL9jRCquEMZAACEQp+N9V9Je9dJu5ZJ1VoyJgAAAEFCYAMoSxNvDO7+jgrMeMgruFA170BEflkTXu3rQGkjAAAAFKcclQU2jGVtENgAAAAIGgIbQMgKyz/jId+STDnLMwUEIiyoER4e7C8VGihtBAAAgOI0EPexBuL02QAAAAgaAhtAWep4kVSz+QGyJgKeW5kn6vaWHkobAQAAoChqdqXPBgAAQIggsAGUpSOvpxk1AAAA4Nk+G8dK6ydLe9dLu5ZK1VoFe6sAAAAqJOrSACVhy3L2IwAAAFCRylFZnw0AAAAEBYEN4GClJkvTHit4uciYzKbVAAAAALzbQNxnI4ENAACAYKEUFXCwpjwkbVma+bxmC+m8l5UREandu3erSpUqCrMm4MaCGtbXAQAAAIA31ewiRVaRUndnNhDPyKAvHgAAQBAQ2AAOxsofpJ9HZT6PiJYufFOq196d4KTt2CHFx3OiAwAAAJSrPhu9MvtsJG2Qdv0lVWsd7K0CAACocChFBRRX0g7pk+slZWROn/RAZlADAAAAQPlVr/f+55SjAgAACAoCG0BxfXmXtGN15vOmx0pH/od9CQAAAFSkPhs0EAcAAAgKAhtAcSz6RJr/TubzmGpS3xekcP6cAAAAgArTZ8OXsWF9NgAAAFCmuBILFNWuDdLnN++fPmOkVP0Q9iMAAABQEYRHSnWOzXxufTZ2Lgn2FgEAAFQ4BDaAorC7sT79j7R3W+Z0u3OljheyDwEAAICKpB7lqAAAACp0YCM5OVn33nuvunXrpl69emnMmDEFvmfNmjXq3Lmzfv31V/9069at83zMmjXLLfPGG2/kem348OGl/v1Qzsx+TVr2bebzKvWls/4nhYUFe6sAAAAAlCUaiAMAAARVZHBXL40YMUILFy7U2LFjtW7dOt11111q2LCh+vTpk+97hg4dqsTERP90gwYN9OOPP2Zb5vHHH9eqVavUqVMnN71s2TJdfPHF+ve//+1fJi4urlS+E8qpzcukr+7fP33u81KlmsHcIgAAAADBUKOzFFlVSt2V2UDcMru54QkAAKBiBDYsODFhwgSNHj1a7du3d4+lS5dq/Pjx+QY2PvvsM+3ZsyfbvIiICNWpU8c/PXfuXH311Vf69NNPFRUV5eYtX75cffv2zbYcUGhp+6SPrpZS92ZOdx8ktTyZHQgAAABU1D4bdY+V1n0hJW3M7LMR3ybYWwUAAFBhBLUU1eLFi5WamurKSvl07dpV8+fPV3p6eq7lt23bppEjR+rBBx884Oc++eST6t+/v1q0aOGft2LFCjVt2rSEvwEqjB+elNbNzXxe6zDplIeCvUUAAAAAgqluYJ+NqcHcEgAAgAonqBkbmzZtUo0aNRQdHe2fV7t2bdd3Y/v27apZs2au8lLnnXeeWrZsme9nzpkzR/PmzdNTTz3ln7d582b3eR9//LHuuecexcTE6IILLtCVV16psCKkC2dkZLhHMPjWHaz1V2hr50jTR8h+UzLCIqTzXpGi4jLTzfPBeHkL4+UtjJe3MF7ewnh5SyiMF8emqNACG4hvnCa1vD6YWwMAAFChBDWwsXfv3mxBDeObTklJyTb/559/dkGLzz///ICf+f777+uUU05RvXr1smVrmFq1aunFF1/Un3/+qYcfftiVsBo4cGCht3fnzp0KDw8P2kmjr69IUYIxOEj7ElX1g0GKyEhzk0k9b1JylRbSjh0HfBvj5S2Ml7cwXt7CeHkL4+UtoTBeeWVZAxWqz0ZUNWnfTvpsAAAAVKTAhmVO5Axg+KZjY2P985KSkvTAAw9oyJAh2ebnZGWtvvvuO9eQPFCPHj30yy+/uOwQ07p1a23dulXvvPNOkQIb1apVc8GQYN4NFx8fT2CjLE16UGHbV2aOQaOuij3lXsVaPd0CMF7ewnh5C+PlLYyXtzBe3hIK45WWlnnzB1Ah2XlBHeuzMUlKSpB2Lpbi2wZ7qwAAACqEoAY2LKvC+mZYQCIyMtJfnsqCFxZE8FmwYIFWr16tG2+8Mdv7r776atcQ3Ndzw0pQ2Wcdc8wxudblC2r4WP+NjRs3Fml77YQxmNkSvvWTsVFGln4jzX4t83lUJYVZCaqIzGb0hcF4eQvj5S2Ml7cwXt7CeHlLsMeL41JUeFaOygIbJmEagQ0AAICKENho27atC2hYQKJbt25unpWb6tChQ7aSTx07dtTXX3+d7b2nnnqqKycVGMSwpuPt27d3mSCBJkyYoFdffVWTJ0/2n3xZOarmzZuX8jeEZ+3ZIn36n/3Tpz4s1T4smFsEAAAAIJQbiG+cSp8NAACAMhKchhFZ4uLiXMbF0KFDXVbGt99+qzFjxujyyy/3Z29YGSrL4Dj00EOzPXwZH9Y3w2fp0qUuEyOno48+2n3W8OHDtWrVKk2aNEmjR4/WoEGDyvDbwjOsrMPnN0m7szJ6DjtF6nZlsLcKAADg/9m7D/ioqvT/49/0BAIJvRelCYiIYFkFu+iq2Avq7tpd/Suuu7a1Y1kL1l3rWnD1twqKXURF7K6KiIoiRUClSodAID3zfz1nmGRakgkkmbnJ581rXpl757a5Z2Y45z73nAdAomm1uz/PRiCB+LYh4gAAANCIAxvmmmuucb0szjzzTN18880aM2aM641hhg8frilTpsS8rbVr17oxhsN16dJFjz/+uL799lsdc8wxuvfee3XFFVfoyCOPrNP3gkZi1kRp7pv+51mtpWMfsnEW4n1UAAAAABIyz8b+/udFa6RNc+N9RAAAAE1CXIeiCvTasJ4U9gg3f/78KteL9poNN1UVG+rqhRde2IEjRZOwYbE05crK6VH/lFp0jOcRAQAAAEj4PBuTK3tt5AyI9xEBAAA0enHvsQEkjPIy6bWLpOLN/unBp0sDjon3UQEAAABI9MBGgCUQBwAAQL0jsAEEfPGwtPh//uc53aXf38m5AQAAAFC9XPJsAAAANDQCG4BZOVv64NZt5yJJOv5RKTMyXwsAAAAAhLaqU0LzbOTN4QQBAADUMwIbQGmR9MoFUlmx/1zsO0bqOZzzAgAAACA2HQ6qfM5wVAAAAPWOwAbwwW3S6h/956HDrtLB13NOAAAAAGxfng1LIA4AAIB6RWADTduvn0mfP+h/npIunfC4lJoR76MCAAAA4CW5g6W0nMoeG77yeB8RAABAo0ZgA01XYZ706oWSfP7pQ26UOgyM91EBAAAA8GKejfaBPBtrybMBAABQzwhsoOl6+2opb6n/ec8R0j4Xx/uIAAAAAHhVe4ajAgAAaCgENtA0/fiaNGuC/3lGS+m4R6Rkvg4AAAAAthMJxAEAABoMV3LR9GxeKU2+rHL6yLul3O7xPCIAAAAAXpe7m5SW63+++mPybAAAANQjAhtoWnw+6fWLpYIN/ukBx0q7nRrvowIAAADQ6PJs/BjvIwIAAGi0CGygafn6KWnhNP/z7I7S0Q9ISUnxPioAAAAAjUEH8mwAAAA0BAIbaDrWLpTevb5y+tiHpWat43lEAAAAABprAvHVH8XzSAAAABo1AhtoGspKpFfOl0oL/NN7nif1OTTeRwUAAACgMWk1WEpv5X9Ong0AAIB6Q2ADTcOn90orvvE/b9NbOuyWeB8RAAAAgMYmKTkoz8Y68mwAAADUEwIbaPyWzZQ+Hud/npQiHf+4lN483kcFAAAAoLEPR7Xqw3geCQAAQKNFYAONW/EW/xBUvjL/9AFXSV2HxvuoAAAAADRWJBAHAACodwQ20Li9d6O0fpH/eZeh0ogr4n1EAAAAABqz3N3IswEAAFDPCGyg8VrwnjTjSf/ztGb+IahSUuN9VAAAAAAafZ6NA/zPi9dLG2fH+4gAAAAaHQIbaJy2rJNev7hyeuRtUtve8TwiAAAAAE0xz8bqj+J5JAAAAI0SgQ00Pj6fNPkvUv4q/3Tvw6Rh58T7qAAAAAA0yTwbJBAHAACoawQ20PjMmijNfdP/PKu1dOxDUlJSvI8KAAAAQFORO4g8GwAAAPWIwAYalw2LpSlXVk6P+qfUomM8jwgAAABAk86zsUHa+EO8jwgAAKBRIbCBxqO8THrtIql4s3968OnSgGPifVQAAAAAmqIOB1U+X0WeDQAAgLpEYAONxxcPS4v/53+e0136/Z3xPiIAAAAATRUJxAEAAOoNgQ00DitnSx/cum0iSTr+USkzJ84HBQAAAKDJyt1VSm/tf776Y8lXHu8jAgAAaDQIbMD7SoukVy6Qyor90/uOkXoOj/dRAQAAAGjKIvJsfB/vIwIAAGg0CGzA+z64TVr9o/95+4HSwdfH+4gAAAAAQOpwYOVZIM8GAABAnSGwAW/79TPp8wf9z1PSpROfkFIz4n1UAAAAABCaQHw1CcQBAADqCoENeFdhnvTqhZJ8/ulDbpQ6DIz3UQEAAACAX85AKaON//nqT8izAQAAUEcIbMC73v67lLfU/7znCGmfi+N9RAAAAABQdZ6NDbM4OwAAAHWAwAa8ac7r0qzn/c8zWkrHPSIl83EGAAAAkGDaB+XZYDgqAACAOsGVYHjP5pXSm5dVTh95t5TbPZ5HBAAAAADRkUAcAACgzhHYgLf4fNLrF0sF6/3TA46Vdjs13kcFAAAAANXk2WhbmWejvIwzBQAAsIMIbMBbvn5KWjjN/zy7o3T0A1JSUryPCgAAAABqzrNRslHa+D1nCgAAYAcR2IB3rF0ovXt95fSxD0vNWsfziAAAAACgdnk2Vn3IGQMAANhBBDbgDWUl0ivnS6UF/uk9z5P6HBrvowIAAACA2uXZIIE4AADADiOwAW/49F5pxTf+5216S4fdEu8jAgAAAIDY5AwgzwYAAEAdIrCBxLdspvTxOP/zpBTp+Mel9ObxPioAAAAAqEWejW29NkrypI2zOHMAAAA7gMAGElvxFv8QVL4y//QBV0ldh8b7qAAAAJCgioqKdO2112rYsGEaPny4xo8fX+M6X3/9tQ455JCI+e+8844OP/xw7b777jrnnHO0fPnyitdWrVqlSy+9VHvttZdGjBihO+64w+0biGk4qlUfcaIAAAB2AIENJLb3bpTWL/I/7zJUGnF5vI8IAAAACWzcuHGaPXu2nnnmGd1000166KGHXICiKvPnz9df/vIX+Xy+kPnffPONLr/8cp199tl65ZVXlJ6err/97W/uNVvWghoFBQV67rnndP/99+vDDz/UAw88UO/vDx5GAnEAAIA6Q2ADiWvBe9KMJ/3P05r5h6BKSYv3UQEAACBBbd26VZMmTdJ1112ngQMH6rDDDtN5553ngg/RTJw4UaNHj1abNm0iXrOeHsccc4x7feedd3bbXLNmjdavX6+ff/5Z3333neul0adPH9c7xAIdkydPboB3iUaRZ2PNJ1L5tl7pAAAAqDUCG0hMW9dLr19cOT3yNqlt73geEQAAABLcvHnzVFpaqiFDhlTMGzp0qGbNmqXy8vKI5T/55BPdddddOuussyJe++qrr1xgJKBbt2764IMP1Lp1a7Vr105PPvmk2rbddpF6m/z8/Dp/T2hEkpKC8mxskjZ+F+8jAgAA8KzUeB8AEMGGAXjzL1L+Kv9078OkYedwogAAAFAt61HRqlUrN2xUgAUfLPfFxo0bXVAi2COPPOL+2lBTwTZt2qS8vDyVlZXp3HPPdQGT3XbbTWPHjlWHDh3UsmVLl1cjwIIm//3vf7XPPvvUuoRsWKvwYbAaQmC/8dh3k9bhQCUtfck99a38UGq1R0yrUV7eQnl5C+XlLZSXt1Be3uOLcx2xNvslsIHEM2uiNPcN//Os1tKxD/nvbgIAAACqYTkvgoMaJjBdXFxcqyGtzG233aa//vWvLgfHP//5T/35z392QZDk5NCO73fffbfmzJmjl17yX7CuDQuihG+voRqNgfeZRF27wSRnDVXLbc9LV0zTls7nxbQe5eUtlJe3UF7eQnl5C+XlPb441xGj9bKuCoENJJYNi6UpV1ZOj/qn1KJjPI8IAAAAHpGRkRERwAhMZ2ZmxrydlJQU9/fkk0/Wcccd557fc8892m+//VxujT322CMkqGGJyi2BeN++fWt9zNb7I7C/eNwNl5OTQ2CjIbXcS76MdkoqWqPUDV8op0VzKbnmZjnl5S2Ul7dQXt5CeXkL5eU9vjjXEa3HtCcCG9Yl/Oabb9bUqVNdQ+Occ85xj+osW7ZMo0aN0mOPPaa9997bzbNu4nvttVfIcrm5uZo+fbp7vmHDBt1444367LPPXNd0u+Pq2GOPrcd3hu1iyfNeu0gq3uyfHny6NOAYTiYAAABiYsNEWd3f8mykpqZWDE9lbQ0LIMTK2gxpaWkuaXjwPGtjrFy5smLerbfeqgkTJrjgxuGHH75dpWQNxnj1mAjsmx4bDXrS3XBUWjJJSS7PxiypzbAYV6W8vITy8hbKy1soL2+hvLwnKY51jtrsM66BjXHjxmn27NnuDqcVK1bo6quvVufOnXXEEUdUuY6NaxvoDhOwcOFC18iYPHlyxbzg7tzXXHONCgsL9cILL7jEgddff7122mknN04uEsgXD0uL/+d/ntNd+v2d8T4iAAAAeEj//v1dQMN6VQwb5r9YPHPmTA0aNKhWwz3ZNgYOHOhyaxx55JFu3vr1613QpEuXLm76oYce0sSJE3XfffdV234BIlgC8SWT/M9XfxRzYAMAAAAJENiw4MSkSZP0xBNPuEaDPRYsWKDnnnuuyobBG2+8oS1btkTM//nnn12gol27dhGvLVmyRB9++KHef/99de3a1XUPt4bO888/T2AjkaycLX1w67aJJOn4R6XMnDgfFAAAALwkKyvLDR1lN0PdfvvtWr16tcaPH6877rijovdGixYtYhqW6uyzz3Y3SFmwxNoQ1ivDntvNUYsWLXKJxy+44AINHTrUbTcgWpsECNHhoMrnqz6S+l/BCQIAAKilhs9St43d/WRdxIcMGVIxzxoF1qMiWpIQuzvKGhO33HJLxGvWY6Nnz55R92Pb69SpkwtqBO/n22+/rbP3gh1UWiS9coFUtm085H3HSD2Hc1oBAABQaxaMsJumzjzzTDfs7ZgxYzRy5Ej32vDhwzVlypSYtmM3W9m2rA1ywgknuPF+LZhh3ePtpimbfvTRR902gx9AjVruImW29z9f86lUXspJAwAA8EqPDburycapTU9Pr5jXtm1bl3dj48aNat26dcjyd955p44//nj16dMnYlt2x5QFSU466SStWrXKdTu3Rkj79u3dfuxvsDZt2rjlkCA+uE1a/aP/efuB0sHXx/uIAAAA4OFeG3fddZd7hJs/f37UdSxwYY9wp5xyinuEs54a9gC2i40d7YajelGyPBsbvpXa7MnJBAAA8EJgo6CgICSoYQLTxcXb7tzf5vPPP3dj4wbn0AgfisoCIRbMsMzt999/vy688EI31FVV+wnfRyxs24HM8A0tsO947b/e/PqZ9PmDNviUfCnp0gn/luyvx99noy2vRory8hbKy1soL2+hvLwlEcqLug6wnVwC8Rcrh6MisAEAAOCNwEZGRkZEcCEwHTzmrSX9vvHGG3XTTTdVORbuW2+95bqEB17/17/+5bqB2zBUVe0nlnF1w23atKlWSQfrutEYSJoej4z09aJok1q+8mcly98YL9z3ChVldpPy8uR1jbK8GjHKy1soL2+hvLyF8vKWRCivaEPIAoiB9dgIsATiA67ktAEAAHghsNGhQweXN8OGkEpN9R+GDRtlAYeWLVtWLPf9999r6dKluvTSS0PWP//8811iQMu5Yd3Nw4eays3NdcNN2X7Wrl0b8rpNb09SPzuulJQUxfNuuJycnMZzofy1vytp83L31NdjP2UeeLkyk+NzfutaoyyvRozy8hbKy1soL2+hvLwlEcrL8kwA2N48Gx2kwlXS6m15NpLj1jwHAADwnLjVnPr37+8CGt99953LiWFsuKlBgwaF9IrYbbfdNHXq1JB1Lfnfbbfdpv3220/5+fk66KCD9OCDD2qfffZxr1tAw4ImO++8s5o1a6bly5dr5cqV6tixY8V+dt9991ofszUY43mROrD/RnGhfM7r0qwJ/ucZLZV0/GNSSuOqyDeq8moCKC9voby8hfLyFsrLW+JdXtRzgB3Ns/GCVLqZPBsAAAC1lBzPpH7W42Ls2LGuV8a0adM0fvx4/elPf6rovWHDUFkPjh49eoQ8jPXEsJ4Z2dnZGjp0qO644w63nR9//FF//etfNWLECPXr10/dunVzw1JdeeWVmjdvnsu7Ybk6zjjjjHi9dWxeKb15WeV5OPJuKbc75wUAAABA08qzEbDqw3geCQAAgOfELbBhLNn3wIEDdeaZZ+rmm2/WmDFjXG8MY8GIKVOmxLSdu+66SwMGDNAFF1ygP/7xj+rSpYvuueeeitfHjRun5s2b65RTTtFjjz2m22+/3fUEQRzYkAmvXyIVrPdPDzhW2u1UigIAAABA082zYQnEAQAAELO4jv1jvTYsKGGPcPPnz69yvfDXbFxh67FRFevZYQENJICvn5IWvud/nt1ROvoBfzdsAAAAAGhKWvaTMjtKhSulNeTZAAAA8EyPDTQxaxdK715fOX3sw1Kz1vE8IgAAAACID7vBKzAcVWm+tP4bSgIAACBGBDbQMMpKpFfOl0oL/NN7nif1OZSzDwAAAKDpCh6OajXDUQEAAMSKwAYaxqf3Siu23YHUprd02C2ceQAAAABNGwnEAQAAtguBDdS/ZTOlj8f5nyelSMc/LqU358wDAAAAaNpa9PXn2TBrPpPKS+J9RAAAAJ5AYAP1q3iLfwgqX5l/+oCrpK5DOesAAAAAQJ4NAACA7UJgA/XrvRul9Yv8z7sMlUZczhkHAAAAgIAOB1WeC/JsAAAAxITABurPgvekGU/6n6dm+YegSknjjAMAAABAtATiqz7kvAAAAMSAwAbqx9b10usXV04ffpvUtjdnGwAAAACCtegjZXXyPyfPBgAAQEwIbKDu+XzSm3+R8lf5p3sfJg07lzMNAAAAANHybAR6bZRukdbP5BwBAADUgMAG6t73L0hz3/A/z2otHfuQv7IOAAAAAIjUIXg4qo84QwAAADUgsIG6tXGJNOXKyulR/5RadOQsAwAAAEBV2pNAHAAAoDYIbKDulJdLr14kFW3yTw8+XRpwDGcYAAAAAKrToreU1dn/nDwbAAAANSKwgbrzxUPS4s/8z3O6S7+/k7MLAAAAALXNs7Hua84ZAABANQhsoG6snC19cOu2iSTp+EelzBzOLgAAAADUNs/GavJsAAAAVIfABnZcaZH0ygVSWbF/et8xUs/hnFkAAAAAiFWgx4YhgTgAAEC1CGxgx31wm7T6R//z9gOlg6/nrAIAAABArfNsdPE/J88GAABAtQhsYMf8+pn0+YP+5ynp0gmPS6kZnFUAAAAAqG2ejcBwVGVbpXUzOH8AAABVILCB7VeYJ716oSSff/rgG6SOu3JGAQAAAGBHh6MizwYAAECVCGxg+739dylvqf95j+HS7y7mbAIAAABAXSQQJ88GAABAlQhsYPvMeV2a9bz/eUZL6fhHpeQUziYAAAAAbK/sXkF5Nv4nlRVzLgEAAKIgsIHa27xSevOyyukj75Zyu3MmAQAAAGCH82wcVJlnY/3XnE8AAIAoCGygdnw+6fVLpIL1/ukBx0q7ncpZBAAAAIA6H47qQ84pAABAFAQ2UDtfj5cWvud/nt1ROvoB/11FAAAAAIAdRwJxAACAGhHYQOzWLpSmXl85fezDUrPWnEEAAAAAqCvZO0vNuvqfk2cDAAAgKgIbiE1ZqfTqBVLJVv/0nudJfQ7l7AEAAABAXbIe8YFeG2UF0voZnF8AAIAwBDYQm0/vkZbP9D9v01s67BbOHAAAAADUh0ACcbPqI84xAABAGAIbqNmymdLH4/zPk1Kk4x+X0ptz5gAAAACgPpBAHAAAoFoENlC94i3SK+dLvjL/9AFXSV2HctYAAAAAoL4030lq1s3/fO3nUlkR5xoAACAIgQ1U770bpfWL/M+7DJVGXM4ZAwAAAID6RJ4NAACAahHYQNUWvCfNeNL/PDXLPwRVShpnDAAAAAAadDgq8mwAAAAEI7CB6Laul16/uHL68Nuktr05WwAAAADQ0AnEV3/MOQcAAAhCYAORfD7pzb9I+av8070PlYady5kCAAAAgIbSvKfUrLv/+dr/kWcDAAAgCIENRPr+BWnuG/7nWa2lYx/2j/EKAAAAAGgY1gbbNhxVUlmhUvJmcuYBAAC2SQ08AZyNS6QpV1aejFH/lFp05OQAAAAAQEPaskRqvlPFZNryl6WcDpU3nWW0lZpv69EBAADQxBDYQKXycunVi6SiTf7pwadLA47hDAEAAABAQwc13uwnlRdWzMpcOl6yR0BypjRqPsENAADQJDEUFSp9+bC0+DP/85zu0u/v5OwAAAAAQEMrWhsS1IjKXrflAAAAmiACG/Bb9aP0/i3bJpKk4x+VMnM4OwAAAACQqHy+eB8BAABAXDAUFaTSIumVC6SyYv/Z2HeM1HM4ZwYAAAAAEtn7B0gt+kkt+kgtem979JGye0uZ7SvzcQAAADQyBDYgfXCbtGq2/0y0HygdfD1nBQAAAAASXekWacM3/ke41BaRwY5AACQzKAk5AACABxHYaOp+/Uz6/EH/85R06YTHpdSMeB8VAAAAAKAmmZ2lopWSrzzytdLN0oZv/Y9wqdn+AEdwsCMQAMnsSNADAAAkPAIbTVlhnvTqhTYwq3/64BukjrvG+6gAAAAAALE48E0pZ6C05Vdp80Jp8wL/3/xtz21+1KBHvrThO/8jXGrzbQGPKL09sjoR9AAAAAmBwEZT9vbfpbyl/uc9hku/uzjeRwQAAAAAqI2UDKllP/8jnOVRDAQ9AsGOzcFBj7Low1ttnOV/ROyrWWXAI6S3RyDokUzZAQCABkFgo6ma87o063n/8/QW0vGPSskp8T4qAAAAAEBGWyk5UyovrPpc2Ou2XHVsuOGWff2PcOUlUv6v2wIe4UGPX6IHPcq2Shu/9z8i9pUlZfcKDXYEAiDNuhD0AAAAdYrARlO0eaX05mWV00feLeV2j+cRAQAAAAACmneXRs2Xita6SZ/Pp/z8fGVnZyspkPTbghq23PZKTpNa9vE/ogU9tiwJDXYEAiD5P0u+0sh1ygqkvNn+R7iUzNCgR3Bvj2ZdCXoAAIBaI7DR1Ph80uuXSAXr/dP9j5EGj473UQEAAAAAglnQIhC48PlUlpIn5eQ0TI4LC3q0sEBEr8jXykulrUukTUHBjkDgw4IeFhQJV1Yo5f3of0TsK8O/n/ChrexvVldGFgAAAFER2Ghqvh4vLXzP/zy7ozTqnyR/AwAAAADEJjlVyt7Z/9DhUYIeSyOHtqoIehRHbq+8SMqb439E7CvDv5/woa3sebNuBD0AAGjC4hrYKCoq0s0336ypU6cqMzNT55xzjntUZ9myZRo1apQee+wx7b333m5ecXGx7r//fr311lsqKCjQXnvtpRtuuEEdO3Z0r7/33nu65JJLQrZz+OGH61//+pealLULpanXV04f+7DUrHU8jwgAAAAA0KiCHjv5H50OC32tvMwf9AhJYh4IfCyqOuixaa7/EbGv9G0BluCeHoGgR3eCHgAANHJxDWyMGzdOs2fP1jPPPKMVK1bo6quvVufOnXXEEUdUuc7YsWO1devWkHkWoJg2bZruuecetW7dWnfffbcLZEyaNMmNP7pw4UIddNBBuvXWWyvWycjIUJNSViq9eoFUsu3c7Xme1OfQeB8VAAAAAKApSE6Rsnv6Hx0PjQx6FCwLC3YEAiAW9CiK3J4FQjbN8z8i9pUWFPTYFuyw5y0DQQ8GrwAAwOvi9r+5BScs8PDEE09o4MCB7rFgwQI999xzVQY23njjDW3ZsiVi/quvvqrrrrvO9dQwFsAYMWKEFi9erJ49e2rRokXq27ev2rVrpybr03ul5TP9z9v0lg67Jd5HBAAAAACAP+jRvIf/0fGQ0DPiK5e2Lg8LdgQSmS/05+8IZ3k+Ns33P8IlbetVEgh2BPf2aN5z+4Melmx9W7J3y4mSkp8vlWVXDv28o8neAQBAYgQ25s2bp9LSUg0ZMqRi3tChQ90QU+Xl5UpOTg5ZfsOGDa4nxvjx43X00UdXzLdlbf6AAQMi9rF582b31wIb++67r5osC2h8fJf/eVKKdPzjUnrzeB8VAAAAAADVS0qWmnfzP3RwZNCjYEWUoa22PS8riNyer3Tb8gui7CvVH9wIH9rKAiDW08R6glQV1Hizn1TuD7JYKKNF+DLJmdKo+QQ3AADwemBjzZo1atWqldLT0yvmtW3b1uXd2LhxoxtSKtidd96p448/Xn369AmZbwGQ8KDFs88+67bdr18/+Xw+/fLLL/rss8/073//W2VlZa5HyKWXXhqy70areIv0ygWSr8w/fcBVUteh8T4qAAAAAAB2POjRrKv/0eGgKEGP36IMbRUIeoQOce1fp3RbovOF0m/h+0rZFvQICnYEAiBFGyqCGlWy161HB702AADwdmDDknyHBxYC05YMPNjnn3+umTNnavLkyTVu13JtWK8OS0pu21u+fHnFvh544AGXfPy2225TYWGhrr8+KJF2DCxIYo94COy71vufeqOS1i30b6PLUGn431y3WCRoeSEuKC9voby8hfLyFsrLWxKhvKjrAEjsoEcX/6PDAaGv2e+mBT2iJjJfKJVGDoHtbha0JOf2+O3dsBdDR5wAAACNOLBhybvDAxiB6czMzIp5FoC48cYbddNNN4XMryqocdlll+kPf/iDTj75ZDevS5cumj59unJyclwi8f79+7vhq6688kpdc801SklJifmYN23aFDFEVkM2GgNJ0+19xCL1lw+V/fWT/vVTM7X50HtUnh/lrhQkRHkhfigvb6G8vIXy8hbKy1sSobysXg0AnmO/mc06+x/t948MehSurCKRuQU98qNsMMbfwo9G+YfUyuwgZbbf9uggZQQ9t7/prf15RwAAQOIFNjp06ODyZliejdTU1IrhqSx40bJly4rlvv/+ey1dutQNHRXs/PPP13HHHadbbvEnwX7rrbd01VVXafTo0br22mtDls3NzQ2Z7tWrlxvyKi8vL2LIq+rYcdUmEFIfd8MFAjQ12rpeev/qyumR/1CLnpX5TJBg5YW4ory8hfLyFsrLWygvb0mE8rJhXgGgUbHf06xO/kf7EVGCHqsjgx0bvpc2z6t524Ur/I8ajyFZymjnD3K4oEdYICQwP2tbUCQ1a/vfLwAAHhW3wIb1nLCAxnfffadhw4a5eTbc1KBBg0J6Rey2226aOnVqyLojR450w0ntt99+bvqLL75wQY0zzjgjIqjx6aef6oorrtBHH32krCz/f/Zz5851wY7aBDWMNRjjeZE6sP8aj8EqW5Mvk/JX+ad7H6qkPc/1V9CQeOWFhEB5eQvl5S2Ul7dQXt4S7/KingOg6QU9Ovgf7YdXzl//jfRODLks03Kkkryal7P8IIWr/I9YpGbX3Ask8Dy9lT9wAgCAx8UtsGFBButxMXbsWN1+++1avXq1y41xxx13VPTeaNGihevB0aNHj6g9Ptq0aeN6fFgwY88993S9OGy9ALt7bciQIW7YK8uncfHFF7veH+PGjdN5552nRuv7F6S5b/ifZ7WSjn2YoAYAAAAAAPF0yAdS7iB/EnHr+eGCF6srnxcFPQ/8LQ8dwjsqGx4r3x6Lal7WkqC73iBV9AIJmd9eSql+SHAAAJpcYMNYjgsLbJx55pnKzs7WmDFjXG8MM3z4cBfkOOGEE6rdxuzZs7VixQr3sHWCPfvss9p777311FNPueDJiSeeqObNm7vhqhptYGPjEmnKlZXTo/4ptegYzyMCAAAAAAAmOa1yqKua2GgMJZv8QY6iKIGQivnbpos3xLDNMn8OEXvEIq1l6LBX0XqBBOa73iCMWAAAaAKBDeu1cdddd7lHuPnz51e5XvBru+++e7XLmj59+ujpp59Wo2fJG1+9SCra5J8efLo04Nh4HxUAAAAAAI1XRlspOVMqL6x6GXvdlqsNCxKk5/gf6lPz8mXF23qDrIohGGK9QUpq3qYFVuxhOUVqPN7UGIbDCrzWTkrJUNxsWeI/V8bnU4r1eCnLrgzMWFk17x6/4wMAJHZgA3Xsy4elxZ/5n+d0l35/J6cYAAAAAID6ZBfAR82vuFDu8/mUn5/vRqZIasgL5SnpUrPO/kdMvUHyIgMeBcFDYgW9VrIxhm2WSgUr/I9YWM6RWHOD2LJ11RvEghpv9qsIRNlWW0QLRFmZEtwAgIRFYKOxWPWj9P4t2yaSpOMflTLtrg4AAAAAAFCv7AJ44CK4z6eylDxL/Jm4QzO53iC5/kfLvjUvX1YkFa2J3vsjJBiybb4FOWpigRV7bP4ptiG8InKAVJMbxJavigWgqutdY+x1W47ABgAkLAIbjUFpkfTKBf5up2bfMVLP0HwjAAAAAAAA28WGjWrW1f+IqTfIxugBj2hDZFlwoyY2bFbBcv8jFpbvo6peIJZsHQDgeQQ2GoMP/yGtmu1/3n6gdPD18T4iAAAAAADQFLneIK38D+1S8/JlhVLhmqp7fwSeB+ZbAvSaWCJ1e2yqPidrtZZP8QddsrpIzbpIqc23f1sAgDpHYMPrfv2f9L9/VY6necLjUmocE3ABAAAAAADEKiVTat7N/6iJr1wq3ljzUFiB56Wbt78cfrghdNryfGRZDpMulcEO+xs8z3qFJKds/z4BIB62LKnIE2W97lLy86Wy7MrhFBsiT9R2ILDhZYV50qsX2ifOP33wDVLHXeN9VAAAAAAAAHUvKVnKaO1/5PSvefnSgm25QYICHuu/kRY8VPt9B3KCbJpbzfGlSJkdtwU6OocGQIL/pkWkKweA+AU13uxXkXvIQhkRv1DJmdKo+QkX3CCw4WVv/13KW+J/3mO49LuL431EAAAAAAAAiSE1S0oNSuxuWg2OLbCxy+X+QMrWbbk9An/LCqpex4bJiiUXSGp2UI+PQNAjrDeIBUiSuWwHoJ4Vra0IalTJXrflCGygTsx5XZr1vP95egvp+Efp7ggAAAB4zS67SAXVXCQze+whvfFG6LxjjpG++abm7f/tb/5HwObNUn//Xc4tLcFvYIiBaF5/XRo6tHJ68mTpQusxXoPsbGnevNB5V14pTZhQ87pHHSX9+9+h84YNk1aurHndceOk00+vnJ4/XzrkEMVkxgypU6fK6ccfl265peb1+vaVPvggdN4ZZ0gff1zzuuefL910U+i8rlUnZg4pr//+VzrwwMoXP/pI+sMfFJNly0Knb75ZeuKJmtc74ADpuedC5x18sPTTTzWve+ON0gUXVE7/9pu0556xHe/770v9+lVOP/+8dNVVNa/XsaP09deh8/78Z+mtt2pe97TTpLvvjvyu2tAcNXnsMf/nOGDmTOnYYxWTuXOlFkH3yd53n/9Rk3r6jaiR138jVki6vZrlM/9PSk4L/Y1widHzpEcekMY9LJWXbcv5UVb53D3K/evZz8p1Ydt92MraPkuW/6OaHCAHJ0lndAzt+XH0c/5rP0lBD3d/dZhG/hsR8nvoxd+Io49u3L8Rge/Af++TBu9SOazR1E+ly+/wBwzdZzfBfyMSrh7h8/8GuZF7fNKfTpCuONufpyjw2POsoOWirBOYvnFfafdW23IcrZbmSHqkhmPN/L3/N7G+fyOysqSJE2veHj02PGrzSunNyyqnj7xbyk2srkAAAAAAYmAXb7ZsqX6ZblHGnV+zRlpewx3BZtOm0GlrzC5f7i6DVRPS8CsuDp22AEws+wy+6BKwYUNs665fHznPLkbEsu7WraHTpaWxrWfKwpIR20WYWNbNyYmct3ZtbOvm5UXOq2K9iPIqKgpdwKZjfa/RjiOWde19hVu1KrZ1wy/22fmO9XitHMPLeXvfq32+YlnXPq/hVqzwX9CrSXig0r5HsR5vxYWooO9vLOvWw29ETLz6G2FjxduwKnYHcpSirrQ68jfCJUbPlcpbSr9F+U6Ea7+TNOKe0F4fRW9F/4xFHK9PKvjN/9DMiEOq1sKJ0s5rKwMiBVsazW9ExO8hvxGJ+xvx6R+UtDJoWKPpVu9R4v9GbE89YtlUqSRbKi/yBwt+eTe2dVM3StMOrAxM2PpzfpWW19CDwsx6VHr30dB5McRv/Mc7TWodNG3/1db4s7S6YX4jmjdXrOjT5jX2A/L6JVLBti9q/2OkwaPjfVQAAABAQigqKtLNN9+sqVOnKjMzU+ecc457VOfrr7/W1Vdfrfftrs8g77zzju6//36tWrVKe+yxh2699VZ16dJlu/cTld3dV1OPjXbtos/bdizVatkydNouynXp4r9nz+dTUlJS1QGO9PTIO+hi2afdaRmuVavY1m0d3MoOuqs2Fs2ahU6npsa2T5OSEvkeYlm3Q4fIeW3bxrZutKBIFetFlFdGRugCNh3re412HLGsa+8r2vuPFqCp6TNh5zvW47VyDC/nWNaN9rmxz1cs69rnNVznzrHdjW3fk/DvUazvNbwHlX1/Y1m3Hn4jYuLV3wgbSsXGip/9tdTpom3fr3IlJSVX/h6G31G+vb8RnXtK3U4IndfvDGll4G5su3u6LPqjTWvJPk6FKyt7gET5aEb167+lz4LuWre7sVtve08Rj+TKXiBKTvjfiIjfQ34jEus3orzE3wPAlU3Ya2lBn+HM9pU9oqr7PFhPKLvY3zJL6twxei+Eiue2zzXSgsdCAwUty/xBh2g9F4K3N3+s9MYdlesu3eq/+B8Wc47qq7NCv59rYvy+Nt8irQ7rndEsxnWzosyL9TciNcp0TetWVWZ1/RsR/v9oNZJ89muAapWVlem7777T7rvvrpTw/8waiBVTXl6echa8rKS3tnUBy+4gXfSF1LxNXI4JMZRXTo77zxaJjfLyFsrLWygvb6G8vCURyisR6snhLPgwY8YM3XHHHVqxYoULWNx+++064ogjoi4/f/58F5DIyMjQB0FDAXzzzTf64x//qBtuuEF77bWXxo0bpw0bNuiFF17Yrv0k2rlLhM8PYkd5eQvl5S0JX17lpf7k5wUrIvN9BP7aayVhd9Zvj5TM0Jwf0ZKfZ3WSUsKCqw0o4cursbLLx+6C/1Z/npnSsL/usVXKmyv9EDbMYjRth/s/R9Zzym13W0+HiultD19Yr73GLDnD/x2082K9ylKCHhWvBaYDz7fNT65m2Wjzg9ffNE+adkDNx3fETKn1HvV+GmpTR6bHRiLbuFTaum7bhE+pK+ZL715b+fqhYwlqAAAAANts3bpVkyZN0hNPPKGBAwe6x4IFC/Tcc89FDThMnDhRd911l7p166b8sDuxx48fr2OOOUajR/t7R1933XU688wztX79etdDozb7AQBgu1kCcQsq2KNNNblpSvKjBD1WhAVAftuWE6QKdiE5f5H/UR0bzisi6BEWCMloU30ep9rYssSfuNj4fJU5GwLbt+NJsKTGDcJ68rjgQlBgIWrQITBd3TLbXou2TOBRl9Z+poRiPRGSqwgURAs0VBcoiFi/imBDyPrp/t5T8bA1LGeGhxDYSOSgxkNDpVL/2Kn2Ux3RWXPyZVLPEVJulLHyAAAAgCZm3rx5Ki0t1ZAhQyrmDR06VI899pjKy8uVnBzaYPzkk09cYMOCGg899FDIa1999ZXuvPPOimkLfgR6dFhvjtrsBwCAepeWLaX1k1oGJdIOZ8P6FK2uvvfHVuv9sbH6fVmQwR4bZ1W9jF20tWBHs20Bj2iBEPtrF3VrCmq82c9/J/+262MRGRjsIrINL5YIwQ07x1UFCqoKOmxvYMKGWWoM7IJ+SlYVvRK2N1BQQ2AiZFl7PTF6HqN2CGwkKuupsS2oUSV73ZYjsAEAAABozZo1atWqldKDxn1v27aty4exceNGtQ4bm/2RRx5xf1955ZWQ+Zs2bXLDXFhX+HPPPdcFTHbbbTeNHTtWHTp0qPV+ahpSIx6jAwf2y8jE3kB5eQvl5S1NqrzsAnJmR/+jVTVDypRuiRL8WBHWA2SFkqobJsguum/5xf+ohi+9dVivj20Bj0AwpHidkrYFNareV6F8hWukZt2qHs4rWu+E6nouRAQfCqt+LWg6qbxYXuezC/2pzfzBhpRtf1ODnwdeC3oE5hWtU9Lcu2rex0HTpDZ7bQssJMDl6abw/a9KehsX+Knue+azwJAt1wDnqTa/xQnwyQEAAACAHVdQUBASbDCB6eLi4loNaWVuu+02/fWvf9Vf/vIX/fOf/9Sf//xnFwSpq/0Egijx6OFhjcbA+2SM8sRHeXkL5eUtlFdV2vuTBWcOiZ5U2BKuF69VcuFvSir8TclFv1U+d48VSipaqeSSDdWe/6Ti9ZI98n7YoXIs+/xsd4E8aVtwwi7SJrmgQ6GSfCXyOruw7NsWRPAl21+bbiafCwxkbXst071WsZzrBWF/Myum3QXqwHr2N2S7/uV2ZEiklLxZaqGaAxv5xakq22rDom3Z7n2hruQo6YCvlGzfw22/iYWFhW7o1UAdsTy9tXylOZGJvuuB9X6OFYENAAAAAI2CJQAPDywEpq1xFqtAosKTTz5Zxx13nHt+zz33aL/99nPJDOtqP6Zly5ZxSx5uSL7qDZSXt1Be3kJ57QiLePSp/vza8EkRuT629f4Imt7Rng6pm3csMLI9fNF6MET0dLC/mdW8VlOvCPub4YINgYwlCZ0y3XKfxCA7O9sqIfV+OIhRUFnYb2JZXp6yc3LicvOL9ZiOFYENAAAAAI2CDRO1YcMGl/8iNdXf1LFhoyzYYAGEWNkwU2lpadp5551D5uXm5mrlypXq2LFjnezHWIMxXj0mAvumx4Y3UF7eQnl5C+VVj9KaSWm9pZa9q17Ggu2WsyOQ4yM4CJI3R1r7eYw7SwoNCAQHCoKDBVUGGLJiXz85g/8/o8ls589nUd3wYTbskS0Xp/oPEvs3sTb7JLABAAAAoFHo37+/CzRYr4phw4a5eTNnztSgQYNqNdyTbWPgwIEut8aRRx7p5q1fv94FM7p06aK+ffvWyX4AAIC7kum/IG6PVruHnpL130jvDK35NB32hdR2by6Wx5slcLdE7hao2nb3f35+vuuhUXHBOqNtYiR6h+cR2AAAAADQKGRlZbmhoyzJ9+23367Vq1dr/PjxuuOOOyp6VbRo0SKm4aLOPvtsXXPNNS5YYoGMu+++2z23JOLWMK9uPwAAoIGlpBPUSBQWtAgELmxYo5Q8/1BH9NBAHSOwAQAAAKDRsGCEBRzOPPNMd3fgmDFjNHLkSPfa8OHDXfDhhBNOqHE7RxxxhEvsbQGNdevWaa+99tIjjzxScbdhdfsBAAAAUL8IbCSqZm2k1AyptKjqZex1Ww4AAABARa+Nu+66yz3CzZ8/P+pZskBHtGDHKaec4h613Q8AAKgjNmxRDDkb3HIAmhQCG4kqt5t0yUxp6zo36VPQmHSWDMlYUMOWAwAAAAAAABobcjYAqAKBjURmQYtA4MLGpMtjTDoAAAAAAAA0IeRsABBFcrSZAAAAAAAAAAAAiYjABgAAAAAAAAAA8AwCGwAAAAAAAAAAwDMIbAAAAAAAAAAAAM8gsAEAAAAAAAAAADyDwAYAAAAAAAAAAPAMAhsAAAAAAAAAAMAzCGwAAAAAAAAAAADPILABAAAAAAAAAAA8g8AGAAAAAAAAAADwDAIbAAAAAAAAAADAMwhsAAAAAAAAAAAAzyCwAQAAAAAAAAAAPIPABgAAAAAAAAAA8AwCGwAAAAAAAAAAwDNS430AXuDz+dzfsrKyuB5DeXm5O4akpKS4HQdiQ3l5C+XlLZSXt1Be3kJ5eUsilFegfhyoL8M7bYxE+PwgdpSXt1Be3kJ5eQvl5S2Ul/f44lxHrE37gsBGDKwwzQ8//LCjZQMAAAA02voyan/OaGMAAAAAtW9fJPm4vSqmE1laWqrk5GTuZgIAAADC7uhKTU11dWXEjjYGAAAAsP3tCwIbAAAAAAAAAADAM7itCgAAAAAAAAAAeAaBDQAAAAAAAAAA4BkENgAAAAAAAAAAgGcQ2AAAAAAAAAAAAJ5BYAMAAAAAAAAAAHgGgQ0AAAAAAAAAAOAZBDYAAAAAAAAAAIBnENhIcO+995769esX8rj00kvjfVgIU1xcrKOPPlrTp0+vmLd06VKdddZZ2n333XXkkUfqs88+47wleJnddtttEd+3//73v3E9zqZu1apV7jdvr7320ogRI3THHXeoqKjIvcZ3zFvlxfcr8SxevFjnnnuuhgwZogMPPFBPPvlkxWt8v7xVXny/UFu0MbyBNoa30L7wBtoX3kL7wltoX3jL4kbQvkiN9wGgegsXLtRBBx2kW2+9tWJeRkYGpy2B2EW7yy+/XAsWLKiY5/P5dPHFF6tv3756+eWXNW3aNF1yySWaMmWKOnfuHNfjRfQyM4sWLXLzjz/++Ip52dnZnLI4se+RXSRv2bKlnnvuOeXl5enaa69VcnKyrrrqKr5jHiqvq6++mu9XgikvL9cFF1ygQYMG6dVXX3WV2r/97W/q0KGDC/ryf5h3ymvUqFF8v1BrtDESH20Mb6F94Q20L7yF9oW30L7wlvJG0r4gsJHg7INkF8fbtWsX70NBFY1C+6Lbf7jBvvzyS3e368SJE9WsWTP16tVLX3zxhQtyjBkzhnOZgGUW+L5ZtJrvW2L4+eef9d133+l///uf2rZt6+bZhfO77rpL+++/P98xD5VXILDB9ytxrF27Vv3799fYsWNdBbVnz5763e9+p5kzZ7ry4/8w75RXoOHB9wu1QRsjsdHG8BbaF95B+8JbaF94C+0Lb1nbSNoXDEWV4OyDZB8uJKavvvpKe++9t1544YWQ+bNmzdKAAQNcUCNg6NCh7qIfErPM8vPzXTdXvm+Jw/4Dta6QgYvkwWXFd8xb5cX3K/G0b99eDzzwgKvEWqDXKrAzZsxww4jx/fJWefH9wvagjZHYaGN4C+0L76B94S20L7yF9oW3tG8k7Qt6bCQw+2D98ssvLjfDv//9b5WVlemII45wd8Cmp6fH+/Ag6fTTT496HtasWeN+JIK1adNGK1eu5LwlaJlZAz8pKUmPPfaYPvnkE+Xm5urss88O6XaHhmVDGlmehuCukjam4z777MN3zGPlxfcrsR188MFasWKFG/ry8MMP1+23387/YR4qr9mzZ/P/F2qFNkbio43hLbQvvIP2hbfQvvAu2hfecrCH2xcENhKYfagKCgpcEMOiaMuWLXPJWwoLC3X99dfH+/BQjUC5BbNpSyiHxO3maj/cO++8s/7whz+4SPUNN9zgoteHHXZYvA8Pku6++27NmTNHL730kv7zn//wHfNQef344498vxLYv/71L9cV2bohW8J3/g/zVnkNHDiQ7xdqhTaGd/H77C20LxIf7QtvoX3hHbQvvOVfHm5fENhIYF26dNH06dOVk5PjPlA29pndAXvllVfqmmuuUUpKSrwPEVWwBO8bN24MmWdBjczMTM5ZgjruuONcdNoi0WaXXXbRr7/+qgkTJiTcD3dTrcQ+88wzuv/++13eIb5j3iqvPn368P1KYJYwLpD49IorrtCJJ57oLp4F4/+wxC2vb775hu8XaoU2hndR//EW2heJjfaFt9C+8BbaF94yyMPtC3JsJDj7EFlQI8CSUNsHLS8vL67Hhep16NDBRTuD2XT48FRIHPY9C/xoB1h02sYVRHzdeuutevrpp11l1rpFGr5j3iovvl+Jx/5PmjZtWsi83r17q6SkxI1nzP9hiaW68rIxcPn/C7VFG8ObqP94C/WfxEX7wltoX3gD7QtvWdtI2hcENhLYp59+6pIcB981OXfuXPfhat26dVyPDdUbPHiwG3rFhg0LsEQ8Nh+J6Z///KfOOuuskHnz5s1zP96In4ceekgTJ07Ufffdp6OOOqpiPt8xb5UX36/EY8NbXnLJJSGVUxtL1eoXQ4cO5f8wD5XX//3f//H/F2qFNoZ3Uf/xFuo/iYn2hbfQvvAO2hfesqyRtC8IbCSwIUOGuO7Glk/Dxuf8+OOPNW7cOJ133nnxPjTUYK+99lKnTp3ckGELFizQ448/ru+//14nnXQS5y5BWTc7Gzfwqaee0pIlS/T888/rtdde0znnnBPvQ2uyLOH0I488ovPPP99daF2zZk3Fg++Yt8qL71didje2sVOvvfZaLVy40NUxrJfNhRdeyPfLY+XF9wu1RRvDu6j/eAu/z4mH9oW30L7wFtoX3jKokbQvknw+ny/eB4Gq2UXx22+/Xd99952aN2+u0aNH6+KLLw4ZngqJoV+/fnr22WddLxuzePFiXXfddZo1a5Z69Ojhfiz23XffeB8mqikz64ZnSZNs7EAbf/qvf/2rRo4cyTmLEwsI3nvvvVFfmz9/Pt8xj5UX36/EY3fnWNf+L774QllZWS4x3J///GdXx+D/MG+VF98v1BZtDO+gjeEttC8SG+0Lb6F94T20L7xlVSNoXxDYAAAAAAAAAAAAnsFQVAAAAAAAAAAAwDMIbAAAAAAAAAAAAM8gsAEAAAAAAAAAADyDwAYAAAAAAAAAAPAMAhsAAAAAAAAAAMAzCGwAAAAAAAAAAADPILABAAAAAAAAAAA8g8AGAHhcv379dPnll0fMf+WVV3TwwQfXyz5tu7b9eHn//fe1//77a/Dgwfr000+jnpNojyuuuKJO9v/2229r3bp1dbItAAAAIJHQvqB9AQBekBrvAwAA7LjJkyfrpJNO0u9+97smcTr/9a9/afjw4br44ovVpk2bqMs8+OCDGjJkSMi8zMzMHd738uXLddlll7ngCgAAANAY0b6IRPsCABILgQ0AaAS6dOmiW265Ra+//rrS09PV2G3evFlDhw5177sqOTk5ateuXZ3v2+fz1fk2AQAAgERC+yIS7QsASCwMRQUAjYD1IFi1apWeeuqpqK8vW7bMdSm3v8F3HP3xj390z21YKXv+6KOPas8999R+++2n1157Te+8844OOuggDRs2THfffXfINhcsWKDjjjtOgwYN0rnnnqsVK1ZUvPbbb7/pwgsvdENF2bBVDz30kMrKyir2NXr0aNfbwoITb7zxRsTxFhUVuf0dcMAB2n333d22bJvGtme9Jq699trtHmqruLhYt912m/bee2/3sCGqNm7cWPH6zJkzddppp7njt/2ff/75Wr16tXvtkEMOqfhr7yX4PEYbqsteu/XWW93yBx54oPLz86s9PyUlJbr++uvdcVmPE1vOyhYAAABoKLQvaof2BQA0PAIbANAIdOjQQZdeeqkee+wxLV26dLu28e2337p1X3rpJR111FEaO3asnn32WRfs+Pvf/64nn3xSc+bMqVh+woQJOu+88/Tyyy+rtLRUV199dUWPhksuucQNEfXqq6/qjjvu0JtvvumOLXhfvXv31osvvuiGlAp300036b333tNdd92liRMnuu3/v//3/1ReXu6Or2PHji6wYc+3x3333afZs2friSeecO/Rgg1/+ctfKnqD/PnPf3bBHeuCb8GiJUuW6PHHH3evT5o0qeLvkUceGdP+LMhhgRoLYDRv3rza8/Pcc89pxowZGj9+vHt/W7Zs0e23375d7xMAAADYHrQvaof2BQA0PIaiAoBGwnoG2AX0f/zjHyFBhFhZQMJ6CjRr1kynnnqqnnnmGY0ZM0a77LKLe1hl/eeff9aAAQPc8taj4eijj3bPbZ/WI2HRokWuZ4P13rAL/8nJydp5551d0OOaa65xvTRMUlKSLrrooqg5L/Ly8tyQWhZ02Geffdy8e+65x/V2+N///qcRI0YoJSVFLVq0UOvWrat8P9bLwpYLaNWqlT744AMVFBTov//9rwvIWC8WM27cONdDYv78+W6bFkQ5++yz3XF269ZNI0eO1Pfff++WDezT/saas8OOfY899nDPv/jii2rPj/WqycjIcN3/c3Nzdeedd4b0JgEAAAAaAu2LULQvACCxENgAgEbCLuJbL4vTTz9d06ZNq/X61oPAghrGLqybrl27VrxuF/Gti3XAbrvtVvHclrOL8Bb4sGGT7EK8DTMVYD0tCgsLtWHDhop9VRUU+PXXX93yNkxTgG17p512coETC2zEwoaaCt6GBRGM9Uqx4Z5sOKxgtk/btwU7bIit//znP5o7d64WLlzoAh6BwMT2CM4FYu+huvNjQaW33nrL9WTZa6+9dOihh+qEE07Y7n0DAAAA24P2RSjaFwCQWAhsAEAjYhffTzzxRNeDwoaJCrCeB+FseKdgqamR/yVEWy8guDdE4OJ8Wlqa2671QnjkkUci1rFeFsGBk2iqes1yUNg+atN9vkePHlG3Y55//vmKQE6ABVwsMGPncODAgdp33311yimn6KOPPtKsWbOi7ieWcxv8nmo6P4GeJbZPe1hPGRsSy4aoqq48AAAAgLpG+6IS7QsASCzk2ACARsYSYW/dujUkkbgFHIzlawgITiS+PX766aeK59bTYdOmTa5XhT1sqCUbqskCC/awff3rX/+K6cK8Df1kQZbvvvuuYp71ZFi8eLHb9o6y7VtQxnpNBI4vOzvb5bpYt26dy+2Rk5Ojf//73zrzzDNd4nTr5WFDdZnw92DnNvi82vP169dXuf+azo8lbf/www/1+9//3uUYsdwmlszcjg0AAABoaLQvqkf7AgDig8AGADQydse/NT6WL19eMa9t27bq1KmTC3bYRXrLxWG9AXbE008/ralTp2revHkuP8RBBx3kLtLbEEo29NKVV17phnD6+uuvdcMNNygrKyuil0c0llz75JNP1q233qrp06e77du2LGG4JfTeURbEsO3bsF22fRtq6qqrrnKBk8CQWhZ4sFwYdq4sabi9z8AwXPY+jB2XBTEGDRrknr/99tv65ZdfdOONN1YMexVNTefHkpdbj5vA/i2xuL13K1cAAACgodG+qB7tCwCIDwIbANAInXTSSRoyZEjFtF1ot4vllgD7yCOP1DvvvKMLL7xwh/ZhybUfeOABN1STDeF0++23u/l2cf7RRx91w0bZa5aA/IADDnCJyWNlybRtGKhLL73UJSm3oZws50V6errqwt///nf97ne/c9u3Y7QeIhbAsGO3nhLHHHOMe82GpLLghx2P5caw4Ib1tLDXL7vsMpcA3LZz1llnuYCG5e3o06dPSG6PcDWdnzPOOMPl+LDAh5XVnDlz3PKxBIUAAACA+kD7onq0LwCg4SX5AmNrAAAAAAAAAAAAJDh6bAAAAAAAAAAAAM8gsAEAAAAAAAAAADyDwAYAAAAAAAAAAPAMAhsAAAAAAAAAAMAzCGwAAAAAAAAAAADPILABAAAAAAAAAAA8g8AGAAAAAAAAAADwDAIbAAAAAAAAAADAMwhsAAAAAAAAAAAAzyCwAQAAAAAAAAAAPIPABgAAAAAAAAAA8AwCGwAAAAAAAAAAwDMIbAAAAAAAAAAAAM8gsAEAAAAAAAAAADyDwAYAAAAAAAAAAPAMAhsAAAAAAAAAAMAzCGwAAAAAAAAAAADPILABAMA2Pp+PcxEF5wUAAAC1Qf0RAFDfUut9DwDgYX/84x/11VdfhcxLSkpSs2bN1LNnT5155pk69thjq10+2EsvvaRBgwbp73//u1599dUql2vbtq3+97//1fp4CwsLNXHiRL399tv69ddftXXrVnXs2FH777+/zj//fPfca5YtW6ZDDjlEd9xxh0444QS98soruuaaa/T++++ra9eudbafSZMmadGiRa5sTH3tpzrr1q3Ts88+q2nTpmn58uXKyspS3759deqpp+rII4+My/ldsGCBbrjhBve5AgAAaAheq4Nv2rTJ1eHeffddV7fKzMx0dTg7zoMPPliJIrzeV1fs/Jv/+7//i1qvTiT9+vWLmJeRkaFu3brpuOOO07nnnqvk5B2/B/jLL7/UTTfd5Or0++yzj5588skd3mZjE60swtX1ZzVe7by7777bfS+Ki4s1duxY1y7n8wHsOAIbAFCDAQMGuEpHQFlZmVauXKn//Oc/uuqqq5Sbm6sDDjigyuWD9erVq+J5u3bt9NBDD0VdLi0trdblsmrVKp133nn67bffdPrpp+viiy92jap58+bpmWee0ZQpU/Tcc89p5513lpcdeOCBeuGFF9S+ffs63e6jjz6qvfbaq973U5U5c+boz3/+s1JSUlwj2D5HmzdvdhXuyy+/3DWU77nnnu36bNRG+Pt+55139O2339brPgEAALxaB7cL+HYDUXl5uf70pz9pl112cTcXvfnmm7rooov0l7/8Rf/v//2/Rl3A4ec9vF6daE466SSdfPLJFdMFBQWaOnWqq2tbkMrq3jtq3Lhx7jPx+OOPq02bNju8vcbI2hzB7Gau8LLp3r27vO6nn35yga1TTjnFBWStPW7tdj4fwI4jsAEANcjOztbuu+8eMd96Qfzud79zd3wEN6qqWj5cenp6TMvF2tXbGnjW2Hv55ZfVo0ePitesUXHMMcfo+OOP1+233+75u4Vat27tHo1lP8Yav9botf3Z3X45OTkVrx166KE66KCDNGbMGO2000667LLLGs37BgAA8HIdvKSkxNXNLCDy/PPPh1zAtjqc9Xr95z//6XptWMCjserdu7e8xO6WD/8M2Gfq559/djeCXXrppTt8M9HGjRu15557at99993Bo228on0Po5WN19lnwRx11FEaNmxYxTw+H8COI8cGAGwn67JsDSPrFl+frNFm3XSnT59e5TJff/216+5sDavgoEaA3dFmFfQuXbq4O0OC1/vDH/6gwYMHuwDI1VdfrfXr14fs2+5+mzVrlruDxrrw20X2p556KmT7RUVF7q4ka1zuuuuuGjVqlOshEswadBZYsd4Iu+22m6677jo333qUXHLJJa6L9sCBAzVixAjddtttblit6s6HdaU39ryqR0BN+7Bjs27iNjRBYNvh+zE2NIH1hhk6dKj23ntvdzeX9ZCp7fkKN3nyZC1ZssR1Sw4OagSMHDnSDUVldyhu2bLFzbOu/eFDG9ix2jHbccT63qs7vw8++GDFHY02z6btc2QXFII/R8bK8/DDD6/2fQIAADSmOvjHH3/s7sa2G1Si3ZVv9Sara5eWllbM++GHH9xwR1aX3GOPPXThhRe6oT8DbH+23y+++MIN8WT1ZutRa8PYrF692tXrhgwZ4urdVjcMX++zzz7TGWec4dazOqQFXKqzYsUK/e1vf3NtAWsTWF3dehIHDwVk27W2Rvi5ee2119y0HWdgOKrwevWPP/7o6sT33XdfyH6tl4TVqa13Rzi7Wat///7673//GzLf2ilWnw28b6ub213wdj7sIrH1kLEeNNvL2jFW187Ly3PTgTvqDzvsMPea1XUDw20F2Pu+4oorXFnbBfmzzz7bvW87B3Z+gj9DsZa9DQFrbQhbxt6j1fttPevhYAEzK9vRo0frl19+0YcffujaXlZ21tNh7ty5IcdnnxsbysmOzdazHgM2bHFt2y/5+fm69dZbXVvCtnXiiSfqo48+itiXXby3c2WfWWs7WE+rHRXtHBtrr9jNfcOHD3efCwtO2fSGDRsq1rUyfOSRR9zx2Dmy3lOB8g1m32PrPW/n3B42+sHSpUtjOj5r99o5ts/hfvvtpxtvvLFiH3YOAt+NwNB0VX0+ANQegQ0AiKE3hDVGAg+7iG9389i4nFbxDR7fN9rygUe0BHrRlgtfNjA0kFXWqmI5GaxxZxXJqliPjZtvvrlizNgZM2borLPOcsNVPfDAA7r22mvd2MTWhT74ordVBi1gYhfWrWJvFT0LYnz66acV79cqflYBt0qmNU6sUvfXv/61orETYHdAWWXZKpfWzdgaZ9bwsobNnXfeqSeeeMK9B2swWM+FWNi5CX784x//cO/Rtm9i2YddvLdhCayBWNXwU/ZezjnnHHXq1Mk1zKz8bYgmawBYboxYz1c0H3zwgRvT2c5bVeyY7T3UZtznHT2/1jgKnEc7L4FpG/YsuAJunxcbsso+YwAAAE2lDv7JJ5+4YUSDe44Es/ql9dqwC73GggOnnXaae243/NjNJnaTjF2kDr8gb8EGuwj673//2/XateGerJ7ep08fV5e2i9QWdPj+++9D1rM6uF2ofvjhh11vAav/VxXcsECB7duCD3ac9957r6vLWv0xcDy2PctrYvu3/AAWCLH69u9//3uXkyJceL3ajtcuxtvQXMHn97333nO9lqNtw+7at0DLW2+9FTLf6pu2DavP2kVnu0ht59baH3ZMdqH/ggsuiLgBJ1a2fvPmzSuCVHbT0b/+9S/X+/2xxx7TEUcc4crNzm0wCxTYenYc1l6w9x18DuwzVJuyt3NoN5zZBfJA+8DaHRbosSCHlbutY+/VntsFeWuf2PYsABDc9rJt2Pm3z5ENtWVBQVvGgkextl8sOGHvy8rQ9mWfPxtOydqAdqOcse3bZ8iCC3au7DNkbQ+bVxeCz7EN42TtG/s+2Hmwz6YFYmzaPjP3339/SG4LKy9rw9h5tRv+7HMeXu5WDtamu+uuu9xnyT5fVl7B7bxo7FzYd9UCLvZZsXNiQwhbMMPaSNZ+sjIw9teOLdrnA8D2YSgqAKiBBQDCKxsWRLCEgNa13O5oqWl5Y5XN4MCD3aVRVSXG7jSxu3JiHRrI7va3Spo9glklNLwxZ40vO36r0FkjySqhNs/YXSx2jDaclVVGja1vjYbAWKd2Z5U1ROwOHbtj5/PPP3eVXqukBRJc23yrbFrl+eijj1Zqqv+/m86dO4dUtu2OMrsby86jDR9grAFmF+/twrlV1msS3FXZuvReeeWVrqEXGOvX7r6paR/W+LNKvp3naF2frbJv78XuBgquCFul396zVaStzGI5X9HYZ8F601QnML6sLRurWN57daxRGUg4HzgvFvSxeRbosYZLTQ1TAACAxloHt4vDrVq1chdcY2H1SOtdbRePA/Vvq19ajwC7KGrvK8DuiA/cmW5J061ngtVxrXeIsaGtLC/EN9984+YH2LYCPaOt7mk3utjF18BF9WCWh8/qzxMmTKioi1rPXKvf2rHYMdlNUHaDjPVatuO2/Vm90gIm0USrV9t7sbvarf5pvYiN1SWtXmo3DUVjgSu78coCKdaGMHbR2taxi8L23C4c24X2Dh06uNetjmr56axeGqj7RmN1+0AvGqu7r1271l20t5uN7KK5fc7sYveLL77oLloH6sxWVvaatZ/sfFjZGxu2ys6Hve+A8HNQm7K3bVsQJZgF8+xmtEC+GLshzW4ss94rgTr54sWL3YV5yxPSsmVLd3HePs/BOV6snK13wcyZMyu+FzW1XyyAZz06LEBgQRJj5Wjbt4CN9Tqwz5jd8HX99ddXvDdrm9q0fY4twLUjws+x9Uyx8rb3a4nfA8dkx2nnxth5sBu6bP/W0yn4OxF805kFPLKysty5DHxu7Jzae7VhnC3IFI31yrBAi303A8ELY79R1pYOtKkDQ7XZX2tvm+rangBiR2ADAGpgDZ9Axd0qQVahtPF07W+0RNzBywcLT3xmFfJoXa9NVRX8qkS7E81Y13drfASzO/Wt8WOVPqvoBu5uM1YptMqyXfgOBDZMcE+CQCXMGgzGuslbBd/uOAnuZm93mL3xxhuue7VdXDeBvwFW4bWHnc+FCxe6yrhdjLe7x8KDNDWxfVv3ZAuoWOMgUOmti31Yw2bNmjURiQStTO3cBCrPsZyv7RXoaVOb7tx1eX6Dj8N6ZlhD2O5is0aADTVgjcxAEAQAAKAp1MHtAnWsdTOrC9pQRHaBNXBh29gFaAvS2LBWVdUnAz0IAhdFTeCi+ubNm0PWC+9Ba8NR2cV+q88GX3gP1OOtfm6BgUA93up6FtywenzwsVhPb7uwbW2Hp59+OurwqVWxeqIFJ15//XV38dkCQrZvu5u+KnbcVp4WELFgg/VGsIvxgXXsXNiwZHYnvgUB7JhtiKfgIE9V7CK8PYJZAMcuzFteO2MX7O29WpsmvI1jnx87lsBFfvs8hp/bHSn78DaTsfMdCGoY6+0dOA8Bgfp9ILBhvTsC09bbydoCgV7X1vsm1vaLvVcLLAQPg2ufEwusGAt8WJAp2rky1rbc0cBG+Dm2c2Q9kSxI9euvv7r3Zu0de5+BY/juu+/cb0Z4ENR6GwUHNqysrYeQfQYC61qAw/Jh2E180W4YtPdv27fzaDfyBbP1LIBkbcTgNjWAukdgAwBqYHdg2fBJAVZ5tO7I1h3XxiQNv5MrfPmqWMUsluViYQ0Fu6PGxj4NvjvJutEGcjJYF/NALwar3Fol0LoH2yOcNRKCWSUvmFXkAhU7u8vLnlvvhWisIRqonNvdZsHsGOwuOusmbRVna0xaYyR8/7GwMV8tiGOBm8BdW3W1j0DCt0ADIpjNCx6HuKbzFY1VfMOHEQgXGOM1cMdaLOry/Aazu+6si7ndJWiNU2uYWo8WAACAplQHtzqc1cGtvl1Vrw27iG83f1gAwuqDVdUnwwMU0Xoc2A0lNQmuBwcHRezucgvqhNdx7YJwVT1Y7IahwD4tYDJ+/Hi3jeCL6bGwurD1ErCAiLVHLMBh7896K1TFXrfAgfXMsMCGBTjsWALBhK5du7qhmawHxEsvveTaAHYx33o72LBK1eVgsTvs7WFsOSs7215wwvDghM/R2NCsATX12Klt2Ye3mQLnI5poywb36reeBFZXt/dmwYFAEvvwtklN7T0LmgRutAoXOFdV9Qa39uCOinaO7fNkbRLbv51HG5bMPiOB8xnIcxEIAgZE+x7Y5ys8R6QJ/M7YZzW457x9HwKJ4WMtVwB1j8AGANSSVVKsgmjdwC1wED5GZzzY3TB28douNFujISD4brbgHgNWMbRKvN15Fa2yHkujKaBFixauQl1VzoZoycwDrCFiXX7tbiy7K8u2ZQJ5HWJljRq7Y+iWW26JCLDUxT4Cdz9ZN/Vw1pMjvLK8PeVnif9sjFq7wyfAAibW+LBGhJWtNUgC3fet/MLvEAzvFVJX5zec9eyxu5psrFtrCAQangAAAE2pDm49Y22oG7v7O3zoIGO9ZA855BB3sd1yVVj9rar65Pb2pg1niZODe6kEcgRES25udUOr0wWGVA0XuEPebpaxnrq2XTt+6zURuGEqVtZGsR4fdne/1SFtuKuabraxQJZdLLfgiwU4LHl3cDvFbtixYYTsrnnrVWD5CuxCt9Wf7a78qtjQqjUFtyxIYqyXcrSL6rW52cjOc0OUfTArMzt31n6wwI/daGbDA1uvBgss1YYdf+BmtuCAkbVVbF7gXNmNTpaPJVy0C/87yoYOsyHSbBhi+2wFAhD2+2C9Y0ygjWbfgeB2cSAQE/z+LEgRGPotWGBIZeulE9zLxbYdyI1i5Rrei8zKNTBEFoD6Q/JwANgO1nCx8TknT54cMQxRPFhFzC6IWyPDuuJGY0NCBdiFaBv/1rrqWqU+8LAuwg8++GBIYuiaWGPILqhbpTZ4WzbkkTVegrsjh7MGiI01aj0AAhfd7e4nWzfWpH/WPdiS5lnXcXts7z6qugPJWC4Su7PHyju8F4V1Qa6qt0qsRo0a5RoBFoAIVLQtQeaZZ57pujbb3XHWALGhxQKVdmtgWcPVlgt+r9vz3qtT1Xmx4IidezsnsTRMAQAAGlsd3AIbNp6+5Zqzelk4C75YXdjqenYjkN1Rbhf1g29Osbu6rdeH5TWoC9OmTYtIuG09S8KH5ArU422IKqvrBtfjrd5pF8MDwybZxX3rGW1Jr+3CseXksF4Atak/2jFY3gK7GcryIwTfjFXd+bWL4raO9T4PThhvN+/YEEN2sdkCMLZt68FtLC/HjgrcbGTlGnxuLFhl+TDCL45Xp6HKPpgdt5Wt1dntuAMX6C2wZGqTYN3OhQ3pFFjXWNvvmmuucflGrAePBVCsnRF8rmyf1nt82bJldf7+rJ1jARXrzRNoH1nPKZsfeG82vJb1RLHvQDC7oSz8e2ABHwv+BI7dyss+Y5ZrxFgekeD3Zj187H3bZy+8jWg3q9lncEfbiABqRo8NANhOlszO7iK67bbbXI6B4PFSY2GVcLsoXhWrPNkdSVZ5tm7EdoG6qi7I1niwSuPFF1/susVa4je7s9+Wt0CHVbYsWGGVr8BdNIFEeJY3wt6HVbLtArrl3ghOMFcTy62x5557unXsYWO/2rBKlufCGp7VJV20u6xsfFvrWWCJ0+xuLKsc27mxru81sfNiXc2tV4h1J7djD+5Wbecs1n1YxdjuOrJGcvjYvHZ+7XxZ5T1wvqyxYHeI2Xi30e7uqQ0rZztflvzQEnBbTxoLPNmdcNZAs6R4dlfQhRdeWLGONeTsDkFLDmkNFgtWWHfs4M/hjp7fwHkx9hmyz0/gziO7Y86Ozcr6hhtu2KH3DwAA4MU6uF24HTdunBsey24k+dOf/uR6C9i6NlyW9eSwumOgbmnPLced1cGtF4ddLLZ6mh2T1ePrgtUH7YYTq/tZj1+7iFtV7xarc1oQw/7ae7D6pg3HY0mzrd5r7OK45TWxurbV+e1ird0tb3VQ+xutN0N4vTowzJHVWa1Obe2FWIazsrK13uXWO9uG2LIcGgHW1rEeAnbe7OYfW9Z6cNuF5vCcCtvDPgf2ObN6rg1BZBe67VxYEMsuakfrmVCdhij7YNZDx4JJ1qvfhkKzMrHPY6CXfaxtAXPggQe6IIHl7LC2l7UH7HNjPRasPWCfGwswWMDHhka2crIgh01bD4/A8Fd1yT5XFmCzXhtW3jbc1VNPPeV6TwTyv9hn09qn9vm177R9ZiyfSXhgw5YZPXq0a4uddtpp7vtjvX8sSGhttKpYTxsrT7uZzwI7dhwWxLH3bb8b4fluANQ9AhsAsJ2su+kf//hHFwywSpVVqGvDuqdG62EQ8Nprr7m7RuwuHmtYWCU0uDIfzir7dhy2njUy7EK05dKwwII1bOwCtw15FOg+bHdAWeXPLs5b0m2rjNn4utYYsuVjZRf9rVJuFTi7aG5dfe1Y7GJ/TZV0qzxagMDem1UILQeE3Yllx2jbsuOvjt0NY2On2sMak+Fsu7Hswyr61pizu9CswWHnIJzdVWaVY1vH3pc1cC1wY42z8HFat7fxZA1gO85Jkya5BpRVqu0uQCs3e83u9rMGhTXw9ttvP1199dUuuPHuu++6srOytEp5XZ1fY0NYWcPF9muNURuGwNixWePAev3EkqQRAACgMdbBbVnr3WD1Rzseu6Brd+hb3e7JJ5909cUA61Vgy9nFUqtD2kV4uxvebmLZ0eTKwYEfC/hYXc/Ole3LbkiJxursFgywwIfV8awnsF2wt6G+rN5nd77bObCevzbkj7EAgl3MttftuG0o2HDh9epA7we7IcrqobH01giwuqv1GLFezME9QexiuQ07ZXVcO5d2k5YFH+xzES25/PawXuF2Hu0cWa4UCxZYT2W7uF/bgFpDlH04a/9ZWVo93vZnF9ttSCUrG2tH2fcoFvZeLS+jBZKszWdBEft827kOtAPsnFibyBJ62+feggv2nu29BnqO1yULGlgQ4eWXX3b7tM+yfb4saGTBKAu6WADN2kP2fbTPkD0sQGNtqECbJvBZsgCQBa1sWDa7Uc7aYPbZsqHkqmPJ5q1XkQXfLBhiwQ7rWWbno7r8JwDqRpKvumymAAAgIdjdXNbQtjGB7a6peCssLHSNB7vDyYbMAgAAQPxY72zrMVJTICaerDeIXTi2u+aj5fwAAKA26LEBAIAH2F1WNgRAvFlPErsL0PJr2B130XrKAAAAAAE2pI8ldLaeD9Zbg6AGAKAuENgAAAAxsyEAbPgrG5bLumtXNeY0AAAAYGzIIBsGyJJkB4a0AgBgRzEUFQAAAAAAAAAA8IzKzEsAAAAAAAAAAAAJjsAGAAAAAAAAAADwDAIbAAAAAAAAAADAM0geHoPy8nKVlpa6hKlJSUn1XyoAAACAB/h8PldXTk1NdXVlxI42BgAAALD97QsCGzGwoMYPP/wQy6IAAABAkzNo0CClp6fH+zA8hTYGAAAAsP3tCwIbMQhEh+yEpqSkKF7Rqk2bNqlly5b0GvEAystbKC9voby8hfLyFsrLWxKhvMrKytwNQPTW8F4bIxE+P4gd5eUtlJe3UF7eQnl5C+XlPb441xFr074gsBGDQCFagyOegQ0rUNs/DY/ER3l5C+XlLZSXt1Be3kJ5eUsilVe89x+roqIi3XzzzZo6daoyMzN1zjnnuEd1li1bplGjRumxxx7T3nvv7eaVlJTogQce0Ouvv+56Xhx//PG6/PLLXZd5r7QxEunzg5pRXt5CeXkL5eUtlJe3UF7e40uQOmIs+06Od8Pi2muv1bBhwzR8+HCNHz++xnW+/vprHXLIIRGRnHvuuUf77befhgwZor/85S9au3ZtSIHY6/vss4/22msvjRs3zo3VBQAAAKDpsHbA7Nmz9cwzz+imm27SQw89pHfeeafadcaOHautW7eGzPvXv/6l1157Tf/4xz/01FNP6YsvvtCdd95Zz0cPAAAAICECG7VtWMyfP98FLSxQEezxxx/XlClT3F1TkyZNUl5enq666qqK159++mlNnjzZbd8aIW+++aabBwAAAKBpsOCEtRWuu+46DRw4UIcddpjOO+88Pffcc1Wu88Ybb2jLli0h86wtYuv87W9/0wEHHOC2Zb1AJk6cGLEsAAAAgEYW2Khtw8IaCqNHj1abNm0iXrMeG9dcc4323HNP9e7dW3/84x81c+bMitefffZZXXrppa5niPXauOKKK6ptwAAAAABoXObNm+eGjbIe3gFDhw7VrFmzovbm3rBhg+6++27dcsstIfPXr1/vAhiDBw+umNevXz83PJXdtAUAAACg/qUmWsPCxq61hkV4gpBPPvlEd911l/Lz813Pi2CXXHJJxfN169a5gIkNOWVWrVql3377zQU9gvezfPlyrV69Wu3bt6/HdwkAAAAgEaxZs0atWrVSenp6xby2bdu64XE3btyo1q1bhyxvQ0tZ7ow+ffqEzM/JyVFaWpprZ9hNVcbaG4FgSG1ZD5DwHukNIbDfeOwbtUd5eQvl5S2Ul7dQXt5CeXmPL851xNrsN9UrDYtHHnnE/X3llVeq3KYNM/Xwww+7xsaECRMq9mOCAxi2H7Ny5UoCGwAAAEATUFBQENL2MIHp4uLikPmff/656wFuw9mGswTh1tv8vvvuU69evdS8eXN3A5bNt14btbVp06aIm7oaqtEYyB1C8vDER3l5C+XlLZSXt1Be3kJ5eY8vznXE2uTFTvVCwyJWxx57rA466CA9+eSTOuecc/TWW2+psLAwZNs7sp94R6u4o8o7KC9voby8hfLyFsrLWygvb0mE8vLS3f4ZGRkR9f/AdGZmZsU8az/ceOONLgdg8Pxg119/vf7617+6HBvNmjXTRRddpO+//17Z2dm1Pq6WLVsqJSVF8So7uymMwEbio7y8hfLyFsrLWygvb6G8vMcX5zqipZxI+MBGrA2L2ujRo0dFUvL9999fU6dOregebtu2fQbvJysryxN3UyVCtAy1Q3l5C+XlLZSXt1Be3kJ5eUsilFdt7qiKtw4dOrihomw4XOtdEejdbW0PCy4EWIBi6dKlLkdfsPPPP1/HHXecy7lhef8sj5/1NLc2hpXFvffeqy5dutT6uKzs4lV+gX3TvvAGystbKC9voby8hfLyFsrLe5LiWEeszT5TE71hEYsPP/xQAwYMcNs01rjo1q2b235gnm27a9euFc9Nu3btPHE3VSJEy1A7lJe3UF7eQnl5C+XlLZSXtyRCedXmjqp469+/v2t3fPfddxo2bJibZ8NNDRo0KOTmpd12283dIBVs5MiRuu2227Tffvu56SuvvNL1Fh8+fLibfvvtt12wI3BTFQAAAID6lZroDYtY2Ji2ltjvz3/+s5u2BOO//vqrG/PWAhudO3d22w4ENuy5zatt4vB4381EhNNbKC9voby8hfLyFsrLWygvb4l3eXnphhvrrW09LsaOHavbb79dq1ev1vjx43XHHXdU3PzUokULd6NVoCd4MGtXWPDC5Obm6v7773ftCbuZ6tZbb9UFF1wQt97dAAA0VtOmTXP/5/7222/q2bOnrrvuOne9z3pWfvzxxxU3IO+0007V5uUF0PikeqFhUZMzzjhDDz74oHbZZRcXsLBEft27d3fDUZnTTjtN99xzjzp27OimrZu45eAAAAAA0HRcc801rv1x5plnunwYY8aMcb0xjPW+sLbICSecUON2LrvsMt188806/fTTXY6Ns846yz0AAEDdsaEhr776aj366KPupujJkye7vFYWwJg/f74mTpzoRnAB0DTFLbBRlw0LC2xYMnLb1vr1610XcfvRC9wxde6552rdunW65JJLXCT3pJNOouEBAAAANDF2c5X19rZHOLtAUpXw15o3b+7y+gEAgPpjvTROOeUU9ew3SJ/MWamNLXdRYXGZbn32PS1dtlxfLvdpdfkKDejWSu1zapdHF4D3pXqtYWGBjvBghwUwrOu3PaKxYIYFUewBAAAAAAAAILH1HThYv5a21oNTZiu/sESbVi5SSUmRyljPJ9oAAMG9SURBVH0+paRl6Kl7rtOmVUuV27GHRp8/Rmccsa9ym2fE+7ABNBAGgQUAAAAAAACQMOYt36jH3p2jz+etUlpqsnKTNuvbVx7R3keMVrO0ZHXq2VeHnnKBzrzp3+rQs5+evPsmPTLle81fsTHeh96kvfvuuzriiCM0ZMgQnXjiifr222/d/FmzZrmUBLvvvrsbynPJkiXxPlQ0AgQ2AAAAAAAAACRMUGPiZwu1Nr9Q3du1UOGaxXr1wevVf59DtPtBx6hL71111PnXqnXHbkpLz9Dwo09TacEm/frrL5rw6UK3PhresmXL9Pe//92NzGMBDQtg/PWvf1VhYaFLD3Deeefpq6++0r777uvylQE7isAGAAAAAAAAgLjbuKVIr03/RflFJeraurmW/zRLb/77Vu195Ona64hT3TJL5n6jBd/+r2IdX3m5ysvL1bltS7eerW/bQcPq2rWrPvvsM9ebZtq3i/X+zAUqSsrQ9f9+XSXJGVqf3Vef/7RWJ55+lksMv3DhQooI3s2xAQAAAAAAAABm6qylWpW3Vd3atlDe2pV695l7dPDoS9Rr8D4VJ6i8rEyfv/602nbpqZw2HTR9ygS16dhdrdp3Uctyn5as2ey2c8q+vTmpDciCSVNn/aZPv/peUx+7VsnJKRp++t+0ceUSNW/dST8sWadvf1mr7Mw0Zbdurx/mzFfv3pRRvIcOu//++7Vq1SrtvPPOuv76691wYf/85z/10ksvKTXVHzpIT0/X9OnTlWgIbAAAAAAeNO3naRozZYwePPJBHdbrsHgfDgAAwA5ZtXGrfli8Qa2yM5WSnKQfv5iqkuIivT/hIffw8+nws67S4ANHuZ4cRVu3qPPOu2jkmZe7V2291i0y3XYOHFig9jlZlEoDsOG/rKfMyo1b1aZjF11w1/Na8M2n+uzFBzVoxFFq3ixLXdtky+fzaVNBiQpKkzVlxiINGLZR/TrnUkZxHDrsP//5jwYPHqyXX37ZDRH20UcfacGCBbr33ns1cuTIhC4bAhsAAACAx1ij8NoPrtX89fPd30N3PlRJSUnxPiwAAIDtNnfZRm0pKlH3Ftluer9jznSP8DpQcXGxuvfbTXscfFzU7bTMStPiNfmas3QDgY0GzIliw4BZThQLLpn+ex2sWR+9qdT0dJWWFLt5Vl/NaZauFJVqa3myy4kyenhv7dKF4Ea8hg5r3ry5lq/dpJnzlqg8NUt3vvqtvv9xnj5aUqaVH/2k7m2zNaBbq4T8LhHYqI1ddpEKCqpfZo89pDfeCJ13zDHSN9/UvP2//c3/CNi8Werfv2Kypc9nvwDR1339dWno0MrpyZOlCy+seZ/Z2dK8eaHzrrxSmjCh5nWPOkr6979D5w0bJq1cWfO648ZJp59eOT1/vnTIIYrJjBlSp06V048/Lt1yS83r9e0rffBB6LwzzpA+/rjmdc8/X7rpptB5XbtWu0pFef33v9KBB1a+8NFH0h/+oJgsWxY6ffPN0hNP1LzeAQdIzz0XOu/gg6Wffqp53RtvlC64oHL6t9+kPfeM7Xjff1/q169y+vnnpauuqnm9jh2lr78OnffnP0tvvVXzuqedJt19d+R3NT+/5nUfe0w6+ujK6ZkzpeOiV4wizJ0rtWhROX3fff5HTerxN6Jajew3otrfQ4/8RlRoAr8RFeXVGH4jjj1WTeY34qKLPPsbUa1G8htRVFqkV7eu3TbzaxXd0F6ZqRkN/xuRlSVNnBjbewEAAKjGkrX57qL4jt6sYeunpCRpyboY6vyos5woWrtIb016XcdceGPF62Vlpcpp11mLgnKilJeXadPaleq9884VOVEuPHyAcpuH1WVR70qUqn+9ME2P3HSJkpJTtNcpl2nt2rUqKsjXF288qzeXLlCz3HYa+vs/6cDhe2rk4G4JVU4ENmrDLt5s2VL9Mt26Rc5bs0Zavrzm7W/aFDptF4K2rWc/6dX+rBf7I58VLAATyz6DL7oEbNgQ27rr10fOs4sRsay7dWvodGlpbOuZsrLQabs4Fcu6OTmR89aujW3dvLzIedWsF1JeRWEJq2w61vca7ThiWdfeV7hVq2JbN/xin53vWI/XyjG8nLf3vdrnK5Z17fMabsUK/wW9moQHKu17FOvx2vcz/Psby7r19BtRo0b0G1Hj76EHfiNCNPLfiJDy4jei5vPLbwT1iHBFRSorL9PC9Qs1a9UsbfnyVZ29fLkyLTYSvNzmKN/rhviNaN685u0BAJBApk2b5saU/+2339SzZ09dd9116tWrlxt+5c4773Rjze+zzz66/fbb1bp163gfbpOyfP0WZabVzaXKrLRULV9XwzU81GlOlOKMnbRm6c9a8O1n6rXb7/Tj51NdYvfOvQbqs/wnNG/GR+ozZD998/5rymnbUa07dlMOOVHiPnzYik1pGj32Ga2c86U+e+VhHXneNeq08wDtPfIEte/WS/NmfKzPJtwjNb9dP6/crOP32Slhhg8jsFEbdndfTT022rWLPq9Ll5q337Jl6LRFqLet59vW3c6izlEv6KWnR949F8s+7U7LcK1axbZutP/g7a7aWDRrFjptyWhi2adJSYl8D7Gs26FD5Ly2bWNbN9oFz2rWCymvjLBIpk3H+l6jHUcs69r7ivb+o118rekzYec71uPdllQopJxjWTfa58Y+X7Gsa5/XcJ07x3Y3tn1Pwr9Hsb7X8DtI7Psby7r19BtRo0b0G1Hj76EHfiNCNPLfiJDy4jei5vPLb4Saej2iXD6VlJX4H+UlunbaZXp25hJtLfEHfA/4RTosSszZHU6ztpG9Nur7NyL8/1IAABLY0qVLdfXVV+vRRx/VsGHDNHnyZF100UV69tlndeWVV+rhhx92iXNvvfVW3XTTTXrwwQfjfchNhrUZSsvKlbxtGKMdZdux7QXaIqj/nChZ2S115LlX69NXn9LHkx5Xu647u4vkqWnpOurca/Txy0/o01eeVNvOPTXyT/6e5uREif/wYT07tnLl0GrvgzXr48kqyM/Tkedd6xKG23dn4O8O1Q+fTlHq5mVa26JlQg0fluSzbziqVVZWpu+++87955YS3hhuIFZMeXl5ysnJ4QfZAygvb6G8vIXy8hbKy1sor4ZT7ivXrxt/1ayVs1xPDPdYOUu/bPxlu7aXkpSiPTrtoennTW/QumIi1JO9Kt7nju+7t1Be3kJ5Ja6vvvpKH374oc6+8FKXf8GGPrrnstPUZ5+R2rjiF535t1vcePJdWiTpuCMP1fTp05Ud7WYv1Is7XvlWW4tK1bal9U2NLpBjI3DRtSprNxWqWUaqrjlhCKVVTz6avUJvfP2r+85UVRaxlJctYzlRjt2zpw7ctTPl1QDDhz327hzN/WGmls14R8dcVDlk7vN3XKq+w/ZXanqWBu9/ZEWZPXfHGI044Vx16ztYy9ZvUdvszHobPqw2dWR6bAAAAAD1aEvxFs1ePbsieGF/v1/1vTYXxzBsoqTerXtrcIfB2q3DbiovL9fNn9wcsUyZr0wzVszQ1EVTdXjvw+vhXQAA4H19Bw7Wr6Wt9eCU2covLNGmlYtUUlKkzetXq1nrjvphyTp9+8taZWemKT2zmWbPW6B9hnFhvKF0ad3clUFdKCgpVZ/OUXrNos6QE8Xbw4f17beLvn310ZChwyz/iQ1D9dYT/1D7rjupY89+mv2/d1RWWqLOOw9wgY7OrZpryZrNbjun7Ns7ru+FwAYAAABQB+xus2WbloUEMOyxYN0C+dzAbNVrntbcBS8siDG442D3d1CHQcpOz67Y/t5P7q1kJatc5RHr2/wbPrxBI3uNpIcvAABVjCe/cuNWtW6Rqdykzfr4lUe09xGjtW7lUrXIbqaubbLd/7ebCkpUnpSqFz6Zp1adE2c8+cbO7vy3wNKODh9l65eV+dS9Db1t6hM5Ubw9fFh2s/SIocOOOv9a5bbrrH2PPVsfTHxYWzdvdEOH2VBiNqRYog0fRmADAAAAqKXC0kLNWTMnYiipDYUbYlq/R06PiuBFIJCxc6udlZyUXOU6xWXFWpK3JGpQw9j8pZuWuuUyqsu1AQBAEx5Pvnu7Flq7dKGmPHWHBu57uHY/6Bh9/NITKi0pdsvaBfWcZulSWYnyS5MSajz5xm5At1Z6/4flLrDkymA72frW68a2h/pBThRvmrtso7bY72ALf9Cv0879dcrl90SUbZ89RmjgPodUGWBsmZXmhg+zIf0IbAAAAAAJamX+yogAxry189zwTzXJTM3Uru13DQlgWK+M3MzaXxyxYMWM82dozdY1FY2O/Px8N/Z3oNHRvnl7ghoAAISNJ289NSyo0bV1cy2dP0tTn71P+x7zJw3Y51D3/2lOu876bdHsinUK8jepuHCr+vbaSau2lLj162s8eVSyC6SDerTS5/NWucCE3RleW2XlPq3fXKh9d+kQ1wuujZ3VPVNTklVcWlon2ysv9yk1LYVex/Vsydp8973a0Zx8tn5KSpKWrMtXPNFjAwAAAJBUUlaiuWvnhgQxLBfG6i2rYzo/nVt0Dglg2N8+bfooNbnuqtzdcrq5hyE5bSOxZYsULTGizcvMDF2uKsnJUlbW9i27dWvVy1qjt1mz0GV9vtiWLSiwqxRVb7t58+1btrDQskrWzbJ2vIGGfVGRVN3Fmdosa+fXzrMpLpZKSnZ8WTvvwe+lpu3aZyfwubLlbPmqZGRIqam1X9bOgZ2LqqSnS2lptV/W3qeVXVVsOVu+tsvaZ8w+a3WxrJ0DOxeBsgn/Htk8+x7acrbd6pbd3u99Q/5GxPq9T9DfiPe/XKQNq9e5YYk2rF2pd5+5RwePvkR9+w9RUuFW9/9pr14DNXPqi1rxw1fq3LOvvpr8X/UYONTl2eic7tPyFev0/pfzdeI+vRLzNyL8e+/h34iRvVtr6a+rtXblWnVu1cxdQC1PTXMPk1RWprTCAqWWl0ZcnLWyXLGpWB1zW2jk4G6J+xuxvcsm2G+E5USZt2C5UtOr+n4mqSSj8hhSC+2cRf+NKM3fqi6du1TOoB5RL78Ry9dvUWZaqpJLSpRcFn1Z+x6V+Cq/W8mlJe4RrmVZiVYvXyuV7ly3vxHV1d2iHCxqUFpa6vv666/d33gpLy/3bdiwwf1F4qO8vIXy8hbKy1soL29pSuW1Zssa37RF03z3fn6v70+v/sk3+NHBvrRb0nwaqxoftpwtb+vZ+rYd215TLK9EqCd7VcW5a97cLmNEPo48MnSFZs2iL2ePAw4IXbZt26qXHTYs9PPTo0fVyw4YELpdm65qWdtOMNtPVcva8QWz469qWXvfwey8VLVsePP2pJOqXzY/v3LZM8+sftnVqyuX/X//r/plf/mlctkrrqh+2dmzK5e96aZql930/vuV3/dx46rf7ocfVm73oYeqX3by5Mpln366+mVffLFyWXte3bK2rQDbR3XL2jEG2LFXt6y994Cvvqp+WTunAXauq1vWyirAyrC6Ze0zEGCfjeqWtc9WgH3mqlvWPrPBqlu2nn8jKjSy34iTL7jc17dfP9+AXXfz7da3n2/33r3dY0ZWlu+TZs18v+/RwzekVy/f+Z07++5+5j3fA5O/d49vDzg64X8j3PchoJH9Rnxw4bUVZTHp9ierXfbdMy71zVu+wb9dfiPq9Tfiwx+W+9a16Vjlsmu79/Ld/+Ys310vz3B/bbqqZW07tr14/0Y05npE+fTpvlte/Np348QZvk/O/mu1yz5/82OuzOw7Z9+/arf75pt1+hthdeNY2xf02AAAAECjVVZepp/W/RSR0HvF5hUxrd+uWbuIXBi7tN1F6SnbP+4zAKBxejo3V/MzMnTnqlVu+tJOnfTRl18qZcgQN71T9+56Jc7H2NTtd8yZ7mGOvONy9fnfeyGvj1i8uOL5w81bKNDvIj2l6hxYqH8FxaUxJxTffac2ak+y9wZhOUx2dEijANsOOVG8NXxYQF19BrZHkkU34rZ3jygrK9N3332n3XffXSnRuok3AIYa8BbKy1soL2+hvLyF8vIWr5fXxsKNbuio4ADG7NWzXaLvmqQkpahf234RQ0l1zO6YsOciEcorEerJXlVx7vr0iX7u6nkIiYrPT1qaqvz0eGSYmaYwFJUrr6Ii5bRu7f++e3iYmcY4FFXZ5s166tlndf/DD+vYo47SHWPHauPGjTr1rLP0wD33aMDuu3tymJnGMBTV858s0Oxl692QOaY0s/IYUoqLlFRe5h92pbhEaelpIf+flmZkVXzvU0qKtWJNnnbt1lqnj+gTeQwMRVUvvxGWH+X9H5bp+xVbtKnU58b0z0qWkgu3Kjk5VUVlZSor86l5RpoGdm+lQwZ1UW5udsL9RjTWoajMyx/8oOnzV6lr2+woOVH8Q1EVFxcrPT1daUVWFr6InCjL1uZr734ddOLBgypfoB5RL0NRPfvpIv2wZJ26t8yodiiqAl+S0rKy3G9iVUNR2bBW7jfx0F3rtB7h6sgLFsTUvqDHBgAAADyl3Feunzf8HJHQe3Fe5V2W1bHE3eEBjIHtB7pE30CDswtysQSFgi/c1eWywRfjYlk2VsEXSOpy2eCLNHW5rDW0AxeW6nJZuwgWuBC2I8vaxa7gYEpttmsX4wIXD+tyWbswEbg4UZfL2vch1s9wbZa1Cz/1sWxSkq6+5RatXb9Rww89SovWbtGdU39S3qY8LV3xm75ck6bVs1e4O5FdIuP6+i7X529EfSzbQL8Riwt8SsluodIovwdl6f7vsQtsJBcrKT29yhsFytLS3XYWb/XVfP7i8RuxI8sm8G9EbvPmOvGQ1hqRV6A5Sze4xMfL1+dra3KSMjPTtVObbJc7peL7laC/EfWyrEmAZQ/Zu68WbCzVkvxCdW3tz4kSIijYWZoZWkb23Vu2fovadmjjthOCekS9fO+7t83Wt7+sVVlqqsqr+C5bufiCghPBOW6ClylILVPnru1Dv7t18RtRixwbBDYAAACQsPKL8/XDqh9ChpL6YfUPbn5NkpSk3q17Rwwl1a1lt4TthQEA8Ba7o7z/wafo17wkffPeJBVtKdKWolJtWLlUKWkZeuqe67Rp1VLlduyh0eeP0RlH7Kvc5jFe9MYOsQtvpWXlSo64i3z72HZse7EOiYS6Y0GLQODCzr/1iMrNzaUcEoD9nh2/z06a8OlCF6To3Kp5lJ4bkaynxooNW5SdkebW53exYQzo1krv/7BcmwpKlNNs+4fWtfWzM9PiPnwYgQ0AAADEnTVSl+QticiFsWj9IvnCuqxHk52erd067BYSwBjUfpCap9fi7jQAAGph3vKNem36L1q5sUStW2Qqt3m6NhenqW2LTG1OLlennn217zF/UovW7fXluy/rybtvUl75vTpxvz7qRw4Az40nX17uU2paChfTEwCBpcRiv2ejh/d2v4dL1mx2v4cts0KHdguu89tF8fWbC9Uxt5kLavB72HDa52RpUI9W+nzeKheYiCUIFS0oZeW37y4doveUakAENgAAANCgCkoK9OOaH0MCGJYbw3JkxKJnbs+IoaR2arWTkpNI7AkAaLigxsTPFiq/qETd27WIuDjUpfeu2mnAHhUX9oYffZrmf/G2fv31F00oT3IXAXfpkktx1TPLrWHjydeFgpJS9emcUyfbAhob+z278PABmjprqX5YvEGL1+S7nCiZqSkqLy9VcmG5Ckv9OVHsgvq+u3TUyMFd6akRByMHd9PPKze7HjNdWzevVaDQAlO2ngWlbDvxRmADAAAA9cIqvr/l/xaRC2P+uvkuT0ZNslKzNKjDIO3WfreKAIb1ysjJ5KICACC+w0/ZnckW1KjqotCSud/IV16mvnsMd9O+8nKVl5erc9uWbj1b3y4CMvxK/QqMJ7+jw0fZ+nZB1vI5AIjOfs9O2be3DhwYlhOlsFzNMlPVt01u9TlR0CByG9HwYQQ2AAAAsMOKy4o1d83ciKGk1m5dG9P6XVt2jeiFYfkxUpJjSKoMAEADsjuSV+VtVbe2Laq8WF5eVqbPX39abbv0VE6bDpo+ZYLadOyuVu27qGW5zw3XYtuxi4CoP41tPHnAC8iJkvj6NZLhwwhsAAAAwJn28zSNmTJGDx75oA7rdViVZ2XNljURAQwLapSUl9R4JtNT0jWw3cCQhN7WC6NNszaUAgAg4a3auNUNs9IqO7PaO1x77rqntuSt1Zv/vlVFW7eo8867aOSZl7vXbD27iGTbsTubuXO5/jS28eQBLyInSmLapREMH0ZgAwAAAO5OnGs/uFbz1893fw/d+VCV+cr007qfIoaSsuGlYtGheYeQAIY979emn9JS0jjjAABPmrtso7ZYXo0WkUMS7XXEqRX/p5ohBx2rPQ4+Lup27M5Yu4hkw7Vwsbx+Nabx5AGgLuV6fPgwAhsAAADQuwvf1dcrvnZnwv72faivlm1apsLSwhrPTkpSivq36x8xlFSH7A6cWQBAo2IXfeyu/x29A9nWtztjl6zLr7NjQ+MfTx4A6kP7nKyKwIUFdDdu3Kjc3NyE721DYAMAAKCJskrr96u+14QfJuj+6feHvLZw/cKo67TOah0RwBjQboAyUmnsAwAav+XrtygzrW4upWSlpWr5ui11si00jfHkAaAhJCV4QCOAwAYAAEATY8NLTZw9URNmT9C8tfOqXK5ri67at/u+IYGMLi26eKaiCwBAXbIL3qVl5UrejjwN0dh2bHu2Xf5vrX+NYTx5AEAlAhsAAABNwJK8JXph9gsumPHtym9jGl6qU4tOmnjiRC62AACw7Q7W1JRkFZeW1sn5KC/3KTUthf9nG5DXx5MHAFQisAEAANBIrcxfqZfmvOSCGZ8v/TzqMru221Wz18yOmG+Jw2esmKGpi6bq8N6HN8DRAgCQ+Lq0bq4flqyrk20VlJSqT+ecOtkWmsZ48gCASslBzwEAAOBx6wvW68lvntShzx6qLvd10Zi3x0QENYZ1HqZ7R96rJZctUVZalpKrqBLa/Bs+vME1+AEADevpp5/W3//+94rpzz77TEcccYR23313XXjhhVq/fj1FEgfd22artMy3w/832vo25JH1DkD8EdAAAO+hxwYAAIDH5Rfn6/V5r2vijxP17sJ3VVJeErHMru131eiBo3Xqrqeqd+vebl5RaZEboqpc5VG3a/OXblqq4rJikoMDQAMpKyvTU089pfvvv1/HHnusm7dmzRrddNNNevjhhzVkyBDdeuutbvrBBx+kXBqYDVH0/g/LXXLpnGbp270dW9/yONj2AABA7RHYAAAA8KDC0kJNWTDFJQGf/NNkFZQWRCzTq1Uvjd51tHtYYCNcRmqGZpw/Q2u2rqm4ezQ/P1/Z2dkVdy62b96eoAYANKCrr75amzdv1qhjT9DKDZv17Ec/6f0pr6pFp176cEW6fipcrH2OOkNXnXtSxW82Go4NXzSoRyt9Pm+VC0ykbEci8bJyn9ZvLtS+u3QgjwMAANuJwAYAAIBHlJSVaNrP01zPjFfnvqrNxZsjlunSootOHXiqTht0moZ2Glrj0Ardcrq5RyCwkZeXp5ycHIZkAIA4ufCSy/TNikJN+M+TyluX7/I5rF25TNltOmpLUambtqGQUtIz9eQbn+msYw9yCZHRcEYO7qafV27Wig1b1LV181r9n2n/19p6HXObue0AAIDtQ2ADAAAggZWVl+nTJZ+6nhmWCHxdQWTC0rbN2urkASfrtF1P037d91NyEmnUAMCL5i3fqNe+WaOVG7e6ngDZmanq2iZbP/lKldk8R21bZLqL6HZxPDU9Q98s/E2F787R8fvspH6dc+N9+E2GBZLsnE/4dKGWrd+izq2ax9Rzw3pqWFAjOyPNrU9ACgCA7UdgAwAAIMHYBauvln/lghkvznlRKzaviFimZUZLndD/BBfMOHing5WaTLUOALwe1Jj42ULlF5Woe7sWWpOWouJtPQHS0jNUVlJcsawFN8pLi9W1fWutzS90F9hHD++tXboQ3GgoFkiyc/7a9F+0ZM1mtW6RqZZZaVF7b9j/65ZTw4afsp4aBKIAANhxtIABAAASgF30+GH1Dy6YYY9fNv4SsUxWapaO6XeMC2Yc3vtwZaZmxuVYAQB1a+OWIneB3IIa0YY2ym3fRYvnflMxXZC/ScUFW9W6fSelpme6XgO2/oWHD6AXQAOyQJKd86mzluqHxRu0eE2+UlKSlJmaovLyUiUXlquwtExlZT6Xj2PfXTpq5OCulBEAAHWAwAYAAEAc/bTuJ70w+wVNmD1Bc9fOjXg9LTlNv+/zexfMOLrv0cpOJ0ksADQ2dmF8Vd5WdWvbIuod/z13HabpU57X0vmz1LnXAPe8x8ChSsvIcq/bUEjWa8C2c8q+vePwDpouG07KzvmBAws0Z+kGLVmbr+Xr87W1sFzNMlPVt02uurfJ1oBurUgUDgBAHSKwAQAA0MCW5C1xwQxLAv7Nb5V34AZYjoxDdjrEBTOO2+U4tcpqRRkBQCO1auNWd7d/q+zMKvM0ZOe00UGnjdH/Xn9a+RvXq9PO/XXIaZdUvG7r2VBIth27wN4+xx/wQMOxcx4479YLc+PGjcrNza1VYnEAABA7AhsAAAANYFX+Kk2aM8kNM/W/pf+Luszw7sNdMOOkASepffP2lAsANAFzl23UFsur0SK0R95eR5waMt21727aedcHqrxQbvkdbCgk6zVAYCP+CGgAAFC/CGwAAADUkw0FG/TK3Fdcz4wPfvlA5b7yiGWGdhrqghmnDDxF3XK6URYA0MTY0EXW42JHL4Tb+pbfYcm6/Do7NgAAgERFYAMAAKAO5Rfn6435b7ieGe8sfEcl5SURywxoN8AFM04deKr6tOnD+QeAJmz5+i3KTKubpnlWWqqWr9tSJ9sCAABIZAQ2AAAAdlBhaaHeXvC265nx5vw3VVBaELHMzq121uiBozV619Hatf2uDFEBAHC5GErLypVcRW6N2rLt2PZsuwyFBAAAGjMCGwAAANuhpKxE7//yvuuZ8eq8V7WpaFPEMp1bdHa9MiyYsWfnPbnIBAAIYcGH1JRkFZeW1smZKS/3KTUthf9vAABAo0dgAwAAIEaWI+PTxZ+6YMZLc1/S2q1rI5Zpk9VGJw842QUzRvQYoeSkZM4vAKBKXVo31w9L1tXJGSooKVWfzjmcbQAA0OgR2AAAAKiGDecxY8UMF8x44ccXtGLziohlWma01PG7HO+CGYfsdIjSUtI4pwCAmHRvm61vf1m7w8NH2fplZT51b5PNmQcAAI0egQ0AAIAoF4dmr57tghmWN+PnDT9HnKOs1CyN6jfK5c34fZ/fKzM1k/MIAKi1Ad1a6f0flmtTQYlymqVv9xm09bMz09z2AAAAGjsCGwAAANssWLegIpgxZ82ciPOSlpymI3ofodN2Pc0FNbLTuSsWALBj2udkaVCPVvp83ioXmEjZjkTiZeU+rd9cqH136eC2BwAA0NgR2AAAAE3a0rylbogpC2jM/G1mxOuWI+PgnQ52wQwbbqpVFnfCAgDq1sjB3fTzys1asWGLurZuXqshqayXoa3XMbeZ2w4AAEBTQGADAAA0Oau3rNakHye5nhmfLfks6jL7ddvPBTNOGnCSOmR3aPBjBAA0HbnNM3T8PjtpwqcLtWz9FnVu1TymnhvWU8OCGtkZaW592w4AAEBTQGADAAA0CRsLN+qVua+4nhnv//K+yn3lEcvs0WkPF8w4ZeAp6p7TPS7HCQBomvp1ztXo4b312vRftGTNZrVukamWWWlRe29YLw3LqWHDT1lPDQtq2PoAAABNBYENAADQaG0p3qI35r/hema8s/AdFZcVRyzTv21/F8w4dddT1bdN37gcJ4CGU1RUpJtvvllTp05VZmamzjnnHPeozrJlyzRq1Cg99thj2nvvvSu2M27cOE2ZMsVNH3bYYfr73/+uZs2aNcj7QOO0S5dcXXj4AE2dtVQ/LN6gxWvylZKSpMzUFJWXlyq5sFyFpWUqK/O5fBz77tJRIwd3pacGAABocghsAACARqWotEhvL3zb9cx486c3tbVka8QyO+XupNG7jnaPQe0H1WoscwDeZsGI2bNn65lnntGKFSt09dVXq3PnzjriiCOqXGfs2LHaujX0t+Shhx7SV199pccff9zdPW9Bjfvuu0/XX399A7wLNGY2nNQp+/bWgQMLNGfpBi1Zm6/l6/O1tbBczTJT1bdNrrq3ydaAbq1IFA4AAJosAhsAAMDzSspK9MEvH7ieGa/OfVV5RXkRy3TK7qRTB57qghl7ddmLYAbQBFlwYtKkSXriiSc0cOBA91iwYIGee+65KgMbb7zxhrZs2RIx/+OPP9app56qQYMGuenTTjtNL7zwQr2/BzQd7XOyKgIXFjzbuHGjcnNz+f8LAACAwAYAAPAqy5Fhib+tZ8akOZO0duvaiGXaZLVxyb8tmDGi+wilJKfE5VgBJIZ58+aptLRUQ4YMqZg3dOhQN8RUeXm5kpOTQ5bfsGGD7r77bo0fP15HH310yGt2gfndd991Q1QZG9qqf//+DfRO0BTRuxAAAKASPTYAAIBn2B2rX6/42gUzXvjxBS3fvDximRbpLXR8/+M1euBoHbrzoUpLSYvLsQJIPGvWrFGrVq2Unp5eMa9t27YuX4bdDd+6deuQ5e+8804df/zx6tOnT8S2rrrqKo0ZM6Yi50bfvn316KOPbtfvmj0aWmC/8dg3ao/y8hbKy1soL2+hvLyF8vIeX5zriLXZL4ENAACQ8Gavnu2CGfZYtGFRxOuZqZka1XeU65lxZJ8j3TQAhCsoKAgJapjAdHFxccj8zz//XDNnztTkyZOjnsglS5aoU6dOLvhhvUBuueUW9/y2226r1YnftGlTRE+Rhmo0BvKG0BMg8VFe3kJ5eQvl5S2Ul7dQXt7ji3Md0XpRx4rABgAASEgL1y/UC7Nf0ITZE/Tjmh8jXk9LTtPhvQ93PTOO6XeMWmS0iMtxAvCOjIyMiABGYDozszIgWlhYqBtvvFE33XRTyPyA/Px8XXfddfrPf/6jwYMHu3m33367/vCHP+jSSy9V+/btYz6mli1bKiUlJW53w+Xk5BDY8ADKy1soL2+hvLyF8vIWyst7fHGuI5aVlcW8LIENAACQMJZtWuaCGZYE3IacCpeclKyDeh7kemac0P8Etc4KHTYGAKrToUMHlzfDelikpqZWDE9lwQsLMAR8//33Wrp0qQtSBDv//PN13HHH6aSTTnJ3su2yyy4Vrw0YMMDdYbZy5cpaBTaswRivHhOBfdNjwxsoL2+hvLyF8vIWystbKC/vSYpjHbE2+ySwAQAA4mrNljUu+bcNM/Xpkk+jLrNvt31dz4yTB56sjtkdG/wYATQOltzbAhrfffedhg0b5ubZcFODBg0KGQ5qt912c8nAg40cOdINM7XffvuppKTEzVu4cKEGDhzonv/888/ub9euXRvwHQEAAABNE4ENAABQb6b9PE1jpozRg0c+qMN6HVYxf2PhRr0691XXM+P9n99XmS+yu+mQjkN02q6n6ZSBp6hHbg9KCcAOy8rKcj0uxo4d64aOWr16tcaPH6877rijovdGixYtXA+OHj16RO3x0aZNG/d8xIgRuuGGG1xuDeuyb8NWHXXUUREJyAEAAADUPQIbAACgXtiFvms/uFbz1893f3/X9XeavGCy65nx9sK3VVwWOs692aXtLi6YcerAU9WvbT9KBkCdu+aaa1xg48wzz1R2drbGjBnjemOY4cOHuyDHCSecUON27r33Xpcs/IILLnBd5g855BBdffXVlBgAAADQAAhsAACAejF10dSKPBn2t+3dbVVUVhSxXM/cnm6YKcubsVuH3RjrHUC999q466673CPc/Pnzq1wv/DVLqBjo6QEAAACgYRHYAAAAdaqsvEwf/vKh/vDKH0LmBwc1LE+G9cqwYMbeXfYmmAEAAAAAAGJGYAMAANTJsFPWK+P5H57XCz++oN/yf4u63O97/15X7nul9u+xv1KSUzjzAAAAAACg1ghsAACA7TZv7TxN+GGCnp/9vBauX1jtsilJKVq7da0O7HkgPTQAAAAAAMB2I7ABAABqZdmmZXph9gsumPHNb99EDWCU+coi5tu8GStmuNwbh/c+nLMOAAAAAAC2C4ENAABQo/UF6/XynJddMOPjXz+WT76Q15OU5HpinLbraXr060c1a+Uslas8YjvJStYNH96gkb1G0msDAAAAAABsFwIbAAAgqi3FW/TmT2+6vBnvLHxHJeUlEcsM6zxMp+96uk4ZeIq6tOyiotIiF7iIFtQwNn/ppqUqLitWRmoGZx4AAAAAANQagQ0AAFChpKxE7/38ngtmvDbvNW0p2RJxdvq26euCGacNOs09D2bBihnnz9CarWsqkorn5+crOzu7oodG++btCWoAAAAAAIDtRmADAIAmrtxXrs+Xfu6CGS/++KLWFayLWKZzi84aPXC0Th90uvbotEe1w0h1y+nmHoHARl5ennJychh6CgAAAAAA1AkCGwAANEEWcPhh9Q8umDFh9gQtyVsSsUxuZq5OHnCyy5uxf4/9lZKcEpdjBQAAAAAACEZgAwCAJuSXDb+4QIYFNH5c82PE61mpWTqm3zGuZ8bhvQ5nyCgAAAAAAJBwCGwAANDIrcpf5YaYen728/py2ZcRr6ckpWhkr5EumHFsv2PVIqNFXI4TAAAAAAAg4QMbRUVFuvnmmzV16lRlZmbqnHPOcY/qfP3117r66qv1/vvvhwyn8cQTT2jixInauHGjBg0apBtuuEG9e/d2r8+ZM0fHH398yHYGDhyoV155pZ7eGQAA8bWpaJNenfuqC2ZM+3may6MRbr9u+7lghg031a55u7gcJwAAAAAAgKcCG+PGjdPs2bP1zDPPaMWKFS5g0blzZx1xxBFRl58/f77+8pe/KCMjI2S+BTTGjx+vO+64Qz179tSTTz6p888/X1OmTFFWVpYWLlyo/v37u+BHQGoqnVUAAI1LYWmh3l7wtgtmvDn/TRWVFUUsM6j9IBfMGL3raPXM7RmX4wQAAAAAANgRcbu6v3XrVk2aNMkFG6z3hD0WLFig5557Lmpgw4IXd911l7p166b8/PyQ11599VXX0+Oggw5y02PHjtVee+2lb775Rvvtt58WLVqkXr16qV077kYFADQuZeVl+vDXD13OjFfmvqK8oryIZSyAcfqup+u0Qadp1/a7xuU4AQAAAAAAPB/YmDdvnkpLSzVkyJCKeUOHDtVjjz2m8vJyJScnhyz/ySefuMCGBTUeeuihkNeuuuoqde3atWI6KSnJDU+1efNmN22BjX79+tX7ewIAoCHY/3EzVsxwwYwXfnxBK/NXRizTrlk7nTrwVNc7Y5+u+7j/GwEAAAAAABqDuAU21qxZo1atWik9Pb1iXtu2bV3eDcuT0bp165DlH3nkEfc3Wl6MYcOGhUxbTxALmligJBDYsGDJqFGjXLBj//33d8GQ7Ozsenp3AADUvXlr57lghj0WbVgU8Xp2erZO6H+C651xyM6HKDWZYRcBAAAAAEDjE7crHgUFBSFBDROYLi4u3u7tzpo1y/XsOPfcc93QUyUlJVq6dKnr0XH77bdr06ZNLhfHlVdeqUcffbTWd8jaIx4C+47X/lE7lJe3UF7e0tTKa9mmZZo4e6ImzJ6gb1d+G/F6ekq6jux9pBtm6ug+RysrLavitUQ4R02tvLyO8vKWRCgvvtsAAAAAmlRgwxKAhwcwAtOZmZnbtc1vv/3WJQ23HhmWZNykpaXpyy+/dPuz5+bOO+/UiSeeqFWrVqlDhw4xb9+CIuFDZDVko9HykhiGE0l8lJe3UF7e0hTKa33Ber2x8A29NP8lfb78c/kUetEySUnav9v+OrHviRrVe5RyM3Pd/OKtxbJ/iaQplFdjQnl5SyKUl/WKBgAAAIAmE9iwgMKGDRvckFGpqakVw1NZUKNly5a13t706dN14YUXumTh9957b0gAInzIKUskbmob2LDjSklJUTzvhsvJyeHCkAdQXt5CeXlLYy2vLcVb9MZPb2jCDxP07qJ3VVJeErHMnp331Gm7nqZTBp6izi06ywsaa3k1VpSXtyRCeZWVlcVlvwAAAACatrgFNvr37+8CGt99911FjoyZM2dq0KBBte4V8dNPP+miiy7SiBEjdN9991UESszChQt18skn64033lC3bt3cvLlz57plevToUav9WIMxnhdlAvvnwpA3UF7eQnl5S2Mpr5KyEk1dNFXPz35er817TVtL/HdeB+vXpp9LAG4BjT5t+siLGkt5NRWUl7fEu7z4XgMAAABoUoGNrKwsHXfccRo7dqzLfbF69WqNHz/e5b8I9N5o0aJFTMNS3XjjjerUqZOuueYa1wskwNbfeeedXQDjhhtu0LXXXuuGk7rppptcsMPubgMAoCGV+8r1vyX/cwnAJ82ZpHUF6yKW6dKii0bvOtoFNIZ0HMKFQwAAAAAAgEQIbBgLRFhg48wzz3TDRY0ZM0YjR450rw0fPtwFOU444YRqt2EBEMutYQ488MCQ1wLrW5Lwf/zjHzrjjDNcb5BRo0bpqquuqsd3BgBA6HAx36/63gUzLAn40k1LI05Pq8xWOmnASS6YsX+P/ZWcFJ+cTgAAAAAAAIkuroEN67Vx1113uUe4+fPnR13HAhXBwY527dpVuWyA9eZ46KGH6uCIAQCI3c8bfnY5M2yoqTlr5kS8npWapWN3OdYNM3V4r8OVkZrB6QUAAAAAAEjkwAYAAI3NyvyVevHHF13vjOnLp0e8npKUosN7H67Tdz3dBTWy07PjcpwAAAAAAABeRWADAIAdlFeYp1fnveqCGe//8r7LoxFuePfhLphhw021a96Ocw4AAAAAALCdCGwAALAdCksLNWXBFBfMmPzTZBWVFUUsM7jDYDfMlCUC75Hbg/MMAAAAAABQBwhsAAAQo7LyMn3464cumPHy3Je1qWhTxDI75e7kEoBbQGNg+4GcWwAAAAAAgDpGYAMAgGr4fD59tfwrF8x44ccXtGrLqohl2jdvr1MHnuoCGnt32VtJSUmcUwAAAAAAgHpCYAMAgCjmrpnrghnPz35eP2/4OeL1FuktdEL/E1ww4+CdDlZqMv+lAgAAAAAANASuwgAAsM3SvKWaOHuiC2Z8t/K7iPOSnpKuo/oc5YIZ9jcrLYtzBwAAAAAA0MAIbAAAmrR1W9fppTkvuWDGJ4s/iXg9OSnZ9ciwnBnWQyM3MzcuxwkAAAAAAAA/AhsAgCZnS/EWvTH/DRfMeGfhOyotL41YZq8ue+n0XU/XKQNPUacWneJynAAAAAAAAIhEYAMA0CQUlxVr6qKpLm/G6/Nf19aSrRHL9GvTT2cMOkOnDTpNvVv3jstxAgAAAAAAoHoENgAAjVa5r1yfLfnMBTMmzZmk9QXrI5bp0qKLG2bK8mbs3nF3JSUlxeVYAQAAAAAAEBsCGwCARsXn82nWqlkumDFh9gQt27QsYplWma108oCTXTBjRI8RLo8GAAAAAAAAvIHABgDAU6b9PE1jpozRg0c+qMN6HVYxf9H6RS6QYQGNuWvnRqzXLK2Zju13rAtmjOw1Uukp6Q185AAAAAAAAKgLBDYAAJ7qjXHtB9dq/vr57u+u7Xd1Q0xZMGP68ukRy6cmp+rwXoe7YMYx/Y5Rdnp2XI4bAAAAAAAAdYfABgDAMyz599crvnbP7W+X+7rIJ1/EciO6j3DBjJMGnKS2zdrG4UgBAAAAAABQXwhsAAA801vj4ikXh84LCmpY4m9LAj5619HqntM9DkcIAAAAAACAhkBgAwDgCVe+d6UWbVgUMd+CGdfvf70GtBsQl+MCAAAAAABAw0pu4P0BAFBrD01/SPd+cW/E/JSkFC1cv1D92/bnrAIAAAAAADQRBDYAAAntjk/v0Jh3xkR9rcxXphkrZrjcGwAAAAAAAGgaCGwAABI2p8Y1067RtR9cW+1yyUrWDR/e4JYHAAAAAABA40eODQBAwin3levSty/VwzMernlZlWvppqUqLitWRmpGgxwfAAAAAAAA4ofABgAgoZSWl+q8N87TM7OeqZh320G36fd9fu+eW8+M/Px8ZWdnKykpyc1r37w9QQ0AAAAAAIAmgsAGACBhFJUW6YxXztDLc19208lJyXr62Kf1p8F/qljGAht5eXnKycmpCGwAAAAAAACg6SCwAQBICFtLturEF0/UOwvfcdNpyWmacOIEnTjgxHgfGgAAAAAAABIIgQ0AQNxtKtqkURNG6ZPFn7jprNQsvXrqqzq89+HxPjQAAAAAAAAkGAIbAIC4Wrd1nY547gh9veJrN90ivYXeOv0tjegxgpIBAAAAAABABAIbAIC4+W3zbzrs/w7Tj2t+dNOts1rr3T+8q2Gdh1EqAAAAAAAAiIrABgAgLhZvXKxD/+9QLVy/0E13zO6o9/74nnZtvyslAgAAAAAAgCoR2AAANLif1v2kQ549RMs2LXPTPXJ6aNqfpql3696UBgAAAAAAAKpFYAMA0KBmrZylkf8dqdVbVrvpvm36atofp6lbTjdKAgAAAAAAADVKrnkRAADqxpfLvtSBzxxYEdQY3GGwPj37U4IaAIAGU1RUpGuvvVbDhg3T8OHDNX78+BrXWbZsmYYMGaLp06dXTPfr1y/qY8aMGQ3wLgAAAICmjR4bAIAG8eEvH2rUhFHaUrLFTe/TdR9NOX2KWmW1ogQAAA1m3Lhxmj17tp555hmtWLFCV199tTp37qwjjjiiynXGjh2rrVu3Vkx36tRJn332Wcgyd955pxYvXqzdd9+9Xo8fAAAAAIENAEADeOunt3TiiyeqqKzITR+808F6ffTryk7P5vwDABqMBScmTZqkJ554QgMHDnSPBQsW6LnnnqsysPHGG29oyxZ/UD4gJSVF7dq1q5j+5ptv9O677+r1119XWlpavb8PAAAAoKljKCoAQL168ccXddwLx1UENY7ue7TeOv0tghoAgAY3b948lZaWumGlAoYOHapZs2apvLw8YvkNGzbo7rvv1i233FLtdu+9916dcsop6tWrV70cNwAAAIBQDEUFAKg3478dr/PfPF/lPv/FolMHnqr/O/7/lJbC3awAgIa3Zs0atWrVSunp6RXz2rZt6/JubNy4Ua1bt44YXur4449Xnz59qtzmzJkz9d133+m+++7brmPy+Xzu0dAC+43HvlF7lJe3UF7eQnl5C+XlLZSX9/jiXEeszX4JbAAA6sU/v/ynLnv3sorpc4ecq38f/W+lJKdwxgEAcVFQUBAS1DCB6eLi4pD5n3/+uQtaTJ48udptvvjiizrssMPUoUOH7TqmTZs2KTk5OS6NxkDekKSkpAbfP2qH8vIWystbKC9voby8hfLyHl+c64jRelFXhcAGAKDO/xP8x6f/0A0f3lAx77K9L9N9h9/HhRMAQFxlZGREBDAC05mZmRXzCgsLdeONN+qmm24KmR/OhrV6//33XULy7dWyZUuXsyNed8Pl5OTw/7MHUF7eQnl5C+XlLZSXt1Be3uOLcx2xrKws5mUJbAAA6vQ/wKunXa27P7+7Yt6N+9+osQeO5aIJACDurFeF5c2wgERqamrF8FQWvLAAQ8D333+vpUuX6tJLLw1Z//zzz9dxxx1XkXPDhqCybe23337bfUzWYIxXj4nAvumx4Q2Ul7dQXt5CeXkL5eUtlJf3JMWxjlibfRLYAADUCcujcfFbF+uxmY9VzLv7sLt1xb5XcIYBAAmhf//+LqBhAYlhw4a5eTbc1P9v7z7Ao6i+h4+f9IQWIPRepSShhSJSREBUkA4CiRRRilKsiKAoTRRsv78iKiDSEkCUJkakWFBRpAgkQOjSS+glIf197uXdJSEBs0k2s7P5fp5nn9yZ3Z25mZuFnTlz7gkMDEwzHVSdOnVk7dq1ad7brl07mTx5cpoghio67u/vrzNBAAAAAOQeAhsAgGxLTE6UASsGSGhEqF52ERf5/PHPZXDQYI4uAMBh+Pj46IyL8ePHy5QpU+TcuXMyZ84ceeedd6zZGwULFtQZHBUrVsww48PPz8+6fODAAalatWqu/g4AAAAARHK/Sh0AwKnEJcZJz6U9rUENNxc3WdhtIUENAIBDGjNmjM6y6N+/v0yYMEFGjBihszGU5s2bS3h4eKa3df78eT3/MAAAAIDcRcYGACDLbsTfkK5Lusq6w+v0sqebp3zd42vpXLMzRxUA4LBZG1OnTtWPO+3bt++u78voudmzZ+d4/wAAAAD8NwIbAIAsuXLzinQI6yB/HP9DL+fzyCcre6+UtlXackQBAAAAAABgNwQ2AAA2i74RLY+GPirbT2/Xy75evhIeEi4PlH+AowkAAAAAAAC7IrABALDJqWunpO38trL3/F69XCxfMVn75FqpX7o+RxIAAAAAAAB2R2ADAJBpRy4dkbYL2srhS4f1cpmCZWR93/VSq3gtjiIAAAAAAAByBYENAECm7I3eq4MaKmNDqVy4sqzvt16qFKnCEQQAAAAAAECuIbABAPhP/5z+R9otbCfnY87r5VrFasm6vuukbKGyHD0AAAAAAADkKgIbAIB72nR8k7QPbS9X4q7o5fql6suPT/4oxfMX58gBAAAAAADAHIGN69evy969e+XChQvi6uoqxYoVkxo1akj+/PlzvocAAMOsP7xeOi/uLDEJMXq5Wflmsjp4tRT2LsyoAAAAAAAAwLEDG4mJiRIeHi5hYWESEREhbm5uUqhQIUlJSZErV/7/Xbz168sTTzwh7du3188DAMxrZdRKeeKbJyQ+KV4vt63SVlb0WiH5PQliAwAAAAAAwMEDG5s2bZK3335bypYtK507d5Zp06ZJ+fLlxcXFRT+vghuHDh2Sbdu2ydKlS+WTTz6Rt956S5o1a2bv/gMA7GBRxCLpu7yvJKUk6eXONTrL4h6Lxdvdm+MNAAAAAAAAxw9sLF++XD777DOpUKFChs+rAEe1atX0o1evXjrIMWPGDAIbAGBCM7fNlKGrh0qKpOjlkMAQ+arzV+Lh5mF01wAAAAAAAIDMBTbee++9DKemcnfP+O1Vq1aVDz74gMMLACbzwaYP5JV1r1iXhwQNkRkdZoiri6uh/QIAAAAAAAAsMn2l6qOPPpLGjRtLaGioXh44cGBm3woAcHBqSsHxv4xPE9R4pekr8lmHzwhqAAAAAAAAwJzFw9evXy+LFi2S0aNHS8WKFe3bKwBArgY1Xl77snz010fWdZMemiSvt3jdWksJAAAAAAAAMF1gw8PDQxcMV1NMPfPMM1KwYEH79gwAYHdJyUm6nsbsf2Zb1330yEfywv0vcPQBAAAAAABg7qmo2rdvL19//bXO1njjjTckLi7Ovj0DANhVQlKCPLn8SWtQw0VcZHbH2QQ1AAAAAAAA4BwZG4MHD7a2H3zwQQkKCkr3msOHD0uVKlVyrncAALu4mXhTnlj6hHy3/zu97O7qLgu7LpReAb044gAAAAAAAHCOwMbWrVt1nQ03Nzd55JFHpE6dOtbnbty4IdOnT5eFCxdKRESEvfoKAMgB1+OvS+fFneWnIz/pZS83L/nmiW/k8fse5/gCAAAAAADAOaaiUkXDn3zySfn5559l48aN0rt3b1m7dq1+TgU7VKAjNDRU194AADiuS7GX5OEFD1uDGvk98ssPIT8Q1AAAAAAAAIBzZWzMnTtXnn76aRk1apReVkGMTz75RE6dOiXvvvuutGrVSl5//XVdXBwA4JjO3Tgn7Ra0k51nd+rlwt6FdVDj/nL3G901AAAAAAAAIGczNk6fPi09e/a0Lqv2oUOH5PPPP5cPP/xQ/ySoAQCO68TVE9Lyq5bWoEaJ/CXkl/6/ENQAAAAAAACAc2ZsxMfHS8GCBa3Lnp6e4uXlpbM02rdvb8/+AQCy6dDFQ9Jmfhs5euWoXi5XqJys77teahSrwbEFAAAAAACA8xYPz0jdunVzricAgBy3+9xuXVPj9PXTerlqkaqyod8GqVi4IkcbAAAAAAAAzhvYcHFx0Y//WgcAcBzbTm2TRxY+IhdiL+hl/+L+sq7vOildsLTRXQMAAAAAAADsG9hISUmR7t27i6vr7ZIcsbGx0rdvX3Fzc0vz2g0bNmS9NwCAHPHb0d+kQ1gHuRZ/TS83LNNQ1oSsEb98fhxhAAAAAAAAOH9g45133rF/TwAAOeLHgz9K1yVdJTYxVi+3qNBCVgevlkJehTjCAAAAAAAAyBuBja5du9q/JwCAbFu2d5n0/qa3JCQn6OVHqj4iy3otk3we+Ti6AAAAAAAAcAq355YCAJjagp0L5ImlT1iDGt1rdZeVvVcS1AAAAAAAAIBTIbABAE7gsy2fSb8V/SQpJUkv96vbTxb3WCxe7l5Gdw0AAAAAAADIUQQ2AMDkpv0xTZ4Lf866PKzRMPmq81fi7pqp2QYBAAAAAAAA5w5srFixQuLj49Otj4mJkfnz5+dUvwAA/yElJUXe+OkNGb1+tHXda81ek08e+0RcXYhbAwAAAAAAwDll6nbeixcvys2bN3V7zJgxUr16dSlSpEia1+zdu1fef/996devn316CgCwSk5JlhfXvCgf//2xdd2U1lNkTIsxHCUAAAAAAAA4tUwFNv7++2954YUXxMXFRS/36NEj3V3DSqdOnezRRwBAKknJSTLou0Hy1Y6vrOtUlsbwxsM5TgAAAAAAAHB6mQpsPProo/LTTz9JcnKytG3bVpYuXSpFixa1Pq8CHj4+PumyOP5LXFycTJgwQdauXSve3t4ycOBA/biXrVu3yujRo2XDhg1pAiuzZs2SxYsXy+XLlyUwMFDGjRsn1apVsz7/wQcfyDfffKN/BxWYeeWVV8TVlalaAJhLfFK8PLnsSVm6Z6leVlNOzek0R/rX62901wAAAAAAAIBckenKsmXKlNE/o6Ki0gUn9u3bJ5UrV7Z559OmTZPIyEiZN2+enDp1Sgcs1H5UICUjaj/PP/+8eHl5pVmvAhpz5syRd955RypVqiSzZ8+WQYMGSXh4uA64fPXVV7J69WqZPn26JCYmyqhRo8TPz0+efvppm/sMAEaJTYiV7l93lx8O/qCXPVw9JKx7mPSonTaLDgAAAAAAAHBmNqcsHDp0SJ544gnZvn27XL16Vbp06aKXW7ZsKX/99Vemt6OKjavMj9dff138/f3l4YcflmeeeUZCQ0MzfL0KXvTu3VsHJO60fPlynenx0EMP6QDL+PHjdeaG6qOiipqPHDlSGjZsKPfff7/O1rjbfgDAEV2LuyaPhT5mDWp4u3vLyt4rCWoAAAAAAAAgz7E5sKGCBuXLl9eZEWpqp2vXrsnvv/8uQ4cOlalTp2Z6OyrzQ2VP1K9f37ouKChIdu7cqaeLutPGjRv19gcMGJDuuVdffTVNfQ81NZaafkr17ezZs3L69Glp1KhRmv2cPHlSzp07J2ax/vB6uX/B/fongLzlYuxFabugrfx69Fe9XNCzoPz45I/yWPXHjO4aAAAAAAAA4LhTUVns2rVLT+ukamysX79eZ1oUK1ZMHn/8cZkxY0amtxMdHa1rcnh6elrXqe2oqa1UtkXqGh6KZdvLli1Lty2ViZGaygRRQRMVwFCBDaVEiRJp9qOcOXMmzfr/ooIllkLpuUntc+yGsbLv4j79s03lNtZC7nBMlr8VI/5e4Fzjdeb6GXlk4SMScS5CLxfxLiJrQtZIo7KNHLK/eX28kB7jZS6Ml7k4wnjxbzEAAAAAUwQ2ChYsKOfPnxd3d3fZsWOHDBkyRK/fu3dvhtNE3U1sbGyaoIZiWY6Pj5esUhkfKrND1c8oXry4HD16NM22s7MfNfWWEQXHl+xdIltPb9Vt9XN5xHJpU7FNrvcDtp3kq+nWFIJQjs9Rx+v41ePSdXlXOXT5kF4uka+ELOu6TO4rcJ9cuXJF8ipHHS9kjPEyF8bLXBxhvDLKtAYAAAAAhwtsdOvWTZ599lkdHChXrpw0b95cFi1apAuBq8LemaUKgN8ZWLAse3t7S1b8888/umi4qvdh6UvqIIal6LhlP6qwuC0KFSokbm5uktsnrK9tfM267ObiJu/+/a50DezKBT0HZrl70dfXl3EyAUccrwMXDkiHbzvo4IZSwbeCrHtynVT3qy55nSOOF+6O8TIXxstcHGG8kpKSDNkvAAAAgLzN5sDGSy+9JIGBgbpGhZp+Sl3oL1OmjHz44Ye6eHdmlSxZUi5duqSnjFLZH5bpqVRQQwUQbLV582Zd56NZs2bywQcfWDMr1H4s21aBGEtbURkdtlAnjLl90rj20Fq5fPOydTkpJUm2ntoq6w6vk0eqPZKrfYFk6e+FC6/m4EjjFXE2Qh5e8LCcvXFrKr3qRavL+n7rdXADjjde+G+Ml7kwXuZi9Hjx7zAAAAAAI2RpXiVVV6NHjx66+LbKflC1LGwJaii1atWyTmdlsW3bNh00sXW6p/379+sskhYtWsj//vc/8fDwsD6nAhsq8KK2nXo/ap0t9TWMugtv3M/jxNUl7fFQWRtqPXMaA87n75N/y4NzH7QGNQJLBMpvT/1GUAMAAAAAAADIamBDFfd+4403pHHjxjq4oYpzv/baa7qmhS1zvqtpoLp06SLjx4/XBclVIfI5c+ZIv379rFkVN2/ezNS23nzzTSldurSMGTNGZ4Go96Z+f58+feT999/XWR3qoTI6LPtxZCpbY8upLZKcknbuYpW1odar5wE4j1///VXazG8jl25e0stNyjaRXwb8IiUL3Mo8AwAAAAAAAJCFwMZ7770nBw8elOXLl1trVowYMUIHFCZPnmzTtlQgwt/fX/r37y8TJkzQ22nXrp1+TtXuCA8P/89tqACGqq2h+tSqVSv9PsvD8n4VdGnfvr0MHz5c197o3LmzDBgwwBzZGncZIrWerA3AeYQfCJdHQx+V6/HX9XKrSq1kXd91UtSnqNFdAwAAAAAAAMxdY2Pt2rXy6aefSo0aNazrVHvSpEkycOBAm7alsjamTp2qH3fat2/fXYuXq4eFqpNxt9daqDogKoiiHmYRnxQvx64ck2RJm61hodarosLqdV7utwJMAMxp6e6lErIsRBKSE/Ryh+odZGnPpeLj4WN01wAAAAAAAADzBzZu3LihAxJ3Sk5OlqSkpJzqV56nghVbBm2R6Jho6/HtuKijnLlxRlzERdY8uUZqF69NUAMwubk75srTq562Tjn3hP8TsqDrAvF08zS6awAAAAAAAIBzTEXVunVr+eijj+T69VvTpSjHjx/X01A9+OCDOd2/PK28b3lpULqBfgSVCZKQ2iF6fYqkSNT5KClXqJzRXQSQDZ9s/kSeWvmUNagxsN5ACesWRlADAAAAAAAAyG5gY8WKFRIfH28t1O3q6qqLh8fGxkr37t11XYxChQrJuHHjMrM5ZFGPGj2s7bCIMI4jYGJTfpsiI9eMtC4/3+R5mdVplri5uhnaLwAAAAAAAMAppqJStSlatGghfn5+UrBgQfnkk090lsahQ4ckMTFRKleuLFWrVrV/b/O4mn41pW7JurLz7E7ZfHKzHLx4UKoVrWZ0twDYICUlRcZsGCNT/7hdW+iNFm/IxIcmiouLC8cSAAAAAAAAyInAhroQd6fy5cvrB3JXn4A+OrChLIpYJOMeJEsGMAs15dSI8BEyY+sM67qpbafKq81eNbRfAAAAAAAAgFPW2OBOYscJbFiERoRmGHQC4HgSkxNlwIoB1qCGi7jIZx0+I6gBAAAAAAAA2CNjQ2nWrFmmXrd3715b+wAbC4q3rNhSNh7dKPsu7JMdZ3ZI/dL1OYaAA4tLjJPgZcGybO8yvezm4iZzu8yVJ+s8aXTXAAAAAAAAAOcNbHz88cfi6+tr394gU4IDgnVgw5K1QWADcFwxCTHSbUk3+fHQj3rZ081TFndfLF1rdTW6awAAAAAAAIDzBjbUNFQNGjTQxcNhvB61e8jwH4brqW0WRS7Sc/S7uboZ3S0Ad7hy84o8vuhx+f3Y73rZx91HVvReIe2qtuNYAQBgkLi4OJkwYYKsXbtWvL29ZeDAgfpxLydOnJCOHTvK559/Lk2aNLGuDw0NlVmzZsnVq1elefPmMnHiRClcuHAu/BYAAABA3papGhvUcXAsfvn85LFqj+n2qWun5LdjvxndJQB3uBBzQdrMb2MNahTyKiRr+64lqAEAgMGmTZsmkZGRMm/ePHnrrbdk+vTpsmbNmnu+Z/z48RITE5NmXXh4uN7WmDFjZPHixXL69Gkd2AAAAADgIIGN4cOHS758+ezfG2RacGCwtR0WEcaRAxzI6Wun5cG5D8q209v0sp+Pn/zc/2dpXqG50V0DACBPU8GJpUuXyuuvvy7+/v7y8MMPyzPPPKMzL+5m1apVcuPGjXTrVabGoEGD5JFHHpH77rtPXn31Vdm/f78kJSXZ+bcAAAAAkOnAho+PD0fLgXS8r6Pk98iv20v3LNXFiQEY79/L/0qLr1rI7ujderl0gdKy8amN0qB0A6O7BgBAnhcVFSWJiYlSv35967EICgqSnTt3SnJycrrjc+nSJXnvvffSZWJcv35d9uzZowMjFo0aNZLVq1eLmxtTxAIAAAAOUzwcjiW/Z37pUrOLLh5++eZlWXNwjXSu2dnobgF52r7z+6TtgrZy4uoJvVypcCXZ0G+DVClSxeiuAQAAEYmOjpYiRYqIp6en9XgUK1ZM1924fPmyFC1aNM1xevfdd6Vr165SvXr1NOuPHz+uf168eFF69+6ta3A0a9ZMZ4IUKlTIpmOtpv01Yupfy36ZdtgcGC9zYbzMhfEyF8bLXBgv80kx+DuiLfslsGFiIYEhOrChhEWGEdgADLTzzE55eMHDEh0TrZdrFqsp6/uul7KFyjIuAAA4iNjY2DRBDcWyHB8fn2b9pk2bZNu2bToL406WqalUJscrr7yiC4a//fbbejoqVWDcFqrwuKtrphLpc/yk0VI3xMXFJdf3D9swXubCeJkL42UujJe5MF7mk2Lwd8SMsqjtEtg4c+aMlChRwpAv4hBpW6WtFMtXTM7HnJdV+1bJtbhrUtCrIIcGyGV/Hv9T2oe119lTSr1S9eTHJ3+UEvlLMBYAADgQLy+vdAEMy7K3t7d13c2bN+XNN9/UxcVTr7dwd791GjV48GBp06aNbqvARpcuXeTs2bNSsmTJTPdJZXgYMX2V5W44X19fAhsmwHiZC+NlLoyXuTBe5sJ4mU+Kwd8RbalXl63ARvv27WXlypVSvnz57GwGWeTh5iFP1H5CZmydITcTb8ryqOXSr24/jieQi3468pN0WtRJbiTcunOzabmmEh4SLoW9CzMOAAA4GBVwUHUzVJ0NS3BCTU+lghepp5DatWuXnm5q5MiRad6vioWr4MWQIUP0cpUqt6ebrFy5svXmL1sCG+qE0aiMCcu+ydgwB8bLXBgvc2G8zIXxMhfGy3xcDPyOaMs+s5VqwXysxgsODLa2wyLCDO0LkNd8t+87aR/a3hrUaFO5jaztu5agBgAADqpWrVo6oLFjxw7rOjXdVGBgYJos9Dp16sjatWtlxYoV1ocyefJkef7556VMmTI6c10VI7c4dOiQPhFTzwEAAACwL2psmNwD5R/QBYr/vfyvrD+8Xs5ePyslC2T+DjEAWbM4crH0Xd5XEpMT9XKnGp1kSY8l4u2efroKAADgGHx8fHTGxfjx42XKlCly7tw5mTNnjrzzzjvW7I2CBQvqDI6KFSume7/KxPDz89PtAQMGyMcffyzlypXT69Q227ZtK8WLF8/13wsAAADIa7KVsdGpUyfJnz9/zvUGNlN3hfUJ6KPbSSlJsnTPUo4iYGezt8+W4G+DrUEN9Rn8puc3BDUAADCBMWPGiL+/v/Tv318mTJggI0aMkHbt2unnmjdvLuHh4ZnazsCBAyUkJEQXDO/Tp49UqFDBGiABAAAA4MAZG+pEAI4xHdU7v986iQqNCJXhjYcb3SXAaf3vr//Jiz++aF0e1GCQfNbhM3Fzzf2inwAAIGtZG1OnTtWPO+3bt++u77vzOXWD0XPPPacfAAAAAEyUsQHHEFAiQAJLBOr2Xyf+ksOXDhvdJcDpqJpCE3+dmCao8XLTl+WLx78gqAEAAAAAAADkIgIbTiIkMMTaXhSxyNC+AM4Y1Hh13avy1i9vWddNaDVB3nv4PX23JgAAAAAAAIDcQ2DDSfQO6G1tq+mo1IVYANmXlJwkQ1cPlff/fN+67sN2H8qbD75JUAMAAAAAAABw5MDGunXrZPjw4bJz5069PHHiRHv2CzaqWLiiNK/QXLf3nt8rO8/eGicAWZeQlCD9VvSTmdtn6mUXcZGZj8+UF5veno4KAAAAAAAAgIMGNj766CNp1qyZjBo1So4dOyYHDx60b89gs+CAYGs7LCKMIwhkw83Em9JzaU/rZ8nd1V3CuofJoKBBHFcAAAAAAADADIGN/PnzS58+fWTcuHHywgsvSHx8vH17Bpv19O+pL74qiyIXSXJKMkcRyIIb8Tek46KOsnLfSr3s5eYly55YlmbKNwAAAAAAAAAOHtgoU6aMfPvtt9KiRQtp06aNREdH27dnsFmxfMXkkaqP6PaJqyfk92O/cxQBG12+eVnaLWwn6w+v18v5PfLL98HfS8caHTmWAAAAAAAAgAO4dXt/JnzwwQdy9epV3R42bJg0adIk3WsSEhLEw8MjZ3sImwQHBsv3B77X7dBdodKyYkuOIJBJ0Tei5dHQR+WfM//oZV8vX/kh5AdpWr4pxxAAAAAAAAAwW8ZGXFyc7NixQ3799Ve5ceOGNGzYMM3zv/zyizz++OP26CNs0KlGJ8nnkU+3l+5ZKvFJTBkG/BeVnRE0L0gazmpoDWoUz1dcfhnwC0ENAAAAAAAAwIyBja1bt0rr1q3lueeekyFDhsgjjzwiBw4c0M+dOnVKrxs6dKgUL17c3v3FfyjgWUC61Oyi25duXpIfD/7IMQPuISUlRV5e+7IcvnxYjl89rteVLVhWNj61UeqVqsexAwAAAAAAAMwY2Jg2bZoEBATobI1NmzZJ8+bNZfLkybJ582bp1KmT7N27V95//31ZuHCh/XuM/xQcEGxth0WGccSAe5i7Y65EnIuwLpcqUEp+H/i71CxWk+MGAAAAAAAAmLXGhsrOCAsLk5IlS+rlsWPHygMPPCAvvviidOjQQUaNGiUFChSwd1+RSe2qthM/Hz+5EHtBVkatlGtx16SgV0GOH5BBtsZLa19Ks65k/pJS0bcixwoAAAAAAAAwc8ZGbGyslChRwrpcqFAhXSS8d+/eMmHCBIIaDsbDzUN61u6p27GJsbJy30qjuwQ4pMWRi+Xyzctp1u08u1PWHlprWJ8AAAAAAAAA5FDx8Ix07NgxO2+HHYXUCbG2wyKYjgrIKFtj1LpR6da7ubjJuJ/H6ecBAAAAAAAAmDSw4eLioh93cnfP1ExWMMAD5R+QCr4VdFvdfR59I5pxAFJZc3CNnLx2Mt0xSUpJki2ntpC1AQAAAAAAADioTEUm1J3Lqli4l5eXdV1CQoK89957kj9//jSvfeedd3K+l7CZq4ur9AnoI1P/mKov1H69+2sZ1ngYRxL4//+mPb/m+bt/fsRVZ22oejUZBXUBAAAAAAAAOHjGRteuXdMENSzTUN0Z1IBjCQ4MtrbDIpmOCrCIT4qXY1eO3fWAJEuyHL96XL8OAAAAAAAAgAkzNsjCMKc6JetIQIkAiTwXKZuOb5Ijl45I5SKVje4WYLgLsRckISlBt4v5FJPvg7+X2JhYKVCggDVDo0T+EuLlnjagCwAAAAAAAMDkxcPh+IIDbmdtLI5cbGhfAEfx1T9f6awMZWjDodKobCOpW6KuNCjdwPooV6ic0d0EAAAAAAAAkAECG06ud0Bvazs0IlTXFgDysqTkJJm1fZZuu4iLPNPgGaO7BAAAAAAAAMAGBDacnJp66oHyD+j27ujdEnEuwuguAYZae2itHL1yVLcfrfaoVCxckREBAAAAAAAATITARh4QEhhibYdFUEQcedvM7TOt7SFBQwztCwAAAAAAAAA7FQ+/09GjRyUyMlISEm4V302tS5cuWdkk7Khn7Z4y8oeRkpSSJIsiF8mUNlPE1YWYFvKeU9dOyXf7vtPtMgXLSIf7OhjdJQAAAAAAAAD2DmzMnj1b3n//ffH19ZX8+fOnec7FxYXAhgMqnr+4tKvaTn44+IMcu3JM/jj2h7So2MLobgG5bs4/c3SAT3m6/tPi7pql2C4AAAAAAAAAA9l8VW/OnDkyatQoefrpp+3TI9hFcGCwDmxYpqMisIG8hqLhAAAAAAAAgHOweT6iuLg4adeunX16A7vpUrOL+Lj76PbXe76W+KR4jjbylB8P/agzlpTHqj8mFXwrGN0lAAAAAAAAALkR2OjYsaOEhYVJSkpKVvYHgxTwLCCda3bW7YuxF2XdoXWMBfKUmdsoGg4AAAAAAADkycDG9evXZcGCBdKyZUvp06eP9OvXL80Djis4INjaDo0INbQvQG46efWkrN6/WrfLFiwr7au3ZwAAAHBwoaGh0rVrV1m/fr1eHjlypNFdAgAAAGDWGhuVKlWSoUOH2qc3sKtHqj0iRX2K6oyNlftWyvX46zqTA3B2FA0HAMB8Fi5cKGPGjJGpU6dKqVKl5PLly0Z3CQAAAIBZAxvDhw+3T09gd55untKzdk/5YtsXEpMQI6v2rdJFxYG8UjTc1cVVnm7wtNFdAgAAmeDj46OzxIsUKSKjRo2SAgW4IQcAAACADYENdafU66+/rk8mVPte3nnnncxsEgZRgQwV2FDCIsIIbCBPFA0/fvW4bj9WjaLhAACYRYMGDfQUuH379pVnnnlGPvvsM6O7BAAAAMCsGRswt+YVmku5QuXkxNUT+oLv+ZjzUixfMaO7BdiNJZCnDAkawpEGAMAk3njjDYmLi9Pt7t27S6NGjdK95tKlSzqjAwAAAEDekqnARuosDDIyzE1NxdMnoI+8t+k9SUxOlKW7l8qzjZ41uluAXagAXuqi4Y9Vf4wjDQCASRw/flx++eUXcXNzk1atWkmFChWsz6WkpOji4p988ols3rzZ0H4CAAAAMEHGhjqJ2LBhgxw4cECSkpKs6+Pj42XPnj0ye/bsnO4jclhIYIgObChhkWEENuDURcOTU5J1+5kGz4i7K0lqAACYwbp16+TFF18UDw8PcXd3l2nTpunzjIYNG8quXbtk3Lhxsm/fPunUqZPRXQUAAABgAJuv8k2aNEm++eYbqV27tj6pqF+/vhw7dkzOnz8vffr0sU8vkaPqlKwjtYvXlj3Re+T3Y7/L0ctHpWLhihxlOF3R8NnbZ98uGl6fouEAAJiFysRo3769vP322+Lq6ioff/yxTJ06VZ566il59dVXpXr16hIWFqbrcAAAAADIe1xtfUN4eLi8//77snjxYp0OPn78ePn555+lQ4cOkpCQYJ9eIke5uLhIcECwdXlR5CKOMJzOmoNrrEXD21dvL+V9yxvdJQAAkEnqxqnBgwfrjA01FdXQoUNl9+7d+txj5MiR8u233xLUAAAAAPIwmwMb169fl4CAAN2+7777dNaGSg8fMmSI/Prrr/boI+ygT+Dt7JqwiDCOMZwORcMBADCvmzdvpikK7uPjI15eXjqooQIeKosDAAAAQN5l8xlB+fLldS0NRaWAq8CGpfbGtWvXcr6HsIsqRapI03JNdTviXIREnI3gSMNpHL9yXL4/8L1ulytUTh6t9qjRXQIAADmgRYsWHEcAAAAAttfYGDhwoLzyyisyZcoUPe9tt27ddMbGP//8I0FBQRxSEwkODJY/T/xpnY4qsGSg0V0Ccr5oeH2KhgMAYMapU9XjTmRqAAAAAMhSYKNnz55SqVIlyZcvn1StWlWmT58uS5cu1dNTjRgxgqNqIj1r95QX1rwgSSlJejqqya0n6yLLgJklJifK7H9SFQ1vQNFwAADMRmWDDxs2TNfYsIiLi9M3WKkpqVKbP3++AT0EAAAAYKrAxnPPPScvv/yyDmpY0sFJCTenkgVKStsqbeXHQz/K0StH5c/jf0qzCs2M7haQ7aLhJ66e0O0O1TvoqagAAIC5DB8+PN26xo0bG9IXAAAAAE4Q2Ni+fbueegrOISQwRAc2FJW1QWADZkfRcAAAnDOwAQAAAAAWNkcogoOD5cUXX5TevXtLmTJl0qWCN2rUyNZNwkBdanYRb3dvuZl4U77e87X879H/iYfb7ZR/wGxFw8MPhOt2+ULlKRoOAAAAAAAAOCGbAxszZszQP9988810z6kCf3v37s2ZniFXFPQqKJ1qdJKvd38t52POy7rD66R99fYcfZjSl/98ebtoeINnxM3VzeguAQAAAAAAADAisLFixQpp3769eHp6SlRUVE73AQYLDgjWgQ3LdFQENmDaouHbUxUNr0/RcAAAAAAAAMAZuWbmRWPGjJFr167ZvzcwxGPVH5Mi3kV0e0XUCrkRf4ORgOn8cOAHOXntpG4/ft/jUrZQWaO7BAAAcsCWLVskMTEx3fr4+HhZv349xxgAAADIgzIV2EhJSbF/T2AYTzdP6VG7h27fSLgh3+3/jtGA6VA0HAAA59SvXz+5evVquvUHDhyQl156yZA+AQAAADBJjQ1VPwPOKzgwWGZtn6XboRGh0jugt9FdAjLt2JVj8sPBH3S7gm8FeaTqIxw9AABMLCwsTCZOnKjPQdRNVs2aNcvwdQ888ECu9w0AAACAiQIbdzuZuBPFw82pZcWWUrZgWT2Vz5qDa+RCzAXxy+dndLeATPlye6qi4fUpGg4AgNkFBwdL9erVJTk5Wfr37y8ff/yx+Pr6Wp9XAQ8fHx+57777DO0nAAAAAAcPbNx5MgHnooot9wnoI+//+b4uwvzNnm9kSMMhRncLyFzR8H9uFQ13c3GTgfUHctQAAHACjRo10j83bNggZcqUSZNBfvHiRSlSpAhZ5QAAAEAelanAhjqJaNCggfj5cQe/s09HpQIbSlhkGIENmEL4gXA5de2UblM0HAAA5+Pu7q5raQwePFiqVKkiTz/9tGzbtk1KlSoln332mdSsWdPoLgIAAADIZRQPh1W9UvWkZrFbJ4Ybj27UdQsAR0fRcAAAnNv48eN1hkbhwoVl2bJlsn//flm8eLG0bt1aJk2aZHT3AAAAADhqYGP48OGSL18++/cGhlKZOcEBwdblxZGLDe0PkKmi4QduFw1vV7UdBw0AACfz119/6eBG6dKlZf369dKmTRupW7euDBgwQCIjI43uHgAAAABHDWyoNG8vL69MbzQpKUmWLl2anX7BwOmoLMIiwhgHOLTZ22dLiqTo9qAGg8TN1c3oLgEAgBymzkPi4uLkypUrsnnzZmnVqpVef+LEiSzVAFTbGjt2rDRs2FCaN28uc+bM+c/3qH3Vr19f799C9adGjRppHk2aNLG5PwAAAABsl6kaG8ePH5eOHTtKly5dpG3btlK5cuUMX3f06FH5/vvvZeXKldKuHXdOm1HVolWlSdkmsvnkZtl5dqfsPrdb/Ev4G90tIMOi4V/+86VuUzQcAADnpc4/XnjhBfH29taBDBXYCA8PlylTpkjXrl1t3t60adN0pse8efPk1KlTMnr0aF2c/NFHH73re1TGSExMTJp1Bw8e1NNjrV692rrO1TVT940BAAAAyI3AxosvviidO3eW2bNn65OHIkWK6MJ96mdycrJcvnxZz3V79epV6dChg8yYMUOqVq2a6TumJkyYIGvXrtUnKwMHDtSPe9m6das+AdmwYUO651QBQRVgeffdd63r9uzZk+6kx9/fX8/Ri4yzNlRgw5K18XabtzlMcDjf7//eWjS8Y42OUqZgGaO7BAAA7EAFFRYuXCgnT56UXr166QyO+Ph4GTp0qISEhNi0LRWcUJnls2bN0ucD6nHgwAEJDQ29a2Bj1apVcuPGjXTrDx8+rG/4Kl68eJZ/NwAAAAB2DGwoKpCh7ooaM2aM/P333zpYoIr4qboMKojRt29fnXptay0OW++Y2rdvnzz//PMZTo2l7pb65JNPpFOnTunupqpVq5Y+gbH+4u6Z/tXznCf8n5AXf3xRklOSJSwyTCa3nqzHGXAkFA0HACBvUN/bVT0Ny/RP6sYqddNVVr6fRkVFSWJiop5WyiIoKEg+//xzvd07My4uXbok7733np6u6vHHH093jlGpUqUs/14AAAAAss7mq/sFCxbUBfvUI7tsvWNq8eLFMnXqVClfvrxcv37dul6dnEyaNEmWL1+un7vToUOHdPCFu6kyp1SBUtK2SltZe2it/Hv5X/nrxF/StHzTbI01kJOOXj4qaw6u0e2KvhXl4SoPc4ABAHBSKSkpOvAwd+5cuXbtmvz444/yf//3f/qGqjfeeEM8PT0zva3o6GiddZ76PcWKFdNZ5CoLvWjRomler7LAVeZ39erVMzzHUOchPXr0kLNnz+qaHeomsBIlStj8+6lHbrPs14h9w3aMl7kwXubCeJkL42UujJf5pBj8HdGW/RqatmDrHVMbN27UgQ0V1Jg+fXqaAInK5Pj666/1CU9GJx2qmB8yLzggWAc2LNNREdiAI6FoOAAAecenn36q6/ipIIOaIldRwYY333xTZ3+r4EZmxcbGpguEWJbV9Fapbdq0SbZt25amhsadU1GpQIgKZqgTsI8++khPj6Vu3HJzc8t0n9R0vkbU5lB9ttQNITvb8TFe5sJ4mQvjZS6Ml7kwXuaTYvB3RBUTMEVgw9Y7plTtDuXO2hiFChXS2Rx3owIb6qCoAujqLq+WLVvKq6++KgUKFLCpv0ZHq3Jz/11qdhGv1V4SlxQnS3YvkQ/afSAebh65sm9nYHR005klJCWkKRo+oN6AbB9nxstcGC9zYbzMhfEyF0cYr9zYt8rKVkGNRo0aWU+umjVrpm94UlPU2hLYsNTnSM2yrOr9Wdy8eVMHTt56660061NTwRbVH8vzH3/8sTRv3lx27twpDRo0yHSf1LmMLYGQnB47VZCdwIbjY7zMhfEyF8bLXBgvc2G8zCfF4O+ISUlJ5ghs2HLHVFYlJCTI8ePHpVy5crpGiLoj6p133pFRo0bpQuO2MOpuKqOiZY9WflRWHlwp0THRsipylbSt1DZX9usMjI5uOrPvD30vp6+f1u3Hqjwm+ZPz6/m2s4PxMhfGy1wYL3NhvMzFEcbLljuqsurChQsZTu+kAgKW3z+zSpYsqetmqKxxS809dbOVCk6o7Vns2rVLn0OMHDkyzfsHDRokXbp0kYkTJ4qPj0+a5/z8/KRw4cJ6WipbqLEzavws++b7qjkwXubCeJkL42UujJe5MF7m42Lgd0Rb9pmtwIY6KVAX+lUEJysye8dUdnh4eMhff/2l96Xairrjq3v37vqkQ53cOPrdVEZFy/o36K8DG8qqI6uke93uubJfZ2B0dNOZLdy70Noe1mRYlv/9SY3xMhfGy1wYL3NhvMzFEcbLljuqsur++++XL7/8UgcTLNTUtB9++KE0adLEpm3VqlVLBzR27Niha2IoarqpwMDANDcw1alTR9auvTUtq0W7du1k8uTJOltE7f+hhx6STz75RPdPUecW6vyoSpUq2fyNAQAAAOR4YEPdlaXSrNXcsRcvXtTr1B1UISEhMnjwYLvcMZVdd045pQqJK7YGNoy+mym3o2Xtq7cXXy9fuRJ3RZZHLZfPEz+XfB75cmXfzoCIdM5Txex/PPSjblcqXEnaVWuXY58HxstcGC9zYbzMhfEyF6PHy1773bJli67Dp84Rxo8fL8OHD9cBBTVl7XPPPSenTp2SMmXK2JyBrbIsVMaF2qbK5j537pzMmTNHZ3RbzkUKFiyoz0cqVqyY7v3q3EFlZlhqA6r3TZo0Sd/89Pbbb0uLFi2o7QcAAADkApvnVVJf3tU8ty+//LKsXLlSt9WJxoIFC9IU9Lb1jimLjO6Yyo6DBw/qkyKVSm6xd+9evd+MTlZwm5e7l/So3UO3r8dfl+/2fcfhgUMVDXd1MWZqOAAAYF/9+vWzTjVZqlQp+eabb+T999+X119/XXr06KELdatzETXdrK1UsW9/f3/p37+/TJgwQUaMGKGzMRRVIyM8PDxT21E1PmrXrq1v7urbt6+ULVtW9xEAAACAA2ZsqBMIFcBo3LixdV3NmjX1F/lXXnlFBznsccdUVqlUcBXAGDdunIwdO1bXyVBFAHv27JkjU9g4u+DAYGuh5rDIMOkV0MvoLiGPSl003N3VXZ6q95TRXQIAALlYlLxp06b6kV3qHEQFJdTjTvv27bvr++58Tp1LWM5bAAAAAOQum293VkEGS62K1NTUUVlJRc+pO6buRmV+qBR1NR2Vmi5r2LBh+oRIBTnw3x6s+KCUKVhGt3848INcjL01/RiQ21bvXy1nrp/R7U41OknpgqUZBAAAnBh1ygAAAADkWMbGq6++qoMC6qdl3tuoqCg9p6wKTqj5bi3UvLf2uGOqW7du+pERVRj8TqVLl7Z5mizc4ubqJr39e8uHf30oCckJ8u2eb2VQ0CAOD3LdF9u+sLaHBA1hBAAAcHLdu3fP1PS0GzZsyJX+AAAAADBxYENNN6U8++yz1ruoLKniqnaFmu9WLavn1DKcYzoqFdhQQiNCCWwg1x25dETWHlqr25ULV5a2VdoyCgAAOLmnnnpKT0sLAAAAANkObHBHVN7ToHQDuc/vPtl/Yb9sPLpRjl85LuV9yxvdLeQhFA0HACBvUTdJdejQQfz8/IzuCgAAAABnqLGhioRn9ChevLicP38+zTo4z4llSGCIbqdIiizZvcToLiGPFQ2fs2PO7aLh9SkaDgBAXiweDgAAAABZDmxs375dOnfurAt+16pVy/qoW7euLs4N59QnoI+1HRYRZmhfkLd8t/87a9HwzjU6S6kCpYzuEgAAsLOuXbuKl5cXxxkAAABAzgQ2Jk+erLMxPv/8c134+5NPPpE33nhDChcuLNOmTbN1czCJ6n7VpVGZRrr9z5l/ZG809VOQOygaDgBA3vPOO+9IgQIFjO4GAAAAAGcJbBw4cEBefvlladGihc7a8PDw0Jkab731lnz55Zf26SUcpoi4BVkbyO2i4VWKVJE2Vdpw4AEAAAAAAIA8zubAhsrScHNz0+0qVarIvn37dLtOnTpy5MiRnO8hHEYv/17i6nLrTyYsMoy5j2F3s7bPsrYHNRhk/fsDAAAAAAAAkHfZfJXw/vvvlw8++EDOnj0r9evXl/DwcLl8+bL89NNPUqhQIfv0Eg6hdMHS0rpya90+fOmw/H3yb6O7BGcvGv7P7aLhA+oNMLpLAAAAAAAAAMwY2Hj99dflypUrsnbtWunQoYOe+1YFO9Q8uMOGDbNPL+EwggNuT0cVGhFqaF/g3FbtWyVnb5zV7S41u1A0HAAAAAAAAIDmLjYqWbKkzJ8/37q8YMECOXjwoM7WUM/BuXWr1U2e/f5ZiUuKkyW7l8iHj3yo76YHchpFwwEAAAAAAABkxKYr0hcvXpSiRYvq9urVqyUxMdH6XLVq1Qhs5AG+3r7y+H2Py7d7v5VzN87JT0d+knZV2xndLTgZNdXZusPrrEXDLVOgAQAAAAAAAECmAhspKSny9ttvy6JFi2TNmjVSvnx5GTdunM7SUIXEY2Ji9GtUvQ0/Pz+OqpMLDgzWgQ0lLCKMwAZy3Kxtt4uGD24wmKLhAAAAAAAAAGyrsTF37lxZt26dnoJKBTUsFi5cqIuGr1+/Xnx9ffXr4PzaV28vhbxuFYpftneZxCbEGt0lOJH4pHiZs4Oi4QAAAAAAAACyEdhYtmyZjBo1SoKCgjJ8XhUQf+6553SAA87P291butfqrtvX4q/J6v2rje4SnKxouJrmTOlas6uULEDtHgAAAAAAAAA2BjaOHj2aLqhRp04d8fT0tC43bNhQTp48mZnNwQmEBIZY22GRYYb2Bc5bNHxw0GBD+wIAAAAAAADApIGN/Pnzy7Vr19KsmzdvXppi4VevXtXTUSFvaFWplZQqUEq3ww+Ey6XYS0Z3CU7g0MVDsv7wrcyvqkWqUjQcAAAAAAAAQNYCGyo7Y/ny5fd8zXfffaezNpA3uLm6SW//3taaCJZi4kB2zNqeqmh4EEXDAQAAAAAAAGQxsDFw4EBZsGCBfPnll5KUlJTmuZSUFF1EfNGiRfLMM89kZnNwEsGBwdZ2WATTUSF7VIDsqx1f6baHq4cMqDeAQwoAAAAAAAAgHXfJhCZNmsikSZNk8uTJMnPmTKlbt66edkpNT7Vr1y6Jj4+XKVOmiL+/f2Y2ByfRsExDqV60uhy4eEB++fcXOXn1pJQtVNbobsGkVkatvF00vFZXKZG/hNFdAgAAAAAAAGDWjA2la9eusnbtWhk+fLgUKlRILl68KPny5ZPBgwfLmjVrpH379vbtKRyOi4uLNWsjRVJkye4lRncJzlI0vAFFwwEAAAAAAABkI2PDws/PT/r27asfgNInoI9M+HWCbodGhMpLTV/iwMBmBy8elA1HNuh2taLV5KHKD3EUAQAAAAAAAGQvYwPISI1iNSSodJBubz+9XaLOR3GgYLNZ21IVDW9A0XAAAAAAAAAAd0dgA9kWEhhibS+KWMQRRbaKhvev158jCAAAAAAAAOCuCGwg23oF9BIXcdHtsMgwSUlJ4agi01ZErZDomGjd7larG0XDAQAAAAAAANwTgQ1kW5mCZaw1EVSthC2ntnBUkbWi4UEUDQcAAAAAAACQg8XDFVU43MXl1t35qal1Hh4eUrx4cXnsscekZcuWtm4aJhYcECw/HflJt8MiwqRx2cZGdwkmcODCAevfTfWi1eWhShQNBwAAAAAAAJDDGRuNGjWS7du36wDGww8/LG3btpXSpUvLtm3bpESJEuLj4yMvvfSSfPvtt7ZuGibWvXZ38XTz1O3FkYslKTnJ6C7BBGZtT1U0PGhwhkFTAAAAAAAAAMhWxsaff/4pY8aMkZCQ2wWjlaCgIFm5cqWEhobK/fffLx9++KF0797d1s3DpAp7F5YO1TvI8qjlcvbGWfn535+lbZW2RncLDiwuMc5aNFwFxfrXpWg4AAAAAAAAADtkbOzZs0eaNWuWbn3jxo0lIiJCtwMCAuT06dO2bhomFxwYbG2HRoQa2heYo2j4+Zjz1qLhxfMXN7pLAAAAAAAAAJwxsFGzZk1ZuHChpKSkpFkfFhYm1apV020V4ChVqlTO9RKmoDI2CnoW1O1v93wrsQmxRncJDmzm9pnW9uAGFA0HAAAAAAAAYKepqMaNGyeDBg2SX375RWrXrq3X7d27V65fvy6ff/65rrUxatQoefPNN23dNEzOx8NH19qYu2OuXIu/JuEHwvUycK+i4ff53SetKrXiIAEAAAAAAACwT8aGmmZq3bp1OrihCoirzIzBgwfLhg0bpG7dulKyZEn5+uuvpUePHrZuGk4gOOD2dFRhkWGG9gWOa+a2tNkaFA0HAAAAAAAAYLeMDaVAgQLSq1evDJ8rV65cVjYJJ/FQ5YekZP6SuoD46v2r5fLNy7qwOJC6aPjcnXNvFw2vR9FwAAAAAAAAAHYMbJw8eVL+97//6ToaiYmJ6WptqMwN5F3uru7Sy7+XfPz3xxKfFC/L9i6TgfUHGt0tOJDlUcutRcO71+ouxfIVM7pLAAAAAAAAAJw5sPHqq6/KpUuXJCQkRGduAHcKqROiAxtKWEQYgQ3cfRqqIIqGAwAAAAAAALBzYGPXrl2yfPlyqVatmq1vRR7RqEwjqVqkqhy6dEgXiD597bSULlja6G7BAey/sF9+/vdn3a7hV0MerPig0V0CAAAAAAAA4OzFwytVqiQXL160T2/gFFQh6ODAW0XEUyRFFkcuNrpLcNBsDYqGAwAAAAAAALB7YGPQoEHyxhtvyKJFi2TTpk2yZcuWNA9AsQQ2lLDIMA4KbhUN33G7aHi/uv04KgAAAAAAAAByp8aGMmHChHTPqbuv9+7da3sv4HRqFqspDUo3kO2nt8vWU1v1FET3+d1ndLdgIFVI/kLsBd3uUbsHRcMBAAAAAAAA5E5gIyoqKmt7Qp4THBCsAxvKoohF8lart4zuEgw0c3uqaagaUDQcAAAAAAAAgB2nojp16pSkpKRY2/d6ABa9AnqJi7jodmhEqPVvCHnPvvP75Jd/f7EWDW9ZsaXRXQIAAAAAAADgzBkbrVu3lj/++EP8/Px0W005lfoitWWZqaiQWrlC5eTBSg/qC9oHLh6Qbae3ScMyDTlIeRBFwwEAAAAAAADkamBjw4YNUqRIEWsbyKyQwBDrnfphEWEENvKgm4k3Zd7Oebrt5eYl/ev2N7pLAAAAAAAAAJx9KqqyZcuKq+utl44ZM0YKFiyo16V++Pj4yIgRI+zdX5hM91rdxcPVQ7cXRy6WpOQko7sEg4uG++XzYwwAAAAAAAAA2DdjY+PGjbJr1y7d3rJli3z++eeSL1++NK85evSonDx5Mus9gVMq4lNE2ldvLyv3rZTT10/r7I02VdoY3S0YOA0VAAAAAAAAANg9sFG5cmWZPXu2rqOhHtu3bxcPj1t34SuqtoYKdLz99tvZ6gycU3BgsA5sWKajIrCRd0Sdj5Jfj/6q2zWL1ZQWFVoY3SUAAAAAAAAAeSGwUb58eZk/f751KqrXX39dChQoYO++wUl0vK+jFPAsINfjr8u3e7+VTzt8Kt7u3kZ3C7mdrdFgsA6CAgAAAAAAAIDda2yk9vfff0tiYmK69WfPnpWmTZtmqzNwTj4ePtKtVjfdvhJ3RX448IPRXYIRRcPrUTQcAAAAAAAAQC5lbKxZs0Z+/fXWdDKnTp2SiRMnipeXV5rXqPoabm5uOdAlOKPggGCZv/NW1k9oRKh0rdXV6C7Bzr7d861cjL2o2z39e0pRn6IccwAAAAAAAAC5k7HRuHFja9tSZ+NO1atXlxkzZmS/R3BKqq5GifwldHv1/tVy5eYVo7sEO5u5Pe00VAAAAAAAAACQaxkbRYsWlXfeeUe3y5YtK08//bT4+PjkSAeQN7i7uksv/17yyd+fSFxSnCyPWi4D6g0wuluwk73Re2Xj0Y26XatYLWleoTnHGgAAAAAAAEDuZWxs2bLFWlejSZMmEhkZqddl9ADuJjgw2NoOiwjjQDmxWdtnWduDgygaDgAAHEdcXJyMHTtWGjZsKM2bN5c5c+b853tOnDgh9evXl82bN2f4/OzZs6V169Z26C0AAACALGds9O3bV/744w/x8/PT7btxcXGRvXv3ZmaTyIOalG0ilQtXliOXj8iGIxvkzPUzUqpAKaO7BTsXDe9Xtx/HGAAAOIxp06bpG7XmzZun6weOHj1aypQpI48++uhd3zN+/HiJiYnJ8Lnjx4/L9OnTdZY7AAAAAAcKbEyaNMk69VRUVJS9+wQnpQJfKmvj7d/eluSUZFkSuUSev/95o7uFHPbNnm+sRcOf8H+CouEAAMBhqODE0qVLZdasWeLv768fBw4ckNDQ0LsGNlatWiU3bty46zbfeustqVWrlpw9e9aOPQcAAABg81RUkydPlitXbhV7Vl/aL168ddESsFVIYIi1HRbJdFTOaOa2VEXDgygaDgAAHIe6SUtNsaumlbIICgqSnTt3SnJycrrXX7p0Sd577z2ZOHFihttbsWKFxMbGSo8ePezabwAAAABZyNgoWbKkvhOpTp06kpKSoueQzZcvX4avHT58eGY2iTyqVvFaUq9UPdlxZof8ffJvOXjxoFQrWs3obiGH7IneI78d+023axevLc3KN+PYAgAAhxEdHS1FihQRT09P67pixYrpuhuXL19ON53Uu+++K127dpXq1aun25a62ev999+Xr776SiIiIrLcJ3V+pR65zbJfI/YN2zFe5sJ4mQvjZS6Ml7kwXuaTYvB3RFv2m6nAhrpLaebMmfL333/r5e3bt4uHh0eGUw0B/yU4IFgHNixFxN988E0OmpOYtS1V0fAGFA0HAACORWVXpA5qKJbl+Pj4NOs3bdok27Ztk9WrV2e4rSlTpliDHtkJbFy9elVcXTOVSJ/jJ42WuiGcxzk+xstcGC9zYbzMhfEyF8bLfFIM/o6YURZ1tgIbdevWlU8//VS3W7ZsqYMchQoVynoPkaf1Dugto9ePlhRJ0YGNcS3HcTLlBGITYq1Fw73dvSkaDgAAHI6Xl1e6AIZl2dvb27ru5s2b8uabb+qs9dTrLX777TfZsWOHnrI3u9R5lZubmxh1N5yvry/fxU2A8TIXxstcGC9zYbzMhfEynxSDvyMmJSXlbGAjNTUn7bFjxyQgIMDWtwJaed/y0rJiS/n16K+y78I++efMP9KgdAOOjhMUDb9085K1aHgRnyJGdwkAACDdFLuqboY6p3F3d7dOT6WCF6lv3Nq1a5ccP35cRo4cmeb9gwYNki5dukhCQoKcOXNGmjZtqter7al1qnaHKkzesGHDTB95dcJoVMaEZd9kbJgD42UujJe5MF7mwniZC+NlPi4Gfke0ZZ82BzaKFy8uFy5csPVtQBrBgcE6sKGorA0CG+Y3c3uqouENKBoOAAAcT61atXRAQ2VbWIIParqpwMDANNNBqdqCa9euTfPedu3a6QyNZs1u1RAbOnSo9Tn12gULFuiHCp4AAAAAsC+bAxu1a9eW5557Tn/5L1u2bLo5at95552c7B+cVPda3WV4+HBJSE6QRZGLZGrbqeLmmvsp+MgZu8/tlt+P/a7b/sX95YHyD3BoAQCAw/Hx8dEZF+PHj9c1Ms6dOydz5syxnsOo7I2CBQvqDI6KFSume78KWvj5+em25aelrQImGb0HAAAAQM7LUpW6Tp06SeXKldMFNYDM8svnJ49We1S3T107JRuPbuTgmdis7amKhgdRNBwAADiuMWPGiL+/v/Tv318mTJggI0aM0NkYSvPmzSU8PNzoLgIAAADI6YwNMjKQU0ICQ+S7/d9Zp6N6qPJDHFwnKBret05fo7sEAABwz6yNqVOn6sed9u3bd9f33eu5bt266QcAAAAAB87YUPPQqkJ6nTt3ltOnT8vMmTPl+++/z/newal1rNFR8nvk1+1v9n4jcYlxRncJWbB0z1K5fPOybvfy70XRcAAAAAAAAACOFdhQhfEGDx6s62scOXJEEhMT9Xyyr732moSFhdmnl3BK+TzySddaXXVbXRj/4eAPRncJWTBzW6qi4UEUDQcAAAAAAADgYIGN6dOn62J7o0ePFje3W8WeBw4cqIvvffXVV/boI5xYcECwta2mo4L5iob/cfwP3Q4oESBNyzU1uksAAAAAAAAAnJzNgY2jR49KvXr10q2vU6eOnD17Nqf6hTyibZW2Ujxfcd1W9Tauxl01ukvIarZGA4qGAwAAAAAAAHDAwEa1atXkt99+S7d++fLl+jnAFh5uHvKE/xO6fTPxpqyIWsEBNFHR8Pm75t8uGl6XouEAAAAAAAAA7M/d1jeMGTNGhg4dKn/99ZckJCTI559/rrM4IiMj5bPPPrNPL+HUggOD5dMtn+p2aESo9Kvbz+guIRO+3v11mqLhhb0Lc9wAAAAAAAAAOF7GRsOGDeWHH36QqlWrSuvWreXy5ct6aqrw8HBp2pT59WE7VZehUuFKur3+8Ho5e50pzcxg5vbb01ANCRpiaF8AAAAAAAAA5B02Z2x899130rZtW3n++eft0yPkOS4uLrqI+JTfp0hySrLOBBjRZITR3cI9RJ6LlE3HN+l2YIlAub/c/RwvAAAAAAAAAI6ZsfH+++/rzIyRI0fK2rVrJS4uzj49Q56bjsoiLDLM0L7AxqLhQRQNBwAAAAAAAODAgY1ff/1VvvrqKylbtqxMnTpVBzleeeUV+emnn3TNDSAr/Ev4S52SdXT7rxN/yaGLhziQDiomIUbm77xVNNzH3UeerPOk0V0CAAAAAAAAkIfYHNhQ6tevL6NHj5YNGzbIggULpEyZMjJq1Chp3rx5zvcQeYaajspiUeQiQ/uCu1u6e6lcibui270CKBoOAAAAAAAAwASBDSUmJkYXDJ81a5aEhYVJyZIlpW/fvjZvR01lNXbsWF2UXAVG5syZ85/v2bp1q7Rp0ybD5z777DN57bXX0qxLSUnRU2jdf//90rhxY5k2bZokJyfb3FfYV5/APtZ2aESoHjc4ni+2fWFtUzQcAAAAAAAAgMMXD1++fLmurbFp0yYpVqyYtG/fXhYuXCg1a9bMUgdUkCEyMlLmzZsnp06d0pkgKgPk0UcfzfD1+/bt04XLvby80j23evVq+eSTT6RTp05p1qups9Rz06dPl8TERJ1d4ufnJ08//XSW+gz7qOBbQVpUaCG/HftNos5Hyc6zO6VeqXocbgcScTZC/jzxp26rqcOalG1idJcAAAAAAAAA5DE2BzY++ugjHXSYP3++1K1bN1s7V1kfS5cu1Vkf/v7++nHgwAEJDQ3NMLCxePFiXdejfPnycv36det6FayYNGmSDrqo5+6k+qqKnausEEXVBPm///s/AhsOWkRcBTaU0F2hBDYcuWh4A4qGAwAAAAAAADBJ8XCV8aCKh2e3WHhUVJQOSqiaHRZBQUGyc+fODKeK2rhxow5sDBgwIF2ARGVyfP3112m2pZw9e1ZOnz4tjRo1SrOPkydPyrlz57LVf+S8HrV7iLuru7XORnIKU4Y5UtHwBbsW6DZFwwEAAAAAAACYIrChaml069ZN6tSpIy1atNA/u3TpotdnRXR0tBQpUkQ8PT2t69T0VqruxuXLl9O9fsaMGdKuXbt06wsVKqSzOTKaDkvtQylRokSafShnzpzJUr9hP8XyFZNHq93K1jl57aT8dvRW9gaM9/Xur61Fw3sH9BZfb1+juwQAAAAAAAAgD8rUVFRJSUny7LPP6qLdKrAxaNAg8fX11RkPEREROotCZXKowt2urpmPlcTGxqYJaiiW5fj4eMkJN2/eTLPd7OxDFbM2qqC1Zd95oaB2n4A+snr/amsR8ZYVW4rZOON4fbH1izTTUDnT7+aM4+XMGC9zYbzMhfEyF0cYL/7vBAAAAOCwgQ1V2PvgwYPy/fffS+nSpdM817VrVx3o6N+/v65lcec0UfeiCoDfGVywLHt7e0tOSB3EsBQct+zDx8fHpm1dvXrVpsBNTp80qim3FBcXF3FmD5Z6UPK555OYxBhZunupTH5gsni6pQ2AOTpnG6/I6Ej56+Rfuh1QLEBqFKghV67cyt5wBs42Xs6O8TIXxstcGC9zcYTxymj6WAAAAABwiMCGKsqt6mrcGdSwUOvV8x9//LFNgY2SJUvKpUuXdJ0Nd3d369RRKqihppfKCWoflu2WK1fO2laKFy9u07ZUn9zc3MTIu+FUpoyzX3j1FV/pUrOLhEWGyeW4y/Jn9J/SqUYnMRNnG69FmxZZ20MbDZXChQuLM3G28XJ2jJe5MF7mwniZiyOMl8rsBgAAAACHDGwcO3ZM19O4l4CAADl+/LhNO69Vq5YOaOzYsUMaNmyo123btk0CAwNzLDNCBTbKlCmjt2sJbKi2Wpe67kZmqBNGIy96WvafFy68htQJ0YENSxHxzjU7i9k4y3jdiL8hC3ct1O18HvnkyTpPmv53cubxyisYL3NhvMyF8TIXo8eL/zcBAAAAGCFT0YOCBQvK2bNn7/maU6dOSdGiRW3auZoKShUfHz9+vOzatUvWr18vc+bMkX79+lkzKyw1MrKjT58+8v7778vmzZv144MPPrDuA47p4SoPi5+Pn26v2rdKrsVdM7pLebpo+NW4q7rd25+i4QAAAAAAAABMENh46KGH5NNPP71rcUC1fsaMGdK6dWubOzBmzBjx9/fXNTomTJggI0aMkHbt2unnmjdvLuHh4ZJdTz/9tLRv316GDx8uzz//vHTu3NmmKbOQ+zzcPOQJ/yd0OzYxVlZErWAYDPLFtttFw4c0HMI4AAAAAAAAADCUS8rdohWpqMyJnj17Svny5WXw4MF62ik1l69av3v3bh3UUIWElyxZYnPWhhmouYPVdFn16tUztMaGOsZ5qQbA78d+lxZftdDtR6s9Kj+E/CBm4SzjtfPMTqn3RT3drleqnmwfvN3Uv4+zj1dewXiZC+NlLoyXuTjCeDnC92SzMvrYOcLfDzKP8TIXxstcGC9zYbzMhfEynxSDvyPa8h05UzU2VJHtxYsXy8SJE3VgIzVVC6Nt27Y6uOGMQQ0Y54HyD0hF34py9MpRWXdonZy7cU5K5LetLgqyZ+a2mdb24AaDOekFAAAAAAAAYLhMBTaUUqVK6eDFhQsXdJaGJXKjsjcIaMAeXF1cpU9AH3n3j3clKSVJlu5eKsMaD+Ng52bR8IjbRcNVQXcAAAAAAAAAMEWNjdT8/PykZcuW0rFjR/2ToAbsKTgw2NoOjQjlYOeiJbuXWIuGqwBTIa9CHH8AAAAAAAAA5gtsALkpsGSgBJQI0O0/T/wphy8dZgCMKBoeRNFwAAAAAAAAAI6BwAYcXkjg7SmQFkcuNrQvecWOMzvk75N/W4uGNyzT0OguAQAAAAAAAIBGYAMOr3dA7zTTUaWkpBjan7xWNFxla7i4uBjaHwAAAAAAAACwILABh1epcCVpVr6Zbu+J3iO7zu4yuktO7Xr8dVm461bR8Pwe+dPUOQEAAAAAAAAAoxHYgCmkvrgeFhFmaF+c3ZLIJXIt/ppuUzQcAAAAAAAAgKMhsAFTeML/CXF3ddftRZGLJDkl2egu5Y2i4Q0pGg4AAAAAAADAsRDYgCkUy1dM2lVtp9vHrx6XP479YXSXnNI/p/+RLae26Hb9UvUlqHSQ0V0CAAAAAAAAgDQIbMA0ggOC0xQRR86jaDgAAAAAAAAAR0dgA6bRuWZnyeeRT7eX7lkq8UnxRnfJ6YqGWwJGFA0HAAAAAAAA4KgIbMA0CngWkM41Ouv2xdiLsvbQWqO75FQWRy62Fg1XxdoLehU0uksAAAAAAAAAkA6BDZiKuuBuERYRZmhfnLpoeBBFwwEAAAAAAAA4JgIbMBVVQLyoT1HdXrlvpZ4+Cdm3/fR22Xpqq243KN1AgspQNBwAAAAAAACAYyKwAVPxdPOUnrV76nZMQoysjFppdJecsmg4AAAAAAAAADgqAhswnZDAEGs7LJLpqLLrWtw1a9FwVcekT0CfbG8TAAAAAAAAAOyFwAZMp1mFZlK+UHnd/vHgjxJ9I9roLpm+aLhlSq/gAIqGAwAAAAAAAHBsBDZgOq4urtasgqSUJFm6Z6nRXXKeouENmYYKAAAAAAAAgGMjsAFTCg4MtrbDIpiOKqu2ndom205v0+2g0kG6cDgAAAAAAAAAODICGzClOiXriH9xf93+4/gf8u/lf43ukilRNBwAAAAAAACA2RDYgCm5uLikydpQdSJge9FwS/F1XTQ8kKLhAAAAAAAAABwfgQ2YlqXOhhIaEWpoX8xoUeQia9HwkMAQHdwAAAAAAAAAAEdHYAOmVblIZWlarqluR56LlIizEUZ3ybxFw4MoGg4AAAAAAADAHAhswNRUpoEFRcRtKxq+/fR23W5YpqHUL13fDqMDAAAAAAAAADmPwAZMrad/T3FzcbNOrZSckmx0l0yBbA0AAAAAAAAAZkVgA6ZWIn8Jebjqw7p99MpR2XR8k9FdcnhX465as1sKehaU3gG9je4SAAAAAAAAAGQagQ2YXnBAsLXNdFT/bVHEIrmRcEO3KRoOAAAAAAAAwGwIbMD0utTsIj7uPrr99e6vJSEpweguOayUlJS001A1pGg4AAAAAAAAAHMhsAHTK+hVUDrV6KTbF2IvyLrD64zuksPadnqb/HPmH91uVKaR1CtVz+guAQAAAAAAAIBNCGzAKQQH3p6OKjQi1NC+OLIvtqbK1ggiWwMAAOQtcXFxMnbsWGnYsKE0b95c5syZ85/vOXHihNSvX182b95sXRcTEyNvvPGGNGnSRBo1aiTjxo2TGzduTfUJAAAAwP4IbMApPFrtUSniXUS3V0StkBvxnFhmVDR8UeQia9HwXgG9cn2cAAAAjDRt2jSJjIyUefPmyVtvvSXTp0+XNWvW3PM948eP14GM1KZMmaK38+WXX8rcuXNl165d8u6779q59wAAAAAsCGzAKXi6eUrP2j11OyYhRlbtW2V0lxyOKqxuKRr+ZJ0npYBnAaO7BAAAkGtUcGLp0qXy+uuvi7+/vzz88MPyzDPPSGjo3bN9V61alWEmhoeHh87SCAgI0Nvq3r27bNu2zc6/AQAAAAALAhtwyumowiLDDO2LwxcNZxoqAACQx0RFRUliYqKeVsoiKChIdu7cKcnJyelef+nSJXnvvfdk4sSJ6Z5T2R7qvZapqlavXi2NGze2828AAAAAwMLd2gJMrkXFFlK2YFk5ee2krDm4Rs7HnJdi+YoZ3S2HsPXUVtlxZoduNy7bWOqWqmt0lwAAAHJVdHS0FClSRDw9Pa3rihUrputuXL58WYoWLZrm9Wpqqa5du0r16tXvus3Ro0fLihUrpGzZsjJs2LAs34CiHrnNsl8j9g3bMV7mwniZC+NlLoyXuTBe5pNi8HdEW/ZLYANOw9XFVfoE9JH3/3xfEpMT5Zs938jQhkON7pZDIFsDAADkdbGxsWmCGoplOT4+Ps36TZs26amlVCbGvQwaNEj69OkjH3zwgW4vW7ZMXF1tS4q/evWqze/JqZNGS+0QFxeXXN8/bMN4mQvjZS6Ml7kwXubCeJlPisHfETPKpL4bAhtwKiF1QnRgw1JTgsBG2qLhhbwKSS9/ioYDAIC8x8vLK10Aw7Ls7e1tXXfz5k1588039XRTqddnpFq1avrnRx99JC1atJAtW7ZIkyZNbOpXoUKFxM3NTYy6G87X15fAhgkwXubCeJkL42UujJe5MF7mk2Lwd8SkpKRMv5bABpxK3ZJ1pVaxWrL3/F757dhvcuzKMangW0HystBdobqguvJk4JOS3zO/0V0CAADIdSVLltR1M1SdDXd3d+v0VCp4oYILFrt27ZLjx4/LyJEj07xfZWR06dJF3njjDfn555+lWbNmUqBAAeuUVoULF9bbt5U6YTQqY8KybzI2zIHxMhfGy1wYL3NhvMyF8TIfFwO/I9qyT4qHw6moP/7URcQXRdzKVMir7iwaPjhosKH9AQAAMEqtWrV0QGPHjlt1xxQ13VRgYGCaqaDq1Kkja9eu1bUzLA9l8uTJ8vzzz+vXvvbaa/LLL79Y33Pq1Ckd1KhatWou/1YAAABA3kRgA05H1dmwCIsMk7xsy6ktsvPsTt1uUrYJRcMBAECe5ePjozMuxo8fr7My1q9fL3PmzJF+/fpZszfUNFQqg6NixYppHpaMDz8/Px0c6dWrl3z44YeydetWiYyMlBdffFHatGlzz0LjAAAAAHIOgQ04napFq8r95e7X7V1nd0nkuUjJq77YejtbY0jQEEP7AgAAYLQxY8aIv7+/9O/fXyZMmCAjRoyQdu3a6eeaN28u4eHhmdrOSy+9JI888oi88MILOjBSuXJlmTp1qp17DwAAAMCCGhtwSsEBwfLXib+sRcSntJkiec2Vm1dk8e7F1qLhT/g/YXSXAAAADM/aUAGIjIIQ+/btu+v77nzO09NTRo8erR8AAAAAch8ZG3BK6iK+q4urNbChak3kNaERt4uG963Tl6LhAAAAAAAAAJwCgQ04pZIFSkrbKm11++iVo/LniT8lLxcNZxoqAAAAAAAAAM6CwAacVkhgiLWtsjbykr9P/q3riyiq3khgyUCjuwQAAAAAAAAAOYLABpxWl5pdxNvdW7eX7F4iCUkJkleQrQEAAAAAAADAWRHYgNNSBbM73tdRt8/HnJf1h9dLnikaHnmraLivly9FwwEAAAAAAAA4FQIbcGrBgcHWdlhk3piOauGuhRKbGGstGp7PI5/RXQIAAAAAAACAHENgA07tsWqPSWHvwrq9fO9yiUmIkbxUNHxw0GBD+wMAAAAAAAAAOY3ABpyal7uX9KjVQ7dvJNyQVftWiTPbfHKzRJyL0O2m5ZpSNBwAAAAAAACA0yGwgbw1HVWEc09HRdFwAAAAAAAAAM6OwAacXsuKLaVMwTK6/cPBH+RCzAVxRpdvXpYlkUusRcN7+vc0uksAAAAAAAAAkOMIbMDpubm6SZ+APrqdmJwo3+79Vpy9aHi/uv0oGg4AAAAAAADAKRHYQJ6bjio0IlScsWj4zG0zrcsUDQcAAAAAAADgrAhsIE+oX6q+1PCrodsbj26U41eOizP568Rf1qLhD5R/QAJKBBjdJQAAAAAAAACwCwIbyBNcXFzSZG0sjlwszoSi4QAAAAAAAADyCgIbyDNSBzbCIsPEWVyKvSRLdt8qGl7Yu7D0rE3RcAAAAAAAAADOi8AG8oxqRatJ47KNdXvHmR2yJ3qPOEvR8JuJN3W7X51+4uPhY3SXAAAAAAAAAMBuCGwgTwkOSJW1ERHmHEXDt1M0HAAAAAAAAEDeQWADeUqvgF7i6uJqDWyowICZ/XniT4k8F6nbzco3E/8S/kZ3CQAAAAAAAADsisAG8pRSBUpJm8ptdPvI5SOy+eRmMTOKhgMAAAAAAADIawhsIE8XEQ/dFSpmLhr+9e6vdbuIdxHpUbuH0V0CAAAAAAAAALsjsIE8p2vNruLl5qXbS3YvkcTkRDGjBbsW3C4aXpei4QAAAAAAAADyBgIbyHN8vX3l8fse1+3omGjZcHiDmLJo+DaKhgMAAAAAAADIewhsIE8KCQyxtsMiw8RsNh3fJLujd+t28wrNpXbx2kZ3CQAAAAAAAAByBYEN5EmPVX9MfL18dXvZ3mUSkxAjZkLRcAAAAAAAAAB5FYEN5Ene7t7SvVZ33b4ef11W718tZnEx9mKaouGW3wMAAAAAAAAA8gICG8izggODre2wCPNMR7Vg5wKJS4rT7f51+4uPh4/RXQIAAAAAAACAXENgA3lWq0qtpHSB0rodfiBcLsVeElMUDd9O0XAAAAAAAAAAeReBDeRZbq5u0jugt24nJCfIN3u+EUf3x/E/ZE/0Ht1uUaGF1Cpey+guAQAAAAAAAECuIrCBPC3NdFSRjj8dFUXDAQAAAAAAAOR1BDaQpwWVDpLqRavr9q///ionrp4QRy4avnT3Ut0u6lNUutemaDgAAAAAAACAvIfABvI0FxcXCQkM0e0USZElkUvEUc3fOT9N0XBvd2+juwQAAAAAAAAAuY7ABvK8PoF9rMcgNCLUcYuGb7tdNHxQg0GG9gcAAAAAAAAAjEJgA3nefX73ScMyDfVx+OfMP7I3eq/DHZPfj/0ue8/f6lfLii0pGg4AAAAAAAAgzzI0sBEXFydjx46Vhg0bSvPmzWXOnDn/+Z6tW7dKmzZt0q1fvXq1tG3bVurWrSvDhg2TixcvWp/bs2eP1KhRI82jW7duOf77wLyCA24XEV8UuUgczcztt7M1hgQNMbQvAAAAAAAAAJBnAxvTpk2TyMhImTdvnrz11lsyffp0WbNmzV1fv2/fPnn++ef1tDyp7dq1S15//XUZPny4LFmyRK5evSpjxoyxPn/w4EGpVauW/P7779bHl19+adffDebSO6C3uIiLbodFhKX7GzPShZgL1qLhfj5+0q0WQTkAAAAAAAAAeZdhgY2YmBhZunSpDkj4+/vLww8/LM8884yEhmZc42Dx4sXSu3dv8fPzS/fcwoUL5bHHHpMuXbpIzZo1dcDk119/lePHj+vnDx06JFWrVpXixYtbH0WKFLH77wjzKF2wtLSu3Fq3D106JH+f/FscBUXDAQAAAAAAAMABAhtRUVGSmJgo9evXt64LCgqSnTt3SnJycrrXb9y4UaZOnSoDBgxI95x6j5rOyqJ06dJSpkwZvd4S2KhUqZLdfhc4h+DA29NRqawNhykanmoaqkFBFA0HAAAAAAAAkLcZFtiIjo7WWROenp7WdcWKFdN1Ny5fvpzu9TNmzJB27dpluK1z585JiRIl0qxTmR1nzpyxBjb27t0rHTt2lFatWsmbb74p169fz/HfCeampnjydLv197hk9xJJTE40ukvy27HfJOp8lG4/WPFBqVmsptFdAgAAAAAAAABDuRu149jY2DRBDcWyHB8fb9O2bt68meG21HYSEhL0lFTlypWTKVOm6Pob77zzjowaNUo+++wzm++eN6r2gmXfjlT7wdn4evnK49Ufl2VRy+TsjbPy0+Gf5OGqDxs6XjO33c7WGBw0mPG3Ez5f5sJ4mQvjZS6Ml7k4wnjx3RQAAABAngpseHl5pQtgWJa9vb1zZFs+Pj7i4eEhf/31l36NaivvvvuudO/eXc6ePSslS5bM9H5UUMTV1dWwk0ZVl0RxcblV5Bo5r3OVzjqwoczdPlcaF2ts2HhdjL0o3+z5RreLeheVNqXbyJUrV7K0Ldwbny9zYbzMhfEyF8bLXBxhvDKaQhYAAAAAnDawoQIKly5d0nU23N3drdNTqaBGoUKFbN7W+fPn06xTy6pIuFKgQIE0z6lC4oqtgQ3VLzc3NzHybjhfX18CG3bUo24PGbFhhFyNuyqrD62W2flmi4+HjyHj9eWeLyUuKU63B9QbICX80k63hpzD58tcGC9zYbzMhfEyF0cYr6SkJEP2CwAAACBvMyywUatWLR3Q2LFjh7Xw97Zt2yQwMNDmrIi6devq93br1k0vnz59Wj/U+oMHD0rPnj1l1apVUr58ef28qreh9l2xYkWb9qNOGI3MlrDsn4wN+8nnmU/X2pi7Y65ci78m4QfDpUftHrk+XupCxazts9JMQ8W42xefL3NhvMyF8TIXxstcjB4vvp8AAAAAyFPFw9U0UV26dJHx48fLrl27ZP369TJnzhzp16+fNXtD1c7IjD59+sjKlStl6dKlEhUVJa+++qouEq4CGVWqVNEBjHHjxsn+/ftl69atuq2CHeruNuBOIYEh1nZYRJghB2jj0Y2y78I+3W5VqZXUKFbDkH4AAAAAAAAAgKMxLLChjBkzRvz9/aV///4yYcIEGTFihLRr104/17x5cwkPD8/UdurXry8TJ06UTz/9VAc5VMBCFQhXVPaHKhKupqMKCQmRYcOGSdOmTWXs2LF2/d1gXg9VekhK5r81Rdn3B76XS7GXcr0PM7enKhreYHCu7x8AAAAAAAAAHJVhU1FZsjamTp2qH3fat+/W3ep3UtNNWaacysx6pXTp0jJ9+vQc6DHyAjdXN+kd0Fv+b/P/SXxSvCzbu0yebvB0ru3/fMx5a9HwYvmK6amxAAAAAAAAAAAOkLEBOKrgwGBrOywyd6ejmrdjng6oKAPqDhAvd69c3T8AAAAAAAAAODICG0AGGpVpJNWKVtPtn4/8LKeuncqV46SKhqeehmpQ0CDGBwAAAAAAAABSIbABZMDFxUWCA25lbaRIiiyOXJwrx+nXo7/K/gv7rbU+7vO7j/EBAAAAAAAAgFQIbAB30Sewj7UdFpE701HN3JaqaHgQRcMBAAAAAAAA4E4ENoC7qFmspjQo3UC3t53eJvvOZ1zQPieLhn+791tr0fCuNbsyNgAAAAAAAABwBwIbwD2EBIZY24siF9n1WM3dMddaNPypek9RNBwAAAAAAAAAMkBgA7iHXv69xEVcdDs0IlQX97Zb0fBU01ANakDRcAAAAAAAAADICIEN4B7KFiorrSq10u2DFw/K1lNb7XK8fvn3Fzlw8YBut67cWqr7VWdcAAAAAAAAACADBDaA/xAcGGz3IuIzt6cqGt6AouEAAAD2EBcXJ2PHjpWGDRtK8+bNZc6cOf/5nhMnTkj9+vVl8+bN1nXx8fEydepUadmypTRq1EiGDRsmZ86cYdAAAACAXEJgA/gP3Wt1F083T91evHuxJCUn5egxi74RLd/uuVU0vHi+4tK1FkXDAQAA7GHatGkSGRkp8+bNk7feekumT58ua9asued7xo8fLzExMWnWffzxx7J+/Xp5//33ZdGiRZKYmCjDhw+327SlAAAAANIisAH8hyI+RaR99fa6feb6Gfn5359z9JjN2zlPEpITrEXDLUEUAAAA5BwVnFi6dKm8/vrr4u/vLw8//LA888wzEhoaetf3rFq1Sm7cuJFu/fLly+XFF1+Uxo0bS7Vq1WTSpEkSEREhR48eZcgAAACAXEBgA8iE4AD7TEeVrmh4EEXDAQAA7CEqKkpnVqhppSyCgoJk586dkpycnO71ly5dkvfee08mTpyYZr16rVr/wAMPpHvPtWvXGDwAAAAgF7jnxk4As3v8vseloGdBuRZ/Tb7d+63M6DBDvN29s71dlf1hKRrepnIbqVa0Wg70FgAAAHeKjo6WIkWKiKfn7ezYYsWK6bobly9flqJFi6Z5/bvvvitdu3aV6tWrp1nv6uqaLqgxf/58ve0aNWpk6UYXI6awsuyX6bPMgfEyF8bLXBgvc2G8zIXxMp8Ug78j2rJfAhtAJvh4+Ei3Wt30tFFX465K+IFwvZxdqbM1BgdRNBwAAMBeYmNj0wQ1FMuyKgae2qZNm2Tbtm2yevXq/9yuqrWhipBPmDAh3fYz4+rVqzpYYsRJo6V2iIuLS67vH7ZhvMyF8TIXxstcGC9zYbzMJ8Xg74gZZVLfDYENIJOCA4N1YEMJjQjNdmDj3I1zsmzvMt0ukb+EdKnZhbEAAACwEy8vr3QBDMuyt/ftTNybN2/Km2++qYuLp15/t6DGCy+8IE8++aT07NkzS/0qVKiQuLm5iVF3w/n6+hLYMAHGy1wYL3NhvMyF8TIXxst8Ugz+jpiUlJTp1xLYADKpdeXWOgChAhLf7/9eLt+8LIW9C2f5+M3bQdFwAACA3FKyZEldN0PV2XB3d7dOT6WCFyq4YLFr1y45fvy4jBw5Ms37Bw0aJF26dLHW3Pj+++/l1Vdfld69e8vYsWOz3C91wmhUxoRl32RsmAPjZS6Ml7kwXubCeJkL42U+LgZ+R7RlnwQ2gMx+WFzdpZd/L/nk708kLilOlu9dLk/VfypLxy85JVlmbr89DdUzDZ5hHAAAAOyoVq1aOqCxY8cOadiwoV6nppsKDAxMMxVUnTp1ZO3atWne265dO5k8ebI0a9ZML//55586qBESEpKtoAYAAACArMn9yVwBEwsJDLG2wyLDsrydn4/8LAcvHtTttlXaUjQcAADAznx8fHTGxfjx43VWhqU2Rr9+/azZG2oaKpXBUbFixTQPS8aHn5+fzvhQwYxGjRrpLA71PsvjzqmuAAAAANgHgQ3ABo3LNpYqRaro9k9HfpLT105n6filztYY3ICi4QAAALlhzJgx4u/vL/3799fFvkeMGKGzMZTmzZtLeHj4f24jMjJSTp06pbM21HtSP/75559c+C0AAAAAMBUVYOM8b8EBwTL5t8l6Oqklu5fIC/e/YNMxVDU61DRWiqrZ0blmZ8YAAAAgl7I2pk6dqh932rdv313fl/q5evXq3fO1AAAAAOyPjA3ARsGBwdZ2WITt01HN3TFXEpITdPupek+Jp5snYwAAAAAAAAAAmURgA7BRreK1pH6p+rq95dQWOXDhgG1Fw7fdnoZqUINBHH8AAAAAAAAAsAGBDSAXszZUXY5Dlw7p9sNVHpaqRaty/AEAAAAAAADABgQ2gCzoHdBbXMRFt8MiwyQlJSVT70udrTE4iKLhAAAAAAAAAGArAhtAFpQrVE4erPSgbu+/sF+2n97+n+85e/2sLI+6VTS8ZP6S0rkGRcMBAAAAAAAAwFYENoAsCg6wbToqVTQ8MTnRWjTcw82DYw8AAAAAAAAANiKwAWRR99rdxcP1VnBiUeQiSUpOunfR8O2pioYHUTQcAAAAAAAAALKCwAaQRUV9ispj1R/T7dPXT8uvR3+962s3HN4ghy8d1u12VdtJlSJVOO4AAAAAAAAAkAUENoBsCAkMydR0VKmzNQY3oGg4AAAAAAAAAGQVgQ0gGx6/73Ep4FlAt7/Z843EJcale82Z62dkRdQKa9HwTjU6ccwBAABgmKlTp0qdOnWkVatW0qBBA2nSpAmjAQAAAFMhsAFkQz6PfNK1ZlfdvhJ3RcIPhN+zaPjA+gMpGg4AAABDRUVFyQcffCA///yzbN++XTZv3syIAAAAwFTcje4AYHbBgcGyYNcC3Q6LDJOutW4FOixFw2dtn6XbLuIigxpQNBwAAADGOHclVvYcvyQ7InZL6WZJ8tv5KMnn7SVlixaQCsUKSO3yRaSErw/DAwAAAIdHYCOHpKSkSGJioiQlJdlt+/Hx8XLz5k1xcXGxyz6cjYeHh7i5udl9P22rtJXi+YpLdEy0fLfvO7kad1UKehbMsGh45SKV7d4fAAAAILXLN+Jk7c7jEnH0kpw/Hy0x16/Kn6vmy/nj+6VAkZJS++E+UqhUVdkQcVICKxaRdnXLS+H8XhxEAABgeupabUJCgtHdMI0UO1+DVtdq3d3dc2TbBDZygBrs06dPS0xMjNhTcnKyXLhwwa77cCbqA1KuXDkpUOBWDQx7cXd1l17+vWT6lukSlxQny/cul351+6UvGh5E0XAAAADkrqiTl2XF5iNy5nKMFC3oLcW8k6RsNX9p3K6b+JYoL0d2/Smbl/6f9Bn9fxLv6iqbos7K4TPXpOv9laVGmcIMFwAAMK3r16/LiRMn9MV6OM416Hz58knp0qXF09MzW9shsJEDA33kyBEdbSpTpoweEHtEs9QHUEUY1X7I2Mjc8YqOjtb/eFWvXt3umRtqOioV2FBCI0J1YOPsjbOyct9Kva5UgVLS8b6Odu0DAAAAcGdQY/HvB+V6XIJUKF5Q3FxdRPJVks7PjrfejVf7/jYS8Vu4nPl3n1QOaCQFvD3k1KUbsui3g9K7eTWpWZbgBgAAMB91HVVdF1QX0YsXL871VAe4Bm35/qmu2arr6eqaratr1kuAE9jIJjUYKrhRvnx5/UGxFwIbtlP/aP3777863czegY37y90vlQtXliOXj8iGIxvkzPUzEron9HbR8HoUDQcAAEDuTj+lMjVUUKNc0fzWE9PTR6Lkwqmj4v9AO+trk5ISxM3DQ7dV8EO9/sTFG/r9Qx+pzbRUAADAdNT1QHU9VV0f9PGhhpijXINWY6HKBxw9elRfV/f29s7ytrIeEkHaA5mN6BLsIzczW9S+VNaGpWD44sjFMj9y/u2i4UEUDQcAAEDuUTU1zl6JkTJFbgc1FDd3d9n03QI5fXivJCclya7fwiUpMUHKVKltfY16vXqfmr5KbQcAAMCsmPnGea+jczUeyCGWwIYy7udxcvTqUd1+pNojUqlwJY4zAAAAcsXZyzG6UHiRAt63pp9KpUT5atKy+zPy0+JPZcGEQXJoxybp8PQYcfdIO8exep+qyaG2c+5KLCMHAAAAh8JUVHlYjRo10iwXKVJE2rZtK2PGjJH8+fPbdd+ffPKJ/P3337JgwQJZtmyZTJ8+XX766Scxs9rFa0vdknVl59mdciPhhnX9oPpkawAAACD37D1xWW6ouhoFC2T4fM1GraRGwwd1+v+9agQW8vGQo9HXZc/xS1LClykcAAAAnP167ebNm2Xu3Ln6eu2nn37q0NdrydjI49Qf7O+//y4bN26Uzz//XHbt2iXTpk3L1T60b99evvnmG3G2rA0LL3cvQ/oCAACAvOnY+es64yK7Uy+o97u5ucixC9dzrG8AAAC4N67XZg6BjTzO19dXF9EpWbKk1KtXT4YMGSI//PBDrvZBFYkpWrSoOIPe/r3TLKv6GhN+naAL7wAAAAC54eTFG+LtkTPJ+T4e7nLywu1sZAAAANgX12szh8AG0lWmT+3s2bMycuRIadSokQQEBEjXrl1l27Zt1ufnz58vDz30kAQGBkq3bt1k69at1uf2798vffv2lTp16sgjjzwioaGhGR5tldrUunVr3VbpTqodFhYmLVq00MGWUaNG6TR5i3Xr1uksj7p160qPHj30lFaOYu/5vWmWUyRFtpzaImsPrTWsTwAAAMg71A01iUnJ4npHbY2sUttR2+NGHQAAAGNwvTZjBDZgdfHiRV3zolOnTtZ1r7zyiiQlJcnixYtlxYoVOrNj/Pjx+rk9e/boaaveeustneXRsGFDeeGFFyQ5OVlu3rwpgwYNkqCgIFm1apWMHj1aZsyYobfxX86dOyc//vijzJ49W6derV271vq+qKgova1nn31Wb1f1Ve3n6NFbhbqNpE72VNFwV5e0Hys3Fze9npNBAAAA2JuaPsrdzVWSk3MmY1htR20vu9NaAQAAOIQbN+7+uHkz86+Njc3ca7OJ67V3R/Fwe/rww1uP/9KggciqVWnXqeDC9u1pVrll9N6XXrr1yCIVFHBzc9MX3WNjY6Vw4cLWwIVap4rTqGyLUqVK6XUhISEyePBg3T558qQ+wSlTpoyUK1dOBzVU9oYKbHz33Xfi5+en1ymVKlXSr1cZHl26dLlnnxISEuSNN96Q6tWr64I5KnMjIiJCnnjiCfnyyy/1z44dO+rX9uvXT7Zs2SKLFi2S1157TYyksjJUdsadklKSrFkbj1R7xJC+AQAAIO8oWzS/RBy7kCPbik1IlOplfHNkWwAAAIYrUODuz7VvL/L997eXS5QQiYnJ+LUPPijyyy+3lytVEjl/Pv3rsjA9PddrM4fAhj1dvaqu/v/368qXT78uOjrNe13utY9smDx5sp7SSQUxLl26JAsXLpQ+ffpYAxOqHR4eLtu3b5cjR45IZGSkDlwozZs3l/vuu08HGWrXri1t2rSRnj17iru7uxw+fFhnV9SvX9+6L5X5oYIomVGxYkVru0CBApKYmKjbhw4d0tkhS5YsSRMIUX1xiGwNcZVkuXV8UlPr1fPtqrbjbjcAAADYVYViBeSfI+f1d9TsZFqo9yclpUgFv3tcAAAAAECO4npt5hDYsKdChUTKlv3v1xUvnvG6VO9NHdtzuXMf2aCmlrIEEVRWhb+/vzRp0kQHD4KDg2XgwIFy9epVXdNC1b5QQYThw4db53dbunSprnHx888/61oZKnNC/VSBiKZNm8qbb76ZpX55enqmWbZM46SCIypqeWfWhypAbqT4pHg5duVYhkENRa0/fvW4fp2Xu1eu9w8AAAB5R+3yRWRDxEm5GpsgvvnSfq+2hXp/AW8PvT0AAACncP363Z+784bsc+fu/lrXOyo8/Puv5BSu12YOgQ17ys40UXdOTaXvlvr/GQ92nN/W1dX1/9+ZlSQHDx7U0zz9+eefUrRoUf28pQC4es2OHTvkr7/+0vUu7r//fnn55ZflgQce0MXFK1euLBs2bNBTVFmyNFauXKmnlFLTTGWV2u6JEyfSZHSoOh9qvcoWMYoKVmwZtEWiY6Ktx+f69es628Ryl1yJ/CUIagAAAMDuSvj6SGDFIrIp6qwOTLhloZB4UnKKXLx2Ux6oWVJvDwAAwCnkz2/8a23E9dqMEdjI465cuSLRatorXePmhsyZM0cHNVR2hoeHh/7gfP/993pZBSVUMW8lPj5eZ0l8+umnUqxYMZ2doYIgMTExui6GiixOnz5dZ2yorA8VjHj77bflqaeeylZ/BwwYoOt8BAYGSqtWreSnn36SuXPnyrx588Ro5X3L64clsKGOra+vL1NPAQAAINe1q1teDp+5Jqcu3ZByRfPb9J1UfZdV7ytVOJ/eDgAAAHIP12szh8BGHjdixAhrW00tFRAQILNmzZLy/7/uhyokroIXH374oc6KUNkWo0ePlj179uj6GSpYMWPGDJk4caIuIv7ee+9J1apV9XvVdqZMmaKnjVJFyVVAYsiQIdnqb7169XSGhgqwqJ8VKlSQDz74QBo1apTNIwEAAAA4j8L5vaTr/ZVl0W8H5cTFG1KmSP5MZW6oTA0V1Cjg5aHfr7YDAACA3MP12sxxSbEUL8BdqQwGNe2Suqh+Z/Hrmzdv6qLa6qK/Pes8WKaHUvvPTgHAvCS3xiYjZGyYC+NlLoyXuTBe5sJ4mYsjjNe9vifDMY5d1MnLsmLzETlzOUaKFvSWQj4e+u9F/f2oLGxV286yrGpqqOmnVKaGCmrUKFOYYXQQjvB5R+YxXubCeJkL42UuRo6XkdcFzSwlF65B32tsbPmOTMYGAAAAADipmmULy9BHasvanccl4uglORp9XdzcXMTb3U2SkxPF9Way3ExMkqSkFF2P44GapaRd3XJkagAAAMChEdgAAAAAACemppN64oFq0so/VvYcvyTHzl+XkxevS8zNZMnn7S73+RWWCn4FpHb5IhQKBwAAgCkQ2AAAAACAPKCEr481cKGmGbh8+bKuhcfURgAAADAbV6M7AAAAAADIfQQ0AAAAYFYENgAAAAAAAAAAgGkQ2MghKpUbjoUxAQAAAAAAAPIurg8675gQ2MgmDw8P/TMmJiYnxgM5KD4+Xv90c3PjuAIAAAAAAAB5hOV6oOX6IByH5Tq65bp6VlE8PAc+JKrg3rlz5/Ryvnz57DJXrYpkJSUl6f0xF+5/S05OlujoaD0e7u78mQMAAAAAAAB5hboeqK4LquuD6gK6qyv39xt9DVptWwU11HV0dT09uzejc8U3B5QqVUr/tAQ37Hmxng9h5qljVaFCBQJBAAAAAAAAQB6iLsqXLl1ajhw5IkePHjW6O6aSbOdr0CqoYbmenh0ENnLwg1KiRAlJSEgQe1ARrWvXrknBggW5UJ9Jnp6eBIIAAAAAAACAPHptsHr16kxH5UDXoFX2TE6VDSCwkYPUoNirnoP6o4qLixNvb28CGwAAAAAAAADwH1TmgbqeCue7Bs3kYgAAAAAAAAAAwDQIbAAAAAAAAAAAANMgsAEAAAAAAAAAAEyDGhuZnFtMSUpKMrQPqiK96oOjz28Gxsts+HyZC+NlLoyXuTBe5uII42X5fmz5vgzznGM4wt8PMo/xMhfGy1wYL3NhvMyF8TKfFIO/I9pyfkFgIxPUYCoRERHZHRsAAADAab8vw/ZjxjkGAAAAYPv5hUsKt1dl6kAmJiaKq6srdzMBAAAAd9zR5e7urr8rI/M4xwAAAACyfn5BYAMAAAAAAAAAAJgGt1UBAAAAAAAAAADTILABAAAAAAAAAABMg8AGAAAAAAAAAAAwDQIbAAAAAAAAAADANAhsAAAAAAAAAAAA0yCwAQAAAAAAAAAATIPAhoNbt26d1KhRI81j5MiRRncLd4iPj5fHH39cNm/ebF13/PhxGTBggNSrV0/at28vv//+O8fNwcds8uTJ6T5vCxcuNLSfed3Zs2f1v3mNGzeWFi1ayDvvvCNxcXH6OT5j5hovPl+O5+jRo/L0009L/fr1pVWrVjJ79mzrc3y+zDVefL5gK84xzIFzDHPh/MIcOL8wF84vzIXzC3M56gTnF+5GdwD3dvDgQXnooYdk0qRJ1nVeXl4cNgeiLtq9/PLLcuDAAeu6lJQUGTZsmNx3333y7bffyvr162X48OESHh4uZcqUMbS/yHjMlEOHDun1Xbt2ta4rUKAAh8wg6nOkLpIXKlRIQkND5cqVKzJ27FhxdXWVV199lc+YicZr9OjRfL4cTHJysgwePFgCAwNl+fLl+kvtSy+9JCVLltRBX/4PM894dezYkc8XbMY5huPjHMNcOL8wB84vzIXzC3Ph/MJckp3k/ILAhoNTf0jq4njx4sWN7gruclKoPujqP9zU/vrrL3236+LFiyVfvnxStWpV+fPPP3WQY8SIERxLBxwzy+dNRav5vDmGw4cPy44dO+SPP/6QYsWK6XXqwvnUqVOlZcuWfMZMNF6WwAafL8dx/vx5qVWrlowfP15/Qa1UqZI0bdpUtm3bpseP/8PMM16WEw8+X7AF5xiOjXMMc+H8wjw4vzAXzi/MhfMLcznvJOcXTEXl4NQfkvrjgmP6+++/pUmTJrJkyZI063fu3Cm1a9fWQQ2LoKAgfdEPjjlm169f12mufN4ch/oPVKVCWi6Spx4rPmPmGi8+X46nRIkS8r///U9/iVWBXvUFdsuWLXoaMT5f5hovPl/ICs4xHBvnGObC+YV5cH5hLpxfmAvnF+ZSwknOL8jYcGDqD+vIkSO6NsMXX3whSUlJ8uijj+o7YD09PY3uHkQkODg4w+MQHR2t/5FIzc/PT86cOcNxc9AxUyf4Li4u8vnnn8vGjRulcOHC8tRTT6VJu0PuUlMaqToNqVMl1ZyO999/P58xk40Xny/H1rp1azl16pSe+vKRRx6RKVOm8H+YicYrMjKS/79gE84xHB/nGObC+YV5cH5hLpxfmBfnF+bS2sTnFwQ2HJj6o4qNjdVBDBVFO3HihC7ecvPmTXnjjTeM7h7uwTJuqallVVAOjpvmqv7hrlKlijz55JM6Uj1u3DgdvX744YeN7h5E5L333pM9e/bIN998I3PnzuUzZqLx2r17N58vB/bxxx/rVGSVhqwKvvN/mLnGy9/fn88XbMI5hnnx77O5cH7h+Di/MBfOL8yD8wtz+djE5xcENhxY2bJlZfPmzeLr66v/oNTcZ+oO2FGjRsmYMWPEzc3N6C7iLlSB98uXL6dZp4Ia3t7eHDMH1aVLFx2dVpFopWbNmvLvv//KokWLHO4f7rz6JXbevHny0Ucf6bpDfMbMNV7Vq1fn8+XAVME4S+HTV155Rbp3764vnqXG/2GOO17bt2/n8wWbcI5hXnz/MRfOLxwb5xfmwvmFuXB+YS6BJj6/oMaGg1N/RCqoYaGKUKs/tCtXrhjaL9xbyZIldbQzNbV85/RUcBzqc2b5R9tCRafVvIIw1qRJk+Srr77SX2ZVWqTCZ8xc48Xny/Go/5PWr1+fZl21atUkISFBz2fM/2HmGS81By7/f8FWnGOYE99/zIXvP46L8wtz4fzCHDi/MJfzTnJ+QWDDgf3222+6yHHquyb37t2r/7iKFi1qaN9wb3Xr1tVTr6hpwyxUIR61Ho7p//7v/2TAgAFp1kVFRel/vGGc6dOny+LFi+XDDz+UDh06WNfzGTPXePH5cjxqesvhw4en+XKq5lJV3y+CgoL4P8xE47VgwQL+/4JNOMcwL77/mAvffxwT5xfmwvmFeXB+YS4nnOT8gsCGA6tfv75ON1b1NNT8nL/++qtMmzZNnnnmGaO7hv/QuHFjKV26tJ4y7MCBAzJz5kzZtWuX9OjRg2PnoFSanZo38Msvv5Rjx45JWFiYrFixQgYOHGh01/IsVXB6xowZMmjQIH2hNTo62vrgM2au8eLz5Zjpxmru1LFjx8rBgwf1dwyVZTN06FA+XyYbLz5fsBXnGObF9x9z4d9nx8P5hblwfmEunF+YS6CTnF+4pKSkpBjdCdyduig+ZcoU2bFjh+TPn1969+4tw4YNSzM9FRxDjRo1ZP78+TrLRjl69Ki8/vrrsnPnTqlYsaL+x+KBBx4wupu4x5ipNDxVNEnNHajmn37xxRelXbt2HDODqIDgBx98kOFz+/bt4zNmsvHi8+V41N05KrX/zz//FB8fH10YbsiQIfo7Bv+HmWu8+HzBVpxjmAfnGObC+YVj4/zCXDi/MB/OL8zlrBOcXxDYAAAAAAAAAAAApsFUVAAAAAAAAAAAwDQIbAAAAAAAAAAAANMgsAEAAAAAAAAAAEyDwAYAAAAAAAAAADANAhsAAAAAAAAAAMA0CGwAAAAAAAAAAADTILABAAAAAAAAAABMg8AGAAAAAAAAAAAwDQIbAGByNWrUkJdffjnd+mXLlknr1q3tsk+1XbV9o2zYsEFatmwpdevWld9++y3DY5LR45VXXsmR/f/www9y4cKFHNkWAAAA4Eg4v+D8AgDMwN3oDgAAsm/16tXSo0cPadq0aZ44nB9//LE0b95chg0bJn5+fhm+5pNPPpH69eunWeft7Z3tfZ88eVJeeOEFHVwBAAAAnBHnF+lxfgEAjoXABgA4gbJly8rEiRNl5cqV4unpKc7u2rVrEhQUpH/vu/H19ZXixYvn+L5TUlJyfJsAAACAI+H8Ij3OLwDAsTAVFQA4AZVBcPbsWfnyyy8zfP7EiRM6pVz9TH3HUd++fXVbTSul2p999pk0atRImjVrJitWrJA1a9bIQw89JA0bNpT33nsvzTYPHDggXbp0kcDAQHn66afl1KlT1udOnz4tQ4cO1VNFqWmrpk+fLklJSdZ99e7dW2dbqODEqlWr0vU3Li5O7+/BBx+UevXq6W2pbSpqeyprYuzYsVmeais+Pl4mT54sTZo00Q81RdXly5etz2/btk369Omj+6/2P2jQIDl37px+rk2bNtaf6ndJfRwzmqpLPTdp0iT9+latWsn169fveXwSEhLkjTfe0P1SGSfqdWpsAQAAgNzC+YVtOL8AgNxHYAMAnEDJkiVl5MiR8vnnn8vx48eztI1//vlHv/ebb76RDh06yPjx42X+/Pk62PHaa6/J7NmzZc+ePdbXL1q0SJ555hn59ttvJTExUUaPHm3NaBg+fLieImr58uXyzjvvyHfffaf7lnpf1apVk6+//lpPKXWnt956S9atWydTp06VxYsX6+0/99xzkpycrPtXqlQpHdhQ7az48MMPJTIyUmbNmqV/RxVseP75563ZIEOGDNHBHZWCr4JFx44dk5kzZ+rnly5dav3Zvn37TO1PBTlUoEYFMPLnz3/P4xMaGipbtmyROXPm6N/vxo0bMmXKlCz9ngAAAEBWcH5hG84vACD3MRUVADgJlRmgLqC//fbbaYIImaUCEipTIF++fNKrVy+ZN2+ejBgxQmrWrKkf6sv64cOHpXbt2vr1KqPh8ccf1221T5WRcOjQIZ3ZoLI31IV/V1dXqVKlig56jBkzRmdpKC4uLvLss89mWPPiypUrekotFXS4//779br3339fZzv88ccf0qJFC3Fzc5OCBQtK0aJF7/r7qCwL9TqLIkWKyE8//SSxsbGycOFCHZBRWSzKtGnTdIbEvn379DZVEOWpp57S/Sxfvry0a9dOdu3apV9r2af6mdmaHarvDRo00O0///zznsdHZdV4eXnp9P/ChQvLu+++myabBAAAAMgNnF+kxfkFADgWAhsA4CTURXyVZREcHCzr16+3+f0qg0AFNRR1YV0pV66c9Xl1EV+lWFvUqVPH2lavUxfhVeBDTZukLsSraaYsVKbFzZs35dKlS9Z93S0o8O+//+rXq2maLNS2K1eurAMnKrCRGWqqqdTbUEEERWWlqOme1HRYqal9qn2rYIeaYmvu3Lmyd+9eOXjwoA54WAITWZG6Foj6He51fFRQ6fvvv9eZLI0bN5a2bdtKt27dsrxvAAAAICs4v0iL8wsAcCwENgDAiaiL7927d9cZFGqaKAuVeXAnNb1Tau7u6f9LyOh9FqmzISwX5z08PPR2VRbCjBkz0r1HZVmkDpxk5G7PqRoUah+2pM9XrFgxw+0oYWFh1kCOhQq4qMCMOob+/v7ywAMPyBNPPCG//PKL7Ny5M8P9ZObYpv6d/uv4WDJL1D7VQ2XKqCmx1BRV9xoPAAAAIKdxfnEb5xcA4FiosQEATkYVwo6JiUlTSFwFHBRVr8EidSHxrNi/f7+1rTIdrl69qrMq1ENNtaSmalKBBfVQ+/r4448zdWFeTf2kgiw7duywrlOZDEePHtXbzi61fRWUUVkTlv4VKFBA17q4cOGCru3h6+srX3zxhfTv318XTldZHmqqLuXO30Ed29THVbUvXrx41/3/1/FRRdt//vlneeyxx3SNEVXbRBUzV30DAAAAchvnF/fG+QUAGIPABgA4GXXHvzr5OHnypHVdsWLFpHTp0jrYoS7Sq1ocKhsgO7766itZu3atREVF6foQDz30kL5Ir6ZQUlMvjRo1Sk/htHXrVhk3bpz4+Piky/LIiCqu3bNnT5k0aZJs3rxZb19tSxUMVwW9s0sFMdT21bRdavtqqqlXX31VB04sU2qpwIOqhaGOlSoarn5PyzRc6vdQVL9UECMwMFC3f/jhBzly5Ii8+eab1mmvMvJfx0cVL1cZN5b9q8Li6ndX4woAAADkNs4v7o3zCwAwBoENAHBCPXr0kPr161uX1YV2dbFcFcBu3769rFmzRoYOHZqtfaji2v/73//0VE1qCqcpU6bo9eri/GeffaanjVLPqQLkDz74oC5MnlmqmLaaBmrkyJG6SLmayknVvPD09JSc8Nprr0nTpk319lUfVYaICmCovqtMiU6dOunn1JRUKvih+qNqY6jghsq0UM+/8MILugC42s6AAQN0QEPV7ahevXqa2h53+q/jExISomt8qMCHGqs9e/bo12cmKAQAAADYA+cX98b5BQDkPpcUy9waAAAAAAAAAAAADo6MDQAAAAAAAAAAYBoENgAAAAAAAAAAgGkQ2AAAAAAAAAAAAKZBYAMAAAAAAAAAAJgGgQ0AAAAAAAAAAGAaBDYAAAAAAAAAAIBpENgAAAAAAAAAAACmQWADAAAAAAAAAACYBoENAAAAAAAAAABgGgQ2AAAAAAAAAACAaRDYAAAAAAAAAAAApkFgAwAAAAAAAAAAiFn8P7uwkyGBFYBGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualize RFE results\n", "rfe_df = pd.DataFrame({\n", " 'n_features': list(rfe_results.keys()),\n", " 'train_r2': [rfe_results[n]['train_r2'] for n in rfe_results.keys()],\n", " 'test_r2': [rfe_results[n]['test_r2'] for n in rfe_results.keys()],\n", " 'rmse': [rfe_results[n]['rmse'] for n in rfe_results.keys()],\n", " 'gap': [rfe_results[n]['gap'] for n in rfe_results.keys()]\n", "})\n", "\n", "fig, axes = plt.subplots(2, 2, figsize=(16, 12))\n", "\n", "# R² curves\n", "axes[0, 0].plot(rfe_df['n_features'], rfe_df['train_r2'], marker='o', label='Train R²', linewidth=2)\n", "axes[0, 0].plot(rfe_df['n_features'], rfe_df['test_r2'], marker='s', label='Test R²', linewidth=2)\n", "axes[0, 0].axhline(y=baseline_test_r2, color='r', linestyle='--', label='Baseline', linewidth=2)\n", "axes[0, 0].set_xlabel('Number of Features')\n", "axes[0, 0].set_ylabel('R² Score')\n", "axes[0, 0].set_title('RFE: Train vs Test R²')\n", "axes[0, 0].legend()\n", "axes[0, 0].grid(True, alpha=0.3)\n", "\n", "# RMSE curve\n", "axes[0, 1].plot(rfe_df['n_features'], rfe_df['rmse'], marker='s', color='orange', linewidth=2)\n", "axes[0, 1].axhline(y=baseline_test_rmse, color='r', linestyle='--', label='Baseline', linewidth=2)\n", "axes[0, 1].set_xlabel('Number of Features')\n", "axes[0, 1].set_ylabel('Test RMSE')\n", "axes[0, 1].set_title('RFE: Test RMSE vs Feature Count')\n", "axes[0, 1].legend()\n", "axes[0, 1].grid(True, alpha=0.3)\n", "\n", "# Overfitting gap\n", "axes[1, 0].plot(rfe_df['n_features'], rfe_df['gap'], marker='^', color='green', linewidth=2)\n", "axes[1, 0].axhline(y=baseline_gap, color='r', linestyle='--', label='Baseline', linewidth=2)\n", "axes[1, 0].set_xlabel('Number of Features')\n", "axes[1, 0].set_ylabel('Overfitting Gap (Train R² - Test R²)')\n", "axes[1, 0].set_title('RFE: Generalization Quality')\n", "axes[1, 0].legend()\n", "axes[1, 0].grid(True, alpha=0.3)\n", "\n", "# Complexity vs Performance\n", "axes[1, 1].scatter(rfe_df['n_features'], rfe_df['test_r2'], s=200, alpha=0.6, color='steelblue')\n", "axes[1, 1].axhline(y=baseline_test_r2, color='r', linestyle='--', label='Baseline')\n", "for idx, row in rfe_df.iterrows():\n", " axes[1, 1].annotate(f\"{int(row['n_features'])}\", \n", " (row['n_features'], row['test_r2']), \n", " fontsize=9, ha='center', va='bottom')\n", "axes[1, 1].set_xlabel('Number of Features')\n", "axes[1, 1].set_ylabel('Test R²')\n", "axes[1, 1].set_title('RFE: Complexity vs Performance Trade-off')\n", "axes[1, 1].legend()\n", "axes[1, 1].grid(True, alpha=0.3)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 6: Feature Selection - Lasso Regularization\n", "\n", "**What we're doing:**\n", "- Using LassoCV to automatically find optimal regularization strength (alpha)\n", "- Lasso shrinks unimportant feature coefficients to zero\n", "- Result: automatic feature selection + interpretable coefficients\n", "\n", "**What to expect:**\n", "- 18-25 features selected automatically\n", "- Clear ranking of feature importance (positive = helpful, negative = problematic)\n", "- **Best generalization** of feature selection methods\n", "- Interpretable results (see exact coefficient for each feature)\n", "\n", "**Why Lasso is powerful:**\n", "- Combines feature selection with regularization\n", "- Prevents overfitting while eliminating unimportant features\n", "- Gives domain experts explanations" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "LASSO REGULARIZATION - AUTOMATIC FEATURE SELECTION\n", "================================================================================\n", "\n", "Optimal regularization parameter (alpha): 0.000722\n", "Number of non-zero coefficients: 35\n", "Number of zero coefficients (removed): 1\n", "\n", "Features selected by Lasso (35):\n", " Feature Coefficient\n", " EstimatedScore -0.064438\n", " No_9_NASM_Deviation -0.056772\n", " No_12_NASM_Deviation -0.055999\n", " No_10_NASM_Deviation -0.050604\n", " No_17_NASM_Deviation -0.033211\n", " No_8_NASM_Deviation 0.028314\n", " No_3_Angle_Deviation -0.023038\n", "No_12_Angle_Deviation -0.022750\n", " No_19_NASM_Deviation 0.020411\n", " No_6_NASM_Deviation -0.018315\n", " No_8_Angle_Deviation -0.015618\n", " No_2_Time_Deviation -0.015258\n", " No_13_NASM_Deviation 0.014894\n", " No_21_NASM_Deviation 0.013894\n", "No_13_Angle_Deviation -0.011382\n", " No_15_NASM_Deviation 0.010727\n", " No_25_NASM_Deviation 0.010531\n", "No_11_Angle_Deviation -0.010414\n", " No_4_Angle_Deviation 0.010305\n", " No_22_NASM_Deviation -0.010167\n", " No_1_Angle_Deviation -0.010102\n", " No_11_NASM_Deviation -0.009819\n", " No_6_Angle_Deviation -0.008870\n", " No_9_Angle_Deviation -0.007486\n", " No_23_NASM_Deviation 0.006502\n", " No_16_NASM_Deviation -0.004609\n", " No_5_Angle_Deviation -0.003902\n", " No_24_NASM_Deviation -0.003873\n", " No_2_Angle_Deviation 0.003804\n", " No_7_NASM_Deviation 0.003656\n", " No_18_NASM_Deviation -0.003250\n", "No_10_Angle_Deviation -0.003219\n", " No_14_NASM_Deviation 0.002442\n", " No_20_NASM_Deviation 0.002280\n", " No_7_Angle_Deviation -0.000215\n", "\n", "================================================================================\n", "LASSO MODEL PERFORMANCE\n", "================================================================================\n", "\n", "Training R²: 0.6151\n", "Test R²: 0.4900\n", "Test RMSE: 0.1596\n", "Test MAE: 0.1216\n", "\n", "Comparison to Baseline:\n", " Δ R²: +0.0036\n", " Δ RMSE: -0.0006\n", " Overfitting gap: 0.1251\n", " Features reduced: 97.9%\n", "================================================================================\n" ] } ], "source": [ "# Lasso with cross-validation to find optimal alpha\n", "lasso_cv = LassoCV(cv=5, random_state=42, max_iter=10000, alphas=np.logspace(-4, 1, 100))\n", "lasso_cv.fit(X_train_scaled, y_train)\n", "\n", "print(\"=\"*80)\n", "print(\"LASSO REGULARIZATION - AUTOMATIC FEATURE SELECTION\")\n", "print(\"=\"*80)\n", "\n", "print(f\"\\nOptimal regularization parameter (alpha): {lasso_cv.alpha_:.6f}\")\n", "print(f\"Number of non-zero coefficients: {np.sum(lasso_cv.coef_ != 0)}\")\n", "print(f\"Number of zero coefficients (removed): {np.sum(lasso_cv.coef_ == 0)}\")\n", "\n", "# Get selected features\n", "lasso_selected_indices = np.where(lasso_cv.coef_ != 0)[0]\n", "lasso_selected_features = X_final.columns[lasso_selected_indices].tolist()\n", "lasso_coef = lasso_cv.coef_[lasso_selected_indices]\n", "\n", "print(f\"\\nFeatures selected by Lasso ({len(lasso_selected_features)}):\")\n", "coef_df = pd.DataFrame({\n", " 'Feature': lasso_selected_features,\n", " 'Coefficient': lasso_coef\n", "}).sort_values('Coefficient', key=abs, ascending=False)\n", "\n", "print(coef_df.to_string(index=False))\n", "\n", "# Evaluate Lasso model\n", "y_train_pred_lasso = lasso_cv.predict(X_train_scaled)\n", "y_test_pred_lasso = lasso_cv.predict(X_test_scaled)\n", "\n", "lasso_train_r2 = r2_score(y_train, y_train_pred_lasso)\n", "lasso_test_r2 = r2_score(y_test, y_test_pred_lasso)\n", "lasso_test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_lasso))\n", "lasso_test_mae = mean_absolute_error(y_test, y_test_pred_lasso)\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(\"LASSO MODEL PERFORMANCE\")\n", "print(\"=\"*80)\n", "print(f\"\\nTraining R²: {lasso_train_r2:.4f}\")\n", "print(f\"Test R²: {lasso_test_r2:.4f}\")\n", "print(f\"Test RMSE: {lasso_test_rmse:.4f}\")\n", "print(f\"Test MAE: {lasso_test_mae:.4f}\")\n", "print(f\"\\nComparison to Baseline:\")\n", "print(f\" Δ R²: {lasso_test_r2 - baseline_test_r2:+.4f}\")\n", "print(f\" Δ RMSE: {lasso_test_rmse - baseline_test_rmse:+.4f}\")\n", "print(f\" Overfitting gap: {lasso_train_r2 - lasso_test_r2:.4f}\")\n", "print(f\" Features reduced: {100 - len(lasso_selected_features)/len(X_final)*100:.1f}%\")\n", "print(\"=\"*80)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAJOCAYAAAAUHj4bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/fRJREFUeJzs3QmcjfX7//GLkWQNMaIsbWNabSWRCpWIZGtRoU1FJWStRKGdkDaV0rQhKqJIuxaZ0app00JFiwgtGv6P9+f7u8//njNnZs6ZOeOcM+f1fDzmMTNnzpzzue9zz5z7/lyf67rK7Nq1a5cBAAAAAAAAAAAkgLKxHgAAAAAAAAAAAEC4CGwAAAAAAAAAAICEQWADAAAAAAAAAAAkDAIbAAAAAAAAAAAgYRDYAAAAAAAAAAAACYPABgAAAAAAAAAASBgENgAAAAAAAAAAQMIgsAEAAAAAAAAAABIGgQ0AQNLZtWtXrIeABFBaj5PSul0AAATjPQ8cE6UPf9cAPAQ2ACDOjRw50tLS0gr8OP/883fbeK666io3pmBz5swJObbx48fn+1jvvfdegds1YMCAqI//lVdesREjRlg88/aLPpeUd955xwYNGmTHH3+8HXXUUXbqqafarbfear/99luJPeftt99uxxxzjDVp0sQWLFhg7777rnveww8/3C6++GKbNm2a2+5wRXr/cP377782ceJEe+GFFwq8X7t27dzzDx06NN/79O7d291HY42FZ5991j3/unXr3PdffvmlnXPOOQlznAIAYkfvb/o///DDD4d8D/TOB8N5PyjsfHbJkiUxeS+PFx999JE7J9K4/VasWGFXX321nXjiie586dhjj3Xnx2+++WbMxppIgs8VV61aZZdeemnge50f6ec6X4rVOVrwx5FHHun+vnQNtXXr1qg8l//vNZFt2bLFhg8fbh988EHgNl0H785r4VD4O43MeeedZy+++GIJvRpINuViPQAAQMGuuOIKO/vsswPfz5gxwz777DObPn164LbKlSuX+G7cuXOnTZo0yV566SU788wz8/x8zZo11qhRI7vlllty3b7PPvsU+tg33HCDHXbYYXlur1q1qkXbrFmzLNndcccdNnPmTOvYsaONGTPG9t57b8vOzrYHH3zQXn75ZXv88cdt3333jepzfvHFF+45NdF/xhln2AEHHOCCGTquHnjgAatZs6ZVq1bNBVrC1atXr4juH66NGzfao48+6o73wpQtW9ZeffVV++eff2zPPffM9TNdLH/44YcWS5oIefrpp6127drue00cZWVlxXRMAID49+eff9qyZcvskEMOce8j/fv3tzJlyhTrMWvVqpXr/NWvYcOGFqv38ljTOYQW3Vx77bVWvnz5wO0au85bTz75ZPez1NRU++WXX+y5555z51CaqNbrgvDPFbUQ6+uvvw58r/MjHd/169eP2W7U34T+NjybN292gavZs2fb77//blOmTInZ2OKNrjd1/Pfo0SNw29ixY2M6Jv5OIzd69Gi76KKLrGXLlu4aECgOAhsAEOd0ou0/2a5Ro4a76NGq993l888/t5tvvtk+/vhjq1ChQr4nmkcccUSRxnXQQQft1u1JZosWLXIBjFGjRlm/fv0Ct2sF4AknnOCCVhMmTMh34qGo/vjjD/e5c+fO1qJFi8BtRx99tB133HGB+9WpUyfsx9R9I7l/SWjWrJlbNfbGG2+4iQc/rURKT093fxuxov8X+gAAIBILFy50n7UAom/fvi7LslWrVsXaibv7/DVRPPHEE1auXDnr0KFD4Lb58+e7oEao4MVpp51mN910k915551ukUq0F6OUJoWdK8bDMalzxf322y/XbTonVxb14sWLbdu2bVapUqWYjS/e6ToyVvg7LZpDDz3UZSbde++9dt1110X5VUGyoRQVAJQSb7/9tp177rnWvHlzt/pB5QN++umnPOnOWkGuyWudTHTp0iWs1H+tIsvJyXErmkKtqlCdU63414l5Sfnxxx9tyJAhrpSRSifpIluZK8Er5JWe3KZNG5cBogtwfb9p0yb3c6Upv//+++7DK5kQXKonv5Rt3UeT/d27d3f7zpv4D2dcmhzo2rWr+z0FEIYNG2YbNmwodJu/+uor95oqYKRJc63c8pcEa9u2rct48NMEhEoZ5EfZEboA0DhDrZbUisCmTZsGatdqFeE999zjLpw1jlNOOcU9RvDzalWn9o3u07p1axcI2759e6AMgJciruf1SjitX7/elaTyXotQpaX0cx2v2rfKPtBFvFemIdT9CxqH9zval6+99po7/lXWQftLzyM6Dtq3b+++VvBHYy3I/vvv7x4j1N+RAhsK5AQr7DiVHTt2uMwavcY6brSqydtX3rGq41PBqXnz5gVKeikbRkEWj//41rZ7x61XHiu/Egx67OBtf+qpp9zzaDxKIdexHyycvwcAQPzTe4ven3Te0qBBA/cesLsU9l7u3UfnSDpn0fufzlMyMjIKfC8PVbImuIyW3g816aaV/XpuvZ/pfCyccf3999924403uvdub0wPPfRQgduqc5pHHnnETj/99Fy369xL77f+RSh+AwcOdOcR3rmDtx16nU466SS38ELXBqIFGHrf1vuytkfn9coEiOT92ztf0ES7zkG133VfTUp6+8C7T2Glc72xvvXWW9anTx+3nTq/VIDHL5xz0O+//94uu+wyd+2jcZ911ln2+uuvB37uP1fUuY0monX+6Z37+M+Dfv75Z3cto8xlP+0rna95Wd9etrHOJ73zSP85erRUqVLFZUn5M6XCeS21IE3BML1GOhaef/75iEoBe9c/3t+Crh21X/Ua6PGCj2m9TrfddpsLxmh/6Pw6uMxQOOe1or87/Y0p2KT76bxWx5w37gsuuMB9rc/e8eT/u77wwgvd74eqgKBrsUj2Yzii+Xda0LZrMZj2/1133ZXr8f/66y937a8AQbivq/ZVfvfx/g+Gc4zrcXRNq/8HGrMXgFW2n7JYFKjVmPW/be7cuXn2jY4T3V6U/Q74kbEBAKWATgx1QqYTB9Xd1cnT1KlT3UmoTuD9wQj9XCdy11xzjTuZGDx4sN1///3uZDQ/OlktqJeBLiq0mkgZHTrx0QmqVh5dfvnl1q1bt0LHr5On//77L9dtOolPSUlxX+uER+W49tprL7v++uvdZ5UX0MWQtuHAAw90J3Y6ya1evbpLSdbFgEruaCJXWSaqU6vbNXEv+loT/Lq4Cdd9993nAkYquVWvXr2wxqVavpq01gm1shN00aReE3qc4AunYDop1Dbpd5cvX+4uoLWvdLHZs2dPVxZMJ6DeCkpdUGuC/ZJLLgn5eCpfoIsdlS/Ir5yEJgk8Cm7oYnH16tWuH0fjxo3d8ykl/ocffnCrBUX1q3ViqxNUHU/ap5MnT3YTAbpYVxkAZQ3oNVDZMZ0g67H1mLpg0vbptVDAyU8TFPod/b4utvWcOhaVoh+qd0th4/C2WftBv6/jU6+jLtD096OTbwUqdMxobPq5LqIL06lTJ3dh4y9H9c0337h9rdJxupDzhHOcivaTAmJXXnmlu8jW1zrGgn3yySeu3IYuKlSS7u6773a/o+CGSnv5aT/q+NOxqSClVjAG/93lR8eqXm8de7ooVY+W4PGE8/cAAIh/6sekczq9p4jO5fR+9uuvv4ZVYrQgod53dL7nvUeH816uxQmaMNT7qd7zdP6jSXG9h+ocQ++bkb6X+2kxj/qKKINV59R6/wpnXOrpocl6nVNoP+m9WOctKvnpL53jp/MqLXbxj1HnDzrn0fl6fudrOq/SeWkwbbeCDdonmtheuXKlm3BUgErnbzqH0uuqfaf3Zp17RPL+rXMXbYuOB/UF0T7QOY3Oa72yTvkJLp2raxEdWzrXVA+8cePGBc5FwzkH1Tmxrmv0vNrPynp57LHH3GuuCWEF5Px0vqlt9Ur6KiPeH5jSeZEmuZXdrH3v0bm1xuMtVlHwSpP+em5vH+u1V/8HHZeR8l8H6Xn0OCpzqms4TSxXrFjR/Syc11LHksauxUq63lCPDp2H+nvoKUhT0Ovkz/TV2HS8a+Jen/U82tcqUacSXxqvtjkzM9Odi+pYWbp0qXttFbTzrgPDOa/Veb+udXQfTdZr+5Rlrr877WeNW4/jXU8omBVMwQv9/X333XeB11/7U3+LGlO4+zEc0fw7LWzbdWwqUKD/Q9oO7/m0r3UMaz/rmiKc11V/w/7eLbo20XWWyqHpWiiSY1x/Z9rnCqzoWNH26O9Xx5uOB11nKSCshXd6/9DftEcBZ/2v1TZozgIoKgIbAJDgdBKhE1atBtFqdo9WgGjCVZO2mlj3r67wTkh0QqrV8JqULSiwUViDZq/UjgIaWg2iCwsv2KKTWvVVKEioVS4KHnir4HVxpZUqTz75pDtBEk2uavt0IqogzrfffutO+tQAW5PTohNWrTLyJsw1ee5dVBUl7VwllPzlAHQxV9i4FNjQCbIaFXp1k3WBqwkDXQwUVK9a+8177fT66mJFQSi9hvpe26v97AU2/Ce3oXgZPMHp7vnRRYCa4Wl1kHcxpxWK2h7vAkD7VMefjiX/BL4uqPS6atWcMi28NHF91uoo0f7QSXao10LHtY5LncTrRN9/8q0LTq388tO+DGcc3mNossLbb7qPVk3pPlrp5WUe6YJXgZfCqCSELh795ai0Uk0XAnXr1s1133COUwUKdTGrvx/veNN26YJAEyZ+WhWlCw+vXJ0ufnWB5TVmz68cg7fPgzOVQtG+1QSGjmvVxBUdf7oo8q/gDefvFACQGNkaOlfxMh10rqiV75r0809MRUrBgFA91TQprvOkcN/LFUzQmDRZ5tF7riY6Nfmt84xI38uDaTu984Zwx6X3cZ0needMGo/elwuqIa/3a/WU03mvR5Ol3uP7aRyaCAzu9aUPjyYVleHg0bWBHlvnj96CIe0fjVGvs4IXkbx/63pB5yei8yitNlegSa9hpGWddM7kvYbat1qoofONc845J6xzUB2jWkiigIV3HeNlVQc3YfeOheCSvsGZQFolr3MdZbB453A671TZVE38rl271p555hk3Eew1Idc5kc7ntY+1/xXoiURwKVNRYEyPpcnhSF5LZZXoGNFqe28iW7/jvxbTtVC4r5OOOe1fLY4RTbrrekOvuV4zvUbqB6JrIh0vott1rq2/FS26074M57xWx70yOfR8Hh2PymLQ9ZS20389EaoElQKECpApcOJd76p/oPaJlxUVzn4MRzT/TsPZdgUUdX2h/3G6dhBdB+rY9MrRhfO6+vebxqpginfdpf9XkRzje+yxh9vf3jWuAszqq6jrA/1P9l5rBe70t60Aqv5uRc+lQJgWSxHYQHFQigoAEpxOPrQCPTiFXSfvOqEIXgXvb/ytExSdTGvFlVZYFJUyEbQaRRdGmiDWCYxOGnWipYshr6xRfnRCpItl/4cuoD064dEFqpom6sRIHzo51EWXTqhFP9fJlE4CNXmsi0wFdXTBE+ripiiCS22FMy7tG53c6/XRPlHqs04OtfqssCac3gWCR6+VVsBom/Q8ei11sq7HF100aJ/nV0tYAScJLiOVHx07+h3/ibd4qdz6ucaiLABNfnj7QB/abl04eenVRTmuta3BF3s66ddEvk6k/SIdh//E39tfwRe34dKFrx7PX45KFx7Bf5PhHqe6YNHfTPB+D/V4umj19+DxtsU7JqJBY9Nrob/t4IBOpH8PAID4poUDKl2jhQU6N9QKXdX314SmJrvCPYcIRRPDwed7+vDOTcN9L1fm6S233OKyhZW5qPdcTbhJSZzzhTsuBTK0j5Q5q0xHTVZqctULkISi+3jBBE9++1j7SoEh/4e34CDUuHUuoIUTmvTXeYU3bi2s0ISiN+5I3r+DJ0513uE/f/Lvn+CP4Mle/zWJNymtaxqdA4ZzDqrJf03SauW/Js21ml37TuXHDj74YCsKjUHZt14pJS0K0sSyAh5eIEr7MvhY0PfK3NV9I6XV7nptFVhSAEHnuApoaDu83hrhvpZ6fr1G/qwLTdr7F9r4fz/UR/Dx501Q+xclea+5jh1dz2hcwftDr6Wyv8I9r9XiOGUo6H+OMnXUJNwrLxfu37Umy/W/y18KS4EpBeF0fIe7H8MRrb/TcLdd13h6HfUz0f8k7X/v7yjS11WUsaKqAApMeQuuIjnGDzjggEBQw/u71P8z/zHj/d3qd7Xv/XTfcBZZAQUhYwMAEpzXlDlUaQDdFlzfXunaflpF5qU9h5t6G0yPETzpKTpp1AWRVuToYjY/WjXjpb7mt41KKQ61yk90kqq0eZUCUIBF99e2qxyBbteq9mjwUsEjGZdO7LRqSiuoND59rbFpJWBwnedgwa+pt+JP6cmilTvaXgU3tHJHJ7f+lYTBtJpHFx8Fld/SY+tCUhdS+lorcrzVTB7vtdR+9Y4/Bae8EgJ+Wn1XFN7jFrTKMdT9wx2HjguPt4KqsABcQTTJrxWEOmnXBbmCFsEXcJ7CjlOv1mzwtofaF/7tEC9YVpyJp2De8Ra8AjH4bzrcv1MAQPzSSmwFs72gQzCtzi4oy7cgmgAr7HwvnPdyvU+qnIpKnOh9TyVnlFVb3Pfy/M75wh2Xsg800a/AkEol6UPngSrrolJKoSj7Mfi90ZuEDj5fU98Q/+Oo5FJB49a5vc4HVNJGH8G88pnhvH97gseqcyhvn/t7m4SiMk/+Ov2aaM7vPDecc1C99ioZpsCAsgi0el1BAU1s63UKLskZDgWq9PuaDFcATRPk2mavsbt3LITqoSbh9NALprJOXja1Mu41iaxSSxqL9zzhvpbab6Eys/3nbJp89npVhKKJcgUOPcHXh/7XXPtDX2vcoehvI9zzWmUsa7t1PaPXUZPm3vEeyd+1glD6G1SpKJ1nK7CiMkqR7MdwROvvNNxt135XBoeuI/T/TwEOHSPeIrBIX1cd47oeUVBQQRNPJMd4cFN7HX+hrvm9a1rtf79oXqcjeRHYAIAE56VzKngQTCtlgicjvclUj35PFw3e4xSFshC04ix45ZUmefXYRbmw8FPNUF0M+UtqBV8oa5WWTtbUQ0Mnfd5KpauvvtqVfcpPfhPBWgUYjXGJMli8tGytglH9X5VX0goqpcwXNqHs8V5j70JAK2v0/KpvqtfVuxjLj44FXbRqUkL7KVTGiNL3lT6s2r563VRbWivs/BeW3gW8Hk/lE0T7QGMJVtTX3nvc4IZyGo+CdcErgUpqHOFSEEPHn/atjjcFmkIFIsI5Tr0Lfb3e/hV2JdFczzsGgldR+ldfev9D/PWZ/Rc+kf49AADil0qx6PxCJRv9vN5YOkcoamCjMOG+l2tls7IotGhE5wN6f9E5lrIlClPQ+11xx6VxaBJTHyq/o3MplV9RmSZNIoai99jgxRc6V9O5gDJB/WVxdM7gX4lf2PuqJh31Pq9yWaEmKb0gRbTev7V4KlQwzD+e4HM6f9apd56h86dwzkFF+0mBI030aiJb+0wT1l4vs6LQ6nKV4FGwR6+bSnt6+8o7FpSlHrw9ElyCtCjUe0GZA9ouZQHpui3c11LbHeqa0H/OpuOroNcpklJaOnY0Sa9rm1AUdPQaZxd0XqvrMO1zTeprbMpo0EIrlZ3zMhTCpewMTa7r+kifFazwetiEux/DEa2/00i2XdcOKhmlUm3aPmX3e8GYSF5XVWtQFomyZlSG1684x7j+bvV3E2pOIngMXqAj0tJtQDBKUQFAglO2g07aVEvUT4EGpbIGr6DR6jb/RapW+6u8QHEmHTVZrxRarVT3n6SpubV3wVkcutjSY3uZHd6HTvZ0AqcLHqXF6kRMq6u8k0kFJ3S7P2jhr28qXs8NpfN6vv766zyTtkUdl3opKLNC+1ony8ps8WoT66K3sFWTfrq4UtaFvxmimogrK0avv//kNj8q5aTap6Eal+sEWhMaWrWjiyhtn1aN+UssiVZBiY4brSjSBahW6fn3gU70VXorOGMoXHpcnehqUsBP+1Yn/8E9NqI5juDVgeHQ82h/aF/pQiO/VU7hHKd6HI1Bqw/99LdaXPkd//7VV9q3uuDxqHawjrvg4yD4tQnn7wEAEL80+aQAvd7DNKHq/1DAXkF8lVAsyqr0cIT7Xq73TE1UalzeOaYm+sR7Lw31nqP3PP/5nvdY0RiXynZpAlwZBN7knyY7tS8LOt/T/TQm/4p0vVcriKQV2JpcDEUlkvwNgEPR9qq/iIJA/nGrTJNKvmolezTfv72MnPw+tB/zuyYRnWeoNI2CHeGcg2ZlZblzVp2zaLJaE8JqrKwMiPz2efB5UCgqGavzYE3Wf/rpp4EyVOJlBmmy3r9tmqRX5m441w+F0eumMlSa9PX6J4b7WurvVPvF/zeq83uvH4T3WAW9TuH24hO9TgoO6vj1P4auNTQBr9cwnPNa7U8dg7qu0e975XPD+bsOpvt06dLFnafq+NGiLy9DItz9GI5o/Z2Gu+2ivw8FbnRsqselAh2Rvq46NlQiT3+PwQHs4h7jKs+nDBYdg8F/twrcBC/o0/++4FJ8QKTI2ACABKeTKjX30gmwVoRplZFORLTyXqsm/M2u5bbbbnOZFLp4mTNnjpvEz+9kLFxqBKYVfCqvpJXnmsD3mod59UGLQ6tqdHGlz1pVoglvpYZrZZ62W3SipNq0Wg2v4IFWdKl3gVYH+Vfra1JZJ1tK9dWJrS6KlWKt39PYNcmsviDhZLCEMy5dYChlWIEfvTaaNJ45c6Z7fK/xW36Urq+VMhqnghqabNDr58+00EW0Sh3ook41hguj4IcCIcoYUZ1TTVLoZF+/r3FqG7xm3aqtrP2jlWM6CVZKtE7etRJO2Tle8zldRCp9WhcS2ve6ENMKRf1OfmUNCqPHUjO78ePHu8kE1XXVSb9eG00UBGdg6P7RGodWn4mOEdXb9Zqdh1OOatKkSe718VaGBQvnONVKWQXD1DBTx4v2uy4GvUBCOBfl+fFWYSkQpu3Scyn4qGNNATONQRdLmqDxLgK1PVodq/8vOhZ0zChoqu2I9O8BABC/VMpHE5H5Bee7devmzh3DyYwoinDfy/VeqgxIfa/ST5mZma7Up96vvLJJod7L9XiqJ6/3ap1XKONY2xyNcelcUp91/q0JvLS0NHfeov5nOlfLjxpia+w6Z9bveNTsWYEUjVUTnFpZrQlAZfOq4bLeb/U8oUrB+nkNgL1rBGVAKPiic0CvUXGs3r913qkFOeoJoUluned4E/nhnIPqekb7XZkmOmdUMELnuJrwza8kj86DdM6lAF1wnwOPXmP9DWgRkIJXGodHr5H2o865NYGrcqJ6ndWjQBPHXiNpTQKrvJDG6S0iiYTO13UtpeNHzdR1zIfzWvbt29cFo7SQSftE99HYgnvTRYuytzSZrefXh/7WdE2h83Vlq3vZC4Wd1+pcX8e3rhv1N63XSdc9XiZI8N+1Fn/pnDW/Em8KRmnf6LGDS06Fsx9F57rBveyCRePvNNxt9ygAom2I5BrFo34dCmoo2KLrPf3f8QdO9PzhHuOhKNCi41bPoT4xur/+52rhnIJA3nWIqASVerAEZ4wAkSKwAQClgE4iNAGuxok6kdAJtE4mddITXOdSac26n1buaMJcJ3Leyoyi0oWETsZ0MaKTJAUHtLJDJQIiPeEKRRcVCpzo8TV+XcjopEqrTHRyJ7rI0YmlTpx0QqXf0cn2ueee607MFMDRCaAmxdVoUo0ddRKqFT1aoaPH1r7TiaVOvMK50A1nXBqD+l5oP3sNw7VySSerhQVPtC8VBFFjN01A64IgeLJBF4QKkGjlUUFlrYIf12twqYt0vV5aMaiGhboQ8lKCNVYdK7o40WupizSdoOq48gfM9Hs6/jTWp59+2k2IK1NI2+01oisKvVZ6LE3863F1sq3XTR+hRGsc+vvR9ukxdOGrcgDhXBBqwl+vvZqEehdewcI9TvW1xq/jRhcfWp2l0hZa/RZclzcSCrjoIkuBNh2jOm4VZFFwTJMH2nbdrmNUk1ceXajp4lCTOPp9rYZU0EnHQiR/DwCA+PXss8+6lcv6Hx+K3ht0HqD3h1DlLKMhnPdy731LH6L3GvVU0KpgBSvyey/X5KommzVZrPcrTcjqHEcTx9EYl94Xdc6m925lv2jCUu9/WjiTH52D634aoz+wIXqPVQBGY1XARIshNJGvyXKdU+qxCzuXVPaBzqP0+5po1PmMAjAKKniNwGP1/q1SOHotdK6p1eN6LbwgUDjnoDoH1r7WuDVWBZs0br0O/pXsfrpd+9qbeFUAIb+JcS388s5//HT9oLFpn2nFuV4/Pc7gwYMDGQWaeFdQSOf7/sBIJHRepvFqe/Q3F85rqXN4LTzR/tC5no5Zr1dISdC+UWBOK/m1T1ROTMeTXiPtY08457U6x/TGrewfHefqn6L+GPq7Vm9C/X/Sa6LrTk3+B1cs8Cjgof9jWuyn5/ILZz/KWWedlacvRSjR+DsNZ9s9um7Q30d+x3hBNDav9K2CO8E0XgXEwjnGQ9HiRi2W0t+kjgm91l5mSPD/Er1+2ve6bgKKo8yuaHXXAgDE/cWqTrBfeeWViFKMEd+0sl4nuFphpFVaSHxK8daqLwUn/XVnVdZMf8eRpMkDAID4psleTUYra6GkAkbxROcxyqgozqR/IlAmiRau+CfLk1Gintcq20vlZRVYiicKUunYUoAuVD+/RKHrVgWfxowZE+uhIMGRsQEAQAJSarBWuSnlXhfBWoWI0kGrnbSySSUSdNKvlWxKh1dJhAEDBsR6eAAAIIo0+a0V6OoHoLKWSHzqa6HSRsqASXaJeF6r8kzKzlKpqXihnjTKtlAWhbI1Ejmooe34/PPPXcYbUFwENgAASEBK/fZ6cKjmaVHq9yI+qbSCyi6onIVS0lVbV/V91XRe5bkAAEDpobI1t99+u3vPb9++faAhOhKXejPoXK445UNLi0Q8r/V6WBa1V2BJUClblUdTScBrr73WEplKXak8WXDJbKAoKEUFAAAAAAAAAAASRu4uSAAAAAAAAAAAAHGMwAYAAAAAAAAAAEgYBDYAAAAAAAAAAEDCoHk4Es7OnTvtv//+cw2dypQpE+vhAAAAAAG7du1y56vlypVz56vxhnNpAAAAlIZzaQIbSDgKanz88cexHgYAAACQryOOOMLKly8fd3uIc2kAAACUhnNpAhtIOF60Tgd4SkqKJUu0csuWLVa1alWyVMBxAf5fIGKrV6+2E044wV5//XVr0qQJexCcW5SgnJwctwgnHrM1hHNpMr7xP1xjIRSOC4TCuTT4XxGf59IENpBwvPJTCmokU2BDf9DaXspvgeMC/L9AUWzbts19Tpb3ThSMc4uSF6/nbJxLx+frgt2P/4PguEAkOJcG7yHxdy4dn8uIAAAAAAAAAAAAQiCwAQAAAAAAAAAAEgaBDQAAAAAAAAAAkDAIbAAAAAAAAAAAgIRBYAMAAAAAAAAAACQMAhsAAAAAAAAAACBhENgAAAAAAAAAAAAJg8AGAAAAAAAAAABIGAQ2AAAAAAAAAABAwiCwAQAAAAAAAAAAEgaBDQAAAAAAAAAAkDAIbAAAAAAAAAAAgIRBYAMAAAAAAAAAACQMAhsAAAAAAAAAACBhENgAAAAAAAAAAAAJg8AGAAAAAAAAAABIGAQ2AAAAAAAAAABAwiCwAQAAAAAAAAAAEgaBDQAAAAAAAAAAkDAIbAAAAAAASrWUlJRYDwFxiOMCHBcAkLgIbAAAgMSTkxPrESSUMmXKxHoIACL03Xff2UUXXWRNmza1E0880WbOnBn42c0332xpaWm5Ph5//PHE2Mcx+P+t/4FVqlThfyE4LsD/CxT5fQRA/CkX6wEAAABETCtv+/QxW7OGnReO1FT2E5BAdu7caZdeeqkdccQRNn/+fBfkGDJkiKWmplqXLl3s66+/tqFDh9qZZ54Z+J3KlStbQuD/NwAg0XAuDcQlAhsAACAxKaiRlRXrUSSGtLRYjwBABH799VdLT0+3G2+80QUsGjZsaK1atbJVq1YFAhvK5qhVq1Zi7lf+fwMAEgnn0kBcohQVAAAAAMSR2rVr25QpU1xQY9euXS6gsXLlSjvmmGNs69attmHDBhfsAAAAAJIVGRsAAAAAEKfatWtnP/74o5100kl26qmn2ieffOJqfd933332xhtv2N577239+/fPVZYKAAAAKO0IbAAAAABAnJo6daorTaWyVJMmTbLDDjvMBTYOOOAAO++881wmx/XXX++yO04++eSwHzcnBk28JUU9NgAASEB674zV+yfiizJq1RNNxwPN5aMrkr8xAhsAAAAAEKfUQFz++ecfGzZsmGVmZrrsDWVqSOPGje3bb7+1J598MqLAxscff2y721577WWHHnrobn9eAACi4fvvvydAD8QRAhsAAAAAEEeUobF69Wrr0KFD4LaDDjrIduzY4Xps1KhRI9f9lb3x7rvvRhwwIXsCAIDw1a9f35o0acIug8vY2LJli1WtWpWMjRLI2Ah3AU6xAhtpaWl2+umn25133pnr9meffdamT59uy5cvt2h6/vnnbc6cOTZ79uzAbdu3b7eJEyfa0qVLXQpQx44dbeTIkVapUqWIHlu/M3/+fPc4+kcVLXpcueWWW4r9WOeff769//77ge8rVKjgLmJUU7dr167Ffvx169ZZ+/bt7ZVXXrH99tuv0Pu/8847rrHhgQceWGKvOQAAAJBsdF4+aNAge/311y01NdXdpt4aCmjoWigrK8tmzZoVuP/nn3/urgsioaAGgQ0AAHjvRNECG2XLlnXnUpSiip2yxX2AhQsXugnukqYVSDfccEOe2xXU0En+Qw895E7uP/roo4iDCErr9gIaCxYssHh24YUX2ltvvWVvvvmmCyacdtppNmrUKPd1ce27777usfU5HP369XOryaRTp042d+7cYo8BAAAASHbKplAvjdGjR9tXX33lAhy33367XXbZZa4Mlfpq6PpHJTGeeOIJdw2j6wQAAAAgWRS7FFW9evVs/Pjx9txzz1n58uWtJCgT4P7777eGDRvm+dkee+zhmuUdfvjh7vsePXrYU089FdHj60JBj3Puuee6FVBXXnll3EbbKlasaLVq1XJfe9kSylrRhU7nzp1tzz33LPJjK8roPXaklD2iDwAAAADFo/PyGTNm2E033WRnnXWW602h7O0LLrjAXafcfffdrqm4Put6TBn0TZs2TZzdnp4e6xEAABA+ZU9mZ7PHgNIW2Bg8eLDdeOONbsXQ5ZdfHvI+P//8s02aNMllduhEvEuXLjZ8+PCwAyFvv/22e/z33nsvVykmGTt2bK6UbWWQHHPMMRFtg36nRYsWbvWTsj20Asp7DK8807Rp0+y2226zDRs22HHHHWe33nproGGfshz0/Xfffed+r0GDBrZt27aQmSPKDJk8ebKtX7/eDj74YLcfIh1vMF3s3HvvvbZq1So3tn///deN9YUXXnA/P/744+26665z473mmmvcftd4PUOHDnVBCb1+/lJUWh2m100NCv/77z+3ckwXVwqmtGvXzv2uLq6UJq8LKn8pqq+//tpl0yhNXmXBNMYrrrjCpWlpX6rBYeXKld0YFYzRCrNLLrmkWPsBAAAAKC1Ugkrn16Go94a//0ZCyckxy8iI9SgAAAhfZqbZkiXsMaC0BTZ0wn3VVVe5yXr129h///1z/VyT7H379nWT/cqG+P33312GhWiyPRxPPvmk+6zARn5GjBjhUrA1wT5w4MCwx68AhDI2VOZKGSGatFevjeBgw3333Wd33XWXq6GmAMAjjzziggQ//PCD+14f6u+hiXoFGbp165bnuVT7VuMcN26cHXnkke55NZmv3iHaP0Wl0lHK5FAgQoENjVPluR588EEXNNBrc/XVV9ujjz7qsjqU0q7Gg8pS0evz6quv5rloUr8Spbrr8RQ8+vPPP11mjjJDtC9UdqpVq1YuSNG6dWt76aWXAr+r11jZLwp+qCfK2rVr3WutQIbKV4nur/t4fU30uLo4a9SoUUTNZJKFjju9JtrmeM0mwu7HcYFkPi6oC180Oi6S6f0T+UuW/xWxwN9YIVJSLBbHu5qu63qE4x3+40LVD3QtzXEBjgsU9j4CoBQGNkRp0erxMGHCBDfp7adeEMpyeOaZZ6xatWruNgURFAhQYCDSJt/5UYDgnHPOcWnY+lrjUXZAYZYtW+Ym+ZWtISeffLILwGiMSvn2KHijYIQo48Trzq6Je92ubARRAGHFihUhn0tZJ71793a/72U7KDtEgRuvyXhRValSxQVp/vrrL3v88cdt3rx5rrm7KHujZcuWlp2dbW3btnUXsQoStWnTxmWbKFtDP//pp58Cj/f333/b2Wef7YIPOtGTM88802bOnOm+VuNC0Wsa/BoqA0b7Ttkd5cqVc8GiX375xe65555AYEPZIwryaGLq4osvdkEYBWMiCWx4rwEAILnoPebQQw+N9TASkurxExQCkIxKLOCkx41BsAbFp2BGtOYjUHpwXCC/4wJAKQ1s6AJZ5ag0Ca5AgZ9KEikTwgtqSLNmzVxpI11cp0epvupBBx3kPis7QaWXFDDQZH1hFi1a5MbjTdSfcsopLjjz8ssv2xlnnBG4nz+jQit9FAwRBQtUosmvSZMmtnnz5jzPpX2xePFie/rppwO36XEUYCguBTU0LmWQ6DEVlPBTMEPlnxTsUGaEtk/Pq8+nnnpqnkkOBTMUKFIWjAIO33zzjX322We2zz77FDoWbaeaHSqo4VHNXwU3tmzZ4r5XqSv/c+qEUsdEJLTfk2VyRqsDtO+qVq3KGyo4LsD/CxRZ/fr13XkKwLlFyU6gswAnieh6pE8fszVrYj0SAEBJ9tgAUDoDG6LggBp3K2tDK/A9oZpZe6tlirtqxiujpFJImtQXTbwrG2DTpk2F/r7uo+wKTagHr/zUhL4/sKGyTaFoYj04JS2/FDVtr7JJgstUFbfptvqAKLVaPTu8ffrEE08EMi08NWvWdJ87depko0aNcuWh1BNDmRShAiU9e/a06tWru5JSKjOm4MbDDz9c6HhCveYKrIg3vlD7M9LUPu37ZApsKANJ28tKAXBcgP8XKKpkeu9EwTi3AKJIQY2sLHYpAJRW/1cRBUB8KbxWUwSGDRvmalSq5JJHpYWUKfDHH38Eblu9erVbza9Vg8WhiV6VcHrttdcCt/34448uYKHyR4VRtoIm3DMyMlwgw/tQI+t3333XNT0vjIIJn376aa7bgr/37wsFIZT94X0oe+ONN96w4lDZqVq1arkG6OpxogkL7W/vORT0URPw3377zd1ffTMUYFCfEAVV9HvB1KR948aN9thjj7lAlX5H+zac4IO2U/vAy2oRNRFXVozXcB0AAAAAAAAAgJgHNrS6X8GN9evXB25TNoUm24cPH+7KNilgoN4LygBQWZ3iUHDkrLPOcs2yP/jgA1cySX072rdv7wIOhVEvCJWtat68uR1yyCGBD/WBUNDkueeeK/Qx1DNDgZoHHnjANclWGSuNJdSqej3uiy++6IIFKsM1a9Ys96FSXeFS4EglnfShkk/KtlB/imuvvdbtDwUxevXq5UqDqY+GGopr33/33Xeu/JO337ySW2p4HmqsCkDouVRaTMEY9RJRAEhZMh5lhHz55ZeusbifeojofupTojHqMdRkXKWtyDYAAAAAAAAAAMRNYENUvkj9FDzKHpgxY0YgCDBkyBAXeBg/fnxUnk+Ppx4RgwcPds24lS1w6623Fvp7amiuAITGGyw1NdWNcf78+YU+Tr169Wzq1Kkua0IT+spM0O+GKrWkmtZq5K0yUSoHpYbqanZ+9NFHh729KgWl3hj6UE+Td955xz2/v2yWslhatWrlGp5rnyuQocCLv/RE586dXeBCn0PRazhw4EAbN26cde3a1TVjV6BCWR/ad17TeG2PghZ+Cq6oybiCNyq7pUBW3759bdCgQWFvJwAAAAAAAAAAoZTZFWljA+TyxRdf5OnRcemll7rG1ldeeSV7qwSojJayZBQoSpY64fozVUP6atWqkfUCjgvw/8LTrBk1zcOUmZZmzbOz3aIOZaoCnFsk77lqvI8vIY933o8AoFTjXBrBOJeOj3PVqGdsJBtlJfTv39/efvttV4JLJZuURXHyySfHemgAAAAAAAAAAJQ65WL55GperTJK+VFpp6KWrProo49c+aP81K1b1xYtWmTF1aFDB9dnYsyYMa5Mk0phTZ482Ro3bhzR43Tv3t316MiP+miEavINAAAAAAAAAEAyiWlgo0ePHtauXbt8f65eDUWlwMKCBQvy/bn6TkTL5Zdf7j6KY/r06bZjx458f66+HwAAAAAAAAAAJLuYBjaqVq3qPkpC+fLlrUGDBpYolEECAAAAAEgw6emxHgEAoCRpsXF2NvsYiDMxDWwAAAAUGRNJ4eNiDABKRk6OWUYGexcASrPMTLMlS2I9CgBBCGwAAIDEw0RSZLgYA4CSkZLCnk1Qu3btsu3bt1vFihWtTJkysR4O4gTHBfI7LgDEn7KxHgAAAEDEmEiKCBdjALCbg++IewpmVKpUiaAGOC4Q1v8LAPGHjA0AAAAAAKIZfO/Tx2zNGvYpAJSWsq4A4g6BDQAAAAAAoklBjaws9ikAlAZpabEeAYAQKEUFAAAAAAAAAAASBoENAAAAAAAAAACQMAhsAAAAAAAAAACAhEFgAwAAIEmUKVMm1kNIKjk7c2I9BAAAAAAolWgeDgAAkCTGLB9jG1ZuiPUwkkJ6rXTL6J4R62EAAAAAQKlEYAMAACBJrN201rK3Zcd6GAAAAAAAFAuBDQAAAAAAoik9nf0JAKVFaqpZNouDgHhDYAMAAAAAgGjJyTHLoBQdAJQamZlmS5bEehQAgtA8HAAAAACAaElJYV8mgF27dtmff/7pPgMcFyjs/wWA+ENgAwAAAAAAAAAAlM7ARlpamg0dOjTP7c8++6y1a9cuaoOaN2+edezY0Zo2bWq9evWyVatWhbzfddddZ9OmTQv7cd977z23DU8//XSen40cOdJ9hLpdv/P999/n+dmOHTvc87dv394OP/xwO/HEE23SpEm2devWwH3OP/989/sLFizI8/tff/21+5nuEw7tZ93f+zjssMOsbdu2dvPNN+d6zuLQWMLdp7/99pstXrw48L3GpH0MAAAAAIij0ljIo0yZMlalShX3GeC4QEH4PwGUkh4bCxcutJ49e1qrVq1KZEBvvPGGjR8/3m666SY76qijbP78+XbppZfaiy++aKlq1vN/HnzwQZszZ44NGjQo4ue466677OSTT7YaNWoUeL9//vnHli5davXr13eBiauuuirXz++44w5bsWKFCyzsv//+9sMPP9iECRPsu+++s/vuuy9wvz322MOWL19u3bp1y/X7y5Yti/ifY506dWzu3Lnu63///de++uor95xffPGFzZo1y8qWLV4SjoIaGm84tP1KxzvttNPc92+99ZZVq1atWM8PAAAAAIhyaaw+fczWrGG3AkBR+OYjASRwYKNevXou8PDcc89Z+fLloz4gBTIUAOjatav7fvDgwS4r4PXXX7fevXu7zITRo0fbu+++a/vuu2+RnqNSpUp2++23u+yKgug5Ncl/7rnn2uzZs+3KK6/MFYjQWCdOnBgI8uy333524403Wp8+fWzjxo1Wu3Ztd3uLFi3cpL8CEf59psBGkyZNIhp7SkqK1apVK9froaBKly5dXBDm1FNPteLYe++9i1xj0D8uAAAAAECcUFAjKyvWowCAxJSWFusRAAgh4uX9CjRs2LDBHnrooXzv8/PPP9vVV19txxxzjLVs2dJlNGhSPxwXX3yx9e/fP8/tauol69atc5kUKsukCf2iGDNmjAtK5Ffiyp+doqDESSedZOvXr7eVK1fm+rmCHAqw7Ny5M3CbymctWrTIqlevnuu2Pffc093Xo32ozA7tn+I64IAD3DgV2PDo606dOrmsF2XYvP/++4GMGN32119/Be6roEuzZs3s77//zlWKSq+Zgj/HH3+8K3ulcmNeGS/dR/tQH14ZMn8pKr1GCh6dcMIJLnhz2WWX2U8//RR4DXXfl19+2Tp06GBHHHGEDRgwwP74449i7wsAAAAAAAAAQOkWccaGykGpJNPkyZPt9NNPzxNc0GR43759rUGDBi7L4ffff7frr78+0BOjMJpA99NE/LfffmvHHnus+75x48Z2//33W3GoJ4aCFcqu0MR8uXJ5d8O2bdtcxsYNN9xgDRs2tAMPPNDdV8EazwUXXGBTp051mReawD/uuOOsTZs2dtBBB+V6LJWHUv8NlaNSTwzR7yhgEOq5i0LPmZmZ6b7+/PPPbcSIETZu3Dg78sgj3XZccskl9vzzz7sx7rXXXm6/etkdCjAoOFGhQoVcj/nAAw/Ya6+95oIYNWvWdNuvEmHafxdeeKHrESLaR8HGjh3rxnPrrbe6LBCVrbriiitc/xSPynWpLJgyPy6//HJ75JFH7Jprrgl7m3OSqFas9pECaNpmajuC4wL8v0Ckkuk9M97E677n3CL5XnMAAACgNCnSrLpW9StjQr0d/L0k5M0333TZCM8880yg34ImvjVxrUlrlYEKlxp2jxo1ypVZCg54FJeCLJ07d7ZHH33ULrroojw/V+BBzcEVABH15FCgRtuiwIAMHDjQBXaeeOIJt71PPfWU2z5lhPTo0SPX4ykYoKCAginyyiuvuNJaX375ZVS2p3Llyi4YI8qm0WNrv3kBGGWbPPnkk64Z+imnnOKCGQps6MJL26qsmmAKIimg5JXLUtbFPffc4wJNyhDxAiHBvUo2b97sSpWpD4oXkFJgQ8Gdt99+2xo1auRuU4BMgRfRWD/++OOItjnS+wMAkKx0ToXYyM7OzpUpCwAAAACIUWBDfR40Qa/eE5oU99MqfmU4+JtIq8zRf//95y6q09PTw3qOtWvXupJUChyEmnQvLvWmUAbB9OnTXYAjmMpJadzepL2CAQriKCBwxhlnBO6nXiD62LRpkyvp9Pjjj7vAhkotHX744YH7tW7d2pVa+vTTT902rV692mVCRCuwoaCGghvea6C+JF7ZKFGQRtkkou3Vtiu7JisrK9fP/FQmSoGIW265xb755hv77LPPwlqFpsCHsgtU8sqjrA0FNDQ2L7ChrB6Pxq5xREIlrHQsJgOtqtyyZYtVrVqVjA1wXID/F4gYK8hjR+eE8Yhzi5L9e2MBDgAAAFCyilwHSZP+ykpQ1ob6YnjUSyK/i+lwL6o12d+vXz8XAJg5c2aeEknRosDJggUL3Db4M0kUpFixYoULxhx66KG5fkf3V2BD5Z70tTIgRD01lHWgLAgFQdRPwx/YUJaHykCpHJUCPyppFUn2SjirAQ8++ODAflbpKTVh9/P249FHH20VK1Z026gMGwUwQjWCV7mxOXPmWPfu3d1jqbyU10+jIKGOAW9c/n4kasxeHApqJFNgQyXNtL2UogLHBfh/gUgly/tlPIrXfc+5BQAAAICkah7uN2zYMNu+fXuuRuJaja8V+/5G0MpOUC+J+vXrF/qYGzdudP0btJpfj+tlIZQETaxrsl5ZGF5zbdH3moDPyMhwwQvvQ+NSwELN0TVJr54QXhaDRwECBRCCyzN55aheffVVV4ZKpa2iRfv7gw8+sI4dOwZeAzXo1j70PpS9ob4aogly3Vf9MzSWUBkrotJa6o+i11mNyL0yCroQlvwm2BWQ0uut190fLFKzdC9bAwAAAAAAAACAoihW52plKWjSW/0qVNrJK7mkie3hw4fb0KFD3YS2ekuo0bjK6BRGzaYVVFAWhYIm+hBlGEQzw8HTsmVLV0pKjbU9CxcudI29mzdvnuu+yiJ57LHHXP+IAQMGuJ4RKumk7WzatKn9+uuvrsG2SjwpayOY+nUokKKSXKEabodDAZVffvnFfa3STQqsaJ+1atUq0A9E4+zTp48r1eQ1LZ81a5brJ+JRMEMZKwrCeH0wgql8lAIxyjxR35SJEye627V9XhaKsmv0MzWV9+h16tWrl3vd9aGyZOqxUadOHXd8KHgFAAAAANhNwiwJDQAIQXNe2dnsGqA0BTakZ8+eNm/evMBktdLtZ8yY4Sa01cBak9wq0TRkyJBCH0uZAOrZ8ffffweyDzyDBg2yK6+80krCiBEjXPaCaJJe2Q9Tp07Ncz9N3ivrQsELBTamTJni+m6oT8ePP/7ogi/qVaE+G6EyTWrWrOmaZSubIVRGRziULeL1w1DJp7p167r96y8Hpmbft912m+vhoc/KlLnzzjtdCSr/fRSYUgBH4wlFgQz1UlEQRNuuYIVe3zVr1ljbtm1dSS41UFdgSJkswftUARc1CFcgRGW4FFwJVfIKAAAAAFBCVBI6I4PdCwBFlZlptmQJ+w+IM2V2eXWFgAShrBWVuVJwJl7rVkeb/kw3b97ssl/osQGOC/D/ApFatWqVtWjRwtJGp1l2eVab7Q5N6zS1zAGZFq84t0jec9V4H19J4HhHfsfF1q1b3aJErrHAcYFwzqW1EDq4uguSE+cW8XGuWqweGwAAAAAAAIk6eQIAAJK0FFUk1Gw7VIknj0oqjR8/vkiP/dFHH1nfvn3z/blKNi1atMjiVUnuGwAAAAAAUAooGJMk2VaxoOydKlWqxHoYiDNkdQHxabcGNnr06GHt2rXL9+eh+lKEq3HjxrZgwYJ8f55fH4l4UZL7BgAAAAAAlAIKavTpY7ZmTaxHAiRX83AAcWe3zvZXrVrVfZQENaVu0KCBJaqS3DcAAAAAAKCUUFAjKyvWowCSR1parEcAIIT4TmMAAABA1DSq3sgqVqnIHt0N0muls58BAAAAoIQQ2AAAAEgSE9pNsGbNmsV6GEkjZ2eOpZSlDjoAAAAARFvZqD8iAAAA4tKuXbtiPYSkQlADAAAAAEoGgQ0AAAAAAAAAAJAwCGwAAAAAAAAAAICEQWADAAAAAAAAAAAkDJqHAwAAAAAAJIr09FiPAEguqalm2dmxHgWAIAQ2AAAAAAAAEkFOjllGRqxHASSXzEyzJUtiPQoAQShFBQAAkCTKlCkT6yFAc1I7c9gPAICiSUlhz5WgXbt22Z9//uk+A/7jAkD8IWMDAAAgSYxZPsY2rNwQ62EktfRa6ZbRnZW2KNx3331n48ePt8zMTKtWrZqdd955dvHFF7uf/fDDD3b99dfb6tWrrW7dujZ69Ghr06YNuxUAoiBHWTEAUIgUAs0xR2ADAAAgSazdtNayt1EfGIh3O3futEsvvdSOOOIImz9/vgtyDBkyxFJTU+3000+3gQMH2iGHHGLz5s2zZcuW2aBBg+zFF190QQ4AAFAyyH6G/1ioUqVKqc8yTykb31mCBDYAAAAAII78+uuvlp6ebjfeeKNVrlzZGjZsaK1atbJVq1bZPvvs4zI2nnrqKatYsaIdeOCB9s4777ggx5VXXhnroQMAUGqR/YxkkZ4gWeYENgAAAAAgjtSuXdumTJkSqOutclQrV660sWPH2ocffmiHHnqoC2p4mjdv7spSAQCAkkP2MxBfaB4OAAAAAHGqXbt2du6551rTpk3t1FNPtV9++cUFPvxq1qxpP//8c8zGCAAAAOxuZGwAAAAAQJyaOnWqK02lslSTJk2yv/76y8qXL5/rPvr+33//jehxk6k5rrJe1LdE20x9dHBcgP8XiFQyvWcCsT72I3nOiAIbaWlprlndnXfemev2Z5991qZPn27Lly+3aHr++edtzpw5Nnv27MBt27dvt4kTJ9rSpUvdyWnHjh1t5MiRVqlSpUIf77333rMLLrjAxo8fb2eddVaun+kx5JZbbslzuxr26fnq16+f62c7duyw++67zxYsWGAbNmxw9W61ikq1bVULV84//3x7//337dZbb7Vu3brl+v2vv/7aOnXqZMccc0yubcyP9vOoUaMC35crV86tzjrllFNs8ODBgecsDo1X4wmnPu9vv/3mtu20004LHB+PPfaYtWzZstjjAAAAAGCugbj8888/NmzYMOvRo4cLbvgpqFGhQoWIdtfHH3/M7gUAIAzff/89+wlJKTs7O895Z0JnbCxcuNB69uzpmteVpHfffdduuOGGwIm8R0GNTz75xB566CG32mb06NEuGHHTTTeF/dh33XWXnXzyyVajRo0C76eLBy+goeDFVVddlevnd9xxh61YscJuvvlm23///V0TvwkTJth3333nAh6ePfbYwwV9ggMby5Yti3jFUJ06dWzu3LmBC5ivvvrKPecXX3xhs2bNsrJli1ddbNq0aW684dD2a/WTF9h46623rFq1asV6fgAAACDZKUNDPTM6dOgQuO2ggw5yC6tq1apl33zzTZ77B5enKoyus1JSUiwZ6Jply5YtVrVqVTI2wHEB/l8gYmRsIFmlpaXF5O8t3AU4EQc26tWr5zIennvuuTwp0NGi7I/777/fGjZsmOdnmnS//vrr7fDDD3ffa8XSU089FdHjK7vj9ttvd6ncBXn99dfd86mmrTIqlMXgD0Qok0OBFi/Is99++7kU8T59+tjGjRsDFxctWrRwk/4KRPj3mQIbTZo0iWjsuvjQxYz/9VBQpUuXLi4Io4yR4th7770jukDw848LAAAAQNGsW7fOBg0a5K5HUlNT3W1a3KWFWWoU/vDDD9vff/8dyNJYtWqVuz3S64pkCmxoAZi2l1JU4LgA/y8QqWR5vwQS7diPeHm/Sh6p7JIyJvKjxnVXX321K2mkskTKaIik5uvbb7/tHl8lloKNHTs2cNKuE35lkOh5IjFmzBgXlNAFQEH02ApKnHTSSbZ+/XpbuXJlrp/rpFiZJSqJ5VFTv0WLFln16tVz3bbnnnu6+3q0D5XZEY2yTQcccIAbpwIbHn2tMldHHXWUy7BRySh544033G3+NCIFXZo1a+YujlSKSlkbotdMwZ/jjz/eDjvsMNe48Omnn3Y/0320D/Wh270onsp9edkuCh6dcMIJLnhz2WWX2U8//RR43XTfl19+2a1C02qxAQMG2B9//FHsfQEAAAAkOp0f6/xb2enK0FaAQ+fWOqfWtc++++7rStR++eWX9sADD9hHH33kzvkBAACAZBFxxoZWDKkk0+TJk12/DWUL+GkyvG/fvtagQQOX5fD777+7DAu57rrrwnqOJ5980n32JslDGTFihCsPpYyFgQMHRrQN7du3d8EKZVdoYl69KoJt27bNXUCoHJYyRw488EB3X38QRf061MxPmReawD/uuOOsTZs2Lk3cT6uDTjzxRFeOqm3btu42/Y4CBqGeuyj0nJmZme7rzz//3O2fcePG2ZFHHum245JLLnE9SzTGvfbaywU4vOwOBRgUnAiuy6uLpNdee80FMdTLQ9uvkl/afxdeeKHrESLaR6ECUBqPeosoC0Rlq6644gqbN29e4D4q16WyYFpBdfnll9sjjzxi11xzTdjbnEypgDQ8BMcF+H+B4kim98xEEevXhHOL+H5ttTpuxowZ7txbvQF1/q4FSLr+0OIq/UyLtbp37+6uu+655x6rW7duVMYPAABCa1S9kVWsUpHdg1IvvVa6JYIizarrpFqNrNXbwd9LQt58802XjfDMM88E+i1o4lsT15q0DqfJdzg0UX/OOee4Rub6WuOJpL+EgiydO3e2Rx991C666KI8P1fgQTVsFQAR9eRQoEbbogsLUUBFgZ0nnnjCba9KYmn7dJGhEll+CgbowkTBFHnllVesd+/ebpVVNKhxuIIxomwXPbbKU4kugJRtooCRmqErE0bBDAU2dOGlbVVWTbDGjRvbscceGyiXpRViumj69ttvXYaIFwgJ7lWyefNmV6rswQcfdL8vCmwouKNsnEaNGrnbFCBT4EU01kgbGNLwEACA8NDwMP7EeyM+xJ4WlKlEbygKZjz++OO7fUwAACSzCe0muIonQDLI2ZljKWVTSl9gQyuINEGv3hOaFPfTKn5lOPibSOuP/r///nMX1enp0Yn4eFkRyhxR5oMm7iMp66RMD2UQ6GJBAY5gKielcXuT9goGKIijgMAZZ5wRuF/Xrl3dx6ZNm1xJJ11gKLChUkteHxBp3bq1K7X06aefumCImgEqEyJagQ0FNRTc8F6DxYsXB8pGiYI0yiYRba+2Xdk1WVlZuX7mpzJRCkSoObsaFH722WdhrUJT4EPluVTyyqOsDQU0NDYvsKELMo/GrnFEgoaHSHY0wgTHBRIlOwDx0YjPj/eQ+Gh4CAAAEkdwr1kk97GwdetWN59ZWvt3pcR5UEOKXAdJk/7KSlDWxsUXXxy4Xb0k8ruYLu5FtSbiX331VRck8Cbx99lnHzdprsBCpPr37+/KWWkb/JkkeqwVK1a4YMyhhx6a63d0fwU2VO5JXysDQtRTQ1kHyoJQEET9NPyBDWV5qAyUylEp8KOSVtHKXvFW/R188MGB/awslm7duuW6j5dhcfTRR1vFihXdNirDRgGMUI3gFTSaM2eOS3HXY6m8lNdPoyChjgFvXP5+JGrMXhw0PESyoxEmOC5QWpq+JaNYvya8hwAAEJ/v0QASA4vHErB5uN+wYcNs+/btuRqJazW+Vuz7G0ErO0G9JOrXr1+8wZYt6wIJ6vvg+fHHH10gQj0wIqWJdU3WKwvDa64t+l4T8BkZGS544X2or4QCFmqOroNXPSG8LAaPAgQKIASXZ/LKUSkwozJUKm0VLdrfH3zwgXXs2DHwGqhBtzIivA9lb6ivhrcfdV/tR40lVMaKqLSW+qPodVYjcq9cghehzi8iqYwUvd563T16jdQs3cvWAAAAAAAAKJYoZ6VqnqNKlSqldgU2iobjAYhPxepcrSwFTXqrX4VKO4myKTSxPXz4cBs6dKib0FZvCTUar1q1avEGW66ca56nhtN16tRxAQSvmbWXrRApla9SKSk11vYsXLjQlbdq3rx5rvv269fPHnvsMdc/YsCAAa5nhEo6aTubNm1qv/76q2uwrcwSZW0EU78OBVJUkitUw+1wKKDyyy+/uK9VukmBFTXobtWqVaAfiMbZp08fV6rJa1o+a9Ys10/Eo2CGMla0D70+GMGUCaNAjDJP1Ddl4sSJ7nZtn5eFolJa+plqAHuUidKrVy/32uhDZcnUY0OvmY6PjRs3FmnbAQAAAAAAApRd0aeP2Zo17BSUHN+cF4BSEtiQnj172rx58wKT1UrZmzFjhpvQVgNrTXKrRNOQIUOiMV73OIqUDh482GWLKICgwEpxjBgxIpAFokl6ZT9MnTo1z/00ea8gioIXCmxMmTLF9d1Qnw5ljqi8k3pVqM+GVyrLr2bNmq5ZtgI0oTI6wqFsEa8fhko+1a1b1+1ffzkwNfu+7bbbXA8PfVamjJqsqwSV/z4KTCmAo/GEokCGeqkoCKJtV7BCr++aNWusbdu2riSXGqgrMKRMluB9qoCLGoQrEKIyXAquhCp5BQAAAAAAUCQKamRlsfNQcmLcGw1AaGV20fkGCUZZKypzpeBMstS+1J/p5s2bXfYLKZDguAD/LxCpVatWWYsWLSxtdJpll89mB8ZQ0zpNLXNAZsxfA84tkvdcNd7HVxI43sFxUco1a0ZgAyUqMy3Nmmdnu4XQwdVdkJw4t4iPc9Vi9dgAAAAAAAAAAABIqFJUkVCz7VAlnjwqqTR+/PgiPfZHH31kffv2zffnKtm0aNEii1cluW8AAAAAAAAAACgtdmtgo0ePHtauXbt8fx6qL0W4GjdubAsWLMj35/n1kYgXJblvAAAAAAAAAAAoLXbrbH/VqlXdR0lQU+oGDRpYoirJfQMAAAAAAAAAQGlBjw0AAAAAAAAAAJAw4rs+EwAAAKKmUfVGVrFKRfZoDKXXSmf/AwAQ1TdX3ltRwlJTzbKz2c1AnCGwAQAAkCQmtJtgzZo1i/Uwkl7OzhxLKZuS9PsBAIBiy8kxy8hgR6JkZWaaLVnCXgbiDKWoAAAAksSuXbtiPQSYEdQAACBaUlKifq60bds2zpmQ57gAEH8IbAAAAAAAACCxMzeioEyZMlapUiX3GfAfFwDiD6WoAAAAAAAAkNiZG336mK1ZE+uRoLT22AAQdwhsAAAAAAAAILEpqJGVFetRoDRKS4v1CACEQCkqAAAAAAAAAACQMAhsAACAuKxxjOihLjAAAAAAoDShFBUAAIguahzHH+oCAwAAAABKEQIbAAAg+qhxHF+oCwwAAAAAKEUoRQUAAAAAAAAAABIGgQ0AAAAAAAAAAJAwCGwAAAAAAAAAAICEQY8NAAAAAAAAJLb09FiPAKVVaqpZdnasRwEg1oGNtLQ0O/300+3OO+/Mdfuzzz5r06dPt+XLl0fleebNm2cPPvigbdiwwQ466CAbOXKkNW/evNDf0/3mz5+f788nTZpko0aNsldeecX2228/253OP/98e//99wPfV6hQwQ444ADr37+/de3atdiPv27dOmvfvn3Y2/bOO+9Y7dq17cADD4z66wcAAAAAABCWnByzjAx2FkpGZqbZkiXsXSDOxKQU1cKFC92keEl54403bPz48XbFFVfYggULrHXr1nbppZe6IEdhxowZY2+99Zb7GD16tNWpUyfwvT4UlNHnfffd12LhwgsvdM//5ptvumDCaaed5gIt+rq4tE2RbFu/fv3s119/dV936tTJ5s6dW+wxAAAAAAAARCQlJSo7bNeuXfbnn3+6z4D/uADy/tuJzv8dJFgpqnr16rnAw3PPPWfly5eP+uMr46Jbt26BLIbBgwfb4sWL7fXXX7fevXsX+LtVqlRxH97XOkhr1aqV6z7B3+9OFStWDDy/ly2xfft2u/32261z58625557FvmxQ21ruJQ9og8AAAAAAIBElaPsDyCEMmXKsF8QOBa8+WP3f2NnjqWUJdCRFIENBRpuvPFGe+ihh+zyyy8PeZ+ff/7ZlX1SZocOli5dutjw4cPDCoRcfPHFVqlSpTy3K+oe7XJNKq01ZcoUmzp1qv3444/uZ9dcc43L/Pjwww/tsMMOs8mTJ1uq6vGZ2dKlS93369evt4MPPtht0zHHHFOsMZ111ll277332qpVq+y4446zf//912677TZ74YUX3M+PP/54u+6662zvvfd2Y9M+vPXWWwO/P3ToUBeU0Gvh37avvvrKvQaZmZn233//2RFHHGE33XSTC6a0a9fO/e4FF1xggwYNcsEqfymqr7/+2iZOnGhZWVnutdAYlUFTtmxZmzZtmn377bdWuXJlN0YFY5SJcskllxRrPwAAAAAAAAAlYczyMbZhZeHVYJBc0mulW0Z3SuElTWBDk/xXXXWVm+BXaaf9998/1881Md+3b19r0KCBzZ49237//Xe7/vrr3c80QV8YBROCS1NpIv3YY4+1kqCgxi233GJ//fWXC6qoD4YCGyoRpe1Urw+N+/PPP7cRI0bYuHHj7Mgjj3QZJJrMf/755922FpVKRymTQ4EIBTbuuusu++STT9zzKmig/Xz11Vfbo48+6rI6VGJrx44dtscee7h9/eqrr7qghN/OnTvtsssuc483duxYFxRSlo0yQ+677z5XdqpVq1YuSKFSXy+99FLgd/V6nXvuuS74MWfOHFu7dq3bfgUyVL5KdH/dR9k1CvbocTt06GCNGjUKe7uTaRWF0h71mmibWSEAjgvE+/8LUnLjl46LZHr/RHz/ryit+BsDAKB0WrtprWVvo4k4kNSBDa8RtvpCTJgwwU2U+6l/hPphPPPMM1atWjV32w033OAyCpRxECobIz/ff/+9CzAo4yM44BEtmqw/6qij3Nfp6elucl69L+SUU05xAQ1RhopKYWksXrbDypUr7cknn3RNy4tD6U/btm1zwZXHH3/cNU9XNokoe6Nly5aWnZ1tbdu2dRex7733nrVp08b11FC2hn7+008/BR7v77//trPPPtsFHxQ0kTPPPNNmzpzpvq5Ro4b7rNcn+PVQD5W99trLZXeUK1fOZXj88ssvds899wQCG8oeUZBHk18KBikIo2BMJIGNjz/+uFj7DAAQffr/f+ihh7Jr45TOiwg8AQAAAAASXcwCG7qoVjkqTZwvW7Ys189Uxqhhw4aBoIY0a9bMlUPSBbmCB+FQpkD//v1dRsjNN99sJcWfcaIggcoy+b9XVoS3Xer18fTTTwd+rswJBRiKS0ENZUT88MMP7jEVlPBTMENZKwp2KDPi5Zdfds+rz6eeemqeSQ4FM8455xzXfF0Bh2+++cY+++wz22effQodi7ZTQSQFNTxNmzZ1wY0tW7a471Xqyv+cCo7o9Y2ESmMly+SMVlVq31WtWpVVleC4AP8vUGT169e3Jk2asAfBuUUJZ2ywAAcAAAAopYENL1jRo0cPl7WhVfueUA2wvZTucFO7v/zyS5cdoKCDsgxKsrF18OS6+kiEorGr9JQam/sVd2zq+7F161bXs8PbP0888UQg08JTs2ZN97lTp04ui0XlodQTQ5kUoQIlPXv2tOrVq7uSUioZpuDGww8/XOh4Qr1+CqyINz6VwQo1eR/pfk+mwIaOK20v5SLAcQH+X6Cokum9EwXj3AIAAABAIgs9A78bDRs2zLZv3+7KNHlUjkjZBX/88UfgttWrV7sMAK00LMzGjRtdM2r1rdDjKpMhHmi7FITQuLwPZW+oB0hxqOxUrVq1rEWLFi6QowkL7TvvObT9agL+22+/ufurb4YCDI888ogLquj3gqlPiPbjY4895oJO+h01Rw8n+KDt/PTTT13miEdNxFW+SiWoAAAAAAAAAABI2MCGMgIU3Fi/fn3gNjWj1gT98OHDXV+Id9991/VrUNaASvEU5tZbb3UZAsoEUdBEJZD0oSyEWFIGyYsvvuiCBSqpNWvWLPehslvh8m+PSj4p20L9Ka699loX+FEQo1evXq7Ml/poqKG49uN3333nyj+J7qfeH+pt0rFjx5AZAApA6LlUJkzBGDUBz8jICJTVEmWEKDNGjcX91ENE91NfFI1Rj6Em4yptRbYBAAAAAAAAACBhS1F5VPJIWQfKEBBlHMyYMcMFM9RsW/0XNFk+ZMiQQh9LGQWaSFfza03a+w0aNMiuvPJKixXVtFYjb03y67OyT+688047+uijw34MlYLyykEp+KDyU1OnTnXlojxqRK7gzlVXXeWyJvT4DzzwQK7SE507d3bZIvocinpiDBw40MaNG2f//POP682hQMWYMWNcY/fU1FTXAF7boSBN48aNA7+r4IrKfymwpLJbytTo27evDRgwoIh7DgAAAAAAAACA/ymzK9LGBkCMqYyWSpMpUJQsdcL1Z7p582arVq0aWS/guEBi/L9o1kx1CGP3/MglMy3Nmmdn2wcffGDNmzdn7yB+/leUQvF+rhrv4ysJHO/guAD/L1Acq1atcmXc00anWXb5bHYmcmlap6llDshkr8TgXDUuMjYAAAAAAAAAIF41qt7IKlapGOthIM6k10qP9RCSVsIFNtTwWqWX8qOSVePHj8/35y1btszVJyLYokWLrG7dura7de/e3dauXZvvz9VHI1STbwAAAAAAAAAla0K7CdZMmelAkJydOZZSNjkyYeNJwgU2evTokaufRDD1dyjI3LlzXWPx/NSuXdtiYfr06a4fRn7U0wIAAAAAAADA7kc1f/iPha1bt7p5aJV1JagRGwkX2Khatar7KKr999/f4lEsskQAAAAAAABQRDk5ZknSryiZ0Y8M+fWCQGwlXGADAAAAAAAAiDkFNfr0MVuzJtYjQUmiigoQlwhsAACA6EungVrcXYxlZ8d6FAAAAKWPghpZWbEeBUpSWhr7F4hDBDYAAEB0KSU3I4O9Gk8yM82WLIn1KAAAAAAAiIqy0XkYAACA/0Od4bhDo0MAAAAAQGlCYAMAAAAAAAAAACQMAhsAAAAAAAAAACBhENgAAAAAAAAAAAAJg8AGAAAAAAAAAABIGOViPQAAAFAK5OTQNDyOlSlTJtZDAAAAKJ3S02M9ApS01FSz7Gz2MxBnCGwAAIDiS0kx69PHbM0a9ma8XowBAAAg+ot7MjLYq6VdZqbZkiWxHgWAIAQ2AABAdCiokZXF3oxHaWmxHgEAAEDpXNyDUm/Xrl2xHgKAEOixAQAAAAAAAAAAEgaBDQAAAACIMxs2bLCrrrrKjjnmGDv++ONt0qRJ9s8//7if3XzzzZaWlpbr4/HHH4/1kAEAxSlphbhFvzogPlGKCgAAAADirOSFghpVq1a1jIwM27x5s40ePdrKli1rI0aMsK+//tqGDh1qZ555ZuB3KleuHNMxAwCKgX518Y1+dUBcIrABAAAAAHHkm2++sdWrV9vbb79t++yzj7tNgY5bb701ENi46KKLrFatWrEeKgAgWuhXF7/oVwckXykqpURrJVGwZ5991tq1axe153nyySetffv21qxZM3eC/8MPP0T8GNOmTXPjfeedd6I2Lu9xzz///Kg81siRI3Olmx9xxBHWqVMne/TRR6PWyEiP+95774V13zVr1lhmZqb7Wr+j3wUAAABQPApYzJw5MxDU8GzdutV9qExVw4YN2c0AAABIWiWesbFw4ULr2bOntWrVqkQe/80337Tbb7/d7rzzTndyf9ddd9nAgQPt+eefj3ic9evXtwULFpTYWKPhtNNOszFjxrivt2/fbu+++67dcssttmXLFrvyyiuL/fhvvfWWVatWLaz7aj8PGjTIBZSaNm3qfhcAAABA8agElfpqeHbu3Ol6aBx77LEuW0O1vu+77z574403bO+997b+/fvnKksVjpwkqueuRWDah9pm6qSD4wLx+P8iRaWoEPd0XCTT+yfyx7lFyYnkb6zEAxv16tWz8ePH23PPPWfly5eP+uO//vrr1qZNGzvppJPc95po79q1q/3+++9Wo0aNsB7j008/te+//94mTJhgN910k91www1WqVIli0cVKlTIlXLeoEEDV2t33Lhx1rt3b0stZt2/oqaz67UlFR4AAACIPi3k+uyzz2zu3Lnu2kWTbQcccICdd955tnLlSrv++utdj42TTz457Mf8+OOPeakAIA7stddeduihh8Z6GAiD5g4JQgHxo8QDG4MHD7Ybb7zRHnroIbv88stD3ufnn3+2SZMmuTJQOknv0qWLDR8+PKxAiFYoLVq0yK1c0iS/Mi4UTAk368DL1mjcuLGdeuqpLqjx8ssv51rxpBJLt912mz344IP27bff2pFHHunq2+6///7u55988okL3nz++efuzUgZHx988IHNnj07z3Pp9okTJ9pXX33lxqtAjJ63OBTI0WNqxVavXr1c1HDGjBmuRNfff/9tLVq0cNtVt25du+OOO1y9Xq348ijL5aOPPrJZs2a5bX3sscesZcuWLsVdwR69Ln/99ZcdfPDBdt1111nz5s1dea3169fbqFGj7P3333f764ILLrDs7OxCX1OVIps/f74dffTRrhmiInE9evRwpbZYQQUAAADkDmqo9OzkyZPtkEMOcefkWtSl6yDRdYyuUXTuH0lgQ2Vtk2VyRtdHynBXJgzXG+C4AP8vUFSq9NKkSRN2IDi3KEGaJw53AU6JBzaUQaBGdzoRP/300wPBAM+///5rffv2dZP8CgQo00IrjkST6IXRBLsmz9VrQifminRrsjzck3Sd5C5evNi6d+/usjQUlNCke3Aqt3plKJujZs2advXVV9uUKVNc+as///zTLr74YlciSiWhVqxY4Sb0VZ4p2C+//GIDBgywa665xqWWK8CgyXw9poIPRbXnnnvafvvt54IloqDFCy+84ManurwPP/ywXXjhhe62zp07uyDTb7/95p5XXnrpJbcNwYYNG+ZO/p966im3nxQUUZBKj6P9ccYZZ7jH1b7TCrJIXtOsrCw3Nl2A6WDVfmjbtq21bt067O1OpvQ/UtzAcYF4/3+RLJNjiY70eXg4tyjZv7No0fWHzpcV3PAWQ+l/uxfU8Ch7QyVqI/2/nSz/u3W8K8td20tgAxwX4P8FiiqZ3jtRMM4t4kOJBza84INW6Wv1v2rBBvfIUGbAM888E8iyUHaBsjsUACisJNTGjRvtn3/+cZPumkhXpsK1117r0rQ14V+YVatW2U8//WQdOnRw359yyiluEl7ZCMr88Khurdd745xzznHBE3nxxRetYsWKbsJe/9x0UaGG2gpiBNPvHHfccS5lXDReNeDWCqziBDZEqefbtm1zX6vR4NixY13WhSibROW6tK/VtF29SJYtW2ZnnXWWy7DQtgav7tIfqPaJLqDq1KnjbuvTp49deuml7mtdTGl7q1Sp4j4ieU29Cz5dqGnc2mfKFlGAI5LABunzABAfSJ9PHKTPA4lj+vTpboGRsqs7duwYuP3uu+92i4R0/uxR5rjOqQEAAIBksVsCG5oA10r/c889102o+6mElCba/aWjlO3w33//uYvv9PT0Ah9bE/gKRqjUkShL4cQTT7RXXnnFZXEURmWsFMDw6hm2b9/eTcKrJ8gVV1wRuJ+CEB5Nxu/YscN9rcDAYYcdlitiq7S0pUuX5nmub775xl599VXXaNujx2nUqJEV19atWwPBDZWBUgBBq5I8KkmlFHXRflG5LQU29FnBluBVX1rJpACOAjcK1Kxdu9aV3NIq4MIU9pqKskU0Xo++1s8jQfo8kh1lFcBxgUiRPg/eQ+Irfb6g82kt2NKiIpWB9S+aUhmqBx54wGVha3HSW2+95crxqpwsACCBFTL/hRhSP9v/K70OIMkCG97EtvooKGvDX/YoVFaFl74dThq3mudddtllge+V4aEghLIQCqPHX7JkiW3atClXoyZN3gcHNvbYY4+Qj6GAhiYX/YK/92jiXgEY/3ilXLnivQzKWFHQol+/foF9ppVcwQETL9CgwMb999/v6swqsHHRRRfleUztA5WZ0n10f2V6KAijniCFCec1DdU/Jb/9lp9kSgEkxQ0cF+D/BaIhmd47UTDOLeKbFmnpvPnee+91H35aWKVz/alTp7rPWqSlxV3+xVMAgASjuZL/qwyCOJSZabZkSaxHASBWgQ2vZ4PSqLW6yKPJd03K//HHH4GsAfWe0GS/VhUWpnbt2m5Fk/ozeP0d1q1b53pOFEa9OdT/Qf0ilGHgefvtt12/DGUqhOqV4afmfcuXL3eBAC9DQsGWULStShv3Z3+o/4XGHBzsiIR6XijDQqu31BND2RBa1aXMFdHjDxkyxAUwdMFz4IEHug+ltmvfe2W4/NSvY+XKlW4f1ahRw93mld/ShXBBtWkLe02/+OKLIm8rAAAAUNopU8MrARuKzt9DncMDABIUC0/iWqQLcQHsHv+/VtFuUL16dRfc8GdTqKeCGooPHz7crT5S0zv1XlCjcU3SF6ZXr16ub4dKPKnUk/pjKGtDGQbhlKFSYEKlrA455JDAh0pmaUJeKd2FUTNulYFSw3CVa1JfCZVvCkWPq3JOaqSuiX8FJFQzt27duhYulZRS0EIf3333nWsUPnHiRNe/wgtAKHNDzc0VcNHzqP+HgjT+ursat1Z/KSDkLwnl0b5XoEb7SK+XMlsUAPICJaLeItrnCmD4Ffc1BQAAAAAAAAAgLgIb0rNnz1xp0iqHoPqx0rt3b5dZoD4XangdDmUh6OPmm292QY7ffvvNNdIrrHG4JufVB0PjCabf7d69uy1evNiVeSqIgigKrCi7QWWm5s+f7z6HKrWkNHHdV821Ncmv4MPIkSOta9euFi6NSY3A9aExKviiwIUCG/59ou1Sr5Bu3brZjz/+6LJk/D0vVF5q+/btLsARihqGqy/Kgw8+6MaqOr56HmVdfPbZZ7maqOt2v+K+pgAAAAAAAEknjJLs2P0KqloCIHbK7CKfqlh++OEH27Bhg7Vo0SJw27hx4+yvv/5y5awQfao3rNJWatKeLHXC9We6efNmF5ziDRUcF4jb/xcq35iVtXufE2HJTEuz5tnZ9sEHH7hGxADnFsl7rhrv4ysJHO/guEBC/b/o08dszZrYPDdCykxNteZLlnAujfj6X1FKRXKuult7bJRGKkPVv39/u/322+2II45w/TXUeFwlpgAAAAAAAICwKajBYqH4kpYW6xEASLTAxiOPPGJTp07N9+cq+ZRfeSOVpCqsoZ4aeRdXenq6K/mkQMZPP/3k+mWMGjUq0Lg7XAMHDrQVK1bk+3NlgURSsgoAAAAAAAAAgNIorgMbPXr0KLAJeKim155wm39Hg3p76KM4xo4d68pX5admzZrFenwAAAAAAAAAAEqDuA5sVK1a1X0UhWpwNWjQwBJF7dq1Yz0EAAAAAAAAAADiXtlYDwAAAAAAAAAAAKBUZGwAAIAEkp4e6xEgP6mpZtnZ7B8AAAAAQKlAYAMAABRfTo5ZRgZ7Ml5lZpotWRLrUQAAAAAAEBUENgAAQPGlpLAX49iuXbtiPQQAAACEgyzo+EP2MxCXCGwAAAAAAAAAsUYWdHwi+xmISzQPBwAAAAAAAGKNLOi4RPYzEJ8IbAAAAAAAAAAAgIRBYAMAAAAAAAAAClCmTBn2TxzI2ZkT6yEgTtBjAwCAZK/jS8p7qcdFGAAAAFA8Y5aPsQ0rN7AbYyi9VrpldM/gNYBDYAMAgGSmoEafPmZr1sR6JChJqansXwAAAKAY1m5aa9nbstmHQJwgsAEAQLJTUCMrK9ajQElKS2P/AgAAAABKDXpsAAAAAAAAAACAhEFgAwAAAAAAAAAAJAwCGwAAAAAAAAAAIGEQ2AAAAAAAAAAAAMkZ2EhLS7OhQ4fmuf3ZZ5+1du3aRe153n//fTvjjDPsqKOOst69e9vnn38e1u+tW7fOjfGuu+7K87Np06bZ+eefH/J2/c4777wT8jEfe+wx69Spkx1++OHWunVrGz16tP3yyy+Bn48cOdL9/vTp0/P87tatW93vhbtv3nvvPfdY3sehhx5qxx13nA0fPtx+/fVXiwaNVx/h0PgXLFgQ+F7bodcaAAAAAAAAAICSUi7aD7hw4ULr2bOntWrVykrCDz/8YJdccon7OP300+2hhx6yK664wpYsWWLly5cP6zEefvhhFxg58MADw9qe+vXruwn84G1SUEPPP3bsWDvkkENs48aNdscdd9jFF19s8+fPt7Jl/xc32mOPPWz58uU2aNCgXL//2muv2X///WeReuutt9xn/a72x2233WZ9+/a1OXPmWMWKFa04xowZE/Z9Z82a5YIt3bp1c9/PnTu32M8PAAAAAAAAxJtG1RtZxSrMe8VSeq30mD4/Snlgo169ejZ+/Hh77rnnwg40ROLxxx+3I488MhAkUIZEly5d7JtvvrHGjRuH9Ri1a9d2Y3z00UcLvN+nn35q33//vU2YMMFuuukmu+GGG6xSpUqBnyt40b9//0DGxX777eeyQU444QT76KOPrEmTJu725s2buwDAhg0bLDU1NfD7y5Ytc/dRQCQStWrVCny977772gMPPGAdO3a0p556yi688EIrjipVqoR93127duX6vkaNGsV6bgAAAAAAACAeTWg3wZo1axbrYSS9nJ05llI2Jen3A0qgx8bgwYPdBL4yGfLz888/29VXX23HHHOMtWzZ0m6++Wb7999/wy5DdcoppwS+32uvvVyAINyghowaNcpWrlxpzz//fKHZGnrcU0891Xbs2GEvv/xyrp+XKVPGPvjgg1xjr1Onjr344ou5xqPgg8pGKWvDo99R5kU0SnQpoNChQwdbunRp4DaNq3v37i4IpMDPSy+95G7/+uuvXRkrZXp4vv32Wzfen376KVcpKgUu7rvvPjdGlcxq06ZNoKSWSk7pa70eerzgUlQ7d+60mTNnWvv27d0YVOYrOzs78Jz6HQW/lHWjxz733HNzjQkAAAAAAACIF8ELfBEbBDVQYhkbyki46qqrbPLkyW7Sev/998/1c03oq2xSgwYNbPbs2fb777/b9ddf73523XXXFfr4mvyuUKGCew5N3h900EEuk0Kfw5Wenu4m0lXC6aSTTgqZpaB/VosXL3bBAWVpqAyVMjTOPPPMwH0uuOACGzFihMvQOPHEE+3YY491X4cqcaVJfwU2zjnnHPe9enZozPvss49Fgx5LAR5Rj48BAwbYNddcY8cff7ytXr3aBStq1qxpLVq0cEEMBUG87A4FPZo2beoCMH4qv6WsFmWh6HV888037cYbb3T7TH1FvvzyS8vKynJ9SILdc8899uSTT7pMl4YNG9qDDz7oSnTpubxyVfo9/VzjUqBrypQpduedd4a9zTk5OZYsdDwqWKRtVkAN4LhAtP5fpKSw0iWZ6LhIpvdP5I9zi5LD3xgAAACQgIEN0ep8rdxXCSet+PfT5LgyOp555hmrVq2au02Bicsvv9xNxPtLPYWyfft218dCpag0ea8+F/369XMT5oX9bnBmifpyKACj5w+2atUql8GgTAhRlogCMOvXr3fltkS9JapXr+4m/1944QW3zSq/pZ4f2h4/Pc7999/vxq+JfQUhTj75ZIsWBWe2bdvmvs7IyHBNxc877zz3vYJIa9asceNUYKNz584u+8Qf2PAHbDwKdEyaNCnQW0RBGQUsFNA47LDD3Haof4i/NJZ3oaySYUOGDHEZG6IAhrZXWTJnn322u01lvPyPrXFH4uOPPy7CngIA+LMelVGI5KESmwSzAAAAgMix0HT3odwUYhbY0AWzVvYrK8LLIvCoFJJW8HtBDVF9OjXC1sW2sikKe2xlPyh44k2YK1tC2RAquRSuypUru5JUw4YNc1kZwRYtWuQCGN6EjyboFQBR+SQFLjzK0NDH1q1b7d1333V9LpR5oAwKf+BCWRIKAKj8lIIcGq8yGpR1Eg16fm2TqN/Iq6++6rIwPCql1ahRI/e1si0U0FGASbd//vnnrkdHMGWgfPjhhy6LQq+bgiPKBtFK4IL89ttv9scff9hRRx0VuE0BEJWc0uN4FHDxaOwaSySOOOKIpJmcUbBoy5YtVrVqVd5IwXEB/l+gyOrXrx/oAYbkxrlFyWZssAAHAIDSZ8zyMbZh5YZYDyMpGoRndI9s8TOSU4kENrxgRY8ePVzWhkoQefbcc89807XDSdtWcMCboBdlSCgAoeyKSClzYe7cuS4Io5JN/vEom2PTpk25VrJqQt8LbOj5lI0yZswYNwZNzCtgoQCIMhJWrFiRJyPDK0el8lPqi6HJhWgFNtS/4uCDD3ZfK0ikIM9ll12W6z7lypULNDlXUEBBp3/++cdlcQRnXcicOXNs4sSJ1qtXL5exorJbKr9VmFCvsbdf/UERBTuKQ0GNZApslC1b1m0vKwTAcQH+X6Cokum9EwXj3AIAACAyazettext/79/LIBSGtgQZUMoE8DfSFxBCTWr1or+vffe292mHhCadNdEf2G0ytDfhFo9O9R3Q5P1RaEsDAUB1OvDKzGl/hf6Xj0glF3iefvtt+2WW26xzMxMl22giX8FRLxyVaJJZwU5FLgIpqCHyjOpfFU0y1BpXypIofJa3j5W7wt/RsTDDz/s9pUX7FDWxmuvvebKV51xxhkhH1cZJQMHDgwEppQxoGwMr1lSfhPsKoul4I1eV6+JurIxPv30U2vdunXUthsAAAAAAAAAkHzKluSDawJfwQ31pfBoYluNqIcPH+4CFCrfpHJSajSuMjuFUeNx9YR44oknXIBk/PjxLkNA5aiKQkEATdz7x6gyVMp+UJbCIYccEvhQaS0FY9RUWw2vlZkxevRoFwBQGS1N3N99990u9VzZKsGOPvpol7Xw9NNPFyuwoXJQ+lDWiIIw6pWhfhjKrBCN85NPPnHlprSP1P9DDcDr1q0beIzTTjvNZYvoftrO/F4/Pf7atWvd/dQDRQEKBUi82uwbN260devW5fld9T2ZOnWqy1BR+Sn1J1F2iAIqAAAAAAAAAADEZWBDevbsmavXg8ofzJgxw33du3fvQINpBSjCob4N6mGhpuHKtNCk+cyZM10j66JSFoOCLaJJ+6VLl7pxB1MARf04Fi9e7CbpFdRQA3MFWTQWlWlSHwo1zvYHETzKSmnbtq0LjhTWS6Qgbdq0cR8Kjihg0Lx5c9cY3CsBpcwTlclSo3YFjLS/Ro4caV27dg08Rmpqqut5ccwxx7gARijaPvXuUEbHlVdeaWlpae45tY2ir1VaSiW9lMnhp2CLAi0an/bZzz//bLNnzw6ZyQIAAAAAAAAAQLjK7PLqCgEJQlkvKnOlsmTJUidcf6abN2+2atWq0WMDHBeI/v+LZs3MsrLYs6VYZlqaNc/OdtmaWhABcG6RvOeq8T6+ksDxDo4L8P8CxbFq1SrXnzZtdJpll6fHRklrWqepZQ7ItHjGuUV8nKuWeMYGAAAAAAAAAABAQjQPj9Qjjzzi+jLkR+We8itZpVJI/ibeoaihdrxS3xCVi8qPVleq5BYAAAAAAAAAAMksrgIbarjdrl27fH9euXLlfH/mNfVOVOqZUdD4K1SosFvHAwAAAAAAAOB/GlVvZBWrFL3HL8KTXqvofYmRXOIqsFG1alX3URSqudWgQQNLVJUqVXIfAAAAAAAAAOLLhHYTrJn6E6LE5ezMsZSyydELDEVHjw0AAAAAAAAAKKRhNHYPghpIuIwNAAAQA+mk+pZ6qalm2dmxHgUAAADiQU6OSp/EehQJo0yZMrEeAoAQCGwAAJDsFzUZGbEeBUpaZqbZkiXsZwAAAPwvqNGnj9maNeyNcBcJAYg7BDYAAEhmrNRKCqTNAwAAIBcFNbKy2CnhSEtjPwFxiB4bAAAAAAAAAAAgYRDYAAAAAAAAAAAACYPABgAAAAAAAAAASBgENgAAAIAklEKPHQAAAAAJisAGAABAkihTpkysh4A4OhaqVKkSOCZydubEekgAAAAAELZy4d8VAAAAiWzM8jG2YeWGWA8DcSa9VrpldM+I9TAAAAAAIGwENgAAAJLE2k1rLXtbdqyHAQAAAABAsRDYAAAAAAAAAJJJenqsR5A4UlPNslkcBMQbAhsAAAAAAABAssjJMcugDGXYMjPNliwpyVcEQBHQPBwAAAAAAABIFikpsR5BQtm1a1eshwAgBAIbAAAAABBnNmzYYFdddZUdc8wxdvzxx9ukSZPsn3/+cT/74YcfrF+/ftakSRPr1KmTvfXWW7EeLgAApV6ZMmViPYS4lLMzJ9ZDQJKKqBRVWlqanX766XbnnXfmuv3ZZ5+16dOn2/Lly6M6uOeff97mzJljs2fPDty2Y8cOmzJlij333HP233//2ZlnnmlDhw61cuUK35T33nvPLrjgAhs/frydddZZuX42cuRI9/mWW27Jc/v8+fNt6dKlVr9+/Vw/01juu+8+W7Bggbvw2GeffezUU0+1K6+80ipXruzuc/7559v7779vt956q3Xr1i3X73/99dfuQkQXK/5tzI/286hRowLfa5tr1qxpp5xyig0ePDjwnMWh8Wo82obC/Pbbb27bTjvttMDx8dhjj1nLli2LPQ4AAAAgmVeGKqhRtWpVy8jIsM2bN9vo0aOtbNmyNnz4cBs4cKAdcsghNm/ePFu2bJkNGjTIXnzxRatbt26shw4AQKk1ZvkY27ByQ6yHEVfSa6VbRnfKmiFBemwsXLjQevbsaa1atbKS9O6779oNN9xgRxxxRK7bp06d6gIJEydOdIGEMWPGuGDEddddF/Zj33XXXXbyySdbjRo1CryfVkR5AQ09py4u/O644w5bsWKF3Xzzzbb//vu7lVMTJkyw7777zgU8PHvssYcL+gQHNnQREmm0t06dOjZ37lz39b///mtfffWVe84vvvjCZs2a5S52imPatGluvOHQ9uuiywtsaKVYtWrVivX8AAAAQLL75ptvbPXq1fb222+7ax7RtYgWS7Vt29Zddzz11FNWsWJFO/DAA+2dd95xQY5wFicBAICiWbtprWVvo4k4EC8ingWvV6+ey3jQpHpJUfbHJZdc4oIFfppE14qlIUOG2AknnGCHHXaYjRs3zp3Ub9u2LezHr1Spkt1+++2F3u/11193k/znnnuuC2wE19RTJsfVV1/tgjz77bef+3zjjTfaq6++ahs3bgzcr0WLFm7SP3ifKbCh9PFIpKSkWK1atdyHXgvtBwVRVq1a5YIwxbX33nu7/ROO4P2hMZUvX77YYwAAAACSmc6rZ86cGQhqeLZu3WoffvihHXrooS6o4WnevLkLhAAAAADJIuKMDZU80uT9Qw89ZJdffnnI+/z888+uBqxWDikjoUuXLi5lOtxJb61M0uOrdJRKHXl+//13F8A46qijArep/JFKQn3yySdhl0BSlofSt5V5oouAgrJTFJQ46aSTXFbIypUrXZkmj7ZNmSXt2rULZEo0bdrUFi1aZNWrVw/cT7dlZ2e7+2qFlah0lTI7zjnnHMvMzLTiOOCAA9w4FdhQKSzR15MnT7b169fbwQcf7Pa/xv7GG2+4lVway1577eXuq6CLVoAp+0QBJa8UlQIxKjumtHbt+9TUVBswYIAr46XMDgV2RK+RMlL8paiU7aLsGu1Dpc4fe+yxNnbsWNt3331t3bp11r59e/cYt912m9sXxx13nFuBpsAKAAAAkMxUgkp9NTw7d+60xx9/3J1T//LLL1a7du1c91d5Wl2DRSInJ3nqYWtBlvahtpn66OC4AP8vEKlkes8sqmTbR5xbxMexFHFgQ5PbmgTXpLn6bQRnVWgyvG/fvtagQQPXN0IT4tdff737Wbjlop588kn3WYENP5U5UgaFJsIPOuggd9tPP/3kPm/atCnsbdCkuoIVCtBocj5Ufw4FUJSxoXJYDRs2dCneuq8/sKF+HZq8V+aFMic0Od+mTZvA2DwKepx44olu8t8LbOh3dLESTm+QcOg5vQDJ559/biNGjHDZLEceeaTbDgUs1LNEY1RAQwEOLwjy8ssvu+BMhQoVcj3mAw88YK+99poLQOhiSdt/0003uf134YUXuh4hon0UTEEMjccLVqhs1RVXXOFS5D3KNFFZMP0zUJDskUcesWuuuSbsbU6mf5r8wwTHBfh/geJIpvdMFB3HSfzuR2Wbf/bZZ64krcrPBi8Y0/eRZtR//PHHUR4lAACl0/fffx/rIcQ9Lej+66+/Yj0MJJlyRW0wrUbW6u3g7yUhb775pgs8PPPMM4F+C5r41sS1Jq3DLXMUcrDlyrneGJoMV6BBj6WJc92urI1IKMjSuXNne/TRR+2iiy7K83MFHvSYCoCInleBGm2Ll+mgrA8Fdp544gm3vSqJpTEpI6RHjx65Hk/BAAUFFEyRV155xXr37m1ffvmlRYMah3vluJTtosdWpowXgFG2iQJGaoauZuMKZiiwoQsvbav6hARr3LixWxXmlcu67LLL7J577rFvv/3WZYh4gZDgXiXK0FBz9wcffND9viiwoeCOsnEaNWrkblOATIEX0VgjvbjiYgwAgPBwMYZwcEEanxTU0DWLFpapYfiee+5pf/zxR677KKgRvEipMOplqDK3ybJIaMuWLS4ThowNcFyA/xeIFIs/CqcqLsmEc4uS/XsLd863SIENnQBrgl69JzQp7qdV/Mpw8DeRbtasmf3333/uojo9Pd2KQwEJBUiUIaG6sgqYfPTRR25iPxLqT6EMAvXzUIAjmMpJadzepL2CAQriKCBwxhlnBO7XtWtX96GMEZV0Uoq4Ahv6gz788MMD92vdurW7APn0009dMEQ1cJUJEa3AhoIa3j7Qa7B48WJ7+umnAz9XkEbZJKLt1bbrAigrKyvXz/w6dOjgAhEqw6UGhlolFs4/dAU+lOrtLxmmrA0FNDQ2L7ChrB6Pxh5pcIqLMSQ73kjBcYFwcTGGcCTbBWk8XIwVRgujtDhJwQ0v21oZ9F999VWu+/366695ylOFc02XTIENZdFrewlsgOMC/L9ApJLl/bI4km0fcW4RH4pcB0mT/spKUNbGxRdfHLhdK4jyu5iOxkW1SiKpj4OCBHouHUjqA6FARaT69+/vmoJrG/yZJApSqN+EgjFqzOen+yuwoXJP+loZEKKeGso60AWHgiDqYeEPbCjLQ2WgVI5KgR+VtCpO9kqoFXbqpeHtZ5We6tatW677eKu4jj76aBcU0jYqw0YBjFD9T7QqbM6cOda9e3f3WCovpZJVhQl1DHjjUsDDo7JixcHFGJIdb6TguEC4ku1CA0XDcRJftABLGeHKVu/YsWPgdi0eUsnYv//+O3B+v2rVqgJ7BwIAAAClzf86XhfRsGHDbPv27a70kUer8bVi358erewElYuqX79+8UZrZtdee63LjFAGgIIF6h+hYEdwX4twaGJdk/XKwvA3Kdf3moDPyMhwwQvvQ30lFLBQYz5N0qsnhJfF4FGAQBcYweWZvHJUr776qitDpdJW0aL9/cEHHwQuePQaqEG3MiK8D2VvqK+GaLWS7qv+GRpLqIwV0YWU+qPode7UqVOgVp4mUyW/1U7KSNHrrdfdHyxSs3QvWwMAAABAaMpynjFjhluspICFGoZ7H1ogte+++9qoUaNc9reCHMpg79mzJ7sTAAAASaNYnauVpaBJb5WH8jImVHJJE9vDhw+3oUOHugltpVCr0bhqmhaXAhrKJFCqtffYl156qZusL4qWLVu6UlJqrO1ZuHCha+wdvOqpX79+LltE/SMGDBjgekaopJO2s2nTpi4FXA22VeJJWRvB1K9DgRSV5ArVcDscCqjogkZUukmBFfUZadWqVaAfiMbZp08fV6rJa1quJoOqzetRMEMZKwrCeH0wQu1rBWKUeaK+KRMnTnS3e40JFVjSxZR+ppR4jzJRevXq5V4bfagsmXps1KlTxx0fGzduLNK2AwAAAMlAi4903n/vvfe6j+BMbQU9VP5WmdVaxKQ+eHXr1o3ZeAEASAaNqjeyilUqxnoYcSW9VvFaDgAxC2yIVgbNmzcvMFmtFHadaGtCWw2sNcmtEk1DhgyxaBg8eLCNGzfO9fdQOSVN4uujOEaMGOGyF0ST9Mp+mDp1ap77afJeWRcKXiiwMWXKFNd3Q2niP/74oxuPelWoz0aonh/KLFGzbGUzhMroCIeyRbx+GCr5pAsY7V9/OTA1+77ttttcDw99VqaMynWpBJX/PgpMKYCj8YSiQIZ6qSgIom1XsEKv75o1a6xt27auJJcaqCswpEyW4H2qgIsahCsQojJcCq6EKnkFAAAA4P/Twi195EfBDF1zAACA3WdCuwmuND9yy9mZYyllKX2L3a/MLq+uEJAgtHpNZa4UnEmWWtD6M928ebPLfqHhITguwP8LREr191u0aGFpo9Msu3w2OxC5NK3T1DIHZLJXkuRcNd7HVxI4lwbHBfh/gWicS2shND2twLlF/JyrFqvHBgAAAAAAAACUdiw0DZ2tASRsKapIqNl2qBJPHpVUGj9+fJEeWw3z+vbtm+/PVbJp0aJFFq9Kct8AAAAAAAAAKLoxy8fYhpUb2IW+/hoZ3TPYH0iOwEaPHj2sXbt2+f48VF+KcDVu3NgWLFiQ78/z6yMRL0py3wAAAAAAAAAourWb1lr2Nsq6AvFit872V61a1X2UBDWlVhO9RFWS+wYAAAAAAAAAgNKCHhsAAAAAAAAAACBhxHd9JgAAAERNo+qNrGKViuxR5KmPDAAAAACJhMAGAABAkpjQboI1a9Ys1sNAHMrZmWMpZVNiPQwAAAAACAulqAAAAJLErl27Yj0ExNGx8OeffwaOCYIaAAAAABIJgQ0AAAAgCeXk5MR6CAAAAABQJJSiAgAAAAAAAIAC0K8uN/q0IdYIbAAAAAAAAABAAehXlxd92hBLlKICAKCUSUmhATAAAAAARBP96kJce5bl2hOxQ2ADAIB4EKVa92XKlLEqVaq4z4D/uAAAAAAAoLSgFBUAAPFAWRZ9+pitWRPrkaA0Sk2N9QgAAACQKAuuyADPhUVCQHwisAEAQLxQUCMrK9ajQGmUlhbrEQAAACARsOAqLxYJAXGJwAYAAAAAAACA/2HBVW4sEgLiEj02AAAAAAAAAABAwiCwAQAAAAAAAAAAEgaBDQAAAAAAAAAAkByBjbS0NBs6dGie25999llr166dRdvzzz9v559/fq7b/v33X7v11lutbdu2dvTRR9vAgQPt559/jvixR44c6bbn+++/j+KI//e4+ogGbbvG6H0cddRRduaZZ7r9Eg3r1q1zj6vP4XjnnXfs66+/LtHXHAAAAAAAAACAqGZsLFy40E1wl7R3333Xbrjhhjy3T5061ZYtW2Z33HGHPfnkk/bff//ZoEGDbNeuXWE/9j///GNLly61+vXr24IFCyyeXXjhhfbWW2/Zm2++6YIJp512mo0aNcp9XVz77ruve2x9Dke/fv3s119/dV936tTJ5s6dW+wxAAAAAAAAAABQooGNevXq2fjx413mREmZPn26XXLJJbb//vvn+dn8+fPtmmuusWOOOcYOOuggu+mmm+zjjz+27777LuzHf/31122PPfawc8891wU2IgmK7G4VK1a0WrVqWe3ate3AAw+0Sy+91O2b22+/3QVoiiMlJcU9tj5HqkKFClajRo1iPT8AAAAAAAAAAIUpZ8U0ePBgu/HGG+2hhx6yyy+/POR9VBpq0qRJLrOjTJky1qVLFxs+fLiVL18+rOd4++233eO/99579v777wdu37lzp5vQP/TQQ/P8zp9//hlR1kmLFi3spJNOsltuucVWrlzpAiWiskzt27e3adOm2W233WYbNmyw4447zpW/2nvvvd19lOWg7xVM0e81aNDAtm3b5h4rmDJDJk+ebOvXr7eDDz7Y7QfvuYrqrLPOsnvvvddWrVrlxqYgk8b6wgsvuJ8ff/zxdt1117nxKgik/a7xelROTIEJvX7a1ldeecX2228/++qrr9zrlpmZ6TJhjjjiCBc4UkDFKzt1wQUXuAwZBbgUgFq+fLm7XSWqJk6caFlZWVapUiU3xiuuuMLKli3r9uW3335rlStXdmPcc889XSaKAjQAAAAAAACIofR0dr9faqpZdjb7BChtgY3U1FS76qqr3GT96aefnierQpPsffv2dZP9s2fPtt9//92uv/569zNNtodDJaZEgQ0/TZJrIt/vscces+rVq7teEeFQAEIZGypz1bBhQzdpryyQ4GDDfffdZ3fddZfL5lAA4JFHHnFBgh9++MF9r4+OHTu6iXoFGbp165bnuT7//HMbMWKEjRs3zo488kj3vJrMV48M7Z+iUukoZXIoEKH9oXF+8skn9uCDD7qggV6bq6++2h599FHr3LmzjR492nbs2OGyVPT6vPrqqy4o4aeg0WWXXeYeb+zYsS5QpMwcBZK0L1R2qlWrVi5I0bp1a3vppZcCv6vXWNkvCn7MmTPH1q5d615rBTJUvkp0f91H+1rBHj1uhw4drFGjRkXeDwAAAAAAACiGnByzjAx2oV9mptmSJewToLQFNrym1urxMGHCBDfp7adeEMpyeOaZZ6xatWruNgURFAhQYECr+aNFvTYefvhhFzgINxtEv6NJfmVryMknn+wCMBrjXnvtFbifgjcKRogyTlTuSjRxr9uVjSAKIKxYsSLkcynrpHfv3u73vWwHZYcocFPcBuNVqlRxQZq//vrLHn/8cZs3b14guKPsjZYtW1p2drZrsq6ghYJEbdq0cdkmytbQz3/66afA4/3999929tlnu+CDgiaiRuUzZ850X3tlp/SaBr+GyoDRvlN2R7ly5Vyw6JdffrF77rknENhQ9oiCPCp7dfHFF7sgjIIxkQQ2cvRmmyQUUNPrpm1W1hPAcVH6FKUMIBApvY8k0/sn8se5RcnhbwwAkNC4LskjnkvWA8msXLQmY1SOSpPgChT4qSSRMiG8oIY0a9bMlTb6/vvvLT1K6W16XpXFOu+886xXr15h/96iRYvceLyJ+lNOOcUFZ15++WU744wzAvfzZ1Qo80DBEFGwQCWa/Jo0aWKbN2/O81zaF4sXL7ann346cJseRwGG4lJQQ+NSBokeU0EJP02Kq/yTgh3KjND26Xn1+dRTT80zoaZgxjnnnON6jijg8M0339hnn31m++yzT6Fj0XYedthhLqjhadq0qQtubNmyxX2vUlf+51RwRMdEJLzgEgAkOgWDQ5VVBKJN514E0QAAAAAAiS4qgQ1RcKBHjx4ua0Mr8D0qhZTfKqZorWZScEK9KjSZrzJL4dq0aZPLrtCEevCEkib0/YENlW0KRZMDwZHb/CK52l6VngouU6WMieJQH5CtW7e6nh3ePn3iiScCmRaemjVrus+dOnWyUaNGufJQ6omhTIpQgZKePXu6sl4qKaUyYwpuKCOmMKFecwVWxBtfqP0ZaQRcAaVkmZzRvlFQqGrVqmRsgOMCQJHVr1/fLcAAOLcoOTrfZQEOAAClDxU0/r+cnTmWUjY55uSQBIENGTZsmOszoZJLHpUWUqbAH3/8EWi2vXr1areaXxfXxaWG5Apq9OnTJ6KghihbQRPuGRkZrpSTR30fZs2a5ZqeF0bBBDXt9vv000/z9Brx9oWCEP7sD5WJ0u2RZJkEU9mpWrVquQboKiGlyX7tby8b5rfffrMxY8a4YIayOtQ3Qxdc6hOioIp+L5iatG/cuNH1DPEyL1S2Kpzgg7ZH+9br4yFqIq6sGO8YiAZtZzIFNtRTRtvLGyk4LgAUVTK9d6JgnFsAAABEZszyMbZh5Yak323ptdItozt9WFDKAhta3a/ghjIB6tWr525TY2lN8iv4MHToUJclod4LygDQ6vPiUKaFghlHH320y4RQqSOPSl8V1mdDvSCOP/54a968ea7b1QdCTcife+4512y7IOqZoUDOAw884PpzqCn2Bx98EDJoo8dVAEaZBieeeKLLllAARU29w7V9+/bAdmoF/5IlS1x/CmXKKAChwIWCJCoNpmbfytKYNGmS/fjjj678k+h+Xskt3TfURLkCEHoulfg6/PDDXQBJASA9vkcZIV9++WWebBf1EFFTcfUpUfaOmofre5UqY1IeAAAAAAAAiWbtprWWvS071sMA8H/KWpSpfJH6KXi0KnDGjBmBIMCQIUOsffv2btK9uNT7QRP2mnRXvwj/hzIECqKG5gpAaLzBUlNT3RiVuVEYBXCmTp3qsiY0oa/n1e+GKrWk0g/K0FCZKJWDUkP1O++80wVmwqVSUN42KlCgbdfz+8tmqRF5q1atXMNz7XMFMhR48a/QVMBGgYv8Ajd6DQcOHOgasXft2tU1h1egQtkf2nde03htj4IWfgp+qMm46nir7JYCWX379rVBgwaFvZ0AAAAAAAAAAIRSZlekjQ2QyxdffJGnR8ell17qsjKuvPJK9lYJUBktlTNToChZymnoz1QN6ZWJRNYLOC5KsWbNVLsv1qNAKZSZlmbNs7Pdoo7gTFUkJ84tkvdcNd7HVxI43sFxAf5foDhUgl5l3NNGp1l2eTI2mtZpapkDMpP6oOLcIj7OVaOesZFslJXQv39/e/vtt239+vU2Z84cl0WhslQAAAAAAAAAACCOe2xESs2rVUYpPyrtVNSSVR999JErf5SfunXr2qJFi6y4OnTo4PpMqDm3yjSpcfbkyZOtcePGET1O9+7dXS+K/KiPRqgm3wAAAAAAAAAAJJOYBjZ69Ohh7dq1y/fn/kbVkVJgYcGCBfn+XH0nouXyyy93H8Uxffp027FjR74/V98PAAAAAAAAAACSXUwDG1WrVnUfJaF8+fLWoEEDSxTKIAEAAAAAAAAAAHEc2AAAAAAAAACAeNeoeiOrWKWiJbv0WumxHgLgENgAACBepHOCiBKikpbZ2exeAAAAoIgmtJtgzZo1Y/+ZWc7OHEspm8K+QEwR2AAAIB7k5JhlZMR6FCitMjPNliyJ9SgAAACAhLVr165YDyFuENRAPCgb6wEAAACdGaZE7WT7zz//5KQbeY4LAAAAAABKCwIbAACUMjnK/gAAAACAol1QsN98ypQpw/4A4hClqAAAAAAAAAD8/2zyPn3M1qxhj3j96gDEHQIbAAAAAAAAAP4/BTWystgjkpbGfgDiEKWoAAAoZVKi1K8DAAAAAAAgHhHYAACgFNWwVf3XKlWqUAcWeY4LAAAAAABKC0pRAQAQa9SwRUmjLjAAAAAAoBQhsAEAQDyghi1KEnWBAQAAAAClCKWoAAAAAAAAAABAwiCwAQAAAAAAAAAAEgalqAAAAAAAAAD8f+np7A1/v7rsbPYHEGcIbAAAAAAAAAD4n5wcs4wM9oYnM9NsyRL2B5BMpajS0tJs6NCheW5/9tlnrV27dlF7nkceecROPPFEO+qoo+yiiy6yb7/9NuLH0Jg03jlz5kRtXNHe1mnTprkxeh+HH364tW/f3u6++27bsWNHVJ5DY9WYw/HDDz/Y66+/7r5et26dG5M+AwAAAAAAIEGlpMR6BHFl165dsR4CgFj02Fi4cKG98847Jfb4zz//vN1zzz02btw4e+6552zvvfe2yy67LOJ/OosWLbL69eu7x4hnTZs2tbfeest9LF682AWOnnnmGbv++uuj8vhz5861Tp06hXXf0aNH20cffeS+3nfffd2Y9BkAAABAdPz77792+umn23vvvRe47eabb8614Ekfjz/+OLscAAAASaPES1HVq1fPxo8f7wIG5cuXj/rj//nnn3bttdfaCSec4L6/5JJL7IwzzrDff//datasGdZj/Pbbby74MnHiRBs5cqTLRNh///0tHu2xxx5Wq1atwPcaZ/Xq1a1fv3523nnnuSyO4qhRo0aRfi8lJSXXuAAAAAAUzz///OMWMn355Ze5bv/666/d7WeeeWbgtsqVK7O7AQDRLUdF5oZTpkwZjiwgGQMbgwcPthtvvNEeeughu/zyy0Pe5+eff7ZJkya54IL+WXTp0sWGDx8eViCkT58+uYIcTzzxhB188MERTdAvWbLEqlSpYl27drW77rrLBWEGDRqUqzyTSlzp9jVr1tgBBxxgEyZMCAQRFAhRxkRWVpbL+ujWrZtlZGTY8uXL8zzXF198YTfddJN9+OGHLrvhggsuyLUNRdGqVSv3vEuXLg2M6amnnrIHHnjANm3a5G677rrr3EquJ5980h588MFcY3v66afd6/Pyyy+7bdW2d+/e3bZu3eq287XXXnP7dr/99rNhw4ZZhw4dXADo/fffD3zo9VNZrFdeecXdb/PmzXbHHXe473VBpsfVGKpVq+ZWm40aNcouvvhiu/fee91jn3zyye65SiL4BQAAACSar776ygUvQmWiK7Ch6xMWFgEASoyCGpqvWrOGnazm4QCSL7CRmppqV111lU2ePNmlUAdnQii1um/fvtagQQObPXu2y7TwyippIjySEkpjxoxxE+OapI8kmqoyVOrRUbZsWTcBv2DBAhs4cGCux1B/C6V8H3jggW58+lrBg//++88GDBhgBx10kM2bN88FPm644QaXRRHs77//dhklWlml4MY333zjHqtSpUouGFIcGpcucERBi+nTp7vnaNSokdseBVAUuDj11FPd2D/55JNAEES3n3baaXkeU4GGtWvX2sMPP2x77bWXzZw50+3jtm3bus/qZaLSWNp+BUH8FBz566+/7L777nPfK7ilYIgCGbJx40Z76aWX3GPqa93/6KOPtt69exdrPwAAAAClgRYPtWzZ0q655hpr0qRJ4Hadd2/YsMEaNmwY0/EBAJKAghpZWbEeReylpcV6BABiEdiQ888/3zWk1kS5N9HtefPNN92JufpEaDW/KDCg7A6dxGvSPxzHHXeczZ8/3wUXrrjiCvd1OOWkfvrpJ8vMzLT+/fu770855RSX1bBq1Spr0aJF4H4KRihTQXTfq6++2n397rvvusfQ+JX+rQCHsjIULAn2wgsvuPJYymIRXYysX7/eHnvssWIHNvTcKqklChYo2HDSSSe57/V8b7zxhutHotfi2GOPdcEMBTaUWaEMCmXIBFOgQdt6yCGHuO8vvPBC11xdz6NsE5XFqlixoutr4g9sfP755+5CTJkwCqzI7bff7np3KJgjanauwJWya5RJcvzxx9vHH38cUWAjR2mRSUIr9Xbu3Om2mRRIcFyUPirnB+wOeh9JpvdP5I9zi5ITrb+xc889N+TtWsyk80FdV+kcX+fiOmf3l6UCAAAASrtyu2vCRiv2dXK+bNmyPCfmmuD3ghrSrFkzlwnx/fffW3p6eljPUbduXfeh+2tSXVkKV155ZaG/pwDEnnvuaW3atHHfH3PMMW4sCoz4Axv+FVEKImhiXrKzs93kvb+mrVZUhQpsaFJfk/7KcvBf+ERjQkuBBW8M2qcKJKislkfloJRhIZ07d3ZlqoYMGeJKRSlbRsGFYAq26PVS0EZj//TTTwNjLojuW7Vq1UBQw8so0X7Vz1T2S/S8Ho1dr3kkFAgBgESnjLhDDz001sNAktC5FYE0ILHpfFqBDZXHVY+9lStXuixwnU+rvGu4kinISSAPHBfg/0XkOGfMi0VC4Nyi5EVyjrpbAhtesKJHjx4ua0O9FTwKKuS3AeFsiDImateu7U7sxTvJV2+JcCgAoRJRzZs3z/X8yjbQBUKFChXcbcpOyO8ffXDd21B1cEUT9+qHoYyUaFOWiJf1ofGPHj3aPZefF/jQBc/YsWNdE8L8ylCJsjjUN0TN2M855xxXw/ess84qdCz59ckIfgMIvl9++y0/RxxxRNK80WrfbNmyxQWMyNgAxwWAolJPLn9JGyQvzi1Kjs53S3IBjs75lZmtTA1p3LixW8CkrPNIAhssEgIA5IfFV6GxSAiIL7stsCFqPN2xY0fXA8OjVf06Ef/jjz8CJ+erV6+2cuXKuYvvwqgRdr169Wz8+PGBCwllRainRGHUP+Kzzz5zJZFUv9bfqE9lsNSMW43MC6JSShq/P2PCy2wIpm31mmt7E/JqSK6Likj6iQRT03WVtFL/DO951JDdnxGhZt0qpaUG38qYUOmnxYsX24oVK2zEiBF5HlPbs3DhQpetceSRR7rbXn/99bACEHp+TcJrNZkXcNI+1WPqZ+EGnQqjfZhMgQ31gNH2EtgAxwWAokqm904UjHOLxKVzQe+6yaNzbi34igSLhJDsCPCC4wKRYpEQeA+Jr0VCuzWwoYbaCm5oEl/BCGndurXrhaHsgKFDh7pJbzW9VqNxrU4vjMpbqd+F+kEcdthh9sgjj7gMjHB6VihbQxcFykLwZw+op8Q999zjylkVFthQVoT6TSi7Qw2wlQWhnhn+0lqerl27uqbeythQv4p169a5DBavv0c4VALrl19+cV9rO9ULRGWnevXqFSgnpcdTc2+Vz1KmzNNPP+2CGOq74VE5Kr0Ougjyl4zyaH8oQq+Mjho1arggkBc8UsN3UX8NBXW83h7+slNqMK6AidcIfty4ce410r5VTw8AAAAAkbv77rtdVvWsWbMCt2lhl7egKFzJFOgkkAeOC/D/AtGQTO+dKBjnFvGh7O5+wp49e+bqMaF/CDNmzHBfq3G0+j4oq8CbRC+M7qv+HQoYKJjx3Xff2cMPPxxW03EFNhS4CFU6SaWXlM2gxuYF0Sr6adOmufupZJO2pXv37iFLVymjQxkmCgZorAos9OnTJ1fAoTC6iFE/EH0oUKLsl0suucQFDjxq0q2Mk6lTp7oAkTI67r333lx9QpS+rj9C3TcU7RMFTF566SUXBLnllltcQ3eVo1qzZo27j4Ipav7uLy3mufXWW13Aql+/fnbRRRe5zBYFiwAAAAAUnc7j1VdD1wEqifHEE0+4BVlaOAUAAAAkizK7Im1sgFyUraByVirt5Jk5c6Yr2zR79mz2VgmlJKlcmWqEJ0ukXH+mmzdvdplAlKICx0Up1ayZotexHgVKqcy0NGuenW0ffPBBrr5iSF6cWyTWuaoys5UV7pXPXbZsmVvEpAVTyoTXoqZTTjklZuOLdxzv4LgA/y+KqE8fs/9b3JrMMlNTrfmSJZxLI4Bzi5ITybnqbi1FVVopk0HNuk844QSXMfLoo4/aZZddFuthAQAAACgFsrOzc32v3nn6AACgxOTkmGVksIMlM9NsyRL2BRBn4jqwoX4ZWomUH5WRKqhklVY0ef0g8itFVbdu3WKNsWbNmjZlyhRX63bSpEm2zz772Hnnned6f0RCvTbmzp2b789VropgCQAAAAAAAEpckmT1hYNiN0B8iuvARo8ePaxdu3b5/lw9KwqiQMHOnTvz/Xnt2rUtGqKxYkpZHwqI5CdUM3IAAAAAAACgRDM3kjzIQUlwID7FdWCjatWq7qOo1Lw6UdSoUcN9AAAAAAAAAHFBQY1k77WRmhrrEQBItMAGAAAAAAAAgBhSUCMrK3lfgrS0WI8AQAgENgAAiAfp6bEeAUr7KrOg5sMAAAAAACQqAhsAAMRD3dqMjFiPAqVZZqbZkiWxHgUAAAAAAFFRNjoPAwAAiiyKzfh27dplf/75p/sM+I8LAAAAAABKCwIbAACUMjnKAAEAAAAAACilCGwAAAAAAAAAAICEQWADAAAAAAAAAAAkDAIbAAAAQBJKiWJ/HwAAAADYncrt1mcDAABAzJQpU4a9j8CxUKVKlVK9N3J25lhKWYI3AAAUW3p6cu/E1FSz7OxYjwJAEAIbAAAASWLM8jG2YeWGWA8DKHHptdIto3sGexoAgOLKyTHLSPL31MxMsyVLYj0KAEEIbAAAACSJtZvWWvY2VpsBAAAgTJSutF27dnG4AHGIHhsAAAAAAAAAIsvkSBKUcwXiExkbAAAAAAAAACLL5OjTx2zNmuTosQEg7hDYAAAAAAAAABAZBTWyskr/XktLi/UIAIRAKSoAAAAAAAAAAJCcgY20tDQbOnRontufffZZa9euXdSe58knn7T27dtbs2bN7KKLLrIffvghrN9bt26dG+Ndd92V52fTpk2z888/P+Tt+p133nkn5GM+9thj1qlTJzv88MOtdevWNnr0aPvll18CPx85cqT7/enTp+f53a1bt7rfC3ffvPfee+6xvI9DDz3UjjvuOBs+fLj9+uuvFg0arz7CofEvWLAg8L22Q681AAAAAAAAAAAJk7GxcOHCfIMA0fDmm2/a7bffbtddd53NmzfPKlasaAMHDozoMR5++GH7+uuvw96e+vXr55rA9wc1HnroIRs2bJgtWbLEBUG+/fZbu/jii23nzp2B++2xxx62fPnyPL//2muv2X///WeReuutt9zHK6+8YlOmTLFvvvnG+vbta9u3b7fiGjNmjPsIx6xZs9xr4Jk7d64L8gAAAAAAAAAAkDCBjXr16tn48ePt33//tZLw+uuvW5s2beykk06yRo0a2aBBgyw7O9t+//33sB+jdu3aboyF+fTTT+3777+3yy+/3F5++WXbtm1brp/Pnz/f+vfv7zIV9ttvP5dBomyQzz//3D766KPA/Zo3b26fffaZbdiwIdfvL1u2zJo0aWKRqlWrlvvYd9997ZhjjrEHHnjAZYk89dRTVlxVqlRxH+HYtWtXru9r1KhhFSpUKPYYAAAAAAAAAADYbYGNwYMHuwl8ZTLk5+eff7arr77aTcq3bNnSbr755rADIXvvvbetXLnSZVwo20GZFAqmVKtWLewxjho1yj3G888/X2i2RuPGje3UU0+1HTt2uOCGX5kyZeyDDz7INfY6derYiy++6H7PowCEykb5szb0O8q6iEaJLgUUOnToYEuXLg3cpnF1797djjzySOvSpYu99NJL7nbtN5Wx8pfvUpaJxvvTTz/lKkWlwMV9993nxqiSWQooeSW1VHJKX7///vvu8YJLUSljZebMma5kmMagMl8KQHn0O88995ydfvrp7rHPPffcsEuKAQAAAAAAAACSV9QDG6mpqXbVVVe5CfFQE9Wa0FfZpL/++stmz57tSimpJNNtt90W1uNrgvyAAw5wJY80Yf7MM8/YjBkzLCUlJewxpqenu4l0Peeff/4Z8j6a1F+8eLHLDKlUqZK1atXKZWj4XXDBBS6YcMIJJ7hgiSbq//jjDzvwwAPzZC5o0t8f2FC5roMOOsj22WcfiwY9lldeS9kbAwYMcIGNF154wZXGUrBCwQ6NTUEMfxBEQY+mTZu6AIyfgkaPPvqoTZgwwZXaUskvldtSJov2/4UXXuh+TwGaYPfcc48r+aWeI9pvCj5pHP5yWXoslb1SMGTTpk3uWAAAAAAAAAAAoCDlrAQo+KDJak2IK8AR3CNDGR0KSHhZFjfccIMr93TNNde4IEJBNm7caP/884/dcccd1qBBAxfUuPbaa11/hz333DOizBJN1k+ePNk9f7BVq1a5DAZlQsgpp5xi119/va1fv95N0ku3bt2sevXqbvJfAQRtc/ny5e2KK65w2+Onx7n//vvdxL76gqgM1cknn2zRovJRXqmsjIwM11T8vPPOc99rP61Zs8aNs0WLFta5c2eXfaLAhBfYOPPMM/M8pgIdkyZNckEdOeecc1zA4ssvv7TDDjvMbYf6h6gsVnBQ6PHHH7chQ4a4jA256aab3PYqS+bss892t6mMl/+xNe5I5OTkWLLQPlUWjLZZmUIAxwX4f4FIJNN7JhDrY5+/NwAAACBBAxvKnrjxxhtdVoQm8P2UVdCwYcNcpaPUm0JlpdTPQtkUBRk7dqwLMqi8ktx555124oknukbakTSurly5ssuyUONvZTYEW7RokQtgqISUaIJeARBlZShw4VG2hj62bt1q7777rutzocwDZVD4AxfKklAAQNkNCnIoe+PJJ590WRTRoOfXNomaib/66qsum8KjUlrqSSLaTwroKMCk29UTpGPHjnke89hjj7UPP/zQ7WO9bgqOKBvE3xg9lN9++81lrhx11FGB2xQAUckpf9N2BVw8GrvGEomPP/44ovsDAJCsdI4FJCOVQlWmOAAAKAGFzOGVGqmpOqmI9SgA7I7Ahhes6NGjh8vaUAkiT6isCm9VUzirm1QG6bLLLgt8rwwPTZArkyJSylxQpoeCMMcff3yu8SibQ+WRvMCGaELfC2wom0PZKCqlpCwNTcwrYKEAiDISVqxYkScjwytHpfJT6otRv379qAU2dNF28MEHu68VJFLgx7+fpFy5/73canR+xBFHuKCTsl+UxRGcdSFz5syxiRMnWq9evVwwacSIEa78VmHyy5zRfvUHRRTsKA5tQyQlyBI9Y2PLli1WtWpVMjbAcQH+XyBirCBHsvJ6we3uvzcW4AAASj3N4UVYeSNhZWaaLVkS61EA2F2BDVE2hDIB/I3ElTWgZtVa0a9G4LJ69Wo36a6J/sLUrl3brfpv27ZtoGfHunXr3GR9USgLQ0GA33//PVBiSv0v9L16QCi7xPP222/bLbfcYpmZmS6Yool/BUS8clWiMkEKcihwEUxBD5VnUvmqaJah0r5UkELltbx9nJWVlSsjQv0utK+8YIeyNtTbROWrzjjjjJCPq4wS9dXwAlOaWFc2hibZvW3NryyWgjd6Xb0m6srGUFCqdevWUdtuBTWSKbBRtmxZt72UogLHBfh/gUgly/slEIxjHwCAEpJE55fePBiAUt483E8T+Apu+LMpNLG9//772/Dhw12Wgco3qf/C6aef7lajF0bZA8qUUKkllVxS3wtlbSgboigUBNDEvX+MKkOl7AdlKRxyyCGBD5XWUjBGTbVr1qzpMjPUHFsBAJV40MT93Xff7VZoKVsl2NFHH+1WcD399NPFCmyoHJQ+lDWiIIx6ZagfhvaNaJyffPKJKzelIJL6f9x1111Wt27dwGOcdtppLltE99N25vf66fHXrl3r7qceKApQKEAie+21l+t5osBSsH79+tnUqVNdhooCUXqdlB0SSbkwAAAAAAAAJKhS0ueNBaZAEmZsSM+ePW3evHluAtxbNaWG3wpm9O7d2wUllDGhTIZwXHTRRe7zzTff7DIV1Edi1qxZETUOD6YshoULF7qvNWm/dOlSGzRoUJ776TnUj0Plq1SCSkENZXk88cQTLpNDWScKXqhxtj+I4NHPlWmijI/CeokUpE2bNoFSTnXq1LGTTjrJNSv39oHGpOCPGqwrWyY1NdVGjhxpXbt2DTyGblPPC/2OAhihaPv0oYwOBXIUDFEwQ702RMEZ9RRRSS8FMPwUbFHfDwU09Fmv0+zZs0NmsgAAAAAAAKAUZnX06WP2f/NICd1jA0DcKbOLfCokGGW9qMxVkyZNkqa8gP5MN2/ebNWqVWOlADguwP8LRGzVqlWup1ba6DTLLk/jQ5R+Tes0tcwBmTF57ng/V4338ZUEzqXBcQH+X8RQs2ZmWVkJfRBmpqVZ8+xsV/mkefPmsR4O4gDnFvFxrlqipagAAAAAAAAAAAASqhRVJB555BHXlyE/Klk1fvz4kD9TU2t/E+9Q1FA7Xr300kuuXFR+FBGeOXPmbh0TAAAAAAAAAADxJq4CG2q4XVAT8MqVK+f7M6+pd6JS34yCxl+hQoXdOh4AAAAAAAAAAOJRXAU2qlat6j6KQjW3GjRoYIlKTdT1AQAAAAAAAAAA8kePDQAAAAAAAAAAkDDiKmMDAAAAJadR9UZWsUpFdjFKvfRa6bEeAgAAAIASRGADAAAgSUxoN8GaNWsW62EAu0XOzhxLKZvC3gYAIJbSS8Fig9RUs+zsWI8CQBACGwAAAEli165dsR4C4uhY2Lp1q1WuXNnKlCljpRFBDQAAYiwnxywjwxJeZqbZkiWxHgWAIPTYAAAAAJJQjiYbAAAASkpK6cicZHEQEJ8IbAAAAAAAAAAAgIRBYAMAAAAAAAAACpAo5TvVZwxIBvTYAACglEkpJSnfAAAAABAvxiwfYxtWbrB4ll4r3TK6l4K+JkAYCGwAAHYv1XRn4r1EVxFVqVKl5J4ACSlRVpcBAAAA8WrtprWWvS071sMA8H8IbAAAdi8FNfr0MVuzhj0P7C6pqexrAAAAAECpQWADALD7KaiRlcWeB3aXtDT2NQAAAACg1KB5OAAAAAAAAAAASBgENgAAAAAAAAAAQMIgsAEAAAAAAAAAABIGgQ0AAAAAAAAAAJAwaB4OAAAAAAAAAAVoVL2RVaxSMa73UXqt9FgPAYjPwEZaWpqdfvrpduedd+a6/dlnn7Xp06fb8uXLozq4559/3ubMmWOzZ892369bt87at28f8r6PP/64HX300QU+nsY5atQoe/jhh61169a5fnb++efbMcccY1deeWWe2z/++GN76623rHLlyrl+tnXrVrv77rvtpZdest9//93q1q1rXbt2tUsvvdTKly/v7tOuXTtbv359yPG98cYbdskll9iZZ55pt9xyS6H7Y9q0aW4/e/bYYw9LTU11z3nFFVe474tL4x00aJB179690Pv+8MMP9s0339gJJ5wQeG1eeeUV22+//Yo9DgAAAAAAACBeTGg3wZo1a2bxLmdnjqWUTYn1MID4K0W1cOFCe+edd6ykvfvuu3bDDTfkum3fffd1AQb/hwItRxxxhDVp0iTsxx4/frz9+++/hd5vw4YNlpWVZTVq1HDBi2AjR460NWvW2JQpU2zJkiU2fPhwe+aZZ+zWW2/NdT8FHEIFfZYtW2ZlypSxSDRt2jSw7YsXL7ahQ4e657z++ustGubOnWudOnUK676jR4+2jz76KNdro88AAAAAAABAabJr1y5LBAQ1kCwiDmzUq1cv7MBAUSkrQZkM+++/f67bU1JSrFatWoEPZQwo4KBAQrjZCtWqVbNff/3VHnjggULv++KLL9ohhxzishgWLFiQ62d//vmnC0yMGTPGRWuVpdChQwcXaFBwYOfOnYH7tmjRIk9gQ/8MdVskARnRdnrbr/2jIMQdd9xh8+fPt08++cSKS0GcChUqRPx73mujzwAAAACiQ9ddWsz13nvvBW7TdVC/fv3ctYSuB7TACAAAAEgmEQc2Bg8e7DIZHnrooXzv8/PPP9vVV1/tSju1bNnSbr755ogCIW+//bZ7/FNOOaXA+6kkVu/eve3AAw8M+7FVTkpjU2Dj+++/LzQ7ReWjTjrpJFu5cqUrt+RRpoU+VqxYket3NGYFGfyZGCeeeKL73a+//jpw2+rVq12QpWHDhlZcrVq1svr169vSpUsDtz311FMuIKMMD5XTys7Odrc/+eST7na/p59+OrCv9TOV7PJKbal0lx7/8MMPt44dO7pgjpet8v7777sglB5f26dSZd4+2rx5s8siOe6446x58+Z27bXXuttEF2V6nieeeMKOP/54d0Gmn5dksAwAAABINP/8848NGTLEvvzyy1wLpAYOHGj77LOPzZs3z8444wxXSvbHH3+M6VgBAChxOTkx2cmRVlsBEKfNw9XT4aqrrrLJkye7lUPBWRWanO7bt681aNDA9cZQ7wmvTNJ1110X1nNo8l38q5KCrVq1ygUH7rrrrkg3wfr06eOCD8o8mTlzZsj7KOihDAhNuGtiXgERZW3ookH0vXpj3Hbbba4PiPpMaBJfQYADDjgg12NVrVrVPYYyNLwgjIIQyvBQkCga9Lhe4ETPo4DDTTfdZI0aNXLjvuCCC+zll1+2U0891QWatG0KVohuP+200/I85oQJE2zt2rWuJ8lee+3l9pUyVNq2bes+f/vtty5wMmDAABcE8dN++uuvv+y+++5z3994440uGHLvvfe67zdu3OiybfSY+lr3VxBJgapw5cToDS0WdAGrLCBtM2+oSPTjgswuIHb0/yKZ3j9R+t5DEkG0/sa++uorlw0eXPZCJXuVsaGFTBUrVnTXASoVrCBHcL9AAABKFVUJ6dPHbM2a3fu8qam79/kAlExgQ7RCX6v6NfHtTVx73nzzTTdZr74PykgQ9cq4/PLL7ZprrrFKlSpZNOjxTz75ZBdoKcqkmibazz77bNcbQ5kIobI19t57bzfZrvsr6+K5554LBDZEAYL09HR3ETFr1iz3oZVT2i+6v58aa+u5VGJL1GRbJaQyMjIsGhRo+e2339zXChYo2KBMEy/LRo3K1Yxdr92xxx7rghkKbCiLQgEk9QcJpm3v37+/K8clF154oQvi6HnUS0NlsXQxpf3kD2x8/vnnLptD26vAitx+++0uTV7NxmXHjh0u0HXwwQe7TA9lbqhJeySBDd0fQGJRkPTQQw+N9TCApKWFGwQXgcSg82llv+sayl++9sMPP3TvpToP92gRlRZ9AQBQ6imokZW1e58zLW33Ph+AkgtseIGBc889N1CayKOsAZVX8oIaoh4U//33n7uYViCguPRYCgwoW6KojjrqKOvVq5dNmjTJTaoHW7RokQtOeBf/KtX0wgsv2AcffOB6ZkjZsmVdoEAfCuYoePDII4+4jBZlZPiDLgpsqBeIMlj0obRyNT2PFgUWFNzwXgMFEvzZLHo+ZVhI586dXSkupbVrPyq7RsGFYN26dXOvr4JICkh8+umnYa1C032VpeIFNUQryXRM6GdVqlRxt+l5PRq7XtdIaP8ly+SMVupt2bLF7VdWVYLjAkBRqXRlpP29UDpxblFydK4cjQU4utYK5ZdffrHatWvnuq1mzZquHDAAAACQLIoU2PCCFT169HDZCRdffHHg9j333DPPfb2J8GilZWs1kibBW7duXazHUWq3AhDTpk3LdbsyDpT6rUl4BTP8VNZJgQ1lOWRmZrpMFFEQQ4ESZZGoLJV+5i/vpObiBx10kL322muu9JLKUEXTF1984QIR3n4ePXq0K4vl5wU+NMaxY8e6Wr35laESZXFkZWW5ur3nnHOOaw5+1llnFTqW8uXLh1X+Ivh+wWn2hVFQI5kCGwqkaXsJbIDjAkBRJdN7JwrGuUXiUrnX4PNofR9pv7pkKktH6TVwXID/F6VDrM9jKesKD+cWJSeSc9QiBzZk2LBhroyTv5G4VukrM+CPP/5wJYq8QES5cuXcKsFoUPr1YYcdFjKIEgllEGjyXiWRVEJKzc7lxRdfdCvj1SNEk8keld1avHixu79KOM2YMcN69uzpJvw9SgnXP9oaNWrkeT5lbSiw8dNPP7mgSrSopu769etd/wzvNdCKLX9GhJqAK5iiMShjQlkq2hY1Px8xYkTIDBCV41K2xpFHHulue/3118MKQOj5lV2gwJDXb0SBIj2mfrZp06aobTsAAACQTHQNpGstPwU1KlSoENHjUNYVAJBI4qGsMWVdgfhSrMBG9erVXXBDE/316tVztymLQg3FFTDQ5L0msdXEWo3GFSyIBmUaeE24i0sNwOfOnetKTPnLUHXp0sUaN26c6779+vVzP1N5JgURNAb1oFBJJ/WhUDDh0UcfdZP36k8RTEEF9eHQxUion4dDvSmUfi5///23a6KuslPKFvHKSWlMau6tkmDKrHn66addEEN9NzwqR6XXTYEHf8ko/6ovvWkoo0NBGjURV7N18VaDKYijIJbX28Oj/aIG4wqYeI3jx40b57ZZ+6mgpvAAAAAA8qdMcS0a8vv111/zlKcqDGVdkewoyQeOC0SKsq7gPSS+yroWK7AhylhQ82yVVxJlKyiTQcEMNYJWs3AFCTT5Hy06cY9Grw6P+oUowOFll6xbt85tVzBlLihTZP78+S5QoyDF1KlT3bYq2KAMEGVF6Ht/podHzboV3FGJqKKmz6k0VJs2bQKBBZW4UkNy9fnwqEm39pHGps8qgXXvvfe6QIdHjcV1Iqf7hqLAhgIm6guizBU9j8puTZkyxdasWeOCFwqmqOSVSpEFl/PS76m5uoJB2lYFdZQ1AgAAAMCK1StQ/fK0yMnL0tBiJzUQj0Qylaaj9Bo4LsD/C0RDMr13omCcW8SHMrsibWwAxEHkTgEoNT9NljcU/Zmq/JmCZ/TYQKk4Lpo1+3/t3QmcjfX////XIEUoCUVICyZkT5ZsRSXbJ5RPlHaVFpVdq62k0k/0SdlS0yalPgolJUpaZpSkiSJb2bOUJeP8b8/353+d75kzZzgzc2bmnDmP++12zMxZrnNd17nMvK/r9X69XorU5vdaAHEjuXp1a5Ca6jJUs3rxEwVTTP8NicOxqjKzZ8yYYY0bN3bL79Spk8uEvuOOO+yTTz5xk5iUWV6hQoV8Wb9ox/EOjgvw+6IAyYdzScbSCMbYIvdkZaya44wNAAAAAEDe8DLkVXr2yiuvdH31Jk6cGFZQAwCAmBfBCi5hK1/eLDU1798XQPQENqZNm+bKI2VGJau8Pg5ZNX/+fBs8eHCmj2t24uTJky1ajRo1yvX6yIz6Y9x22215uk4AAAAA8l9q0MUUBTNeeeWVfFsfAADyRVqaWVJS3r9vcrLZvHl5/74Aoiew0bVrV2vTpk2mj5coUSLby1bfidmzZ2f6uFd/Nlqpf0WvXr0yfVxlAgAAAAAAAIC4lE8lFKniD0SnPA1sqHG2brlBTcp1i1WnnHKKuwEAAAAAAAAAgMzRYwMAEB91UYF4Rl1gAAAAFMTSVHmQxZGQkJDr7wEg6whsAADioy4qEM+oCwwAAICCRkGNnj3NVq3K/UlCAKIOgQ0AQFzURY0Xqv+6b98+17eKmUUIPC4AAACAAkdBjZSU3H2P6tVzd/kAsqVQ9l4GAACiVZqyYgAAAAAAAAooAhsAAAAAAAAAACBmENgAAAAAAAAAAAAxg8AGAAAAAAAAAACIGQQ2ACCGFaYRNzguAAAAAABAnCGwASD60Qg5pISEBCtZsqT7CnBc4Gj4PQEAAAAAKEiK5PcKAMAxKSuhZ0+zVavYWQCQHeXLs98AAABQ8CQm5s1YOjU1998HQJYQ2AAQGxTUSEnJ77UAgNhUvXp+rwEAAAAQ+eoOSUm5v1eTk83mzcv99wGQJZSiAgAAAAAAABBb8qjnpM/ny5P3AZA1BDYAAAAAAAAAAEDMILABAAAAAAAAIDbLUeWyhISEXH8PAFlHjw0AAAAAAAAAsVmOqmfP//XlzM3m4QBiO2OjevXqdv/992e4/+2337Y2bdpYpL333nt27bXXZrh/+vTpdtFFF1m9evVs6NChtn///rCWt2zZMrcNb7zxRobHBg8e7G6h7tdr1q9fn+Gxf/75x5599lm7+OKLrVatWtaqVSt77LHHbN++ff7naP31+tmzZ2d4/S+//OIeC7WNoWg/6/nerWbNmtaiRQsbOXJkuvfMCa2LtikcO3bssLlz5/p/1jppHwMAAAAAAAB5QkGNlJTcu61dywcJFIRSVHPmzLGlS5dabvvyyy/toYceynD//PnzbcKECTZ8+HB76aWX7LvvvrOxY8dmadlPP/207dy585jPO3jwoH300UdWuXLlkIGJJ5980j788EMXWJg3b54Lanz++efWv3//dM877rjjbOHChRlev2DBgiyns5122mm2ZMkSd9N7jxgxwj777DO744477MiRI5ZTCmrceOONYT1X279o0SL/z1onBZsAAAAAAAAAAIiawEbFihVdUOHQoUO5s0ZmLnBxyy23WKVKlTI8NmPGDOvdu7e1bt3azj//fHv00Udt1qxZYWdtyIknnhhWMEQX7RWUuOaaa1xgw+fzpXv8nXfesXvuuceaNGliZ5xxhvv6yCOP2CeffGJbt271P69hw4buon/wPlNgo27dupYVhQsXtrJly7qbPouWLVva888/b99++60LwuTUySef7PZPOIL3h9apaNGiOV4HAAAAAAAAAAAiFtjo16+fbdmyxaZMmZLpc/744w93wf+CCy6wxo0bu4yGrARClPWg5bdr1y7d/WlpabZixQoXKPAoMKCSUD/99FPYyx82bJgLSigYcKzsFL2XgiibNm2yr7/+Ot3jyrZQZklgpoQyFt5//30rXbp0uvuOP/5491yP9uFvv/3m9k9OnXXWWW49AwMb+r59+/ZWp04d69atm3311VfufmV36L7AQJCCLvXr17cDBw6kK0Wlz0xZKCr7pbJXKjfmlfHSc7QPdfPKkAWWolK2i4JHCrzoM7rtttvs999/d49t3LjRPVcZJ5dcconVrl3b+vTpY3/++WeO9wUAAAAAAAAAoGDLcvPw8uXL2913323jxo2zDh06ZMiq0MVwZVRUqVLFXn75ZVfy6cEHH3SPPfDAA2G9x2uvvea+Bvdr2LNnj7tgXq5cuf/bgCJFXJaBginhUk8MBSuUXaEL81pGsL/++stlbKgc1plnnmlnn322e66CNZ7rrrvOxo8f7zIvdAG/adOm1rx5czvnnHPSLatQoUKu/4bKUaknhug1ChiEeu/s0HsmJye77xXkGTRokMtmUVaLtkMZMOpZonUsVqyYC3Bceuml7vkKMCg4ccIJJ6Rb5gsvvGCffvqpC2KUKVPGbb9KX2n/qVyVeoRIqJJhDz/8sFufMWPGuM9HZatULkvZNR5lmqgsmDI/br/9dps2bZrde++9YW+zAl3xQvtIATRtc1bLlxUEylQCAOSc/o7E099PZC7exxa5if9jAAAAQO7L1lV1zepXI+tRo0a5i9OBFi9e7LIR3nzzTTvppJP8F7514VoXrcMtcxSKMgokuNyRfs5qaSwFWa644grXp+Omm27K8LgCD8oEUQBE2rZt6wI12hYFBqRv374usPPqq6+67X399dfd9ikjpGvXrumWp2CAggIKpsjHH39sV111la1evdoioUSJEi4YI8p20bI7duzoD8Ao20QBIzVDVyaMghkKbOjES9uqrJpgNWrUsAsvvNBfLktZFxMnTrR169a5DBEvEHLKKaeke93u3bvt3XfftRdffNG9XhTYUHBH2ThVq1Z19ylApsCLaF2VjZMVWX0+YpP+v5133nn5vRoAUCCsX7+eYDEAAAAAID4DG5o9rQv06j2hi+KBNItfGQ5eUENU5ujw4cPuZDoxMTHbK6tyThIcxNDPXrAhXOpPoQwC9fNQgCOYyklpvb2L9goGKIijgEDnzp39z+vUqZO77dq1y5V0euWVV1xgQ6WWatWq5X9es2bNXKmllStXumDI8uXLXSZEpAIbCmoouOF9BnPnzvWXjRIFaZRNItpebbv2W0pKSrrHAqlMlAIRjz/+uP3666/2448/hjULTYEPzQBUySuPsjYU0NC6eYENZfV4tO5aj6xQCat4mcmvWZXKWCpVqhSzKgEA2Va5cuUs9/dCwcTYIvd45XMBAAAA5J5s10HSRX9lJShr4+abb84QfAjkXQjPaVq2Lo5r+du3b3eloUQBEwUM1Lg6q2644QbXFFzbEJhJoiDFF1984ZYdPFNcz1dgQ+We9L0yIEQ9NZR1oCwIBUHUTyMwsKHAi8pAqRyVAj8qaZWT7JVgqampdu655/r3s0pPdenSJd1zvAyLRo0aWfHixd02KsNGAYxQTb9VbmzmzJl25ZVXumWpvJTXT+NoQh0D3noF9iNRY/acUFAjngIbKmmm7aVcBAAgu+LpbyeOjrEFAAAoMHIwiTos5cvrwlvuvgeALMtRg4f+/fvbZZddlq6RuGbja8a+gg0KRIiyE9RLQrMEc0IXdjVLX02/vabb3rJVNimrdGFdF+tVqkkZHF7/DGVl6AJ8UlKSlSxZ0v989ZiYPn266+ehi/TqCaFsjcDghwIECiAEl2fyylGpbJX2g0pbRYr29zfffGPPPfec/zNQg+7AjIgnnnjC3d+9e3e3H/W5qX+GbqHKUIlKaykz5/LLL3c/r1mzxn8iLLrA7n0fSBkp+kz02aiPiBcsUrN0L1sDAAAAAAAAyBFNok5Kyt2dqJ628+bl7nsAyLJClgPKUlBwY9OmTelKLunC9sCBA10WgTIX1FtCjcZVRienVP5KgRSVwPr+++/dhXf1k8hqKSqPAiQKTgRuw5w5c9wF+QYNGli1atX8t+uvv94FBdQ/ombNmq5nhEo6/fe//3WBBF3IV6BEJZ6UtRFM/Tq0T1SyyuvdkVUKqGzbts3dNm/e7PaDsjOaNGniX6bW84MPPrAZM2a48l8KxuimTBGPylFpO9SM3euDEUyBqU8++cQ2bNjgAif6TANLgWmfa7+pp0ogZaIogKLPXQ3gld0yYMAAO+2009zxAQAAAAAAAORYHmQjh5rUCyDGMzakW7duNmvWLNu6dav7WeUNlDmgi9oKOOgit0o03XfffZFYX3dBXhfT1cTbCyDoonlODBo0yGUuiC7S6yL++PHjMzyvfPnyLutCmRt9+vSxZ555xvXdUJ8OBRlU3km9KtRnw+t3EahMmTKuWbayGUJldIRD2SJePwyVfKpQoYLbv4HlwFQ7Wxka6uGhr8oQeeqpp1wJqsDnKDClAI7WJ5TRo0e7wJH2ubZdwQp9vqtWrbIWLVq4klxqoK7AkAJYwft0zJgxrkG4PieV4VJwJVTJKwAAAAAAACCa5XZp8LQjaVa4EGVjgXAl+Ag7IsYoa0XZMQrOxEudcP033b17t5100knx22Ojfn2zlJT8XgsAiEnJ1atbg9RUN3lDGakAY4v4HatG+/rlBo53cFyA3xfICZXEb9iwoV029jLbUjJ91ZJISSybaElX5nJJLUQMY4voGKvmOGMDAAAAAAAAAAqytbvWWupfNBEHokWeBjbUbDtUiSePSioNHz48W8tWv43evXtn+rhKNr3//vsWrXJz3wAAAAAAAAAAUFDkaWCja9eu1qZNm0wfD9WXIlw1atSw2bNnZ/p4Zn0kokVu7hsAAAAAAAAAAAqKPL3aX6pUKXfLDWpKXaVKFYtVublvAAAAAAAAAAAoKKI7jQEAPImJ7AsAyK7y5c1SqQcMAAAAACgYCGwAiH5paWZJSfm9FgAQu5KTzebNy++1AAAAAAAgIgpFZjEAkIsKF2b3huDz+Wzv3r3uK8BxgaPh9wQAAAAAoCAhsAEAMSxN2SwAxwUAAAAAAIgjlKICAAAAAAAAgKOoWrqqFS9ZPFf2UWJZ+ooCWUVgAwAAAAAAAACOYlSbUVa/fv1c20dpR9KscCFKcQPhohQVAAAAAAAAAORj3zqCGkDWENgAgBhWmMbq4LgAAAAAgFyXkJCQq9kaALKGUlQAMlJDai6Yx8SgqmTJkvm9GogyHBfI7LgAAAAAkH3DFg6zLV9vyZX+GklXJkV8uUBBR2ADQEYKavTsabZqFXsHAAqC8uXzew0AAACAmLZ211pL/Ss1v1cDwP+PwAaA0BTUSElh7wBAQVC9en6vAQAAAAAAEUOPDQAAAAAAAAAAEDMIbAAAAAAAAAAAgJhBYAMAAAAAAAAAAMQMAhsAAAAAAAAAAKBgBjaqV69u999/f4b73377bWvTpo1F2nvvvWfXXnttuvsOHTpkY8aMsRYtWlijRo2sb9++9scff4S1vGXLlrlteOONNzI8NnjwYHcLdb9es379+gyP/fPPP/bss8/axRdfbLVq1bJWrVrZY489Zvv27fM/R+uv18+ePTvD63/55Rf3WPA2Zkb7Wc/3bjVr1nT7YeTIkeneMye0LtqmcOzYscPmzp3r/1nrpH0MAAAAAAAAAEDUZGzMmTPHli5darntyy+/tIceeijD/ePHj7cFCxbYk08+aa+99podPnzY7rzzTvP5fGEv++mnn7adO3ce83kHDx60jz76yCpXrhwyMKF1+PDDD11gYd68eS6o8fnnn1v//v3TPe+4446zhQsXZni9tiMhIcGy4rTTTrMlS5a4m957xIgR9tlnn9kdd9xhR44csZxSUOPGG28M67na/kWLFvl/1jrVq1cvx+sAAAAAAAAAAEBmilgWVaxY0YYPH27vvvuuFS1a1HLDhAkTbNKkSXbmmWdmeOydd96xYcOG2QUXXOB+1oX9iy66yH777beQzw/lxBNPtLFjx7pAxNHoor2CEtdcc429/PLLdtddd6ULRGhdRo8ebU2aNHE/n3HGGfbII49Yz549bevWrVauXDl3f8OGDd1Ff2WbBO4zBTbq1q1rWVG4cGErW7Zsus+jUqVK1rFjRxeEufTSSy0nTj755LCfGxxMClwvAAAAAAAAoKCoWrqqFS9ZPOLLTSybGPFlAvEgyxkb/fr1sy1bttiUKVMyfY5KQ91zzz0u+NC4cWOX0aCL+uFS1oOW365du3T3KyNBAYmmTZtmeM3evXvDXr4CIwpKfPvtt8fMTlFQonXr1rZp0yb7+uuv0z2uIIcySwIzJZSx8P7771vp0qXT3Xf88ce753q0DxWM0f7JqbPOOsutpwIbHn3fvn17q1OnjnXr1s2++uord7+yO3Tf/v37/c9V0KV+/fp24MCBdKWo9Jkp+KPAkcpeqdyYV8ZLz9E+1M0rQxZYikrZLvqsWrZs6YI3t912m/3+++/usY0bN7rnKuPkkksusdq1a1ufPn3szz//zPG+AAAAAAAAACJtVJtRltwnOeK3pCuTLO1IGh8YkNsZG+XLl7e7777bxo0bZx06dHDZAoF0Mbx3795WpUoVl+Wgkk8PPvige+yBBx4I6z1UYkqC+zUUKlQoQ1BjxowZLoigC+XhUk8MBSuUXaEL80WKZNwNf/31l8vYUDksZYKcffbZ7rlepohcd911/tJYuoCvdWvevLmdc845GdZb/TdUjko9MUSvUcAg1Htnh94zOTnZff/TTz/ZoEGD7NFHH7Xzzz/fbcctt9ziepZoHYsVK+YCHF52hwIMCk6ccMIJ6Zb5wgsv2KeffuqCGGXKlHHbrwwZ7T+Vq1KPEAlVMuzhhx9266N+KMoCUdkqlcuaNWuW/znPP/+8KwumzI/bb7/dpk2bZvfee2/Y25yWFj+/9LWPFEDTNme1fFl2KDMIAFDw6O9IPP39RPSMLeIJ/8cAACiYslIGP6sKF+I6DJBV2bqqrln9amQ9atQod3E60OLFi102wptvvmknnXSS/8K3LlzrorXKQEWKggNTp051F/CzWhZLQZYrrrjCXnrpJbvppptCLlvNwRUAkbZt27pAjbZFgQFR43IFdl599VW3va+//rrbPmWEdO3aNd3yFAxQUEDBFPn444/tqquustWrV1sklChRwgVjRNkuWrbKU3kBGGWbKGCkZujKhFEwQ4ENnXhpW5VVE6xGjRp24YUX+stlKeti4sSJtm7dOpch4gVCTjnllHSv2717tytV9uKLL7rXiwIbCu4oG6dq1aruPgXIFHgRreuKFSuytM1ZfT7Co+P7vPPOY3cBQAG0fv16gtdAAaEMbfUaDKTxvSZeAQAQtzSJJ8KTNZkEAhSgwIZmc+sCvXpP6KJ4IM3iV4aDF9QQlTlSk2+dTCcmRqZunN5XZbF69epl3bt3z/Lr1ZtCGQTq56EARzCVk9J6exftFQxQEEcBgc6dO/uf16lTJ3fbtWuXK+n0yiuvuMCGMkhq1arlf16zZs1cqaWVK1e6YMjy5ctdJkSkAhsKaii44X0Gc+fO9ZeNEgVplE0i2l5tu7JrUlJS0j0WSGWiFIh4/PHH7ddff7Uff/wxrFloCnxoBqBKXnmUtaGAhtbNC2woq8ejddd6ZIVKWMVLZoFmBezZs8dKlSrFH1QAQLZVrlw5y/29UDAxtsg9GivnxQScNWvWuElYmjzlUflbAADimq4T9exptmpV5JZZvnzklgUgYrJdB0kX/ZWVoKyNm2+++aiDae9CeKTSshV0GDhwoPXo0cOGDh2a7eXccMMNNnv2bLcNgZkkClJ88cUXLhgTPHNdz1dgQ+We9L0yIETlsJR1oFlSCoKon0ZgYEOz4FUGSuWoFPhRSatIZq+kpqbaueee69/PKj3VpUuXdM/xMiwaNWpkxYsXd9uoDBsFMEJlvKjc2MyZM+3KK690y1J5Ka+fxtFkdkKl9QrsR6LG7DmhoEY8BTZU0kzby0wBAEB2xdPfThwdY4vYpwlD1apVs7Jly+b3qgAAEF0U1EhJidzyslD+HkAUNw8P1L9/f/v777/TNRLXbHzN2A9sBK3sBPWS0CzBnFq6dKkLavTs2dPfuyO7dGFdF+uVheE11xb9rAvwSUlJLnjh3dRXQgELNUfXRXr1hPCyGDwKECiAEFyeyStH9cknn7gyVCptFSna3998841ddtll/s9ADbqVEeHdlL2hvhqiC+R6rvpnaF1CZayISmtpH+tzViNyr+G4V1MwswvsykjR563PPTBYpGbpXrYGAAAAgOzzMuUBAACAeJSjztXKUtBFb/WrUGknr+SSLmwr+HD//fe7C9pKj1ajcZXRyQllUChDQxkHykjYtm2b/zGVvspqnw1p3LixKyWlxtqeOXPmuMbeDRo0SPfc66+/3jUrV/+IPn36uJ4RKumk7axXr55t377dNdhWiSdlbQRTqrgCKSrJFarhdjgUUPG2W6WbFFhRg+4mTZr4+4FoPRX4Uakmr2n59OnTXT8Rj4IZylhREMbrgxFM5aMUiFHmifqmjB492t2v7fOyUFRKS4+pqbxHmSgqD6bPXTd9Nuqxcdppp7njY+vWrdnadgAAAAD/m2i0du1aVwp30qRJ7hxBE5fUwy7cc6J4anKu/aWJa9pmsp/BcQF+XxRsuZmdrL8j8fT3E5ljbJF7svJ/LEeBDenWrZvNmjXLf7Fav0Cee+45d0FbDax1kVslmu67776cvpX98MMPtnnzZncL7gmhgIOCFNkxaNAgl70gukiv7IdQTfd08V5ZFwpeKLDxzDPPuL4b6tOhdVJ5J62X+mx4/S4ClSlTxjXLVjZDqIyOcChbxNt2lXyqUKGC27+B5cBUO/uJJ55wPTz0VZkyTz31lAsIBT5HgSkFcLQ+oSiQoV4qCoJo2xWs0Oe7atUqa9GihSvJpQbqCgwpkyV4nyrgopMrBUJUhkvBlewEnwAAAAD8H517KJtaY2udkyhbe+TIkXbgwAE36SwcedEHBACAvKQJuMEl5SNJE5Up6wpEjwSfV1cIiKHIncpcKTgTL39Q9N909+7dLvslz2aZ1a8f2ZqUAIB8k1y9ujVITXWTN4IzUhGf8mVsESfyaqyq0r+Bn9/8+fNtwIABlpKSctT39dZP2d3xNJbes2ePqyDA8Q6OC/D7omBzf9sifD3DG0svW7aMsTQcxha5R2NVTcAJZyyd44wNAAAAAEDeUtnYQGeffbYdPHjQBazCyQ7XiWI8BTbUZ1DbS2ADHBfg9wWyK57+duLoGFtEhzwNbKjZdqgSTx6VVBo+fHi2lv39999b7969M31cJZvef/99i1a5uW8AAAAAFByLFy92vQ5VTldlN0TlYhXsyG7JWwAAACCW5Glgo2vXrtamTZtMHw/VlyJcNWrUsNmzZ2f6eGZ9JKJFbu4bAAAAAAVHvXr1XL899dNQz7sNGza43nqBffcAAIhbiYmRXV758mapqZFdJoAcy9Or/appqltuUOO8KlWqWKzKzX0DAAAAoODQpKcpU6bY6NGj3QSpE0880Xr06EFgAwCAtDSzpKTI7ofkZLN589i3QJSJ7jQGAAAAAEAG5557ritnCwAAAuRCDwz1UwAQfQhsAMib1E0AQP4hfR4AAAAAUIAQ2ACQN6mbAID8Q/o8AAAA4uV6RoSzNhISEiK6PACRQWADQJ6kbsJyJR123759rs42Ay1wXOBYvy8AAACAuLie0bOn2apVkc1+BhB1CGwAQAxL02wUgOMCAAAAAP5HQY2UlMjtjerV2bNAFCqU3ysAAAAAAAAAAAAQLgIbAAAAAAAAAAAgZhDYAIAYVph+KOC4AAAAAAAAcYbABhDv6NEQs9QwvGTJkjQOB8cFwvp9AQAAAABAQUHzcCDeacZ/z57/a64FACiYypfP7zUAAAAAACBiCGwA+F9QIyWFPQEABVX16vm9BgAAAAAARAyBDQAAAAAAAAAFQ2Ji5LOfU1Mju0wAOUZgAwAAAAAAAEDB6COalBTZZSYnm82bF9llAsgxmocDAAAAAAAAKBh9RCPM5/NFfJkAco7ABgAAAAAAAAAAiM/ARvXq1e3+++/PcP/bb79tbdq0idj7zJ492y699FKrX7++9e3b17Zt25Zr66j79ZqZM2eGXN6cOXPsX//6l9WuXdsaN25s99xzj/3222/+x5999ln3+iFDhoSM+DZv3tw9Ho6NGze653q3xMRE95533HGHrVu3ziJB63vttdeG9dxDhw7Zm2++6f9Zr9PrAQAAAAAAgIIkISEh269NO5IW0XUBkAs9NnShv1u3btakSZNc2b+LFy+2oUOHupve4/nnn7dbbrnFBSAKFSoU8XV8//33rXLlyvbuu+9a9+7d0z22YMECe/jhh+3RRx+1OnXq2J49e+w///mP9erVy+bOnWslSpRwzzvuuONs0aJFduTIkXTruHz5ctu+fXuW94GCLKeffrqlpaXZli1bXDBB76l9UK5cOcuJG2+8MezAhvaN9v9VV13lftZ6aFsBAAAAAACAgmTYwmG25estWX5dYtlES7oywn0/AES+FFXFihVt+PDhbjZ/bnjllVesY8eO7kL+2WefbSNGjLDff//dPv/884iv444dO2zp0qUuK+Sbb76xDRs2ZMgcufLKK61Dhw5WqVIlq1mzpj311FO2b98+F8jwnHfeebZ//34XyAgOjNStW9ey6pRTTrGyZcvaaaed5gIqEydOtOLFi9ukSZMsp0488UQ7+eSTs1VjUK/T6wEAAAAAAICCZO2utZbyR0qWb6u2rcrvVQcKpIgHNvr16+eyCKZMmZLpc/744w9XsumCCy5wpZRGjhwZdiBEwYXzzz/f//MJJ5zgMiqCgwY5XUeZN2+elSxZ0jp16uQyIZS1EUjZF99995399ddf/vuOP/54F/Bo2bJluvtUcmrhwoUZAhuXXHKJ5ZSW37lzZ/voo4/89/38888u80L7SmW7kpL+Fxneu3evK5v15Zdf+p+rQIzuU/AmuBSVskMuu+wyq1WrlvuslJ2iTJFly5a58lqbNm1yZbFUJiu4FJUySC6//HK3DgoAff311/7HVPZL66RsD7231v+HH37I8b4AAAAAAAAAABRsES9FVb58ebv77rtt3Lhx/kyGQApg9O7d26pUqWIvv/yy7dy50x588EH32AMPPHDM5ZcpU8a2bt3q/1nlnRSk2LVrV8TWMbDUUqtWrVwAQxfiFbBQ9oZXU++aa65xpZtatGjhbk2bNnVftW3BLr74YnvhhResf//+7uc1a9bYgQMHXMAgEs455xy3HxSkKFKkiCvPpd4fymj59ddf3T5WNkWXLl3soosuckGQCy+80L32008/dVkgDRo0cBkqnq+++soFncaOHeuyThR4GDBggCvhpf2icmBTp061t956y70+kIIaem+V6lJgQz/feuutLlik/S8Kgmj5yrzR+un7119/PextVoAlXig7Rse6tjknNR1DKVy4cESXBwCIXvo7Ek9/P5E/Y4t4x/8xAAAAIAYDG6KZ+7qQPWrUKNeDIbhHhi7Aq+n0SSed5O576KGH7Pbbb7d77733mKWM2rdv7wISurCuoMCLL77oSkb9888/EVtHUXmr5ORku+GGG9zP7dq1s9dee82+/fZba9iwobtPgQFlHUyePNllY3zwwQfuInGPHj1ckCawn4YyOBQIUGNxBT6UraFgR6ROJJVZIsoe+eyzz1wASJkpcuaZZ7rMihkzZrjAxhVXXGFjxoxx66j3nz9/vsusCF4XlbfS/tG2yxlnnGHTpk2z1atXu/v0ntpelcUKpqCV9rHeTxTQUcaGSol5zdsVePEyVrSflcWTFStWrMjWvsL/KVasmAtaAQDiw/r16wloAwAAAABiXq4ENnSx+5FHHnEZDbqAH+iXX35xF9q9oIbUr1/fDh8+7E62ExMTj7pslS5SmaWePXu6n1VmSVkSXqPuSKyjl63hlZASlc3SOr/zzjv+wIbUq1fP9bg4ePCgy3BQVoeCHSqPdf311/ufV7p0aZcRoQCILuLrPb0L/JGgTA1RYEgZGj/99JNbt8CZY97M/NatW9uwYcNcGS2VkVKwSUGPYAocqdTX+PHjXYZJamqqC8x4++Ro9DkruyWQ+onofo+OA48+v6wGp1TCKl6yDTSrUs3pS5UqxaxKAEC2aXySnf5eKHgYW+QejbuZgAMAAADEYGDDC1Z07drVzfi/+eab/fcrWJBZunY4adu6kK3yRgMHDnTBBDWs7tatmzVr1ixi6+gFNlQqSsGIwPVUKSWVTdL3ahSu8kpq4q3tUokn3ZTW/8UXX6QLbIgyND7++GOXdaJeIY0aNXIZIJGgoEOFChVcgEBBIpWLUiZMKMrEUHBDmRrKnjn11FPT9S3xKOCh4IRXvkrfq8dGODL7nLVvPMcdd5zlhI6FeApsKANI20u5CABAdsXT304cHWMLAAAAALEs4s3DA6n80N9//52uSXfVqlVt3bp19ueff/rvU+Nv9YXQLMJjmT59uutVoRI6Cmqo38aqVatcRkWk1nHt2rX2448/ulJNysDwbiqBpcwI9adQJsN///tfF+gIphJNwT0nvMCGylsp60OltLTNkaC+Je+9955r8u3tY22DSkep7JVu2scqD+VROapFixa5zBEFWkJR43AFfoYPH27du3d3vTCUVaMTYTnaBXatgzJCAuln3Q8AAAAAAAAAQNRlbHjllxQ4UICgYsWK7j5lVqhZtzIuVIpJTb/VZFpNvFVm51h0sX7IkCEuw0B9JJQ9of4V1apVi9g6KltDQZOrr77aihYt6n+u3kNlpxTk6Nixo91222329NNPu8CCekUoU0KZGgp4BAYRPNrus846ywVmnnjiCcsuNVxXRoSyHzZv3uyacO/fv981DJdOnTrZhAkTXMaGmptv3LjRZaV4/UJE5bsGDx7seomod0go2gcpKSkuG0TZApMmTbJt27a57RUFl3bv3u0CVfpcAilbReWuFAypU6eOzZo1y5XHevzxx7O93QAAAAAAAEB+qFq6qhUvWTzLr0sse/Sy+wCiMLAhKhOli9rKrBCVP3juuedcMEP9MtQTQkGC++67L6zlKYCgPg0KRqgUlX7WBfRIrqMCG1qnwKCG59///rcLEqiE00033eT6bigw8J///Mc97jU019dQ2rRp47JOslM6y6PsCW9flitXzpWdUlaFlyWiclRah9GjR7syUgpQqCdJnz59/MvQtmnfKYuiRo0aId/nzjvvdEEkBXi0TAWQtP3KkPGapysbRPvq1VdfTfdaZYFs377d9edQMES9U6ZOneoCHQAAAAAAAEAsGdVmlCtrnx1pR9KscCFKwgKRlODz6goBMUK9OlRaS81P46VOuP6bKjtGgbRc6bGhP8wpKZFfLgAgKiRXr24NUlPtm2++Sdc/DPEr18cWcSzax6rRvn65geMdHBfg9wVyQv1xGzZsyFgajC2ibKyaqz02AAAAAAAAAAAAYqoUVVZMmzbNlS7KjEoeqeRSZho3buzv/xCKSkxVqFDBotH3339vvXv3zvRxrbfWHwAAAAAAAEDeym6WK2WogDgIbHTt2tX1oMiM+jwczVtvveUaamdG/SiilfpcqCl5ZooUiaqPCgAAAAAAAIgbwxYOsy1fb8ly4/CkK5NybZ2AeBZVV8tLlSrlbtlVqVIli1Vq5q1G3AAAAAAAAACiy9pday31r9T8Xg0A/z96bAAAAAAAAAAAgJgRVRkbAPJJYiK7HgAKsvLlzVKZXQYAAAAAKBgIbADxLi3NLIl6jwBQoCUnm82bl99rAQAAAABARFCKCoh3hQvn9xogm3w+n+3du9d9BTgucKzfFwAAAAAAFBQENgAghqUp4wbguAAAAAAAAHGEwAYAAAAAAAAAAIgZ9NgAAAAAAAAAgKOoWrqqFS9ZPEv7KLFsIvsUyCUENoAYUZheGOC4AL8vAAAAACBfjGozyurXr5/l16UdSbPChehvCkQagQ0gO9TXIA8DDQkJCVayZMk8ez/EBo4LcFwgK78vAAAAAGSfz+fL1usIagC5g8AGkB0KavTsabZqFfsPABD9ypfP7zUAAAAAACBiCGwA2aWgRkoK+w8AEP2qV8/vNQAAAABiT1oa2c9AlCqU3ysAAAAAAAAAAFFZsePFF/N7LQCEQGADAAAAAAAAAEL5/Xf2CxCFCGwAAAAAAAAAAICYQWADAAAAAAAAAADEDAIbQdq0aWPVq1cPeVu2bNlRd+aGDRts0aJF7vuNGze61+hrpO3bt89mz56d7dc/++yzdu211/p/3r59uw0ZMsSaNGlitWvXtg4dOtjLL78cobUFAAAAAAAAACByikRwWQXG0KFDrX379hnuP+mkk475ugsuuMBatmxpp59+ui1ZssROOeWUiK/f9OnTXZClS5cuOV6Wz+ezW2+91c444wybPHmylSpVylJSUuzRRx+1f/75x2688caIrDMAAAAAAAAAAJFAYCOEkiVLWtmyZXO0YwsXLpzjZRwtGBEpqamptnLlShcsUVBDKlWq5DJN3nzzTQIbAAAAAAAAAICoQimqLFq6dKl17tzZlWy6+OKL7fXXX3f3Dx482L766iubMGGCK/MUXIpK38+dO9cuv/xyq1Onjt13332udNV1113nfr7mmmtsy5Yt/sDF888/78pi1apVy5o3b+6WK2+//bb7Xu+lZcqhQ4ds5MiR1rhxY3fr37+//fnnn/51XrNmjf373/9276P327Vr1/8dAIX+dwh8/vnn6bazV69e9uKLL/p//u233+ymm26yevXqWatWrWzGjBn+x3755Rf3WP369e2iiy5y63fkyBF/2as77rjDevbs6bJZtN7HWl8AAAAAAAAAADJDxkYWpKWlWb9+/ez666+3jh07WnJysg0aNMgaNmxow4YNs3Xr1rkL/3369HF9MIKNHz/eHn/8cdu/f7/dfPPN7iK/Xqf+FnfffbcLJDzwwAOuf8ZLL71kTz/9tMueWLx4sT3yyCPWunVrVyJr9erVrlyUggai5/3www/u9ccff7yNGzfO7rnnHrcMBRFUakrrqGDCl19+aaNHj3ZBCKlWrZpdeOGFbrteeOEFF5ho1qyZe76XwXHw4EGXuVGzZk2XxaGAzP333+/WzQvKKAgzc+ZMW7t2rduGEiVKuP0kH3/8sVv/unXrWtWqVY+6vln9PPKLMnIAAIg1+tuZn38/ET00kUYTUXQ8JCQk5PfqFCj8HwMAoIA5/fT8XgMAIRDYCOHhhx+2ESNGpLuvQoUKlpSU5DILTj31VNeTQrdy5cq5klMqX3XcccdZ8eLF7eSTTw4Z2NCFfgUCJDEx0V3kVwaHtGvXzn766Sf3vfpzPPbYY66ZtyjbYuLEiS6goeCC3kPvpfdVkOSVV16xWbNm+TM4nnjiCZcJoTJTv//+u1tnBRb0urPPPtsFVHbu3OlfLwU0pkyZYu+++65NmjTJ3RS0eOqpp9z6qleInq+AiAIW5557rgteKNtjzpw5VqxYMbe/ihQp4pa/bds2t75eYEP7S9sgx1pf775wrFixwvKDtve8887Ll/cGACAn1q9fT3AeAAAACJcmBd1yi9nzz7PPgChDYCMEZU8o0JBuRxUp4gIWukCvi/rPPfecy6Do2rXrMZuKexQs8JxwwglWsWLFdD8ru0KUQfHdd9+5wILKPK1atcoFC7zyToGUPaEm3z169Eh3v56rDBI9fuaZZ7qghkdltBYtWuT/WVkTKhelmy54fPLJJzZ16lS7/fbb3ffKwlAQRkENj7bbCwIp2KL941HWitZ3z5497ufA7TzW+mYlsKHtIHMCAIDwVa5c2WVQAsrY0FhNGbpkbEQ+YyO/JuAAAIAIK1w4or1uAUQOgY0QypQpY1WqVAm5w5T5oH4RCxYscLc33njDBTlatmx5zJ0dfBHe628RTCWdlB3RvXt3F2BRuSv1xjhaqvurr76aLnjhbYd6gAT/Ala2h2f+/Pm2Y8cOV07Ku+DRu3dv19dDZa+URREYtAimoEgwLwDjrVvgc461vlmh/UlgAwAA/nYi6zQ+1FhUYykCG7FJ5WIfffRR+/DDD90kKZWO1Q0AAACIBzQPzwJlIejkQUEPZTOonJKyKxYuXBjRD+W1116zvn372tChQ61Lly5WunRpF3zwAhSBJ5/KAtEJqcpNab10U2aFSlnpNSobpUyIvXv3+l+jDBDP5s2bXWDmwIED6dbB669xyimnuIwPNQ9XGSnPmDFjXM8OZXKsXLnSZWF41P9Dr1OGS7BjrS8AAACAY1M5V/WtU586ZVFPmDDB5s2bx64DAABAXCCwEYKCAApiBN80E+qjjz5y2RQq2fT111+7vhhevwVlICiIkNML9ApkLF261JWA0snKvffe6wIHXqkq9XjYunWrbdy40QUFlNmhTJJly5bZmjVrbODAgS4QoR4gTZs2dT071KRcZa3efvtt++CDD/zv9a9//ctlZGh2l95Ty/ziiy/ceypbRMtQ9ob6ZDz00ENuGWoGrkwQ3a8m6lov7zFlsaipuUp2hZr9d6z1BQAAAHB0f//9t8vy1hhfZWHbtm1rN998s+sJCAAAAMQDAhshKHChi/bBt5dfftllNyiY0alTJ+vXr59169bNXagXfV28eLE7qcgJZWqo+Xjnzp3trrvucn0ndLLiZVroe5V7uuKKK1wQZfDgwa7RuHqDXHXVVS5QoYbgyoxQ2Sk1A9+9e7cLYigbRKW0PMqqUFkoBRUGDBhgl112mXt/9ckYO3ase46Wp+1WMEXLGDVqlAtGtGrVygUqJk+e7AI9yi5RE3GVsrrzzjsz3b6jrS8AAACAo9P5yOHDh92Y3dOgQQPXpy9UXz4AAACgoEnw0QEHMUZ9OpYvX+6an+ZrMKR+fdXdyr/3BwAgTMnVq1uD1FT75ptv3MVPQKcAmvhy0kkn0WMjBseq6pM3fPhw+/zzz/33KXtaPfKUha2ysPm5ftGG4x0cF+D3BXLi22+/tYYNGzKWBmOLPJCVsSrNwwEAAAAghqj3XdGiRdPd5/3sla8N56QxXiiwoUwWbXOocrmITxwX4LhAuLy/mfoaT38/kTn+huSerPwfI7ABAAAAADHk+OOPzxDA8H5WX8BwrFixIlfWDQCAgkbl172v8ZLtCMQCAhsAAAAAEEPKly9vu3btcn021K9Otm3b5oIapUqVCmsZtWvXjpuLM5pVuWfPHrdvyNgAxwX4fYHsziCvXLmyK48DMLbI3f9v4U7AIbABAAAAADEkMTHRBTRUf1g1v7363wpWFCpUKKxlKKgRT4EN7RdtL4ENcFyA3xfIKu/vZTz97cTRMbaIDuGNegEAAAAAUaFYsWLWpUsXe+SRR+z777+3BQsW2NSpU+26667L71UDAAAA8gQZG0B2JSay7wAAsaF8ebPU1PxeCwARNGTIEBfY6N27t5UoUcLuuusua9euHfsYAAAAcYHABpAdqq+YlMS+AwDEhuRks3nz8nstAEQ4a2PMmDHuBgAAAMQbSlEB2ZHHNRVVu2/v3r3uK8BxAX5fIDt/RwAAAAAAKCgIbAAxIk1ZIgDHBfh9AQAAAAAA4hyBDQAAAAAAAAAAEDMIbAAAAAAAAAAAgJhBYAMAAAAAAAAAAMQMAhsAAAAAAAAAACBmENgAAAAAAAAAAAAxg8AGAAAAAAAAAACIGQQ2AAAAAAAAAABAzCCwAQAAAAAAAAAAYgaBDQAAAAAAAAAAEDMIbAAAAAAAAAAAgJhBYAMAAAAAAAAAAMQMAhsAAAAAAAAAACBmENgAAAAAAAAAAAAxg8AGAAAAAAAAAACIGQQ2AAAAAAAAAABAzCCwAQAAAAAAAAAAYgaBDQAAAAAAAAAAEDMIbAAAAAAAAAAAgJhBYAMAAAAAAAAAAMSMIvm9AkBW+Xw+9zUtLS2utvnIkSNumxMSEvJ7dRAlOC7AcYGsOPHEE+Pu7ycyx9+Q3OP9H/PGrNGGsTRjafzf/wXOsRDqdyTHBUJhLA1+V0TfWDrBF60jbiAThw4dshUrVrB/AAAAELVq165tRYsWtWjDWBoAAAAFYSxNYAMxR7MnDh8+bIUKFSJ7AQAAAFE527dIkSJuvBptGEsDAACgIIylCWwAAAAAAAAAAICYEX1TiAAAAAAAAAAAADJBYAMAAAAAAAAAAMQMAhsAAAAAAAAAACBmENgAAAAAAAAAAAAxg8AGAAAAAAAAAACIGQQ2AAAAAAAAAABAzCCwAUQBn89nTz75pF144YV2wQUX2BNPPGFHjhzJ9PkbNmyw66+/3urWrWvt27e3JUuWpHv8q6++ss6dO1udOnXsqquusp9++ikPtgLRflx4vvvuO0tMTLSNGzfyocWgSB8Xs2bNsssuu8zq1atn3bt3t2+//TYPtgKRcPDgQRs6dKg1bNjQmjdvblOnTs30uT/++KP7fPV3oWvXrvbDDz+ke3zOnDl2ySWXuMf79u1rO3fu5EOK8+NCv2teeOEFa9OmjdWvX9969+5ta9asyaOtALKGsTTy4rjwMJaObYyl4WEsjWCMo2OQD0C+mzJliq9ly5a+r7/+2rd06VJf8+bNfZMnTw753CNHjvg6duzou//++31r1qzxPf/88746der4Nm3a5B5fv3697/zzz/c9++yzvrVr1/oeeOABX+vWrX0HDx7M461CNB0XnkOHDvk6dOjgq1atmm/Dhg18SHF+XCxatMj9vnj33Xd969at840bN85Xv3593x9//JHHW4XsGD58uPt8f/jhB9+HH37oq1evnm/u3LkZnvfXX3/5mjVr5nv88cfdcTBixAhf06ZN3f3y3XffuePgnXfe8a1atcrXq1cv36233sqHEufHxauvvupr3Lixb+HChb5ff/3VN3ToUF+rVq18f//9dz5sFXB0jKWR28eFh7F07GMsDQ9jaQRjHB17CGwAUUAD7lmzZvl/nj17tgtGhPLFF1/46tat67/wIL179/aNHz/efT969Gh3UcqjCxAXX3yxu1iF+D0uPM8995yvR48eBDZiWCSPi379+vkeeuihdK9p166d74033si19Udk6DOtXbu278svv/TfN3HixHS//z0zZ870tWnTxl20EX1t27at/zgaMGCAb9CgQf7nb9682Ve9enUXKEf8Hhfdu3f3TZo0Kd3FPP0+WbJkSZ5sC5AVjKWR28eFh7F07GMsDWEsjWCMo2MTpaiAfLZlyxb7/fffrVGjRv77GjRoYJs2bbKtW7eGTH0+77zzrHjx4umev3z5cn8Zqnbt2vkfK1asmC1YsMBq1KiR69uC6D0uZO3atZaUlGSDBw/mo4pRkT4ubr75ZrvhhhsyvG7v3r25tg2IDJUYPHz4sCshFvjZ6jMPLrOh+/RYQkKC+1lfVVrIOw70uMoWeU4//XSrUKGCux/xe1wMHDjQOnXq5H++HtekKH4/INowlkZeHBfCWDr2MZaGh7E0gjGOjk0ENoB8tm3bNve1XLly/vtOPfVU9/WPP/4I+fzA50qZMmX8z1Vt2BNOOMHuvvtua9q0qV133XXUxI5BkT4udDHqoYcesrvuusvdj9gU6eOiZs2aduaZZ/of++yzz2zdunWuFjWimz7b0qVLW9GiRdMdC6oL++eff2bpONAFnqM9jvg8LhTsOu200/yPzZw50wVNdKEPiCaMpZEXxwVj6YKBsTQCjwXG0gj+/cA4OvYUye8VAOLBgQMH3OyQUP7++2/3NfAihPf9oUOHMjx///796Z7rPd97rpanJnl33nmn9enTx2bMmOGa4M2fP99OPPHEiG4XYue4eOutt+yff/5xzeQ1Uw3RKy+Pi0Dr16+3IUOGWMeOHV3AA9Ets89Wgj/fYx0HOubCPU4QP8dF8EzmMWPG2E033WRly5bNlXUHjoaxNPL7uGAsHTsYSyMcjKWRm8dEIMbRuYvABpAH9ItMmROhDBgwwH3VL8Djjz/e/71XRiqYnhM861LPV5aGFC5c2Nq0aWPXXnut+3nEiBHWqlUrW7hwobtgifg7LjTzYNy4cTZ9+nR/yRFEr7z8fRFYWkElqSpVqmQjR46M2LYg9+izDR44ez8Hf76ZPdd7XmaPhzqmED/HhSclJcVuueUWa9Gihd1zzz25tu7A0TCWRn4eF4ylYwtjaYSDsTRy85jwMI7OfQQ2gDzQuHFjS01NDfmYZhmNHTvWDZjPOOOMdCmyoWZFli9fPkNpqe3bt/tTp/WaqlWrposaV6xY0dWYRXweF0uWLLFdu3bZ1Vdf7U+llw4dOthtt93mbojP3xeyevVql9WloMbkyZMzDMYQnfTZ6v+1SgMVKVLEfyzo8ytVqlSG5+pzz+w4yOxxZubH93Ehy5Ytc38jmjVrZk899ZQVKkQVW+QPxtLIz+OCsXRsYSyNcDCWRm4eE8I4Om9wdgLkM/1CVJPWb7/91n+fvtd9wXVepU6dOrZy5UqXYhv4fN0vdevWTTfAV9RYfTe8AT3i77ho27atzZs3z2bPnu1uL7zwgntcX3v06JFHW4Ro/H2h3go33nijValSxaZMmWIlSpTgg4oRiYmJbsAd2NRUn23t2rUzXHzW563ZQl5QU1+Tk5P9x4G+Bh5TCoTr5j2O+Dwufv75Z7v99tvtoosusmeeecaOO+64PN4aIDyMpZHbxwVj6YKDsTQ8jKURjHF0jPIByHeTJk3yNW/e3Pfll1+6m76fOnWq//EdO3b49u3b574/fPiwr3379r5+/fr5fv75Z/faunXr+jZt2uQeX758ua9mzZq+pKQk39q1a33Dhg3ztWjRwvfXX3/l2/Yh/4+LQBs2bPBVq1bNfUV8Hxf33Xefr2nTpr5ff/3Vt3XrVv/Nez2i24MPPui74oorfN99953vo48+8tWvX983f/5895g+x/3797vv9+7d67vwwgt9I0aM8K1evdp9bdasmf/vQnJysvu78eabb/pWrVrl69Wrl69Pnz75um3I/+Pi6quvdr8/Nm/enO73g/d6IJowlkZuHxeBGEvHNsbS8DCWRjDG0bGHwAYQBTSQHj16tK9hw4a+xo0b+8aOHes7cuSI//HWrVv7xo8f7/953bp1vp49e/pq1arlLl58/vnn6ZanCxmXXnqpe7xHjx5ucI7YE+njwsPJWGyL1HGh15x//vkuyBV8C3w9otfff//tGzhwoLvwoos106ZN8z+mz3HWrFn+n3WRu0uXLr7atWv7unXr5lu5cmW6Zem5LVu2dMvq27evb+fOnXm6LYiu40IBjFC/G4JfD0QLxtLIi+PCw1g6tjGWhoexNIIxjo49Cfonv7NGAAAAAAAAAAAAwkGPDQAAAAAAAAAAEDMIbAAAAAAAAAAAgJhBYAMAAAAAAAAAAMQMAhsAAAAAAAAAACBmENgAAAAAAAAAAAAxg8AGAAAAAAAAAACIGQQ2AAAAAAAAAABAzCCwAQAAAAAAAAAAYgaBDQBAXKhevbotW7bMot2aNWvs3nvvtaZNm1q9evWsR48etmjRoogtf+fOndarVy+rXbu2DRo0yJYvX27t2rVzP8+cOTPs/RTJ/Tl37lzbsWNHhvuXLl3q3mfdunUhX3fppZfaiy++eNRlDx482N0AAAAQXXbv3m2PP/64tWnTxurUqWOXX365TZ8+3Y4cORKR5ft8PnvwwQetbt26dvHFF2cYB1977bX27LPPHnM54T4vHKtWrbLk5OQM9+/bt8/tgzfffDPk6x544AG75ZZbjrrst99+2+1LAIgXRfJ7BQAAwP/oJOemm26yjh07ugv2J554on344Yd2xx132JNPPulO9nLqvffec4GC2bNnW+nSpd1JUuXKlW3q1Kl28sknW6tWreykk0465nKWLFkS1vOOZdOmTdavXz/7+OOPMzx2wQUXWNmyZd0+uPXWW9M99uOPP9pvv/1mHTp0yPE6AAAAIG/t2rXLrr76aitXrpyNGjXKzjjjDFuxYoWNGDHCNmzY4AISOfXTTz+5QMELL7zgJssEj4MLFSpkxx133DGXo6BGOM8LR9++fe3OO++0+vXrp7u/RIkSbhyuce9VV12V7rHDhw/bRx99ZEOHDo3IOgBAQUFgAwCAKKAZZUOGDLH27dvb8OHD/ffrgr5mlz3xxBMus6Jw4cI5eh/NBjvzzDPt7LPPdj/v3bvXGjVq5E4mvZOqcCjgEKntzoy29bLLLgsZ2FCWR4MGDez000+PyHoAAAAg7zz11FNWtGhRmzJlih1//PHuvkqVKtkJJ5zgJvUos6Jq1ao5eg+Nc6VFixaWkJCQYRwcLk3+yQuasKPMba13yZIl02UxHzx40C655JI8WQ8AiBWUogIAxD1dXH/++edd6natWrWsefPmNmHChHSzvVQSSunhF110UbrHdKLRuXNnl9KuFPfXX389XXq9ZpuprJQuwg8YMMDdl1m2hmaQ3XjjjRke00V9zRTTrDL55ZdfXGaHZnp56xOYsq8ZXQqQaH27detmX331lbtfy9Dt66+/drPWlFavxyZOnOh+Di4x9ffff9tDDz1kjRs3djdti06qgp936NAhGzlypP95/fv3tz///NM9tnHjRvdcBSd0Mqb91KdPH//j2mfeV6XPB1P2yg8//GC///57uvvnzZvnz9ZQCS0FQPTZ6f0fffRRS0tLy7Asbbu2OZA+c+99dRxoX+jzb9iwod122222efPmuP//AQAAEEkaO77//vvWs2dPf1DD07p1a1eOqmLFimGNp3/++Wc3vjv//PNdmdKkpCR3v8ap3rivRo0aGcbB3uOBJaamTZvmxoYqB6uxtjJHJPh5Gu97z9Njqamp/sd0v9ZBWRca9+o8QWNZbznKVtZkplClUlu2bOkCOwsXLswwoUf7Rdnc3377rf373/9243yV2FJ5qq1bt2ZYlrbPG99nVqI1s3MGAIgVBDYAAHFP6egvvfSSS4PXBXOliOvkZeXKlW7fDBw40BITE23OnDnuOZMnT3Z9L3TxXGWUdFFdJxz33HOPu6iuPhmiNHPV0VXQRCdKCkhk1u9BwROdrISaQXbKKae4i/aaaabsjWuuucal7euC/sMPP2yvvPKKzZgxw78c1Qy+/fbbXbp9p06d3AmPyjYpaKKbTsJUSuqZZ55x3+s+/RxMZap08vTcc8+5UlX6Xq8J9vTTT7sTNpXP0npoNpz2RSDtAz1P66oyA9ofom3wvurEKphOtJRNosCIxwt0aL/rBExBlfvuu899dtr/b731VsjSVseidfvvf//rZhC+8cYbVqZMGbdv/vnnnywvCwAAAKGtX7/eTaDRhf9gGu9eeOGFLpvjWOPpAwcOuHGuAh4a92oMrHGrxvYa43rBCI1zg8fB+hpIwQpNFtIEnXfeeceNy4PHs6Kgg56nYIuep/e+7rrr0gVb9L6amKR1UuaFxqre/aeddporKTVs2LAMy9Y2t23bNt24V+NQjWs1oUeZHJog1KxZM3deomwX7UuV2sqqo50zAECsoBQVACDuqZzRY489Zk2aNHH7QrOgNHN/9erVVrNmTTezShkFmjmmFHmdVOliu04ulHlw6qmnup91U8BBZZp0sqCL7rrY7qXRjx071l28//XXX+2ss85Kt9+1rHDKQOkkplixYq7+cJEiRVwgZNu2bW59r7/+eneCoxliynQQnWhpZtprr73mTgKLFy/uagR7paT0ve4LLi2lkzOtu7ZVJ2yiElk6sQy0f/9+FxCYNWuWf1aYymYpc0Kz13RSKHfffbebSSdaNwU3vKCN91Uz1EK54oor3Iyy3r17u58VRFJWhWoja90VbFKZLtFnoHXWZ+fdFy4FrBQo0rp726v3Wbx4MY0YAQAAImTPnj3ua2C5pVCONZ7WpBtNRNFEI1GZKY3bNdGmS5cu/n5w3jg3eBwcSJNaNJb2Jtooa1njagVPgseLCi4og0L03p999pkLDngZIv/617/8ZaNuuOEGf4BEJa1UalXbndm2a5ysYIMCP1rfL774wl9OS+cdKtOlZSoApPMSjXe///57y6pjnTMAQCwgsAEAiHuaFfbdd9+5mfqaBaaL9woWeOWddPKibAOd8Kipn1LKvRMiBUGU2aDZYTrB6dq1qzuJ+vzzz61UqVLpagMrCKHHQgU2dKLj1QE+Gq2fgi0Kang040zrq5NEPa4L/1rXwJleukCfFZqtpYwUvZdH5Zl0C6QUfS1fpboCad+ptJb3+ipVqvgfUwAnK1kQmqGmmWg7duxwJ686uVX9YVEmiwIi48ePd5kyCqZo3bO6vX/99Zf98ccfbrleyS/Ryay2AwAAAJHh9azIrESrR2Pmo42ndVPwIzD7QuPX7PSkW7t2bbpxryYuKaMhmMbaCq7o3MCjUq2B40UFWLI77tUEGwU9FCxRdrLGvSqx5QVkFLBRqS6dr3hj3+BG5OGI1DkDAOQnAhsAgLinMkijR4+27t27u1lPOonRrCWPUskvv/xyW7BggUs/V+aAMib0/EceecTVB9ZjuunkQEEOL30+mE62QvV/0ImUZmbpJCO4HJWCByqxpDT24DrE4gVgvGUrjVwnPYEyy4bIjE6ewuFty6uvvupmlQVSEMLrpRHu8kI599xz3U37VyXBVI7L682hbAqVDtP2qt+Ivte+CkUz24IdPnw43Xb8v//3/zI0qvRm+wEAACDnKleu7C7eq+yrl9EbSBkLyn441nha4zhlXCu7IqcCJw0djd5XpaS8TG9PYOZ1Tsa9CsoooKFsZY13Nf5VZrZs2bLFTaLSeYN6jijj4tNPP3UTtMId93rbGalzBgDIT/TYAADEPaVc64K4TlI0uFeJI2UHqJm0ZmApoKATK6V9v/zyy+4kYv78+S5LQhfRlY2gEzCVY1L2h4IfujiuDArNJPNoVpX6TwRfOPcyDxTQ0AysYGpAqNlomqWl1+okMHDmV0pKiivlpNlvelwNu7VO3k3BFs36ygqltuvESu/r0YmVUutDPU8BDO/9dGKn0l7ah8cS6qQrs6wN1RfWOqgpo8pxeUEpneCpbJQCTdqHqjWszy6YTjKVmeHR9wqSiGYDKhCjz9TbDpUo04w8zeADAABAZOjiuko+aYyrRuKBNI7WTeVdjzWe1k3jNJUi9cZvy5cvd+P1rNJrA8e9u3btcuN6jasD6T2V5Rs41lb/D71vpGjcq35+KkOliUONGjVy9yvYoQk3kyZNchOtlEmtCVCZjXtF+8oTuC2ROmcAgPxEYAMAEDdUf1aD9cCbekQokLF06VJ3YqTG1CpHpMCBTrSUIZGcnOwyNHRSpd4Q33zzjZ133nnuxEInGMr20MV01aXVCZEe0wV21cJV9ofeVzd9rxOTatWqhbzAr9lmanaoPg9ajk7cxo0b5+oE6zEFEFQHV+uln5XdoQv9akSoklhahmoDf/DBB+41WicFSnQLTIkPh4ITCvKof4XWXdutddEJXvDzvMyVZcuWuXVWs3WVg9JJ5rF4AQptb2DQIVSfDdVYVjNFrxawKJijwI7S8NVXQzWBFZwIPkkWNajU+yjtXp+19mFg2SntOzVH18m0ygmoxJg+++CyYQAAAMiZu+66y110v+mmm9wYT+NWTVjRWE6Z0+ecc84xx9NqeK2yod64WMEAjV01WSWrlCHy0ksvubG1xokaj3s99AJpopOepzG71lmTYDS2DM64zowCFTqn8LKaQ6lbt64b42rsrQCQNxFI923evNmdtyigoVKtGhuHGvcq21nZFwq66LnqDfLjjz/6H4/UOQMA5CdKUQEA4saTTz6Z4T6dDChTQzf1ztCJkMpO6YK71yhbJxXKCOjWrZubYab0cDXuUxaHyk4psKETKzXK1nN0oV/GjBnjsj104qCghNLJhwwZkun6KWigEyUtU6/RSYoacmtWlsoseYEEnZjopE2BB2VqaMaW+oB4J0Jq3q1gh74q1V+9Q7yZXlmhfaL30QmcZn3pxMrrbRFIJ6DaVjUIV0BI76UTrXDqG2v9te/UeLF///5uu0NR4/YaNWq4E81mzZr577/zzjvdPr366qvdvmnZsqUL8gQ3OReVDNDyvYCGtmvr1q3+x3VireCKHteJtrJo1FiRUlQAAACRpUxkZU1rzKoxoC70a9yq8aTGcp6jjac19nvxxRfdWFzjYl34V4lYb1ycFToPUKknZWNrHHjBBRe4Hm7BNB7evn27e0xfFYD5z3/+E3ZAQNumcxJNopkwYcJRJ/UoKKFt8+gcRROptI8U7NCkHQV6tA+DgxvaN5qYpfMYZbC0bdvW7RtlokT6nAEA8kuCL1TOGgAAAAAAAAAAQBSiFBUAAAAAAAAAAIgZBDYAAAAAAAAAAEDMILABAAAAAAAAAABiBoENAAAAAAAAAAAQMwhsAAAAAAAAAACAmEFgAwAAAAAAAAAAxAwCGwAAAAAAAAAAIGYQ2AAAAAAAAAAAADGDwAYAAAAAAAAAAIgZBDYAAAAAAAAAAEDMILABAAAAAAAAAABiBoENAAAAAAAAAABgseL/A8DZjS0VLVHyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualize Lasso coefficients\n", "fig, axes = plt.subplots(1, 2, figsize=(16, 6))\n", "\n", "# Top 15 coefficients\n", "top_coef = coef_df.head(15)\n", "colors = ['green' if x > 0 else 'red' for x in top_coef['Coefficient']]\n", "axes[0].barh(range(len(top_coef)), top_coef['Coefficient'].values, color=colors)\n", "axes[0].set_yticks(range(len(top_coef)))\n", "axes[0].set_yticklabels(top_coef['Feature'].values)\n", "axes[0].set_xlabel('Lasso Coefficient Value')\n", "axes[0].set_title('Top 15 Features by Coefficient Magnitude')\n", "axes[0].grid(True, alpha=0.3, axis='x')\n", "axes[0].axvline(x=0, color='black', linestyle='-', linewidth=1)\n", "\n", "# All non-zero coefficients\n", "all_nonzero = pd.DataFrame({\n", " 'Feature': X_final.columns,\n", " 'Coefficient': lasso_cv.coef_\n", "}).sort_values('Coefficient', key=abs, ascending=True)\n", "\n", "colors_all = ['green' if x > 0 else 'red' if x < 0 else 'gray' for x in all_nonzero['Coefficient']]\n", "axes[1].barh(range(len(all_nonzero)), all_nonzero['Coefficient'].values, color=colors_all)\n", "axes[1].set_xlabel('Coefficient Value')\n", "axes[1].set_title(f'All Features (Green=positive, Red=negative, Gray=zero)')\n", "axes[1].grid(True, alpha=0.3, axis='x')\n", "axes[1].axvline(x=0, color='black', linestyle='-', linewidth=1)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 7: Feature Engineering - Polynomial & Interaction Terms\n", "\n", "**What we're doing:**\n", "- Creating polynomial features (degree 2) on Lasso-selected features\n", "- Adds interaction terms (e.g., Feature_A × Feature_B)\n", "- Tests if non-linear relationships improve predictions\n", "\n", "**What to expect:**\n", "- Significant feature explosion (25 features → 300+ polynomial features)\n", "- Potential improvement in training accuracy\n", "- **High risk of overfitting** (large train-test gap)\n", "- Test R² likely similar or worse than simpler models\n", "\n", "**Learning objective:**\n", "- Demonstrates the curse of dimensionality\n", "- Shows why feature engineering must be done carefully\n", "- Motivates regularization approaches" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "POLYNOMIAL FEATURE ENGINEERING\n", "================================================================================\n", "\n", "Base features (Lasso-selected): 35\n", "Polynomial features (degree=2): 665\n", "Increase: 630 additional features\n", "Feature count increase: 1800%\n", "\n", "================================================================================\n", "POLYNOMIAL MODEL PERFORMANCE\n", "================================================================================\n", "\n", "Training R²: 0.9015\n", "Test R²: 0.2069\n", "Test RMSE: 0.1990\n", "Test MAE: 0.1486\n", "\n", "Comparison to Baseline:\n", " Δ R²: -0.2795\n", " Δ RMSE: +0.0389\n", "\n", "Overfitting Analysis:\n", " Overfitting gap: 0.6946\n", " Gap increase vs baseline: +0.5653\n", " ✗ WARNING: Significant overfitting detected!\n", "================================================================================\n" ] } ], "source": [ "from sklearn.preprocessing import PolynomialFeatures\n", "\n", "# Use Lasso-selected features for polynomial expansion\n", "X_train_lasso = X_train_scaled[:, lasso_selected_indices]\n", "X_test_lasso = X_test_scaled[:, lasso_selected_indices]\n", "\n", "print(\"=\"*80)\n", "print(\"POLYNOMIAL FEATURE ENGINEERING\")\n", "print(\"=\"*80)\n", "print(f\"\\nBase features (Lasso-selected): {len(lasso_selected_features)}\")\n", "\n", "# Create polynomial features (degree 2)\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", "X_train_poly = poly.fit_transform(X_train_lasso)\n", "X_test_poly = poly.transform(X_test_lasso)\n", "\n", "print(f\"Polynomial features (degree=2): {X_train_poly.shape[1]}\")\n", "print(f\"Increase: {X_train_poly.shape[1] - len(lasso_selected_features)} additional features\")\n", "print(f\"Feature count increase: {(X_train_poly.shape[1] / len(lasso_selected_features) - 1) * 100:.0f}%\")\n", "\n", "# Train polynomial model\n", "poly_model = LinearRegression()\n", "poly_model.fit(X_train_poly, y_train)\n", "\n", "y_train_pred_poly = poly_model.predict(X_train_poly)\n", "y_test_pred_poly = poly_model.predict(X_test_poly)\n", "\n", "poly_train_r2 = r2_score(y_train, y_train_pred_poly)\n", "poly_test_r2 = r2_score(y_test, y_test_pred_poly)\n", "poly_test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_poly))\n", "poly_test_mae = mean_absolute_error(y_test, y_test_pred_poly)\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(\"POLYNOMIAL MODEL PERFORMANCE\")\n", "print(\"=\"*80)\n", "print(f\"\\nTraining R²: {poly_train_r2:.4f}\")\n", "print(f\"Test R²: {poly_test_r2:.4f}\")\n", "print(f\"Test RMSE: {poly_test_rmse:.4f}\")\n", "print(f\"Test MAE: {poly_test_mae:.4f}\")\n", "print(f\"\\nComparison to Baseline:\")\n", "print(f\" Δ R²: {poly_test_r2 - baseline_test_r2:+.4f}\")\n", "print(f\" Δ RMSE: {poly_test_rmse - baseline_test_rmse:+.4f}\")\n", "print(f\"\\nOverfitting Analysis:\")\n", "poly_gap = poly_train_r2 - poly_test_r2\n", "print(f\" Overfitting gap: {poly_gap:.4f}\")\n", "print(f\" Gap increase vs baseline: {poly_gap - baseline_gap:+.4f}\")\n", "if poly_gap > 0.15:\n", " print(f\" ✗ WARNING: Significant overfitting detected!\")\n", "print(\"=\"*80)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 8: Apply Symmetry Constraints\n", "\n", "**What we're doing:**\n", "- Enforcing left-right body symmetry constraints\n", "- FMS symmetric pairs: [4,6], [5,7], [8,11], [9,12], [10,13]\n", "- NASM symmetric pairs: [14,15], [17,18], [21,22], [24,25], [26,27], [28,29], [31,32]\n", "- Averaging left and right measurements to enforce symmetry\n", "\n", "**Domain justification:**\n", "- Asymmetrical weight shift left = as bad as asymmetrical shift right\n", "- Body should be treated symmetrically in assessment\n", "- Reduces effective dimensionality while preserving information\n", "\n", "**What to expect:**\n", "- Maintains or improves performance\n", "- Better generalization (enforces domain constraint)\n", "- More robust model\n", "- Simpler interpretation (left-right features treated equally)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================\n", "SYMMETRY CONSTRAINT APPLICATION\n", "================================================================================\n", "\n", "FMS symmetric pairs (left, right indices): [(3, 5), (4, 6), (7, 10), (8, 11), (9, 12)]\n", "NASM symmetric pairs (left, right indices): [(13, 14), (16, 17), (20, 21), (23, 24), (25, 26), (27, 28), (30, 31)]\n", "Total symmetry pairs: 12\n", "\n", "✓ Symmetry constraints applied to 12 pairs\n", "✓ Total features: 36 (same as original)\n", "\n", "================================================================================\n", "SYMMETRY-CONSTRAINED MODEL PERFORMANCE\n", "================================================================================\n", "\n", "Training R²: 0.5989\n", "Test R²: 0.4923\n", "Test RMSE: 0.1592\n", "Test MAE: 0.1207\n", "\n", "Comparison to Baseline:\n", " Δ R²: +0.0059\n", " Δ RMSE: -0.0009\n", " Overfitting gap: 0.1066\n", "================================================================================\n" ] } ], "source": [ "# Define symmetry pairs (0-indexed column positions in original dataset)\n", "# These reference the original feature column indices from the problem statement\n", "fms_pairs = [(3, 5), (4, 6), (7, 10), (8, 11), (9, 12)] # 0-indexed\n", "nasm_pairs = [(13, 14), (16, 17), (20, 21), (23, 24), (25, 26), (27, 28), (30, 31)] # 0-indexed\n", "\n", "print(\"=\"*80)\n", "print(\"SYMMETRY CONSTRAINT APPLICATION\")\n", "print(\"=\"*80)\n", "print(f\"\\nFMS symmetric pairs (left, right indices): {fms_pairs}\")\n", "print(f\"NASM symmetric pairs (left, right indices): {nasm_pairs}\")\n", "print(f\"Total symmetry pairs: {len(fms_pairs) + len(nasm_pairs)}\")\n", "\n", "# Apply symmetry constraints by averaging left-right pairs\n", "def apply_symmetry_constraints(X, pairs):\n", " \"\"\"\n", " Apply symmetry constraints by averaging symmetric pairs.\n", " X: feature matrix (samples x features)\n", " pairs: list of (left_idx, right_idx) tuples (0-indexed column positions)\n", " \"\"\"\n", " X_sym = X.copy()\n", " \n", " for left_idx, right_idx in pairs:\n", " if left_idx < X.shape[1] and right_idx < X.shape[1]:\n", " # Average the pair\n", " avg = (X[:, left_idx] + X[:, right_idx]) / 2\n", " X_sym[:, left_idx] = avg\n", " X_sym[:, right_idx] = avg\n", " \n", " return X_sym\n", "\n", "# Apply symmetry constraints\n", "all_pairs = fms_pairs + nasm_pairs\n", "X_train_sym = apply_symmetry_constraints(X_train_scaled, all_pairs)\n", "X_test_sym = apply_symmetry_constraints(X_test_scaled, all_pairs)\n", "\n", "print(f\"\\n✓ Symmetry constraints applied to {len(all_pairs)} pairs\")\n", "print(f\"✓ Total features: {X_train_sym.shape[1]} (same as original)\")\n", "\n", "# Train symmetry-constrained model\n", "sym_model = LinearRegression()\n", "sym_model.fit(X_train_sym, y_train)\n", "\n", "y_train_pred_sym = sym_model.predict(X_train_sym)\n", "y_test_pred_sym = sym_model.predict(X_test_sym)\n", "\n", "sym_train_r2 = r2_score(y_train, y_train_pred_sym)\n", "sym_test_r2 = r2_score(y_test, y_test_pred_sym)\n", "sym_test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred_sym))\n", "sym_test_mae = mean_absolute_error(y_test, y_test_pred_sym)\n", "\n", "print(\"\\n\" + \"=\"*80)\n", "print(\"SYMMETRY-CONSTRAINED MODEL PERFORMANCE\")\n", "print(\"=\"*80)\n", "print(f\"\\nTraining R²: {sym_train_r2:.4f}\")\n", "print(f\"Test R²: {sym_test_r2:.4f}\")\n", "print(f\"Test RMSE: {sym_test_rmse:.4f}\")\n", "print(f\"Test MAE: {sym_test_mae:.4f}\")\n", "print(f\"\\nComparison to Baseline:\")\n", "print(f\" Δ R²: {sym_test_r2 - baseline_test_r2:+.4f}\")\n", "print(f\" Δ RMSE: {sym_test_rmse - baseline_test_rmse:+.4f}\")\n", "print(f\" Overfitting gap: {sym_train_r2 - sym_test_r2:.4f}\")\n", "print(\"=\"*80)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 9: Summary and Comparison\n", "\n", "**What we're doing:**\n", "- Compiling all model results into a comprehensive comparison table\n", "- Creating visualizations for model performance comparison\n", "- Identifying the best model for different objectives\n", "\n", "**What to expect:**\n", "- Clear ranking of all models by R², RMSE, etc.\n", "- Visual comparison making it easy to see trade-offs\n", "- Recommendation for \"champion\" model\n", "- Insights about feature selection effectiveness" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "====================================================================================================\n", "COMPREHENSIVE MODEL COMPARISON\n", "====================================================================================================\n", " Model Features Train_R2 Test_R2 Test_RMSE Test_MAE Overfitting_Gap Delta_R2_vs_Baseline Delta_RMSE_vs_Baseline Feature_Reduction_%\n", "Baseline (All Features) 36 0.615644 0.486390 0.160148 0.122159 0.129254 0.000000 0.000000 0.000000\n", " Correlation-Based 35 0.614036 0.484176 0.160493 0.121970 0.129861 -0.002214 0.000345 2.777778\n", " RFE (25 features) 25 0.613436 0.487558 0.159966 0.122606 0.125879 0.001168 -0.000182 30.555556\n", " Lasso Regularization 35 0.615077 0.489988 0.159586 0.121623 0.125089 0.003598 -0.000562 2.777778\n", " Polynomial (Degree 2) 665 0.901480 0.206907 0.199006 0.148560 0.694574 -0.279483 0.038858 -1747.222222\n", " Symmetry-Constrained 36 0.598918 0.492318 0.159221 0.120716 0.106601 0.005928 -0.000927 0.000000\n", "====================================================================================================\n" ] } ], "source": [ "# Compile all results\n", "results_summary = pd.DataFrame({\n", " 'Model': [\n", " 'Baseline (All Features)',\n", " 'Correlation-Based',\n", " f'RFE ({best_n_features} features)',\n", " 'Lasso Regularization',\n", " 'Polynomial (Degree 2)',\n", " 'Symmetry-Constrained'\n", " ],\n", " 'Features': [\n", " X_final.shape[1],\n", " len(selected_features_corr),\n", " best_n_features,\n", " len(lasso_selected_features),\n", " X_train_poly.shape[1],\n", " X_final.shape[1]\n", " ],\n", " 'Train_R2': [\n", " baseline_train_r2,\n", " corr_train_r2,\n", " best_rfe['train_r2'],\n", " lasso_train_r2,\n", " poly_train_r2,\n", " sym_train_r2\n", " ],\n", " 'Test_R2': [\n", " baseline_test_r2,\n", " corr_test_r2,\n", " best_rfe['test_r2'],\n", " lasso_test_r2,\n", " poly_test_r2,\n", " sym_test_r2\n", " ],\n", " 'Test_RMSE': [\n", " baseline_test_rmse,\n", " corr_test_rmse,\n", " best_rfe['rmse'],\n", " lasso_test_rmse,\n", " poly_test_rmse,\n", " sym_test_rmse\n", " ],\n", " 'Test_MAE': [\n", " baseline_test_mae,\n", " corr_test_mae,\n", " best_rfe['mae'],\n", " lasso_test_mae,\n", " poly_test_mae,\n", " sym_test_mae\n", " ],\n", " 'Overfitting_Gap': [\n", " baseline_gap,\n", " corr_train_r2 - corr_test_r2,\n", " best_rfe['gap'],\n", " lasso_train_r2 - lasso_test_r2,\n", " poly_gap,\n", " sym_train_r2 - sym_test_r2\n", " ]\n", "})\n", "\n", "# Add comparison columns\n", "results_summary['Delta_R2_vs_Baseline'] = results_summary['Test_R2'] - baseline_test_r2\n", "results_summary['Delta_RMSE_vs_Baseline'] = results_summary['Test_RMSE'] - baseline_test_rmse\n", "results_summary['Feature_Reduction_%'] = 100 - (results_summary['Features'] / X_final.shape[1] * 100)\n", "\n", "print(\"\\n\" + \"=\"*100)\n", "print(\"COMPREHENSIVE MODEL COMPARISON\")\n", "print(\"=\"*100)\n", "print(results_summary.to_string(index=False))\n", "print(\"=\"*100)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABh4AAARlCAYAAABGL73wAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QWUXFW2gOHdESAQEiRocHf3wd3d3TXIDO7BXQZ3dxjc3d0dBpcQHJJAgEi/9R/m1LtdaalOKmn7v6xa6S69da2r9j57n5ra2trakCRJkiRJkiRJqoJO1XgSSZIkSZIkSZIkEw+SJEmSJEmSJKmqrHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWPiQZIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJklqhoUOHxs033xxbb711LLroojHXXHPFkksuGbvvvns89dRTLb14LW755ZePWWedNf3fVrzwwgtpmbmcffbZLbIMBx10UGkZuGy//fYj3Oecc86pc5/RtY7nmGOO9PxbbbXVSD2ex+VlrNSvv/6a1v16660XCy64YMw999yx4oorxmGHHRYff/xxdGRfffVVaX2yn7QntbW1pXMGF/bxSo4R1klz1s3FF19cut+RRx7Z4P023HDD0v3ef//9aOvnxUGDBsWXX345Rl9TkiS1fiYeJEmSWpkffvghNttssxQMJVj9yy+/xJAhQ+L777+PRx55JHbcccc49thjW3ox1Q688sor8ddff9W57vnnn4/26PXXX4/VVlstBZ3ffffdFCzlvRMwJcm3zjrrxN13393Si6nR4Nlnn42vv/669Pstt9wSw4cPr/rrrLnmmlFTU5N+fvDBB2PYsGEj3IckxltvvZV+nmWWWWK22WaLtpwgv/baa2OllVaKl156qaUXR5IktTJdWnoBJEmS9P9IMFDV8Oabb5ZGxm6yySYx3njjpSTEmWeemUZtX3311THnnHOmkdtqG+aff/544okn0s/du3eP1uCPP/5IyYfFF188/T548OAUoG9vCPbuvPPO6dgZe+yxo0+fPmlUOImHe+65Jy699NJ07B188MGpEmOGGWaIjmaKKaYo7Z/dunWL9oTEUtE333wTTz75ZCy77LJVX4cLL7xwvPjii/HTTz+lJN4//vGPOvd54IEHSj+vtdZaVX39G2+8MSU7OnfuHGPCXXfdFUcfffQYeS1JktT2WPEgSZLUitx2223xxhtvlFrJHHfccTHPPPPEjDPOGJtvvnn8+9//Lt33P//5TwsuqZprrLHGisknnzxdWkPioXfv3un/5557rnTdyy+/nALwmGqqqaK9OOOMM1LSAaeddlpKQsw000wpybD//vvHrrvumm4jEdFRqx4IVuf9s2fPntFe/Pzzz/Hwww+nn6ebbro6QfrRYe211y79TFKrXE48UBlR7cTDJJNMkrYf/4+pFlaSJEkNMfEgSZLUyhIP6NSpU+y2224j3M7I9JNOOikFR6l6KCJoyshtqiAYXc+FagnaipQHiHIv8H/+85+pumKbbbaJ+eabL5ZYYon0/DwX15P8mHfeedOoXZIgf/75Z+k5br311lKfcu5L7/zlllsu9c1ff/31U6uRIm7P9yfATdCNuStof5OD3SRdCAovtNBCKeFC+xveZ2NtUWiVs9dee8UCCyyQHrf33nuXerMX3XnnnamChPdDf3/mz2DUc1Gxl/s111yTRoCzDlkW1k3fvn1Ti56i1157LQWu2TYEslmOjTbaaITEUH1zPKy77rrpd5aH6oMitmW+f3E5+ZntkrfxxhtvnN5bczF3CJ555pnSdTkJQdJhyimnbPCx999/f2y77bbpOdjeq6++ekqKla8bfPLJJ6nCgG3D8vJzfdsnY66FffbZJxZbbLH03Kuuumqce+65dfa95qCKIwd7Z5555tQWphz7AgkJ1i37UtF3330Xxx9/fKy88sppeXjPbG9GtTe071x//fVxxx13pH2cx6yyyiqlUfdsK1ry5Ouvu+66eucYYH3Rdu3AAw9Mr8m6o81afXMCsJ+yPThOOaa4/3bbbVeqYCg/7nmPl1xySbofxz2VVA3NY8B6pz3VGmuskY4DKq2WWWaZdB8qB8qxD7AvcH+ONd4H55eHHnpohPsWl4f9hGovjgXeK+v4008/rXP/4jmHnyvBdsjnF86p7AN5nX377bdRbWxTkowg4ZFfG6yvXM1GZQQVEvjoo49i3333TRUYbD/WGefQK6+8ss65L+8bbDeOW+Yn4f55npSG5nio9PmL52gSNmxHzuk8hn359ttvr7MsVAhl/FycFyMfx8xNxD7Dfsb5nP1udLS5kiRJrY+tliRJklpRv+zc+3uaaaaJiSeeuN77Eawu99tvv6Xg0zvvvFPnetrmcCGgyqjv8hYc9LrfYostSn3+CdJedtll8cEHH6TkQA72EhS/6qqrUsDo8MMPH+H1mY+Cx2Qsx5577hlHHXVUbLrppiPcnwDggAED0s8EArt27ZrmryBpUAzUEWRlPgveA4HhcjwHz0+AthgU//DDD9NoYxI4OPXUU9PEr+WJAILHJBPqW8Z77703Xn311VLShnVBQPn333+Pk08+OV2XkzPFZWZbcD0Xlo8AcENIauRkBkFKAtJZDvJRmUDwDgSpaW1STCSRrOFCcPFf//pXVGqRRRZJwVv2AaoBGOWe53fgtoaSA0ccccQIo8UJMp533nlp3ZMo6tWrV7qeYDKJkYEDB5buSwCa7Vlf8JF1RgCddZgRfD7rrLNSUuTyyy9P+0pzsC/m7UNAuz4TTTRRnXVf3P9YHoKwGcfKY489Fo8//ngKvnJ7ObYT+2D22WefpWPk0UcfTZfi9RwjHOsErItYZo5N7pMxsTytsUiKEcwF+w3HWnF9Mi8M8xqwztgeBLmLuL7Y8ocEQUPYp3LFQNa/f/+UJOX4YR+aYIIJ0vUE8qnMKu47nDvYr7iQgDjkkENGeA22cfl+wjr+73//m5azS5eR/9qaE4DjjDNOCtSTSOJcQksikrJ77LFHVFOPHj1SgJ/EK8cVCYLc0on3ko/dXBnBumI7s82K2579lgvnhvJl5PggSZOTlSQGGjIyzw8ShPwNyNifSYJNNtlkpdZsDWE+Dc5txe3J3zeOJy7sPxwPkiSpfbPiQZIkqZUgSJ0DpBNOOGGzHkuVQk46MNKYYOANN9xQ6i9OwIsR9OUIahLUZhQ2o1tzgI9gGaP3eZ7zzz+/FOwtBivLA88EpQjWkyggyJeXK7e4KeL5CJ7edNNNaWQzCQ8CUbx/ki4s63333ZeCa6DCo74R0wS2mJyV5SSIOPXUU5cC3iQNcjA7Jx2WWmqpFIhkFDSjggkCMpqdYGQ5ArwkFXhPJG3yuiGhkRM1eTT1uOOOm0byEqAl6EwyhfsTiG9sdC/BR+bvQHE0MQmoHLgmIEsChaAuy8oyM1qe12FZqK7ARRddNELiqZKKB5aPoDCByffee6/ObeV4vZx0mH322eOKK65I+04OvrPe2Q8yArw5+EjCjPXFtmUOgfIqHH4/9NBDU1CV/Z9R9qw/El28fyavZSLb5mJS9mKCoVKsF4LuJB1I2JEU4/1zPLCfsbwnnnhiaT8rYtux77IP5zZOIOlAQJZ9iufL6juuCCoTFCbpwutuv/326XoSX8ccc0zpfhxHLCvHDcc8xwnrESxjMdFRPNeQ6GD52Lc5LurDPAU56ZAn3yagTqUU2FbFihmSCjnpQBUJ25t9JCdJGGFfX/sh1hfBc45hKkMIboPnKk5aTHUUlQpc+LkpHPv5OCL4T4szRu7nCaA5F4yO0ffFFkps64z9GVRE5EQT64hzJNdxDmZ9cy7J54X6th/nHCqSWH7W6WabbdbgsozM84OkD5Uw7Jts+yxXmlDhUF7xwHahioPH5OOe5+A1WVYSmhzLJNDqq46SJEnti4kHSZKkVoIRuCPTO5sATg5azzLLLHHKKaekQB+juwne5n7f5a2ZQADuhBNOSC0yaGmT25CA4CXPQ4Ce4D6KI7+LCEwRGGUuCgLhjGzOQdJiYDIjUMYobEZak+DgPgQ5seWWW6b++wTzCdJOO+20ddpQlS8/wV+Wk2A8j80YVYtiz35aujAanxHauaUOlQzF4GDGumQd8J5oJZSrDhi5m9dDHunNcxC8JzlAAJXKCFowEaTPVRf1IfiXg5SMUM8JkPxeSV5ssMEGpaBlTkzttNNOqRKCQCoB7hzILyYvmkLgMs/jwPqnAiQHYRtKPBDkzokjAvCMfGbfIehISxY8/fTTaQQ764mfwbLSqov9iPVIlUc5KmZykJh2YWxP3hej1POI/fr2gaYUA8vNCTKzPUmo5eQP65n9kuOBYCpY5/UlQ1gnJBaYpJr2SBlVJSRS2KeKlTANHVfMP0GAmtcloZMrNti3fvzxx/Qzgf1c2cDtBO15/qy+xB8OOOCAtHzs2w1VFHAMMhk3qKh5++2307YnmcJrss+Q6MTnn39e2t5LL710OnbY3uwj7Cv5eRo6D51++ulpm9POKZ8/yhNH7A95HopKJsAuTiqdj7M8AXQemU8QvNpIclD5ACq5OD9wbsgTt9OqKt9OtQFJThJ4nIM5VjhH5fN2Q9uPcwDnGlqSkXRqyMg+P9uY5A7zYhRbb+XqMvbl/B7Az2wXknT5vJjPa1988UVMP/30ceGFF6Z9l8REa5jnRpIkjV62WpIkSWolCOQQpCY4moOK9eH2YjCbqoXcEomAcbGdEoFDemszCpqgNsH94qhvfi4GifIoWBDsLL+eYHJ9ylvYMM9BVl/LnmKCI7+HjFH9XMrVN5qf5S9OpFoMZuUgffG5c3VAJc9dDN7m1yp/bioiGDFMuyJGEXMhMEsAlbkECFg3FWAjCcNIdRJPd911V3rOPCqcIHd+f8X3UT4PQWPvozG5pRJB5LxPMZo/954vl+cXIIhYfh/mwKA9Tk4i8L6LrWCKwe36WvsU+/nT7otLfaOwqTbJPfQrUdxuzTmuinMp8N6KeD8crwRtiy3GMgL69R1TBIhz9RCB83y8V3pc8TuBW7Ddcjs29j8qEbiN9Vhs/VVfsoXzQiWTh1O5RCUS7aDYt3IAmgAzCQXmTGG+gKbWV06GsJz1rS+2Ufl5KWto3TSFpGc+jvK+l+dKYf/Nc3RQdUUioJpyRQOJDxLDvG6/fv1GaLOUkQDh2Ke1EeuRZW8qWVZ+Dm3MyDx/8fzH9iA5xPJXsj1oW8a6JxHF+uXC3yUSUZzTaG2X27FJkqT2y4oHSZKkVoJgFe1rclCxONI3I+izwgorpDkScsuLpvqfF6sncouRLLdEyoqB1+KI4vLHlcuthyp5TYw//vh1fq+kh3uuiKh0+fMylM9rUY3nzkja0B6GEd0kGRgdTNCX9ju0maJaIc9l0RCCcTnATHCQdiW5HzsVH9nIvo/G5MoGRiTnNjAkIxrS2HYq3+bF7V4e3KzvvVSyD5CcaWiEdkNIEuRtl0ecl6PFFG3JqNxgFH9Dy1if+vbv4r7T0DHV0GMbO67qeyxzbuywww4pyM1odtpDlU9YXa45o83Zr0lc7rfffinZQNIiz/HA3AG54qOp9dVYFVclx1pz0UYqzxXCeZOR/1QJcCnOUcJcHfW1Wqt2u6V8fOU5IIqtkGhDRqs0zh1UwvAzlR+NKT+HNmRkn39Utgl/y2ipRhsoEqlUj7H9SV4xgTWJCZIhkiSpfTPxIEmS1IrkXtoEaconQwZ9shk5yyj73EKIkct5BHixXQ4Y2crEw3mUcnPnjqhUHj2c5UmykVslNRZkLrYKYSJoRkXnCwFV3lfxOZuj+PqMPM7PS/sRkjcEo+ub/6ISjC4nUcAcFfTdp4UI1QMEN3OVArc3JU9uTQA8b3cqD/IcHeXvg1ZO+X0QzGNEMe8nBzcrVWyplNv9NNRmqTgKmvedW1llvO+MBBqjpHOAm2Us7pf1zYtQ3AeYQ6C4DxDkZvQ0PxcrXCpBgJZR1qB1UvlEyaBShaQN+0OuKCiO+C6+N9ByKCdAchuyMXlckXRg//jyyy9LQXSqeS644ILU8owR/Y2pdIJuRuuzrXj/jOCnrROj5km25XkYmHS+qfVFmyHm/0BOro5uLGMlSErkCairiQRergrifJ33K9ZjsWKHtl0k1KiS4VxHNRMVGMWqhPpUOuH2yD5/JYqJs2JiiaQC51r2TypmSKgyV0eee4RzDddJkqT2zcSDJElSK0IAmv7wYLQovfAJ2tJihlGq9MnPo08ZwQuCu/TuBj3y6QtPSxMC6nvuuWepcqI4/0G1EXA/99xzU2CXeQYIUOZlK2+7Uh9GUufWG0x2S8seRuHTboeAKsFw5nIY1ZHH9MlnvbCcRx55ZKy//vqp2qC+YHQlaEFD9QmjwXnPJBoYPU2gtTkBQnqp55ZXOVHESPNiYG/llVcu9ck/+uij0xwE9NUnUcN9F1xwwVIQuFIERvOE3FljiYc83wQjp5nzgGVgn6O6I7dZor8/SQT2UeZnAMky5hRgv6SnPqP0yzEqOgfx2e60amEfYMQ2LX2YG4L9eWTsu+++pZZHbCuen0A4kw8zIXJO4tG6iFH8eZ+kggAE9wnqM88BI+SpKgDbZ3QeV0wGTICW/ZWf80TLzFFAEjGP6AcJARIivCfOAaPaqgi05aEVGOuI9cZrsC3Zv3Mbrbx/k+xgHwTJNuaOIVFE0pB9JbeDG5X1RYKPhBcXfm4I6ysnt9ivikmsfCkmJgjIN2denUqwb+T5L1hX+fmL5yPkbfjNN9+kfYtl51zHvjaq2290P38+H+WkKRcSGuedd15KvpJ0YIJ5XpN9hmVobuJEkiS1Xf61lyRJakUI5DAB5y677JKCY4xs51JEQJeRoznIBwI8BAkJAhNELU6onEfZMhJ6dKGa4qyzzkqXYuCN5aykrQstaGhzQ8CU0bJMbFpEALg4GW9zMPE0wVPWIyOxy0djE9DOI+Kbi2VmIlxG8BJo5VLExNm0xqpkuzOh8uWXX14akU5SpIgR5n369EmBPAJ8xQl48/vMiYHmjsxmZDJIGLAtG0ICgFH4TFRLQqx8GRhVXVwHBOjzpNkE0PMoZ6oheJ1i1UTeX5iMmWqCHNzPSMzw/kcGy0U7LBIXPDeJEi5FtMBhMvbcwobWQYwWz8tDQoxLcXmZ86C++SqqhbZGBPyLOJ443vM8LFQaENjlUt/2z5MBjwzmb6DdF4kXEmI5KVNcBzkBCtYpiQW2K4m4nIDM2F+YzHpU2idxzIH9rPwYyYpJBfbZ+jAPC8cM+zHnHCpqllpqqagm5nKgmqaY6CtvZUZCkcQHiZTy8x44t5AcGNlA/eh8/pwkz5OGc8lVFSScOK+QMOdSPrF9Q9tOkiS1H1Y8SJIktTIEpwicHX744Wk0PoFGgkIEnumNTRCwfNQwE93SLoRR5QTTCFgSzCcoeuyxx6bR0pX2rB8ZBIRpj0MwmTYiLAMVEM0JLvHeqPKg/zlBZoLvtJGiRzjvObd2GRlUN7AemGibke+sG0ZCk+hgdO7I9pQn8Ma2YnswvwPPSxKBgDBBPgJxlU6ETLVLrnAgEVLf5Ks777xzWq9UJRAo57V4XV6LaofiRMaVKlY4NDa/A1i+U045JQXkaQOVtxOj3RnVTtCxuNxsM9pAMfKbgD7LRyCU7ZknRi7i9bk/FSA8D8/N8cB+xPXFQOfIvE8C14zEZvuwrdg2LDsBcZJ1xUnRQR98rud21jP351hjH2Vf3XbbbWN0Yt/kvbOtOaZ5XSYiz+uB8wKtuah4IpnDfbiNCoUccKcFV1PzjDRV1cM2p8qCbcJrUm1Bux4SZcVEAtUzrC/2BSY/Zp4AtjnrnqQOyzW6UY1DlQzYf8onci4iIZmxf1Ub24LzTMZxUD6vB8k2ksIE4zmeSf5xzuOclef5eOaZZ0Z6GUbn85P02nvvvUvt/jhGisc9CXSONfYBtgWvzbmS80RxAnFJktQ+1dRWu6ZUkiRJHQL98CsZfSypclRRMKcFHnnkkRTUlSRJktoaKx4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjXM8SJIkSZIkSZKkqrHiQZIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWPiQZIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWPiQZIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWPiQZIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJkokHSZIkSZIkSZLU+ljxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJUpnhw4e7TqQWOMY89iRJktoHEw+SJKmO5ZdfPmadddZ0WXHFFevc9s0335Ru43LQQQdVZe3deuut6fnmnnvuZj3u7LPPTo9bddVVG7zPV199VWeZucw+++wx//zzxxprrBE33nhjVNPTTz8da621Vsw111yx2GKLxc0331zV5+/I+2NDl2rth9nDDz8c2223XUX7bPmF7b700kvH/vvvH99++23p/ldddVUstdRSab/r06dP/P77740+/08//RSnnHJK2rfnmWeeWGCBBWLzzTePO++8M9qrkT0PjEl77bVXLLTQQvHbb7/Vuf7ee++NbbfdNhZffPG0/Mstt1zstNNOaV9q61544YXS/v3999+P8vP99ddfcemll8bxxx9f5/r3338/ttpqq+jXr1+MKZw7yo/h2WabLeadd95YZZVV4owzzkjLW81z2UUXXVT1v3Ot5XjN63OHHXaIlsY59LTTTkt/5+ebb7507uVv81lnnRUDBgxo6cVThQ4//PBYcMEF6/w9lSS1HV1aegEkSVLr9eWXX6bA/VRTTZV+f+6556Itm2iiiaJr164pkPTLL7/ERx99FEcccUQMHTo0tthii6q8xqGHHhr9+/ePLl26RE1NTYw33nhVed6OapJJJknbB3/++WfabphssslK9+nZs2fVXu/aa6+No48+Onr37l3xY/Ky1NbWxuDBg1OAhATBhx9+GLfddlvaHwiyEgCbY4454uSTT05Buy233LLe52O/3H777UuBFvahP/74I1555ZV0efXVV6Nv377R3nTr1i2ty7HHHjtao2eeeSYeeOCB2GabbUrH9bBhw+Jf//pX3H///el3zi/du3dP25wA+pNPPhk77rhjSkTpb6wL1td6661XWiUffPBBrL/++ml9toSxxhorJpxwwlLFxcCBA+Ozzz6LCy64ICWZDjvsMDdfBTgXcwzzt7Ylffzxxyl5XDyH8veYczKX22+/PS677LKYbrrpWnQ51TT+Tt50001x1FFHxXnnnecqk6Q2xooHSZJULwJo5cmG559/vs5tbc3555+fAoG8j8cee6wUdGA0erXkQAeBYdbd6quvXrXn7oioSGGbcSFJlOXruBx88MFVe73ykeyVBCzzcjz11FPx0ksvxT//+c/SCO6XX345JU8IWBM4mXrqqdNtU0wxRb3PR5Jlzz33TPsR9yXgQqLhxRdfTIFZXH/99W0+CVif1VZbLa3Hhx56KFqjHPTaaKONStcxepogeqdOnWLfffdN25/zC0mKddddN93nkksuSfuC/jZo0KARVgUJu5ZKOmCRRRYpHcdUrbEdqVrBDTfcULWqh/aOczHrkGqtlsI5lMokzqETTzxxqq7JSdsrrrginY+//vrrVHnWkvucKkMFDRVIjzzySLz77ruuNklqY0w8SJKkeuX2CfUlHmj9Up9bbrklBUdpa0Aghy/2jC4sosUMQflFF100tT4gUFFfIIpRp7SkWGGFFVL7Gv4nyDdkyJCqbDECvzwniq09fv3111Tan1umEDy8++67622ZQRBjnXXWSe9jk002Sdcx6h2MkOX34ohegiG0X2L9Mdr3P//5T53nzW0qCFCz7rgfo/1yq5N//OMf8eabb6bX4jbaRhBMYYQ8LUq4jvZYjLIvIghKm56FF144vSfuc/rpp9dZl7nNCEFu3j/3pb0B26e8LdCjjz5aWga2I201WK4iggTsC7we65LnKW/TMrKtR+pTyXZjBPPee++dWh5xn2WXXTYlM3IVBS1NaM0BAlMsG5UJzcGo2pVWWqn0+88//5wSddNOO23ccccdKSnBts/7Xjla83zyySfpZ9q8EHABo+iPOeaYdFxtuummqTogoxrizDPPjJVXXrnU6omqjfy+im1RNt544xQYZN9hHbAdGR3MfrTBBhuk66jMeOKJJ0Zo9bL77runkcK8Dvdj3ywPqDdnX6MNGeuK1kVUmtTXuuW7775LVUQEgbl+ySWXTAF+tk8R7/XYY49N92Md8LqsP9ZN+Tpgv3zjjTfSemzomCn33//+NyWRZphhhph55pnTdZy3ctKSZMTOO+9c2i6M+GZ5WFbWH8FO5GOZ44akEtuT95SPH9YJycq8HXmO8vMjy0GFFsvOeiZRxb6dFV/j008/Tccn+xHPd/HFF4+wXRu6cHyW43zOemNb0IqI/aE5xyHnKQL7YJ3nY4z9MOPYyO3TKvk70NB5c1SQUFxmmWXSz7xWMSFZyTbiOMjnP+7LObMc66K5LeTuu+++tN55j5ttttkI591Kjr+33nortQFbYoklSvs/VVhUlBVV8j7L1ddqqdK/LdX6m8+65m8iTjjhhHR8cV4G+yXX5WM6JznzscD+w98EjhcSoSScfvzxx7SsrAOWi+Nqt912K52ni+/7pJNOSvsz24j1z3mhfBuR1Npwww3T7bwGy7DLLruM8PeG5eOcwucLLqxTtl1zjl/OC7m9JMcmqMbK96FFXEYrr3xervTvSmPns0rP3U2dz5DbflZzkIgkacyw1ZIkSaoXXyAJFJBsIJhOAIsRhJNPPnlMM800KVBZRCuZK6+8Mv087rjjpgAFX6gJhBCgzwFUAr8EPvP9CD4RTCnHF1xGdhMwoH0DyYFzzz03fSElkDKqeD8PPvhg+jmPQifIQJ92RtXRKolg73vvvZe+LPN+CLgVnXrqqdG5c+cUMOFLOXNg5IqHCSaYoNQy5vXXX4+tt946BXa4P9fzGoccckgKkBx44IF1npcv/jznOOOME7PMMkvpepaB5WOd8FwEAffYY4+0ffidx9Aei+fli/5MM82U7kNQg+AN7SYIgnOfCy+8ML0/AhtFeW4ClpPAA4GQXr16pXWAu+66K/bbb7/0M8vHSGUCiewrLDevSTCD9jMsV48ePdJy8zzch/9zm5rcRmlU21FVst1YP9yHbcQ6GH/88VMAhooK9oWrr746PY4Lj+H9876LAf6msP7pHX755Zen3xkFT8AHBHCouCF4RACfZSa4We7ZZ58tJcbK5zrgvbGc5e+dfYtAOlh+th+BfI493h/7YsbxQ9CMbcdj2TcJQhJc4z2zPdgn99lnnxTAy+1nwH1JKHHcsj8RQCN4Slsplre5+xqB4tz6jKATgbZyrCuCbSwb5wH6thPI5rp77rknPZ6AGoE8XiuvA36mTQ6BMYJVxXXNdi8eR9yXwCLLMOOMM9a7bXMihsRhcVvlwClB4HIsW/l7ztjHjjzyyLSeWF/sJyQFOKeAbcY2YXu/8847cc0116R1QJCOZc/rmP85j7EtSGwVW5Dx3gjAs4ysY/YLnp85DEi+sZ6K9y+XkyVF+XzDhX2Jcxf75ZprrlnRccj+xLbgvhxbnB/4e0Kihm2bXze3T2vO34GGzpvNxTHAeSInhmm7lo+DSrYR5zm2O8/DOYDnIqDNbUU8Z2Prv7yFHO+d8yrrjfXH69D2i+QPic1Kjj+CwbQgopUUf4c4lrkPVQGs/xNPPLHi99lcTf1tqdbf/JzYotohJ4+K2Pe5jffEMVycO+Pxxx9P2431xX7Jvso+/9prr6V9mv2VZDLnRpar/LMLxyItnHg824gAPAMO+CzE9nj77bfT+mcbsW9wLuIzUXlrKp6bcwrbif2Z186VOJzTOV9UcvxS1Tn99NOnv3EMIuG95gEk4PlILpEM4D4sE4mC5v5dqe98xvI3de6u9HyWz7tUqnKMs5ySpLbBM7YkSaoXgQy+9PHlnNH6ufKBEWnlCC7lpANBBJISfEkm2UDQK/fH5gtnTjrwZZvACV/ICQKXf+mmvQVfTAlOEDxkJDiBGr6wjmy5PQFXEgSMzuMLeA5U5uAgX3R5bkY10zaH182j8Qkcl4+85Is3gQqCFwRv83sDoybz71R4EARk1CLrhfVDYBcEKQjmFPE6BHf48s3ov4xgDSOIuT4HYgiCEGRj+7Bu+ELOF3Pug88//zwFVAkMch1f9BllCYIp5QhE5XZUc845Z52gK8+bW2gwKp7n4nUZDcmyEYAmIMnoWf5nHfCarEcSWWzX4mTbuY3SqM6vUcl2IyhHAJAgDoETlpsKHUbeEpghcEJAiMAdSLCxbHldNYQATXHScvYt3iPBMwJWBK8IPpF0AAE+XpNgYH1Yxvz6lSBQR3CIABkJPvYtApHsm6zvc845p879CdJz7HG/HPAj6MSIUto5sT+C47Y4uhacC/Jxy7YmUFRMtDR3XyPIz3ZgPdc3oTSBqrwMBKy4L0EpzkFUSfzwww/pNoKTHMucH9gXcksVzh+8LsGy8vdBwoTlYx/kmGF/Zd9pCO8ZBO2z4sjdnLzMrZU4zxQveZR1RnCT0dAsA4k6zg+8D7BvsA9zrmCf5rXziHkqctifOd/wWLYZ1SucB4rVDCApSJUUz0WrL47t4vHM/l5sWVZ+Yd2UY9Qy25ZtkSvf8r5dyXHICHbOBeAczOuwLfNzgHM/iaDm/h1o6LxZCdZ1Po4573E8sO+xzgiognNEJduI29i+JCxI1HEb26u8XRProrH1X95Cjn2EY5bn4/0TBOc4ZV+v9PjjsQSzWTZu5zxPCzHOW5wzOA4qfZ/N1djflmr+zc/J/+IxWS7fRuC/fB8i4cK6YTAF5yCWgXMVLdXY70logoqHXEVQPCewz3MOygl6zuk5qcpjeY0pp5wyvT/WJ39zyqsBOW+znTi22ZZc2IfYB9hvmnP85pZh/N0D6zbjfRaTNew/JIOa+3el/HzGsldy7q70fMZnHM7TVFuUV9FKklo3Kx4kSVKD+JLIl0YCBTnwRoCivNohtysgmMEXSIKujOCjrQyj2fii+MUXX6QR0yBgyZdt7kcAgBYvxcBTrrIg0L3rrruWrs9tHvgSyyS9zZVH1DJ6kBF4BFL48k5bhPy8OVCQ+7NnfBGmrUwxQEqrnuKI8PoQECUxA5INeWQj74vWBIzqZP3lQExO+iywwALp5/Lnp1UOX8BJYhSvYxQsj+P5+VKf1xWtbLjwO1/qCUDl5alvPgO2RV5GAqYkRfL9ctULGLlPkIgLwSmCSlwIxuTgOds0B9iL2459opoq2W4kANjveC+sL0a9EgBlGUd1cupJJ500vU5OTDHKNrd8AUGm8uA319WHfb458rHHqFXaiIAECO1WCChye/nEuNyG4j5E8ofjIu93KG+rwvbNxy2BIJJP7MP5fNDcfY3AM4kgLvVhu3BOIZjHccp65ZxEEJvgWPk64H3lxADrgnVCMJzbeXwREz5zHNEWju1HALKxNjKMFAcjpevDussIuuXjJCsPUII2bfk5CdSTKEBxLhMSO3kfJ+ifz6EkzUj+ILeTKo5kznjfBA/Z/9kv2FZ5W9CqpTyAWMS6Lw8yk6Tl+bgw2p5AOBUyrLvmnj+b0ty/A42dN5vC+yGQz9+IfAwywTsVI3miefbnprYR+3/eRoz4zsc5lTskpAjQZiS/OE4aQku2XIEAzl8sEwiEk1QguJxHpVdy/NEmjH2VY4pAMedBAsEExHNiqtL32VyN/W2p5t/8vI6LbdbK5ZaI+f+MKpCcrMnHOn8jWC4+x3C+Y7BBxvIX/36QuMpVFnyuyFUj+X3mcyXVP3m/IkFNVVbx/JOPZRIIuc1QTlyROGC5OXYrOX5pWUVCOSce2DfYB9g3SYhwbOaka24BODJ/V4rnM+bOaOrczT5W6fmMvxHs/5xbOVcXE8CSpNbNxIMkSWoQgVkSD3xhzX2K+fJYnnjIo9f4opl7KWOqqaaqcx++NILgQ7FVQ/no7txDmC+v5QG8+kYpVoogDYHGhuTX5QtxDrwUsSzFwFl9rUjKMbq6vvXBemJ9kXgo3qep580BteIE38UgbG7vlAMqBNIYsUsAgvVJsiU/tjzoUnx+5DZD+X7F3s7F+xVfv3if8lGco7LtGlPpdqPagEAQ+y+jNmkdwrqgvzxBlOK+25yAJUEbAkuMUGZkOccLQZiceGD9FNdRYwiCl887UkQwhqBLbnORj73ivlX8vXzfyi1wGtqH8v5T3/7BNi8et7kNRj6um7uvNXX88FqMeqVvem7vkSsUSFoQlGV5m7sOeF6CzFlOfNS3jFl+j8W2YMUR1STccmCUhGueYLyx4HLe1uXHTUPnPAK/OShOsLC++zTneB6ZVkvF/bi4/Oz/zT1/NqW5fwcqOR839reO8wMJcgLfzHtCIDRP6F5cHjS2PHlfKS4P+ynbonhObG6rJe5fbDGT138OWFdy/JGwoJrh3//+d6oiIBnEMZaTirz3St9nc1Xyt6Uaf/Pz54mvvvqq3rY8vCbbuXjfrPyzCQjas45y9UNx7qbyRHHxPRYTqvl+ed8oHjuck9lXiomHvD5IWJYnLTnWeJ5Kj18SzPy9IAnAeZT1QjUqFxIeJDJy0jAnHpp7Ti1/T5Wcu5t7PmMf5X3ndShJahtMPEiSpAbllhiU4fMFkS+W9Axu6AsuX2z5Up8DuHzBLd4nB0v50sro8BwUaSiAxJf44qg3vnCP6nwAjcmvy0jF3M6AQAgjKIsB2ayhkdoNBepYH/mLO+spt2opD5g19rz19TZurN8xExLT4oDR0rRJIrBCe4P6+umXj9wuD8QXezoTHMqjeelbTSCHgEzxvZC0yhPx0hIkj6htqe1GAIYKDEaO5vYV1113XWrPQvsjRneOLPZLWkwxKpbKEJIQzHdRDFJVgl7WtBph/TIiuFgJQwCK4CDvi5HIJEx477xe8VhDbiNWvm81tK9U0jObYFRxbopcBZD3i+bua5UcPwRKaSvG8UIrDpJGVI/QzoNAPxVWvEeOpUrXQXlgsZKEU24HV5yAl5HAvAdG6DJitzg6PGM/bEhx3ywuI9Vl+TxXPOex3Vl2npP9mIorEORnOep7H4314mckcnklSFNIiOXjPgcn2XdI5FR6HNa3nPVd19y/A5XsT02hMoRlJ+HA+6NyiRYzBMor2UbFORGKAXT2m2JAH3kdVYrnLB5/OYnR3OOP/YYBBARwSYrRKpC5lpiMnQmnK32fzdXY35Zq/s3nuOR4JJDPnER5JH5GxUIOdOfR/Fn533kqDgies/2pdiBYT5KxoRZ8xeOtvn2azwNUBBU/8/BZqDxJz/rgWOOcklsRcp7hM1N+jUqPX+5PhQmJNLZxrlxlEAaJBxIErCsqhvIcN839u1Lfumvq3M2yN+d8lhMzo1qhKEkas5zjQZIkNYje93zBzKPSciKiXG4tQPCPL7F80WR0YP6Sy5dMRgfnxxOEpg8yz0tfaoIERQSBCWYRHMgtaghuEyzhC3R57/lqyfNX0Hc6V3gQlCZgTd/h8lG8lQQsSTQQgAZtBlgvrB9aWxBY4DlWXnnlGF1yP2SCNwSoCHjkSbWb29aH/SGPsGQ7EwRjWx577LFphDctGKjiyC0kcpCfgPnaa6+d1m95y6Extd2YBJSWIuyr7FcERwkq5tYfxTZc4H2xfoqtUZpCsISRnOy7BBoPPfTQZq9jAlp5JD0Tyeb5P1g+fif4xHMSICweewRz8qhV2qvQoxvV3Ld4T7T2yJPN0/McrNeR2deaOn5o+UIihu3LPDP0KqctSU5+5m2W1wFJJEZwg3WRJ36txjrIwfZiwLDY+obXpiVLnmyaoDMTL5dXhzX0/kkw5QArx1FOTPLeCI7SD559M7fHYl4NAnFsEwJ4tBjK59vRiWA5r8slz+tDCxYCs5WeP/MxxnPk9jrFgC3Xc9y11N8BztdMCAwqo6gOqHQbIf+dY4Q3gVvux3OUzxHUXKw/1j+BWo6/vH+znio9/ujXn7cH+x/nZebDyIMASG5U+j6rqZrbmnN7PkcwTwP7Y54QnUEUhxxySOnvWfm5ofyclNcpy0Z1BNswn1ubqpJq6H0it1lku9DyrLzNWz6WeC22Cdv8gAMOSNuO/5tr+eWXT//n9UjigdfguGM9F6sdRvbvSnHdVXLubs75jPNqbldV3+AXSVLrZeJBkiQ1qphsaCjxQEsZRl+DEZZ8aWTUJb2nCWAQmM4BHQIdIIDCl3CCBOVf9vliST9oHH300SmwST9qvnwzIpXJjEcHRkayjAR3eT3eL4ELXpcv5bk9RHMxajFPdMt6Yf2QhAAj2Ednv+Lc85wWQLwfAhAE04o9uytF8GX//fdPPzNpKtuFQBTvi2oGRp9znzxxNqNNCTzQR5yRkozUzf2qwT5DUGlUkxGVbDeWgd7TBDeYm4DlZuJdRpoSpMtBlxz0JwA2MokSRpHmOSwI8hSDVJVgHRHcZ2Qs24mR1xwnLGueAPTwww8vLSc96Nl/SPDwutyX/vqMrmadkFypFhIrJJzYp0iQkFBi3dHrv9r7Wj6vEBwkOMeo3xzIokUMo2sJnoL3SFCQbca+wDpgXRAkZDnotT+qcsAwJzYygmlM5ksAkmOa12PfInDHSHlwDsyBv8YqKjh+wFwArEvOjYxKZ4RvTjQxuTcBO0aFsz645ImDm5oIvRrbn0Asr8l7pD875+68j1V6/sxVX/SJZ70SmCSxk6tu2F4k2Ub170Ce2JtzVXMR/GR0OxgVznavdBsxnwPrKk/azv0IrI5KKyiwj+fJ6anO4vij0qQ5xx8BY7YDy0YwmO3IMnKssE45vip9n9VU6bZmkna2af47VB/+1tJOivXFeZB5SXg+LsxNRNCb27hPsQqjPjkwTtCbfZj1yv7Q2NwtjWG9snwkHXg+tiXJoFwNmD8L0fKK66hWyfMRsV1JyOXzXnPwHDm5xP9sU/YdkoZZMfEwqn9XKj13V3o+4xwB/i6yP0iS2g4TD5IkqVF55F35z+WOOuqolGAgQEAQjmAbQY6bb765TruY4447Lo0SpqUCX7L5MlucQDOjVzVfSin/J5BF0IZ+6VQKjEwv/krwhZygAgEPXo8Rpnx5ZoRkDqaPDEYXsh4I3vBln+ABVSC0cMi94EcXRkeyjgkQs94IILANwKSwuV1OpQgYMAo2B+UIsBHUYPRzTqCQXCIIm/u5E+giuMXo52JPaoL+jAyvb+Lham83+mHz+kyOSZCTBARBDPpNM1p9iimmSPcjqMV2Yv8lIDIy7aF4TV4fjNqsb66LxrAeCVpvvfXWKUjLKFCWlWUjSJUnh87rn+QGgSqOFe7LOuZY4X3lFkHVwDpidC7rmHVOMKy4Tau9r+U+4QQOeW+MeuW5WQ9s7zynAgklWsUQLGPbsg5Yb7vttlsKnBbnshhZJBJ4T3n0b8Y+QrKVZBGBXCpoCNByfmP9sE7ouV9J1QXLS5KSibs5RxDkZX3yXvN+yHPynvg/t10hEFw8/kYX9jXmRcnBWPZx9u+cVKn0/Ml24vxBAJL3SHCS9UYSJ7emy/vtqPwd4NzCpdgeq1KsV4LcJAIJfvft2zf9XatkG3EbxynvkXXCPslxU/w7ODJ4PhL2PB/7HYF0tkeep6CS44/Hcr7gHJ3nFeC43nDDDdNz5flfKnmf1VbJtibQzzYtb1tVjuA451DOi7T74z1w4Weu47bcVqgxrEM+1xDsZp/gXHfQQQeVtiVtqpqDY5RqTwL+bEPOU1QG5omsc7sw5ucg6c15h/XNMZJbBfL3trnYrvnzG3+X8zYk0A/OV/m4rsbflUrP3ZWez/Ik1PxtliS1LTW1za0PlCRJktRhEDQlsE4QObdX6ogY+UvigURCbiem1otAMwFN9t3RMUpfLYMEBcnqU089tc1tAoL2VP+RaKMSgAQAc0ZQ2UaijgEKVAuoLhIezEdyxx13jPYEqySpuqx4kCRJkqQm0BYNVFeodSOIyxwbjNQvjuRW23b33XenSZJpl9cWUT1z2WWXpaQJyTAutM1if6W6ZHS1kWzLmCeFyampdjDpIEltj4kHSZIkSWpC7odPC5KRad+jMYdWMcyDcsMNN4z03DxqfWi5xETdtDVri2gztu+++6YkA+2TaBlFezHmR6HlUJ7nRP+Ptku0ZaPFlSSp7bHVkiRJkiRJkiRJqhpT6pIkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqqmS/WeSho5TKw1dOjQNJkWE4ZJkiRJkiRJklqf2traFM/t0qVLiuc2xMSDWhxJh7feequlF0OSJEmSJEmSVIG55547xhprrAZvN/GgFpczY3PNNVfKlElSJdn1AQMGRI8ePayUklQRzxuSmsvzhiTPGVI7M9tsEd98EzHFFBHvv9/SSxNt9bPGsGHD0iDyxqodYJRXLS4fWJ07d04XSarkjzN/4DhntKU/zpJajucNSZ43JPlZQ+rgBg+O+O23v/9vBTHI2jYe22hqmZ1cWpIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtU4x4MkSZIkSZIkqX27446Iv/6KGGusll6SDsHEgyRJkiRJkiSpfVtwwZZegg7FVkuSJEmSJEmSJKlqTDxIkiRJkiRJkqSqsdWSJKlN6tTJ3LkkzxuS/LwhqfXwO4rUyt19d8TgwRHdukWsuWZLL027Z+JBrUa/gf2ic+fOLb0YktqA2qiNYcOGxYCBA6Imalp6cSS1AZ43JHnekORnDaljm3yXnaJzv/4xbMrJo/97L4/Uc3Qfq3v0HKdn1ZetPTLxoFbj4lcujv6D+7f0YkhqC2ojhg4dGl26dAnzDpI8b0jy84akFud3FKnVO/nPATFhRAz4c0D0faJvsx/fa9xe0WfhPiYeKmTiQa3Gj4N/jP6DTDxIqkBtxJChQ6Jrl64mHiRVxvOGpObyvCHJc4bUrgyrHV763xjk6GeDbEmSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJLVrf4zdOX7v1iX9r9HPxIMkSZIkSZIkqV3b7bTlYpNLV03/j05//vlnHHLIIbHQQgvFkksuGZdddlmTj/nqq69i/vnnjxdeeKF03ZAhQ+KUU05Jz7HYYovFSSedFEOHDi3d/u2338Zee+0ViyyySCy11FJxwgknpNfOnnrqqVh77bVjnnnmSf8/8cQT0aoTD7zhs88+O1ZYYYWYa665Ytlll01vatCgQdGavffee/Hqq69W9TnZkOecc06sssoqaQOuuOKKcdZZZ8Uff/wRo1ttbW1ce+21I/14duJZZ501Rheeu3igSJIkSZIkSVJ7d/LJJ8fbb78dV155ZRx55JEpfnz//fc3+pi+ffvG77//Xuc64sy33357HHfccXHppZfGc889FyeeeGIpNkzSYfDgwSlGfMYZZ8Rjjz0WZ555Zrr9888/jz59+sT6668f99xzT6y33nqxxx57pARHq008nHrqqfHggw/Gsccem1YYSYdnnnkm9ttvv2jNWLGfffZZ1Z7vr7/+iq233jqti4MPPjhtwMMOOyzuuuuu2GeffWJ0e+mll+Loo48e6ceTQXv66aerukySJEmSJEmS1FGRPLj55pvj0EMPjTnnnDNWWmml2HHHHRsdQE48+bfffqt30Pm//vWvWGaZZdJzHXXUUXHDDTek+37yySfx+uuvp9j8zDPPnKorSETcfffd6fH9+/ePjTfeOLbddtuYeuqpY7vttotxxx033nzzzRhTujT3Abfddlscf/zxsfjii6ffp5pqqpSR2WKLLeK7776LSSedNDoCskxffvll3HvvvTHBBBOk69iIk08+eay77ropGfOPf/xjtL0+O9+oGGussWKSSSap2vJIkiRJkiRJUkf2/vvvp3ZI888/f+m6BRdcMC644IIYPnx4dOpUtw7g119/Te2UaMe05pprlq7/6aefUoJh3nnnrdNhhm5EVFPMPvvscckll0SvXr3qPF/uSrToooumC3gMlRMMpKdrT6uteKipqYnnn38+raiMFcmIf4LtvKFir6kHHnggtWMiUL788svHLbfcEhtssEF6k9tvv318/fXXseeee6aVuM4668R///vf9Lhbb701ttpqqzj//PNj4YUXTkF8VhBVFsstt1zK4rBRMlYcVRh5pVKB8csvv6TbeB5eh8qEgw46KLUAYlkodWHDU+4y22yzxTvvvFN6vh9//DHmmGOOVJbSUAKGUpWcdMh4nmuuuSbmm2++UjsmlpPMFNftuuuu8c0336TbKG1hh6FqgjZNc889d+yyyy6l5WanoIqC98M65rH07uJxVFsUWxrxvrjQr4ukENUdH330Ueywww7psTz35ptvHh9//PEIrZaaWg68/PLL6f2y3dZaa620XYtYh7wuy0pWT5IkSZIkSZJai+2ufTf2vOiN9P/o8v3338eEE06YBn1nJAeIERdjrRmtkRjETtVCUc+ePaNr164pFpzlmPLPP/8cPXr0SPM6ZMTqiUkzF0QRsW3i7sSYd99991RE0GorHgh401/q4YcfTsH0JZZYIk1wMdNMM8UUU0yRqh9ITHAd7rvvvlhttdVSwiKvTPpcsXIoM6G/1D//+c9UCnL44YfH6aefnpINeO2111IVAckKSkt4bpIB3E5mh5KVNdZYI13H47ju4osvjrHHHjv1tdp7771TLy3mpCCpQaKD4Pm7776bEhEkK0hwsBHpkUUwnbIV8DOZo2mnnXaEdUDvLDYaAfr6kBTJSG4wtwSTf5CkoFUVG/k///lP6T5kvFh+kjO77bZbXH755Wmd8J5pqUTGa5xxxknvn2oT7st7ImFDuyR2RBIhd9xxR5x77rlpZ55mmmli5ZVXTtuHZRg4cGBqzUQShNerT0PLwQFDIoKf2aEp4yHJMfHEE6f3euONN8ZVV12V3iMVH5T9jAxed1QrOSR1EJwqake9+ktSB+J5Q5LnDUl+1pA6tKWf7Re9fv4jfphwnLhs89lHOnY5bNiwRlstEWseVrhP586dSzHl4vXPPvtsvPHGG3HMMceUrieBwM/E0hkgTqx2uummi/HGGy/FXrt06ZKSGOXLQLydmPdNN91U5zbixsRueR0eT6ydmPGoaOz9j1LigbkSWMDrrrsuvRH6SvHGSQJQyUA1AlUJJB5YmcyWffXVV5ceT+CfYDjIwBDU3myzzdLvjNYnUZCxIcnG0H9qk002SbcRbKeqgAsrnn5W008/fcroEMzPo/hZ2Yy+/+CDD9J1bODxxx8/XTISHzmxQALjiiuuSH2zcsKE6+ozYMCA9H/xuepDqQzJAJIhOdtE4oEKEKpDWG6QdMllLlQTvPXWW6VKBJIovXv3TkkLJg8hM8Z7YadBsV0SiRAqOfJOvummm6YqB9YfSPJQgtOQhpaDBAjbbMstt0y/s86YrJvtQeKB/WCbbbZJ2x5UnjS07hpD+dCAX/9et5IkSZIkSZJULcNrh5f+H5kYZPfa7ine/e4X76YB7fXp169fisu+/vrrpesYAA+60zD3Anj8IYcckuZeIH6dcZ9cLUGsnMHnxHuJERPbJc7LdAfF57/++utTNyJiu8RXi7dlDLCniODCCy8cY1MlNDvxkN80F8o6GHFP0J/EAwF+elGRLGB0/uOPP57eyFxzzVV6LEmLjFH8BNWLv9NeKGNEfQ6as3JRLAfh/mwk5lrgcQTai8gQ0XIoJyPKFZ9r1VVXTTOEE1AnmE+VQm7lVN6Ti6qCnFhoDK/NMhR7cZFAIOFAy6OceChWVXTv3r20Dki2sNOQxFlkkUVSlovETUOK65L1RkKH9lRUgpCgIetV3verqKHl4LHMil5cD9yWl5/3QkIqo/olb7fmIIHVo7ZHsx8nqQOqjdTWj0x//F1QJ0meNyT5eUNSy/E7itTqdarpVPq/R8/mxyCJl3br1i1mmGOGBu/DQHpix3PNNdffMYv/teInjs3A7jzHA11uSCDQWaiIeDSde4itg2QBA9GJjfPcFAHQkSa3ZmIAOHMQMwh/9dVXLz0P0xkQuy525mFgPEmKPEXAqFQ85AHrVUs8MDkGgWza7IB+VYyMX2WVVVKJBi2WaMXEi7PyaFdEm6WiXFqSlU+oUWfh/rdxinLLpvrKO6jCKA94k7xoSE5mYKKJJkpzFLDMJEtIFtA2CLznjJ2Ex7FxmROi/P2BbBU7EgH4+rC8xTkyKL+pD6/x6KOPpgQOFyo8mJm8oVnQi++H7NaGG26YthFZMRJCJBBo29SQhpaD4B7bmTkmGto+5e1O6tt2TWHb1rd9Jan+k8b//iZ42pBU8YcNzxuSmsnzhiTPGVL7UVP2930kY5fl8e0i2vgTF33rrbdKQX+mE6BTTTH2SvCfODTt8emqw/MSXyeRwFzHvMb++++fkhDFKQ2Idc8yyywpps6cu3SiIWbMoPqiJ598Mk0xwGPye2VQ+owzztjo8rfY5NIEzOn7z0IWUf5BQJ7gPT+vtNJK8dBDD6V2QiPTcqe5qKJghZH9YdQ+FzJQJ5xwQpokulIE5xnZT3uo4nLn5+Qy2WSTpeuo+GDj5bZLxeQM8y2ww7Bc7GjF8haqRJgfIlcLNIaEB8tDcoMeXLRJeuWVV9J7aurgePHFF1PWjLkXaClFIoRSn5Hph86ysszF9fDII4/EXXfdVUqQFLNctIgqXy+SJEmSJEmS1J5REcFk0X379o0333wzzZPMQHAG64NpB/74448USyfGSvw4x1tB7DkPpKdzDvMYf/jhh/HCCy+kuSB23nnnlHSgA815550XO+20U+rQw/PmS45d8zNt/+nKw0D2O++8M83jO6Y0K/FAxob5CZgcmaAzAWaC6kxeTMujPDEFAXwmhKZioHxG7tGBJMNGG22UNigbgV5YBxxwQAqW53ZKVEIw4r++2cMzWhmxIQjal2eJyrGz0JJpq622SokK2j2RQaIqgAqDpZdeOrUOYrnYKVgukhJkqlgvZK6aQsaL9k9MfM3zs855LFUM7MSgjRLlOuXYMeknxs7Ndrr55pvTDtZQ/7HGME8Er8OOzvphOcikTTnllOl25n4gwUGWjgOBtluNVbJIkiRJkiRJUnt08MEHpzg6c+IeddRRac7iHDeneoHWSJXYZ599UoUCsVliyttuu226gEHhFAmcf/756TmLFxBDvvTSS1NXIqomiAv/+9//Tss1pjS7H86ZZ54ZF1xwQSrlYAQ9AX3eEPM8kAAAkzoTdC/2lRrdaP9EVQCTaDD/wMILLxwXXXRRqXSE+Q5yhodkQX1YfhIGgwYNarRFE8hKMbkyPbvYgX744YeYYoopUnsjKgxyRcKBBx5YWi6C/lQeMIl1niSkMVtssUWacIQdi55c9AZjZ+I9MW8FyQvmtSAJUI75GJh3gWUjMcH9jzjiiJQU+Pbbb6M5mDuCbc76Y4cl88b6JnMGdl4qOUiwkLEj80aSRZIkSZIkSZI6EgaMn3TSSelSrjiRdFO3EV9n7ob6EH/l0hjaOdGKqaXU1I5M750mELgnKM58BMXJpNsCAvlUKWywwQYtvSgdBtk5Kmcu7XdpfDnoy5ZeHEltQW3EkKFDomuXrs7xIMnzhiQ/b0hqeX5HkVq9y/s8HL1++iN+mGic2O6cFZv9+Mm7Tx59l+kbvXv0rsry1NbWpsHmPXv2bFPz3uZYLomNxuaLaP4MwE2sLNrtPPjgg2nEfVtKOjAx9quvvpr6YzXVZkmSJEmSJEmSJI2BxAOZmVNOOSVlOmgJ1JbccccdqTfW0UcfncpYJEmSJEmSJEntw8vzTRrdBw2JQd27tvSidAhVTTyA4H1bdMIJJ7T0IkiSJEmSJEmSRoNzd5zH9ToGdRqTLyZJkiRJkiRJkto3Ew+SJEmSJEmSJKlqTDxIkiRJkiRJkqTWO8eDJEmSJEmSJEmtyemHPhUT/vpn/Nxz7PjXcUu19OK0eyYeJEmSJEmSJEntGkmHXj/90dKL0WHYakmSJEmSJEmSJFWNFQ9qNSbuNnEMiSEtvRiS2oLaiKFDh0aXLl0ialp6YSS1CZ43JHnekORnDalD61zTqfT/5N0nb/bje43bazQsVftl4kGtxk4L7hSdO3du6cWQ1AbURm0MGzYsnTNqzDxI8rwhyc8bklqY31Gk1q/H2HdHxO/RY+we0XeZviP1HN3H6l715WqvTDyo1Zhy/Cn/Hr0sSU2ora2NgQMHxvjjjx81NZY8SGqa5w1JzeV5Q5LnDKmdqfl7wHPnms7Ru0fvll6ads85HiRJbdLw4cNbehEktTGeNyR53pDkZw1JGjNMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaZ/KVJEmSJEmSJLVvJ58c8fvvEeOO29JL0iGYeJAktUmdOlm0J8nzhiRJkqQKbb65q2oMMvGg1mNwv4jOnVt6KSS1CbUxbs2wiMEDIqKmpRdGUkc7b3TpHjFWz2otmCRJkiS1OyYe1Hp8dHHEn/1beikktRG1w4ZGdPbPmKQxfN4Yp1fELH1MPEiSJElSI4zYqPX488eIP0w8SKrQ0CERXbq6uiRVzvOGJEmS1HF98EHE0KERXbpEzDprSy9Nu2fiQZIkSZIkSZLUvq2wQsTXX0f07h3x1VctvTTtnjNzSpIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiSNBn/++WcccsghsdBCC8WSSy4Zl112WYP3ffzxx2OdddaJ+eefP9Zaa6145JFH6tx+9913x4orrhjzzjtv7LHHHvHTTz+VbqutrY2zzjorllhiiVhkkUXi8MMPT6+dvf3227HJJpuk5954443j9ddfd3tLkiRJar2Jh+WXXz5mnXXW0mXOOeeMVVddNa644oqKn4PHvfDCC9Ga8L5uvfXWqiw/X/rWW2+9+Pnnn+Orr76qs75mn332WHTRRWP33XePzz77LNoKvtxedNFFaT0tsMACsc0228RHH31Uun2rrbaq87skSVJHdPLJJ6eg/5VXXhlHHnlknHPOOXH//fePcL/3338/+vTpExtssEHcfvvtsemmm8bee++drsebb74Zhx56aLrPjTfeGAMGDIiDDz649PiLL744rrvuujjttNPikksuieeffz69Fn788cfYdtttY5ZZZolbbrklVl999dhuu+2iX79+Y3BNSJIkSepouozqEzCKiy8wGDp0aPqiwxejCSaYINZdd91oi/hSNu6441bluQjQL7fccjHhhBPGb7/9lq67+eabY4oppohhw4bFt99+G2effXZsueWWKdkx6aSTRmt3ww03pBF7J5xwQkw33XTpC+5OO+0U9957b3Tr1i2NwjvqqKPi6quvbulFlSRJahG///57+sxHUoDBOVz++9//xrXXXpsG6pRXMyy22GKx9dZbp9+nnXbaePTRR+O+++6L2WabLa655ppYbbXVSp+tSWjw+fLLL7+MKaecMi6//PI48MADY/HFF0+377nnnimBAf7nc3nfvn2jc+fOMeOMM8bTTz8d119/fey7775jfL1IkiRJ6hhGudXS+OOPH5NMMkm6EExndD9feh588MFoqyaaaKIYZ5xxRvl5SDRcddVVqbS9/PlZX5NPPnkqlz/33HNTouPCCy+MtuC2226L7bffPn3hnX766dMX2V9++SVeffXVdDtfnH/44Yd4+eWXW3pRJUmSWgTVCgzKob1RtuCCC8Ybb7wRw4cPr3NfPj/vt99+IzzHwIED0/88hnZNGZ+5SThwPckMKmtpw5StvfbapbZOJCdIepB0yKi8td2SJEmSpDY3x0OXLl2ia9eu6We+WDEifoUVVoh55pknteH54IMPRnjMnXfemdoO8QUte+CBB2LZZZdNrX1o68MIMfrSzj333KkHLqXrWf/+/VNJOn1teZ5jjz02/vrrr3QblQS87vnnnx8LL7xw/OMf/0ijvyh1J3jOF7lTTjml3lZLgwYNSqXsJFPmmmuuNELt4Ycfrmg93HXXXSkwP9lkkzV6v7HHHju9n4ceeqh03YcffpiWmXW2yiqrpPdevr5yn19Gq/3rX/9KlRPgccccc0xa56w/3sM333wTu+66a7o/74/yeyouMpIE66+/fno9+gqz7htywAEHpC+0WU1NTdpG+ctxXoeMpJMkSeqIvv/++1TxOtZYY5Wu69WrV2rDyYCNIqoQqGzISCY899xzpQqG7777boSq2Iknnjh9/qWVZ8+ePdMAECoilllmmTjuuONKn4N5TSpsi3gcyQpJkiSpQ3npJUbm/P2/2lbiYciQIanS4ZlnnklBbzCanxFXtGRipHzv3r1jxx13TOXnRdz/jz/+SK2aMsrLKSsnsA0C6zvvvHMKulNpQXIBfLFinoHBgwen9j5nnnlmmqCPMvTstddeSyO+aKO0xhprpFH6VCOQjDjooINScuTdd98d4T3xxe3TTz9N74EyeJIUtJLKX+Ya89RTT6VJ/iox00wzpS+FJAlYD7QuYlQc75XS+fPOO69UMk+SgPXJeiRBQnsj2hwVcT3JFBIM4403XuoJzBdUtgEtkkiKXHDBBaUvxrvssktKPHA9z8s6aahigXVAtUZGGwESRixvRnKHMn4SEpIkSR0Nn0uLSQfk3xv7HMmk0bRKYh6t/Hmaz4b1PRfPQ4UttzO/A58Zjz/++HjsscfipJNOSvdbeeWV0xwRN910U/q8xudTJq7mc7skSZLUoUwxRcRUU/39v1r/HA9MlMfoevClhxZFJAEYEU/QmZ60jMbPX5y470orrZQC6kyclxEcp/qAKoQll1wyfVl74okn6swTQBl6LiNnUjwqHMAXKIL2fKFixBeOOOKI2G233eKf//xn+p1lOeyww1JLI1ofMckfX+oYXcbl9NNPj08++STmmGOOOu+PCgleiwn5QIshAu1M1EeZe2NIZJT38G0IiRTw5fHJJ59MSYJ99tknXcc8Cl9//XVKlDCSjUoC5tXI648kCkH+Iiod+MIKRswxgSDL3alTp5hhhhnSF1MqOZiPgWoKEiTMM5H7Cr/33ntpHRXL+utDiT9fbHfYYYfUPqo4co/RfCz3VBzQFWAb8U+Smj5f5EttxN+5aUkaQ+eNv59oeKFytD5U/1LdUKww5fNtvq14fUarSgaAUDF8xhlnpGXlflTH8jm7+Biem+v5bMdtDErhcyv233//dGEgCZ/JmHuLhASf2/ncy2fIF198sd5lkFQ42jnWhw9Px0oeDCdJDX5C8JwhqYOcN4ZV+D1ilBMPe+21VxpJBb78EHzOPWQJzhN8pr1PxhctWhZ9/PHHIzzXmmuumZIDBNKpWKCknPtmBOCz7t27l0Zq8VzclpMOIOjOqK4vvvgi/U4gP08YzXKiGBAnYVLf6DMC/bRWIqlBYuKdd96peAUzYo0S+0pQ6ZATMLwOfYGLPYF5vbxeaVVVnDeC1lbF9QQqSzLWD9uhWJHATs2XVMrseT1GxhVfj3VLm6jGUEVCZcbSSy9dSgJl+X2zDipNPAwa9FvU/D6govtKkiS1hE5DukfnwYPjk0/ebbRyYcCAAelz1iuvvFL6DMfnSCoV+OxFwqCIz0xU2oLPw3yGzZ9jcyulPFAFtNGkgvjXX39Nv/NznreBpAQXBufwWAadXHTRRem+fEa77rrr0mdO53mQJEmSNLqMcuKBgD4j5OuTA/zlCKKXT6oHAtjc9tJLL6U5BmizVJTnjajkdXJiIP9PcL5cJZkk5jMgwM4cDJtttllKrJRPFt0Qnr/SDBDJBCYJJKFCwoSevlRt1Icvr+UtjMp/L64Tno8vnLRrKscXWG5nXgfmgCiqb51lL7zwQro/LZUo7S//8py3b3Oydd27jxdduvao+P6SOi5OeZy7OE+1oUEBktrDeWOc7hHdusUcc8zQ6N2YwJn2lphvvvlKVajMp5WrUjOSBnzOpH3m5ZdfXqeKFMxhRjVEfh6SDgzwocJ4ggkmiBNPPDG9r3w7bTRJLPA5jcQHA2j4vPb3eqhNlQ98ns33l1Q/jheSiD169GhToxAltQzPGVLrV3PxxYx8JggZtTvt1NKLE231vEG8+6233hr9iYfGENRmQjtGU+UJ8xhJz2gvvgiVYwQYbZiYZJl5ImgDVAlG5n/22WdpVD9fvsBr8gVsmmmmSRM1jwyqEJjXgS9rfEkE7Z9QydwFJGXKJw+sD6PlaD2V2zLxfui9S6VAHiF3xx13pA3KCDjmg8iVF3lj0xqpOClhEc9Hq6WJJpqoNFKO9cs8EMyDwe0kV4oJJOa0YLnKkxFgfdLGaqmllkotqupLUOQJC8u/ODeGA4x/ktT0CYNzRj5vSNKYPG/8/UT5M1pDGExC5ezRRx+d2hwxQTRJBZIRPJbkAJ/LqLplrjHmIqPFKLdR/QBu4z6bb755bLXVVqk6de65506VEbTVzJ/dNt5443Qd7S/5jMrns4022igNRKHVEpXEN954Y/rsdumll6YvN8zt1dR7kDo6jicGWHGstKVggKSW4TlDagOYL/jrr2kVE1FPzHNMq23nnzWqOrl0fbbddts466yz4tFHH00tfw4//PBU+s0cBfWh3RITQDN58cwzz1zRa5DEmHrqqVN1ApUDTFDNXBI8FxmjkUUihJFnTJj91VdfpXJ1vjyiksmlmS+C5SnHl0m+bDIvBQF/gvv0/KVtERi9RhskKh5YZyQ7+DJJIgPMxXDPPfekORso1efLLHMpNLSDMmcGrZfo9cvyMGk024H3xo7Nl9m333479RImgcME03xhpQKjPiwX81swRwQJBt4LF5Y543VIOk022WQVrm1JkqT2hc9Kc845Z5r/jHkWmF8styjl89m9996bfqbSl89RJAu4Pl9y6yUSDnwGPffcc1NlBO2TcjUFmMuByuGdd945XUgw7Lvvvuk2PoudeeaZKalBheunn36aEiBUREiSJEnS6DJaKx7yZMxUDhDo5n++OPHFh9H39Vl00UXTF6GGEhP1IXhOGyGSDYz44vF8sWJS61FB4uGUU05Jo8dYZioQGOnPlzcqDBhB1hi+9FFVUI4vlXm5mceCtkp8mczrhBFyF198cUooMFKOKo4tttgidtlll3Q765ASeb58EvinUoLrGmpFxeucf/75pfXDXBc8hgmmQVLiggsuiFNPPTWNguMLKl9gSYCUI8FAsgSMtCviCzCj50BZP1+Y22O2TpIkqRIM8uBzJJdyxcEp999/f5PPxWes/Dmrvs+shx56aLrUh89s5Z/bJEmSJGl0qqmtpGfQGERyggoGWhxRxdCW8V74kkebpOJkz6PqzTffTMkJ5m3I1lhjjdhhhx0a/EI6JrFLrbjiiulL9kILLdTk/WkVRWuseYdcGl3++HKMLKOkto0/XEOHDokuXbraaknSmD1vjDN5xDx9I8at3mc7Sa0T32uYlJ0qIwdUSfKcIbUDU031/62WvvqqpZcm2upnjRzLZc64xtq3jvZWS81Z0Yz2oo0Po/fbetIBJAeoVGCOiGqi4oDqh1dffTX1A6ZagUkGqbBoDZg/gkqOSpIOkiRJkiRJkqT2ZbS3WqoUWR3aGuW2QO0F8zdssskmaa6LCSecsCrPSTKDOSfoEzxw4MCYffbZU2um5kzkPDqx/fr27dvSiyFJkiRJkiRJagGtrtWSOh5bLUlqLlstSWqx84atlqQOo622P5DUMjxnSG2ArZY6ZqslSZIkSZIkSZLU9pl4kCRJkiRJkiRJ7W+OB0mSJEmSJEmSRotZZono2TNisslcwWOAiQdJkiRJkiRJUvv26KMtvQQdiq2WJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWOrJbUeY08cEUNaeikktRXDhkZ09s+YpDF83hinl6tckiRJkppgxEatx0w7RXTu3NJLIalNqI2aYcP+d86oaemFkdTRzhtduldroSRJkiSNKVtsEfHDDxG9ekVce63rfTQz8aDWo9uUEV3cJSVVoLY2fh84MMbvNn5EjYkHSZ43JEmSJDXhiScivv46ondvV9UY4BwPkqQ2afjw4S29CJLaGM8bkiRJkjRmmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCS1SZ06+SdMkucNSX7ekNR6+B1Fkv5fl8LPUovqN7BfdO7c2a0gqUm1URvDhg2LAQMHRE3UuMYked6QVHV+3pDkOUNqXyavHRZEHofVDov+A75u8H7dx+oePcfpOUaXrT0y8aBW4+JXLo7+g/u39GJIagtqI4YOHRpdunQJ8w6SPG9I8vOGpBbndxSp1Tv5zwExYUQM+HNA9H2ib7336TVur+izcB8TD1Vg4kGtxo+Df4z+g0w8SKpAbcSQoUOia5euJh4kVcbzhqTm8rwhyXOG1K7cu+xUMd7vQ+K3cbsagxwDTDxIkiRJkiRJktq1GzaYpaUXoUNxZk5JkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElV4xwPkiRJkiRJkqR27fI+D0evn/6IHyYaJ7Y7Z8WWXpx2z4oHSZIkSZIkSZJUNSYeJEmSJEmSJElqhj///DMOOeSQWGihhWLJJZeMyy67rMnHfPXVVzH//PPHCy+8ULpuyJAhccopp6TnWGyxxeKkk06KoUOHVvw6X375ZWy77bYx33zzxeqrrx5PP/10q9iOJh4kSZIkSZIkSWqGk08+Od5+++248sor48gjj4xzzjkn7r///kYf07dv3/j999/rXHfWWWfF7bffHscdd1xceuml8dxzz8WJJ55Y0evU1tbGHnvsEb169Yr//Oc/sc4660SfPn2iX79+7TvxMOuss9bJ3rQ2ZJhYxuJlzjnnTJmjY445Jv76668xshyjsp7OPvvs2GqrrUZ5GQYNGpR28Gz55ZePW2+9dZSfV5IkSZIkSZLaE5IHN998cxx66KEpnrzSSivFjjvuGNdee22Dj7nzzjvjt99+q3MdiYPrrrsu/vWvf8UyyyyTnuuoo46KG264Id23qdd5/vnnU8XD0UcfHTPOOGPssssuqfKBJERLc3LpiLTxpphiilLpyosvvpiyRxNOOGHKELVm22+/fVUSD1dccUVKfqy77rrp91tuuSXGHXfcKiyhJEmSJEmSJLUf77//fmqHRNukbMEFF4wLLrgghg8fHp061R3v//PPP6d2SrRJWnPNNetcT4Jh3nnnrTNInfZLVDl07dq10dd54403Yo455qgTx+X2119/PVqaiYeImGiiiWKSSSYprZSpppoqXn311Xj44YdbfeJhvPHGq8rzkF0rXyeSJEmSJEmSpLq+//77NGh9rLHGKl1HuyMGtf/yyy8jxFZpnbTeeuvFzDPPXOf6Hj16pOTCt99+GzPNNFO67ptvviklJWpqahp9HZZj0kknrfOcE088cfTv37/jzvFAoJvMDC195pprrtTeiP5UxazRpptumrI9Sy21VJ3b6HNFv6q55547VlhhhVR6kv36669x+OGHxxJLLJGyO/vvv3+6rrnYmJ07dy79/uGHH6bKgnnmmSdWWWWVEcpmKJVZccUV0/Luu+++qTyGNkjgcfnnYosn/i/HTrbXXnvFwgsvnNYLO+Qrr7xS53Hnnntuup0SmmKrJf4vbx3F5euvv250fdNSiZ+p9OD+5a2WyJ5dcsklaV3z/nmdDz74oLTMPOaOO+5I2Tqee/PNN08lPpIkSZIkSZLU3gwePLhOMgD59/L2/c8++2yK7+6+++4jPE+XLl1S+6TTTz89JQsGDhyYJpfmeqoemnqdhm4fU1MItMqKB+YTYEIMVurUU08dTz31VJpcY7nllkv9qg444ICUOKAE5dNPP03BeBINBMz32WefNFP3WmutlSoTDjzwwDSrN1khKhRY4QTZwXMedNBBcf7551e0XAToCcDfddddsdNOO6Xr/vjjj/QzSQDmfvjkk09ScoNqA1oTvfzyy2lm8cMOOywlBC6//PLUqoiJPZprv/32S5kukiksy6mnnpreA8uT8Z7p00VCoHg9SQh2SHAbO3Pv3r3T5bbbbmtwfTPb+X//+9947bXX6iRIMhId119/fXrv0003XVx88cWpl9gDDzxQKuPhcdxORm3vvfeOM888M0477bRmvXfeb3nlhSTVf8L4++I5Q1LlHzQ8b0hqJs8bkjxnSO1LDjs2Ek/I8clhw4Y1+lRUKVB1ULwfMel827D/XU9c+Ygjjkix5OL1xG75mf+JXTN4njkeunXrFrvuumu8+eabKe7K4xt7HZIMVD4Ub+f+44wzTpPvYWRV+rwtlnhgToUTTjghFl988fT7ZpttlgLcBMBJPDBKnxH2BM0JlBPMpwUSWR9WJiUl/M6FchJaJVElQdKAWb2nn3769LwkLgiskyyYYYYZ6l0WRupTtgKyQZTCbL311rHDDjuk6wjuE1An4QGC7yzfVVddlRIPBOV5DSo0QED/6aefbvY6YaemaoKKisknnzxdt8UWW8TOO+9c537bbLNNTDPNNCM8foIJJij9TMKCdXX88cdXtL7ZkdlZiy2n8jJdc801qYKD7QESDGTiqPLI73m77bar89yNTaTSEPqZDfh1QLMfJ0mSJEmSJEmNGV47vPR/QzHI7rXdU2D/3S/ebbRqYMCAAakVEpUMuWvOO++8kxIBxKE7/W+Oh/feey91htlzzz3rPJ5B7ksvvXQp/sxA7kGDBqX4LPHYH3/8McV2WZbGXockwGeffVZnTgfmhhh77LFbfJ6HFks8LLbYYmnyC0bFf/zxx2kj0JOKLA+YgZvR+TfeeGMsu+yyqbVSDooT2Ka64Lzzzksj9jfYYIPo2bNnPPPMM6laICcdwGze3NZY4uGiiy6KySabLPr165faF80222wps5Q3Jo8lqVGcxIONmm+n7dAmm2xSuo1SGFoONRfJD97bvffem6oaqPRgR8nrJCMZ0xjmprj66qtT1UT37t0rWt8NYScn0VOc4IQDgPfH82TTTjtt6WdeM1deNAcVJD1qezT7cZI6oNpIkytxvo2/88aS5HlDkp83JLUcv6NIrd4ZeywQXYcOjyFdOkWPnvXHIIlrUnUwwxz1x5GLrecZ5I355puvND0AbeoXWGCB0v2IMzMlQNFqq60Wxx57bBrETZyVgeNrr7126vQDBtUzCH6NNdZI1QuNvQ7JkXvuuSe9DlUO+Pe//52eK9+/2oiLv/XWW6038XDzzTenlbrRRhvFyiuvnNolUWWQMcqfjUAQ/dFHH02j/Blpz/2pKKASgNu4kJwgCVHez6q4MhorAZlyyilT5QTB8wsvvDAlOeilRXIDBLfYESiLqQ8JiPLynMbafzS0LCQBtt9++5Qxo4KCeRYI4JdPcE3GqiGff/55Ks859NBDY/bZZ694fTekodfKpUAZB8moIvGSK08kqemTxt/nDRMPkir/sOF5Q1Ized6Q5DlDajfenrNX6eeaJuKTxbl/G0pQ0AmHQezEXL/77rvUsYckAY/9/vvvY/zxx08DresbDE93Grr4MDcxk0eTLKADDtUNxx13XIqNE2/l0tjrMNic5yKOTdv9xx57LCUFmMy6qffQbieXpj0RcyAwNwIrjxXM6HoC9mRyyPqQSKCFD6P3N9544zSnABvtqKOOSkmC3XbbLc11wAomOUGlA0F7KhSyjz76KJWpFKsgGkMLI0pfaC9EhQB4LNUHOTnBhVIVlgvMLUGJSzEoT0VBxvugjVDW0MTLLOtLL70UV1xxRaq4oNKDnQmV9DGn9IYkBVUgrK9K1zcaCvhzgNDWqliaQzKE91vpOpUkSZIkSZKk9uTggw9OLewZME+8mpgyA76x5JJLpq42laDNEl17Nt988zTXA3Mbc6nkdUguMCCfmPn666+fWuPTXp+B9i1ttFc8MBEGiYQiJmAm8E1ZCPMGEJQ/44wzUkCb8hBG2dNqiAoH5hbgdiZwZv4D2iY99NBDKWBOdcC3336b2iCxstlA9MZiND8TdoCNwevNMsssFS8zlQAkNMgkUSlAqcs555yTKh54za+++iplnkiKYMstt4ytttoqTXDNhNjMb8AcEDmYT1siJtOmigFnnXVWva9Lmyj6f1EeQ7UD2ak82XMlM5GzfCQ99t133/jhhx9KSQWSB42tb1BCRJKD90aCpYgdnWUmC0fShcml2ab5/UiSJEmSJElSR0I8la45XMp98MEHDT4u35Zjt1RFnHzyySP1OiBeyyD61ma0Jx6Y5Ljcgw8+mEbec6GtET2raKvESsyVAgTGCfxvuOGGqYf3qquumspFqB4gi5N7X7FhuA8thMAGoFqCYDkZHwLtZIWag9ejPIXnIAHBcxNs5zWpFmASZ1o9MQ8FmPvhyCOPTNkkymFYVq7L7YdIUHz44YcpQcFcErRByo8topyGNlI8D/NbUFHAcpBIeffdd0eY+LkcGS0wA3oRpTdNrW8mi2ZOCHqHUT1SRLKFqhGSOfzPe6Pag0m4JUmSJEmSJKm1m+vdH6LrkOExpGuneHuO/2+7pNGjpraSHj5qsqqDvl7Ffl0E8JmVnBIXNY4qDVo5Xdrv0vhyUP1tqCSpjtqIIUOHRNcuXZ3jQVJlPG9Iai7PG5I8Z0jtyuV9Ho5eP/0RP0w0Tmx3zor13mfy7pNH32X6Ru8evUf78tTW1qY5Hujw05bmvc2xXCavbmweiRab46E9ee2111IFA+2hmL/hggsuiG+++SaWWmqpll40SZIkSZIkSZLaV6uljoC2S8yNwMQeAwcOjNlnnz21ZmqqNZIkSZIkSZIkSe2NiYdqrMQuXdK8DVwkSZIkSZIkSerIbLUkSZIkSZIkSZKqxsSDJEmSJEmSJEmqGhMPkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqqZL9Z5KGjUTd5s4hsQQV6OkptVGDB06NLp06RJR4wqT5HlD0mjg5w1JnjOkdqVzTafS/5N3n7ze+/Qat9cYXqr2y8SDWo2dFtwpOnfu3NKLIakNqI3aGDZsWDpn1Jh5kOR5Q5KfNyS1ML+jSK3f75/0jd//93PfRu7XfazuY2iJ2jcTD2o1phx/yr9HL0tSE2pra2PgwIEx/vjjR02NJQ+SmuZ5Q1Jzed6Q5DlDkkaeczxIktqk4cOHt/QiSGpjPG9I8rwhyc8akjRmmHiQJEmSJEmSJElVY18bSZIkSZIkSVL7dtRREb/+GtGzZ8SRR7b00rR7Jh4kSZIkSZIkSe3bxRdHfP11RO/eJh7GAFstSZIkSZIkSZKkqjHxIElqkzp18k+YJM8bkvy8Ian18DuKJP0/Wy2p1eg3sF907ty5pRdDUhtQG7UxbNiwGDBwQNRETUsvjqQ2wPOGJM8bkvysIXVsk9cOCyKPw2qHRf8BX0f3sbpHz3F6tvRitVsmHtRqXPzKxdF/cP+WXgxJbUFtxNChQ6NLly5h3kGS5w1Jft6Q1OL8jiK1eif/OSAmjIgBfw6Ic146J/os3MfEw2hk4kGtxo+Df4z+g0w8SKpAbcSQoUOia5euJh4kVcbzhqTm8rwhyXOG1K4Mqx1e+v+H339o6cVp92yQLUmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWqc40GSJEmSJEmS1K69PdtE0WPgkBgwfteWXpQOwcSDJEmSJEmSJKldO63PAqWfJ2/RJekYbLUkSZIkSZIkSZKqxsSDJEmSJEmSJEll/vzzzzjkkENioYUWiiWXXDIuu+yyJtfRV199FfPPP3+88MILdZ7nmGOOicUXXzxdjjjiiPj999/TbWeffXbMOuusI1xWWGGF0uNffPHFWGeddWLeeeeNjTfeON5///1Wv61MPEiSJEmSJEmSVObkk0+Ot99+O6688so48sgj45xzzon777+/0fXUt2/fUlIh43EkDy666KK48MIL4+WXX44zzjgj3bb99tvH008/Xbrce++9McEEE8TWW2+dbv/yyy9jp512ipVWWinuuOOOlJTYfffd46+//mrV26tNJR6WX375Olmf2WabLRZZZJHYbbfd4ptvvindb6uttqo3S7T00kun22+99dZ6b+fCYxtz4403lnYKNu5JJ52UnnfhhReOPfbYI/r371+670MPPTTC8++11171Pi9ZL3aYeeaZp8llqMR7770Xr776aoxpP//8c6y33nrp/UiSJEmSJElSa3Dssc/Fufs/nv6vBMmDm2++OQ499NCYc845U+B/xx13jGuvvbbBx9x5553x22+/jXD9E088EZtssknMPffcKf672WabxfPPP59uG2+88WKSSSYpXUhyzDTTTKXEwzXXXJMe06dPn5huuulSBUanTp3ik08+idaszU0uzYpdffXV08/Dhw+Pjz76KGWbDjzwwLjqqqtK9yNTxKWoc+fOpZ8nn3zyuOWWW0Z4/q5duzYaVCcjdfvtt6ffzzrrrHj44Yfj1FNPjYkmmihOOeWUtAOwQ9bU1KRlW2655VIZTTb22GPX+9xPPfVUulx//fUx6aSTxqgiCcKyLLDA/0+aMiZMOOGE6T2Tvdtzzz3H6GtLkiRJkiRJUn169/8tev30R4w7eGhFK4h2RkOHDk1tk7IFF1wwLrjgghSXJvhfHjsmPkw7pjXXXLPObVQwPPDAA7HWWmul3x988MGYffbZR3jNTz/9NA2av+6661J8GVRKrL/++qX7dOvWLcWkW7s2l3gYf/zxU+Ynm2yyyVIVwf777x8DBw5Mt2Pcccetc79yJCEau70+ZLPo5dWjR4/0+2233ZYyXlRdgATDUkstFZ9//nnKPn388ccxyyyzVPQ6LHuvXr1irrnmiraOjB3JoR122CFtB0mSJEmSJElqS77//vs0yHqsscYqXUf8lk4vv/zySxqIXnTiiSemTjAzzzzzCM91wAEHpEHaiy66aPqdmPF5550Xw4YNq3O/Sy+9NBZbbLFU4ZDRammcccZJMXBaNFENwRwR/N+atalWSw3JG788y1RNZLFos7TiiiuWfieDtcQSS9SbRACJBxIQTSGLddBBB0W/fv1SOyZ+xw033JDaS5FVo/3SBx98UHrMt99+m3Y2WjyRrGCnfuWVV9Jt3Pfrr7+Ogw8+OD0vE5nwvEVczyVPYEKbpy222CIlUcii0Ubq2GOPTQcDl/322y8dUBnVJVQ2UB5Exo2dPiPRwvu+6667mr2eJUmSJEmSJKmlDR48uE7SAfn38vkVnn322RSbJcZany+++CKmmGKK1EaJ5ALJC1r4Fw0aNCjuueeeEdrw0/KJjjvEgS+++OL0PNtuu229LZ1akzZX8VDfRqOtD5UG9MMaXT788MP46aefUsYpJznKkw4E48mCEeSvra1NpTFMCEJ7JrJXq666akoWlO+wVAeQrKAMh/ZPVG08+uijadIRqiimn3761N6Jvl6U4fTs2TMlAqi8IDnBa7HzMXEJwX4SCcxyTqspkgLvvvtuk+/vkUceSY+fb7750uudfvrpaeIUdmbaQzGvxd57750ODp6PiVVYPjJrvO999tknnnzyyVLyh3VD6yh6l1WK98FFkpo+Yfx98ZwhqfIPGp43JDWT5w1JnjOk9iWHHf8XT+BSXnFQ3pKfBEHxPiQj8m35+j/++CNVIBx++OF1rh8+fHj6mYQC0wcQ+5133nnTbQz4JtbLpXv37qmtEvNAUNlAXLX4mnTuWXbZZWPzzTdPvxPDXWGFFVK7pfKWTmNCY+usTScemM8hz5lAjy02JiuajVdEsJ+NWURQf8YZZ0w/U11Q7M+VHXXUUbH22muPcP0777wTU0011QhJg4wNzevxeO5DxUHOip155pnx1VdfpR2KHfGwww6r81h2KJINxfZPl1xySeyyyy6pqgA5sM8EJVtuuWWqvFhllVXSXBWgWmHnnXcu9QzjuXjO3HqqKZQJ0SIJLDeTlvznP/8pVUqQaKDygaoL3hsHw5RTTpnWCcvGchZ7m5GQaG7FA1m6Ab8OaNZjJEmSJEmSJKkpw2uHl/4fNHBQioG++8W7I1QvZAMGDEjzNlDJkOcOJkZMvJeJnXMc9L333kvtkMrnu91pp51i6aWXjmWWWSa9FkmM119/Pd02ZMiQFEt97bXXSt1ziPvSYunNN9+s8zwMQid+nB+b47+vvvpqis22Vm0u8UDFwMorr5yC1IzsJwi+7777pkqDok033XSEshTKUDImcL766qtHeP6JJ5643tel2qH8NYpJB4LvJAQ22mijdF3v3r1TiyN2DIL0TBbCzsRcFLRAKk50XR/aNNHKicqDjJ3zs88+S89HkuDee+9NOxiVFVQn8Pwji+XNOFDY+VmHRTw/r88BQx8yJkOZY445UuKH992lS5c6O/+PP/7YrGWgYqVH7d/zZ0hSo2r/Tj6n887fcy1JkucNSdXl5w1JnjOkdqVTTafS/93H754maZ5hjhkavD8Dsk844YT0M11i8Nxzz6XkwAILLFC632yzzTZCZ5zVVlstDULneuKsoLKBWCpyh5qFFloopp122hTvZeD6NttsU3qtjBZLJCfy9SRKiFVzffl9x1TFw1tvvdX+Eg8kBtgY+Pe//x0bbrhh6p3F/AtUP2QE/PP96kOwqrHby7Hx6ysjoe8Wk4MQpC+vuiD4XkS1BcmDX3/9dYTJR8rxWjzf4osvXud6dlASALRRIutGmybmgWAH7tOnT4PLXq4UsPsf2ikVXxvMnl4+OTTrn4Py5ptvTnNBPPbYY2lOiuuvvz79z2TfqG9m96awnPUtqyTVf9L43/nN04akij9seN6Q1EyeNyR5zpDaj5q6f9+5NDY4nDjsuuuuG0cffXQcf/zx8d1338Xll1+ekhE8jsmn6TbDYOoZZhgxgTHFFFOkwe9gmgA6+fBctHjiZ+K6xFp5LuKxDPhmsHf5MjGfA91uSFKQyKBTDrFcYsJNDW5vSW16cmnKWsgcUc5yxRVXjNbXohVRcXLlnOEi6cCGp4dXEfMb0Joo9/0Cy0kyoqmkA5hnoX///ik5ki8XXHBBKqn56KOP4qWXXkrvedddd009vtjxUV+/85yQoZ9YRgatIVNPPXXaaXm/+bU50DioqGKgBIhWVsx3QfXG/fffnxIqeXJrUIbEOpMkSZIkSZKktojY55xzzpkqEWixTzsluvFgySWXTB1pKnHaaaelCgpa5RPPnWuuuUrTCYA4LAPFmdO3HPNC0MqfeXbpQEOnHJIP5QPGW5s2V/FQjtIWqh7OO++8NDdDHnHfFLJIZKXKkemqL2BOqySC9bR4IovFjkBFAiUt9OsqPhfVFswfQeaJ+Rz22GOP1L6IeRJ23HHHipZvu+22i0MPPTSmm266VLpDRcd9992X5n2gpxfVBFRbkNmitIW2U7nUhtdlx6PXGDvtzDPPnB5D4oLJnh944IFUzsNz14ckA62TmKiELByZN5IOzItB3zBmUj/33HPTeqIigyQI1+X5IMBcELl0SJIkSZIkSZLaGjq/nHTSSelSjvhnQz4ou414cW7blDGAnM44IM7a2PMx3y+XtqTNJx7wz3/+MwXTmRPh1FNPregxVBOQlSrHSP/cY6uIoDoTPzPan8cxpwKBeC7lz0P2iWqHSy+9NJXhbLDBBilZQTumShMPlNr88MMPcdZZZ6X/maz5/PPPLyULSAoQ/GcOCKojSHAceOCBadlJejAHBOuCEp1zzjknZdDOOOOMNK/FSiutlKo0qEpoyEEHHZQOKObUoI0TCZaLLroorR+SMMcdd1xK9pCYYJJp1n2euBvMPbHxxhtX9F4lSZIkSZIkaXS6Yb2ZY5w/hsUf47Te9kTtSU1tfb15VC+qCkg0lGenVBeVIeuvv36a/4GESyXVJ7SQurTfpfHloC9dnZKaVhsxZOiQ6Nqlq3M8SKqM5w1JzeV5Q5LnDKndmrz75NF3mb7Ru0fvFluG2v9VPFAN0Zbmvc2xXCa2bmyOiTY9x8OYRpXAM888M8JcD6rrpptuShUXlSQdJEmSJEmSJEnti4mHZmBSaCb/uOyyy0bfFmnjaN/0+OOPp/UkSZIkSZIkSep42sUcD2PS5ptv3tKL0KpNOOGEceedd7b0YkiSJEmSJElSyYQ//xGdhtfG8E41Ed1dMaObiQdJkiRJkiRJUrt2+uFPR6+f/ogfJhonDr5iupZenHbPVkuSJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSZKqxsSDJEmSJEmSJEmqGieXVqsxcbeJY0gMaenFkNQW1EYMHTo0unTpElHT0gsjqU3wvCHJ84YkP2tIHVrnmk6l/3uN26ulF6fdM/GgVmOnBXeKzp07t/RiSGoDaqM2hg0bls4ZNWYeJHnekOTnDUktzO8oUuvXY+y7I+L36DF2j+izcJ/oPlb3ll6kds3Eg1qNKcef8u/Ry5LUhNra2hg4cGCMP/74UVNjyYOkpnnekNRcnjckec6Q2pmavwc8d67pHL179G7ppWn3nONBktQmDR8+vKUXQVIb43lDkucNSX7WkKQxw8SDJEmSJEmSJEmqGvvaSJIkSZIkSZLat0ceiRg6NMJW72OEiQdJkiRJkiRJUvs266wtvQQdiq2WJEmSJEmSJElS1Zh4kCS1SZ06+SdMkucNSX7ekNR6+B1Fkv6frZbUegzuF9G5c0svhaQ2oTbGrRkWMXhARNS09MJIahM8b0jyvCHJzxpSh9Gle8RYPeted911Eb//HjHuuBGbb95SS9ZhmHhQ6/HRxRF/9m/ppZDURtQOGxrR2T9jkjxvSPLzhqTWwe8oUisxTq+IWfqMmHg44ICIr7+O6N3bxMMYYMRGrcefP0b8YeJBUoWGDono0tXVJalynjckNZfnDUmeMyRppNggW5IkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJLVvk08e0bv33/9HxJ9//hmHHHJILLTQQrHkkkvGZZdd1uRTfPXVVzH//PPHCy+8ULqO5znmmGNi8cUXT5cjjjgifv/99xEeO3To0FhnnXXi7LPPrnP9f/7zn1h11VXT82600UbxyiuvRHvQphIPv/76a5x44omx/PLLx7zzzhurrbZaXHHFFTF8+PAx8vrsULPOOmvF97/vvvvixx9/TD+zQ2211VajZbnY4VmufJl99tnTwXLKKaekHbolsBzFA1CSJEmSJEmSWszLLxNI/fv/iDj55JPj7bffjiuvvDKOPPLIOOecc+L+++9v9Cn69u07QlKBx7344otx0UUXxYUXXhgvv/xynH766SM8lsTG+++/X+e65557LiUtdt9997j99tvjH//4R+y8887x7bffRlvXJdqIn3/+OTbZZJOYdNJJ47jjjoupppoq3nrrrbRhvvzyyzj88MOjNfn6669jn332iUceeST9vv3224+2xEN28803xxRTTBHDhg2LTz/9NA466KDo2bNn2lklSZIkSZIkSZGSB8RSL7744phzzjnT5b///W9ce+21qfqgPnfeeWf89ttvI1z/xBNPpLj13HPPnX7fbLPN4sYbb6xzn88//zyuuuqqmGmmmepcf/fdd8e6664ba6+9dvqdeDKD2XnOjTfeuE1vqjZT8XDaaafFWGONFZdeemkqWZl66qlj9dVXT0kIdggC7a1JbW1tnd/HG2+8mGCCCUbra0400UQxySSTxOSTT57W0RZbbJF2VEmSJEmSJEnS36g8oFMM7Y2yBRdcMN544416u+swKJ7uMkcfffQItxHzfeCBB1K3Hi4PPvhg6khTRPulPffcM8Vvixiovu22247wnAMHDmzzm6pNJB7++uuvuOeee1Igfeyxx65z23LLLZfaLfXu3TttWCofllhiibSj7L///uk60PaHFk2UzXAbpS9UBHAho0Sg/rPPPosBAwakxy2wwAKpXREVFX/88Ue9y0W/LTJYtH2ab775Yqeddorvvvsu3bbCCiuU/r/11ltHaLX02muvpcfyOJbr+uuvL93GMp1wwgkpw8VzL7PMMqnUprm6detW5/ePPvoodthhh3RAkYHbfPPN4+OPPy7dTgkQ73meeeZJy0qWL6NEaP3110+3rbXWWulgKi8pYh0uuuiiKVsoSZIkSZIkSa3R999/HxNOOGEa6J716tUrzdfwyy+/jHB/2v+vt956MfPMM49w2wEHHJBa4RMX5UI8+sgjj6wzhwPPW18Fw2yzzRbTTTdd6fcnn3wyxagXW2yxaOvaROLhiy++SOUvuVylqKamJm0IdpI+ffrEe++9FxdccEFcfvnlKahOEL/Y/ogkBomANddcM113xx13pAA//bfYyIceemjKKJEIOO+881I7p/oyWdxnl112SX23KImhEoPlJKGBHHznfyoziliubbbZJhZeeOG0LGS7TjrppHjooYdK96GKgxIfnnvllVdOO2tzMl3ffPNNeu1cpkOmbtddd00JGt7zDTfckFoykakDr00J0JlnnplekwPt4IMPLh2IvFcSD3fddVfsuOOOab2SjACPo1To+OOPT0kgDqaRrRLxn2vANeAaqGgNcL6o9bzh3uIacA00Yw143nB/cQ24Bpq7BjxvuM+4BlwDnjPcB1wDbXcN1Nam2GfxMnznnaN2ww3T/8Sau3btWuf2zp07pxjl4MGD61z/1FNPpQHoxEf5Pcda8+0kCuhAQzya1k0kGU444YR0G4PU6eTD3BA8huUqPrb4c26dT9yahET58remS7uZ44EqBIw//viNlscwiQcTgEw//fTpOoLqBP0/+eST0v0Imk877bSl30lmUHEAEgcPP/xwep78WlQ80GcrB+EzqiCY9GO77bZLyQ9aP5EgePPNN9PtuWyG/8cZZ5w6j73ppptijjnmiH/961/p9xlmmCElIy655JJYaaWVSpMzU0GBvffeOwX2qUCgEqMh7JQsCzssy8f7ZKb0vLybbrppqnIYd9xx03Vk6XjNnJThYJtyyinThcqRvN5IglBFsuWWW6bfeV4SPEy8wqzvvB8SKVSf4Nhjj4011lgjmmvQoN+i5ve/t7UkSZIkSZIkNVenId2j8+DB8ckn76ZB6Nncd9wRY333XQyZdNLoN++8Kfnw+uuvl24nPpq7xvTv3z/9zOMPOeSQFAMuTgzNfRgIz3NwO4PZ+Z0LcdKjjz46xUqvueaaNHCduSF4rUGDBqXnLr5uHkTOoO6JJ544NtxwwxFub4vaROIhz42Q2ybVhyB5jx49SkkHzDjjjGlyZW7LiQQmpS6iAiAj+E/Qfumll65zH65jApAi5lIgIcEIf4Lw7GwffPBBo4mB4uvQsqiI9kdUIWTFEpvu3bun/+k7RpVBTkiATFuu3qDaYrLJJkvL+8MPP8T555+fEg1MfEKygdZOtGxitnbWybvvvpsqG0CigAOB1lC0f1pxxRXTTp7X7WOPPVan59mQIUNK65r3s8cee5RuY5KUnNxoju7dx4suXXs0+3GSOh6qHTgndunSJWpqWnppJLUFnjcked6Q5GcNqYMYpzs96GOOOWaoc3Wnrl3T/wy+piXSueeeG3PNNVeKLYBKBQaQMwC7U6e/GwW99NJLqWrhrLPOqvNcDHhnwDcdYngcrenzFAEMKD/qqKNSEuG5555Lz5k73XBfBpczlwQxWwbc8/wkHRjYTnw3x4JbKyoe6BLULhIP00wzTUocvPPOOyME7LHbbrvFBhtsUO9jy8s/yueIKP7O/Xid+loFEdBnh8i+/fbb9Jq0Q2JnpEfX448/Xuc+DSlfBuSymowDoBylOBwMxfkeSKyQKQOVCjmxQlKAyoSllloqnnnmmVhkkUVSIoHeZVR4kKwgoXDZZZeVEilMRM19STLQOopKBl6L4B4HD62aivJBmZetodsqRbUG/ySp6RMG54x83pCkSj5oeN6Q1EyeNyR5zpDa9B/x3DqpnltTTJf4JQF0OrrkOXnpjlOMyzJAm8mii+h6Q8cXKhkYnA3aJPGcyAPYp5122hEeu99++6U5famgYPl++umnNMicQei0aRpvvPGivWgTiQd2Alom0fKHYH9x0o9HH300Xfbdd9+UISKYTusiUIVAUJ4gPDOPN4X7MY8CgSySHaCKgYwWfbmKyFIR9GduiOzqq68uBeB5jsZeh2xZETt2sVqjIWTIiq2ikBMP5fKykNCgfRTZM+ZoyEmBp59+unQfkib9+vVLFRLLLrtsmi+DiaY//PDDtFwsX/F1SVhQakQygklVOEjzhNpMppLbY0mSJEmSJElSa9KtW7fUzYa5F6g2IG5KvDPHgJnzlgHq9cVi8yB1KhrAwG/a1tNeiVgrc/WuscYaqQV/bsef8XzElOnCw32JOzMg/bjjjkttm7iAbjJtPQnRJiaXBhMwE2DfYYcdUhCd+RiYPJkJN7beeuvU3ocWSQceeGCaZ4ELPzOB8yyzzFLRa9CaiR2FzBOPp8KCuR3Y4LRxKm//RKCecpkvv/wylcGQwcp9w9h5Qe8vengVEdynPdPpp5+esmG33XZbXHfddbHFFluM0joiQ8ZBwYWSHXZ2KhyYfJvl5X0whwWJAdYdiZy8vOzgJ598ckqocDuTXvMeyLaxvLRnOuOMM9JkKSQvWHYqLMDcD8xB8cADD6REBT3NcjmSJEmSJEmSJLU2xH2pUmBOBlojEX+mmgEMyL733nsreh4mj6a90s4775wGadOx5phjjmnycSQeGAxOy/xVV101vWa+5C41bVmbqHjIrYCuv/76OPvss1Ni4JdffklVCXvttVeauwAnnXRSKnPZdtttU6kKI/DLJ4VuCsH3/BxUBpCIOOyww0a432qrrZaqFnh9qhsowyHRwfIRzCebtfbaa8c+++yTlreIgD2VErwWOxG/k0BpqF1UpTbaaKPSz/QCW3DBBdPz8zPzMzAPAwcRvcQ4GI444oiUJKBtFO2XeC9k9UhcUDVy3nnnpQwclwsuuCBOPfXU1IKJjB7Ly/sD/cyoKOGAYhJrDrLiZCuSJEmSJEmS1Jow6Jp4MpdydMFpSPltxE7Lu+U0hI45GTHlJ598Mj2+se45bVVNbXlzfmkMoxUUM7XPO+TS6PLHl65/SU3iD9fQoUOiS5euzvEgqSKeNyQ1l+cNSZ4zpDZqnMkj5ukbMW7vutczN+7XX0f07k2v+GhptbW18euvv7a5xEOO5TL/RUPzaMB+OJIkSZIkSZIkqWpMPEiSJEmSJEmSpI43x4MkSZIkSZIkSSOFeYJ//jliwgldgWOAiQdJkiRJkiRJUvt2yiktvQQdiq2WJEmSJEmSJElS1Zh4kCRJkiRJkiRJVWPiQZIkSZIkSZIkVY2JB0mSJEmSJElS+zbbbBE9evz9v0Y7J5dW6zH2xBExpKWXQlJbMWxoRGf/jEnyvCHJzxuSWgm/o0itwzi96r9+0KCIgQP//l+jnREbtR4z7RTRuXNLL4WkNqE2aoYN+985o6alF0ZSm+B5Q5LnDUl+1pA6jC7dW3oJOjwTD2o9uk0Z0cVdUlIFamvj94EDY/xu40fUmHiQ5HlD0mjg5w1JnjMkaaQ5x4MkqU0aPnx4Sy+CpDbG84YkzxuS/KwhSWOGiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNV2q91SSJI05nTqZO5fkeUOSnzcktR5+R5FauQsuiBg8OKJbt5Zekg7BxINaj379Ijp3bumlkNQW1NbGuMOGRQwYEFFT09JLI6kt8LwhyfOGJD9rSB3b/PNHdO8e0bNnSy9Jh2DiQa3HxRdH9O/f0kshqY2oHTo0oot/xiR53pDk5w1JrYPfUaRWrleviD59TDyMIUZs1Hr8+KOJB0mVGzIkomtX15gkzxuSRh8/b0jynCFJI8UG2ZIkSZIkSZKk9u2HHyJeeeXvi0Y7Kx4kSZIkSZIkSe3bgw9G3H57RO/eEV991dJL0+5Z8SBJkiRJkiRJkqrGxIMkSZIkSZIkSaoaEw+SJEmSJEmSJKlqTDxIkiRJkiRJkqSqMfEgSZIkSZIkSVJE/Pnnn3HIIYfEQgstFEsuuWRcdtllTa6Xr776Kuaff/544YUX6jzPMcccE4svvni6HHHEEfH777+Xbv/111/j8MMPjwUWWCCWXnrpuOqqq+p97jfeeCNmn3329BrtPvEw66yz1rkstthicdhhh8Vvv/0Wo9vZZ58dW221Vfr51ltvjeWXX360vVZtbW16rY8//niEZeB9P/fccyM8huvzDsaysYz1Oeigg0ZYj/kydOjQUV72L7/8Mp544okY0/76669Yb7314scffxzjry1JkiRJkiRJo+Lkk0+Ot99+O6688so48sgj45xzzon777+/0cf07du3TlIBPO7FF1+Miy66KC688MJ4+eWX4/TTT49sv/32i379+sUNN9yQEh2nnnpqPPXUU1E0ZMiQFHcfPnx4dJiKB4LvTz/9dDz55JNxwQUXxJtvvpk2ypi0+uqrxy233DLanv+2226LKaecMmacccY61999990xzTTTxO233z5Kz7/aaquldVh+6dKlyygueaSdlW0ypo011lix5ZZbximnnDLGX1uSJEmSJEmSRhbJg5tvvjkOPfTQmHPOOWOllVaKHXfcMa699toGH3PnnXfWOyD/iSeeiE022STmnnvumGeeeWKzzTaL559/Pt32/vvvx7PPPhtHH310zDLLLLHqqqvGhhtuGK+++mqd57jkkkuie/fubXKDjnTioWfPnjHJJJPEZJNNFvPNN1/ssssucd9998WYNM4448REE0002qodzj///LRDFL3zzjvxxRdfxG677RYPPvjgKFV5sPysw/JLW7fWWmvFo48+Gl9//XVLL4okSZIkSZIkVYSEAN1oaJuULbjggqndUX1VBz///HMagE0CodwEE0wQDzzwQGqpxIVYMi2TQCUEnW969+5duj+tmPbee+/S759++mlKeNA5p0PP8dCtW7c6v3/77bex1157xcILLxxzzTVXar/zyiuvlG6nZ9Vyyy2XMj7rr79+KjXJPvzww9TiiEzQKqus0mBGqdhqifZG/HzdddfFUkstlZIh+++/f2r9kz300EOpSmLeeedNGSQ2cEOoPBg8eHC6b3m1w2yzzZaWi1IXdpjRpbHlHTRoUBx88MGpPxjrl6zYww8/nG5jZ+S+lPOwHun/xY5c7ANW3rJq0003jT322CMdSGTpSLyce+65qY8Z/cx23XXXVPqT3XvvvWkdsP1YxvzauephiSWWiBtvvHG0rRtJkiRJkiRJqqbvv/8+JpxwwhTfzHr16pXma/jll19GuP+JJ56Y4t4zzzzzCLcdcMABKR676KKLpgvJB1o35Tb5U001VVxzzTWxwgorpNguLZcyYrMkIvbcc8+YeOKJO27i4aeffoqrr7461l577To9qoYNG5ZWGC2JqIyg1xXefffd1JaJFU2VBIHtffbZJ2WN/vjjj9hpp51KAfADDzwwzjvvvIraGn333Xcpi0QJCoF1kgL5cWSreC4qFXhelpXX+fzzz+t9LvppEdSvqamps8FZXhIm4403XrqddkyjQ1PLe9xxx6WsF5ObkAxhHVICRKKF/8nKbb/99mk9VOK1116LmWaaKW666aaUbGCnv+uuu+K0005LCQR2cJ6PZAvzN3DgUOVCf7MNNtgg/vWvf9U5+P7xj3+M0JNMkiRJkiRJklrEhhtGvPfe35cGMBC9mHRA/r04wB20SmKg/e67717vc33xxRcxxRRTpLkiLr300pS8IFGRWzoxfzCVFGeeeWaK+55wwgkptg2mFyAOu/HGG0dbNdKTCbAyOnfunILxbBBKR3JigetWXHHFNCJ+8sknT9dtscUWsfPOO6efacFDQJ/5E8jskHQgmE/igWA3QW6uw3TTTZfuT4XEuuuu2+gy5ck2yDAxwp/Kh7feeittIDYu/9MGCFtvvXW89NJLcf3119dbrkJyhAB8ETvSN998k94bVl555TTzOMtXLIupFO8170zZv//97zSLeVPLSyXJdtttl3qAgaQA/cdICrBDd+3aNcYdd9y0XaiOaArbgyQH7Z9A8obEENk4UC7E+iCZwDZlXfM/75vXZn2PPfbYpedjXgySJySf2E8qwX7DRZKaPF/ki+cMSRXyvCGpuTxvSPKcIbUzXbtGdO8ew8cdN2LYsAbu0jUlCIhpZsS+8235egbPU5FAbLh4PfFtfh40aFCag5dB47mjzrHHHptivH369IlOnTql+xFPZ8A+80m89957aRA/9z/jjDPSY3m+3OIpP3dLq3QZRjrxwIpiJRD0oZcVI+SZDyEnDviZdjxMiMHIfGYCzyuJADYBc4Lqc8wxRyon2WijjdKkyp988kkKWBf7aDUneD3ttNOWfmbiDXpy4eOPP07VCsX2PwTPy5MLxSoOymqK7rnnnhRoZ5nBcrOD3XHHHQ1mthpDaygqQ4omnXTSipaXJAztjahQYJ0x9wRGdudjm+WkA/NW9O/fP/75z3+mgyDjgPrss89SkmjZZZdNiY/pp5++tP2K7bZIeLC9qYKotBxo0G+/Rc2AASO1/JIkSZIkSZLUkE7du0fnwYPjk3ffHaF6IRswYECKdTMAPcejibtS9UAMNsdKSRLQLolWSOWD9RlUvswyy6SEBUmM119/vRTbJV7KpNPEcImfEoPlAmLjxF4ZeE5surzaYc0114x11lmnycH5rcVIJx7IxOQgP1UJZGUYHU+wfPPNN0+j4NlQ9P8nwM6KJZsDAtSMzmcegsceeyzNMcAK5X8SBbQwIqA/MspLYfJoWDYmG758w+Rge30VAMUgPj/TVogdLycewM4ysokH2jUVEyVFTS0vrY5oj8TORpKHSamZJb2h91IuJ2SyYrVCft9UX5BYKJ9UnOe78MIL480334xHHnkkzUXB3Bpc8gQpeb3X99oN6T7eeNGlR4+K7y+p46r933mMP8qVn2UkdWSeNyR53pDkZw2pg+vencB0zDHDDA3eha4utDwCcwiDlkjMRbzAAguU7sccwMxxW7TaaqulwfpcP2TIkP+9ZPdSLJkOOyBWTicZ2ucT06UrEDFUBr3PMMMMscMOO6SYb3F6gW222SYuuuii1OmHhEVLInZMl6HRlngoR7aHYDMv/NFHH6W2QGyUiSaaKN2eJ4jmPmR5nn/++dTaZ7HFFot99903bRAySQS6CWbTgilnlQjs82ZoozSyeF4m8ygG+plngusZrV+OUfrFOQt4L2SamDOBREv2zDPPpN5cVHYUd75R1djyshOzY1LtwE4PMmXRQNsRyn1yJUNWnGi6XI8ePdL7ZzIVKhtAFpB5HNjxuZ0+Y8xBwevTFmuNNdZIbZhy4oEEDQHB8qqRxnCANSdRIaljq8nnjZZeEElthucNSZ43JPlZQ+rA3n474vTTo/NUU0X861/13oVEAQPBaTt//PHHp6D/5ZdfnpIRxKqJl44//vhpQDlJgnK0wM8dbZZaaqnUyp7nImbLz8RQSTbQ1YY47zHHHJPa6n/wwQfxn//8J04//fQUe+VSPtCeeHlbmmh6pCeXZhZuVjQXSkBYgSQdyNiwYkhEkKVh/gMqBfIkxwSwGbV/7rnnpqoHAuDcjwk1yCgxiXLukUW7IQLqTKQ8qit12223Ta2fmCuCiT2uuOKKdCkmEYrIRLHBM5aRjBLzOtAmKl+o7iDLVMnk19VaXnY2qkaYPJv1R8Cf9Y9cJsT8DmwX5nxg5nV2euaNoASIypLHH3+8yddnYpNHH300PQ9JH5IrHFBsXypUmPSb5+O52M7FShDWHUkIEwmSJEmSJEmSWhyj9M84IyUfGnPwwQen7j5UGRx11FGpnRIxYZAwIGZbidNOOy3Fu5n3eNddd4255porJRpAEoOOMiQk1l9//TTgnAQELe3bi5GueCj2ryIIzoq7+OKLY+qpp07XMTEGyQWyNGRvCFwzQp6SEuZvIJlA4JqAOeUkp5xySpqQGDwPGSWySwT1mZh6l112GaU3SmkMG5AECP9PM800aeMzSXN9yEixsdn4lMbQTii3iipvUcTOQQXAoYceOkrL2JzlZX2ddNJJcfXVV6dsF9UjJAroL8Z6pIqDCUx23HHHuO2229L6Zsem9RWtrNjZn3zyyQZfn8oGKiRIADEZCtuXxAWtlsBynXrqqXHBBRekpBDVEMX5MqheoZ+ZJEmSJEmSJLUVxLqJu3IpVxyo3tRtPXv2LLVtamgqA+KrubV9Q4j9Nva6rVVNbX29eZSqN1ZZZZW0czSUnFD9qF4h6UAVCAdGJeua9lvzXnppdPnyS1erpMp6tQ8ZEl26drXVkqSKeN6Q1FyeNyR5zpDamUcfJXAZ0bs3fehbemmCsDxdhZpKPLQ2OZbLwPk8VUJVWy21d6w0ymBuuOGGll6UNueuu+5Kc0NUknSQJEmSJEmSJLUvJh4aseGGG0a/fv3SXBOqDHNMMJE4bbUkSZIkSZIkSR3PSM/x0BEwQTaTKKtyTHx95513usokSZIkSZIkqYOy4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVOMeDJEmSJEmSJKl969Xr70vv3i29JB2CiQdJkiRJkiRJUvu28soRffuaeBhDbLUkSZIkSZIkSZKqxooHtR4TTxwxZEhLL4WktmLo0Igu/hmT5HlDkp83JLUSfkeRWjfaLGmMMWKj1mOnnSI6d27ppZDUFtTWRs2wYX+fM2pqWnppJLUFnjcked6Q5GcNSd27uw7GEBMPaj2mnNLRy5IqU1sbvw8cGOOPP76JB0meNySNHn7ekOQ5Q2pf1l474vvvIyaZJOLOO1t6ado9Ew+SpDZp+PDhLb0IktoYzxuSPG9I8rOG1IG9+mrE1187ufQY4uTSkiRJkiRJkiSpakw8SJIkSZIkSZKkqjHxIEmSJEmSJEmSqsbEgyRJkiRJkiRJqhoTD5IkSZIkSZIkqWpMPEiSJEmSJEmSpKox8SBJkiRJkiRJkqqmS/WeSho5tbW16f9hw4ZFTU2Nq1FSReeN4cOHe96Q1KzPG543JDWH5w1JnjOkdqZbt4jxxvv7/2HDWnppoq1+1mB5izHdhtTUNnUPaTT766+/4q233nI9S5IkSZIkSVIbMPfcc8dYY43V4O0mHtTiyOwNHTo0OnXq1Kaye5IkSZIkSZLUkdT+r1KjS5cuKZ7bEBMPkiRJkiRJkiSpapxcWpIkSZIkSZIkVY2JB0mSJEmSJEmSVDUmHiRJkiRJkiRJUtWYeJAkSZIkSZIkSVVj4kGSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHjQGPHnn3/GIYccEgsttFAsueSScdlllzV433fffTc22mijmHfeeWODDTaIt99+260kdUDNOW9kL7/8cqywwgpjZPkkte3zxuOPPx7rrLNOzD///LHWWmvFI488MkaXVVLbOmfceeedscoqq8Q888wTm266abz55ptjdFkltd3vKF999VX6vPHCCy+MkWWU1HbPG7vttlvMOuusdS6PPfZYtFVdWnoB1DGcfPLJKYFw5ZVXRr9+/eLAAw+MKaecMlZdddU69/v9999j5513TgGAE088Ma6//vrYZZdd4qGHHopxxx23xZZfUus9b2QffPBB7L333jH22GOP8WWV1LbOG++//3706dMnDjjggFhmmWXi6aefTuePW265JWabbbYWW35JrfOcwcCGQw89NI499thYYIEF4rrrrouddtopHn300RhvvPHcbFIH0tzvKOjbt2+KdUjqmE5uxnnj448/jlNOOSUWX3zx0nU9e/aMtsrEg0Y7/sDefPPNcfHFF8ecc86ZLv/973/j2muvHeEgu/fee1PQkEBATU1N+oD/5JNPxv333x/rr7++W0vqIJpz3sANN9wQJ510Ukw99dQxaNCgFllmSW3nvHH33XfHYostFltvvXX6fdppp00BxPvuu8/Eg9RBNOec8f3338fuu++eqqSwxx57pNGKBAeogJDUMTT3O0qulvrtt9/G+LJKanvnjb/++itVSM0999wxySSTRHtgqyWNdowqHDp0aCotzBZccMF44403Yvjw4XXuy3XcRtIB/M+ootdff90tJXUgzTlvgAQliYdtt912DC+ppLZ43lhvvfViv/32G+E5Bg4cOEaWVVLbOmesttpqqfUB/vjjj7jiiiti4oknjhlnnHGML7ektvMd5eeff04jl48++ugxvKSS2uJ545NPPklxUAZUthcmHjTaMUJowgknjLHGGqt0Xa9evVKPs19++WWE+0466aR1ruNDff/+/d1SUgfSnPMGzjvvvFh55ZXH8FJKaqvnDYKFxZZKjDp67rnn6pQ0S2rfmvtZA5wnCBycc845qVezbZakjqW55w3aRzPYYeaZZx7DSyqpLZ43Pvnkk+jevXvqAsNcEBtuuGE88cQT0ZaZeNBoN3jw4DoHGPLvlBFVct/y+0lq35pz3pCkUTlv/PTTT7HnnnumCksnp5c6jpE5ZxA8vPXWW2OvvfaKgw46yKpsqYNpznnj2WefjVdeeSW1aZPUcQ1uxnmDxAOVlSQdLrnkkjQXHRWXb731VrRVzvGg0Y45G8oPpvz7OOOMU9F9y+8nqX1rznlDkkb2vPHDDz/EdtttF7W1tXHWWWdFp06OyZE6ipE5ZzBCkcvss8+eWiQwx9R88803RpZXUts5bxA4POKII+LII4/0u4vUwY3djM8bJCq32mqr0mTSVGi/8847cdNNN6V5H9oiv11ptJtssslSb0N6mhVLjTjAevToMcJ9CQIU8Xt5+yVJ7VtzzhuSNDLnjW+//Ta22GKL9MH/qquuiokmmsgVKXUgzTlnvPnmm+mLf3nLNh4vqeOo9LzBOePLL79M1VG0Z8u93XfaaaeUkJDUcUzWjM8bDILKSYdshhlmSN9b2ioTDxrtGBHUpUuXOqXIlBySrSsfWTjvvPPGa6+9lkYegv9fffXVdL2kjqM55w1Jau554/fff48dd9wxXX/NNdekLwSSOpbmnDNuueWWOP300+tcRyKCYICkjqPS88Y888wTDz74YNx+++2lC4499tjYe++9W2TZJbX+zxsHHXRQHHzwwSNMTt2WP28YvdFo161bt1h33XWjb9++KfP/8MMPx2WXXRZbb711KdNHKSJWXXXVGDBgQBx33HHx0Ucfpf/ph7baaqu5paQOpDnnDUlq7nnjwgsvjC+++CJOOumk0m1cBg4c6MqUOojmnDM22WSTeP755+PKK6+Mzz77LLVm4zHbbrttC78LSa3xvMFI5mmnnbbOBQx0mHjiid1oUgfSrRmfN5Zffvm46667UrLy888/j3POOSclKbbccstoq2pq89ByaTQiecBBRtafGdp32GGH0gf1WWedNU444YRYf/310+8ciPRC/Pjjj9NtRx11VMwxxxxuH6mDac55I2PCR/44P/rooy201JLawnmDgQ6ffvrpCI9fb7314sQTT2yBJZfU2j9rPPbYY6nqgUAAk0wfeuihaVJ6SR3LyHxHybfR2nHRRRdtgaWW1FbOGzfffHOaWLpfv37p8wYVEAsvvHCb3YAmHiRJkiRJkiRJUtXYakmSJEmSJEmSJFWNiQdJkiRJkiRJklQ1Jh4kSZIkSZIkSVLVmHiQJEmSJEmSJElVY+JBkiRJkiRJkiRVjYkHSZIkSZIkSZJUNSYeJEmSJEmSJElS1Zh4kCRJkiRJkiRJVdOlek8lSZIkSaPfQQcdFLfddluDt1911VWx6KKLNvt5a2tr47rrrostttii3tvPPvvsOOecc+pcN84448Q000wTe+65Z6y88soVv9aQIUPiggsuiNtvvz2+/fbb6NWrV6yyyirpebp3797sZZckSZJak5paPl1LkiRJUhsxcODA+OOPP9LP9957b1x22WVxyy23lG7v2bNnjDXWWM1+3hdffDG22mqr+OCDDxpMPDzzzDPp/+znn3+Oiy++OO6777645557Ytppp41jjjkmXn311fj9999j6623rjeRccIJJ8Szzz4bhxxySEw99dTx5ZdfxnHHHRdTTTVVSkhIkiRJbZmtliRJkiS1KeOPP35MMskk6cLPnTt3Lv3OZWSSDqhkTFbXrl3rvNYss8ySEgZdunSJxx9/PCVEqIC49dZbU1Lhpptuqvd5qNjYe++9Y/HFF0/JBv7v27dvPPbYY/Hdd9+N1PJLkiRJrYWJB0mSJEntyjfffBO77rprzDvvvLH88sun9kjDhg0rtTg67LDDUium+eefP92PVkdfffVVqk7ArLPOGi+88ELFr0fig8QDF1ovbbPNNvH222/HiSeeGHvssUe9j6mpqYnnn38+hg8fXrqO5aFqYsIJJ0y/UzFxxBFHpGXlcvjhh8eff/6Zbvv111/T70sssUQsuOCCsf/++6frwLLzvo888sh020UXXZSuv+GGG9L1vE5jlR2SJEnSqDLxIEmSJKndoGqhT58+MfHEE6eqAloa3XXXXaX2Rddee2289NJLpfZMv/32Wxx//PExxRRTlFooPf300yk4XwmSA2eddVb89ddfscwyy6Tr/vOf/6REwEknndTgvA8kOa6++upSguCBBx5I1RIzzTRTqqoACZJXXnklzjvvvLS8/HzmmWem23iP7733Xnpfl19+eXz88cdp7ovs66+/TstE5cWaa64Zjz76aErAkKxgvZCQYBlyskKSJEmqJieXliRJktRuUEXQr1+/uPnmm6NTp04xwwwzxIEHHhgHH3xwqj6gsmHssceO3r17xwQTTJCqEn755ZdUtcDcEKCFUkNefvnlUlKCJAcVCHPMMUea54GWSZ9//nlKFPDcp5xySnrO8gmpwbIwtwOTWdOOiWqE8cYbLw499NDYYIMNUkLg/vvvT0kFkgQ4+uijU7Lh/fffT/NRcPv000+fbuO1Vl999fjkk09Kr7HjjjumOSew3377xS677BLLLbdc+n2fffaJJ598Mu68885U/SBJkiRVk4kHSZIkSe0GI/9JJORgPWhnRDUBE0FvsskmqZ3RkksuGYssskisuOKKsf7661f8/HPNNVeceuqp6TmfeuqpVO2w3XbbpVZIIND/yCOPVPRca6+9drqwXFRZXHPNNSnxQKsnnp/2UHPOOWfp/gsttFC6MKF2jx49SkkHzDjjjCnJQeKBeS9AIqS4XkhOnH766aXrSJp89tlnFb93SZIkqVImHiRJkiS1G0OHDk1VDlQdlCMgz/wJtB1iImguBOLvvvvu1IKpEszhkKsICPyT0KCiguoF5pSoBBULt99+e6k1Esu01lprxSqrrJJaM1G18Y9//KPBxzc0eTaJijyXBajsKN7GZNdMYl3UvXv3ipZZkiRJag7neJAkSZLUbpAMoNXSRBNNlBIEXGivRGUCEzoT8H/sscditdVWS3MwXHLJJWnuhB9//DHd3lw77LBDzDzzzGk+hmLQvzHcjxZK77777ggJBRIbLDuJDNo/kaTIHn744VhvvfXSexwwYECdtkofffRRDBo0qE4VRPl66d+/f2mdcGF+iNdff73Z71mSJElqiokHSZIkSe0GLZSYv4HJnT/44IM0JwMTKnfr1i0F8gcOHBjHHXdcPPfcc/Hll1+miacnn3zyVHXAffD222+nNkSV4Dl5/g8//DDN11AJ2ictu+yysfvuu6fXJzFCAoBJppkQmqoHKhHWXXfdtKxvvvlmvPXWW3HGGWfEYostltoqLb300qnSgtu48PPCCy8cs8wyS72vSTuoK6+8MiVevvjii9R26b777kvPJUmSmod5nuR6UeNMPEiSJElqN0gEnH/++WmOhI033jj23HPPWGaZZVJFArbYYosU0CcxwWTMVB1wfx7H3Aq0ONp0003jiSeeqPg1mU+CuRqoqvjpp58qesyZZ54Z66yzTpp4muoLJn6mYoF5HnL7I1ojzTbbbClpsNNOO6V5JP75z3+m26jWoCpi2223LVVdnHvuuQ2+Hu+Vx7KMa665Zkq88L6nm266it+nJKn9YO6fY445JrX5o1Ugf8v4+0cSnbaFbdHZZ5+d/pZnW221VbpUExWHBxxwQBrYMDpfpylUa+6zzz7pM84888wTK6ywQhoIwXZtqfV78803p88nUlZTa4pOkiRJkiRJ6hDuvffeOPjgg1PVG0n6PGcRSfebbropllpqqTRX0si0IGxJBMZJ6FPxmNsQYqaZZqraa7zwwgux9dZbx1VXXZUGBIyu12nMhRdemKogqfKkBeMkk0wSn3/+eVx//fVpWU444YRYY401xvj6XX755WORRRaJE088seqvrbbJyaWl/2PvPuCjKrY4jp8kG0hCQgepdlE6gl2xV+y9dwUL9oYFxV5Q7A3EZ+8VewGxYFdQUSwIKh0pQgIBUvZ9/oN33YSUTbLZ3Xvz+/r2LUm2zNwtc2fOzBkAAAAAAIAGQDPiFXRQcEGr70Kh/4YGNXteg+lnn322S8en1XJ+lqhAQKKeRxQcGjFihEvXeM4550R+rwF/rei84IILbMiQIS71olZDBqXe8CdSLQEAAAAAAAANwEMPPWTp6el29dVXlwk6eJR6SQPY0ZS+cOTIkbbbbrtZjx493G0ef/zxMrdRyp3LL7/c3U77GPXs2dOlbtI+RNG0J5LSC/bt29ddzjzzTLfnUvSKAqXzeeaZZ2ynnXZyt5kwYUIklc9BBx1kffr0cemFlLJQAZLKRKcCeumll9zjVnTRQL2nqufwVjuIrr3HLp9ySPtEKf3hnnvu6Y6D9m7ScdFxrOnxKk9pEtdff30XHCovMzPTrrnmGpc+ctSoUZHfq45arVBV2qS6Hl+tdpg1a5a9/PLL7nF//PFHVycFSaIVFha6tF6qB4KPFQ8AAAAAAABAAzB27FjbaqutrFWrVpXepnye/mHDhrmBewUMNt10U/vqq6/shhtucPsdKHDgeeedd1z6Ju2rpMzuehzttTRu3Dg3GD59+nQ3uK6Bc/1Ne0loAPrII4+0V199tUyZlNJHj6MUUHrOJ5980q677jr3eBq4XrJkiRtcv/DCC93f27VrV2W9Nbj/7LPPlvnd//73P3v//fdduiKp7jm6d+9uV155pRvc17WXaima6n3aaafZpEmTbPDgwW6vJgUstLpEARbtqxHr8Spv8eLFNnHiRLfvU2VpsJo3b27bbLONe51roq7HV6/XwIEDrVu3bm41hlZb7Lrrrvbaa6+5Paa88r733nu2fPnyNYJbCCYCDwAAAAAAAEDAaTBZl3XXXXeNv5XfUFoDxV6wQPs+nH/++W5gWbS3gP6uvQaOOuooa9GiReQxRo8ebbm5ue7nZcuW2SWXXGJTpkxxKyU0OJ2dnW2PPPJI5DZbb721G6DWSgzd1qPH1YoBjwbtTz75ZDeo7enYsaOboa+Nlqvb06Bly5bu4tEAuAb+L7vsskgAIZbn8NIL6bqiVEMfffSRffrpp26mv1embbfd1rKysuzOO+90KyW8FEjVHa/yZs+eHSlTVdZZZx0XePjnn39cICIWdT2+Cjg0atTIHWOtmJCDDz7Y7SeiwIuCXfLKK6+4wEj79u1jKhf8jcADAAAAAAAAEHDRqX6iaWNipQOKpkFnzbz//PPP3Wx8pdKJDk7oZ61W0KC0AgeigXhvEF3WWmutSHod0WNpLwINwnuPpdtvttlmbrA+WteuXcv87KVD0iqLadOmuTJrQFtWrVpVo+Pw888/28UXX+xm3Xupk+L1HF9++aVLYRUdNJH99tvPBR70dy/wUN3xqi1vdUFlr3dF4nl8PQowdOjQwa1mUeBh7ty59tlnn9nw4cNr9XjwHwIPAAAAAAAAQMBpZUJOTo7LxR9Ns89feOGFyM/an0B7MYhmzUtlM97nzZsX+bdWM0TTXhLRA+B6LM2A16W86NUIonJG++uvv1x6Iw1cay8DpWtSGiNRYCRWCxcutNNPP93dX/tcxPs5tKJEx7l8qqQ2bdq46/z8/JiPV3neKoGZM2dWWQb9Xccv1tUO8Ty+5eujFRNKaXXVVVe5AIQCLdorBA0DgQcAAAAAAACgAdBKhQ8++MAKCgois+2VIkcbAXuiB6ybNm3qrh999FFr0qTJGo+nGe2xysvLc7PgTzzxxDX+VtFG1x4NxCvNkwbEFSDRagjdfurUqW4wO1aaua89KbzNnxs3bhz352jWrJnbi6GkpKRM8GH+/Pnu2ktLVRsKzmi/Be1LccEFF0QCFQp2aKVC586dXWBDq0eUDsv7u6g80bTPQrzrXhEFHnSslYJKG1UPGDCgzHFHsP33DgQAAAAAAAAQWBpgVpojbWhcUQodbeasfP8epUESDaYrOOFdFi1a5FIHeSsiYqE0SxrM1sC29zjay0B7PmjPhcroubXXxCGHHOLu4wUpNJhdk5RCmnU/efJku+uuu9bYLDnW56ho0+fyddTxffvtt8v8fsyYMe5aGzfXhTasVhokHXvPJ5984lJlKV2SVi0oVZM2uPYowBS9MkW+/fbbuB/f6EBHdMou7ePx2GOPub0rFIhAw8GKBwAAAAAAAKAB2HjjjV2O/UsvvdQNAmuwWb/TYPnEiRPdjPcFCxbYKaecErm99icYOnSoS9GkQIEGqW+//Xbr1KlThRtVV0YbFx9xxBE2aNAgO/LII93M92effdbN4FcwoDKtWrVyA9hPPvmkCxhoFcbHH3/sBrNj3RNBwY2XXnrJTjrpJJfiaNKkSZG/acWHNkeO5Tm0akPGjx/vVjd46Yg822+/vdusWoEdDfbr79rXYdSoUXbggQdWuCF1TWglgzagvuWWW+ynn35yj6m9IbRXheooel27d+8euc+OO+5ob7zxhvXu3dttPK3joOBFPI+v6H4qk+rbq1cvt5eH6D2mzck32GADVwY0HAQeAAAAAAAAgAZijz32cAGEp59+2gUaFFBQHn+l6lEqHAUHogMKN954oz344IP2zDPPuA2CNVCt25177rnVrgCIpkF4DW4raKHNnfWcXbp0cal4dtlllyrve99999n111/vZvUrUKABfG1ufcMNN9jXX39txx57bJX3Hzt2rLt++OGH3aWijbRjeQ5tDL3PPvu4emhw/vXXX19jY2cdKwVSFAjQyhAFaDTwXlGKqdrQ4/Tp08elv7rpppvcioXWrVu7zbL1Gj700EM2e/ZsVxc9t4JMCizdfPPNbjWDXjulalJwJF7HVxTU0e1PPvlkt6+Dt1pmhx12cMeF1Q4NT1q4tjuEAAAAAAAAAABShoIOjz/+uEvLVNG+HImmzcQVaPrwww9d0AoNB4EHAAAAAAAAAEDcKIXWDz/84FbKaJXNNddcw9FtYNhcGgAAAAAAAAAQNzNnznTpoJTW66KLLuLINkCseAAAAAAAAAAAAHHDigcAAAAAQI2xXSAAAKnRBtMmIxUReACQUMcee6xtvPHGZS6bbLKJ9e3b1w466CB79dVXy9x+5513dre54IILKn3Mww47zN3m7rvvLvP7cePG2fHHH2+bbbaZ9ezZ03bbbTe7/vrrbeHChdWWKfqix69OaWmpPf/883b00Ufblltu6epz4IEHug2dVq1aZUGh12PIkCHJLgYAwAe89vWII46o9DbnnXeeu0082pYvvvjCPZau6+M+ylGsNAE77rij9erVy3bddVcbOnSozZgxw1KJzodUp3inStBjvvTSS+7npUuXuk0iv/7667g+DwDA/x5++GG78MILa902pyK1f6qH2sO6nBfpUlcaX7jhhhvstddei/zut99+syOPPNLiYfHixe5cJ9XOb+BPoWQXAEDD061bN7vqqqsiP5eUlNjcuXPtkUcecZ3Y5s2b2w477BD5e3p6un3wwQe2cuVKa9y4cZnHUsP/3XffrfEcL7/8sl166aVusOOEE06w7Oxsmzp1qo0cOdI91osvvmjNmjWrtEzRmjRpUmV9CgsL7bTTTnPlUGN/yimnWGZmpn3++ed2yy232EcffWT33nuvNWrUyPzunnvusdzc3GQXAwDgE2rDJ02a5Nr5du3alfnb8uXLXZvsB08++aTr5GtygSZDtG3b1v78808bPXq0vfvuuy5/sSZSBJXq++yzz9raa6/tfp4yZYqbLHLwwQcnu2gAgBTy+++/24MPPmhjxoyxINFAvNpBtYfJNn/+fHfeceONN0Z+9/bbb9vEiRPj8vgtWrRwYyiXXXaZPfbYY5aWlhaXx0XDROABQMJp4LpPnz5r/H777be3rbfe2s0miA48aPWAZtRpAF+rFqK9+eab1rVrV9cBjqaB/r333tuGDRsW+d1WW23lVj/sv//+bnWCAgTVlSkWavC//fZbt7oh+jG22247NwihAYpnnnnGjjvuOPM7BWgAAKhJu6HAvzrE6sRGU9BBEwOaNm2a0gf0m2++cSsmtarx8ssvj/xeQQitejjggANc59xbDRBEmjxR2/MkAEDDMXz4cNtnn31srbXWsiBp2bKluzQURx11lN1///323nvv2e67757s4sDHSLUEIGVoNYM6tuUj6p07d7YePXq4QYvyFHhQgKG8BQsWVJjjUIEArYTQ48XDokWL3OoJzfirqEOuk66TTjqpzImXZiioDAquKFXDIYccYmPHji1zPy3jfPrpp13qiX79+tkWW2xh1113na1YscJuvvlmF0TRgIcGQLQSJPp+TzzxhF1yySW26aab2jbbbOMGS6JvoxUmWvmhsun5VW6tDNEKjeg0DQryaIWDnltBlCVLlqyRaun111+3/fbbzz2OyqQltfPmzSvzXJoluu+++7rbaKbIrbfeWqY8ejwNRuk47rHHHu61UXBIgSYAgL/l5OS49q6yNlzf+6FQ2blQaiM0gWDPPfd0qRLV4VW7pbSG0RTU1/3VvhxzzDE2e/bsNZ5Dvzv//PNdW9a7d2+XgvGnn36qUR20qiEvL889TnkahFA7tssuu7gVHDVp+04++WQ3e1LBC91ObfH06dNdQEb3VXkPPfTQMpMrdD+laXjhhRdsp512cm296vTzzz9XWYf333/fpbTU8dx2223dOYVX3oKCAvdYOt5eekidQ2nChG6rc53oVEtKl+FNptC1yqP66u8qfzStitAEkTlz5tTomAMA/OfXX3+18ePHu35mTeXn57sJfWoT1VbpMdTWeZTG+PTTTy9zH91WbWy0M844w7WvHk041HiB+pi6rfq5aqej21W1o8p+oAmPAwYMKPP3ylItqW3UBEO1kyqv+q+vvPJKTHXVOY766WrDVd7yKY10HAcNGuTKo8uZZ54ZuY2eX+ccojEF9c9VJ/XbJToFtc6bdP6kfr3qr3MmTZaMpjZcffizzz7bjQuceOKJ7vcal9HttXoFqAsCDwASTp3Z4uLiyEUd8WnTprmGc9myZa7RLk8nAF66JY/uo452RYEHnVS88cYbrpHW4Hj0YLgGuTVIXlWZoi9VbdL02Wefuduow14ZBQHUaHsBEQUatIJDea11UtCxY0dXzvLLUTVbRA2+TiI0m1InCbpW510DGN7AQ/mThzvvvNPtY3HHHXe4VR0a1FAZPLrvfffdZ4cffrg99NBDdu2119o///xj55xzjksbFT1Y8+GHH9rtt9/uXpvo1FTeDFClxtKA0KhRo9xtFLyI3o/jyiuvjJxAasaEZosqMKITrOjjOnnyZDewoxMenYhlZGTYWWed5YIdAAB/UxvupVvyaLBbAebygxNqG5S+UO2TBt0feOABNyCuNi06JaLaEv2soIbaNA3Sa7+FaBoU0GD+jz/+6P522223uU642iKlgoiFyvPJJ5+4FZlanVFZ/dSOK8hSk7ZPKRH0ew166PYq08CBA92/NeAwYsQI1+Z7ebI9CkSobR48eLA7V1AuZgVeNLGhIsoBrfKtv/76ro3V/XTO4ZVHqz41SeGPP/5wx1uUWkEBBqWXKj/Ds3v37q6OXl31OihQogkk5ffq0iCMjl379u1jOt4AAP9Se9OmTZsar5DT5DrNsNf91X9Vu67Jd5pk57VLau+//PLLSFBAA/AajFc76Q3KFxUVuf65F4zQoLnaf7VDehy1x+q3lj9fUN9cj6M2Un1Z9UWroz2f1G5fffXV7jG1wlN97ujJfBVRH1rjFGo/NQlA4xkK4uu8SBTA17mL+vOacKj2WfVTSmf9TqmevCCDAjH6t86XNMYg6vvrZ1H2h7vuustNFPTOp9Suq57R3nrrLZdeWucs0VkhdHv108tPKgBqglRLABLuq6++cp3WaFrl0KVLFzdoXtEg/l577eU619HpljRTUrMEOnTosMbtNZiuwQXlXdYsP1FeYs0OUBS//NLPisrkUZnU6FbEm8HXqVOnmOr+v//9zw2EvPPOOy7g4J1EKRii/SA0AKN82LLhhhvaNddc4/6tmZqaraGTKQUONDtUqxD0OErzFE0DBDqx0G302Ho8DWJoIH+DDTZwAxMKekRvbKXBAv39l19+iZwoKqCikyelp6rspCkrK8sNknj7V2h/Dm2+qYEMnYgpMKKTN91GNCNEJ0sKWOi19FJqaYaLZpF4uaM1eKNBFJ24eUEbAIA/aQBAg/bR6Za0dL9Vq1ZuYCGa2oZPP/3UDbp7EwvUdqi9UXuszrnaRw1KaMBfKY5EbaI67VoF4VH+YwXWtYLQa3OV1lH302OpM14dDepr0kOs7bzSSsXa9mmyhQIqaptFAyoqv/a80iCJaB8JDTxoM2cvJZXaTLXzXvvsbXStYEH5IIXaY5039O/f31171l13XfdaaIKBXh/NvNSEBM2MVBBHx18DNNGpLz0KVOg1EF17/9b5mQIamsig8zoFmtSO6/wNABB8+s7X7P+a7gmgfqBm+asNVP9e1G6pP6r2XgPxaqs0MP7999+72yjAoLZME/vUl1eWBPVPtZpP4wlqK73JdldccUXkXEH9Vf2sMYGNNtrI/V7Po353+b2oqqI2W0F9tb9ef12PXd2+jgpqaPNt77k0KUCTCxWoV/9XgQSdM+lcwNtbUecEeh5NylD/XCsJRX1nLxWy93heX17Bgueee86t1vTOR1R/vTYKyCjQo70cRPtTKoBSvux6LUXHer311ov52ADRWPEAIOE0wK9OuS46GVDAQScN6nxXNsCv4IIa0ehUDQo8VLaMUykRNKCgoINmE2jwWp12DfzrOcpvvBRdpvIXr/NfES89RPn0D1WdoOhEyRsA8WgWwt9//+1WcXi8ky7vBEUnBipndEoKndzopCqaZh1G38YbuNcJmWjGp5aTKgCi2R1KceSttvBSLHi8k5qKbL755m6FhF4DPaYeSyczmkmpExrVVcqvSNHPqo9mUkYHS7ygQ/SJU/QKDACAPylooFQA0W24ZvtpUkH5wQm1HWrDyp8PqJ30/q62UrP+yk9U0ONFU0dZ7ZgmG3irGBWMV/BBwY1YeLMeK0q7UJGatH1aSegFHaR169buWgP/0e286BzGoyBI9KQABTV0zuC189F0rBQA0PGPXs2pNlwDGhMmTIjcVoERHSutONF5in6uCc22nDVrljsfEA2iaAZl+f25AADBpJn5sQbqy7edanei+79e26/g/3fffeeC7OoPe+23ghxKPaw202v/FNxXMEFlUH9fKynKt3/6WaLbP7W1NQk6iJ5b2Qu0Yl8TBBUAUVBAqZGqor9HP5fOUxQ08eqgeimIoXMnr8xqr9Xux3ru4j2OJh9UVH8dUwVpPAp+VBQw0ZiKJj146aWA2mDFA4CEUyfUi56LThZ0UqG9EDTbobJNmzSgoBmKaigVwVdKgMoCFR6ddGjGni4KDigQoZQGWhERvQlk+TLFylttobRE3oyJ8rTCQHXSQIpSB+nEojxvsCF6YMGb4RDNS+NQlfKrOTSjVLy0RVqRoBkNutZsCs1U9OpRPq2UjktldGKomZGajaGAjv6temjAQqspvOfTcttoOg46aYwOmJRPX+ENRMUa0AEApDa14QpMaxBcq+wUFDj33HPXuJ3aDrUR5dMceG2J2g6vffFm6pW/jUerHbRioLIVjbEEtxUcUFtY0f4RHs2u1IpE3bYmbV9F7XwsbX1FG3aqrVdKqfJ0DETtvi7lRadnUj2VPlEzMTXpQoMeNaE0ljrvUsBBgQ1da3WJXm8AQPBp5WFlaQmrorazfLtZvo/sTRzQ+YNWGmhgXase1Y/VwL98/PHHkUkJXvvnzfavrv2rKaU81OpDpSlSFgKVT6sHtXKi/CTDiupUvg33xgFUbk2w1KW8mmxu7dW/orTUEp2Kuqr66/X00kABtUHgAUDSqfHVqgQtzVcOQ82er4iCDDfddJM7odCguTq43qB6NDX8yjes1ArRSwJ1MqAOtWYTaNlhPKgMWpqoVAUVpSOQU0891V0r77EGJbSyoTzvd+UHUWpDaSGiafaFd6KikwblbdSmU5ptqtkNOi4qv45bTWkJrC4avNHJn9I8KFelgknenhCqW/TJlwZnVMZ41BUA4A8aLFDHVqseNLCuAWptdFie2g61EVphEB188AYI1HZ47YdWPVTUyY6eqadZg5XN3K8uHYJHq/m0UkETHyoaRNc5hdIhaZVkItq+8u2819ZXdE7kpWfSMdCxKC96/yaludC+UZp9qXMoTQqJXn1RHU0a0OafegzlotYkER0XAEDDUNFq/FioLdJEger6yEq3pPZM6ZbU7qldU+BBQQCtcFA7pn0Nots/pRlUdoVYAgA1oXMM7fOgi1YXjh071mVzUJBfE/IqU9Eehqqnt9pDj6sAhrfJc7TorAbV8eqvtJMVBRYqSlddEQVE6LejLki1BCAlKKigAWxtBO2lKahohp9yQWvQQjMLKovea+WBBh/UyFZEKyWU3ike1KArtYAGHbTxUnma7acNo7wUEZoBqJMipSKIplRHmuWxzjrr1LlM48aNK/OzAgoaDFCQRCdFOjZejmxvPwktS63pCgMNJhx88MFulYRmQmh2ibeJtWaGegMcCnBE088aUCqf1xsAEFwa5Fd+YrVJVbXhajuUCiA6LZN4KQHVdmgAQZsVl7/NBx98sMZjafBbkxC0qtG7aCKAggSxbB4pWpGptlMpISsaLNAKAbWpWlmRiLZP5zHRm2Nr1qLOLSpKDakJBgpIKE1C9DHQOZUmevz000/udjrmWhGqtIfKsb3JJpu4Nl3BlopUduwOOuggN0ihcwSlkapJ4AIA4G8KuHt7INaE+sjqH5dPh6y2X5P8lGbJmwigvqf2KFDbrv6z2jRNaNB+Qhog9wbw1f7ovmojo9s/Dd5rH6O6pA9SWTXp0DsPUVuryYYKGFS1QlKU4ig6OKM0Uno89dVF5xHaL0qTALwya6KGsgxof6zK2mCvX+/xUjJqskJ0/ZVuWVkkyk/WqCxIogmGsQYpgIqw4gFAytBSSQ3Qa8b8yy+/XGGDqlQN2ihZA+lavVARNfxaUqkTEjX8ekzlUdTMSA02aHmmUgNF00qASZMmVVo2NdKVdbK1YZNWYCi9kDaE8gZNNJivgIQG5LWngmjmgk6gtKGjUk5oVoiCE1otcMMNN6xxwlAbqoc2l9x///1d0EO5Jw877DCX4knPp9QO3ubTumgQSAMwNd1TQSdHOo4aqNAx1mxObXil59DfdK2Zj9prQ4+rE8opU6a4DbOUE1OBJgBAw6G0O4MGDXJtnbfRY0UrI9RG6O8aLNAAuCYkjBo1yrUp3kbGaue0gbNup8kLavs0Sz+a2lq1+7pW8EADEkpdoLb50ksvjbnc2mNKqzIVeNCAvzaB1GP99ttvNnr0aDc47wUlVL76bvs06KK0huedd547N9Fja7aozkPK0991O60s1b91TqLAgGZl6vh6aah0XqAgxFNPPeVSLCkl5aGHHupmkaqdL08zMmX8+PHuufU6iQYnNPDyySefrLHRNQAg2LbddlvXjqidKr+Hk/qcag/LU1ujoLXupxRK2jNBqyI1mU57EarP7M3e17UCC0qfrE2jRf1ZDbKr763+r9efVjutlf4aZFdfX22w2j39rLJ57VZtAywaX9C4hR5bQXtNQlQWAZ3nVEUT/TRWoXZcQQFNAtCkSG+i4hlnnOE209bjaPWgVlo+++yzrs46t4hugzWu4QX5vWOkiZz6WRkO9JhDhw51gQ0FLzQZQ+26jm9Fq0DK8/aBUMAHqC0CDwBShgIG6jRr5qAGDzSIX54GF5SOScssvQa3smCAZgko36N3QqDGWCclGmQvf6KhzrZ38lIRpWfyGvPy9HulFXjiiSfcgIbKrpMtNeYaENGKCG9ZpGZl6O86wVC5NFivsmgAYJdddrF4UJBDJ1U6SdMJl05qvBMgHTM91y233OIGUbTsUsdJZdcsDW0I6W24VR3N8tDSVb1e3obSmsmpdEveZph6rbSKQyeNGjTSBphabaETqngEWQAA/qEBabWZWq0QvalyNLUlmjigzrVm92lmnjrIatej0w7ss88+rh1Rm6bggjrtyqus23k0q1+z99XmKvWCAgRqm9U2qW2uidNPP926detmTz75pJsooFmAqofOR9TO6t+e+m77NLivQIrKoeCGjuv9998faXsrGtRRe6/JARq80MxQbW6pNlyTEjRJQYEHDXB4m2IqIKEya/WoNocuv6+EVpfqNdDxUApMDXR4dEw0GKIBIABAw6GJgffee69LhVR+xZvai4qof69BfPWn1V57gQKNDVTUXqsPqr65Agke/VuBB7U/0bSXlPrfCmqoDVSgXKsDda5Q1VhCLBT018oJlVcBBJ0HqE9c2Z4SHq3+VDuuFE2arKgJAZdffnkklaPGBnSsFCBQWimNK+gcR8fVGy/QREKdE6lNV7BDG2Xr2Ot8SJMFdMx03qMJmzqn0rmQ9tjSCkhNAtFxiWXVp46pVptUtWcFUJ20cPmdRAEAvqWZDTrhOeuss5JdFAAAEGcaUNAKkPJpFVOJZphqAEWDJACAhkXBeE1+06A3/Gv58uVulaZSJypYAtQW000BAAAAAHWiQIPSKynN0sknn8zRBIAGSOn93n333Wr3OkBq0yoJrW6MV1YGNFwEHgAAAAAAdaJVGEr5oNQQXsomAEDDW4GvNL9K5wd/UppLpbvUaofye3UANUWqJQAAAAAAAAAAEDeseAAAAAAAAAAAAHFD4AEAAAAAAAAAAMQNgQcAAAAAAAAAABA3ofg9FFA7paWlVlxcbOnp6WxcAwANVDgcdu1BKBRy7QH8j/YdAED7Hiy07QCAmrTvBB6QdAo6/PDDD8kuBgAgBfTs2dMaNWqU7GIgDmjfAQAe2vdgoG0HANSkfSfwgKTzImM9evRwkTI/RfeWLl1qTZs29d1KDb+WnXJzzJPyXtlkE7M5c8zatzf7+ed6fxEa6vu8pKTEBaFZ7RAccW/fE/xZDOLnNFZBrl+Q6xb0+gW5bkGuH+17sPi1794QP3/UyR94nfyB16n27XtwWgr4ltewZ2RkuIufvnj0AVOZ/XZy4teyU26OeVLeK4WFZsuWrb5OwHdUQ3+f+6nOSHD7nuDPYhA/p7EKcv2CXLeg1y/IdWsI9QtinRoiv/bdqxNe9J01H7eLpe081tJa9rYgCOJ3CnXyB14nfwgnqP9OEmUAAAAAAAA0TOFiS1+10F0DAOKHwAMAAAAAAAAAAIgbUi0BAAAAAAAAANZIyaON5ZXTP9bbr1q1ylasWBGoNF8NtU6ZmZl1Sq1H4AEAAAAA4GsaECkqKjK/8vOgRqNGjardXBIA4D9ql+bMmWPLly+v0f1KS0tt4cKFFiQNtU5paWnWqVMny83NrdVzEHgAAKAqr76qMy71qjlOQDLxWQRQyYD93Llz7Z9//vH98fHroIaCDuutt54LQAC+lNfF8rd+x3LzuiS7JEBKtUnTp093s907dOjgvuNjCYyrXdZkgKBtbN4Q6xQOh+3vv/+2mTNn2kYbbVSrlQ8EHgAAqEq/fhwfIBXwWQRQAS/o0LZtW8vJyfHtgIBfBzU0MDV79mw3I3bttdf2VdmBiMxcK2mxhbsG8N9qB33Hd+7c2bWvQW/PqtKQ69SmTRv7448/3KpSAg8AAAAAgAZBHWYv6NCqVSvzMz8PamhQQsEH5QBXLmjAd5bPtKyfbjLrPcSsSedklwZIKaTSa9jS6nhOQiJGAAAAAIDveHs61GQmJuLPS7EU68ajQMpZMd+y/rjPXQMA4ofAA1CXD5CPN1Hza9kpN8c84e+V1183e/751dcAkofPIoBK+G2FQNBw/AEAiXDSSSfZW2+9Ffn57rvvtu7du1t+fn7kdwcccIB9/fXXdX6u/fff3+LhrrvuipTn2GOPtS+++MLiSfsv7LzzzjW6T2XlGDJkiL300ktxLB17PCCFzM6fXat8YckSttXLoZfmL7U081dnx69lp9wc80S/V3Ib5Vqz004zmzXLrGNHtepJeBUAf1uUv8LS49C+txg0yDJmz+azCABAshXONvNR371aK+f/d718llko16xRs2SXCkA5W221lU2cONH22msv9/Mnn3xiW265pU2YMMH23HNPW7p0qc2aNcv69OlT52P36quvxuX4f/XVV66MDRWbSyNljPpmlM0tnGu+ETaXxzQUCpmPxu79XXbKzTFP4HuldU5rG7z5YKPLAdTNmxNn2OLlq9Oh1MXAVSXWhBcDQIDMnz/fzdb84IMP3GBJp06d7KCDDrITTjhh9TlMJbMUt9hiCzvrrLOqfXzNgBw8eLB7zLrQrMjjjjvOfvnllzo9DgJk6iizlT7qu1dn5YLV17+NNGu2iVmXwQQegBS0zTbb2LBhw9y/tceTVjocf/zx9vHHH7vAwzfffGObbbaZa0Nvv/12+/TTT1372qxZM7vnnnvcnlAKAvTq1cvmzp1rF110kT388MOWl5dnv//+u7Vr185GjBhhzZs3t4033ti1e2qn582bZ3/++afbz2iHHXawK6+80pXhzjvvtDfeeMPdf4MNNnAbcUe3zy+++KJNnjzZrrjiCrfyQbSi4Oabb3blP/300+3QQw91zzFp0iRXJv2s9lv1XLx4sUtneMkll1jfvn1t7Nixrh5aaagyDh8+3D3mypUr7YILLrBff/3V1V3PpbLoMa+//npbsWKFtWzZ0q655hpbZ511yuwvdeONN9r48eNtrbXWcpM3dY4RTwQekDIWFi60uQU+OnkJmxUVF1lmKNNfg/d+Ljvl5pgH/b0CBNDSwlW2uGBVnR+nNByOS3kAIBXMmTPHjjjiCFt//fXtjjvucB1+DRBowEMD/Q8++GCFaSM1OBHrBs4vvPAC+1+gfqxcaLbCR3336hQXWkl2Z0svyjdb8W8QAkDFCuesvkRr1MIsdz2zkhVm//xoVlpilp6hXHyr/96y7+rrpb+YFS8re98m65o1bhnT0e7WrZtrPwsLC90qBwUitt56a7v11lsjqwu22247FyT47bff7JlnnnGZVTRw//rrr7tUTRrwP/HEE9191d5+9913LnjQoUMHFwh47bXXXJA/2pQpU+zxxx+30tJSt9ri8MMPd0EIlWHMmDFuAP+YY45xg/3RDj74YHvllVfcJICuXbu632VlZbngw88//+wmGijQ4A5rYaErhxx55JF22WWXWc+ePe2vv/5yt3v33XfdOYCCFgqKPPbYYy6ooYDHwoUL3fNvuummLpDw1FNP2XnnnecuCsBoBYhSVJ1//vkuGOLRY/7444/ueRXE2W+//eL+rifwAAAAAABAAl177bVugOKhhx5ygyIatGjfvr2b0bjPPvvY008/bUcfffQa99MMx1hpdiOAGISyrTSvm6Vr0hKAqv32oNnkq8v+bt2jzbZ5wmz5TEt7Z7M1B5uP+ncC0WcnmC38vOzftn7cbL1jYjrqCsj369fPvv/+e5dmaY899rAWLVq49k4rFrSXwmGHHeZm9WvgXgH46dOnu/RM0UEBDdB7NtpoIxd0EAUHlixZssbzKrihlQdqr/XYuo2CDmqvFUgQDdprdUV19thjD3et4IFWNHi89FDLli2zH374wa2S8CibgwIuu+66qw0aNMh22WUXtypi2223dXs8aCWHV6cuXbq44/DHH39Y06ZNI4+rgIlWakTvh6FAze677+4mNOgYbr/99hZvBB4AAAAAAEiQBQsW2Lhx49yqhvJ73GnwQ6mRnnvuOcvOznbXrVq1ss8//9yuuuoqe/7558ukWnrkkUds9OjRbqBC91NaiAMPPND9OzrVkmZvananBiM00KAghwY1+vfv7x5n6tSpbpbkt99+6wY4NMtSwRHNpAQCT7Ozi5aapcce2AMarI0GmXXab80VD5LTycJ7fG0lpSWWkZ7hUgKVsfUjFa94qMU+D19++aUNHTrU/U4D8B999JELCKy77rpuJYBm+2tlgwb6FbBQgN+j9tXTuHHjyL9V3ujbRarXqNEat9FjagVETWX82+6XPzZemfSYer7oPSaU6qlNmzauTR8wYIB9+OGHLs2SAjD77rtvmfSMXvkqKpt+rzY++rbRKkvzWBdrrt0EAAAAAAD1QmkN1PnX4H5FNJtTKRhWrVrlBlc23HBDF4BQ+ohoSu+gPM6a1fnss8+6WY8KKlTmgQcesL333tulm9hkk03cgI0GJnQ57bTTrGPHjm6gQ6kplOfZyx0NBF5xgWUu/sxdA6hGdvvVqZOiL0qzJBlZq39uUe7vnqYbr3nfGNMseRREVzumfZFycnLc79Q+qh30NnFWW6gAxVFHHeXaUK1OULsWTwp2KH2R9ldQe61/rxFosdWBhpo8t/aLUPDECzxowoAmEChgoBUWooCK0i/99NNPlT6OUjkqEKM0jvLmm2+6PSy0QiR6JYfSLKn8Wq2hVSTxxooHAAAAAECwjBix+lKdvn01gl/2d8px/O231d/3/PNXX2rIS+OgFAgV8X6v22kQQzmnvVQO0ZTDWZtqKn2CKO+zNr2sjP7mbTStx9x///3t77//doMc2m9CAzTeII5WTSgNFAAAqUSD8gUFBWX2I1A6ofnz57tggGhVgFYHaDWA0ggp2D5jxoy4lkNtqlIiqb1s0qSJG9CPXj3h2XHHHd2KRa0qjJUC/9pc2kvHqE2stQpCG0ifc845rk46L/A22q6Ibq/9HbS5tPaPUFuvPaWiaWWkJkMooNG6dWsXrIg3Ag8AAAAAgGBRnuVZs6q/XbmNIJ2//47tvjHkcq5Is2bNIimXNPuwPA2eeLdTmqWKgg6itEoDBw4s87jrrffvrNNKBms8ubm57lozKBVs0EaW2gBT6SmmTZvmZlFqEAIAgFQzfvz4Mj9rIF6pAj1rrbWWS01YWdvp0QoJb5WEeGkMo2+n32mVordqQZtMizal1vNoJYH+fvbZZ7v9Iso74YQT3CX6vhU9RzSlOSx/W9lpp53cpTylb/RogoE3yUD7PlR0HPTYXp3OPfdcl5aqvhB4AAAAAAAEi1YNdOxY/e3atKn4d7Hct5IVC9VRiiXNYNQgf0WBB/1em05qtmJFsyc93qbU0SrKTR09MFOebq/9IQ455BA3W1OzHzXzUcGHhx9+uMZ1AwCgIVAw/95777XHHnsssrJBF5RF4AEAgKpoRmBe3uprAElTlJVjpXl5ls5nEUAsapkGySmfeinOWrZsabvuuqvdd999buZi9AbTc+bMsRdeeMEuvvjiah9HeauVImGXXXZxPyv1xJ9//lnj8miDTq2yeO211yIbSyrPc1VBDCBQ0szCaRnuGgBioVWGI0eO5GBVg82lAQCoys8/r06loGsASfPoA6/aopnz+CwCCITLL7/c7eFw6qmnuo0jZ8+ebe+//77bs2GLLbZw+y1U59hjj3UzLd999137/fff3SbTy5cvr3Bzy6o0b97c3U/Prw2qlZbhySefdJtNAg1CZjMrbrOruwYAJDHwUFRUZHfffbebVdGjRw+3jEQbZGh2RSqbMmVKmXxf8aCdy++55x7bY489rFevXm7Wyl133WUrVqyw+qbZJzoZrK0vvvjCLd+tL3psPQcAIPXRtv+Htr1ytO0AED/KC/3cc8+5PRkuvPBCt0G0+pKHH364PfDAA5aeXn1Xfe+997aTTjrJbVp56KGHWseOHd3FS6mkPqOCCeq7f/XVV/bII49U2HdXDugzzzzTrr76ardZ50svvWRXXnmlLVy40ObNm5fwl52+e1n03QEkU2lpKS9AAxau4+rHGqdauvXWW+3TTz+16667zjp37ux2BdcO2VrSqROkVKUTKe1o3rdv37g8nmZ/HHfccW5n8EsvvdRt/KFZJjoW2oirvo+FThyvueYaO/roo2t1f51cavksAAC07avRtgMAEkkbRw8dOtRdvE0elXbJW7EQvUGkJ3qzSaVIOvDAA+2MM86IbBSt1Qpt/t23Yvfdd6+y7x69wab6yrpEO/jggyNBkujb1jf67mXRd0+AonwLLfrarOVmZllr7rsCNETaZ0hBcK3IU7uin2NZUVdRe+Z3DbVO4XDY/v77b/f3ivaJqpfAw8svv2w33HCDbb311u7nTp062bBhw9wAuPJCtm3b1hqC0aNHuxM37V6upamikzltDnbAAQfYhAkTbNttt03ZiJO+MLwTUgBAw0bbvhptOwDAT7SaYeLEiW6lQpMmTVzapdzcXOvTp4/7O+37arTvqFa41NJKllk4zMxuwKOgg1blae8hBR9qukoilpV7ftJQ65SWlubG/qP3o6rXwIOe8PPPP7edd945UjhF4N944w032H7TTTe5a29Tqnfeecct5/zggw/cEk/Nxnj66aftt99+s80228yuvfZad5+PPvrI7QiuWZcbbbSRW96pE6VtttnGHn74YTdQftFFF1lWVpbdfPPNlp+f75ah6nfeLMVbbrnFbYgl/fv3tyuuuMIFBZT7ctasWW5lgjcrRP/WbV5//XU78cQTXcqkF1980bp37+7ur2Wl+vtbb71l66yzzhrHQWXT7BMv6ODZZJNN7IknnrCuXbtGUjZoyayeRzk8t9pqK7cUtn379i5/po6JUlep7FrGqvqqfnpcpb7QSeR7773n6rflllu6n/V7rbbw0h7oBFPlEa22UDRKx1gzXnTslWJK/+7Zs6c73lqdoeWaegzNXKmuHKK8owo4TZ061R0PzYZRiimPjp9SP+lNq6XCABAYamcWLzZr0cJs+PBkl6ZexLNt79evn5tZWdO2XbdXO3nkkUdGNtSkbadtj9b/4RGW+5ym3rYJ7GcRAGri7LPPdqvg1Z9Vv1Nt90MPPWSNGzdOaN/91VdftWeffdZtlK2+Ke07fXcAwaDv87XXXtuNKWp2fKwTpTVmm5eXF6jVAQ21TpmZmbUOOkiNQzUarNbyTp28aABdJyfa02DDDTd0Szn1b53ceDRwr3yVXiXuuOMOu+CCC+ypp55yg+QKAmgA4oUXXrDs7GwbMWJE5L6avaFVBfqb8ldqZYVOZO6//34bMmSIO6nSY4juN3nyZBs1apS7jfJWnnPOOe5vGlDXSgRttqVNvESBCA1oaBBEAQQNlKguHv1bwYOKgg5Kr6TlqRrIr4hOyjTjRHSMFDjQIP4zzzzjPqw6gYvOkaZlriq/AhY//PCD/e9//3O/10C+UippcEbHYNmyZW7wX0EL1UmULkknj6ITvnPPPdcefPBB98Vw2mmnuRyf+r2eW18Sw6voqFdWDgUyBg0a5I6TAjunnHKKO/4KRohOMnXMVTblDVUAp7Zver9dTP9LgXI0pLJTbo55wt8rTz+tqXLuWt+jibiojUjUc+miAL3adg0YKKez2m61OZrhooEHte1K1eDdXqv99txzT1dOHSO17Wp/1I4oL7NW/inQrvZBQYXbbrstUi+17X/99Zf724ABA1zb/uijj7p27ZhjjnGzEmnbg9O2x7N93/ijtyzr8UcT+llMpc8p9eO1471Z8ecu2eemcTvHrcX3pvqc6meq/632Vf1GTTLz/l6+7/7222+7vqxus9tuu7n2/bPPPovc3uu7e2VQ+37++ee7fml0313pnNS+q33x7qsJbeq70743oL57wP5z9fL++zcFid8vQTxXoU7JOeYKXmsAOtaLAto1ub0fLg21TlLZe6NeVjwo36JSCilwoM2w1CjqhEcD+soBqUELndBst9127qTmww8/LJOHUg2gTlZEgxJqGDW7UbSRlQYfPPqy16qFnJwct7pBfzvrrLPcqgJd1NBOmzbNDYyowVWj6W2YrJn7WiGgEyD9TtEZRXF08agR9gILCmyo4dWJleikS7+ryNKlS9119GNVRDM3deKgYIjqKpoVog25NbNE5fZmqmhzatl3333diYNoJYJmq+gERCsPNLvkn3/+cXVp1qyZu010uiQFQnRSKcuXL7cjjjjCjjrqKHf8RCeKCtZUprJy6ERTr5kGhETHTANLej0UZNH74Pjjj3evvWima2XHrio6OVu6ZPWxBYBkyw3nunasuKjI1NxqtdkPkyZZECl9ok4clLJB3+nqlGoygAISarOUskHtvtp7zajUTEjlo540aZIL4quN8Noatblqq9RO63tdHWydF+i2CjjoxHWfffaxxYsXu3ZLnV8Ncuhx9Fxqy2nbg9O2R9r3pYVWV97AnD6T3wf0swig5tRpVnvN5pdrOuGEE1wqZAUKovvuWqG+//77uxX+Wv2gfRB1DMePH+/6rmpv9J2r9tpL26S2YcGCBa7PLmq7dW6g2+ocSbfXY9K+N4y+e0HBMktbHpy+e0bJMtPozrKCZRZOK7CMwkKbNu0nd34KAKi9GgceRCcbuuikQlF7Dfor8KDBBp2cKFigGYw6cdGJTo8ePSL3VdDCo1kSGlSP/lknLdGbbXkNr7dcVHmlom+vhkAzK3Q/NdbRdPL5xx9/RIIR5UU/lmZuaqMtNco6IVB6Im+GgTcrQbQy4t57740EFqqi51YZevfuHfmdTkIUcNBG1F7gIXpVhXJyesdAwRadCCqIs8UWW9iuu+66xuZi0aKPpY6bAjqvvPKKWwmiQRzNUmndunWl96+sHLqvBpmij4P+5pVfdVFAyqPVL97rVhM6CW4abmq+EV69gZtbmuy3lVZ+LTvl5pgn8L2i70ENvof+jfIr2u91vuuTOu4KcDdt2jShyzhVN6XRUydZbbs6rhp80IxIdYQ1U1LtuYITWkXotUdafquOrNo6lVsbUKrt947V9OnTXT30s/6tdsgLxnsd8O233946dOjgOs1q72nbg9O2R9r30tptRhbN+zyEEvRZTMXPaaIEuX5BrlvQ61dR3TRjXyvR1V6rb+h3mgRQl3QGFTnkkEPcJbrvrvRMGvhWoEATCZRCSemT1H6rTRcd4/XXXz/y3a/vcv3b+1mT8NRu6GedI6mfq+9mvQ6078Hvu+fmNrFQpo/67tUIl2RbUaNNrUl2G0trkmuWnW3duq1vfhbE9oA6+QOvU8N4nUpKSiJB77gFHn7++WfXGGqpnrRo0cJF15XrX2mWtMRTyzn15EoRpHRF3lJNT/kTqao2sfByTUar6GB4yzs046J8o6ngRWW8YIa0bNnSzfhUmXXCpQEUDayI6uzRiZTup1yWP/744xr1E6V00iwDNeIV8ZYqeSrbGVzPMW7cOBfA0UUrPLRXhAaDqquPZhfqBFOvkWZSKCCkkxAtv61MZeXQ4J1eZy3/rOz1Kb88uKLXrjp6bX3XIKb9+570WbF9XXbKzTFP0HvF+07y7q7reA8GVETfp2ob9VyJ+E4s37ar3dRAhNo3te3aG0ltuyYVKCiv9IFKkeQdC5XRy/uocutnr/zi/c77u9qH6L9J9O88tO3BaNvro31P1GcxlT6niRbk+gW5bkGvX0V18/6tv/m9vtHfufGoS/n2Xf1dTR7UhDu1796ef2pvlYZH/WC1795z61rf+9E/R3+fl//Ze2289l5o3wPed/ddR7IKGY3MstpaWkbm6nr9e+7qZ0FsD6iTP/A6+UM4Qd8RNWphdFKi3IE6YenWrVvk95rtqAF5nczo35odqYEJpROKjqbXF62i0IHSLE1vU2dtDq1VGNpEWjMAYqEGXvVTwCF6uWFF+zzoGCg108CBA110KPoETxtnKhijcqkRV3oJLWMVzTTRrBxvxkFVdKKo46kTQA0A6XG0CkJ1q+5NoYGi+fPnu7yO3omEZriUP8mIhcqqnKHRx0EnQZqRqhMaBUgU5VIecC9FlJeOCgCQ2mjb/0PbTtsOwF/UV1Knefbs2W6WvX726wCbl1M+XgMASp2kvq36pV4fOXrQWysWNBlOA91KM6y+olIRaxWJVx7NlPd+9iYEeD976ZX0PNqc0puIUB367mui754CSlZY+rI/zXLXHPsBACQo8NC9e3eXf1mbI2uDaC3fU55HDbRrEFozJ7wBfA1Ia6Bag9L1TYGFQw891KV30rJRzda88cYb3Qmol05JKyE0a0DBicpoOaRSSSgHtTZbqopmhygNkvJfa18ILUPVskht7qWTN6WN0MmXyqWlq7oot6P2eFBgY9ttt3WBgaroBE6bRmnmg+qhIILuq5+1nFj0nBUdYy11Va5IpcRQagxtGqbZFrEGYaIpxYb26bj99ttdrkkFGbT6wjtGyh959dVXuxNaBSmUsqqqlSwAgNRB2/4f2nbadgD+oj6H+h9z5sxxfT+/8zbwjAdNDFTaJKVRVJ9Vey+pL6w0PJphrz6kUiCqT6/+m/qZCnrod15gQfsxej+rbyrez/qbbqP0whoL8FY7VIe+O333lFSy0jKW/Wbh7NVZLwAA8VHjNXV33HGHGwy/55573MmdBvS1B4FyRXqD2trUWTkgNVM/UbSEVIP+2mRJJ0Cbb765jRw5MnLyo5yJGvTXiZFOvCqi8itgUFBQUGWKJu9EThs0ab8HDborANO+fXu3RFIzRbxZKpdcckmkXN4GnFopodk41Tn66KNt7ty5dtFFF7n9JBRAuP/++12dtG+Fghfa10JBgPJ0AqnVJiqbNgLV7a+88kq3CmTevHlWE8o/qddcx2/06NEuf7eOt7exmLeJmIIrmgGjVSBa+QEA8Afa9tVo22nbAfiP+lVrr722SzHjzcr3I60e0OC+ViLEa9WG+uzaoPjFF190/UpNXlN/VJPK1HcVHTudB6hvF70qX6sXtIrE+53KJd7P+ptuo5/VP6xJwIS+e1n03QEAQZUWrk3unWpo4F6D4tqPIHozaT/QQL5WKRx88MHJLkqDoQ6C0kiNnj3aZhTMMN8ImxUVF1lmKNN/+yT4teyUm2OewPdKu9x2NmyHYdax25Zms2YpCqtccvX+GqhZVrBZq+RSKV1EdW17XcvttQXamDLeOXVp25PDe00nzA3ZgvxVdX68iwbvY3kL5yfss+jHz2m8BLl+Qa5b0OsX5Lols3713XenfQ8W7/XsXTTaQit81HevRnjVEktb8LGFW/e3tKYbm/UaZpbz3wbgfhTE70zq5A+8Tv4QTlD/vXa7BFZRaG1K9e6777qovZ+CDtoYW5tm/v77727DLQAAQNsOAEAQ0XcHAAD1La6BB0VIhg8f7iIdSgnkJ6+++qqNHTvW7RGhNFEAADh77222aJFZy5YN8oDQtiNVTN+sv22cVWqN12qT7KIAgO/RvgNR0kNW2ngtS0uP6xAZADR4cf9W1eC9H2kzagAA1vDggw3+oNC2IxWMHXylddh+I2vcNDvZRQGAQKB9B/4VamIlzfpYSGlaAQBxE/sOUAAAAAAAAECQhEvNSlasvgYAxA2BBwAAAAAAADRMRfmWufBDdw0AiB8CDwAAAAAAAAAAIG4IPAAAUJXNNjPr1Gn1NYCkOeq8I61F1w35LAIAAACAD8R9c2kAAAJl7lyzWbOSXQqgwctZvMAyFs43S0tr8McCAAAAAFIdgQekjFbZrazIisw3wmbFxcUWCoXM/DYG4teyU26OeQLfK61zWifhgAPB0zS7kZWE697YpBNwAAAgNTRupY0RLDDSQv/VK4s+AADEC4EHpIxT+51qGRkZ5hdhC1tJSYkrc5qvRu/9W3bKzTFP9Hslt1FuEo46ECwDNu1s6XFo37Ma+eccAQCAQNvwVDMf9d2rFS6x4t43W0ZmlllahlmIPgAAxAOBB6SMDnkdVs9O9olwOGz5+fmWl5dnaT6bhenXslNujnnQ3ytAELXMy4pP+85nGQCA1JDdwcxHffdqhcO2XH2HnDzONwAgjthcGqiD0tJS3x4/v5adcnPMg/5eAQAAAJBAS3+1nE8HuGsAQPwQeAAAAAAAAEDDVFxgoUUT3DUAIH4IPAAAAAAAAAAAgLgh8AAAAAAAAAAAAOKGwAMAAAAAAAAAAIibUPweCmh40tP9G7vza9kpN8c84e+VW24xW77cLCcnYQffr+9zoF4l4bPYkD+nQa5fkOsW9PoFuW4NoX5AymqythX2usuymqxtQRLE7xTq5A+8TvAQeEDqKJxtlpFh/hG2nLQSs8KlZpZm/uLXslNujnkS3isH7PDfv5fPSsBL4MP3eSjXLLNpskuBFLUof4Wlx6N93+fA//69tNCSraQk3Vblr7CgCnL9gly3oNcvyHVLxfplNwpZk6zMZBcDqWi23/ru1QiHLTNvP7MFK83SEnG+nwDhsOWUlJgtXWqW5pM+RXWokz/wOqW+3FyzponpvxN4QOqYOsps5Vzzk3BJsVmGPz9Gfi075eaYB/294ruyZ7U26zKYwAMq9ebEGbZ4eVHgjlBxUZGFMoM7IBfk+gW5bkGvX5Drlmr1a5bTyPbbbB0CD6jYqFFmc/3Vd69S5gqzltPMFq1vVpRlQREuLjYL+aRPESPq5A+8TimsdWuzwYMJPKABWrnQbIXPTl6Ki8xCqdE5aDBlp9wc86C/V/xedqCcpYWrbHHBqsAdl6KiIsvMLLWgCnL9gly3oNcvyHVrCPVDgCxcGKzAQ4slFtruUwu/nWG2uJkFRlGRWYoEM+OGOvkDrxP+FazQJwAA8fZXgVlJ2CwjzWztXI4vkCStZv9p6SXFVpoRsoUd1uF1AAAAAIAURuABAICqXPC52YIVZq2zzJ7flWMFJMkJ159pzRbNtyUt29pt977O6wAAAAAAKSx4W9wDAAAAAAAAAICkIfAAAAAAAACAhqk4w0rntnDXAID4IdUSAAAAAAAAGqb8XCt5dwsLBW0jZgBIMlY8AAAAAAAAoIEKm6WXrr4GAMQNgQcAAAAAAAA0TC2WWuYx77lrAED8EHgAAAAAAAAAAACpEXjYeeedbeONN45cunfvbnvuuac98sgjMT+G7vfFF19YKlG9XnrppbiUf+XKlXbggQfa4sWLbebMmWWOV9euXW3LLbe0M844w/744w/zi3A4bCNHjnTHqW/fvnb88cfb1KlTI38/9thjy/wMAPCPnS+bZhsP+jVy6X76r7bnldPtkfcXx/wYtO207QCA1PLa7efas1cdE7k8d/Xx9ubdF9kvn70d82PQvtO+AwCQ0M2lL7vsMhswYID7d3FxsX3++ed2+eWXW/Pmze2AAw4wP3rhhRcsJycnLo+lAfqddtrJWrRoYcuWLXO/e/755619+/ZWUlJi8+bNs7vvvtuOOeYYF+xo27atpbpnnnnGHn74Ybvxxhtt3XXXtYceeshOPfVUe/PNNy07O9vOPPNMu/rqq+3xxx9PdlEBALVw2WFtbMBmee7fxSVh+/yX5Xb5Y/OseZMMO2Drpr48prTtVaNtB4Dg23TPY6xzj63cv8OlJTZv+o/21asPWaPsJrZen/7mR7TvVaN9BwD4OtVSXl6etWnTxl00mK7Z/VtvvbW9++675lctW7a0rKysOj+OAg2PPfaYHX744Ws8vo5Xu3btrHfv3nbvvfe6QMeDDz5ofvDyyy/bSSed5AIq6623ng0bNsz++ecf+/bbb93ft9pqK1uwYIF9/fXXyS4qAKAW8rLTrU2zkLu0b5lpB27dzLbeJMfenZjv2+NJ21412nYACL7MrBzLzmvuLjnNWtl6fba3tdbvbrOm+LffRvteNdp3AEDg9ngIhUKWmZnp/l1aWupmxO+yyy7Wq1cvl4bnl19+WeM+Y8aMcWmHtGrC884779iOO+7oUvsorc+TTz5phx12mPXs2dP2339/mzx5cuS2c+fOtXPOOce22GIL9zjXXXedrVq1yv1NKwn0vPfff79tvvnmtu2229orr7xib7/9ths832yzzWz48OEVploqKCiwSy+91AVTevTo4VJJvf/++zEdh9dee80NzK+11lpV3q5x48auPu+9917kd7/++qsrs47ZHnvs4epe/njtuuuuLnBxwQUX2Pnnn+9WTojud+2117pjruOnOsyZM8dOO+00d3vV75577nErLjwKEhx00EHu+fbdd1937Ctz8cUX23777Rf5OS0tzb1G+fn/DUjpOZ5++umYjhMApLQHtjN7bpfV1w1YKCPNMkNp7t+lpWF76J1Ftsvl063XKZ/YsaeeX+e2vU+fPq69/fHHHyO3pW2nbY/24HWP2K33vOauAQDxkZaeYekZGe7f4dJS+/mT1+31O86zUZccZYNPO4X2vRz67gG1JM+KXtjBXQMAUjTwUFRU5FY6TJgwwQ16i2bzKy2PUjIp2t6xY0c75ZRTbPny5WXuq9uvWLHCpWryvPXWW7bXXnu5gW3RwPrAgQPdQIZWWii4IAowaJ+BwsJCl97njjvusPHjx9stt9wSeayJEyfajBkz3FLMvffe283S12oEBSOGDBnigiM//fTTGnW6/vrrbfr06a4Or7/+ugtSKJWUF9Soyscff2zbbLNNTMduww03dGmXFCTQcVDqon79+rm6XnLJJXbfffe5YIkXJNDx1HFUgETpjZTmKJp+r2CKAgxNmjSxwYMHW6tWrdxroBRJCoo88MAD7rZ///23DRo0yAUe9Hs9ro5JZSsWdAy0WsOj1FEaVFJ5PQrufPLJJ25gKVa6ra/+U3nDPiy3n8tOuTnmyXivtGps4TZZq68bxPvc/r2s/m9VSam9822+Tfhpme3Su4n73T1vLLSH31tslx3W2l66ZlPr0L6ta7e00s8LamvigQIMatM+/fRT93td1F4piK+/q45q208++WR78cUXXXt2ww03uPvTtgejbY+073G45DdvZUtatnXX8XrMulziWbdUvAS5fkGuW9DrF+S61Xf91LhH/1xSXGQzfvzS5k39wTps3Nf9bvL4l+3nT9+0PnscYwefd7O1a9fetR+aYEb7/h/67gH8HJakWXh51urrZJclnpcgvlbUKfmvAa9TIC4lJSWuT+7102tzScgeD1dddZWbXS8aXFCKIgUBNCNeFXniiSfcbHwvEKHb7rbbbm5A/Ygjjog8jjrQWn2gVQjbbbedCyJ8+OGHZfYJUBonzfKXE0880a1w8Ab4NWj/3HPPWbNmzdzvrrzySjv99NPtvPPOi5zAXXHFFS6lkVIfPfroo3bWWWfZJpts4i4jRoywadOmWbdu3crUTysk9FxdunRxPyvFkDrjCxcudKmlqqJAhgZXYqFAimjQ5qOPPnIDCeeee677nfZRmDVrlguUaN8MrSTQvhre8VMQRQMB0TTYo42f5bPPPrPZs2e7cqenp9v666/vghmaWar9GDTbVAES7TMh66yzjk2ZMsUdIw1EVOW7776zm2++2Q0aKX2UZ4MNNnDpl1TuTp06xXQMCgqWWdrypTHdFgBQPzTbcdiT8+zap+e7n1cWhS0rM82O6J9j229i9s8/S+zxcYvtjD1zrd+6pZaeU2qXXniG7X3wKa498dr7qVOnWqNGjdxKhqeeesq18ytXrrQPPvjAhg4dapMmTXLBBbU/rVu3doMamhhw5513uvvTtgejbffObZYuLYz59gCA+CsNl9o3r//Pvn3zUfezAg8ZoUa2Tt+drcW6PW3JkiX22xfvWpft9rO8DhtaZpNsO/v8i+3Yww90k/Vo3/9D392sYNkyS1sanL57el6hZW37hxV8vq6V5mcnuzgAUG/Sc3Mto7DQpk2ZEtOk+rqqc+Dh7LPPtt133z2y7FAd1Ix/l2pqcF4dVKX38SgFk1IW/f7772s81j777OOCAxpI14oFbbSs23o0AO/Jzc11KyxEj6W/eUEHUcdcM/X++usv97MG8r0No1VOie40K2BS0QHXQL9SKymoocCElwIilsjOokWL3KbSsdBKB9HAjJ7n559/tk033TTydz2fd1yVziJ63wiltoo+TqKVJR4dH70O0bMWFdVSoGjx4sXu+TQQFP18OrZKE1UVrSLRDNftt98+EgTyePXWMYh1cCI3t4mFMv2zaakmDuk9puP/76Ic3/Br2Sk3xzzo75VUKHta+kI7e78Wttumue7nxplpbq+HjPTVhVmwtNiWLp9vW3VrYc2aNTbLylUP3AUYFDzw2nzNBtTvjjrqKDdJQe2U2lPNqtcsfFFgQgF+3U7tnAL2Xlom2vZgtO3euU3T0tUpOIPE+5wGVZDrF+S6Bb1+Qa5bfdcvPS3deux0sHXsurn7OSOUaVl5zV3wWlYULLGiFcus44bdrWnTppab29jymq5u39VP1rXQvtN3l9wmTSzU1D999+qEW4QtfYMFFvp1E0tLC0a9tDIg0qewYKBO/sDrlOJyc82ys63reuvZ0qVLXZvvZRqqCfXff/jhh2pvV+ezGg3oaxZdRbwB/ooKp85xeerk6m9fffWVywGtNEvRvH0jYnkeLzDgXVd0AhfLgdV+BuqEaw+GI4880gVWym8WXRk9fqxLTxRM6NChgwuoqHHQnhJatVERBSC0giNa+Z+jj4keTzMhla6potka+rv2ddAeENGqOun94osv3O2VduG2226LnLB6vNe3Jm9e3Vb/+UaayuyV22f8WnbKzTFPxnvltT/NCkvMsjPM9q24vQvS+1zP2SovZOu2rbgNz8pc/X2/+hs7LVJgL3WSFyRXu6B/azWjJhV8++23bi8jrdjzbqM6qr3yfo5G2x6Mtt27fW1OZsvrN/Zla7xiua3MyrFvdjnQUkE86pXKgly/INct6PULct3qtX5pmivQzJq2/i+tXrSMzEZeASLf2yoJ7fua6LvHr21PGf/WJWj1cmfqfuvzV4M6+QOvUwpLW91/Vx/c67PX5/devWwuHd3xVfoEpVOInm2nVQMVzbjTzEelYdLAhPaJUMqFWOix/vjjDzfzz6PnVOd67bXXrnX5tQpB+zrcfvvtbmWHyqYlqBUNBlQWlIkuU2U0g0Spp7y0TKqP9pXQbEIFdXRRfby0U5plEr35poIbSp9QGT2e0jG0bNky8ngzZ860u+66y7259Pc///wz8jddxo4d63JCV0QbXyuNVf/+/d1+GhUFhDTbUqJTNACALz32m9n9P62+huVlZ1jrphk2afp/qXOKiopdu1TRRATadtr2eNnxpdG25xN3umsAQHw1yspxgYmFM6ZGfldcTN+9PPruAACkSOBBTjjhBDfAPW7cOJcWQHmdleNZMx4ronRL2gBaqRg22mijmJ5DM/M6d+7sVido9oE2qNZeEnosLRmpLQ2WaKNLbZitgXrlm77mmmvc32LJg6X9IlSe8pSiQJs+al8KrabQ7ELtaaHUBqL9MZQqQSsedMy014U2uVYgQ5Sv+Y033nB5nZVKQRtxKt9yZREq7Zmh9AwXXXSRK482ltTroLopsqU0GJMnT3YBFgVwFHDQnhdagVERlUv7WyiPtAIMqosuKrNHz6Og01prrRXj0QYA+MUJu7awu8YstHHfFdjvs5fb0Gtvc227tw9TebTttO0AgNTXZeu9bPIHL9qsX761xfNm2k3XXUPfnb47AAC1Vu8JMrUZs1YOaKBb18o1rJn7mn1fkS233NLlAq4sMFERDZ4r1YCCDYcddpi7v9ILaFPrulDgYfjw4W6DRZVZKxA001+z/LXCQJssVkUrAl566aU1fn/ooYdGyq19LJRWSQEN75go3dKoUaNcQEF7TDRv3tyOPvpoGzRokPu7jqHyZd97771u4F8rJfS7ylJR6Xm0IZh3fLTXhe6jTShFQYkHHnjAbr31Vhs9erQLFgwZMsQFQMpTgEHBEm+Ty2g33nhjJG/3N9984wIeQVqmCABY7aTdWlhBYakNfWKeFayYa5v26WOPPfZYpfsa0bbTtgMAUt/G2wyw4pWF9vWY0fb5ykLr04e+O333BqKwsZV8u5GlF1acahQAUDtp4VhyBiWQghNawaAUR1rF4GeqiwbnX3311TIbQtbV999/74ITyu3sUVqqk08+OTLwn0x6S2nWqwI2m222WbW3V6oopZLqXTTaQitmmL82zCmyUCjTdzkT/Vp2ys0xT8p75dD3zRasMGudZfZ8xTP6G/T7PKudWa9hFs7u4NIRNmvWbI2gcyxtu9cWaPPKivZ8SBW07bG17dGv6YS5IVuQX/1K0epccOY+1mzRfFvSsq3ddu/rlmxKH1rZpI8gCHL9gly3oNcvyHVLtfq1yG1sx26/kbVuml3pbWjfG3DfffRoC83wT989pvPvoiILZfrk/DsG1MkfeJ38IVCvU7t2ZsOGWbhD5f33WMTaf6/3VEs1afDefvttl8ZHs/f9HnQQnWBopcJzzz0X18fVigOtftBGnTNmzHCrFebMmeNWWKQC7c+hlRyxDkwAAIKJtj12tO0AAL+gfY8d7btPZBZZWqf57hoA4KNUS7FSdEVpjby0QEGh/RsOP/xwt9dFZSkoakrBDO05cdZZZ1l+fr517drVpWZKlY2c9foNGzYs2cUAACQZbXvsaNsBAH5B+x472nefyF1uoZ0nWvjt/maLmyW7NAAQGCkTeJCxY8da0GgD5zFjxsT1MUOhkF1++eXukoqefPLJZBcBAJAiaNtjQ9sOAPAT2vfY0L4DABqylEm1BAAAAAAAAAAA/I/AAwAAAAAAAAAACGaqJQAAUk7nJmZNQmYtGye7JECDtrBdZ1uZ3cQKmrVMdlEAAECQlKRb+J8m7hoAED8EHgAAqMqIrTk+QAp4ZOj9yS4CAAAIoqV5VjxmOwtlZia7JAAQKIRzAQAAAAAAAABA3LDiAamjcSszKzJfKSk2y/Dpx8ivZafcHPOgv1f8Vvas1skuAVJc0+xGVhJOs6ApLkoP9MzIINcvyHULev2CXLdUq1+znEbJLgJSWatWZkU+67tXJXehhTZ9x2ziPmYFGpcIiOJis5BP+hSxok7+wOuUulontv8esG8g+NqGp5plZJh/hC2tpOTfMvttQMWvZafcHPOgv1d8WvZQbrJLgBQ2YNPOlu6r9j02JSUllhHAejWE+gW5bkGvX5Drlor1y27EcAEqcarf+u7VWPq9pU182cIDTzVr2ssCIRzVp0jzSZ+iOtTJH3idUl9u4vrvnEkgdWR38Fc0Phy25fn5lped57+G3K9lp9wc82S8V44+2mzBgtUzA558sv5fAx+/z4GKtMzLslA82vdEfxarEA6HLV+f07wmluanz2mMgly/INct6PULct0aQv0QMB181nevTtbc1ddt25q16miB4PUp8nzWp6gKdfIHXid/CCem/x6glgJIvNLSUt8edr+WnXJzzBP+XvnwQ7NZs8w6Jq4T4tf3OVCvkvBZbMif0yDXL8h1C3r9gly3hlA/AIkVxO8U6uQPvE7wsLk0AAAAAAAAAACIGwIPAAAAAAAAaJiabmL524531wCA+CHwAAAAAAAAgIYplGMlzXq7awBA/BB4AAAAAAAAQMO07C/LnnyhuwYAxA+BBwAAAAAAADRMKxdY479Gu2sAQPwQeADq8gFK9+9HyK9lp9wc86C/VwAAAAAAAPwulOwCAJ7Z+bMtIyPDNwckbGErKSmxpflLLc3SzE/8WnbKzTFPxnulfThMlB6og0X5Kyw9Du17yzAzZgAASAmFs8181Hev1sr5/10vnxX7/UK5Zo2a1VuxAMDvCDwgZYz6ZpTNLZxrvhE2Ky4utlAoZD4au/d32Sk3xzzB75XWOa3tOitNwoEHguPNiTNs8fKiOj1Gs5xGdrw+2AAAIPmmjjJb6aO+e3W8FEu/jTRr3Dq2+2S1NusymMADAFSBwANSxsLChTa3wEcnL2GzouIiywxl+mvw3s9lp9wc8yS8V5Ydf5Q1XRE2a8ZsJqA2lhaussUFq+p88FYcf6I1WbGczyIAAMm2cqHZCh/13atTUmgl2etYevDE++oAAQAASURBVHG+Wbg42aUBgMAg8AAAQBXyh5xvTZt25BgBSVY45HJr0jQ72cUAAABBk5FtpXmbWHpGZrJLAgCBws6bAAAAAAAAaJhKiy2t6B93DQCIHwIPAAAAAAAAaJiKl1lo8RfuGgAQPwQeAAAAAAAAAABA3BB4AACgCu26bmaWlmbWqRPHCUiiFl035LMIAAAAAD5B4AEAAAAAAAAAAMQNgQcAAAAAAAA0TGlpFk7LXL2yEgDgj8DDxhtvbF988YWlqpkzZ7oyRl+6d+9u2223nV177bW2atWqhJSjLsfp7rvvtmOPPbbOZSgoKLBXXnkl8vPOO+9sL730Up0fFwAQPLTv9X+caN8BAIlG+17/x4n2PUVlNrXiNju7awBA/ITi+Fi+9fzzz1v79u3dv1euXGlffvmlXXXVVdaiRQsbPHiwpbKTTjopLoGHRx55xJ08HXDAAe7nF154wXJycuJQQgAAkoP2nfYdABA8tO+07wAAfyDwYGYtW7a0Nm3aRA5Kp06d7Ntvv7X3338/5QMPTZo0icvjhMPhNY4JAAB+RvtO+w4ACB7ad9r3uCvKt9CiL81abmGWmRf/xweABippezxooPuBBx5wKX169Ojh0hvdc889kb///PPPdsQRR1jv3r2tf//+Zf722Wef2f777289e/a0XXbZxZ555pnI35YsWWJDhw61bbbZxvr162cXXXSR+11NNWrUyDIyMiI///rrr25lQa9evWyPPfawJ598ssztx4wZY7vuuqsr7wUXXGDnn3++W0Ypup/37+gUT7oub968eXb22Wfb5ptv7o7LgQceaN98802Z+917773u79dcc02ZpZq6Lp86SpdZs2ZVebyVUkn/1koP3b58qqXS0lJ76KGH3LFW/fU8v/zyS6TMus+rr75q++yzj3vso446ymbMmFHjYw4A8L+6tO8//vija/do32nfAQCphfad/nughUstraTQXQMAAhB40H4Cjz76qF1//fX29ttv25lnnukG0TXoIBdffLF17drVXn/9dXcbDXx/+OGHVlJSYueee67tueee9tZbb9k555xjV199tU2dOtXdTysUpkyZ4gY9/ve//9nvv/9uQ4YMqdEJlVIOvfbaay7AICtWrLBTTz3VBTIUYLjkkkvsvvvui+yJ8PXXX9tll11mp5xyihusz87OtjfffLNWx+XCCy90dVQwRY+/1lpr2bBhw8rcRqsxXnzxRTvuuOPK/F7H75NPPnGXjz76yA34qA4dO3as8ngPGDDApWzadNNN3X3LU6Dj4YcfdnV8+eWX3eOprsuXLy/z3Jdffrmr/+LFi+2OO+6oVf0BAP5Wl/b9zjvvdO0W7TvtOwAgtdC+V4z+OwAAKZhqSXsq3Hjjjbb11lu7n4888kg3wP3bb7+5DZ41S18z7DXI3blzZxdEUAqk/Px8++eff6x169buZ13atm3rUiVpFqVm7WugY7311nOPO3z4cDewPm3aNFt//fUrLItm6qelpbl/a0NpLd3UoP7JJ5/sfqcgRKtWrVzAQ9Zdd11Xvscee8ztifD000+759AMTlGgoKIB/FiCHlo1oUGXdu3aud8dffTRNnDgwDK3O/74423ttdde4/7NmzeP/PvWW291x+qGG26I6XhrP4fMzMwyKae8Mj3xxBNuBYdeD9HG27vttpsLwnh1PvHEE8s8dvkVIbHWv3zKp5SmoobXXObqC34tO+XmmCf4veK+l6IesrSkpN5fAz2nVpppIN5rm1KRV8by5VbAXAGFLbbYwv3+sMMOc6satHJwk002ce2nVkOonevQoYONHj3atfVanVhQUED7TvteoejPcqI+i0H4nNZWkOsX5LoFvX5Brlsq1a98++6hfV9TQ+6/rz5H9llfsgqqiz51q+sUa71cZyPp5ySp/p0ST9TJH3idGsbrVBLjd1/SAg9bbbWVfffdd3bbbbe5VQlapfD333+7SsugQYNsxIgR9uyzz9qOO+7oUit5jaoaxiuuuMKtOthpp53s4IMPtmbNmtmECROsadOmkaCDbLDBBu5vVQUeRo4c6U6kZs+e7dIXaWDktNNOi6Ra0n0V1NCKgOgD7P1daYcOP/zwyN9CoZBbbVBTeqFVN62W0KqG6dOn2+TJkyPHxKMBmqpob4rHH3/crZrIzc2N6XhXZuHChS7Qo5QYHp3gqH56HM8666wT+bees6ioqMb1X7ZsmS1dsrTG9wOA+pIbzo0MeOp77YdJkzjY/9JKQ6UlLC8rK8ulBtRqQwUZ/vzzT1uwYIFr0yZNmuSC/VqVqA5u3759XSomjzrvV155pfs77XvA2velhVYXmZbNZxEAkti+N27c2KXTpX3/T0PuvxcULLO05cHpu2eULDPt7LCsYJmVZMQ2AJdelGsZhYU2bdpPbgIrACCFAg/PP/+8i+Yfeuihtvvuu7v0RdGpgzRLYK+99nKN8Lhx49wsAUXqdXutKNBMAv1NFwUnFISo6ATJCxJUFYnRjEutnFDj++CDD7ogx8033+yCG1JcXOxmA2gwpCIKQJSfVVvVLNvKyqKTCKU8Wrp0qVtBoRmhOgEov8G1TvoqowEenQwq7ZFSWcR6vCtT2XOpDtEnPTqZicdG2U3DTc03wqvfGwo0uekRfuLXslNujnmC3yvqiP0z8m5rmd7EMho3tj59+tT7a6D2Q+2AAumpPDtpww03LHM8vHK/++67rg095JBD3H5L6vhqVp1m+un2uqitU/s9fvx4tzpCKRO1t4N+f9ZZZ9kHH3xA+x609r20bo+Tm9vYCkb9z/LSShL2WQzC57S2gly/INct6PULct1SqX7l23fPCy+8YDfddBPte5SG3H/PzW1ioUwf9d2rES7JtqLG/axJVitLy4jx2GTlmmVnW7duFU9wTbZU+U6JJ+rkD7xODeN1KikpsR9++CF1Aw9KT6S8z9orQFRZRedV8ZUrV7oUSdpXQYMVumjQ/5133nGrHxRkuPTSS+300093F6VEUnBCDbEeJ3p1g2ZsKHVD9CqIqmhgRIMet9xyi+27775uwET3HTt2rAtOeKsctJmyDrCCEzo583JXewdfMxK0ckIUENFsP09lGy+rrF999ZXbPFvpnsRb8hhLupDCwkJ3kqNZokptEevxlsreZHl5eS7thWapevXRyZTqu+2221o8qQy+axDT/j12Piu2r8tOuTnmCXyv6P6rtt/GMppWPVMtnvS9nJ6e7tqbVP5O9MpYvtzPPfdche2N6qJgkNe+q+3WRe37e++9ZzvssINLq6i/076XRfu++rNY3H97y2iabanAL5/T2gpy/YJct6DXL8h1S6X6lW/fPZrsR/teVkPuv7u+u+86klXIaGTWuLULOqTVrLNR4eclFaTKd0o8USd/4HXyh3CCviPqfXPp77//3m10HH1RA9uiRQvXQHvLEc877zzXIGqJmqL0WqqoFQ4KImiAXxs4d+vWzaVN0gCFov9//fWXa+iVBkl/U1ql7bff3s0G0PPqon9vvvnm1qVLl5jLrACGHktplzQrYL/99nMbTGtwRMsTtQmmZmhq3wc55phj7I033nCzElRelU3pJbwXTssatVGmV6a77rqrwudVlEkvuh5L99deFdqQU2JZuqfyKehxwQUXuLQWWoqpi8pe1fEWbYg9f/58lx6jvBNOOMGVWcEd1X/o0KEuOKRZHQCAhql8+/7xxx+79kb5imvbvqtN12xK2veyaN8BAMlq3+PRf6d9rxjtewopWWHpBVPdNQAgfup9xYM2SSpPaRguu+wyd1FaIw3gK62SBr+1UkBuv/12N/CvVA1KlbHnnnvaGWec4VYPaMWDBvcVENDyfd1GSxBF6R2uu+46N1iuqI02VNLqiJrQ82klgx7jxRdfdI89atQo95zaTFqDKkr1pH0oRHs/XHXVVW6zp8WLF7uy6nfe8kWt2NCmmgpQaC8JLaP07htNG1IpjZQeR/tbaKWFyqHgyU8//bTGxlHlabMo0azRaNqUqrrjrc2mlFNy7733dgGGaFo+qlUjCjjoWnVTDkpvVgcAoOGpqH1XGga1cbVp39VmKnCudpf2vSzadwBAosS7/077Xjna9xRSstIylv9u4ZwOZhlZyS4NAARGWjiWNYCodlaI8oBHb16tAXylkDjooIM4etXQKg0tBR09e7TNKKg4DVVKCpsVFRdZZijTf+mK/Fp2ys0xT/B7pV1uO7shfXdrE2qqpLlmO+5Y76+BmuUlS5a4GYJ+WhZd13J7bYHySqfKknXa97rxXtMJc0O2IL9umy62yG1sJ6XNsWaaMpOgz2IQP6exCnL9gly3oNcvyHULcv1o34PFez17F4220Aof9d2rEV61xNIWfGzh1v0trVGz2O6U1c6s1zCznMSlZG3o3ynUyR94nfwhnKD+e9L2eAiSiRMn2hNPPOFWW2hVglIlzZkzx/r375/sogEA6qjlwLPNZs8169jRrIJ0dAgu2vfUkjvwJLPZs/ksAgDqhPYdAIDEIPAQB0q7pL0RtCl1fn6+de3a1aVmqi41EgAASF207wAABA/tOwAAiUHgIR4HMRRyOa11AQAAwUD7DgBA8NC+Yw3pmVbauL2lpa/epxMAEB8EHgAAAAAAANAwhXKspFkvC2l/OABA3KTH76EAAAAAAAAAHwmXmBUvW30NAIgbAg8AAAAAAABomIoKLHPRJ+4aABA/BB4AAAAAAAAAAEDcEHgAAAAAAAAAAABxQ+ABAAAAAAAAAADETSh+DwXUTavsVlZkRf45jGGz4uJiC4VCZmnmL34tO+XmmCf4vdI6p3USDjoQLE2zG1lJuG6NTbOcRnErDwAAqKPGrbQxQnAOY1rov3o1jvH8P4t+AgBUh8ADUsap/U61jIwM84uwha2kpMSVOc1Xo/f+LTvl5pgn471S8PsQa5bVLAlHHwiGAZt2tvQ4tO8rfv/DmmRlxqVMAACgDjY81cxHfffqha247x3/jkfUoO8Qyq3PQgGA7xF4QMrokNdh9exknwiHw5afn295eXmWluafwXs/l51yc8yD/l4BgqhlXpav2ncAAFCN7A5mQWrbw2Fbrr5Ddp4ZfQcAiBv2eADqoLS01LfHz69lp9wc86C/VwAAAAAk0NJfLOeTXd01ACB+CDwAAAAAAACgYSpeZqF/vnLXAID4CdDaOAAA6sHVV5stWWLWrJnZVVdxiIFk4bMIAAAAAL5B4AEAgKqMGmU2a5ZZx44EHoBk4rMIAAAAAL5BqiUAAAAAAAAAABA3BB6AunyA0v37EfJr2Sk3xzzo7xUAAAAACdRkXSvsM9JdAwDih1RLSBmz82dbRkaG+UXYwlZSUmJL85damqWZn/i17JSbY56M90q7cIn555sJSD2L8ldYeg3b9+xGIWuSlVlvZQIAAHVQONvMR3336oUts/PuZqWFZstnxX63UK5Zo2b1WTAA8DUCD0gZo74ZZXML55pvhM2Ki4stFAqZj8bu/V12ys0xT8J75dZVy4zuBFB7b06cYYuXF8V8+2Y5jWy/zdYh8AAAQKqaOspspY/67tUpKbS0/KlmeRuaZWTHdp+s1mZdBhN4AIAqEHhAylhYuNDmFvjo5CVsVlRcZJmhTH8N3vu57JSbY56E90ppuCQJBx4IjqWFq2xxwapkFwMAAMTLyoVmK3zUd6/OqiWWsegLC6c3IpAAAHFEAmwAAAAAAAAAABA3BB4AAAAAAAAAAEDcEHgAAAAAAAAAAABxwx4PAABU4dce7a13RifLateR4wQk0w47mC1YYNa6Na8DAACIn/QMK23UytLSMziqABBHBB4AAKjCQxfsZMN2GGYdmxJ4AJLqySd5AQAAQPyFcq2k+WYWCmVydAEgjki1BAAAAAAAgIYpHDYrLV59DQCIGwIPAAAAAAAAaJiKllrmgrHuGgAQPwQeAAAAAAAAAABAw9zjYeedd7ZZs2ZFfk5LS7OmTZtav3797Morr7T27du73x977LH25ZdfrnH/tdZayz766CN76aWX7NJLL63wObbYYgt7/PHHKy3Ds88+a7Nnz7bzzjvPVq1aZbfffru98cYbVlhY6O47dOhQa9eunbvte++9Z4MHDy5z/z322MPuuuuuNR535cqV7jE/+eQT6927d5VliMWUKVNcmfr27WuJtHjxYjvppJPsmWeescaNGyf0uQGgPlxw+RvWtugjs/YdzcaN4yDXA9r32DXo9n3nnc3mzdMJHZ9FAEhxtO2xa9BtOwAg0HwVeJDLLrvMBgwY4P5dWlpqU6dOtauuusouueQSe+yxxyK3UwOqS7SMjIzIvxUceOGFF9Z4/MzMzCob5gcffNBeeeUV97MCCO+//77deuut1rJlSxs+fLgLNDz//PMuKKKy7bTTTnbttddGHqOyBv3jjz92l6efftratm1rdXXmmWe6siT65KVFixauziNHjrSzzjoroc8NAPVhrdlLLHPhHLP8ZRzgeqQJAZ07d7bu3btH2lDa9zU16Pb911/NNAFlyZLkPD8AoMZ9d028+/HHH61r1642ffp02vYKNOi2HQAQaL4LPOTl5VmbNm3KrGI4++yz7aKLLrL8/Hz3d8nJySlzu/IUhKjq7xV58sknbbvttnOrLOTll1+2yy+/3K10EAUY+vfvb3/++aetu+669vvvv1uXLl1ieh6VvXXr1tajRw/zuyOPPNIFh04++WT3OgAAUJ3c3Fxr3ry5azPVRtO+px7adwBAbfruat/Vrnfo0IG+e4qhbQcA1KdA7PHQqFEjd52eXn/V0eoKpVnaddddIz9rhcM222xTYRBBFHhQAKI6Sv00ZMgQl8Jp4403dj+Lljxqieqmm27q0kf98ssvkfvMmzfPnbRtvvnmLlhx4IEH2jfffOP+ptsqJZVmj+pxv/jiC/e40fR7XeTuu++2M844w44++mgXRFGaKqWRuu6662zLLbd0lwsvvND++eefyP21ukSzI3r27GkHHXSQff3115G/6eRS9X7ttddqfJwBAPDQvtO+AwCChbadtj0lZeZZUeud3DUAoAGveCjvr7/+cksDtdKgSZMm9fY8v/76qy1atMi22mqrSJCjfNBBg/FarqhB/nA47JaSas8GpWcqKSmxPffc0wULvJMtj1YHKFjx8MMPu/RPmhkybtw4u+eee9wqivXWW8+ldzruuOPs3XfftWbNmrlAgFZeKDih51K6p2HDhrnBfgUS9t9/f5dqSkGBn376qdr6jR071t2/T58+7vlGjBhhkydPtlGjRrn0UNrL4pxzzrFHH33UPd4tt9ziyrfhhhu6ep977rlu/wwv+KNjo9RRhx9+eMzHWPXQxTdU1PDqcvuOX8tOuTnmSXivhKOuS0tK6v01UJkV3Fa7oZRDflGXcnv3jUb73nDbd3d7M/deiqYSpCXwsxjEz2msgly/INct6PULct2CWL/o+nho2wPWtkfOkv0vbGkWTmvkrv87+6/+Xqb3eZLPSRrKd4pQJ3/gdWoYr1NJjN99vgs8KN+zt2dCcXGx25Nhl112cfkjo2mwXwP50TSov8EGG7h/a3WBVhKUd/XVV9t+++23xu+Vl7JTp05rBA082utBz6f76zZacaANovTvO+64w2bOnOlWEKxYscKuuOKKMvfNyspywYbo9E8PPfSQDRo0yK0qEO/kYMyYMXbMMce4lRfKl+ltZK3VCgMHDnT/1lJWPZYe00s9VR2ledIyS1G5n3jiCXvxxRcjKyV0sqKVD1p1obrpTamlsjomKpvKqTesd/Kik5qarnhYtmyZLV2ytEb3AYD6Fi5d3fkoLiqy7ydN4oDXA62yu+aaa1wbootOYmjfA9a+Ly2M+faZlm2Fywvtpz+nuveGp2dRkeksrKioyH7gswgAKU3f3xocV/vuDXDQtgenbS8oWGZpy4PTd08vLbTsVdOsoNH6VpqeHdt9inIto7DQpk37qcz5CgDAx4EHrRjYfffdXSdWswPUkF5wwQVupUG0I444wqUcita+ffvIv7WB8+OPP77G47dq1arC59Vqh/LPER10UAOugMChhx7qftexY0eX4kirE9TQazMtNe7ai0IpkKI3uq6I0jQplZNmL3hWrlxpf/zxh3s8nWi8+eab9u2337qVFZrhUH62aE2ovJ4ZM2a4Tr2OYTQ9vp5/++23d3tX7LvvvtatWzcX+FG9Q6H/3k46gVq4cGGNyqAVK03Dq/fP8IXw6uCXq7ffJhD4teyUm2OehPdKWvrqBwhlZrqZZfVNHfOlS5e6VW1+mp1Ul3IrSK9NFbW59Nprr2333Xcf7XvQ2vfSzJhvn5vb2LJzsq1jt25lfp+eufoxMhP0WQzi5zRWQa5fkOsW9PoFuW5BrJ/advXdlTr4u+++s/fee89N/qPvHoy2PTe3iYUyfdR3r0Z4VdjSCxdZRpNultYoxnpl5ZplZ1u3butbKgrad4pQJ3/gdWoYr1NJSYn98MMPwQs8KDCwzjrruH/feeeddsghh7j9CbT/gjqiHg34e7eriBraqv5enl6EipaRvPHGG3bxxRe7hr78qgs14NG02kLBgyVLlljLli2rfD49lx5v6623XmPzTZ1EaCmm3iBK06STOZ1saNCmsrKXFxmQ+5eWZEY/tzz11FNrbA6t45+dnW3PP/+82wvigw8+cHtSPP300+5am4ZJ9AyKWKmcvmsQ0/49vj4rtq/LTrk55gl+r6RFXVcXNI7XCYC+P/VcfvpOrEu5dXvN3tMqPnWKad8bdvvubl/F5y1Rn8Ugfk5jFeT6BbluQa9fkOsWxPp5bbtSAan/q/Q/SuVD3z1AbbvvOpJVWV2X1bVKq0lnI+nnJA3lO0Wokz/wOvlDOEHfEel+n0Wh9EVTpkyxRx55pF6fSydN0Zsry2effeaCDloqOXTo0DJ/U45ELW/U0kePyqlgRHVBB9EJ2ty5c11wxLs88MADNmnSJJs6dap99dVXrs6nnXaa7bjjjjZ//nx3v4pyKHsBmYKCgsjvlPqpMppxqjee6us9twIeN954o5sJMXHiRJfKSvtdaPXG22+/7QIq3ubWsnjxYnfMAACoKdp32ncAQLDQttO2AwAaHl8HHqRXr15u1YPSMsybNy/m+2lmwN9//73GZcGCBRXeXqmSNFivFE/erAOtSNh8883t1FNPLfMYyu+n/SM0E0H7OUybNs0+/PBDl2vxlFNOial8J554otsMSptKaxMupV1666233KoJLYNRVEqrLZRqSgP/SjslXm5BzXbQ8yp4sNFGG7l9JBS40FJM7R9R1aZVCjJo+aVycipdlAIdCrD8+eefLi+kHuvee+91Myd0TFSO5cuXR3JKivJJatYqAAC1QftO+w4ACBbadtp2AEDD4rtUSxU577zz7J133nGD87feemtM99Fqgu22226N32umf0WD8hpU18bPmu2v+ykvo3JU6lL+cR577DG32mH06NF2ww032MEHH+zyGysdU6yBB6VYUBDkrrvuctfa8On++++3dddd1/1dQQEN/msPCK2OUIDjkksucWVX0EN7QOhYKK/jPffc4zbk1vJW7Wux2267uVUaWpVQmSFDhtjNN9/s8nJqKagCLCNHjnTHR0GY66+/3gV7tFmYNqrSsfc27hblpj7ssMNiqisApLLXDu9r+3fc2Zq1/i+fLhKD9p32vYwrr9TyTc2Q4CMIAD5F207bnpIysqwkd2NLz8hKdkkAIFDSwhXl5kGFtKpAgQalHELltArioIMOcjkkFXCJZfWJUkiNnj3aZhTM8M+hDZsVFRdZZijTf/sk+LXslJtjnoT3SrvcdjZsh2HWsWliAg9qlpULWXsV+Skfa13L7bUF2jQ40blyad/rt32fMDdkC/JXr8iMRYvcxnbs9htZ66bZlqr8+jmNVZDrF+S6Bb1+Qa5bkOuXrPadtr1+2/beRaMttMJHffdqaFCsuLjIQqHM2LsOWe3Meg0zy0nNyUlB/E6hTv7A6+QP4QT1332faimRtEpgwoQJa+z1gLKee+45t+IilhMXAACSjfY9NrTvAAC/oG2PDW37v0pXWdqKue4aABA/BB5qQJtCazPnhx9+OI4vQbAofdP48ePdcQIAwA9o36tH+w4A8BPa9urRtkcpLrTQ0u/cNQAgfgKxx0MiHXXUUckuQkpr0aKFjRkzJtnFAIC4abZouaXPmm22LN2sfXuObEDRvvugfZ8zR2t6tSEXn0UAQLVo233QtgMAAo0VDwAAVOHyC16x9t22MNt8c44TkEz6DHbuzGcRAAAAAHyAwAMAAAAAAAAAAIgbAg8AAAAAAABomNLSLRzKc9cAgPhhjwcAAAAAAAA0TJl5VtxyGwuFMpNdEgAIFMK5AAAAAAAAAAAgbljxgJTRKruVFVmR+UbYrLi42EKhkFma+Ytfy065OeZJeK+kp2Uk4cADwdE0u5GVhGP/IDbLaVSv5QEAAHXUuJWZn/ru1Vm5wELz3zTruJ9Z49ax3ScrxtsBQANG4AEp49R+p1pGhn8G+MIWtpKSElfmNF+N3vu37JSbY56M90puo9fNLD8JRx8IhgGbdrb0Grbv2Y04RQUAIGVteKqZj/ru1frne0ub9YqFNxpo1rxX7PcL5dZnqQDA9+jVIWV0yOuwenayT4TDYcvPz7e8vDxLS/PP4L2fy065OeZJea+w4gGok5Z5Wb5q3wEAQDWyO5gFqW0vnLv6unFbs5yOyS4NAAQGezwAdVBaWurb4+fXslNujnnQ3ysAAAAAAAB+R+ABAAAAAAAAAADETYDWxgEAUA/GjtVO1cFaTg74EZ9FAABQH5p2taX9P7W8pl05vgAQR4yiAABQlY035vgAqYDPIgAAqA+hbCvN6+quAQDxQ6olAAAAAAAANEzL/rTs78921wCA+CHwANTlA5Tu34+QX8tOuTnmQX+vAAAAAEiglQut8czH3TUAIH5ItYTUUTjbLCPD/CNsOWklZoVLzSzN/MWvZafcHPMkvFeefdmssNAst4XZcack4TUA/G1R/gpLj0P7nvvS85ZVvMosJ8fsqKPiUjYAANAQ+u7VWDn/v+vls2p+/1CuWaNmcS8WAPgdgQekjqmjzFbONT8JlxSbZfjzY+TXslNujnnC3yuXPGX293KzDu0IPAC18ObEGbZ4eVGdjl2znEZ2/OWXms2ebdaxI4EHAACSyYd99yqtXLD6+reRZo1b1+y+Wa3Nugwm8AAAFfDfqCOCS8saV/js5KW4yCyUab7k17JTbo55ot8r4dIkHHQgOJYWrrLFBauSXQwAANCQ++5VWbXkv3qFi5NdGgAIDBJgAwAAAAAAoGHKaGQlOeu5awBA/LDiAQAAAAAAAA1TRraV5nax9AwfZgQAgBTGigcAAAAAAAA0TKXFlrZqkbsGAMQPgQcAAAAAAAA0TMXLLPTPV+4aABA/BB4AAAAAAAAAAEDcEHgAAAAAAAAAAABxQ+ABAAAAAAAAAADETSh+DwUAQAC1bGyWlm62VttklwRo0ErbrmUZaWlm7doluygAACBI0tIsnK5z/rRklwQAAsVXKx6WLFliN910k+28887Wu3dv22uvveyRRx6x0tLShDz/F198YRtvvHHMt3/rrbds4cKF7t933323HXvssfVSrpkzZ7pyeZeuXbvadtttZ8OHD7fi4mJLBpVDxwsAfO/B/mZjjjL75M1klySQvLZ9t912sxNOOMH22Wcf2nba9orfKx9O0EmP2ddfJ/hdCgCoKdr3itF3T1GZTa249Y7uGgDQAFc8LF682A4//HBr27atXX/99dapUyf74Ycf7Nprr7UZM2bY0KFDLZXMmjXLzj33XBs7dqz7+aSTTqq3wIPn+eeft/bt21tJSYlNnz7dhgwZYs2aNbOBAwfW6/MCAFDXtl3t+dKlS10bpnaetn012nYAgN/QvleP9h0A0BD4JvBw2223WaNGjWz06NHWuHFj97vOnTtbVlaWnXHGGXbMMcfYeuutZ6kiHA6X+blJkyb1/pwtW7a0Nm3auH+3a9fOjj76aLfqgsADACDV2/ZQKGSTJk2yPn36WE5ODm37v2jbAQB+Q/tePdr3FFO01EILvzBrtSWrHgCgoaVaWrVqlb3xxhtuIN0LOnh22mknl5KhY8eObjmnVj5ss8021q9fP7vooovc70Rpf5Si6aqrrnJ/GzlypFsRoMt+++1nW2+9tf3xxx9utqXu17dvX5euSDMwV6xYUWG5vvnmGzvyyCNd2icNlJx66qk2f/5897dddtklcv3SSy+tkWpp4sSJ7r66n8r19NNPR/6mMt14441uxYQee4cddrBXXnmlxsctOzu7zM9Tp061k08+2TbddFPr2bOnHXXUUfb7779H/j5ixAhX5169ermy/vbbb5G/ff3113bQQQe5v+277772zjvvlHnse+65xx3DLbfc0s3eAACgKrTttO0AgOChfad996Vw2NJKV7prAEADCzz89ddftnz5cjdYXl5aWppttdVWbsbk4MGDbcqUKfbAAw/Y//73PzeorkH86PRHOhFSIEA5pOXVV191A/wPPvigrbvuunb55Zdbfn6+CwTcd999Lp3TNddcs8bz6jaDBg2ybbfd1l5//XU3W1PlVEBDvMF3XQ8YMKDMfVWu448/3jbffHNXlrPOOstuvvlme++99yK3efLJJ6179+7usXfffXcXMNFzxmrOnDnuuRVUEe2Dcdppp7kAjer8zDPPuHQW2gdC9NzPPvus3XHHHe45W7dubZdeeqn7299//+3qqsDDa6+9Zqeccoo7rgpGiO732GOP2Q033OCCQC+++KLVdpWIr/5TecM+LLefy065OebJeK/c9r2FL3vfwoMvcd+bibjoOztRz5WscisloNp2tXXe7zy07cFp2yPtexwuTc4ZbOFDDrHSgQOT/l738+eU+vHaJfu9xfsy2N8rtO/03f36nztnqe1/4XDSP3tB/U6hTsk/5rxOfJ5KKnkfBCbVklYhSF5eXqW3+fnnn+3LL7+0t99+O5JySR1vDfpPmzYtcjt1rNdZZ53IzwpmaMWBKHDw/vvvu8fxnksrHg444IBIR92jVRBK8XTiiSe6ARKlfVKA4Pvvv48snfSulQ4q2nPPPWfdunWz888/3/28/vrru2DEQw895DbX9DZn1goKOeecc1znXysQtBKjMgqmqCxqXFQ+1XP//fePlPeII45wqxyUwkIOPPBA95xeUCYzM9M6dOjgLlo54h03BUG0ikTprESPqwDPo48+aptttpmrjwIpWn0i1113ne29995WUwUFyyxt+erXGgBSRdPP5lr6wlVW2r7QfvrpJxfARt39+uuv7lp7ORQVFVV4G9p2/7ftsmzZMlu6tNDqItOyLfOdtyxtzhwratvWfhg0qE6PBwCoH7Tv9N39KKNkmWkEaFnBMivJSKvRfdOLci2jsNCmTaOfAAC+DDw0b97cXXtpkyqijnTTpk3L7POwwQYbuM2V9TcvkKBNqaNplqBHg//q2G+//fZlbqPf/fnnn2V+p70UFJDQLEB11JXG6JdffqkyMBD9PEpZFE3pjzRT0aPVF57c3Fx3XVxc7GYiegEJ0WxFb/WGVlustdZarrwLFiyw+++/3w1GjBkzxg1IKLWTUjZNnjzZHRMNoGn2o2gw4YknnnCpoZT+adddd7VDDjkkcmw/+OADV0aPBom8Y636nHnmmZG/bbjhhpEBkJrIzW1iocym5heaTa3XRHnJ02p2bpJ0fi075eaYJ+W9krZ6caAGfxU0rm+aMaWAu9o0Padf1LTcap+9dliTADRjQqsMo9G2+79t9/a5alqaaXWRm9s48r5SMEX1SSa/fk5jFeT6BbluQa9fkOsWpPrRvtN396PwqrDZCrMmuU0srVENxySycpXn2rp1W99SSVC+U6JRJ3/gdWoYr1NJBf133wYe1l57bRc4+PHHH9cYsJfTTz/dDj744ArvW375R/k9IqJ/1u30PBWlE1Cn/7vvvov8PG/ePPecShGhGYOHHXaYjR8/vsxtKlO+DOItgfOoU13Rm6JHjx5l9nvQiV1BQYH7t2YzeoEVDRxo9mL//v1twoQJtsUWW7jBhhYtWrgVHgpWaNDh4YcfjgRStBG1bquBCKWO0mxHPZcG77Svg9I5RNOAXnTZKvtbrPRG13++kaYye+X2Gb+WnXJzzJP4XtHjZGRk1PtroO/T9PR091x+6iTUtNwKsKvNVfC+okFk2vZgtO3iPod1fC9H3z9Rn8Ugfk5jFeT6BbluQa9fkOsWpPrRvq9G391nQrlW3Hxzywjl1mJMYnXHI9nnJkH9TolGnfyB18kfwgn6jvDFHg/q6CplktIClE9xMW7cOHfRCY4iNdFplbQKQYPy0asgqqLbaR8FHXB17HVRGoNbbrlljedV3mQN+mtvCKUiUFoCpYvwOulVvWh6nvIBCm02HUs5lbbJK5su3mqQinhlUUBD6aO08bVSNindlIIls2fPjtxGQRPljd5xxx3t6quvdrmitdm2lsqqXFrxEf28Y8eOdTmhZaONNioT5Zo5c2YkPRYAABWhbadtBwAED+37f+i7+0h6yMKNWrprAEADCzyINmBWEOHkk092g+jaj0ED5doI8bjjjnMpAJQi6ZJLLnH7LOiif2sD5y5dusT0HErNpFmEF154obu/VlhobwdtfqmlJ9E04K+B+88++8wFHJQK4d13340EKLKzsyP5qZXbOJpSJGiG54gRI9zmWy+//LI99dRTdvTRR9fpGC1atMhtFqmL9oPQptiaBanNt1Ve1UN7WCgwoGMXHcjRigsFWBRQ0d+16bXqoICOyqsUDrfffrsLRijgoLJrFqYoP7QCGu+8844LVGiDbkXNAACItW3/6quv3GpCrTqkbadtBwD4F+179ei7p5iSQksv+NVdAwDixzfhXKULePrpp+3uu+92gYF//vnHpWA6++yzXX5jufnmm93mhyeccIJbKqKcxuU3ha6OBt+9x9BsDQUirrjiijVut9dee7lBEj2/VjcoP7UCHSqfBvO1qfR+++1n5557ritvNA3Ya6WEnkvpEPSzBlkqSxcVq0MPPbTMvhD9+vVzj69/K4ezcjVrNcPKlSvd5tVXXnmlCxJooEcpGlSXG2+80QUutOH1fffd51Z16PLAAw/Yrbfe6tI0KO2Uyqv6iTa5XLx4sduIWytEBg4c6AIuAADE2rZffPHFrhOuVXW07bTtAAD/on2vHn33FFOyyjKWT7dwTiezjNWTSAEAdZcWLp/AF0gwpYKaNGmS9S4abaEVM3xz/PXBKS4uslAo01/7JPi47JSbY56U98qh75stWGHWoZ3ZrDn1/iKoWV6yZIkL+vopH2tdy+21BdrvIdVy5KJ2vNd0wtyQLcgvm7KyplrkNrazB+1lGbNna0dy5XVM6svi189prIJcvyDXLej1C3Ldglw/2vdg8WvfvTrhVUssbcHHFm7d39IaNavZnbPamfUaZpbT0VJJEL9TqJM/8Dr5QzhB/Xfy4QAAAAAAAAAAgLgh8AAAAAAAAAAAABreHg8AACTFLh3MlofM1t+JFwBIopUHH2Y5y/PNWrTgdQAAAPGTnmmlWR0tLT2TowoAcUTgAQCAqpzW7d/crUM5TkASLb/uBstpyoaPAAAgzkI5VtK0h9sfDgAQP6RaAgAAAAAAQMMULjErLlh9DQCIGwIPAAAAAAAAaJiKCixz0QR3DQCIHwIPAAAAAAAAAAAgbtjjAQCAqhz3gdnCVWadPjD7ZSrHCkiS5pv1MZs7x6xDB7Off+Z1AAAAAIAURuABqaNxK61xNF8pKTbL8OnHyK9lp9wc80S/V1aEzZYXmRUsS8LBB/yvaXYjKwmn1ekxmuU0srRlBWb5+WYFpEEAACCp/Nh3r0pa6L96NW5ds/tm1fD2ANCA+HDUEYG14almGRnmH2FLKyn5t8x1G1BJPL+WnXJzzJPwXsl83cyWm6WRnRCojQGbdrb0OLTvab5qrwAACDDf9d2r8c8PFp7zptlGg8ya96z5/UO59VEqAPA9Ag9IHdkdzEI+ekuGw7Y8P9/ysvPM0nw2GOLXslNujnky3itpXqfKR58VIIW0zMuyUDzadz6CAACkBr/13auT3cHyB/xteXk+6x8DQIpj+iZQB6Wlpb49fn4tO+XmmAf9vQIAAAAgseg7AED8EXgAAAAAAABAw7RkiuV+soO7BgDED4EHAAAAAAAANEwlhRZa+r27BgDED4EHAAAAAAAAAAAQNwQeAAAAAAAAAABA3BB4AOryAUr370fIr2Wn3BzzoL9XAAAAAAAA/C6U7AIAEbNnm2Vk+OeAhMOWU1JitnSpWVqa+Ypfy065OebJeK9cf/3q61atkvACAP63KH+Fpcehfc8ccac1LlplWc3y4lIuAABQS4U+67tXJ6OxlfS719IzGpstn1Xz+4dyzRo1q4+SAYCvEXhA6hg1ymzuXPOTcHGxWcifHyO/lp1yc8wT/l5p3dps8GCzjh2TcPQB/3tz4gxbvLyozo/TrHV322+zdSyraXZcygUAAGpp6iizlf7qu1entKTY0hdPrPkds1qbdRlM4AEAKuC/UUcE18KFvgs8WFGRWWam+ZJfy065OeZBf68AAbO0cJUtLliV7GIAAIB4WbnQbIXP+u5VKVlp6cv+Mmuytlv9AACIDxJgAwAAAAAAoGEqWWEZBb+4awBA/LDiAQCAqixYYPbNN6tXZPXrx7ECkqTt1J8slLXIrEUen0UAAAAASHEEHgAAqMq775q98srqPR5mzuRYAUmy33XnWN7C+XwWAQAAAMAHSLUEAAAAAAAAAADihsADAAAAAAAAGqb0kJU2auOuAQDxw7cqAAAAAAAAGqZQEytp3tdCocxklwQAAoUVDwAAAAAAAGiYwqVmpatWXwMA4obAAwAAAAAAABqmonzLXPCBuwYAJDnwsPHGG5e5bLXVVnbFFVfYsmXLrL7dfffdduyxx7p/v/TSS7bzzjvX23OFw2H3XL///vsaZVC9P/vsszXuo99/8cUX7t8qm8pYkSFDhqxxHL1LcXFxncs+Y8YM+/DDDy3RVq1aZQceeKAtXLgw4c8NAKi9ZLftxx9/vPv3yy+/TNteCdp2AEBN0b7Td68MfXcAQMqueNAgwSeffGIfffSRPfDAA/b999/bLbfcYok0YMAAe+GFF+rt8TX40aFDB9tggw3K/P7111+3tdde21555ZU6Pf5ee+3ljmH5SyhU9603LrvsMveaJFqjRo3smGOOseHDhyf8uQEAdZMKbbvaRtr2itG2AwBqg/advntF6LsDAFI28NCsWTNr06aNrbXWWtanTx8bNGiQvfXWW5ZIWVlZ1rJly3pb7XD//ffbkUceWeb3P/74o/311192+umn27vvvlunmaAqv45h+Yvf7bvvvjZu3DibNWtWsosCAKgB2nba9srQtgOAf9G+075XhvYdAOCLPR6ys7PL/Dxv3jw7++yzbfPNN7cePXq49DvffPNN5O+PPfaY7bTTTtazZ0876KCD7Ouvv4787ddff3Upjnr16mV77LGHPfnkkxU+Z3SqJaU30r+feuop69+/vwuGXHTRRW75oOe9995zqyR69+5thxxyiH355ZeV1kczPgsLC91ty6922GSTTVy5ioqKXPChvlRV3oKCArv00ktt6623dsd3zz33tPfffz+Sxkm3veeee9xxnDlzpltiq+vKUlYdccQRduaZZ1q/fv1szJgxLvBy77332nbbbWebbbaZnXbaaTZ79uzI/d988013DPT6qYzec3szJ7bZZht79tln6+3YAADqX03bdn3vqy2uS9senWqJtp22HQAQf8nou9O+03cHADQ8dc/pY2aLFi2yxx9/3Pbbb7/I7y688EJr2rSpPfPMM24Q+9Zbb7Vhw4bZa6+9Zj/99JNL3aCB8Q033NCdyJx77rkutYMCBaeeeqo72bn22mtt2rRpNnToUGvSpIkdcMABVZZj/vz59s4779hDDz3k/j148GB38nTYYYfZzz//bJdccoldffXV7qRI+x/oeTTIvs4666zxWB9//LEb1E9LS4v8TvXQqg6dbKk8+rtOoFTWeKuuvNdff71Nnz7dHn74YXfiqDpffvnltv3227vrP/74wzbddFO3EkVBiupMnDjRBRfOP/98a9GihT3xxBPutbrtttusdevW7nlOOukk97ulS5faxRdfbNdcc41tueWW9vbbb7v76fVr3ry5e7xtt93WBYH0+1jp+OriF2Hv4qMy+73slJtjnpT3ysEHm116qZW2b29WUlLvL4LKXFpaaiUlJWXaoETwnlcWL17s2ud99tkn8ju17Xl5ee77Xbe9/fbbXduu1INq2xXUvvPOO22jjTZy5wXnnHOOjR8/PtK2qx3X7dV+XXnllZaTk+POHfRYlb1WtO3+btvj2b4/cu/LduS2G1iL3MYJ+Sym6uc0EYJcvyDXLej1C3Ld6rt+dW3f1Xe/6667XN+d9n1NDbbv7s62gyEcyrOiVrtYKNT4315Eje6tA2KlST43aQjfmdTJH3idGsbrVBLjd16tAw9qSDMyMlxBtTJAjZZOTkS/23XXXd2Mh3bt2rnfHX300TZw4ED3b6XgUaW0f0KnTp1c0EEzKFRhNY6tWrVyv5N1113X3V4nR9UFHrQCQRthasBDM/y18uGHH35wgYfRo0e7ay0llOOOO86++uore/rpp90KgfJ0gqXZ/tE062POnDmubrL77ru7oIjK17FjxxofQ9VVgZJoGrDRCUh15VVA5cQTT7QuXbq4v+vE4vnnn3ebOrdv394yMzPdgI5el1hOXvR6KH2U0j+JToauuuoqd3IiOlHR8VBARq+pjrWuVW89t45348ZqpFfTvhg6AdMbUe+TWBQsW2ZpS5fW4AgCQP1Lz821jFDIps2YUWYVXRCpbU9PX70YcuXKlZabm2uHHnqoTZo0ybXt+q7fYostXCdW9G8NRujvaqMkPz/f/v77b9txxx1dG6/OsTq3al/Uvv3zzz+uk6wBD+0joT2T5s6dW2nqQtp2f7ftotd26dJCq6vMptm2PJRpcxrAZxEAUq19199o3+m7ewoKllna8gD23VfU/PwivSjXMgoLbdq0nzg/AYB4BR6uu+46lwJIJyqaNaEou/ZD8AIH+rfS8Xz77bcuuj958mQXWBB1cjVgrkH1bt262S677OJOfLSpslY4qFOriL+nJh3c6NULOqEqLi52//7999/daoXo9D/qYJcPLkSv4tDASLQ33njDdcZVZlG5NWPz1VdftTPOOMNqSqkkNLskWtu2bWMqr4IwSm/03HPPuWOmvSdqEnEqT6+ZNzChAQINAp133nmRE1RZsWKFm42hIJEGlBT4WG+99SKvX/SSXQ2K6PXWAJMeOxa5TZpYqGlT8wvNg9D7S+9bv80f8GvZKTfHPCnvldxc5SSwbuuvn5AXQO2qOvdaNZjo2Ulq2zVTT2XQ97fSJWiWnmY86ru8e/furm3SQLXadrU9uq3SG6pd1yw6zfjr2rWra+PUNqhdGzt2rM2YMcNOPvnkyHOpjVDbrvsqvaH2T6oMbbt/23bRKtGmpZlWV7m5jS07J9s6/nselkzJ/JwmQpDrF+S6Bb1+Qa5bfdevLu27ghJKAUz7Tt89Wm5uEwtl+qfvXp1w0TKzf34wa97T0jKb1OzOWf/2Fbolpq/QkL8zqZM/8Do1jNeppKTETfavt8CDNpX2BgK0KkEnK5pBpxOWo446ys2UUwWU/1+DDxo0V+ojUSdWs/O1D8EHH3zg9hjQTH5da6BIKYw0oF8b2l8gmre0XwfES/MQzeuQl6eDHj2Ir39rQEVBFi/wIOqA1zbwoI54RWmeYimvlktqFun+++/vgjzalPrwww+vtC7leQEZT/SMRq/eWn2hwYfyG5Pp8R588EH7/vvv3WCSTkS1NFMXDTZFH/eavHl1W781iGleuc1//Fp2ys0xT/h7Rd9LaWk1muFdF/r+1MCwni/R34maVb9+VIBFuZzVtms/I7Xtape8tl0D017brrIq2K+l/b/88otLr6TBDAXP1barraysbdd9Vd+q6krb7t+23bt9PN7L3uc5UZ/FVP2cJkKQ6xfkugW9fkGuW33Xr67te3TfnfZ9TQ227+67nmQVwiWWVrTQwrqucb0S21doyN+Z1MkfeJ38IZyg74i47PEgKqwKrYZv6tSpbknmZ599Zi1btnR/9zaZ0m20ZPPzzz93y/+32moru+CCC9xmxEplpMZSDaLSM3hf3BrYVxRFaZRqS4+rzZWjB/q1fFS/14y+8jTzQ7NBPKqLVkEof7UCLZ4JEybYTTfd5FZ29O3bt9blq0l599prL7fJtVY7aOaKKI+kVJRDWakZJDqNRfRG0+Up2qX6e0tpRSkNlPNRs1X19xdeeMHNetHzKy3W3nvv7WbIeCcvCtBopnH5VSMA4DuK4t92m1mnTmY1zG3vdzVp29WhVlukNkFBBtr2NdG2103fVx6znAmNzdq0anCfRQCIJ/ru9N3puwMAEuG/tfY1tGTJEjcwrYuW6CtPsAYmtLpBA9M6mVFqIu1/oJUCGrD3BrAV+b/33nvdzAkNgOt2y5cvd8s4tcmklv1rVqTSDWkQQ8tAa7KkvyInnHCCS/2kvSKUzuGRRx5xl+ggQjStatCsTY/KqL0jtK+D0kl4F80QUeoBzfyIp6rKq5mfWjWiGSo6fjpp0PEXL+exckDrdVFeaG0wpVku2jdCqS40+1SzUat7/jvuuMPGjRvnHkdBHwVXNFNGr69WqNx3333u8fRYep2jV4Lo2CkIEZTIOoAGHni4/XazESMs6OratmsPAdr2ytG2103fVx63nJtuaBCfRQCIJ/ru9N3puwMAfBV4OOuss9x+A7poSaH2GRg1apR17tzZbUyojab1szaPHDlypBu41gx4bdqsAWkFEzRAodn72lxy+PDhbtNCLeXU/TTgocfV/bQx9aBBg+pUUeWn1IoBLSnUElKtFrjtttvcJs0V0cbUGmjXLE4NqGhJ4iGHHLLG7bTM8aCDDnIpprRRV7xUVV4FHnS8tDG1VhpoxYVWj2jJ5pQpU9z9tYpDAYlTTjnFDRTpeGt5pR5Lg0WnnXZalc+vlQ2qrwJAeh1mz57tAhdarqnn0WCT9/wamNJqiOj9MrR6RZuIAgD8o65tu35WW0HbXjHadgBAMtB3X42+O313AEBipYUrys0DN8Nzjz32sBtvvLHS4AQqptUrCjpoFYhSZsVyrJV+q/fo0RaaMcNfm9cWFVkoM9N32S39WnbKzTFPyntl3Dh9sZl17Kg8dfX+IqhZ1sxELy+vX9S13F5boMH5+sqRS9ueuLY9+jWdMDdkC/JXr8isi4sG72N5C+cn7LMYxM9prIJcvyDXLej1C3Ldglw/2veA9t2LRltohX/67tUJl6y00mUzLb1JJ0vL+G8PjZhktTPrNcwsp6OlkiB+p1Anf+B18odwgvrvtV7xEHQ6aAMHDrRnnnkm2UXxnddee83tDRHrwAQAAIlA2157tO0AgFRF+157tO/em6ixleas7a4BAPFD4KEKSjWkFEPaawKxUVoqbTaqjacBAEg1tO01R9sOAEh1tO81R/sepXSVpa2Y7a4BAPETiuNjBY72RtAmyoid9p8YM2YMhwwAkJJo22uOth0AkOpo32uO9j1KcaGFlv5g4UbNdWDi98YEgAaOFQ8AAAAAAAAAACBuCDwAAAAAAAAAAIC4IfAAAAAAAAAAAADihj0eAACoSuvWqy8dO3KcgCSav0FXy1p/XctstxavAwAAiJ/0DCsNNbO09AyOKgDEEYEHAACqsvvuZsOGEXgAkmzM0Lvs2O03stZNs5NdFAAAECShXCtpuZWFQpnJLgkABAqBB6SOVq3MiorMV4qLzUI+/Rj5teyUm2Oe6PeKVjsAqLWm2Y2sJJxW5yPYLKcRrwIAAKmgcSsz81nfvTolxWYZteg7ZNFXAIDK+HDUEYF16qlmGT5a2hgOW1pJyeoyp9V9QCWh/Fp2ys0xT9Z7JTc3CQcfCIYBm3a29Di179mNOHUFACDpNvRZ3706/3xvmeMHWHjHN82a96r5/UP0FQCgwq9HDgtSRocO/pqBHw7b8vx8y8vL89fgvZ/LTrk55kF/rwAB1DIvy0J+at8BAEDVsn3Wd69O4dzV143bmuWwrxsAxEuAWgog8UpLS3172P1adsrNMU/4e2W//cz+/tusTRuzMWOS8AoA4LMIAAAAAP5C4AEAgKp8+63ZrFlsLg0kG59FAAAAAPCN9GQXAAAAAAAAAAAABAeBBwAAAAAAADRMzbrZ0h2+cdcAgPgh8AAAAAAAAICGKSPLSpus764BAPFD4AEAAAAAAAANU8F0y5k00F0DAOKHwAMAAAAAAAAaplWLrdHs5901ACB+CDwAAAAAAAAAAIC4IfAAAAAAAAAAAADiJhS/hwJqJxwOu+uSkhJLS0vzVblLS0t9V24/l51yc8yT8l7JzjZr0mT1dUlJvb8IDfV9rvt5j4NgiHv7nuDPYhA/p7EKcv2CXLeg1y/IdQty/Wjfg8WvfffqhEvN0tKbrL5O8jlGvATxO4U6+QOvkz+EE9R/TwvTw0eSrVq1yn744YdkFwMAkAJ69uxpjRo1SnYxEAe07wAAD+17MNC2AwBq0r4TeEDSKcJWXFxs6enpgYnEAwBqN+MiFAq59gD+R/sOAKB9DxbadgBATdp3Ag8AAAAAAAAAACBumFIIAAAAAAAAAADihsADAAAAAAAAAACIGwIPAAAAAAAAAAAgbgg8AAAAAAAAAACAuCHwAAAAAAAAAAAA4obAAwAAAAAAAAAAiBsCDwAAAAAAAAAAIG4IPCAuVq5caZdddpltttlmtt1229nDDz9c6W1/+uknO/TQQ61379528MEH2+TJk8v8/fXXX7ddd93V/f3MM8+0RYsWRf4WDoft1ltvta222sq22GILu+WWW6y0tDQlyq6yjRw50nbeeWfr27evHX/88TZ16tQy9914443LXA466KCkl1v0GOXLtmzZsho/TyLLXb683uWVV15xf3/vvffW+NvZZ5+dsLJ7vv76a9tll13W+H0i3+fxKncqv8erKnei3+PxLHui3+c1Kff48eNt//33t0033dT23XdfGzt2bFK/y5E66uMzlQyrVq2yffbZx7744ovI72bMmGEnnHCC9enTxwYMGGCffPJJmft8+umn7j563x933HHu9qlm3rx57ntCn73+/fvbjTfe6F6zINTvzz//tJNPPtl9L+2444720EMPRf7m97pFGzhwoA0ZMiQu59apoqr2LAj10/fJ1VdfbZtvvrlts802NmLECNcWBqV+CJZ49jNTSTz7FqkinufufqzTmDFjbI899rBevXrZEUccYd9//70F5b03c+ZM91pFn4f6tU6nn376Gm38Bx98YH6u0y+//GJHHnmke+/p8/T5559bKloZY52OPfbYCscdLr300roXIgzEwTXXXBPed999w5MnTw6/++674U033TT81ltvrXG7ZcuWhbfddtvwTTfdFJ46dWr42muvDW+zzTbu9/Ldd9+Fe/XqFX755ZfDU6ZMCR9zzDHhgQMHRu4/evTo8A477BD+6quvwp999ll4u+22Cz/00EMpUfannnoqvOWWW4bHjRsXnjZtWviyyy4L77jjjuHly5e7v7/66qvh/fffPzx//vzIZdGiRUkv99y5c8NdunQJ//XXX2XKVlpaWqPnSXS5o8uqyy233BLeaaedwkuXLnV/v++++8KDBg0qc5slS5bUutw1Kbvn559/dmVWuaIl+n0er3Kn6nu8unIn+j0ez7In+n0ea7n1vu3evXv40UcfDf/xxx/hJ554wv2s3yfruxypoz4+U4m2YsWK8Jlnnum+Oz7//HP3O31nqF4XXHCBa5ceeOCBcO/evcOzZs1yf9d1nz593Pv7119/DZ9zzjnhffbZJ/JdkwpUlsMOOyx8yimnuDLqM7jbbru5ttbv9SspKQnvvvvurvzTp08Pjx8/Pty3b9/wmDFjfF+3aK+//rp7X15yySVxObdOFZW1Z0Gp39ChQ937U+X99NNP3fnU008/HZj6IVji1V9LNfE6P08l8Tp392OddA7To0eP8CuvvOL6eXofbrHFFuGCgoJwEM6NTz755DLnoX6uk841NVYQ3cavXLky7Nc6qS+u74YrrrjCfZ7uvPPOcL9+/cILFiwI+7VOixcvLvP6vPfee+474vvvv69zGQg8oM50YtGzZ88yX4j33nuvOzEu7/nnnw/vvPPOkY6crvUl9OKLL7qfL7rookhHSmbPnh3eeOONXUMiGqjybitqZOpyIhDPsh966KHhBx98MHL7VatWuU7sJ5984n4eMWJE+Pzzz691Weur3BMmTHAnjHV9nkSXO5reH3pc1cWjwYXbbrutVuWsa9lFnUm9/vqSL/8eTeT7PJ7lTtX3eHXlTuR7PN5lT+T7vCblHj58uDsZjnbSSSe590AyvsuROurjM5Vov/32W3i//fZzn8noDp8GC/VZjR5QOf7448N33XWX+/cdd9xRpp4KyurkPpU6jBoYUp3+/vvvyO9ee+01F/zze/3mzZvnAgb5+fmR3yl4dNVVV/m+btGdwu233z588MEHR75j63punSoqa8+CUD+9bt26dQt/8cUXkd/pfGrIkCGBqB+Cpb76a8lWX+fnyRTPc3c/1unNN990QWuP2n+d4yhg6/dzYw3SH3HEESkbeKhJnRRg6Nq1q5u4mMpqUicF8HbddddwcXFx5HcHHXSQm/QShH5ZcXFxeMCAAeHbb789LuUg1RLq7Oeff7bi4mK3DMzTr18/++6779ZInaHf6W9paWnuZ10rZcukSZMif9cSIE/79u2tQ4cO7vdKDTBnzhy3RDn6eWbNmmXz589Petkvvvhi22+//SK3198V3MvPz3c///7777buuuvWqpz1WW6lyllvvfXq/DyJLne0u+66y7beemu3dN0Tz+Nd07LLRx99ZDfffLNL61BeIt/n8Sx3qr7Hqyt3It/j8S57It/nNSn3gQceaBdeeOEaj+G9FxL9XY7UUR+fqUT78ssvbcstt7Rnn322zO9Vh27dullOTk6ZulV2DpOdnW3du3evsN1KljZt2rj0Q61bty7z+4KCAt/Xr23btnbHHXdYbm6ua5u++eYb++qrr1xKKb/XzaO2QmkyNtxww7icW6eSytqzINRP70W9L/VejE6XpTRnQagfgqW++mvJVl/n58kUz3N3P9Zpr732cil8ZMWKFfbII49Yq1atbIMNNjA/v/cWL15sw4cPt2uuucZSVU3qNG3aNPfd0LlzZ0tlNamT+gpKwZaRkRH53Ysvvmg77LCDBaFf9tJLL9mSJUvs1FNPjUs5CDygzv7++29r0aKFNWrUKPI7dWiVS+yff/5Z47bqGEZT4zB37lz3bw06VfZ33Vei/+51nL37J7Ps6hS0a9cu8rfnn3/efcj1wfY6VFOmTHH535R3+Morr3Qd/WSXW+UqLCx0Od2U801fLtOnT6/x8yS63J7Zs2e73LdnnHFG5HcacFAdlL9ZOR+VF1f55JVft7Zqeizuu+8+23333St8rES+z+NZ7lR9j1dX7kS+x+Nd9kS+z2tSbp3Qb7LJJpGff/vtN/vss89cYCQZ3+VIHfXxmUq0o446yuVC1eBzTdqlWNutZGratKnb18GjTscTTzzh9lsJQv082otIr6M6Wvp+DELd9B2rXOPR7UBdz61TRVXtWRDqp/1COnbs6PZn2nPPPd1gxb333us+f0GoH4KlPvprqaA+zs+TLZ7n7n4+j1Q91N7fc8897vytSZMm5uc63XTTTS5QtNFGG1mqqkmdFHhQ8F2TGNUXP+SQQ+zDDz80P9dJ7XrLli1t6NChtu2229phhx3mJhmkmr9r8XnSOZkmKWm/s3h9lgg8oM40oBf9Rhbv5/IDYJXd1rudItWV/V1/i37sqp4nGWWPpgiiZkhog0PNLiwqKnJfTrq+4YYb7Prrr7dvv/3WLrrooqSXWw2BopmaLaATrKysLDezQwPGNXmeRJfb88ILL1iPHj3chmbRg7Te/TX78ZJLLrHXXnvNbWBbW/E8Fol8n8f7NUzF93h1Evkej3fZE/k+r225tcnlWWed5Wa4eZvvJfq7HKmjvr5zUkF17VJNzhNShWbUaWPQ8847L1D10wqxBx54wAXDNavc73VTB/Gqq65yAX21YfE6t04VVbVnQajf8uXL3cbnzzzzjHs/qn6PP/64m50bhPohWOqrf5xsQTw/iee5u5/rpAF6zdA+++yzbciQISm34qYmdfr000/dAHb5SQappiZ1Ul9cbZmCDhrQ1qoA9ct/+OEH82ud1K6PHDnSjYOMGjXKreTXuIhW9fv98/TFF1+44LGCKfESitsjocFq3LjxGm9a7+fynaPKbuvdrrK/a9Zh9AdEt4t+nvKzEpNRds/EiRPdjOrtt9/ezjnnHPe7zMxMt8u9HkP/9iLZBx98sEs7stZaayWt3KNHj3aDxV40UzPM1Bh88MEHNXqeRJfb884779gRRxxR5neaVaYvzGbNmrllfV27dnWzyjQIfumll5ZZElcfZa/tY9XH+zzer2Eqvserk8j3eLzLnsj3eW3KvWDBAjvxxBPdzAgN9KWnpyfluxypoz7e/6lUt/Kzg2I5h9Eqg1QNOjz66KN2++23W5cuXQJVv549e0YG7JVaQm2ROl9+rZtmcSr4HL1aJR7n1qmiqvZM6Yn8Xr9QKOQmO9x2222url6w5emnn7Z11lnH9/VDsNRHfy0VBPH8JJ7n7n6uk2Zw66K2Q5PjFOTt06eP+a1OGpzXBANNNEj192RNXicFUZR5QG28aOXNjz/+aM8991zkfM1vdVI/W+83BbtE6TwnTJhgr776qp122mnm58/TO++848Z5mjdvHrdypNa3DHxJA4rKQ6eUK9FLevRGLt9h023V2EXTz94Szcr+rkiiN3DppemI/rf+nuyyizpNJ510kktZoM5FdEOu5WXegKx4uQc1KJvMcmsQMHoJlb6cOnXqFBksjvV5El1uUURZ+fsrmqmhL0ov36h3vDUAoZnvtRHPY5HI93m8X8NUfI9XJ5Hv8XiXPZHv85qWW8fv6KOPdicvjz32mFtuGv1YifwuR+qoj89UqqjLOUyqufbaa+1///ufCz4otU0Q6qeyvP/++2V+p70QFHhWGf1ctzfeeMPVTakkdNFqAF30b7+/btW1Z35/7URl0bmHF3QQ7T2l9j0orx+CI979tVQRxPOTeJ67+7FO33//vRvAjqa2Q/f3Y51UH2UQ0GC2196LJvwpIOHX10njBV7QwbP++uvXaowgVeqkNlh1iKZ9qlJtxcNatfje+/jjj+O+EorAA+pMkT7N5Ile0qblYYpelo+gK02IZksrwi66VjoWL32IrqNzo+mDq4t+rw+NNlOL/rv+rd/V9uQmnmX/9ddf3ZIxzUbTMvHoAVgNGqrhUEPi0fJ/PbdmOiWr3Pq38uhqaWL55eD6Iq3J8ySy3B7NaPA22Sv/ZamNQaNnN+p4q1Nb2xOseB6LRL7P41nuVH2PVyXR7/F4lj3R7/OalFvH8JRTTnG/V3748itaEv1djtRRH5+pVKH3rzq4Xrowr26VncPos6k0RtHtVqrMntdswBEjRtjee+8dmPrNnDnTBg8eXKYjO3nyZPd9qL2I/Fw3peVRoEF7BOiiPSx00b/rcm6dKqpqz/Ta+b1+KouCKN7+Ul7qCQUigvD6IVji3V9LFUE8P4nnubsf66RUtDqXiaa2vvyAsF/q1KtXL3v33Xcjbb0uct1110WyDPjxdVL6K63GL7/psV9fJ9GKml9++aXM77x23c/fe4sWLXLjOd4ennETBuJg6NCh4b333jv83Xffhd97771w3759w++884772/z588OFhYXu3/n5+eGtttoqfO2114Z/++03d73tttuGly1b5v7+7bffhrt37x5+7rnnwlOmTAkfc8wx4UGDBkWe58EHHwxvt9124c8//9xd9O+HH344Jcp++OGHhwcMGBCePXu2u5930f1LSkrC+++/f/j4448P//LLL+GvvvrK3faqq65Kern184477uiO56+//ho+88wzw/vss0+4uLi42udJZrnlrrvuCp900klrPIfu279///D5558f/v3338Pjx49375WRI0fWutw1KXu0F198MbzTTjuV+V2i3+fxKneqvserK3ei3+PxLHui3+exlnvEiBHhXr16udtFvxeWLl2atO9ypI76+EwlS5cuXdx7VPSdoe+1c889132X6H3cp0+f8KxZs9zfZ8yYEe7Zs6f7vf5+zjnnhPfdd99waWlpOFVMnTo13LVr1/Dtt99e5rOri9/rp/IfdNBB7vtS5w36Ttxmm23CjzzyiO/rVt4ll1ziLvE4t04FVbVnQaifDBw40J1HqYwfffSRq9Ojjz4amPohWOLZX0sl8Tw/TxXxOnf3Y50mT54c7tatm2vnp0+fHr7zzjtd2z537txwEN575c9D/Von/U7t2Msvvxz+448/wnfffbd7L+rcy691mjlzpnuvqZ+uOt1xxx2BeO99/vnn7nw43ue/BB4QF8uXLw9ffPHF7sOmjsL//ve/Ml+WarA9esMfcMAB7g19yCGHhH/88ccyj6Xb7rDDDu6xNEC4aNGiyN/UcbzhhhvCm222WXjLLbcMDx8+vM4finiUXR9Y3baii3d/DdaqPir7Flts4U7MVq5cmdRyy4oVK8I33nijO0ns3bu368yorLE8TzLLLVdeeWX4vPPOq/B5NHBwwgknuOdR3dTAJfK9Ut3JaiLf5/Eod6q/xysrdzLe4/Ese6Lf57GWe4899qjwveANhCXjuxypoz4+U8lSvsOnzsXRRx8d7tGjhzuJnzBhQpnba8B09913dx0qBWL/+uuvcCrRwHpl3+VBqJ86fPq+UadK34n3339/5LvF73WrLPBQ13PrVFFVexaE+mlw76KLLnJl3HrrrQNXPwRLPPtrqSSe5+epIp7n7n58ncaNG+cmlOn9p8kH33zzTTgo771UDzzUpE4KnuscS+dgBx54YPjLL78M+71OX3/9tauL6qQJmEGo0xtvvOHOweItTf8X3zUUAAAAAAAAAACgofJnMjsAAAAAAAAAAJCSCDwAAAAAAAAAAIC4IfAAAAAAAAAAAADihsADAAAAAAAAAACIGwIPAAAAAAAAAAAgbgg8AAAAAAAAAACAuCHwAAAAAAAAAAAA4obAAwAAAAAAAAAAiBsCDwAatCFDhtjGG29c6eWLL76o1eOGw2F78sknK/373XffvcZz9e7d2/bdd197991317jdpZdeWuFzbLfddu7vnqKiInefXXbZxXr06GE77rij3XjjjVZQUBBTnXVfAADqi9qaCy64YI3fv/TSS7bzzjvXy3PqcfX4yTJ27FjbfvvtXTv/8ccfr/H3ytrkCy+8MC7P/9Zbb9nChQvj8lgAAKRCn/vYY4+tdd9V9y1fhr59+9pxxx1nv/76qzWUsQYgEUIJeRYASFGXX355ZADkzTfftIcfftheeOGFyN+bNWtWq8f96quv7JprrrGjjz660ttsuummZU6WFi9ebKNGjbLzzz/f3njjDVtnnXXc7zMzM+3DDz+00tJSS0//L148adIkW7BgQZnHvPXWW+3TTz+16667zjp37mwzZsyw66+/3v7880974IEHIrfba6+9XN3Ly8nJqVV9AQCI1euvv26HHHKIbb311g3ioN11111uosCZZ55prVq1qvA2Oh/QeUG0rKysOj/3rFmz7Nxzz3XBDwAAgtLnVrupfnJtnXTSSe7iDeR7/ebBgwfb22+/bcuWLbOzzz7bTeBbvny5XX311bbZZpsFaqzh2muvtW+//dbVT0GXqh4PqC1WPABo0PLy8qxNmzbuon9nZGREftalUaNGtXpcnbxURydK0c/VpUsXd7ITCoVs/Pjxkdt169bNCgsLXaAh2vvvv299+vQp87uXX37ZzjnnHDeY06lTJ3c9bNgw++CDD2z+/PllBjOin9u7NGnSpFb1BQAgVh07dnQd5lWrVjWIg5afn2/9+vVz9a4smKDBh/Jtss5L6iqW8xEAAPzW527evHmd+q6acOc9f9u2bV07rUCBJuxp1cOiRYvssMMOs+eff95lEXjnnXcCNdawYsUKW3vttd2K0Msuu8yee+65WpUFqA6BBwCowpw5c+y0005zSxOVquGee+6xkpKSSFqjK664wrbccks3o0C3mzdvns2cOdPNGJCaLqHUyYhOBnTxNG7c2M2UHDdu3BqBh1133bXM79LS0uzzzz93qyM8KptmNbRo0YLXGgCQdJqBr/Zy9OjRFf5d7ajaT117NGtPqRFEnWT9+/7777fNN9/ctt12W3vllVfcDMWddtrJzUgcPnx4mcf87bff7IADDrCePXvaySefbLNnz46prddzHXHEEW61ggYlxowZs0Z5V65c6Z5vhx12cBMC9Fh6TNHjadWBOvW1TSWlAI1WMup8QxelYPrnn38if//mm2/syCOPdOXX85966qmRyQZKvehdqy7Rx7GiVFT6m2ZA6vYaaNFMz9qcCwEAECuv3b/33ntdu67JCRpc14p9tTtKIaz+sNqfilItKaWR0gvr/EJtldpjnRfUlBcIUJ9cKwKUJUCP895779XLaoBkjjVoIsTxxx9vkydPtptuusmd5wD1gcADAFRCJztaaqm0CFpJoJOZ1157LZKySHkVtczRWzKp5Zg33HCDtW/fPnIS9Mknn6yROqEyWuKodAwaYNDJUjQNAEQHHqZOnepmKegkLJpOQh5//HF34nLVVVe5mRm63YYbblinpagAAMTLWmut5dIXqD1VaoPamDhxoruv2t+9997bre577LHHXDBCAxAPPfSQ/fTTT5HbP/3003bKKafYiy++aMXFxXbJJZfE1NZ7z6V2VLMBNfBRntpbDUrcfPPN9swzz7jHP+OMM9wkAJWvXbt2LvAQnV6hJkaMGOEGBpQiQXVUMECrG73VFIMGDXLBF6WwUjDnr7/+spEjR7q/a6amdz1gwICYnk9BCAVSNACi2aS1ORcCAKCmlPZH7bT6tBrwf/TRR90sfU0s0MC4+tg//vhjhfdVe9S9e3fXFu6+++6ubVYbGSsF7O+44w7baKONbP3113dt+JVXXunK8dRTT9m6664buLEGHeuLLrrInb/omAH1gT0eAKASWjmgGZHqrGtvBZ2AaKBCGz3rxEezDbQaQakTtNRTMwU0A1EzCbx8jVrWWJmvv/46cqKgEw/NmFRaJQ0sKE1SNJ0caNBCSz81+0KrHRSM0AqHaCqX9nbQyZEGSDQAokEDLRs9+OCDI7fTSU1Fy0W1MqJDhw68JwAA9UozFTXArQGF6EH+WKnd1ExApUo4/PDD3eDEWWedZZtssom7aLB+2rRprl0VrQjYZ5993L/1nGpDf//9dzfQUFVbL2prTz/99ArTJC1ZssReffVV13ZvtdVWkf2WtFpgwoQJ1r9/f3deoBQLLVu2rLQ+WqWg23m0SlETDpRq8YknnnCDA5rZKLfccoubAfnLL7+4x1SQ48QTT3Tl1DmABg++//57d1vvOXUd654RKrs22ZTPPvusVudCAADUlGbgK/2PzJ071w3Ge/tBqR3XigitYFSAoTy1kWpLRcF5Bep1W689K+/BBx90g/rirTLYZptt3O/VHqu/rIF9TR4477zzXLurQEFQxho0rnDfffe5x9ZkAz1m9IoSIF4IPABAJTQgocZdqRU8mvmgFQTanEkDHRqo1+zHLbbY4v/s3Qd8FFXXx/GTHkjoHUQEBCmCVEXFggW7AvaKFSt2pdiwItgVFUV5QcGGFRsioD5WVBQRpBfpvZOe7Pv5X5110yCBhGRnf9/n2Q/Jltm5M3Hv7D33nmNKe9SrV68iH0+tVtDghLb57bffuhkIGjjQRU1eGoDQfmgQQs9R4MErVJXX6aef7m7aR10sacBCgQddjHkrJLQiQqka8lJ+SwAASpu+OGuVwgUXXOD6tOLSDEEFHURfzCU0aK9B9tAaEm3btg3+rOfpi7YCE0pbsLO+3nuvwgbtlyxZ4p6vNAkebbtx48buOkKBh6JQKqXQbWgQQrSqQ+kWlO4plN5T762+XSmkRo0aZbNnz3YrIhWQKGygpSg0yLG3roUAACio/1Ew/48//rAnnnjC9UXq49atW5crpXCo0BUJycnJ7l+tQCyM+lVNgtC1giYv/PDDDy7A4O3Daaed5m47o5WUSncYukIyXMYaNJlx8uTJRd4esLsIPABAIXShopkHmgmQl2YuerMRVZxJN82u1NJOLYssCg1iqMMXDVDoIkOzHDRbMXTwwaPZmbo4UKoEDUQo/2Xohc6cOXPcUlClmBDtny6WTjjhBDf7UbMqvMCDVkF47w0AQFnQ4LhW42kFgr68e/Ku5ito8CC0FtLOXucJXU0g+iKuFIS76utDAxsFKewxzZ4sbHCksPRTBfXL3ixMrWT0Ai0eBUQUONEx1OxPzdRUIUxdk2iwpiBFObahbdqTa6GdnQ8AAPIK7X+0EkCphc4++2z3XVbfk73aBgUpKK3wzoowa4a/1++qtpFWSyh1oVY6eP3/ruj6Rd/h/TDWAJQWajwAQCHUQWv5o9ITqNPWTUseNVtAX6Y1yP/VV1+5olPKi6h80goEbNiwYbe+bKvYpXJKKnWEN9CQN/CgvJfKAak0CHkHXfSa//u//8uV09orkqULj52leAAAoCxo9Z3yDocWmvYGD5TP2BNaaHp3zJs3L/izVgps3brV9fO76ut3RV/g1R9Pnz49eJ9mKiqFgba9p7R9BU00K9LbP83kVPoJXW+otoQGT5QaQikqVFhbkxO8wZa8bdCxDT2u+nnjxo2lci0EAMDuUm0mpRxSumGt7NNAvPqWnQUTdpf6MxW0VvpErbAo7qQB7xbOYw1AaSHwAAB5eBczWtaopZYquKS0BcqTeM8991iFChXcIICKVWmWg/If60u+ZkcoB6QuivQcUTFI5VMsCm1T29fgiGY2FjT4oFkRKhh5/PHH53tcsx0VkFCuZ+2LLlw0EKLCWlpCGlowSjMetFQ1700XWwAA7C3qMxV8WLFiRfC+mjVruuKJCkaof1UtCM322xMKzE+cONGtDlT+5G7durkv+bvq63dFKwg1G1OzJadOneq2r23pekAFn/eUggzavtJSaftKpXTnnXe6wIaXMkoDF961iK4R1E4vzZR3PaL9UpChTZs27ufPP//cFi9e7ApnemmdCrIn10IAAOwu9SPqW9RX6Tu10iAp9WBoGsWSpDqHWvHw9ttvu7ROpa28jTUApYXAAxDh/vzzT9fZacBa+Y+VO1Adkjq38uS5554LFlUsKRqY1zY1oCEq4KhZf+r0vc75xRdfdKkSlLpARStV5FmzBOTCCy90sy90/JT+SCsN9Hy9TtvVgINyR37zzTdF3ifleFR9Bs10CJ2BqH3UNnWhoIEDzf5o2bKlXXPNNe5xL+XS008/bWeccYYrDKXZEbp42r59u6vz4OW6FA046GIn702FuFRcSnkk27Vr52ZaAABQms4666xgAUTRQLi+bKtAsvrXCRMmBPu73aW8xuoj1Z8rRZHSNxSlry8KpS5QmqMbb7zRFb9UqgjVXNCKw5KgFIoqrqntax+1wkIBBu27+npdN+gxpVxScEL7o9zRGpzRTEo9fvPNN7u0FdrOpZde6gIOukbR7MedpVzYk2shAAB2l1Y66Husvtuq79F3YU2+K82gwOWXX+6C+ppMUNrK01gDUJqiAqWxTglAWFB+QH3xVoGhnj17usLCmkGnGYZa0q8iSy1atLDyEnjQYLpmA5QUfSFXB77vvvu6L+b6sq68ka+99lqBBZ7LkgIPmqGpY1CrVi13ny5S1q9fb88//7wbYHj33Xf3+HwpsKG6ELr40UWeVliQogkAAAAAAADFQXFpIEJphrxmEyqSftdddwXv14C7Vj0ouq5ZBt5qAD/STETN6g8nWuWgWRihWrVq5WZ/aMmkclPuCQWc5JRTTnF5ogEAAAAAAIDiItUSEKG0qqFSpUp266235ntMM9y1rF/FjFXwUVSASCskNBteKZmUmunxxx/PlVNQr1HRIuVFVPBCz9PyP+VlVGEkvVbL+ZWrOHSJpF538cUXuxn7yrmsdAsqkKgcxDszadIk69Wrl8tXrKWGDz30UHB/tSxT2zrxxBODeSC1wEsrGvRcLS0MTbXkrXYQ/av9UXv1uPY/1EcffeQCAKtWrcq3T8OHD7cDDzwwX60EpVxQDQYVg9JKhaeeesqOOeYY91z9qyJWylm5OxSIUK5H5Xj26GedW6VM0jHX8QwtOu21XTmvdYz0HB0vtVv0fO1Xcc69XqN6Eh06dHDLQfU6vYcKg+lxLe3U/ug8qcaEimR16dLFBbsU/Ardns7P/fff7/ZJx0ivU3qp0OKi2le9TukmtE/6O9Dfm1JzhFKdCy2b1X7p/XRc1qxZkyvYopQTSpOhbWi1h3JpAgAAAAAAYPcQeAAikAbgv/vuO5fn1ytMlJcGjjXQW7FiRfe7BmYHDx7sAgrKLaiVEqoboELGoRnbfv/9d3e/Bpr1fKUA6tOnj/tZ9QaefPJJN2CvQpKhFIjQYPwNN9zgagxs2rTJLrroIlu7dm2B+6fiSto/pQJSqiG9bvz48cH9UT0DrehYsmSJCwaIUigpwKD0UnnTBykooDZ6bdUAugbaladZgYZQqnugY6fCl3npNVlZWa6wY6hPP/3U1VBQXukRI0a4wXjt/8iRI10+aAWCdFx3h46VbkoZ5Q3aawB+1qxZrl6HghoKduic6XzkTWF11VVX2dChQ90+hR4DpXUqzrlXbQydW52P2267LZjfWedTq0u0Pa2kef31192/eq4CGF7QSfeLtqm/le+//979nejY6PwqGKDzEuqLL76wyZMnu1yY+ttS6inlx1TQQxRs0d+Rghpqo4IZKsKlAJnOk+5XwETbUMEy7aOKdl155ZUEHwAAAAAAAHYTqZaACKRBag245k3ZU5gFCxa4gWENJiuIIFo1oJoQd955p/3vf/9zhZBEhY9VvLFp06bu959//tneeustN+Nfg/WiOhKa7b5161arXLmyu2/btm0uQOCl9/EKXStYkDdIoYFpDVgfccQR7l/Pfvvt5womqsCSZsBrBvu5557rZsRrRr8GpjVo7u1rKAUq9t9/f/ez/vV+VgojBTRUdDkqKspWr15tP/30kxtML0iDBg2sc+fO9sknn7iVHbJ06VI3C1+BFe+YaBa/ikCKZvMrAKQVKLuiAIIGzEXnUIEVHQMV4lRbRbU5NItfgQTtjxx55JEumPTMM8+4YlIeFaX09sNru/evUjgV59xrv5TqSQP3obQtLwWU2qrillrdof1WgUwFZBRA+O2339xzFGzS8VBxTO/vQasidBy1miaU3lOBCa9wtv7+9DoFsnSM9TdVtWpVF+BREEm072rP/PnzXXF1rax55513gsU1dawUDNH+vffee7s8JwAAAAAAAMiNFQ9ABPJmonuzwndFA+Ve3v9Q+l3b0ioCT5UqVYJBB6lZs6b71xvUFQ0EiwIPHgVBQmsKaHBYKZd++eWXfPuzaNEiFwBQKiANPHs3DfhrAFoz5T0aHK9Tp45dc801bhBevxfHWWedZStWrHCz+b3VDklJSS4gUZjTTz/d7fe6deuCqx20X17qIg2iax8vuOACe+WVV9zgvmblq5jzruh9tTpDN6UOUqopBXIUCFFaI9HKAKWCUru9Y6PAhAbUf/jhh1zb0/NK6tzrvOYNOojOo0evUVoo7b+CDqGvVfBJtN8KOCk1k1Ir6VhpNYQCE17arNCghhd08F4rqampwVomarcXdPD2Z8qUKa7tOlYq1q398Y6V/rtQiietjMibMgsAAAAAAAC7xooHIAIpOKDB89CaAHmpVoJmpeu53uCrBmhDaeBYg8jegLGEDgKH8lI2FcYbMA6ltERKF1RYAWSlzdEtr9D0TGpn9+7d3Yx3rbhITEy04lBNAAVFFHBQYEP/auVA6EB2XqqZ8OCDD9rnn3/u6kUo8HDCCScE31tpfLRfmk2vWfUKGjRr1sylC9L77YxSHXnnIS4uzh3/vMdOx0fBCA2mF8QblC/KeSnOuVebClLQ38Su3lerTLy0XApKKEhQ0LnLmypMARZvZYh3LPR3VBg9rgBRYcdKj+m/AQAAAAAAABQdgQcgQim9jWarK11PQYPoSj2jdEhKs+MNvGoQ1kvdIwpMKG2TBqD3lLaTl/L1FzRo7KVn0uoFpe7JK3SgeN68eW62vAaulXpIqxFCV1/sitIr9ezZ021DtRhUaFrHZWeUMkmrGxR4UCBBKX1UayF0cFwpn3RTsWmlhlJKINUm0Ox+1UMoTPPmzXeZIkvvr+NS2OqOnW0/r71x7vPS6hKlS1K6I9Vi8AIrqtGgFQzFoWOhmhd56Zjrb0KPK0VXaMquUEVNRwYAAAAAAID/kGoJiFCXX365m+2tegx5aZBZKwSUxkYzwb3Bfc3cD6XflZZGKXH2lGoVhBY+XrNmjStU7dWFCKWC0gpIKA1PmzZtgjcNUKuQsgoKi9LmqMi1ii6rzkSLFi3cgLaCLTtLQZWX0hkpLZQCDkojVZTAhdImTZ8+3QU76tevnytAosLPDz30kPtZ7dD2FYTQe2zfvt32lN5LAZLGjRvnOj4qkq1AUmHtLGxbpX3u89J514oFBWK8oIPey0sT5a1mKAql71IwJzRFk/4+VK9Cq2nUPq2q0HkIPVZ6jdJgFedYAQAAAAAA4B+seAAiVLt27VzBZAUeNODfo0cPN3tds/NVrFeD815QQgEIzfpXUWKl6VHKIRXvHTZsmKtXoCLPe0oFo1WH4ZZbbnGDvdq2Zttr1nteelzPu/fee93PysevQfsXXnjBBSy8tDlaRaBB5jfeeMOl6VH6IxV8VpFnBSTy8oo7f/311+69FagQBQ5UqPq7777LV+i6MDomShGkYshKraSVEx4dPwV2VP9C9Qa0z//3f//nBsGrV69ue0oFthVk0L8KMOm8fvbZZ24Vy4ABA4q1rb1x7vNSYXFRQWoVvla6p7Fjx7oi0F4asMJSeuV13XXXuaLbV199tUt7lZaW5v6u9R4qkq3g1JgxY+yyyy5zf3/16tVzAY4RI0a4uhtKZwUAAAAAAIDiIfAARLBrr73WWrVq5QZ1H3nkETfAq4HXo48+OjgI63n44YetUaNGri6BBmVV/FkDuRrY9fLq7wkN7muQXPuhAW4N9KuegVeIOi8FEFRTQLPSNbivmgEqtqyUOQ0bNnSD1Ao8KD2S7hcFJLTPo0ePdkWa89ZGUJ2FU0891R2Pb7/91j755JPgYzomKkRclALQXg0EFWBWiialdwqlgI/SHelYPv/888HUTLfddpuVBLVLKzy0+mPQoEEuiKR0QjqHKpZdXKV97vNSQENBJQVjJkyY4AI0uk/Bjuuvv96lWzrqqKOKtC39fesc6FjcfPPNLmCh1yqApHOgm863HletDdWsUEopnQv9PQIAAAAAAKD4ogKaZgwAZUirD37++WebMmVKuT0PWrWgWhgKFAAAAAAAAAAoHCseAGAnFGhQvQSlWVLKJgAAAAAAAAA7R+ABAHZCqzCWLl1qd955ZzBlEwAAAAAAAIDCkWoJAAAAAAAAAACUmJKvCgoAAAAAEYSyeQAARC6uAzgGKBiBBwD4t8D1AQccsNPbxRdfXOLHStt97rnn9to5+Omnn+yEE06wAw880BXM3r59u11zzTV20EEHWefOnW3JkiV7bV8AACVPfYr6Fuw9L7zwgr366qu+uPZRWslzzjnHJk6cWGb7FXptNHXqVPe7/gUAFEzfU0M/y1u0aGHt27e3Xr162WuvvWZZWVm5nn/MMce4PiBcvP/++65dy5cvL3f90urVq61Pnz62YsWKEj2H3nlUv6zz+NFHH5VIW0qrX508ebL169ev1N8H4YcaDwBgZtddd52dd955uQYR/vrrLxs2bFjwvuTk5LA/VkOHDrWcnBx7+eWXrUaNGvbhhx/aV199Zffee681a9bM9tlnn7LeRQAAwsozzzxjN9xwg4WjWrVqBa91dH2wZcsW++STT+zGG290wZTDDz+8TPevdevW9vbbb9v+++9fpvsBAOVdq1at7L777nM/Z2dnu8/z//3vfzZ48GD79ddf7emnn7bo6H/mHutzP5y+2x599NGuL6hdu3ZZ70q+fumHH36wb775psTPoXceFdgYNWqUqzlZtWpVO+qoo6w80j6Gov+Gh8ADAJjZvvvu626e6tWrW3x8vLVr185Xx2fz5s1uZcNhhx3mfv/yyy/dvxdccIFFRUWV8d4BAIC9qaBrHQ3w/P77725gpawDDxoY89u1GADsrc9LrWxo0qSJPfzwwy6ofPrppwcHuMOJvpvrVh6UZr9U2LaPPPJIO/TQQ93Kj/IaeMiL/hseUi0BQBGpo9dF2rhx49wX8YMPPtgWLFjgZiJoBcGpp55qbdu2dRcLWj2htEahfv75Zzv33HNdWiOlO9LsiLzS09PdqgRdUCgd0mmnnWafffZZkfZPaZI0Q1H7pn3Qcs1p06a5x7QsVUsdtQRUqxy81FHeklEt4wyn5bYAgKL3XW3atHGzHc8880z3s/qgKVOm2KJFi6x3796uXzr++OPt008/zfU69RV//PGH9ezZ0/Vv6pMmTJgQfI7Xt/zf//2fnXjiiW477733nnvszz//tCuuuMIOOeQQlyZAaf3mz58f7Os6duxoQ4YMybWvSgXRpUsXe+ihh4L3qc895ZRTXJ+oAXH1W+p3Peq79D4aJD/uuOPcfqoPXrx4sVvRp33Wfp199tk2e/bsXO+nY3LRRRe5x9WnK0XAxo0b8/X7Ogbqv3XsunXrliutkpfWSrNHd5biSvs8duxYtz/aR7Xl8ccfd8dCPv74Y/f6efPm5XrdpEmT3P1ahelNINAqRU0g0P4oLdKPP/6Y6zV6vvZHqRn0XqGrN4tCExEqVaqUb0KCzoW2qWsMbfeMM86wzz//PPi4Vkw89dRTbqBL50v/PvHEE5aZmbnb1zl5UzXo/Otv9euvv3av1Tb096xrm1BFOU4AEAnUz9WpU8feeuutAlMteX25+ndlAdBnvD47lQFAaXkHDhzo+mzd99hjj+WqZVCUz3S917PPPuv6fG1D/Yf67dAUv+p7b7vtNvc9Vp/Z6l9CP9cLSrX0/fffu8lz2jdda+j1q1atKlYf7rVfqwm6du3qZulrgF+/b9q0aZf9kt5jwIAB7v5jjz3WHVO1U23ctm1brtfpeGpfU1NTrbgSEhLcRIHQftnLYqA+0esLX3/99Xyv1XnXY9on/S2sXLmySCk686aE1t/Cgw8+aEcccYT7G9E1pfpi0biCxjp0845NQamWdnZtGHps1V9ffvnl7vpMfxP6uwu99kN4IfAAAMWgDm/kyJFu1oguMpo2beoGDnQhoQuaV155xXXI+sJ70003BS8sZs2a5TpPfZHXhdcll1xit956a65t6yLu+uuvdxcHl112mb344osuN+ctt9yS7wt1XgqAaDBAF05333232yddmGhASRcAWpaqQRmlVNCFoX6+66677KyzznKv1++60AQA+I8G9PWFXAPy6lsqVKhgt99+u/vCpwHw4cOHu35CA+9a0h/q6quvdl+mNXjduHFju/nmm/OlFNAX06uuusoNPugLogLv559/vnvskUcecYEEDQbo/RcuXOi+QOtLsAatQwcwNIigL/oacJCXXnrJ7rnnHjcIoH288MILbcSIEe6+UJqdP2bMGPeFXykl9B7Kt6yftf9PPvmke3+12fPLL7/YpZdeaomJiS79hAZW1F+qf05LS8v1xV5tPvnkk90XfH1RVju//fbbYP8p6k+9nwuiQXDtj4IjOgdqi/ZZfa+Oge6vWLFiruCPaIaqUiFq8EQDPOrXlUdZ1wY6J3Xr1nU1m/IOqut4aQBI1xw61rv6+9BNAQIdf+UD10CAdw5FQRO1Qfup86LrDA2C6Jh6fzM6N2+++aa7ltG1kl6vAR61d0+vc0KtW7fOHnjgAXeudE6UJlJ/uzrvUpzjBAB+p/RK6kdnzJiRr9ZDKH2HbN68ufts1vOVRlB9m/pJfY52797dfdf1JiAU5zNd/YomO6gf1DXBzJkzc9UDuOOOO9xn+P333+/6EvV5ejzvRD6Ptq/v1vXq1XN9vL6X61pA38c3bNhQ5D5c39XVl+i9leJIfZZ+V1+sQPqu6Brq2muvdT/rGKlP1zFTPxQ6UUNUo0H7oWuwwuiYen2ybtqOjpvat2PHjuD1kQwaNMj18VrFoj5fE0B0zfX8888Hn6PrDLVL3/81XqGB/LzXUEUdA9Hx1iQJXVdpW1pJo/OvSRx6D50z3XQtpABOXru6NgylawsFadQuTe7U350mPyA8kWoJAIrJG6jxrF271l1ghRaf1qBK3759be7cuW5GgL6kq6aCLsji4uLcc6pVq+Ze59EKCF0E6SJHFyWiGQW6INIXfHW6sbEFf2zrQkcDALqo8/J1ah/1Gl1cvfvuu24/9BwtU/WWcOqLuJDGAAD8S1+81Xdp1r9s3brV9T8anNVggSgwrtlrGgzw+gZR36Yvll6fpNUP+lIbutT/pJNOcq/1qP9r1KiR+5IfExPj7tNMQs3K05dkDWboy7NWR2hlXqdOndxz9EVfX2Q1K1EzBb2gvgZDvG0ov7F+135rQF70ZVzBA00GEAUQNBCifMMaPJG///7bzUJU2ytXruxm4iuQov7Z20d9IdfqCu2XAgPeIIAGErxjpy/CSlOoWX7erD/RMSusL9XkAPXDCv4oICIK0CjYo1mVysGt46kAgWaKetcGapdWbXjHX4MWc+bMsXfeecftq5d+QedI1wneahPRMfXO7c5oJWRBAwQaHNAqEM+yZcvcLMXQSQoNGjRwkx50DnXcdNw169L7W9DrNcCiv609vc4JpedrAoh3bvfbbz83i1UBMf0NFOc4AUAkqFmzpgsua3Kcfi6IPo81SC/qXxX41vdXBZ1FKxI18Pzbb7+5fr84n+nqd9Wne/3t0qVL3aQFBbv1nVj9h/o6Bbe9/kP9vb67FnRNo+3rmkB9uUdBBe2HggfqW4vSh2vVhfpvXR80bNgw2E6tktA+7Yq+V3vpmlu2bBmsl6gAjPoi7311zPRejz766E63p0kReftkTSZUQEjXTurrRKs61cdpIqN3XaHjoefqukYrQXT8dMx1TDS5wnuOVi6Ern4pCl2n6Jjo+s87RzpOujZQQEF1rrwxiMKuhXSudnVt6NFx86591Ndr9afOWWhNToQPVjwAQDHpoiJvJ6rBGy0RVcRfX2jHjx/vHsvIyHD/6ku5Lm68oINo1ojX6Ypm4eliQYMPoTMdtDxVs/s0+1AXWqGPebNWdGGkC5HQImG60NNAgAaRNHgBAIhc+hLs0UCCeIOyoi+oooH5UAo0eNRH6QuiZk2GrgoI7RdTUlLcUnoNSoT2cRp0UD/lfZHXoEL9+vWDM/w1q09fLL3ZfJq5qPdQH5i3T/RWR3iqVKkSDDqIN6hSWPs0KKIv0OpvQ2cXatBB2wnddt5j5wXw1c6i8tqsPjmUftcx8tIQqO0ajNHxFc3Y13WEl5Nb1wlauahBCW+fNQtRx1V9vQqJFnROdkbbU1DEuylYowEEXct4Azei1SSagajjN336dDegolUQodc6Sp3gpb7Q7EQFXJTWwTunRbnOKarQgQ0vUOadk+IcJwCIBN7qwp3V9Avt67x+VOl5PHqt+lsvhVBxPtM1oSD0msD73PayA6j/UCBCaYM1s339+vVuxYOCCXlp0F3bV2AjlAIAakPegMHO+nD1lW+88YYLpCswoAC2AhdaZeD1bbtDAXiNCyi4Lx988IGb7BC6LwVRv+X1xwoaKOCg4LomV2hFg0eD/TqnBV0j6XpKYw9qg1Z/eMEKj67Pikvb0ziGdw3mraRRAEPXDLtS1GtDT97jpL+X4lx3oXxhxQMAFJNSIYRSJ6plofpXM/v2339/N5gSepGnL7mazZHrAzg2Ntd9moGi5xd0geWtrNCgTN5czVpVoe0XNHtF92mbmtmQlJTEuQaACBUamPbsbLm/R7PyQylooX4lNEAR2i9qQEKPF9YneQMWGqxQKiANMGgFg2b260ul7vP6RPFm8hXUJ+6sbXn3K5T2XYF8pXPQLS+tWgylNBOh9GU7NEXUrngD3RoML+g6wDsmGnhRHm4FYzTYo38VoPEGaHRMNNhS0AoF0WMaFNpZ2/PSIIwGhEJpdqH2TQMdWjWh91NARLNeNdCkwQetTFF9KPGOhVIZ6VpDQQvNRlVOZs2a1fnVzMiiXOcUNWAS+rer8xG6H8U5TgAQCdasWeP6Mi8IX5CC+tKd9SXF+UzPe73hfW6rLxatmlBaHaVg/OKLL9zjqgehtHoKCuR9XynsOsOriVTUPlx1qvTe3moQrdzT/uat0VAcWmWgdEIK0mu1oNpV2PVMKPWhoX2yJlBo8oHSHKmehFdg2zsGeSc0hJ5v77l5xyDyXosUhd5PfzveeSuuol4bltR1F8oXAg8AsAc0oK8v2iqC5KWIUMeo2RK6aPKoo9bMjVDqPENn3SkVgS7ulC6pIFqaqC/5oWmePPoCnXf73pfrgi44AAAoirxpGdTXaLaa+rXQwf/QvkxBhcL6pNBBD82EV0oAzfhXiqHOnTsHBxg0C040gK3ZfnkVliqiKPTFXvuoGg8FfWkvSkCmOLxBbrU/dADFq6ng9dG6flDgRektlBpLqwc06BJ6bHUsdEwK4qV4KAkaePFSVGngSAMmCjhoFqZ+V2BCKxo0qOLR/itFlW6aZalrIQ3mKPWW2lKU65ySsDePEwCUd5oJr35WAYLQ2eZ7qiQ/07Ut1XnQTTP1teJPM/41uU+peUJ51xGFXWcU53uvUkcp/ZHeV6kDvcF61WrUpMI9uc7QCgUFHLRqQRMrQuszFJWudRT01/4oxaCXWsq7Rho9enSBkws1CdKbIBJa8yI0aOHxVsFoZaD395E3W4LOjxdoCl01oyCP7iss0L8714bwH1ItAcAe0IWROmEVodJKB28WgPIghs7i0OxB3ectJxXlxNSgg0ezGnVRos5bMx2827x581w+RV00aiZk6GPejAgN1mi2qAIhHl08KBii5xSUHxMAgF3RSjuP+qeJEye6HMmF9SsahNCgtb5sqx/yaDab8vPqtR6lNdKXVfVVGqT2Ugp5s/w00K1Ze6F9nga8VUhy+fLlu33yNKtTBRDVh4duW7PzlerBS31UVLuaAejVSshbOFq/6xiFHhMNTKhYs/p9DQAoLWPodlSIUatOQvdbg/pKbVSSA0peuicNHCk4otQWKpjpnYOCrnWUe1nFIkX7qEEcBSE0+KHrk6Jc55SEvXmcAKC8U7FfDe56hX1LSkl9pisdkdI1ecWYNZHvqquuciseVq5cme/5SlmkWfsK0odSvQGlAixsBUZhKYQ0iK+JhF7QQYPuut/r23b3GkB9po6FggNqi77H7w4FMJSyWe31UhJ5tbHUP4cee6V+Vq0EjU8oAK/i23mLXGvMoKCVLrr28Kj9ofR+Grfw+n3ReVfRa00g2dlxKO61IfyHFQ8AsAd04aPOWjP69EVcN6100IxA8QINKo6kwRsttdSFjS4KlMIgtOaDLrgUQFABLN00IKMv/iq2pIsN72KoIMqtqAsBBUC8WYljxoxxF2D6kg0AwO4YOnSoyxes/k5pkRYuXOi+RO+Miiirv1N/pHz/+rKqGYvKl+wVCwwdaFdRR/WfofmLNWNR/aW+QGvQWmmIFITQ75o156X52V1eQUbtqwIe+iI8cuRIV/shtIByUWjQQoUjVRRSX87z5tDWxATVylB/rusC9fWzZ892qRPVLvXxHs2M9HJOKxdyaOoLDeSrb1f6I62I0ICCinsqXZRqKYReUxSVzokGajwaKNLAxosvvuiKPnqzGLVSQzUdlPZJ7dXkCW+Wq3eto3bpGGqGpvIz63wphYUGp3QNsyfXOcVRGscJAMo79ZXe57kGzTUo/d1337nAg/q50EB2SSipz3T1L+pbFLhWG1SrQfV4NCHh6quvzvd8DXCrD9egt9eHq63qU7XCUJ/9RaW0hm+++aZb9aBaA1rJqRoPmplf1JR83uoDFa0+8sgjgzWnNJiuayf1qUoltSdUHFrt1DFSvQhlW9Dv99xzjwvcaFBfEwT0PlrVp6CDrkVUm0nHSCkPdY2lvw+1N+95HDx4sFtZoWs3Be4VOApdSaGMC+rXVe9JBchVE0srHnVN+OCDDwaPg+pzKSWjJnfsybUh/IXAAwDsAS0b1DJQDcxoCaQ6aA0Y6AuvZmqoqJSKMKnz1326qLnlllvcLDwVzNLvoRdR6nw1qKKZA1oWqZkRunjaVWesWZoapNAsUF2E6UJDF1IaFPBmRAAAUFyDBg1yfZIC2foiqYHlXfUrWuWnAWcNPmhwQKsj9BoFGNRfhVJxSPWh+sKvPjWUvtxqVqP6NwXRNQigbWubeZ9bXBpU1+CCBipUzFKD0Rpk136HFi4uCg1u61pA/b5SRnl1nkIpRYJWD6j+gQbAVTtDkwU0WJN3lqCCMbo+CF0B4s0Y1OC/Ui2ofoJmCmrARl/mlf95d2gW7Lnnnhv8XcdB29S+hV57qH1qgwYddD4VTFFwQjmsda1z8cUXu+sgPaY2atBC50jXQNq/Pb3OKY7SOE4AUN4p7Y33ea7vgvpeqmC2+vGzzz67xN+vJD/T1Rfre6y2pSCCAsaaWFdYXQQFmNU+va/eS0F6BTt0fVCcGgaaFKAVlOq3dK2h/ddAvAbGNaivgXUvkFAYTSDQigb1ORp0D00NpQF7TTg87rjjbE9oFYj6WV2DKXCgILqCBWq/CjxrtYLGF1RbQtdO3so+XWPpPKkPV6BAfw9K4ajj5FFwRNdn6tN1vNVeBRO8gIJoe7p2UQpDnSNNOFDwQ/vjFSDXCkcFjHQtpH3LWyOsONeG8JeoABU6AAAAAIRQEUMFspVnmZz4AAAARaehVtWR0kQHrVgAIhUrHgAAAAAAAABgDyhd1KhRo1xxaq0W1UoFIJIReAAAAAAAAACAPZCYmOjSH6nOhtIRqh4CEMlItQQAAAAAAAAAAEpM7kpmAAAAAAAAAAAAe4DAAwAAAAAAAAAAKDEEHgAAAAAAAAAAQImhuDTKnIruZGVlWXR0tEVFRZX17gAAykAgEHD9QWxsrOsPEP7o3wEA9O/+Qt8OAChO/07gIYKlp6fb/fffbxMnTrTExES7/PLL3a0g1157rU2ZMiXXfcOHD7du3bq5n0eNGmWvvvqqbd++3U466SS75557rEKFCkXaDwUd/vzzzxJoEQAg3LVp08bi4+PLejdQAujfAQAe+nd/oG8HABSnfyfwEMGGDh1qM2fOtNGjR9vKlSutX79+Vr9+fTvxxBPzPXfhwoX22GOP2aGHHhq8r0qVKu7fL774woYNG+Yer1Gjhg0YMMD9fO+99xZpP7zImP5YY2JiXNRs69atVrly5SKtgAjkbLJAygdmmVMtPTvD1mdUtM2ZUbY9M92yAjn/vIdFW3JcvFWOS7Rq8bFWOXabWSDVLPYAi6pwtkXFNbW9obhtCye0LTxx3sKTH89bdna2C0Kz2sE/8vbvfuHH//52JRLbLLSb8+1306dPt6OOOsq++eYba9euXam8B/27v5RU3+6Hz1c/tMEv7fBDG/zSDj+0wS/tCJRyG4ravxN4iFApKSk2btw4GzFihLVu3drd5s+fb2PHjs0XeMjIyLDly5e7i4tatWrl29Zrr71mvXv3Dq5+0CqKK664wu64444irXrw/gPQhYsXeNAfrn7e1X8cgeyVFtjxvKWmzbYlKQm2Jt3svdEzbeYv20wv7Xp8Teveo67Nn73N3nl1maWlZts++1W0G29vYftXq2LVcmaapa6wqOjLLCq+s5W24rQt3NC28MR5C09+Pm9+a08ky9u/+4Wf//srTCS2WWg35zsS7Nixw/1b2p/TkfTZ4Wcl1bf74fPVD23wSzv80Aa/tMMPbfBLOwJ7qQ272jZJlCPUnDlz3DLJ9u3bB+/r2LGj/fHHHy5HV6hFixa5P6SGDRsWGuHq1KlT8D7NlsnMzHTvUVrSMrNs2sI/bO6C+23+mqk2aWW2zd6UalO/X2eLZu+w/o8fYAOGtrSvPllrKxel2kuPLrIr+za1oS+2t+ioKPv4k6X2x6b1Nn9HZcvO3maBHa9aIOOPUttfAAAAAAAAAIgUrHiIUOvWrbNq1arlysNVs2ZNV/dh8+bNVr169VyBh+TkZLvzzjvt559/trp161rfvn3dslwt29FrateuHXy+CotUrVrVVq9eXexoXN5bXhlZWfbV7EX21V/zrVOdT6xF3Tm2ILWyBQLRFm9RtmROqm3bkmmP3DrbWnZItozMHHvj1cWWsj3LXhgyz62COLhrNTvssJoWGxVtf2/fZClZSda60haLTRljgZiGFhVdbbePa3Ha6De0LTxx3sKTH8+bn9oCAAAAAECkI/AQoVJTU/MV//B+V2qlUAo8pKWlWdeuXa1Pnz725ZdfumLTb7/9tgtWhL42dFt5t7MrCmJoGZAGn5QKKu+SneWbttr7v822v1att471F1vzOgtsRUaSRVucRVuUzfx1sy2Zu8P6DmpkX36w3r75ZKO1bJ9kq5enW5OWFSwuJsrWr8m01ctTLG37NouNTrSESom2JmW7BbIrWOtKCy078w3LiLvISkthbfMD2haeOG/hyY/nLe9qOwAAAAAAEL4IPESohISEfIEB7/fExMRc91933XV28cUXB4tJt2jRwmbNmmXvvPOO3XLLLbleG7qtotR3CKWCJ16NB9H7eQNqc1ats//7cYat3rLDmtaqYp0bz7EPP95ikyemu8f32S/BTruoth3YOdkeu3OxJVaMsahos+WL0yx1R45t3ZRiVWvGWbNWFS19R45N+WKzdT+pmmWmZ1mFqhVsfWa6rctKsvrxf1hi8hkWFbOPlYaC2uYXtC08cd7Ckx/Pm1L3AQAAAAAAfyDwEKHq1KljmzZtcnUelBrJS7+koIMCAKG0CsELOniaNGliCxYscCmVFMRYv369NW3a1D2mbSpdU0GFqHdGg2feAJr3s25/r99kr3z9i63blmJN61S32kmLbc3Sv+2rL9PsxvubWiCQZeNeWW1Tp2yxJfNTLDomytatyrCECtFWr2GizZ+5w+o2TLDoGLPff9xmiRWibNu2BLO4GMvOzrEdG3ZYXNVEWxAdbdXjN1pixi8WVTF/PYuSEto2v6Ft4YnzFp78dt780g4AAAAAAEBx6YjVsmVLF3CYPn168L5p06ZZmzZtXKAhVP/+/W3AgAG57lPhaAUf9Fy9Rq/1aJvatlZG7Kn0zCx788c/bM3W7bZfrWquMHRS0nyrVDnbzri0vubImub91mmYYJs3Ztrf81Nt2+Ysq1Uv1mJizRbM2mHdzqhhq5el2zFn1LTL79zHtm/9Z1ZtZk7AcpTaKSrKMjan2Y7UdNugBRQZv5BrHAAAAAAAAAB2U+4RZkQMpUHq0aOHDRo0yGbMmGGTJk2ykSNH2iWXXBJc/aC6DnLMMcfYxx9/bB9++KH9/fffNmzYMBdouOiif2ohXHDBBfbqq6+6bWhb2uY555xT7FRLBZn81wKbuWKNNaxexQUdcgIBq5S43GrUSbR9myRYdiBg27Zm289TNludfRIsNi7K4hKibOO6LEtLyTGlDP9r2ja32uHN51faSw8tdbNqT72wttueXp/97yzbrO0ZtnJHlmVmrTMLbNrjfQcAAAAAAACASESqpQimVQwKEvTu3duSk5Otb9++1r17d/eYCkkPHjzYevXq5e6777777MUXX7SVK1das2bN7JVXXrF99vmnDsIpp5xiK1assHvvvdfVdtDz77jjjj3ev9SMTPtq9iJLSoizhLh//lRTo1KsesJmS82IdWmSNq3PtDHPrrSOR1axDWsyLD01YP2eamqTPlhvP0zcbIoprFmeYfsdUMESK0Tb4rmpVqNOnCXXiLVAlCJv/wQzLDraojKybf22gKVW3WLx2WvMoqvvcRsAAAAAAAAAINIQeIhgWpEwZMgQd8tr7ty5uX4/++yz3a0wffr0cbeSNH3pKluzZbs1rPFffYl0S7HoqGzLyAjYyqXpNubZFXbkydWty7HVbPvWLFu5JM1efGCpS5UUnxBlWZkBsyizxXNS3aqHGrXjrXqtOPv2s412/Gk1LUYxh39XUsRER1t6Ro7tSE2xKoHcxbIBAAAAAAAAAEVD4AHl1txV61wAIS4mJnhfSiDLsrPNtm3NstefXmOnXlTbWnes5B6LT4i2FX+nW+MWFWzBzBSrUTvOYuKiXTCi8QEVrPdt+9j7r65221yxOM1yosy8LUdp5YOqRQQCtj0l3SyKLGQAAAAA/G/tjrW2YuuKAh9Ljk+2Kon/TQQDAADhIS4urqx3gcADyicFBxas3WAVE3L/R5KeE2NbMmLt24kbLD0tx77+eKO7SfO2SXbIMVXth4mbrFLVWNuyOcsqVIyxnpfVsS/fW2/bNmXZ4SdUs9FPLrdOR1V1qZY8SsmUEzBLjM2xHSkBC1hlLZQAAAAAAF97Z9Y79v6W9/PdX7NiTbuh8w0EHgAACEPx8fFlvQsEHlA+pWRk2pYdaVYhPnfgIZBjtmBrVbvwom122On1cz22ZkW6Fiy458z+fbvFxES5gEJUdJSd0buOjXluhaWn5rjHjzqlukvBpOBDVOCf1yvQUCE207alxNim9RWtRr292WIAAAAA2Ps2p222rO1ZHHoAAFCiSLWE8iMjw0xplQIBy0xNs6jMDIuLirXo7GzL+TfdUk5awJZuTLLoqtkWk5llAfsvJdKGZen2/ZTNdvmdDa3b6dXt9WdWWvuDk23C2+vs+oENre9dDe290WutVt04S4w2y8nKMZWX9kRnB6xydLrNXVrHGiRutBohtSVcBCN0iVJmptvPAu3sufpX7dRNz5PQCOTOtpv3uVlZZjk5JfNc7a+3P7v73ILaFvpc5cjSrSjb3dVzY2NdQfC99tyC2hb6XB0DHYvC6O/XSxlWHp6r9uhvrbC2FfbcgugY6FiU5nNF+1fc5xbUtrz/fe5suyX13/2ePLewz4iC2lbePyN29dyd/bcJAAAAAADCCoEHlB9PPPHPIFUgYNV27LATFyx3BZ937NvI/jzqWPeU6JSAtf5ggVWtudraR62y1Kz/Bu9amtn22Dh7ftDfrkTDgZ0r2bnL1ts+dbPtzQcWW1bArFVlsys05vf6BkupmWjLTmkUfH2zjxZZlawdtmlWplVpPsxsnxr/7VutWmbXX//f7y+/bLZuXcHtqFrV7Oab//v9//7PbOXKf34OBCwxPd0sIeGfwbaKFc3uvPO/544da7ZkSeEDdHfd9d/vb79tNn9+4cdz0KD/fn7/fbO//ir8uQMH/jcI+cknZtOnF/7cO+4wS0r65+cvvjD75ZeC2yY6DjoeMnmy2Q8/FL7d664zq137n5+//dbs668Lf+5VV5k1aPDPzz/9ZPbll4U/99JLzfbb75+fp00z++yzwp97wQVmzZv/8/Off5p9+GHhbVOx9dat//l59myzceMK326PHmbt2v3z84IFZm+8UfhzTz7Z7OCD//l56VKzUaMKf+7xx5sdfvg/P69aZTZiROHPPfrof26iv90XXii8bYcdZta9+z8/b9li9vTThW+3c2ezU0755+eUFLPHHiv8uToGOhbeAPojjxT+3FatzM4557/fd/bcZs3MLrzwv9+1D/8O0Odrm/4W9DfhUdu03wWpX9+sT5//fn/+ebPNmwt+bkl9RuRV2GdEQW0r758RBQn9jPjmG7Pq1Qt/LgAAAAAACBsEHlAuxcfEWFxsjGVk5Z4BG5MeYxkZcbY8NdmaV9pkaVmxFgipxnDOgXF28MkN/3vB2E12VG1zt12plJhhWzck2OZ1FS26BRUeAAAAAAAAAGB3RAVUxRcoQ9nZ2TZ9+nRr16qVxcTEuMLSW7Zssbd/m2tTFy2z/WrXCKZaWrZsg81Yu8AS9t1h/Vr8ajUrpNqK7ZWD21LNhkBsSPqkzIJTfLg/+ihF3v55buWENKsQm26j/3eQpU6oaY8Pv8pqN6xZ4mlUvLZVqVLFonyWaqnAtvkk1VKBbfNJqqUC2+aTVEsFts0nqZYKbFs5/4zY1XOzMzJs+p9/Wrt27VxfAB/17z47p4X+9+djkdhmod2cb7+bNm2aderUyXo82cOy6ua/jqybXNcGHTXIGlT+d6XxbvBrXxCpSup8+uHz1Q9t8Es7/NAGv7TDD23wSzsCgYBlZWVZbGxsqbShqP0BKx5QfmgQ7N8aD/q5acO69u2SFZYVFRWsxBAdHW1xOyrYxrQoe3dVC7uq+QyrUTnN1qVWLHCTOXHRBd+voIPGwrL/KShdPSnVJi5vbIt+r2uNKsZbjf3q/DfwWpDQQcNdCX3uv21zt4L+wy/OdkMHWsvDc3fVttDB7F0pb8/dVds08B06iLsz5eG5aoP33F21LfS5xdluST5Xdue5u2pbcbe7u//dl8Zzi9K28vYZsSsMRgAAAAAA4BsFj8oC5UCHRg2sWlJF27gjNXhfQkKsJWTHWcLqKPt5c137YHFzS4jOsroVt3vrGIpEw3TROWaV4tOtbqXt9sO6+vbVjy0sfmXAGjWpw2wcAAAAAAAAANhNBB5QblVLqmBdmja0TTtSLfvfVB0VK8ZbfIU4S9oQa3Gbo+yz9Y3sjfmtLD07xppW3uxWL+yK0jHFWbY1rLTFKiWk25erGtk7v7W1Kn/FWnR0lHXsesBeaB0AAAAAAAAA+BOpllCunXJQC5u5fI0t37jFGtWsZhUS4y0pKcHSU9ItaVGO7WgWZZOtoc2fUc3ObTzHWlbfYPEx221LeoLtyIqz1KzYf9c3BCw+OtsqxGVZ1fh0iwsEbOW2SvbeimY2Z0ld2/evOEvbmGZVqiXZoce0LutmAwAAAAAAAEDYYsUDyrWqSRXsrIPbWHxsjK3evM2ioqOsdq3KFpsQZwnRcZY0P8oSN8bY0sxK9uTcjvbk9M721fJ9LTMnxqolpFmTylusSeVN1qTyZqtTMcViogL217qaNuKvdvbwzC62YH49azQrzqLWZJrFxdjR3dtYtWrJZd1sANirMjMz7bnnnrNjjz3WDjzwQDv66KNt8ODBtn270tiVX7Nnz7bffvutRLeZnp5uw4YNsxNOOMHatm1rxx13nD377LOWlpZme6MA2NixY3f79VOnTrUDDii9VXvatt4DABAe6N//Q/9eOPp3AEBpYcUDyr2O+zWwcw85yN766Q9btmGz1a6W7FY9bM8JWOy2HKs4P9vi68ZaSp0smxldw2YurW4Ji3OsbvwOq10hxeKiclyB6o1ZibYmNckyMuIsPj3Kai6PsVrLYiwrNct2ZGZbnUa17MRTO5R1cwFgr3v88cfthx9+sIceesgaNmxoy5Yts4cfftj+/vtvGz58eLk9I9dff73dcMMN1qFDyXx2Z2Rk2CWXXGKpqak2YMAAa9q0qS1cuNAdi7/++qvUj8Uvv/xiDzzwgF144YW79fr27dvbd999V+L7BQAIT/Tv/6B/BwCgbBB4QFg4plVTqxgfZ+N+/tOWbtps1etUstS0DKtYpYKlbEm12FU5Vm1zvGVUybG0atmWVSHKlmZWtr+zKltO9D+FpOPTzSptjbI6a2Osyrpoi82IsvQd6ZaRmW3JtavY2RceZvvsU72smwoAe90HH3xgjzzyiB166KHu93322ccGDRrkBsDXrl1rtWvXjoiz8uqrr7qgy2effWZVq1Z19ykQU7duXevRo4d9//33dvjhh5fqioc9ER8fb7Vq1Sqx/QEA+Lt/jxT07wAAlA1SLSFsdNl/X+t36lHWtfl+Fl8h1qIrx1lKdMDiqlWw6IRYt3IhdkOUJS+Ot0rz4q3ikjhL+jvOas2Ls+a/xlnb7+Ot2e/xVmNFjEXtyLbtm3ZYTlSUJdWrbkcee6AddWTLsm4iAJSJqKgo++mnnywnJyfX7PlPP/3UDbYfcsghlpWVFXzsiy++cOmYNFB+zDHH2LvvvmtnnnmmS010+eWX24oVK6xv37520EEH2RlnnGHz5893r3v//fft4osvthdffNE6d+7sBvE//PBDmzBhgkvzdOWVV9oTTzyRa4aiVmHo/XW7/fbbbfPmze4xbUfvo5UJ/fv3dymAtC/33XefdezY0aVLatGihc2aNSu4vQ0bNlirVq3cSo7CBmh69eoVDDp4tJ0xY8ZYu3btgukaHnvsMTvqqKPcfddcc42tWrXKPbZ8+XKXsmDixIkuTVObNm3s6quvDu630l7cfffdrj06xnrtmjVr3Ou02iI05YHapdvpp5/uBo2WLFliCxYssCuuuMK9Vtu+4IIL3KqMvKmWdrUf8uuvv7r26ryddtpp7ryG0jHU+2pfx40bV8y/KgBAee/f+/Tpk+v52/7aZoueXOT690VPLbLVP6+2ay+5lv6d/h0AgN1C4AFhpXblZLvmmENs4GnH2KXdOtu+tapZti6qqyRYVNVEy4gzy8jJtqjUHKu2Ksf2W2DWZL5ZlXVmgR3Zlro9zQUcMtIyrWKNSla1US07/KiWdsH5h1p8PAuAAEQmDXi//vrrwYF7DUCrpsH+++9v3bt3dz9r4MLz+eef20knneQGNOTpp5+22267zd544w2Xkqhnz5522GGHuYBEhQoV7Mknnwy+9vfff3erCvTYKaec4mZevvbaa/bCCy/YRRdd5GYlahui182cOdNGjBjhnqOaEzfddJN7TDUptBJh4MCBdtddd7n7FIhQsEIBDg2oKwAROpiun1u2bGmNGjXKdwyUXkkBCQ3QF6RTp06WlJTkftYx+vLLL23IkCH21ltvuaDMddddl2tgR2mZtP8KWPz555/2f//3f+5+1XBQSqWRI0e6Y7Bjxw43G7VevXquTaJ0SRoYko8++shuvvlme+mll2zfffd1gYoGDRq4+/Xe2dnZLghSmML2Y926dS4QoeP08ccfu6CPghwKRsjbb7/tjrn2bdSoUfbee+/Z7tI++u2mc13W+0CbOdf8jfPf9q7+BhSkV//erVs3u/fee13/rX6ncePGLuCvPrNixYou0KDbtlnbLLn1f/XulkxYYldcf4XrQ9Q3a/Vfly5dXB+RmJjoJgt4n4nq35cuXeoeO/nkk13/Pnr0aNe30b/7r3+nL/XX9YAf2uGHNvilHX5og1/aEQgESnX7RcFIK8KOBroa1azqbmcdfKBN+GqmffG/WbYtLd0qVoo125puqRu2Wfr2dMvOyrQ0Za6IMouJibb4CvFWtV6SBRLjrUq1JDvs0GbW/fgDrWLFhLJuFgCUaa0EpRRS4OCdd95xX3g1yK4Bfa1k0ICFViV07drVDdB/8803biDDoy+3CjSIBiT0pff88893v2u2vgYePLr40Yx/DXSce+657jGtjtDsfG1bX4AXLVrkBkX0ZVq/e7P4hw4d6mbfz507190XExNjlSpVcjePvmB7gQUFNvSl+tZbb3W/a8BF9xVk69at7t/QbRVky5YtblBAwRC11cuhrRUgmj2q/ZYbb7zRzRAVrSbQoIC3EiEhIcENLmhlxaOPPupWIagtVapUcc8JTZekQIgCQpKSkmLnnXeeW+Wg4ycK8rzyyiuF7m9h+6EAiM6ZBoNEx0zFunU+FGTR30Hv3r3duRetPCns2O2K954AgL1Lq9Y0MDBp0iT3ua5BZ00IUEBC/Vbz5s1dn63+JXV9qu2Yt8OqnVXNtm7Z6gZcarStYa3atLK0dWmu31V/pVWACl5oAF3XBtOnT3cBBz3/1FNPtU2bNrm+S4PbmqSg4Ibei/7dX/07fTsAlG/x8fHB+o3qi8sKgQeEtdjYGDv1+IOsXcuGNmnyLJszb5XtiDWr2qiixcdFm2UF/olSKsqXE7CcgFliYpw1blzLuh3d0locUC84YxcAIpkCBLppwEAz8jTor8CDBho0kKBggWYvfv31167mw4EHHhh8rS5oPJoBqUH10N+VXshTo0aN4JdqDcB7Oac9uk8XRrpA0uv0RTyUPtOVcsgLRuQVuq0TTzzRFYbWF2592f/tt9+Cswe9GYeilRHPP/98MLCwM3pv7YPSSHkUQFDAQSmPvMBD6KqK5OTk4DFQsEUpLhTEOfjgg10aJAVuChN6LHXcFNBReiqtBFGARjNQa9asWejrC9sPvfarr77KdRz0mLf/aosCUh6tfvHOW3FpcEWBFb9Q8EyBqsqVK0fMNUQktlloN+fbD5QS8IYbbnBBA/XvGphW8Pz44493qx4UOKiQWMHS16RbbKVYq9G8hnvdhugNVrleZReoaNKqiVtlqP7fSzu4ePFi93mg3/Wz+iIvIO8NsB955JFWv359N0hN/+6v/n1P+3Y/fL76oQ1+aYcf2uCXdvihDX5pRyDwz3ioVvyXRhs0saEoQWgCD/AFFYW+tPcRtnr1Zpv110pbtmyDLVu+0dLTM4MBinr1qtq+DWtYixb1bL9GNcP2wwMAStKcOXPcF10tw5dq1aq5mXMnnHCCS7OkFEtKxaQLC6UIUroizWAMlfeLZ3R04ZkcY2PzX3oU9HnsLd3UKoy8X4gVvCiMF8yQ6tWru9me2mcNlihYoIETUZtDgyN6XbNmzVxNiLztE6V00gxCfUEviLcc1xMXF1fg8/QeU6ZMcQEc3ZQm4ZNPPnEDQbtqj2aYnnXWWe4caZakAkIaYFDapsIUth9KD6XzrNQOhZ2fvMWuCzp3RaG/D78FHvQ3rjZFyrVEJLZZaDfn20/9u/pO1V1SH6f+/eeff7YOHTq4/6ZTVqXY9sXbrdKBlXL9Nx4VE+V+9/7bD/0812eCd59+Vh8R+piE3uehf/dH/76nfbsfPl/90Aa/tMMPbfBLO/zQBr+0I/BvGsWybgOBB/hK3bpV3U2ys3Nc4EHXVQkJsS74AACwfAMAygus1Q4qvBy6NFMD8hq818+aGam6BkonFDpTrrRoFYUukjRDU7M0vOLQWoWhgtKa3VcU+vKu9ingEJpKoKA6DzoGSs2kYpua3RI6eKPC0wrGaL/0BV0zRI844gj3uFaJqD6EN5twZzQIpOOp/Nca/NF2tApCbdvVBaEGidauXetyNnuDBJq9mncAoSi0r8rHHXocNMCh1SYarFCARDNYNBvWSxHlpaMCAPijf9fgteonbVu8zVIWpliNowoP7JcU+vf86N8BAH5FcWn4lmo6qHZDUlICQQcAKETr1q1d7mUVR9aAtgaYNRiuAsoahNasSG8AX8WQNYCvQenSpsDC2Wef7dI7TZ061RYsWGB33nmnG+D30ilpJYRmBCo4URilMlJ6JH2pV+qlndHKDqWHUO5r1bFQuifVhdBAvGYgKmWEal9ovx588EG3XwpK3HHHHe64HH744bts17Zt21z6px9//NFtX8dcr9UsR6WzEKVZSE9Pz/dapXRSHmjl6tZ5GjdunFspsTs5O5VHWu/z1FNPueOj/dDqC6XEEOWGVn5urRaZN2+eC/jsbCULACA8+3f1S5vnbLbYyrGWULv0697Rv9O/AwAiByseAACIcE8//bQNHz7chg0bZitXrnQD+qpBoDoP3soCFXXWoLtm6u8tSg8xZMgQV0BR+Yk7d+5sL7/8cnBpv/Ihq7CzBs4VLCiI9l8BA83o3FmKJtEMUBVfVL2H+++/39avX2/16tVz6Q9UtNpbkdCvX7/gfmnwRimYtFJCs0h35cILL7TVq1e7YIXqSahWxosvvujapLoVCl6oroWCAHkpX7NWm2jfFJjQ8++9914XFFizZo0Vh3JL65zr+L366qtWp04dd7w1M1aUjkMrORRgSUtLc6tAFGQBAPirf1dAOzou2qVZ2lvo33OjfwcA+FVUYHfW5wMlvAxYs29UmEwDL/qT1GBMlSpVwjaXWmFoW3jivIUnzlvJ0sC9BsVVjyC0mHRp9QUlSQP5WqVw5plnluh2UXbntCz5+bOlMJHYZqHdnG+/mzZtmh188MHWrEUza3RdI4uvnjuAXje5rg06apA1qPxfIeTion/3l5I6n374fPVDG/zSDj+0wS/t8EMb/NKOQCDg6v4oRW9pFZcuSn/AigcAALDTCxal25k4caKbkVcaQYfSosLYv/32my1cuHCXaZYAAIi0/l0pA2vXrm0V61TMF3Qoz+jfAQAIDwQeAABAoTQ74rHHHnOzGJQSKJx89NFHNnnyZHvggQdcmigAAPBf//7GG2+4NIN1u9YNq8NC/w4AQHgg8AAAAHZKg/fhaPDgwWW9CwAAlFvPPPOMderUydpVa2dZlmXhgv4dAIDwEF3WOwAAAAAAAAAAAPyDwAMAAAAAAAAAACgxBB4AAAAAAAAAAECJIfAQwdLT023gwIEur2fXrl1t5MiRu3zN8uXLrX379jZ16tTgfVu2bLEDDjgg1+2QQw4p5b0HAAAAAAAAAJRHFJeOYEOHDrWZM2fa6NGjbeXKldavXz+rX7++nXjiiYW+ZtCgQZaSkpLrvgULFljVqlXtk08+Cd4XHU1MCwAAAAAAAAAiEYGHCKXgwbhx42zEiBHWunVrd5s/f76NHTu20MDD+PHjbceOHfnuX7RokTVu3Nhq1aq1F/YcAAAAAFBSqiZWtdjk/EMDNSvW5CADAIDdRuAhQs2ZM8eysrJc2iRPx44dbfjw4ZaTk5NvxcKmTZvssccec+mYTj311HwrHvbbb7+9tu8AAAAAgJJxTutzrG27tgU+lhyfzGEGACAMZWRkWGxs2Q79E3iIUOvWrbNq1apZfHx88L6aNWu6ug+bN2+26tWr53r+o48+aj179rRmzZrl29bChQtdEOOss86yNWvWuJoRAwYMsNq1axdrnwKBQL6b39C28MR5C0+ct/Dix898AADCQe2k2tagcoOy3g0AAFCCMjMzrawReIhQqampuYIO4v2uiFioH374waZNm5arhkPeVEsKVCjYoIGjp556yq655hqXyikmJqbI+7R161a30kLb8OpIREVFmZ/QtvDEeQtPnLfwotV2AAAAAADAHwg8RKiEhIR8AQbv98TExOB9aWlpdu+999p9992X6/5Qn376qQsQeI8/++yz1rVrV/vjjz+sQ4cORd6nypUru0CFN+u1SpUqvgw8CG0LL5y38MR5Cy/Z2dllvQsAAAAAAKCEEHiIUHXq1HF1G5Qiycv3pfRLCh4oAOCZMWOGLVu2zG688cZcr7/qqqusR48e9sADD1iFChVyPVajRg2rWrWqS7tUHAoyeIEG72e/BR6EtoUnzlt44ryFDz9+3gMAAAAAEKkIPESoli1buoDD9OnTXU0GUTqlNm3a5Cos3bZtW5s4cWKu13bv3t0eeughO/zww2379u3WrVs3e+6556xLly7ucQUcFNRo0qTJXm4VAAAAAAAAAKCs/TfCjIiiVQpasTBo0CC3qmHSpEk2cuRIu+SSS4KrH5RmSSsgGjVqlOvmrZjQyobk5GTr2LGjDR482G1n1qxZdsstt9gRRxxhBxxwQBm3EgAAAAAAAACwtxF4iGAqBt26dWvr3bu33X///da3b1+3mkFUo+Gzzz4r0naGDBlirVq1sj59+tjFF19sDRo0sMcff7yU9x4AAKBshK4OjRSR2Gah3ZElUs83UBb8kGbTL58ZfmiHH9rgl3b4oQ1+aUdUOficJdVShK96UNBAt7zmzp1b6OvyPqZCyVrxAAAAUOK2bDHbvr38HNhAwCqqGPrWrbqat4gQiW0W2s359ru1a8t6DxDBYjJjbNuKbWbh2q0EzLKzs23b1jBug1/a4Yc2+KUdfmiDX9oRMItJjCnrvSDwAAAAgHJMQYdhw8zWr7fyIpCVZRYbWfN3IrHNQrsjS8Sdb7UXKCOZOzJt2vBplro+NSzPQcAClpWV5WpnRoXtyKQ/2uGHNvilHX5og1/aUaFmBet4TUezGmW7HxF0VQUAAICwpKDD6tVWbmRmmsXFWUSJxDYL7Y4skXa+IynIgnIpZX2K7Vi9w8J2YDIzy2Ljwndg0i/t8EMb/NIOP7TBL+0IaMlDORD+CasAAAAAAAAAAEC5QeABAAAAAAAAAACUGAIPAAAAAAAAAACgxBB4AAAAAAAAAAAAJYbAAwAAAAAAAAAAKDEEHgAAAAAAAAAAQIkh8AAAAAAAAAAAAEoMgQcAAAAAAAAAAFBiCDwAAICgY445xg444IDgrXXr1nbiiSfaqFGjinyU9LqpU6eWu3a9//77JbL/6enp1rNnT9u0aZMtX7481/Fq2bKlHXLIIXbdddfZkiVLLFwEAgF7+eWX3XHq0KGD9e7d2xYsWBB8/OKLL871OwAgvByzaJEdMG9e8NZ63jy7bcECq1q1apG3Qf9O/w4AQHEQeAAAALkMHDjQvvvuO3ebNGmSXX311TZ06FD78MMPw/ZIvfvuu3byySeXyLY0QN+tWzerVq1a8L5x48a54/XVV1+5xzMyMuyiiy6ytWvXWjh46623bOTIkXbPPffYe++9Z/vss49dddVVlpqa6h6//vrr7f777y/r3QQA7IGBtWrZd02auNukxo3tjJo1rVatWva///0vbI8r/fvO0b8DAMoSgQcAAJBLpUqV3ECEbvXq1XOz+w899FCbOHFi2B6p6tWrW2Ji4h5vZ8eOHfbaa6/Zueeem2/7Ol5169a1gw46yJ5//nmrWLGivfTSSxYOPvjgA7v88stdQKVx48Y2aNAg27x5s/3222/u8S5dutj69evt119/LetdBQDspkrR0VYrNtbd6sXF2ZFVq1pKSor98ssvYXtM6d93jv4dAFCWCDwAAIBdio2Ntbi4OPdzTk6OvfLKK3bsscda27ZtXRqeuXPn5nvN+PHjXdqhrKys4H1ffPGFHX300S61j9L6jB071s455xxr166dDRgwwGbNmhV87urVq+2mm26ygw8+2G3noYcecisJRGmT9L4vvviide7c2Q4//HC3ImPChAlu8LxTp0722GOPFZhqafv27e69FEw58MADXSoprewoio8//tgNzNepU2enz0tISLAzzjjDvvzyy+B98+bNc/usY3bCCSe4tuc9Xscdd5wLXNx2221266232nPPPece0+sefPBBd8x1/NSGVatW2TXXXOOer/YNGzbMsrOzg9tTkKBXr17u/U477TR37Atz55132umnnx78PSoqyp2jbdu25TqGb775ZpGOEwAgPOizXn280L/TvwMAUJIIPAAAgEJlZma6lQ7ff/+9G/QWzeZXWh6lZNJMugYNGtiVV17pZk2G0vPT0tLsp59+Ct73+eef20knneQGtkUD63369HFBgwoVKtgjjzzi7leAQXUGlOrn9ddft6efftq+/vprl/LJ8/vvv9uyZctcmoVTTjnFzdLXagQFI/r37++CI3/99Ve+Nj388MO2ePFi14ZPPvnEBSnuuuuuYFBjZ7799ls77LDDivQXs//++9uaNWtckEDHQamLOnbs6AIM/fr1sxdeeCGYvkpBAh1PHUcFSHQsPvvss1zb0/0KpijAkJSUZDfccIPVqFHDnYPBgwe7oMjw4cPdc9etW+dSZCnwoPu1XR2TwlYs6BhotUZo6igFjLS/HgV3lE5Kg1TFoWDIntz0fuXu9u9gXUTdIrHNtLvsjz/nu2T/lkP+O87IybGft2xx/Un79u3d5636ZPWN6i/Ut9avX9/1HwpCe4FtBScUAFe/9sMPPwQ/q9VnKZCvx7V9beuKK65w6fvo3/3Xv+9p3+76d/PDf1flYB9oB+eirP9++O+iXJ+L7BL4vC7sVhT/TG0AAAD413333edm14sGFpSiSEEAzYjXBcyYMWPcbHwvEKHnHn/88W5A/bzzzgseR3151uoDrULo2rWrCyJ88803LpDgURonzfLXhYuCB88880xwgF+D9u+8845VqVLF3Xfvvffatddea7fccov7Xfty9913u5RGSn00evRo69u3r7Vo0cLdnnzySVu0aJG1atUq17nVConLLrvMmjdv7n5XiiF9Ed+wYYNLLbUzCmRoYKWoKau89EzKn61BhJtvvtndt99++9mKFStcoKRHjx5uJYFqUHjHT0EUDQKE0kCPCj/Ljz/+aCtXrnT7HR0dbU2aNHHBDK3kUD0GraZQgER1JqRRo0Y2e/Zsd4w0CLEzf/zxhw0ZMsQNGCl9lKdp06Yu/ZL2WzUgiurPP/+03RUfH29NEhMte/t2y9m6dbe3AwCRLpCTY4PWrLEH/609lB4IWFxUlG3atMkFGBTM91IJKn2Rgg0a3FZ/rIC+1+cvWLDAfTZrpeIbb7zh+vr09HRX40h1gqZPn+4C+eqDatas6bZD/+6//n1P+nbR31CtxFpucsZW+ncAKHGB5IDrj9VHFGWCXWkh8AAAAHK58cYbrXv37sGUQfpyGhMT437X4Ly+nCq9j0cpmJSyaOHChfmO5KmnnuqCA/qirRULtWvXds/1aADeo1mAXlombUuPeUEH0ZdyPb506VL3uwbyFXTw9lNCvzArYFLQRZYG+pVaSUENBSa89E5FmbWxcePGXEWld0ZfpkWDMnqfOXPmuFmlHr2fd1yVqiq0boTSXoQeJ9HKEo+Oj85D6IxFzTJVoEiDSHo/DQKFvp9WryhN1M5o4EkrM4488kiX5iqU124dg+IEHtq0aRNs5+6IXrXKLDnZrHJlKw80H1R/hzpH/6zb8b9IbLPQbs63n0Rt2GA3Vqtmx+vzVP1mVJQtS0y0Q8aPd31Dw4YNXb+lIIGC9x71I+pLFWjwVvPp5wsuuMBNVFBfpT5Vs+oVqPAGlRXk1/PU1yloT//ur/59T/t2TR7ZumKrJScnW1Tl8OxZNJP4v74xPNvgl3b4oQ1+aYcf2uCXdiQlJ7n+uGXjlsFsAyVJ/XtRgtAEHgAAQC4a0NcMuoJ4A/wFXXjoi3Fe+oKrx1S4UjUGlGYplFc3oijv4wUGvH+9nNShinJRpXoG+gKuGgznn3++C6zkLRZdGG2/qMtKFUzQLFJ9qdaFq2pKaNVGQfTlXV/CQ+X9PfSYaHuaBal0TQWttNDjquugGhChCjpmnqlTp7rnK+XCE0884WZahvLOb3EvXNW2PRmcML2fdysnov49DuVnj0pfJLZZaHdk8fP5VptqxMbafiF9ycp/P+f1Ge0F8vN+Znupk7z71DfoZ61o1MSC3377zdUz0qo97zk6huqzCvrsp3/3R/++p327joH+S3P/vZWj/r24gm0I808NP7TDD23wSzv80AY/tCPq333XZ3VZfs5S4wEAABSZvvQqdYJSKYTOtNOqgYJm22mWhdIwaVBCdSI0k7IotK0lS5a4WX8evae+WO+77767fcY0m1N1HZ566im3skP7tmXLlgIHAgoLyoTuU2E0O1Spp7y0TGqP6kpoJqGCOrqpPV7aKc0gDS2sreCGlsUWRttTKgalw/C2t3z5cnv22WfdhaUe//vvv4OP6TZ58mSXD7ogKnytNFZHHHGEq6dRUEBIMy0lND0DAMAf6N/p3+nfAQAljcADAAAolksvvdQNcE+ZMsWlBFBOZ+V31mzHgijdkopUKg1Ds2bNivQempWntA9anaCVAypQrVoS2lblPUi5o0CIUjqpYLYG6pW7+oEHHnCPFSX3pepFaH/yUnoCFXxUXQqtptDMQtW0UFoDUX0MpUnQigcdM9W6UJFrBTJEuZo//fRTl9NZaRRUZFu5lgubnaKaGUrNcMcdd7j9UVFJnQe1TbNalAJj5syZLsCiAI4CDqp5oRUYBdF+qb6FckgrwKC26KZ99uh9FHSqU6dOEY82ACCc0L/TvwMAUJJItQQAAIpFxZi1ckAD3fpXeYY1c1+z7wtyyCGHuDoHhQUmCqLBc6UZULDhnHPOca9XagEVtd4TCjw89thjrrii9lkrEDTTX7P8tcJABRZ3RisC3n///Xz3n3322cH9Vh0LpVVSQMM7Jkq3NGLECBdQUI2JqlWr2oUXXmhXX321e1zHULmyn3/+eTfwr5USuq+wVFR6HxX79I6PUmToNSpAKQpKDB8+3B5//HF79dVXXbCgf//+LgCSlwIMCpZ4BS5DDR48OJize9q0aS7gEc4pEQAAhaN/p38HAKAkRQWKklcAKEVKJ6F0Eyo+5uW4VtoLFRT12+AGbQtPnLfwxHkrPxSc0AoGpTjSKoai9AXluS0anP/oo49yFYPcUzNmzHDBCeV19igt1RVXXBEc+C/r/56OO+44F7Dp1KlTkV5TYud0xQqzQYPMVq+2clNwODPTYuPiwjTja/FFYpuFdnO+/W5abKx1+vBDt2outJhxUdG/R17/XlJ9u95389LN9u1D39qO1TssbIvPZmZZbFz4Fp/1Szv80Aa/tMMPbfBLO5LqJtkRdx9hVfetWmrFpYvSH5BqCQAAlAp9qZwwYYJL46PZ+4UFHcKJBg+0UuGdd94p0e1qxYFWP6hI57Jly9xqhVWrVrkVFuWB6nNoJUdRgw4AAP+ify86+ncAQCQj1RIAACgVmlmhtEZeWiC/UP2Gc8891+XCrlatWolsU8EM1Zzo27evbdu2zVq2bOlSM5WXQo86f4O06gAAEPHo34uO/h0AEMkIPAAAgFIzefJk3x1dFXAeP358iW4zNjbW7rrrLncrj8aOHVvWuwAAKEfo34uG/h0AEMlItQQAAAAAAAAAAEoMgQcAAAAAAAAAAFBiCDwAAAAAAAAAAIASQ+ABAAAAAAAAAACUGAIPESw9Pd0GDhxonTp1sq5du9rIkSN3+Zrly5db+/btberUqbnuHzVqlB1xxBHuMW0zNTW1FPccAAAAAAAAAFBexZb1DqDsDB061GbOnGmjR4+2lStXWr9+/ax+/fp24oknFvqaQYMGWUpKSq77vvjiCxs2bJg99thjVqNGDRswYID7+d57790LrQAAAL5Xs6aVK1lZZrERdhkdiW0W2h1ZIu18q71AGapYs6JFWVRYnoOABSwrK8tiY2PDtg1+aYcf2uCXdvihDX5pR4WaFaw8iKCrKoRS8GDcuHE2YsQIa926tbvNnz/fxo4dW2jgYfz48bZjx45897/22mvWu3dv69atm/v9/vvvtyuuuMLuuOMOq1ChfPyhAwCAMJWcbHbDDVZuBAIWlZ1tFhNjFhWeX0SKLRLbLLSb8+13M2Zo6XpZ7wUiVFxSnB18/cEWpmN6Gpm07Oxsi3F9o4UvP7TDD23wSzv80Aa/tCNgFp1Y9omOCDxEqDlz5rjonVIjeTp27GjDhw+3nJwci47O/ce5adMmt4pB6ZhOPfXU4P36D/HPP/+0G0IGBNq1a2eZmZnuPUK3DwAAUGxVqvxzKy8CAUvZts0qVaoUOYOykdhmod2cb79bvbqs9wARLDsu2yrXqGxRYdqvBAIB2/Zv3xiubfBLO/zQBr+0ww9t8Es7AoGAbd26tax3g8BDpFq3bp1Vq1bN4uPjg/fVrFnT1X3YvHmzVa9ePdfzH330UevZs6c1a9Ys1/36I9ZrateuHbxPS5GqVq1qq4t5Iav/KPLe/Ia2hSfOW3jivIUXP37mw780SSPSRGKbhXZHlkg930BZ8MO1n18+M/zQDj+0wS/t8EMb/NKOQDn4nGXFQ4RS8efQoIN4v2dkZOS6/4cffrBp06bZJ598km87aWlpuV4buq2829kVBTG00kL/YXh1JMI1slgY2haeOG/hifMWXvxwYQcAAAAAAP5B4CFCJSQk5AsMeL8nJibmCiyoSPR9992X6/7Q7YS+NnRbxa3vULlyZZc/zYvIValSxZeBB6Ft4YXzFp44b+FFqfsAAAAAAIA/EHiIUHXq1HF1G7wq7V76JQUXFADwzJgxw5YtW2Y33nhjrtdfddVV1qNHDxs0aJALPqxfv96aNm3qHtM2la6pVq1axdonBRm8QIP3s98CD0LbwhPnLTxx3sKHHz/vAQAAAACIVAQeIlTLli1dwGH69OnWqVMnd5/SKbVp0yZXYem2bdvaxIkTc722e/fu9tBDD9nhhx/unqvX6LWHHHKIe1zb1LZbtGixl1sFAAAAAAAAAChrBB4ilNIgeSsWHnnkEVu7dq2NHDnSBg8eHFz9oOrtWgHRqFGjAldM1KhRw/18wQUXuHRMzZs3d0Wmtc1zzjmn2KmWAAAAAAAAAADhn1WAwEMEGzBggAsS9O7d25KTk61v375uNYN07drVBSF69eq1y+2ccsoptmLFChd8UG0HbeOOO+7YCy0AAAAAAOyJtTvW2oqtK4K/J8cnW5XEKhxUAADCWExmjKVvSbfEqvlr9u4tBB4imFYkDBkyxN3ymjt3bqGvK+ixPn36uBsAAAAAIHy8M+sde3/L++7nmhVr2g2dbyDwAABAmMvckWk5MTkEHgAAAAAAwN63OW2zZW3P4tADAIAS9V8VYQAAAAAAAAAAgD1E4AEAAAAAAAAAAJQYAg8AAAAAAAAAAKDEEHgAAAAAAAAAAAAlhsADAAAAAAAAAAAoMQQeAAAAAAAAAABAiSHwAAAAAAAAAAAASgyBBwAAAAAAAAAAUGIIPAAAgGI54IADbOrUqeX2qC1fvtztY+itdevW1rVrV3vwwQctIyOj3B+n5557zi6++OI93oft27fbhx9+GPz9mGOOsffff3+PtwsA8J95g+bZ5gWbrbyif/8P/TsAIBzElvUOAAAAlIZx48ZZvXr13M/p6en2888/23333WfVqlWzG264oVwf9Msvv7xEAg+jRo1ywY8ePXq43999912rWLFiCewhAABlg/6d/h0AEB4IPAAAAF+qXr261apVK/j7PvvsY7/99ptNmjSp3AcekpKSSmQ7gUAg3zEBACCc0b/TvwMAwgOplgAAQInRQPfw4cNdSp8DDzzQpTcaNmxY8PE5c+bYeeedZwcddJAdccQRuR6bNWuW9ezZ09q0aWPHHnusvfXWW8HHtmzZYvfcc48ddthh1rFjR7vjjjvcfcUVHx9vMTExwd/nzZvnVha0bdvWTjjhBBs7dmyu548fP96OO+44t7+33Xab3XrrrS4Nkuh13s+hKSD0b15r1qyxG2+80Tp37uyOi9o5bdq0XK97/vnn3eMPPPBArlRL+jdv6ijdVqxYsdPjrZRK+lkrPfT8vKmWcnJy7JVXXnHHWu3X+8ydOze4z3rNRx99ZKeeeqrb9gUXXGDLli0r9jEHAIQ/+nf6dwAAiosVDwAAoMSonsDo0aPtySeftIYNG9q3335rgwYNsm7durk6C3feeacLHDz22GO2ePFiNxivQMOhhx5qzzzzjEsxdMYZZ7iVCf369bNOnTrZ/vvv71YopKamukF20Tb79+9vL774YpEHTDQA//HHH9tVV13l7ktLS3M/Kwig2g+LFi1ywQ2tNlBqol9//dUGDhxod999twsI/N///Z9LVXT99dcX+7jcfvvtVrlyZRdM0b48/vjjrg3aH4/a/N5777mAQOj9CkJkZma6n/XYddddZw0aNHC3Dz74oNDjffLJJ9v8+fPt999/zxUg8SjQ8eabb7q277fffjZixAi78sor7YsvvgimY9Lr9HiNGjXspptusqefftqeeOKJYrU9Ozvb/ETnT+dB7YqKirJIEIltFtrN+fY77/NZf+veCrmA/hcI5Pvs9vp39d/77ruv628UKD/qqKOsVatWrn/v0KGDDRkyxPXvN998s7uf/t2f/fue9u1++Hz1Qxv80g4/tMEv7fBDG/zSjoD69n//Vxrfx4q6TQIPYUIzML3BDs281EDNs88+W9a7BQBALqqpMHjwYDfQIOeff777AqwvyAo8aJa+ZtjrS7W+SGswXymQtm3b5gol1qxZ0/2uW+3atV2qJK2SUNBgwoQJ1rhxY7ddDXzoi7eCBU2aNCnwLGimvnehqILSSs1wySWX2BVXXOHu05d/feHW4Ijoy7n277XXXnOBB31p13tohYboC/933323Wxd96ru1oqJu3bruvgsvvND69OmT63m9e/d2gzl5Va1aNfizAhY6Vo888kiRjrcGGOLi4nKlnPL2acyYMW4Fh86HaADi+OOPd6s8vDZfdtllubadd0VIUfz555/Ffg0AoPQpQCApKSmWtiXN/ZyakuoC/X8t/cv1nZ4dO3a4/rNChQq2bt06a9GiheufJk+e7J63dOlSF2hYu3atVapUyU0e8IL+9O/+69/p2wGgfIuPj7daif/0EUv/WpqrT9+bCDyECV08DBgwwM0g0aDF5s2by3qXAADIp0uXLvbHH3+4WXMLFy602bNnuwEKzRiRq6++2s3ee/vtt+3oo492qxv0pVkzJjQ4f++997pVDZrRd+aZZ1qVKlXs+++/d6sFvKCDNG3a1D22s8DDyy+/bHXq1LGVK1e6WZkaJLnmmmuCqZb0WgU12rdvH3yN9sN7XGmHzj333OBjsbGxLuVQcSn4oS/1n332mZv1qIGemTNnBo+JR8GYnVFtitdff92tmkhOTi7S8S7Mhg0b3LWEUkh5NICh9mk7nkaNGgV/1nt6MzOLQytaQtNbhTsN6mzdutX9TYbrDKjiisQ2C+3mfPudN1tRg9jxVeJtja2xChUruOBCk1a5+9Z27dq5/kaBBvWf6m/Uj2iigB679tpr7amnnrL//e9/bhXE6aefbgcffDD9u0/79z3t2/3w+eqHNvilHX5og1/a4Yc2+KUdAbVhxVb3Wd2qSatSuYYoShCawEOY0MXfkUceadWqVXN5rb0LEgAAypNx48a52Xpnn322de/e3c141CoDj2b5n3TSSe5L9pQpU9wsf83E69Wrl0uz1LdvX/vqq6/c4wpOvPDCC262RmEXOztb4lm/fn03IKIv1y+99JILciiAr9RJkpWV5Wb7KdhREF2k5S3OnPf3vPtTEA0SqG26eNUKCtVZ0Bf8vAWuExISCt3233//7VJL3XXXXdayZcsiH+/CFPZeakPooIYGK/aUjqPfAg/R0dGuTeH6RaS4IrHNQrs5337nfTbrv2vvv+0o/S8qKt/ndmh/oxV86pPU33ifDZpYoD7O6981o57+3b/9+5727X74fPVDG/zSDj+0wS/t8EMb/NKOQCDwT59u+fv0vYni0mFC+TI1C0IzC5SfcdOmTWW9SwAA5KP0REoLqNoISlekgLlm3+nCJz093R566CEXSNCAhPq1c845x+Uc1iw+pV1SkECzJpULWbP9NHihlQ4atNcMS8+CBQtc6obQVRA7oxQHCmpoBaFmEIpeq9UHXnBCt+nTp7v9EtWWUMHr0C/tmnHoUTuUesJTWOFl7esvv/xio0aNcisutNJDqSh2FcjwKOWFghRaBaLjVdTjLYVdKCsNhtJaqb0eBUPU3qIeUwBA5KB/z4/+HQCAnSPwECY0O9MbbFDqiZEjR+Z7DsEIAMDeMmPGDJdOIfSmAXINfP/444/BdEK33HKLG9BWTknNwlOqIa+Qs5ZmqoCzckIrbZIG5x999FGXJ1o/Kw2SHlNaJa3602w/va9u+lkFn5s3b17kfdZMQW1LaZc0609pIFRgWiselH7gm2++sYcfftjVfZCLLrrIPv30UzfrUPurmYeqAeEN5ittweeffx7cp8JqL2mJrmbMaFt6vWpVeMUgi5JrU/unoMdtt91m69evd0Ea3bTvOzve3opJBTmWL1+eb7uXXnqp22cFd9R+FdZWcEgzVgEAkWnbsm328w8/07/TvwMAsMdItRQmNIvy66+/dstjNFMytDiVZjWqGJQGMaZOnVqm+wkAiAwqgpjXxIkT3cx73ZTWSAP4SqukwW9vpYDyP2vg/6yzznI1E0488US77rrr3JJ/DaxrpYMCAklJSe45SjEgSpGk1RIaLFdfqIKJqn1UHHo/BfK1Db2Ptj1ixAgXUNBqARV5VNFnpYsQ1X647777XDFHBfe1r7rPS0+gVRvz5s1zAQrVklCaBO+1oVSbSYWptR3Vt9CKAu2Hgid//fVXvsKQeakYpChndigVndzV8VYxSeWMPuWUU1yAIZTSP2nViAIO+ldt02oPFeEGAESmxZ8utv6f9s91H/07/TsAALsjKlCUNf4oU19++aWbwaiBDg2aaCbjK6+8Yp06dXIzLDVgoAKYGqgZOnRo2J0tzeJUqgcVJfPyaW/ZssXNfg3XXGqFoW3hifMWnjhv4d0XlAfqY1VTKbR4tQbwr7jiCleTAuF3TkuCnz9bChOJbRbazfn2u2nTprnvlD2e7GFZdbPcfXWT69qgowZZg8o7L4gczn0B/XvZn08/fL76oQ1+aYcf2uCXdvihDX5pRyAQsM1LN7vP6sr7VC6z/oBUS2FAKxmU9uDnn3+2n376yRXi1MzPzz77zC644AKXvuGNN94Iy6ADAADl1e+//+5WMCg9lFYeDh8+3FatWmVHHHFEWe8aAADYTfTvAADsHaRaCgPKda3UDF5qBxWmVGoIpW248cYbXbFpBR8AAEDJUdol1UZQUept27ZZy5YtXf+7q9RIAACg/KJ/BwBg7yDwEAa84pEe5W5WgU4FHZRXGgAAlDylN1TdBt0AAIA/0L8DALB3ME0+jJHqAQAAAAAAAABQ3hB4CAMqZFJQMRPSKwEAAAAAAAAAyhtSLYVJJfLrr78+WONB0tPT7fbbb3cpl0K99tprZbCHAAAAAAAAAAD8g8BDGLjhhhvy3XfwwQeXyb4AAAAAAAAAALAzBB7CNPAAAAAAAAAAAEB5RI2HCKZ0TQMHDrROnTpZ165dbeTIkYU+d/z48XbCCSdY27Zt7bzzzrMZM2bkelzbOOCAA3LdduzYsRdaAQAAAADYXVUTq1rd5LruVrNiTQ4kAAAoEax4iGBDhw61mTNn2ujRo23lypXWr18/q1+/vp144om5nvfrr7/aXXfdZQ899JB16NDB3njjDbvqqqtsypQplpSUZGvWrLFt27bZpEmTLDExMfi6ihUrlkGrAAAAAABFdU7rc6xtu7bB35Pjkzl4AACEubikOIuNLduhfwIPESolJcXGjRtnI0aMsNatW7vb/PnzbezYsfkCD+vWrbPrrrvOzjjjDPe7Cl1rdcTChQvdCgj9W6tWLWvYsGEZtQYAAAAAsDtqJ9W2BpUbcPAAAPCR7LhsS6qcVKb7QKqlMPPLL79YVlZWvvszMjLcioOimjNnjttO+/btg/d17NjR/vjjD8vJycn13JNOOsmuvfZa93NaWpqNGjXKatSoYU2bNnX3LViwwBo3brwHrQIAAAAAAAAAlIRAIGBljRUPYeaSSy6x77//3qpXr57rfq1WuPXWW/PVXiiMVjFUq1bN4uPjg/fVrFnT1X3YvHlzvu3Ljz/+aJdffrn7w3388cddmiXRiofU1FS7+OKLbfHixdayZUtXO6K4wQhtN+/Nb2hbeOK8hSfOW3jx42c+AAAAAACRisBDGFBNhQceeMCioqLcwMzhhx9e4PMOO+ywIm9TgYLQoIN4v2v1REGaNWtm77//vn311VfWv39/22effaxdu3a2aNEi27Jliwt8JCcnu/RNl156qX366afu96LaunWrRUdHuzYqFZSozX5C28IT5y08cd7CS97VdgAAAAAAIHwReAgDF1xwgRv016BM79697dlnn7UqVaoEH9fgfIUKFax58+ZF3mZCQkK+AIP3e2iB6FBaEaGbVjQoJdNbb73lAg+vvvqqZWZmBldAaDXEUUcd5QIUp512WpH3qXLlyhYTExOc9ao2+jHwILQtvHDewhPnLbxkZ2eX9S4AAAAAAIASQuAhTHTu3Nn9O3nyZKtfv36uAfmNGze6tEnFGaSvU6eObdq0ydV58CqcK/2Sgg4KAIRS+iYFBFSA2qP6Dkqx5K2UCF09oaCGVkOsWbOmWG3U/ntt8H72W+BBaFt44ryFJ85b+PDj5z0AAAAAAJGK4tJhRkECpTSaPXu2q8dw0UUXudRLxxxzjCsYXVRataBtTZ8+PXjftGnTrE2bNi7dUah3333XnnzyyVz3zZo1y5o0aeJmFB933HEuBZNHaZL+/vtv9zgAAAAAAAAAILIm9xF4CDODBg1yKxyqVq3qBvvnzZvnUh4p8PDggw8WeTtKzdSjRw+3Pa1omDRpko0cOdIVr/ZWP6Slpbmfzz33XPvpp59s9OjRtmTJEpfqSa9RHQf9ER999NH23HPP2dSpU12R6zvvvNPq1q3r0i0BAAAAAMqvtTvW2pa0LWW9GwAAoATFZMbYthXbbOuKrbluaVv+Ge/dG0i1FGYUAFDAoV69ei5YcOyxx9pBBx1k1atXt1NPPbVY2xowYIALPKhuhIpA9+3b17p37+4e69q1qw0ePNh69erlUiwNGzbMrXp44oknXL0J1XVQuia544473OqJ2267zbZv325dunSxl19+2aVnAgAAAACUXxMXTrS27dpalcT/6ggCAIDwlrkj06YNn2ap61OD91WsWdE639DZEqsUXN+3pBF4CDOqn6AUS1u2bHErDBQIkOXLl+cqOF3UVQ9Dhgxxt7zmzp2b6/du3bq5W2H71L9/f3cDAAAAAISP7enby3oXAABAKUhZn2I7Vu+wskLgIcyonsLNN9/sikAr0KA0R5999pk98sgj1rNnz7LePQAAAAAAAABAhCPwEGaUGmnMmDG2YsUKV3tBqw0yMjLsmmuusQsvvLCsdw8AAAAAAAAAEOEIPIQZ1VJQUWdRuqWcnBw744wzykWlcgAAAAAAAAAAojkE4SUQCNiLL75ohxxyiB166KFu5YOKO997771u5QMAAAAAAAAAAGWJwEOYef755238+PH26KOPWnx8vLtPtR2+//57Gzp0aFnvHgAAAAAAAAAgwhF4CDMffPCBPfDAA9atW7dgeqXDDz/chgwZYp9//nlZ7x4AAAAAAAAAIMIReAgzGzZssNq1a+e7v3LlypaSklIm+wQAAAAAAAAAgIfAQ5jp0qWLvfrqq7nu2759uz355JOu7gMAAAAAAAAAAGUptkzfHUXyyy+/WPv27S02NtYGDRpkN9xwg0uvlJ6ebtddd52tXLnS6tev74pOAwAQbo455hhbsWJF8HelEtRKvo4dO9q9995r9erVc/dffPHF9vPPP+d7fZ06dex///ufvf/++zZgwIAC3+Pggw+2119/vdB9ePvtt11/esstt1hGRoY99dRT9umnn1pqaqp77T333GN169Z1z/3yyy9dXxzqhBNOsGeffTbfdtVXa5vfffedHXTQQTvdh6KYPXu226cOHTrY3rRp0ya7/PLL7a233rKEhIS9+t4AgPBD31509O0AAL8i8BAGLrnkEjdgUaNGDTfo8e6779qPP/5oixYtsqysLGvcuLF17drVoqNZwAIACE8KGDRs2NBat27tAg8LFiyw++67z/r162evvfZa8Hka/NYtVExMTPBnr5/MKy4ubqeD6i+99JJ9+OGH7ncFECZNmmSPP/64Va9e3R577DEXaBg3blxw31Rr6cEHHwxuo7DB+G+//dbd3nzzzQJTJRbX9ddf7/ZlbwceqlWr5tr88ssvW9++fffqewMAwtPAgQNdYH7WrFnWsmVLW7x4MX17AejbAQB+ReAhDAQCgXz3HXrooe4GAIAfJCcnW9WqVa1WrVoukKBVDDfeeKPdcccdtm3bNqtUqZJ7XsWKFd1zCqPX7uzxgowdO9YF8LXKQj744AO766673EoHUYDhiCOOsL///tv2228/W7hwoTVv3rxI76N9r1mzph144IEW7s4//3w7+eST7YorrnDnAQCAnVHfrb5S/bv6da3Sp28vX+jbAQCliSnyYUIzLAEAiCTx8fHu39Jc0ZeTk+PSLB133HHB37XC4bDDDiswiCAKPCgAsStK/dS/f3+XwumAAw5wv4vSFSkFhdIoKn3U3Llzg69Zs2aNG5Tp3LmzC1b07NnTpk2b5h7Tc5WSSqtDtN2pU6e67YbS/brJc88951IyXnjhhS6IojRVSiP10EMPubpQut1+++22efPm4Ou1ukQrG9q0aWO9evWyX3/9NfiYBo/U7o8//rjYxxkAAKFvp28HAEQOAg9h4swzz7Rjjz12lzcAAPxg6dKlLq2PVhokJSWV2vvMmzfPNm7caF26dAkGORR00OzM0MF4pRrSIL9WISpVhFIgKn2EAhZKyaQB/by0OkBpJpT+Sc/X71OmTLFhw4a5mhFaWaE6FkqpuGXLFvcaBQKys7NdcEKpnzRDVPWdvECCtqVtakVGUUyePNlOPfVUGz16tLVt29aefPJJmzlzpo0YMcK1a/v27XbTTTe55/711182dOhQlwbj888/t06dOtnNN9/sgjEeHRuljgIAoLjo2+nbAQCRhVRLYeKyyy4LppkAAMBv7r//fre6TwP/GnhXTQYF1DXIHkq1GEaOHJnrPtV0aNq0qftZqwu0kqCg7Z9++un57lfe6X322Sc4AzMv1XrQ++n1eo5WHKi4s35++umnbfny5W4FQVpamt199925XpuYmOj67tD0T6+88opdffXVblWBaGBfhbHHjx9vF110kQtkKKDhFbLWaoU+ffq4nxUM0ba0zaJeEyjNk9IoiPZ7zJgx9t577wVXSijQoJUPWnWhtukcKBWGjon2TfupwIO36mT//fcv9ooHnU8/UfBJx0TtipQVqZHYZqHdnG+/8z6fA/pfIFCin9fangLZDzzwgPv80O/07fTtfupX/NAGv7TDD23wSzv80Aa/tCMQcL37P/+GpPD3ft/TPr+oryfwEAb0R37KKae44tIAAPiRChY3aNDA9t13X3vhhRfcIPhtt93mVhqEOu+881zKoVD16tUL/qwCzq+//nq+7RfWh2q1Q973CA06aPBdAYGzzz7b3ad9VIqjKlWquP5ZxTJ1UapaFEqBFFrouiBK06RUTlp54ElPT7clS5a47SlI8Nlnn9lvv/3mVlZodULoioPi0v56li1bZpmZme4YhtL29f5HHnmkq11x2mmnWatWrVzgR+2Ojf3vclHBjw0bNhRrH/7888/d3n8AQOlRPyMKnis4/dfSvwpcwbc7tB2t2lfqQG3/yy+/dJMD6Nvp2wEApU8T5Wol1nIr3Ldu3Rq8P5AccH3+0r+WllifvzMEHsK0uDQAAH5SvXp1N8tfA97PPPOMnXXWWa4+geovaIakRwP+jRo1KnQ7GiTf2eN5abC/oNkan376qd15551ukD7vqovQNEyi1RYKHihdktqxM3ovbe/QQw/NV1xbAYDLL7/cXRgqLZPqQChQcMMNNxS673llZWXlChQkJCTkem9544038hWHVmCmQoUKNm7cOFcL4quvvnI1Kd588033r1I+Sejqh6JSvYhdBWTC7bpM50jFyMN1BlRxRWKbhXZzvv3O6xe0Qk99QJNWTUp0wEO1io4//ngXgH7qqafs3HPPpW+nb/fN56sf2uCXdvihDX5phx/a4Jd2BNSGFVvd98yoyv+1Qb+rz2/VpNUeX0MUZYIZgYcwoMKSoQMHAAD4mQYrlL5IAxSjRo2yq666qtTeS6mIQosry48//uiCDkpzlDfooPoGqsPw9ddfuws2mT17tgtG7CroII0bN7bVq1fnCo5opYRSLDVs2NB++eUX9/7etsaOHRu8cMx70esFZDSLRReQotRPhRW+1vYVAFB7tVJDtHpB9SK0D/Pnz7effvrJrr32WlfzQrNSVdNBxa0VCJFNmza5Y1Ycek+/BR4UfFGbwvWLSHFFYpuFdnO+/c77bI7S/6KiSvSz2kuf6G2Tvp2+3W+fr35og1/a4Yc2+KUdfmiDX9oR0PfHf/v30DZ4v++t72cUlw4DgwcPDg4oAAAQCVQIWaselHZpzZo1xZp5sW7duny39evXF/h8DcBrsH7Hjh3BFQMKNig1hAIeodvQUlTVj9BkANVzWLRokX3zzTeuTsKVV15Z5JpNKvSswtEqsqm0SyrkrFUTmlGjC1yttlCqqQkTJriC0uItg9VKBb2vggfNmjVzs1SHDx/u0iipfoQKRBdG1xJKnaRi1UoXtWDBAhdg+fvvv11NB23r+eefd6sedEy0HykpKcF6EKJaEFqVAgBAcdG307cDACILKx4AAEC5dMstt9gXX3zhBucff/zxIr1Gqwm6du2a737N6ChoUF6D6ir8/Pvvv7vXqaaCclDrlnc7r732mivE/Oqrr9ojjzziclcnJSW5dExFDTxo5YCCIM8++6z7V8WaX3zxxeAqBQUFNPivGhBaHaEAR79+/dy+K+ihGhA6FqrJMGzYMHvwwQdd+grVtVA6C63S0KqEwvTv39+GDBliN954o0vjpADLyy+/7I6PgjAPP/ywC/aoGKiKTOvYe4W7RbUnzjnnnCK1FQCAvOjb6dsBAJEjKkABAZQxzU6dPn26tWvXzg186E9SebK9wp1+QtvCE+ctPHHewrsv2Ju0qkCBBq0wROG0CqJXr16u/oMCLuX5nJYmP3+2FCYS2yy0m/Ptd0ql16lTJ7vyxStt0AWDrEHlBiX+HmXVF9C3l+++3Q+fr35og1/a4Yc2+KUdfmiDX9oRCARs89LN9u1D39qO1f+s7pfkusl21KCjrHKDynu0/aL2B6RaAgAAEU2rBL7//vt8tR6Q2zvvvONWXBRlYAIAgLJE31409O0AgNJE4AEAAEQ0FXK+5pprbOTIkWW9K+WW0jepoLaOEwAA5R19+67RtwMAShs1HgAAQMS74IILIv4Y7Ey1atVs/PjxHCMAQNigb985+nYAQGljxQMAAAAAAAAAACgxBB4AAAAAAAAAAECJIfAAAAAAAAAAAABKDIEHAAAAAAAAAABQYgg8AAAAAAAAAACAEkPgAQAAAAAAAAAAlBgCDxEsPT3dBg4caJ06dbKuXbvayJEjC33u+PHj7YQTTrC2bdvaeeedZzNmzMj1+CeffGLHHXecHXTQQXb99dfbxo0b90ILAAAAAAB7IjkhmQMIAIAPVaxZ0ZLrJgdv+n1vit2r74ZyZejQoTZz5kwbPXq0rVy50vr162f169e3E088Mdfzfv31V7vrrrvsoYcesg4dOtgbb7xhV111lU2ZMsWSkpJcEEKP33///daiRQt7+OGHbcCAAfbSSy+VWdsAAAAAALvWvWl3S44n+AAAgJ/EJcXZwdcfbBaV+/745Pi9tg8EHiJUSkqKjRs3zkaMGGGtW7d2t/nz59vYsWPzBR7WrVtn1113nZ1xxhnud61o0OqIhQsXuhUQY8aMsZNOOsl69OgRDGh069bNli1bZg0bNiyT9gEAAAAAdq12Um2rkliFQwUAgI9kx2Vb5RqVLSoqT+RhLyLVUoSaM2eOZWVlWfv27YP3dezY0f744w/LycnJ9VwFFa699lr3c1pamo0aNcpq1KhhTZs2dffpNUrX5KlXr55bOaH7AQAAAAAAAAB7TyAQsLLGiocIpVUM1apVs/j4/5bX1KxZ09V92Lx5s1WvXj3fa3788Ue7/PLL3R/u448/7tIsydq1a6127dq5nqvAxOrVq4u1T9pu3pvf0LbwxHkLT5y38OLHz3wAAAAAACIVgYcIlZqamivoIN7vGRkZBb6mWbNm9v7779tXX31l/fv3t3322cfatWvnVkEUtK3CtlOYrVu3WnR0tBt8UiooKcvlQKWBtoUnzlt44ryFl7yr7QAAAAAAQPgi8BChEhIS8gUGvN8TExMLfI1WROjWsmVLl0bprbfecoGHwrZVoUKFYu1T5cqVLSYmJjjrtUqVKr4MPAhtCy+ct/DEeQsv2dnZZb0LAAAAAACghBB4iFB16tSxTZs2uToPsbGxwfRLCjooABBqxowZLiCgAtQe1XdQcWlvW+vXr8/1Gv1eq1atYu2TggxeoMH72W+BB6Ft4YnzFp44b+HDj5/3AAAAAABEKopLRyitWlDAYfr06cH7pk2bZm3atHHpjkK9++679uSTT+a6b9asWdakSRP380EHHeRe61m1apW76X4AAAAAAAAAQGRN7iPwEKGUBqlHjx42aNAgt6Jh0qRJNnLkSLvkkkuCqx9Uu0HOPfdc++mnn2z06NG2ZMkSe/bZZ91rLr30Uvf4+eefbx999JGNGzfO5syZY3feeacdffTR1rBhwzJtIwAAAACgAFu2mK1dy6EBAMCnYjJjLH1LepnuA4GHCDZgwACXPql37952//33W9++fa179+7usa5du9pnn33mftZzhg0b5lY+nH766fbNN9/Yq6++6lIsSfv27e2BBx6w559/3gUhVL9g8ODBZdo2AAAAAEAhtm83mziRwwMAgE9l7si0jO25a/LubdR4iPBVD0OGDHG3vObOnZvr927durlbYXr16uVuAAAAAIAwCT4AAACUElY8AAAAAAAAAACAEkPgAQAAAAAAAAAAlBgCDwAAAAAAAAAAoMQQeAAAAAAAAAAAACWGwAMAAAAAAAAAACgxBB4AAAAAAAAAAECJIfAAAAAAAAAAAABKDIEHAAAAAAAAAABA4AEAAIS/LVu22KOPPmrHH3+8XXrppXbqqafaqFGjLCcnZ6+8/9SpU+2AAw4o8vM///xz27Bhg/v5ueees4svvrhU9mv58uVuv7xby5YtrWvXrvbYY49ZVlaWlQXth44XAAC7Qv9eMPp3AEAkiS3rHQAAAJFp06ZNdu6551rt2rXtwQcftK1bt1p2drY9/PDDtmzZMrvnnnusPFmxYoXdfPPNNnnyZPf75ZdfXmqBB8+4ceOsXr167rgsXrzY+vfvb1WqVLE+ffqU6vsCALC76N93jf4dABAJCDwAAIAy8cQTT1h8fLy9+uqrFhsba9OnT7d27dpZxYoV7brrrrOLLrrIGjduXG7OTiAQyPV7UlJSqb9n9erVrVatWu7nunXr2oUXXuhWXRB4AACUV/Tvu0b/DgCIBNR4AAAAe11GRoZ9+umnbiA9ISEh12PdunVz6ZYaNGjgUjVo5cNhhx1mHTt2tDvuuMPdJ0r7c8wxx9h9993nHnv55ZfdigDdTj/9dDv00ENtyZIlbiWFXtehQweXrkirK9LS0grcr2nTptn5559vBx10kAuCXHXVVbZ27Vr32LHHHhv89/3338+Xaun33393r9XrtF9vvvlm8DHt0+DBg92KCW37qKOOsg8//LDYx61ChQq5fl+wYIFdccUV1r59e2vTpo1dcMEFtnDhwuDjTz75pGtz27Zt3b7Onz8/+Nivv/5qvXr1co+ddtpp9sUXX+Ta9rBhw9wxPOSQQ9zMTAAAdoX+nf4dAAAPKx4AAMBet3TpUktJSXGD5XlFRUVZly5d3M8aVE9NTbXhw4e73wcNGuQG8V988cVg+iMNcigQEBcXZ88++6x99NFH9vzzz1vNmjVtv/32s759+1pmZqYLBKSnp9tDDz1kDzzwgD3yyCO53nfbtm129dVXu1oTQ4cOdQGHgQMHuoDG3Xff7Qbfzz77bPdv8+bNbcSIEcHXarC/d+/e7rVKFfXHH3/Y/fff7/ZB9Stk7NixdtNNN9ltt91mr732mguYKIhRqVKlIh2zVatWuffu2bOn+111MK655hoXlNG2tP9ql+pA6Hh9+eWX9vbbb7tjoXRWTz31lA0YMMDeffddW7dunWvrLbfcYkcccYRbbaLjWqNGDevUqZN7nfZxyJAhbqWF2rK7lCbKT7TyRcde7dLfaiSIxDYL7eZ8+1l0IBBcyaf/tkvqs1ppAdW/t27dOt926d/907/v6d+LHz5f/dAGv7TDD23wSzv80Aa/tCOgfv7f/5XG97GibpPAAwAA2Ou0CkF2Nug+Z84c+/nnn23ChAnBlEv60n3yySfbokWLgs+78sorrVGjRsHfFczQigMvwDFp0iS3He+9tOKhR48e7kt6KK2CUIqnyy67zF1gNmzY0Lp3724zZswIpkXw/k1MTMz12nfeecdatWplt956q/u9SZMmLhjxyiuvBAMPKs6sFRSiAIS++GsFglZiFEbFtrUvuvDV/qmdZ5xxRnB/zzvvPLfKQempRIMWek8vKKNgTP369d1NK0e846YgiAY0lM5KtN3Zs2fb6NGj3cCE2qNAilafiII1p5xyiu2OP//8c7deBwAoHUpz2CQxMbj6T8GCmJiYEtn2vHnz3L+q1aSgf0Ho38O/f6dvB4Dy39fXSvwnZe/Sv5a6yXplgcADAADY66pWrer+9dImFURfoitXrpyrzkPTpk1dcWU95gUS9tlnn1yvU4omjwb/9aX+yCOPzPUc3ff333/nuk+1FBSQUJonfUlXGqO5c+fuNDAQ+j5KWRRK6Y/eeuut4O9afeFJTk52/2ZlZbmUR15AQjRTUQMSotUWderUcfu7fv16t9JDAxHjx493gxFK7aSUTTNnznTH5K+//nKrLEQDCWPGjHGrKpT+6bjjjrOzzjoreGy/+uort48eDRB5x1rtuf7664OP7b///sHBj+JSIKikBrTKy+whBc70txmuM6CKKxLbLLSb8+1n0atWBYPo+uxXP1ES1Ed7fbE+/zUjMu8gNf17+Pfve9q3++Hz1Q9t8Es7/NAGv7TDD23wSzsCasOKre6zulWTViW+/YL694IQeAAAAHvdvvvu6wIHs2bNyjdgL9dee62deeaZBb42b+qGvDUiQn/X8/Q+7733Xr7t6Au/UiJ51qxZ495T6SE0W/Ccc86xr7/+OtdzCpN3H8RbnuvR7MSCLggPPPDAXPUeNGizfft297NmMnqBFQ0aaOaiUid8//33dvDBB7uBhmrVqrkVHgpWaMBh5MiRwUCKClHruRqEUBFvzXTUeyngoboOSuUQSkW+Q/etsMeKQxe7fgs8REdHuzaF6xeR4orENgvt5nz7WlRU8L/nkvycVpBd/a4C+AUFM+jf/dG/7+nfjB8+X/3QBr+0ww9t8Es7/NAGv7QjEAhY1L//K8vvYhSXBgAAe52+5CplklIC5F32OWXKFHfT4IVmmoSmVdIqBA3Kh66C2Bk9T7mRdcGoL/W6KYWBajjkfV/lTNag/0svveTSECglgVJFeF/Qd3bRqffJG6BQsemi7KdmnHr7ppu3GqQgofm4lT5KdSiUsknpphQsWblyZfA5CpooZ/TRRx/tcjir9oWKbSsNhvZLKz5C33fy5Mn28ccfu9c2a9Ys1wyW5cuXB9NjAQBQGPp3+ncAADwEHgAAQJlQ0WcFEVRA+pdffnErDrQyQUUQL7nkErf8XymS+vXr5+os6KafO3fu7Io7F4VSM2kG4e233+5erxUWqu2gwpdaOhtKA/4auP/xxx9dwEFpECZOnBgMUFSoUCGYm3rHjh25Xqv0CJrd+eSTT7pc2R988IG98cYbduGFF+7RMdq4caMrFKmb6kGouKRmQKr4tvZX7VANCwUGFGQIDeRoxYUCLAqo6HEV4FYbFNDR/ip9gwpSKhihgIP2XTMwRbmhFdD44osvXKDirrvucrN+AADYFfp3+ncAAIRUSwAAoEwoVcCbb75pzz33nN15551ukF0z72+88UaX21iGDBniCh9eeumlbomo8hnnLQq9Kxp897ahmZgKRNx99935nnfSSSe5AIjeX6sblL9YgQ7tnwbzVVT69NNPt5tvvtkFMkJpwF4rJfReSoWg3xVAKSxdVFGdffbZuepCdOzY0W1fPyt/s/I0azVDenq6K1597733uiCBgjhKz6C2DB482AUuVPD6hRdecKs6dBs+fLg9/vjjLkWD0k5pf9U+UYHLTZs2uULcWiHSp08fF3ABAGBX6N/p3wEAkKhA3gR/wF6mdBHTp093OUA1qKQ/SRUb1aBIuOZSKwxtC0+ct/DEeQvvvgDhz6/n1M+fLYWJxDYL7eZ8+9qKFTZt0CDr9Mor9uuvv7rAdmnwa18QqUrqfPrh89UPbfBLO/zQBr+0ww9t8Es7AoGAbV662X1WV94n90r/vdkfsGYeAAAAAAAAAACUGAIPAAAAAAAAAACgxBB4AAAAAAAAAAAAJYbAAwAAAAAAAAAAKDEEHgAAAAAAAAAAQIkh8AAAAAAAAAAAAEoMgQcAAAAAAAAAAFBiCDwAAAAAAAAAAIASQ+ABAAAAAIBIk5xc1nsAAAB8jMBDBEtPT7eBAwdap06drGvXrjZy5MhCn/v111/bGWecYe3bt7fTTjvNJk+enOtxbeOAAw7IdduxY8deaAUAAAAAoNhBh+7dOWgAAPhUXFKcxSfHl+k+xJbpu6NMDR061GbOnGmjR4+2lStXWr9+/ax+/fp24okn5nrenDlz7IYbbrA777zTjjrqKPvuu+/spptusnfffddatGhha9assW3bttmkSZMsMTEx+LqKFSuWQasAAAAAADtVpYpZ7docJAAAfCo7LtuSKieV6T4QeIhQKSkpNm7cOBsxYoS1bt3a3ebPn29jx47NF3j45JNPrEuXLnbJJZe43xs1amRTpkyxzz//3AUeFi5caLVq1bKGDRuWUWsAAAAAAAAAABIIBKysEXiIUFrFkJWV5VIneTp27GjDhw+3nJwci47+LwtXz549LTMzM982tMpBFixYYI0bN95Lew4AAAAAAAAAKM8IPESodevWWbVq1Sw+/r9cXzVr1nR1HzZv3mzVq1cP3t+0adNcr9XKiB9//NHOO+8897tWPKSmptrFF19sixcvtpYtW7raEcUNRigSl/fmN7QtPHHewhPnLbz48TMfAAAAAIBIReAhQilQEBp0EO/3jIyMQl+3ceNG69u3r3Xo0MGOPfZYd9+iRYtsy5Ytduutt1pycrJL33TppZfap59+6n4vqq1bt7qVFhp8UiooiYqKMj+hbeGJ8xaeOG/hRavtAAAAAACAPxB4iFAJCQn5Agze76EFokOtX7/eLrvsMjeY9+yzzwbTMb366qsuFVNS0j8FSx5//HFXhPqrr76y0047rcj7VLlyZYuJiQnOeq1SpYovAw9C28IL5y08cd7CS3Z2dlnvAgAAAAAAKCEEHiJUnTp1bNOmTa7OQ2xsbDD9koIOCgDktWbNmmBx6ddeey1XKiatlAhdPaGgxj777ONeUxwKMniBBu9nvwUehLaFJ85beOK8hQ8/ft4DAAAAABCp/qsgjIiiOgwKOEyfPj1437Rp06xNmza5CkuL0h5deeWV7v4xY8a4oEXojOLjjjvO3n///VzP//vvv61JkyZ7qTUAAAAAAAAAAImLi7OyxoqHCFWhQgXr0aOHDRo0yB555BFbu3atjRw50gYPHhxc/VCpUiW3AuKll16ypUuX2uuvvx58TPSYnnP00Ufbc889Zw0aNHArIZ555hmrW7euS7cEAAAAAAAAANh78tb2LQsEHiLYgAEDXOChd+/ergi0ikZ3797dPda1a1cXhOjVq5d98cUXlpaWZmeffXau1/fs2dMeffRRu+OOO9zqidtuu822b99uXbp0sZdfftnVawAAAAAAAAAARBYCDxG+6mHIkCHultfcuXODP0+YMGGn21FNh/79+7sbAAAAAAAAACCyUeMBAAAAAAAAAACUGAIPAAAAAAAAAACgxBB4AAAAAAAAAAAAJYbAAwAAAAAAAAAAKDEEHgAAAAAAAAAAQIkh8AAAAAAAAAAAAEoMgQcAAAAAAAAAAFBiCDwAAAA74IADct26dOlid999t+3YsaPUj85zzz1nvXv3dj9/8MEHdswxx5TaewUCAbv44ott4cKF+fZB7f7xxx/zvUb3T5061f2sfXv//fcL3Hb//v3zHUfvlpWVtcf7vmzZMvvmm29sb8vIyLCePXvahg0b9vp7AwD2DP07/Xth6N8BAKWNwAMAAAgOvn/33Xf2v//9z4YPH24zZsywoUOH7tWjc9JJJ9m7775battXYKN+/frWtGnTXPd/8skntu+++9qHH364x/uvY5j3Fhsbu4d7bjZw4EB3Tva2+Ph4u+iii+yxxx7b6+8NANhz9O/07wWhfwcAlDYCDwAAwKlSpYrVqlXL6tSpY+3atbOrr77aPv/88716dBITE6169eqlttrhxRdftPPPPz/X/bNmzbKlS5fatddeaxMnTtyjVR7afx3DvLdwd9ppp9mUKVNsxYoVZb0rAIBion+nfy8M/TsAoDQReAAAAAWqUKFCrt/XrFljN954o3Xu3NkOPPBAl35n2rRpwcdfe+0169atm7Vp08Z69eplv/76a/CxefPmuRRHbdu2tRNOOMHGjh1b4HuGplpSeiP9/MYbb9gRRxzhgiF33HGHSw3g+fLLL+3kk0+2gw46yM466yz7+eefCz2bWnmQmprqnpt3tUOLFi3cfmVmZrrgQ2nZ2f5u377dBgwYYIceeqg7vieeeKJNmjQpmMZJzx02bJg7jsuXL3fpM/Rv6IxWPSZKB3XeeefZ9ddfbx07drTx48e7wMvzzz9vXbt2tU6dOtk111xjK1euDL7+s88+c8dA50/76L23NyvysMMOs7fffrvUjg0AoGz6940bN9K/7yH6dwAA8tvzdf8AAMB3NAjx+uuv2+mnnx687/bbb7fKlSvbW2+95QaxH3/8cRs0aJB9/PHH9tdff7m0TBoY33///V0Q4uabb3ZpmxQouOqqq1yg4sEHH7RFixbZPffcY0lJSdajR4+d7sfatWvtiy++sFdeecX9fMMNN7jAxznnnGNz5syxfv362f333+8CGqp/oPfRIHujRo3ybevbb791g/pRUVHB+9QOrepQoET7o8cV/NC+lrRd7e/DDz9sixcvtpEjR7pBIbX5rrvusiOPPNL9u2TJEmvfvr1biaIgxa78/vvvLrhw6623WrVq1WzMmDHuXD3xxBNWs2ZN9z6XX365u2/r1q1255132gMPPGCHHHKITZgwwb1O569q1apue4cffrgLAun+4sjOzjY/0d9MTk6Oa1fo35KfRWKbhXZzvv3C++9XNm3a5ProU089NXifgtJKQ6jPeD33qaeecv270g96/fuzzz7r+nddG9x000329ddfB/t39eV6vvqwe++91ypWrOiuH7Qt/XdUEPr38O7f97Rv98Pnqx/a4Jd2+KENfmmHH9rgl3YEAgF3K602FLUfIPAAAAAcDR7ExMS4CxStDNAXUg0kiO477rjj3Iz4unXruvsuvPBC69Onj/tZKXh0QaOBi3322ccFHbT6QRds+uJbo0YNd5/st99+7vka+NhV4EErEFTkulmzZm6Gv1Y+/Pnnny7w8Oqrr7p/lSZALrnkEvvll1/szTffdCsE8tLgiWb7h9KKjVWrVrm2Sffu3V1QRPvXoEGDYv9lqK0KlIR65pln3ODCrvZXAZXLLrvMmjdv7h7XoMG4ceNcUed69epZXFycG8zReSnKwITOh9JHKf2TKJBx3333uYEH0SCEjocCMjqnOtb6V+3We+t4JyQkBLenuhgKnugiU38nRaXzBQAo2/49OvqfZAfp6emWnJxsZ599tgsUeP2yVrppkFoOPvhgF2yYPn2666dEj61bt86OPvpo189r8FuD1+pj1Mdt3rzZDYIroKE6UaqbtHr16kLTF9K/h3f/Tt8OAOVbfHy8NWzY0JYtW5YrY8DeRuABAAA4Dz30kEsBpCCDZkRqBp3qIXiBA/2sdDy//fabG6yYOXOmCyyIvuBqwFyD6q1atbJjjz3WDWqoqLJWOOgLrWbzeYrz5TZ09YIGS7KystzPCxcudKsVQtP/6Mt13uBC6CoODYqE+vTTT90Xce2zaL81W/Ojjz6y6667rth/GUoNpZUhoWrXrl2k/VUQRumN3nnnHXfMVHtiT2YV6px5gxIa+NEA0C233BIcfJK0tDQ301JBIg0mKfDRuHHj4PkLTcehARGdbw0uadtFpdRNxQlUlHf670MDcFr9E64zoIorEtsstJvz7af+XSvt9Detz3ClO9QqO63AEwXF1UdooFr9u/ofPVcpDjVIrTRCWrHXsmVL18+pf1DfNnnyZDegccUVVwTfS/2EPvP1WqU4VA2lwtC/h2//vqd9ux8+X/3QBr+0ww9t8Es7/NAGv7Qj8O+qDfXdpbXioShBaAIPAADAUVFpbxBAsx9bt27tZs9psPyCCy5ws+R0AaZZkRp40KC5Uh+JvsBqdr7qEHz11VeuxoBm8utfBQqUwkgD+rs7WyOUl7ZBFzteiodQ3pfxvHTBFTqIr5+VckBBFi/wILpA293Ag9I1FZTmqSj7q1QImkF6xhlnuCCPilKfe+65hbYlLy8g4wmdzei1W6svNPCQt+iotvfSSy/ZjBkz3ECSBpmUdkE3XayGHvfiXrhqYMJvgQcN7qhN4fpFpLgisc1CuznffqFZ9U2aNMk1aKz+3VvNMGTIEPf3rv5dA9Ne/67/5hXwD+3flX5JAXT17+ovC+vf9Vp9buzsM4P+PXz79z3t2/3w+eqHNvilHX5og1/a4Yc2+KUdgX9TLZV1Gwg8AACAAuliy8sLuWDBAjdA8eOPP7pVA5sz19nrY15zz/t5/URbMHOxzft9iV1x9WV2Y6fr7LbbbnPFiJXKSF+E9WVXqRm8L6ka2NcMCaVR2l3aroorhw70KzWE7tdsvrw0i0+z+Txqi1ZBqCizAi2e77//3h599FG3sqNDhw4l9texs/096aSTXJFrrXbQrFRRDQgpKD+20jJIaAqL0ELTeWm2jtrvpckQLblVPmfNVNXj7777rpvRqvdXWqxTTjnFzX71BiYUoNEKlryrRgAA4dm/K3CgwX+tSlSfWL16dfe4VkSInqN0Sz/99JNL7dOlSxf69wLQvwMAUDACDwAAwNmyZYsbmPYGtFWcUEEHrW7QQLcGKka995LV6ljBZv050ya8ONU999e1k21j+jZ7+5UptiH+b2veYT/bPi/KdqTscOmXlFdYRac1I1KrJjRArhQPWva/Jy699FJXZ0IzNzWYPmXKFBs1apSNHj26wOdrVcPcuXNzpVlS7QjVdQilwIDyU2tWZ0kGHna2vxr40aqRiRMnuoEfpbpQjmbxcnIq/7PSJigntIpHagar6kb07dvXBYVU6DN05UZB7//000+7AIRmvr7wwgsuuKJzoffQCpVKlSq5dFkKNKnORej2dOxKa6kuAGDv9+8dO3Z0wQd9rqtPVH+vSQEKyIv6Bq3KU/Fp9Tta3aD+JiUlxaVg0kpJ+nf6dwAACvNfEkAAABDRNICtegO6KR2Q6gyMGDHCFaWKqppuvW4+1sb+39s25LIR9tM7s+30G7pZdEy0ZS6LtwNbt7Gzb+9uv72/0F686kP7aPQEO+X2Lra88h9miVluOxo013a1ykED8FdfffUe7a/yR2vFgNIFKD2EVgs88cQTrkhzQVSYWgPtmsGpwRSlGzjrrLPyPU8pDHr16uVSTKkIZ0nZ2f4q8PDYY4+5wtRaaaAVF5pdqnRLs2fPdq/XKg6tQLjyyitdEEgBA6VO0LaUMuqaa67Z6ftrZYPaqwCQzsPKlStd4EKpGPQ+Gmjy3l9BD62GCK2XodUrKiAKAPBH/646DUrjo0kB+l2FoV9++WXXT2uF219//eUCzupvVMBYq/MUmFd/pYLESsNE/07/DgBAYaICBa3fB/YizbbREl4NyCgFh/4kNSvHy0npJ7QtPHHewhPnreSO419bp9qbn/2fffP6dMvJMDug0352+g1H29+zVtrHL/7P0lMyrF6TmnZOvxMsNi7Gfvp4hk16faolVUmw7EC2terS1B7oN9jqVvgvndGu+oLSoPc44YQTbPDgwYUGJ1AwzW5V0EGrQJQyq6jHu7TPaVnw82dLYSKxzUK7Od9+p4Byp06d7Ndff3WrH0oD/bu/+veSOp9++Hz1Qxv80g4/tMEv7fBDG/zSjkAg4CYXaCJBaRWXLkp/wIoHAABQ6MXKzC0/2oQ/x9nnz021Kx7qZbe+crGtmL/WZn2/0F4f9ImdecuxdtvIS9zzf/50pvt32Zw11uPGbnbLiEvs1hG9rfPFTW3K2nG2OvXvMj3SuiDq06ePvfXWW2W6H+Ho448/dumhihp0AABgb6F/33307wCA0kTgAQAAFGh56gKbtnGSLfxplbU7uoVVrV3ZYmJj7MJ7Trac7Bzbt1U9q9e0lnvuGX272YFH7P/P6+ausV8+m2lPXzXGxg350pIyatiOrC327bqPLCVrW5kebaUaUoqhhQsXlul+hBOlpVKhURWeBgCgPKJ/Lz76dwBAaaO4NAAAyCctO8V+2TDRMnMybMfqDIuJi7FX+39gW9fvsFaHNbGECnGWUCHerXpYv3yz7demvp167ZGWkxOwqrWTrfulh1n9ZrVswivf28fPf2Nn9zvO1qavsF83TrYjap1RZktWVRtBRZRRdKo/MX78eA4ZAKDcon8vPvp3AEBpY8UDAADIZ96232xd+nKrnlDHsrMDNu+Xv+3cfifYDc+fZ8vmrHYBhrk/L7GT+3S1m166wDLTMu3rN3+x6Ogou+yRHtageW0XXDjqvE42+6dFFh0VY5Vjq9vC7TNsbfpSjjgAAAAAAD5G4AEAAOSSlZNp87b+ZvHRiRYTFWuVqle0/ds3tORqFS0uIdZaH97UJo+Zag1b1LEa9atadEy0tT26uavtsH1Tiv3w4R/BbQVyAu5xqRCTZBk5qbZw+z+1IAAAAAAAgD8ReAAAALmsSltsmzPXWaXYqu73ll0a2/xpSy1lW5qr7TDv17+t2wUH24oF62zTmq3uOXOmLrEGzWpbfIU4m/TaT7ZywVp3//cfTHeBCtEKiIoxlWzx9pmWnp3KUQcAAAAAwKeo8QAAAHLZlLHWcgLZFhsd737ft2U9O/r8zjb85nGWnZVj+3doaMdc0NkFGkbfPd6yMrOtbpOadvJVXS0+Mc7OG3iivTN0omVlZFuthtXsnH4nBLedGJNkW7M2usBGnZh9OfIAAAAAAPgQgQcAAJDLhvRVFpVnUWTnk1q7WyithNAtr+adGrlbgRceUXGWnZNpmzPWWZ1EAg8AAAAAAPgRqZYAAEAuqdnbLSa6dOYmKN2SRUVZRk4aRx0AAAAAAJ8i8BDB0tPTbeDAgdapUyfr2rWrjRw5stDnfv3113bGGWdY+/bt7bTTTrPJkyfnevyTTz6x4447zg466CC7/vrrbePGjXuhBQCA0hAIBEr3wAb0/1J+DwAAAAAAIlRGRkZZ7wKBh0g2dOhQmzlzpo0ePdruu+8+GzZsmE2YMCHf8+bMmWM33HCDnXnmmfbhhx/aeeedZzfddJO7X2bMmGF33XWXe87bb79tW7dutQEDBpRBiwAAJaFCbLJlB7JKNagRH51YKtsHAAAAACDSZWZmlvUuUOMhUqWkpNi4ceNsxIgR1rp1a3ebP3++jR071k488cR8qxm6dOlil1xyifu9UaNGNmXKFPv888+tRYsWNmbMGDvppJOsR48ewYBGt27dbNmyZdawYcMyaR8AYPdVj69jC0pp1YMCGjFRMVYlrkapbB8AAAAAAJQ9Ui1FKK1WyMrKcqmTPB07drQ//vjDcnJycj23Z8+edvvtt+fbxrZt29y/eo3SNXnq1atn9evXd/cDAMJPtfjaFmVRpbJk6rzQAAArkUlEQVTqIS0nxeJjKljV+Nolvm0AAAAAAFA+EHiIUOvWrbNq1apZfHx88L6aNWu6ug+bN2/O9dymTZu6lQ0erYz48ccf7dBDD3W/r1271mrXzj2AVKNGDVu9enWptwMAUPLqVWhsleOq27bM3P1BSUjJ2mr7VjzAKsQklfi2AQAAAABA+RBb1juAspGampor6CDe7zsrPqKi0X379rUOHTrYscce6+5LS0srcFvFLWKivN95b35D28IT5y08cd52X1xUgu2f3M5+2TTRsgPVLTqqZOYppGenWExUnDVNapPvM96Pn/kAAAAAAEQqAg8RKiEhIV9gwPs9MbHggp/r16+3yy67zA0OPfvssxYdHb3TbVWoUKFY+6Si1Nqmtq8aFBIVFWV+QtvCE+ctPHHe9kw929+S7Vdbn7LSqsbteVqkQCDHNmSutv0SW1tSRg3bkrkl1+N50/wBAAAAAIDwReAhQtWpU8c2bdrk6jzExsYG0y8p6FC5cuV8z1+zZk2wuPRrr71m1atXz7UtBSVC6fdatWoVa5/0vjExMcFZr1WqVPFl4EFoW3jhvIUnztueqWJV7ND4E+3rte9ZZnSaJcVW3qNzsTFjtdWoUMe61jvNKsdVy/ec7OzsPdxjAAAAAABQXhB4iFAtW7Z0AYfp06cHC0NPmzbN2rRpE1zJ4NHqgyuvvNLdr6BD3oDCQQcd5F7bq1cv9/uqVavcTfcXh4IMXqDB+9lvgQehbeGJ8xaeOG97pklyG9uQsdr+2Pw/i7KAJcVW2a2gw6aMNZYQnWiH1jzVqsTXKPRcAQAAAAAAf6C4dIRSGqQePXrYoEGDbMaMGTZp0iQbOXJkcFWDVj+odoO89NJLtnTpUhsyZEjwMd22bdvmfj///PPto48+snHjxtmcOXPszjvvtKOPPtoaNmxYhi0EAOwpBQM6VT/W2lU9ytJz0mx9+irLCRR9ZUJGTrqtTV9uiTEV7YjaPa1RUgtOCgAAAAAAEYAVDxFswIABLvDQu3dvS05OdkWju3fv7h7r2rWrDR482K1i+OKLL1wQ4uyzz871+p49e9qjjz5q7du3twceeMDVfdiyZYsdfvjh9uCDD5ZRqwAAJSk6KsY6VT/OaiU2sF83TLJ16SssPjrRkmOrWlx0fIErHNJzUm1b1ib3+75JLeyQ6t2tekJdTgwAAAAAABGCwEOEr3rQKgZvJUOouXPnBn+eMGHCLrelAIWXaml387B7+b31u4qM6ne/pd6gbeGJ8xaeOG8lq2HiAVajTn1bvGOWzd/2h23NWG/ZgSzTJ3hMVIwF9L/APwWi46ITbZ+E5rZ/cltrlNzSYqJid1nDIbQPgD/k7d/9ws+fLYWJxDYL7eZ8R4KkpKRS/aymf/eXkurb/fD56oc2+KUdfmiDX9rhhzb4pR2BUm5DUfv3qADf8FHGMjIy7M8//yzr3QAAlAOqNRQfn38lBcIP/TsAwEP/7g/07QCA4vTvBB5Q5hSBy8rKcsWrwzWSCAAomRkZsbGxrj9A+KN/BwDQv/sLfTsAoDj9O4EHAAAAAAAAAABQYphSCAAAAAAAAAAASgyBBwAAAAAAAAAAUGIIPAAAAAAAAAAAgBJD4AEAAAAAAAAAAJQYAg8AAAAAAAAAAKDEEHgAAAAAAAAAAAAlhsADAAAAAAAAAAAoMQQeUK6kp6fbwIEDrVOnTta1a1cbOXKkhZuMjAw79dRTberUqcH7li1bZpdeeqm1a9fOTj75ZPvuu+9yveaHH35wrznooIPskksucc8vT9asWWM33nijHXzwwXbEEUfY4MGD3bnyQ9v+/vtvu+KKK6x9+/Z29NFH2yuvvBJ8LNzbFqpPnz7Wv3//4O9//fWXnX322W7fzzzzTJs5c2au53/yySd23HHHucevv/5627hxo5UnX375pR1wwAG5bvob9UPb9Bly//33W+fOne2www6zJ5980gKBgC/aBoQD/ff2+OOPW5cuXVy/N3ToUMvJySn0+dOnT7fzzjvP9SMnnHCCjRs3Ltfjp59+er7Pq3nz5pnf2x0OfWRx2xx67dC2bdt89/v1XO+q3eFwrnen3bu6Diyv57s436e4rkBp/vd2+eWX2/vvvx+877nnnsv334xuxx57bJH+u9rdz66SbIOMGjUq3z4OGTKkyJ+Jer2+U6v/1H+rqamppdaGnbVj4cKF7v4OHTrYMcccY8OHD891PK+99tp87fzqq6/KpB2FtWHTpk3Wt29ftw9qw0cffVTuP+M0TlTQfwe6rVy50j3noYceyvfYmDFjynS/89KxzbuPvXr1CruxlK1bt9pdd93lvnfrs0VjJrqvpP57Lyvlamw1AJQjDzzwQOC0004LzJw5MzBx4sRA+/btA59//nkgXKSlpQWuv/76QPPmzQM//fSTuy8nJ8e16bbbbgssWLAgMHz48MBBBx0UWLFihXtc/7Zr1y7w6quvBubNmxe46aabAqeeeqp7XXmg/TjnnHMCV155pdu/X375JXD88ccHHn300bBvW3Z2dqB79+5u/xcvXhz4+uuvAx06dAiMHz8+7NsW6pNPPnF/k/369XO/79ixI3D44Ye7c6i2Pfjgg4HDDjvM3S9//PFHoG3btoEPPvggMHv27MBFF10U6NOnT6A8eeGFFwJXX311YO3atcHbli1bfNG2e+65x/1dal9/+OGHwCGHHBJ48803fdE2IBzoc/2oo45y/d2PP/4Y6Nq1a+CVV14p8Ln67OnUqVPgiSeecP2IPm/btGkT+Oqrr9zjWVlZ7veff/451+dVZmZmwM/tDpc+sjht9qxcuTJwwgknuH41lF/P9a7aHS7nurjt3tV1YHk+30X9PsV1BUrzO5b+DvV58d577wXv3759e67/XvTf1sEHHxwYNWpUkf672p3PrpJug9x1112BQYMG5drHbdu2FekzccKECYGOHTsGpkyZ4q7dTz755MD9999fKm3YWTtSUlICxxxzTKB///6BhQsXuu/BXbp0CYwZMyb4HH3n/+ijj3K1Mz09fa+3Y2fnQt8He/fuHZj7/+2dCZQU1RWGH4pr3Ne478iwuKEiIAgmGhQRBCKGRYgaUUBBIhBIEBWDJoRFkBBAUTTAABIwCAbRCAKRRVlEgggiqyKryiIGsHK+d87rU130Nj09M1XD/53TTNNVXfVuVb+69917330rVnjjxo3zKlWqZNsT5mcc19B/TXk1a9bMa9u2bWyf1q1be0OHDo3bh3tWku0Owm+jQYMGcW3cvn273RYlX0rHjh29Ro0aeUuXLrV6s0mTJt4jjzySk/5ekjwdIt+qAg8iNKAAMDScwx4GDx5sH6RRYOXKld6dd95pO7c/8IDjkIeRU3CAchw4cKB9P2DAgDgZUSg8FPzXoSRBUSDPli1bYp9NnjzZGnpRl+3rr7+2ysEpDiBw1LNnz8jL5tixY4dXq1Ytr3HjxrHAw/jx462h6RQifzEsnSHXuXPn2L7O2XD55Zd769at88ICRgwOryBRl437VaFCBW/evHmxzzA6GRREXTYhogJODf/AdtKkSV6dOnUS7jt69Givbt26BwUPO3XqZN+vWbPGK1++vE1MOJTkjoqOLIjMMH36dOuYcbaen9J6r9PJHZV7XVC509mBYb3fBRlPya4QRcGmTZvs76127do2QB10FAf1Bg5XZ9um61cFfXYVlQz33HOPl5+fn/C76Z6JyOueI0AQBSeycyoXlxwzZ860gQMXSACcw02bNrXv+TwvL89bvXp1wmMXlxypZFi7dq3VSevXr4991r1798iNefGtINu2bdtin9WsWdObNWtWwv3D0u5+/frF7L4gUfGl0D5+54sXL459tnDhQvuZew4Vpr+XFLtD5ltVqSURGj799FOzf/9+O03OUaVKFbNkyZIinUKZK+bPn2+qVq1qxo4dG/c57a9QoYI59thj4+SiRIHbzvQnxzHHHGMqVqwY217SnH766bb80GmnnRb3+a5duyIv2xlnnGEGDBhgjjvuODt986OPPjILFiywU3ejLpuDaYANGjQwl156aewz2o4sZcqUsf/nL1Nsk8l21llnmbPPPtt+HhaYGnzhhRce9HnUZeM3yO+R36C/TBblzaIumxBRgNKCX331lS115qDfbdy40WzevPmg/V35wSDoSFi1apXti0cddZQ5lOSOgo4sqMwwY8YM06FDBzslP0hpvdfp5I7Cvc5G7nR2YFjvd0HGU7IrRFGwbNky2zcmTJhgjj/++KT7ffHFF7ZsTteuXWO2bap+lc2zq6hkWL16dcJxSLpn4oEDB8zSpUvjtlOGZt++fbbv5ppUcuTl5ZnBgwebI488MqEeR0buy3nnnXfQcYtTjlQycK3Zdu6558b9JhYtWhTbHvaxE9cMf8RDDz1kTjnllNg94Pee6W+spMZ8ycbjEBVfymGHHWZLjNEfgr/x3bt3F6q/lySfhsy3qsCDCA1btmwxJ598cpzyw9lNbbJvvvnGhJ1mzZrZGmo8bIJy4eD2c+qpp5pNmzZltL2kOeGEE6yDwcGDivqC1L+Lumx+qAnJPXS1qkuDbB988IH58MMPTdu2beM+T9d2jPcwy0aQiMEKdSK5V9S3pN4rayNEXTZqQp5zzjlm0qRJpm7durbmLYMC+l3UZRMiCtDPwN+XXOA9UV9isMtg27Ft2zYzZcoUU61atdig7IgjjjBt2rQxNWrUMC1atDAff/yxKe1yR0FHFlRmV3OZdS0SUVrvdTq5o3Cvs5E7nVxhvd8FGU/JrhBFNaZi7QXnRE3GSy+9ZMeT/nVjUvWrbJ5dRSHD1q1bbV+aOHGi3e+2226zsrj12FL1K+rG0xf928uWLWtOOumkInlmppKD5EKSJh179+4148aNs/fEOVtJhurSpYutD9+kSRMzc+ZMu6045UglQ7JrjdM+1fYwjZ3eeusts3PnTtO8efO4fkCQBId4rVq17Lon/N4cYWi3a+fy5ctN/fr17VqZTzzxRCxwFRVfytFHH22vsV9nvvrqq3YdB35zhenvJcmWkPlWyxb7GYVIAosRBSPu7v84FEubXE6mdNvDRp8+fexCQq+//rpdaKe0yDZw4ECrWJ588kmbxRn1+4ZS6dmzpzUAUKh+0rUdwzPMsrHolpOBDJENGzZYpwjtjrpse/bssYt35ufn298hRgP3kIBm1GUTIizQV9ygNFEfBH9fytQW4bgscIhh37RpU/sZQdJvv/3WLmz46KOP2kF9q1atzNSpU22GWmmVOyw6sqhkTsShcK8TEZZ7nWu508kVpvud7XhKdoXIdT/Dme3PcE4GzkmC1djxflL1K87r/z373xf0eVMYGXDIO+fikCFDrOOVccjhhx9uF9JN1a8SyeDfXhL3AkhwYkFdMrwJ+jg5OT5BB2ZfT58+3S42TXUHF/DJhRyFkaGw4/WiHDtlKhe/cYI6/vG6m21y8cUX2+AbFRl69OhhA0G33HJLsY35UsmAU56EORJRevfubYNRjF07d+5s+0WYfCkF+Y2RYEswiIofhe3vJcn3IfOtKvAgQgNTKoOdwP0/6DiNmlzBqCJyOZmSyc1MgzAGHUaOHGn69+9vypUrV6pkq1y5csxh//jjj5vGjRvbB3ZUZXvhhRdMpUqV4marOJK1PZ1swdk8JQUzAubNm2dOPPFEa5QxNRKDGUOHEkVRlo1sIQZjffv2tXK6QMuYMWPMBRdcEGnZhAgLTDO+9957E27jOeL6jiv14PpVqr7EYJ3ZZWvWrDGjR4+O7durVy874GGwCAS3Fy5caN544w07rb60yh0WHVkUMiejtN/rZITlXuda7nQ2bpjud7bjqajbg6JkSNXPmKXLTOR0zJo1y/7OguOUVP2qevXqOXt2FUYGxhpz58612cRAZvT27dutrY4jMtUzMdjuwvarXNwLyrFQ7oqSeiNGjLCOWEC3t2zZ0o63oHz58rbsEY7yxx57LGdyFEaGbJ9hxfGMy0QuZotSnYCggp+GDRuaOnXq2Bkk7tpjZ/EbI/BQXM/mdDLQD2gLs5Tgueeesz4UnPxh8hNl+hsbNWqUDSp069bNBtwK299LkqNC5ltV4EGEhjPPPNPs2LHDKj+cb0C2Lx2jpDtuYeWiXqUfMuvdlCy28//g9mCduZIGQ5AHLMEHytuUBtloC/X3/AYNayFQaxGjy0W4oygbWUS0x9X1c4pm2rRp5o477kjY9nSyOUM0DDhDzHHJJZfYoBFtjLJstANDwQUd4KKLLrI1bTF8oiybEGGB0gIrVqxIuI3BEnoO+8PVDHblHZL1JYKFDzzwgFm3bp0NzvvrwGLPOAcKuAy2ZJlXpUXusOjIXMucitJ8r1MRlnuda7nT2bhhut/ZjqeS3TvZFSLbfpYpBB5wrFJf3U+qfsXv1f2eC/vsKqwMzgnpH4e4vp/qmcj4BTuf//MdoK/ioM3m+VtYORjzEkSYM2eOGTZsmF3/wMG9cUEHB/eC52Iu5SiMDOnGPiX5jMtELvoBv2Wc2X743QfHulx7HOBF3e7C3Bv3W3D9NSx+okzkoHwSJb0oLcYsq1z095LkzJD5VrXGgwgNdE46hX8hFhZaJRM9aJREiSuvvNJmB7iplU4uPnfb+b+DLHtKGbntYcmep/RLv379TL169UqNbJToad++fdwg8ZNPPrFTB1l8J8qyvfbaa2by5Ml2rQBe1CTkxXvayKJbrjYhf8kmSiYbTm9eYZENIw0Dwj8jhWmPGGhuQbGoykY7CKAw1dxBAIxARNTvmxBRAEOdBfr8fYn3fBas4QrMtkKPoE947l522WVx28kWRIf692fwwwCyNMsddh2ZjczpKK33Oh1RuNfZyJ3Oxg3r/S7IeEp2hSgpWLfB7+R2pOpXuX52Zcv48eNtEp6zx904xPX9VM9E+iB90b+dvkqfJau9uKGcK0GH4cOH2wQnP5ReIvM7uGAtcoZFDtaaYnFxfz192uTWoAr7My5ZP3j++edtNn2iax+GdgNBBRIcKbfk7wf8BpilHyU/Ees3EHTg937//ffnrL+XJHlh8616QoSIHj16ePXq1fOWLFniTZ8+3bvmmmu8adOmeVGjXLly3ty5c+37/fv3e7fffrvXsWNH77PPPvOGDh3qXXXVVd7GjRvt9vXr13uVK1e2n7O9Q4cOXv369b0ff/zRCwOrVq3y8vLyvP79+3ubN2+Oe0VdNtrfqFEj77777vNWrlzpzZgxw6tevbr3yiuvRF62IF27drUv2Llzp3fDDTd4vXr1snLzt0aNGt7u3bvt9oULF3oVK1b0xo0b5y1fvtxr0aKF16ZNGy8s0P6aNWt6nTp18j7//HN732688UZv2LBhkZcNHnzwQa9p06a2fe+//76VZ+TIkaVCNiGiAM91ninocV68HzFiRGz7tm3bvF27dtn3Y8eO9cqXL++99957cfpxx44ddjvfq1KlivfOO+/Y51XPnj2tnqE/l2a5o6IjCyKzH/bF1vNTWu91Ormjcq8LKnc6OzDM9zvVeIp++v3339v3sitEUVOnTh1vwoQJcZ/t27fPq1Chgrdo0aKD9k/Xr9L14eKQYcOGDd7VV1/tPfvss96aNWu8N9980/axKVOmZPRMdPvTN+mj9FVs+qImKMfs2bPt8zw/Pz9Oj/McBJ4ZjCsmTpxo5Rw0aJB3xRVXWPlKSo5EvyfG8Yx5GPswBuLa054oPOM4H7+TILSfPvLiiy96a9eu9UaNGuVVqlTJtjcM7YYDBw54DRo08Fq1auWtWLHCW7BggdWZ9FmIii8Fu5V24SdJ5OsqbH8vSXqEyLeqwIMIFXv27PG6dOliOz+GxMsvv+xFEX/gAXhINW/e3CoMOv+cOXPi9sdxeuutt1plzsN73bp1XljgIYo8iV5Rlw02bdrktWvXzj6IMUSGDBkSUxRRly1Z4AFQQA0bNrSKskmTJt6yZcvi9seou+mmm2xf5Pps377dCxMo9tatW9v2cd8wht19i7ps3333nde5c2fbvmrVqpUq2YSIAgw0evfu7V177bVe1apVvT59+sQNIBj4Dhw4MDbgTaQfGQQC30Ov1K5d2+oSdAoDtNIud1R0ZEFkTueAL633Op3cUbnX2cidyg4M8/1ONZ7i/vkdd7IrRHE7irds2WJ/hwQWgqTrV+n6cHHJgJP17rvvts88to8ePbpAz0TG19j4BFm6devm7d27t0hlSCQHTslEepz9HDi2kYN7cdddd3nz588vUTkS3YutW7dapztjo5tvvtmbPHly3PYwP+Pq1q3rjRkzJuE2HMU4sGk3+wUdxmEY83355Zf23PTH66+/3gZ2fvjhh9j2KPhSCCQk83W5IFth+3tJESbfahn+Kf55FkIIIYQQQgghhBBCCCGEKI1Et3C+EEIIIYQQQgghhBBCCCFChwIPQgghhBBCCCGEEEIIIYTIGQo8CCGEEEIIIYQQQgghhBAiZyjwIIQQQgghhBBCCCGEEEKInKHAgxBCCCGEEEIIIYQQQgghcoYCD0IIIYQQQgghhBBCCCGEyBkKPAghhBBCCCGEEEIIIYQQImco8CCECCWXX365+e1vf3vQ5//4xz/MzTffXCTn5Lgcv6R49913Ta1atcyVV15pZs2alfCaJHo9/vjjOTn/W2+9ZbZt25aTYwkhhBC5At2MvsvPz0+6z6BBgw7Sj+jT+vXrm7fffrvYb8a8efPi2lKhQgVrZ7z44ovFcv6WLVvaawK/+93v7EsIIYTIBvRXonHor371q5xc0A8++MB8/vnnxXJzNmzYcJAcFStWNDfeeKPp1auX+d///lfi/oTly5ebhQsXxtkTRQl+l//85z/2/ahRo0zVqlXNL37xC7N48eLYPlyXW2+91WzevDnuu/379zfjxo0r0vaJaFO2pBsghBDJePPNN02TJk1MtWrVDomLNHDgQGvwtGvXzpx66qkJ98GJcPXVV8d9dvTRRxf63Bs3bjQdO3a0wQ8hhBAiTEyZMsXk5eWZSZMmmXvuuSfpfuhH52yHHTt2mOHDh5tOnTrZY1xwwQXWqcBgfs+ePebee+81zZs3L9K2z5492/7dt2+f+e9//2u6dOlizj77bHP77beb4uL3v/99sZ1LCCFE6aR79+4H6a4jjjgiJ8du3bq1efXVV80ll1xiiovx48ebs846y77/4YcfzPz5803Pnj3NySefbNq3b29KEvwBtOGaa66xto2zJYqCuXPnmq+//tpUr17dbN++3fzpT38yw4YNM0uWLDFPPfWUmThxYux63XTTTeaMM86I+/79999v7rrrLnPLLbfYaydEEM14EEKElnPOOcc8/fTThco6iBI7d+40VapUsXInCyaceOKJ5vTTT497HX/88YU+t+d5hT6GEEIIkWuYiUcmZNeuXW3m3dq1a5PuiwPErx/LlStn/vjHP5qyZcuaGTNmmL1795rzzz/fZiPiQCmODD3XFoINP//5z80dd9xhpk6dWuTn9YOdkAtbQQghxKELeiQ4Dj3ppJNMVDnllFNicpx77rmmUaNGpkGDBuadd94xYeLII4+0bSwq/vrXv8Zmrqxfv96ccMIJ5oYbbrCBhNWrV9vP8ccQGPrNb35z0PfZn+TJ0aNHF1kbRbRR4EEIEVrIwCf6/tJLL6WcJslfB5mOlBcAHAu8HzJkiLnuuutMjRo1bLbkv/71L1OnTh1z7bXXmj59+sQdc+XKlaZhw4amcuXKNnr/5ZdfxrZ99dVX5qGHHrKlG5hG+cILL5gDBw7EzkUWJtkJBA/++c9/HtReMik4H5kCV111lT0WxwSOx6wDHCHZlpLCIHjmmWfs1EhelGD65ptvYts/+ugja1TQfs6P4eCmSv7sZz+L/UUW/3VMNHWUbWSNsn/t2rXNrl27Ul4fMj3/8Ic/2HaRtcF+3FshhBAiFehsHALMfqQUAnq8IBx++OE28MCLoH6rVq3MJ598Yp577jmrs4M89thjNsgRLEHgZg0w8MaGwE7ASfHhhx8WqD3HHnts3P9T6eZ0unP69Ok2+5TvMkOUbM1E+Estod+Rh6xOMim5rswK8SciDB482DoRsJM4p98WEkIIIYKk0x2rVq2yY2t0GfqzWbNmsdJKbuzLLER0VKLSyonKB955551Wh61Zs8Z89913pnPnzlavuZJJJBtk4+THbnB89tln9txXXHGFLT1EGSI/lIBkLMx5ceAna3Mi3wWJFfg7+C5+in79+tnryPfwC3Tr1s3KGSy1tGnTJtOhQwdz/fXXW/uA8b9L1HT+DyopsI178eyzzyZNMiSwwCxQ/BPw05/+1Hz77bf23i1btiw2I2TChAmmZs2aB812cHC/xo4da3788ccCX3NR+lHgQQgRWs4880zz6KOPmr/97W82+p4NixYtst99/fXXTb169cyTTz5pnQYEI1Dk1Fqm9IFjzJgx5oEHHrDKdf/+/THnA8qa6Y6UQGK6IQp88uTJtm3+c1166aU2gxKDJwiDfJwETF/ESOH4bdu2tQqa9qHoCTzwPhswVnCm4EBARoIBGCVuNkWbNm2sUUMJK4I569ats9Mo3dRJ9zfT8g8YNgRSCDD85Cc/SXl9MNIWLFhgRowYYeXbvXu36d27d1ZyCiGEOHSgRBKDfbjtttvMG2+8kfEsPcopMfhmQO4G1eh3nBPoYmoVB8FWeO+996zTH/gu/+dz7IU///nPVp+zLhIDepwGmQ60cbwgD86STHRzKt356aefWhvl4YcftskOHJOgRaoZIY5p06aZo446yuprHEF/+ctfzBdffGG3/f3vf7f6u2/fvtaJgF6/7777YtdDCCGECJJKd6AjCUQwqx8dzjiY5DSXAOjGvjjp+U4mcBz079ChQ82FF15okwPQqYzlCQAsXbrUVk7IFOwKHPzI4GwOAhfoVZdUiM7l2C4BgjUZmVVJO5CZcxIwyBSSH7Zs2WKv3YABA+zYGr3PdXB+gWCpRGwSEii+//5789prr9nvMaMT28Tvk0Cncy169Ohh/QJu/YYgyEBQ5bjjjov5XwgAMUPziSeesDJzD0eOHGkefPDBpLIwQ2Lr1q02UCNEEK3xIIQINUTsUcIodb+TvyBGBNmCZBg2bdrUKs1HHnnElC9f3r5w1hPpZ9FHIOuQMgjAOcnoJxuD7EMi/zjmDzvsMHPxxRdbRUwmgsuYLFOmjHUAJCqTROYABhJBARQzMNAnQ2LOnDk2g4DsCqawMu0zGRg//iwM6ij++9//tsYHRgsOFZcRgQFCpsOKFSvsMQly/PrXv7btPO+886zD5eOPP7b7unPyN9M1I1x2B1AGI9X1IbMDJwcGJ1NyyTT1z8YQQgghgjCTjkw8Bt9AYBzdiTOeTL8gzD5w6yCh/5lpiH5H9zJrAqc8TgP0EA4PyhcSPPdTq1Yt6yTBAUESAXWV0YvoU/QtOpSySRwPZwOzH9gf3ZcI1x6SDXAY8H+XnIBTI5VuTqU7CVLcfffddvFswFHAdcHRkG4haY6FjsaeINmC60PiwkUXXWQTMgisIC/guKG9OCeynZEphBAi+qAbmEngh3Es4+xUuoOxL5UBmOXgZv2xJgDf8Y9D0ckks2UCsyacTiJgT3kkZv25soK0kyoGjEWTlRpkzI/uBfQz7UCXEpAHghAEUND1QICDwAKOfI7NuBcdzHsgMcAlOaSD5AECBLQb3Q8kSJIwgY52foFg27mezHwk0ZHrBQQI8EEwYxMI6iA/wQTG5K+88ooNipDkEISEiuC6GiRnEGTA9sEGIajCvaRN2CvYUvhM/GWX2A85OB4+FiH8KPAghAg1KDiUMIZKNvUWMRacgYNCBJwFDhSqfw0JIv4O9kPxE5hAwTPYJ+PBgaMBpwGLV7pzJXPaMwWU/SmH4ODYDPIJbBB4yASmUvqP4RwdzOogGyG46Cbn5NwEIzCKMDyWL19usy4JSLjAQTbgCHEgQ6rrQ9CHLE+MFpxFZFFQokIIIYRIBnoDXVOpUiX7fxz+lCMiUz9R4IH9CEygfxicM9uBQbJzhLC49Lvvvpu2zAI66u2337Y6i79kP2KP8H/WjcDRQECD5IRf/vKXtoxTMlxmJI4AAvQkPDDLgUxFajan0s2pdCd6l1kXOAQc2AGJZlwGwb7xJzHg6CEwwowKSjjgvPAHUtDl2BJCCCEOXahEEJwpeMwxx6TVHQQIcFSjDwlyM7bGQX3aaaflbByK3idxwA+f4SR3NkQQZheS4Y9uJlCCw5yZGU4/0k4CBC6BwOlyt53z+sfeJAS6IEI6mJGAL8C/Pzo+HZyTAIgLOgA2AzqcAIzzSbgZDMB7tieCxaTz8vIO+twdH7sCG4UXNhXVHZ5//vlYmSv/tUUeykcJEUSBByFE6EGZNm7c2M5AIDPP4TIU/ASVaiJnQKLvOfwDcWewsFglxyVjIFi7EVwmggtsJCLZNoyXgtRCxDjCcZLoOMCiTsH60RgfBE64htTHrl69us2SZFrmkiVLEp4nk2vrlynd9XEzMzgnLxwvlJVgOmmq+yGEEOLQxV9mycGsB0oLkOGHw8MPwX+nIwns4/Qgs5+BvT9onw7OQZYkMybRXdStBs5HhiNZlZRfYkYmMwz4i35OhF9noydx8uOooBwBA/tUuvmyyy5LqjvR+2QbukxL/zVIB3ZNEGaIOFsCpwLXz4/fySGEEOLQgzFlqnFoMt1BYIJ1iBgPEoRgpgFOfcoI5mIcyvkZbzLzP0gy3Qxu9iIyUbKJhaUpw4jud+fEuY69kYxg6cdE+tXfzkz2S0Uin4I7rvtLAkW6dvqvtb9dQQgWMVOC68gMVNaQZDFpkkBYo8ofeEg1+1Mc2uhXIYSIBCg5ph76F5p2ChtjxuFfaDob/HUJ3UJVGFC8yIZgCibGCS/OReQ/E8c5Tg+CIIsXL459xkwAsjCCBlo2cHyCJsw6cO0ju4G1Fsg8YG0JDD+MKupCUpeaWRLOCAnKwLX1X1fekxGRjHTXB6MFJw31uTHomFqLsaKsCCGEEMmyAcmIrFu3btzn/J/ygui1dFAuAec9ToRUA+sgBAHY/+WXX7aOfHQmUBYBPUrZCAITLHxNOSf0WaY4vcsAPZ1uTqU70bvoWadzeTH74f333zfZgjMBxxI1p90xWViSslRuDQghhBCiILqDYD1liylRRBIhOpZxYzJneHAcyn6pxvjoQ9Z3YMzpzk/iAWWH/ZUNUnH++efbcsyULnbBf45L+11wghdjeWYsAvYFJYwcrK/oX2eJAIBfDv+alRyLcTslJR1cH8ovpoI24aPwlyymTfgZkKGgcN+SlT8m8IId5EoqEVRw9wwbKXj/8G0UZhaLKL0o8CCEiARkSBB88C/YhGLDqCEYgSIn45CMwMKAcqWsAtMqcSpQuxnDgNIFTOmk5iFlEKgjzWJNZD8GZ0kkggxHyjFQb5G60RyfY7FwVKJ6iwWFIAPHpywVx6dcQ5cuXazx40pGYeCxFgPXiqmlyOmMMZc1SrswkKibyXvKOGBwkemRKoMh3fXBGGTGijs/NTORnfsqhBBCJJrtgO5kQIwz3b3QTQyuWTcpHegfdBFJBcwIzBQG8JSTYG0pAh0uOE8QgtkPzHrACUIbSYpwayslAkeMe1FiAkcMMx8o2ZRON6fSna1btzZTp061jgrKK7hSCJRgKAwclxklzLTAuUHQhixH2iyEEEIUVHeg69CVlE1Gd6JDmbnnDwowY3/lypVW75FFj+7HwY/uI5GO9RKTwRoFlC3GV8AaScuWLbPjeM5JUCRTWN+BY1F2ieQAygkRwGAcTImjmTNnWp2Msx5atGhhx8qst8B29mN/B3KwnTbxIiHPQdCCJAYWj2bszPgdG8D5BbgezAoJBgXYTsIh43y+N3fuXOtfYBZJQWR1UDaS4ySC5AdmfLhZI/gHsENICiGYxKwHf9AFPw0zOIUIolJLQojIwBRNplCSMQE4wlH+KFvKIqAYqctYmGw/akFjNGEUUScSw8M5L4YMGWLPRSkEjAGcEZRwyBT2JWOR+pgYWmR74CRINB0yG1hM0h2feozXXXedNWBoO9mSLDrJNhwoGA60Z9CgQbHFtDCuWDwLo43MSwxIF3Dgurjrnoh016d58+a29ieBCQxHDDH2zyRoI4QQ4tADpz6BcP/ihX5wtlNGMFUZBWDtIfQbA/569erFFrFMB/syg4C/DuogY3dQVhD7gDINBBKCCzP6cWsuoHtxCuA0IAsT3ZpON6fSnQz4OQ778pdgTN++fa3uLwzMEuG6o/9xJHBOEjxUakkIIUQ2uoM1Etq1a2eeeuopO0uQYD374XR3erxly5ZWl6Hbu3fvbnUh+o5xOWsbBcsuBuG7rIXI+JXkAQIRrmRSpvA9vsMx8DmQ1Dd8+HC7aDRlDQmgoJdZpwmYpUhQhDZSGYDSif71Ehg/k/hAgAIZkdd9F7AfuCas50QSIX9Z1xJYE4M1qwjicG0c6H9sEDfmJkGDdac6deqU1Y+T64T/gHvnX9jbzXbwl8Nq37699RXgJ6BN/sADM0JJjGANCCGClPGSzW8SQgghhBBCCCGEEEIIUeogiEDQJLhmVEFghgkzMdKVihKHJiq1JIQQQgghhBBCCCGEEIcQzMLIz8/P+vus7TBnzhw7S0OIRCjwIIQQQgghhBBCCCGEEIcQlISkTNLs2bOz+j7lmB5++GGt3SiSolJLQgghhBBCCCGEEEIIIYTIGZrxIIQQQgghhBBCCCGEEEKInKHAgxBCCCGEEEIIIYQQQgghcoYCD0IIIYQQQgghhBBCCCGEyBkKPAghhBBCCCGEEEIIIYQQImco8CCEEEIIIYQQQgghhBBCiJyhwIMQQgghhBBCCCGEEEIIIXKGAg9CCCGEEEIIIYQQQgghhMgZCjwIIYQQQgghhBBCCCGEECJnKPAghBBCCCGEEEIIIYQQQgiTK/4PIK3FUd2ER7cAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualize comparison\n", "fig = plt.figure(figsize=(18, 12))\n", "gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3)\n", "\n", "models = results_summary['Model']\n", "\n", "# Plot 1: Test R² comparison\n", "ax1 = fig.add_subplot(gs[0, :])\n", "colors_r2 = ['red' if x == baseline_test_r2 else 'green' if x > baseline_test_r2 else 'orange' \n", " for x in results_summary['Test_R2']]\n", "bars1 = ax1.barh(models, results_summary['Test_R2'], color=colors_r2, alpha=0.7)\n", "ax1.axvline(x=baseline_test_r2, color='red', linestyle='--', linewidth=2, label='Baseline')\n", "ax1.set_xlabel('Test R² Score')\n", "ax1.set_title('Model Performance: Test R² Comparison (Green=better, Red=baseline, Orange=worse)', fontsize=12, fontweight='bold')\n", "ax1.grid(True, alpha=0.3, axis='x')\n", "for i, v in enumerate(results_summary['Test_R2']):\n", " ax1.text(v + 0.003, i, f'{v:.4f}', va='center')\n", "\n", "# Plot 2: RMSE comparison\n", "ax2 = fig.add_subplot(gs[1, 0])\n", "colors_rmse = ['red' if x == baseline_test_rmse else 'green' if x < baseline_test_rmse else 'orange' \n", " for x in results_summary['Test_RMSE']]\n", "ax2.barh(models, results_summary['Test_RMSE'], color=colors_rmse, alpha=0.7)\n", "ax2.axvline(x=baseline_test_rmse, color='red', linestyle='--', linewidth=2)\n", "ax2.set_xlabel('Test RMSE')\n", "ax2.set_title('RMSE Comparison')\n", "ax2.grid(True, alpha=0.3, axis='x')\n", "\n", "# Plot 3: Features used\n", "ax3 = fig.add_subplot(gs[1, 1])\n", "ax3.barh(models, results_summary['Features'], color='steelblue', alpha=0.7)\n", "ax3.axvline(x=X_final.shape[1], color='red', linestyle='--', linewidth=2, label='Original')\n", "ax3.set_xlabel('Number of Features')\n", "ax3.set_title('Model Complexity')\n", "ax3.grid(True, alpha=0.3, axis='x')\n", "ax3.legend()\n", "\n", "# Plot 4: Overfitting gap\n", "ax4 = fig.add_subplot(gs[1, 2])\n", "colors_gap = ['red' if x > 0.15 else 'orange' if x > 0.10 else 'green' \n", " for x in results_summary['Overfitting_Gap']]\n", "ax4.barh(models, results_summary['Overfitting_Gap'], color=colors_gap, alpha=0.7)\n", "ax4.axvline(x=0.10, color='orange', linestyle='--', linewidth=1, label='Warning threshold')\n", "ax4.set_xlabel('Train R² - Test R²')\n", "ax4.set_title('Generalization Quality\\n(Lower is better)')\n", "ax4.grid(True, alpha=0.3, axis='x')\n", "ax4.legend(fontsize=8)\n", "\n", "# Plot 5: Complexity vs Performance\n", "ax5 = fig.add_subplot(gs[2, 0])\n", "scatter = ax5.scatter(results_summary['Features'], results_summary['Test_R2'], \n", " s=300, alpha=0.6, c=range(len(results_summary)), cmap='viridis')\n", "ax5.axhline(y=baseline_test_r2, color='red', linestyle='--', alpha=0.5)\n", "for idx, row in results_summary.iterrows():\n", " ax5.annotate(f\"{int(row['Features'])}\", \n", " (row['Features'], row['Test_R2']), \n", " fontsize=8, ha='center', va='bottom')\n", "ax5.set_xlabel('Number of Features')\n", "ax5.set_ylabel('Test R²')\n", "ax5.set_title('Complexity vs Performance\\nTrade-off')\n", "ax5.grid(True, alpha=0.3)\n", "\n", "# Plot 6: Delta R² vs Baseline\n", "ax6 = fig.add_subplot(gs[2, 1])\n", "colors_delta = ['red' if x < 0 else 'green' for x in results_summary['Delta_R2_vs_Baseline']]\n", "ax6.barh(models, results_summary['Delta_R2_vs_Baseline'], color=colors_delta, alpha=0.7)\n", "ax6.axvline(x=0, color='black', linestyle='-', linewidth=1)\n", "ax6.set_xlabel('Δ R² vs Baseline')\n", "ax6.set_title('Improvement over Baseline')\n", "ax6.grid(True, alpha=0.3, axis='x')\n", "\n", "# Plot 7: Feature reduction\n", "ax7 = fig.add_subplot(gs[2, 2])\n", "ax7.barh(models, results_summary['Feature_Reduction_%'], color='purple', alpha=0.7)\n", "ax7.set_xlabel('Feature Reduction (%)')\n", "ax7.set_title('Dimensionality Reduction')\n", "ax7.grid(True, alpha=0.3, axis='x')\n", "\n", "plt.suptitle('Comprehensive Model Comparison: All Variants', fontsize=14, fontweight='bold', y=0.995)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "====================================================================================================\n", "KEY FINDINGS & RECOMMENDATIONS\n", "====================================================================================================\n", "\n", "1️⃣ BEST OVERALL MODEL (Highest Test R²)\n", " Model: Symmetry-Constrained\n", " Test R²: 0.4923\n", " Improvement: +0.0059 vs baseline\n", " Features: 36 (0.0% reduction)\n", " RMSE: 0.1592\n", " Overfitting Gap: 0.1066\n", "\n", "2️⃣ BEST GENERALIZATION (Lowest Overfitting Gap)\n", " Model: Symmetry-Constrained\n", " Overfitting Gap: 0.1066\n", " Test R²: 0.4923\n", " Features: 36\n", " ⚠ Moderate generalization\n", "\n", "3️⃣ MOST EFFICIENT (Best R² per Feature)\n", " Model: RFE (25 features)\n", " Test R²: 0.4876\n", " Features: 25 (30.6% reduction)\n", " Efficiency score: 0.7021\n", "\n", "4️⃣ SIMPLEST MODEL (Fewest Features)\n", " Model: RFE (25 features)\n", " Features: 25 (30.6% reduction)\n", " Test R²: 0.4876\n", " R² retention: 100.2% of baseline\n", "\n", "5️⃣ FEATURE SELECTION EFFECTIVENESS\n", " Baseline features: 36\n", " Average reduction across methods: -285.2%\n", " Best reduction: 30.6% (RFE (25 features))\n", " Average R² across all models: 0.4412\n", " R² std dev: 0.1148\n", "\n", "6️⃣ RECOMMENDATIONS FOR DEPLOYMENT\n", " ✓ RECOMMENDED: Symmetry-Constrained\n", " - Excellent generalization even if slightly lower accuracy\n", "\n", "7️⃣ AVOID IN PRODUCTION\n", " ✗ Polynomial features - High overfitting risk (0.6946 gap)\n", "\n", "8️⃣ NEXT STEPS\n", " 1. Choose champion model: Symmetry-Constrained\n", " 2. Validate with cross-validation (5-fold)\n", " 3. Test on hold-out validation set\n", " 4. Deploy as REST API service\n", " 5. Monitor performance on new movement data\n", "\n", "====================================================================================================\n" ] } ], "source": [ "# Key findings and recommendations\n", "print(\"\\n\" + \"=\"*100)\n", "print(\"KEY FINDINGS & RECOMMENDATIONS\")\n", "print(\"=\"*100)\n", "\n", "# Best overall\n", "best_overall_idx = results_summary['Test_R2'].idxmax()\n", "best_overall = results_summary.loc[best_overall_idx]\n", "\n", "print(f\"\\n1️⃣ BEST OVERALL MODEL (Highest Test R²)\")\n", "print(f\" Model: {best_overall['Model']}\")\n", "print(f\" Test R²: {best_overall['Test_R2']:.4f}\")\n", "print(f\" Improvement: {best_overall['Delta_R2_vs_Baseline']:+.4f} vs baseline\")\n", "print(f\" Features: {int(best_overall['Features'])} ({best_overall['Feature_Reduction_%']:.1f}% reduction)\")\n", "print(f\" RMSE: {best_overall['Test_RMSE']:.4f}\")\n", "print(f\" Overfitting Gap: {best_overall['Overfitting_Gap']:.4f}\")\n", "\n", "# Best generalization\n", "best_gen_idx = results_summary['Overfitting_Gap'].idxmin()\n", "best_gen = results_summary.loc[best_gen_idx]\n", "\n", "print(f\"\\n2️⃣ BEST GENERALIZATION (Lowest Overfitting Gap)\")\n", "print(f\" Model: {best_gen['Model']}\")\n", "print(f\" Overfitting Gap: {best_gen['Overfitting_Gap']:.4f}\")\n", "print(f\" Test R²: {best_gen['Test_R2']:.4f}\")\n", "print(f\" Features: {int(best_gen['Features'])}\")\n", "if best_gen['Overfitting_Gap'] < 0.05:\n", " print(f\" ✓ Excellent generalization\")\n", "elif best_gen['Overfitting_Gap'] < 0.10:\n", " print(f\" ✓ Good generalization\")\n", "else:\n", " print(f\" ⚠ Moderate generalization\")\n", "\n", "# Most efficient (best R² with fewest features)\n", "results_summary['efficiency'] = results_summary['Test_R2'] / (results_summary['Features'] / X_final.shape[1])\n", "best_efficient_idx = results_summary['efficiency'].idxmax()\n", "best_efficient = results_summary.loc[best_efficient_idx]\n", "\n", "print(f\"\\n3️⃣ MOST EFFICIENT (Best R² per Feature)\")\n", "print(f\" Model: {best_efficient['Model']}\")\n", "print(f\" Test R²: {best_efficient['Test_R2']:.4f}\")\n", "print(f\" Features: {int(best_efficient['Features'])} ({best_efficient['Feature_Reduction_%']:.1f}% reduction)\")\n", "print(f\" Efficiency score: {best_efficient['efficiency']:.4f}\")\n", "\n", "# Simplest\n", "simplest_idx = results_summary['Features'].idxmin()\n", "simplest = results_summary.loc[simplest_idx]\n", "\n", "print(f\"\\n4️⃣ SIMPLEST MODEL (Fewest Features)\")\n", "print(f\" Model: {simplest['Model']}\")\n", "print(f\" Features: {int(simplest['Features'])} ({simplest['Feature_Reduction_%']:.1f}% reduction)\")\n", "print(f\" Test R²: {simplest['Test_R2']:.4f}\")\n", "print(f\" R² retention: {simplest['Test_R2'] / baseline_test_r2 * 100:.1f}% of baseline\")\n", "\n", "print(f\"\\n5️⃣ FEATURE SELECTION EFFECTIVENESS\")\n", "print(f\" Baseline features: {X_final.shape[1]}\")\n", "print(f\" Average reduction across methods: {results_summary['Feature_Reduction_%'].mean():.1f}%\")\n", "print(f\" Best reduction: {simplest['Feature_Reduction_%']:.1f}% ({simplest['Model']})\")\n", "print(f\" Average R² across all models: {results_summary['Test_R2'].mean():.4f}\")\n", "print(f\" R² std dev: {results_summary['Test_R2'].std():.4f}\")\n", "\n", "print(f\"\\n6️⃣ RECOMMENDATIONS FOR DEPLOYMENT\")\n", "if best_overall['Overfitting_Gap'] < 0.10:\n", " print(f\" ✓ RECOMMENDED: {best_overall['Model']}\")\n", " print(f\" - Best accuracy and reasonable generalization\")\n", "elif best_gen['Test_R2'] > baseline_test_r2 - 0.02:\n", " print(f\" ✓ RECOMMENDED: {best_gen['Model']}\")\n", " print(f\" - Excellent generalization even if slightly lower accuracy\")\n", "else:\n", " print(f\" ✓ RECOMMENDED: {best_efficient['Model']}\")\n", " print(f\" - Best balance of performance and simplicity\")\n", "\n", "print(f\"\\n7️⃣ AVOID IN PRODUCTION\")\n", "if poly_gap > 0.15:\n", " print(f\" ✗ Polynomial features - High overfitting risk ({poly_gap:.4f} gap)\")\n", "if baseline_gap > 0.15:\n", " print(f\" ✗ Baseline model - Poor generalization ({baseline_gap:.4f} gap)\")\n", "\n", "print(f\"\\n8️⃣ NEXT STEPS\")\n", "print(f\" 1. Choose champion model: {best_overall['Model']}\")\n", "print(f\" 2. Validate with cross-validation (5-fold)\")\n", "print(f\" 3. Test on hold-out validation set\")\n", "print(f\" 4. Deploy as REST API service\")\n", "print(f\" 5. Monitor performance on new movement data\")\n", "\n", "print(\"\\n\" + \"=\"*100)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "====================================================================================================\n", "ROBUSTNESS CHECK: 5-FOLD CROSS-VALIDATION\n", "====================================================================================================\n", "\n", "Baseline:\n", " CV R² (mean ± std): 0.5809 ± 0.0546\n", " CV RMSE (mean ± std): 0.1550 ± 0.0467\n", " Fold scores: ['0.5809', '0.4796', '0.6244', '0.5864', '0.6331']\n", "\n", "Lasso:\n", " CV R² (mean ± std): 0.5834 ± 0.0502\n", " CV RMSE (mean ± std): 0.1546 ± 0.0449\n", " Fold scores: ['0.5857', '0.4903', '0.6231', '0.5863', '0.6317']\n", "\n", "Symmetry:\n", " CV R² (mean ± std): 0.5789 ± 0.0574\n", " CV RMSE (mean ± std): 0.1553 ± 0.0462\n", " Fold scores: ['0.5666', '0.4746', '0.6245', '0.5939', '0.6348']\n", "\n", "====================================================================================================\n" ] } ], "source": [ "# Cross-validation for robustness check\n", "from sklearn.model_selection import cross_validate\n", "\n", "print(\"\\n\" + \"=\"*100)\n", "print(\"ROBUSTNESS CHECK: 5-FOLD CROSS-VALIDATION\")\n", "print(\"=\"*100)\n", "\n", "cv_results = {}\n", "scoring = {'r2': 'r2', 'rmse': 'neg_mean_squared_error', 'mae': 'neg_mean_absolute_error'}\n", "\n", "models_to_cv = [\n", " ('Baseline', LinearRegression(), X_train_scaled, X_test_scaled),\n", " ('Lasso', lasso_cv, X_train_scaled, X_test_scaled),\n", " ('Symmetry', sym_model, X_train_sym, X_test_sym)\n", "]\n", "\n", "for name, model, X_train_cv, X_test_cv in models_to_cv:\n", " cv_score = cross_validate(model, X_train_cv, y_train, cv=5, scoring=scoring, return_train_score=True)\n", " \n", " cv_results[name] = {\n", " 'r2_mean': cv_score['test_r2'].mean(),\n", " 'r2_std': cv_score['test_r2'].std(),\n", " 'rmse_mean': np.sqrt(-cv_score['test_rmse'].mean()),\n", " 'rmse_std': np.sqrt(cv_score['test_rmse'].std())\n", " }\n", " \n", " print(f\"\\n{name}:\")\n", " print(f\" CV R² (mean ± std): {cv_score['test_r2'].mean():.4f} ± {cv_score['test_r2'].std():.4f}\")\n", " print(f\" CV RMSE (mean ± std): {np.sqrt(-cv_score['test_rmse'].mean()):.4f} ± {np.sqrt(cv_score['test_rmse'].std()):.4f}\")\n", " print(f\" Fold scores: {[f'{x:.4f}' for x in cv_score['test_r2']]}\")\n", "\n", "print(\"\\n\" + \"=\"*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "\n", "### Summary of Experiments\n", "We have successfully completed a comprehensive feature engineering and model selection study for the Automated Movement Assessment system:\n", "\n", "**Steps completed:**\n", "1. ✓ Data exploration and quality assessment (2095 samples, 42 features)\n", "2. ✓ Duplicate feature detection and removal\n", "3. ✓ Baseline linear regression model (reference point)\n", "4. ✓ Correlation-based feature selection\n", "5. ✓ Recursive Feature Elimination (RFE)\n", "6. ✓ Lasso regularization with automatic feature selection\n", "7. ✓ Polynomial feature engineering (interaction terms)\n", "8. ✓ Symmetry constraint application (domain-specific)\n", "9. ✓ Comprehensive model comparison and recommendation\n", "\n", "### Key Deliverables\n", "- **Comprehensive comparison table** showing all model variants and their performance metrics\n", "- **Feature selection analysis** identifying most/least important features\n", "- **Champion model recommendation** with justification\n", "- **Visualization suite** for stakeholder communication\n", "\n", "### Next Steps for Production\n", "1. Deploy champion model as REST API service\n", "2. Build remote test web client\n", "3. Implement CI/CD pipeline for model updates\n", "4. Monitor performance metrics on new movement data\n", "5. A/B test variants against current system" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 4 }