File size: 20,937 Bytes
8d8b089
 
 
 
 
 
 
 
 
 
 
2746d19
99586d3
 
8d8b089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 10:25:34 2025

@author: Ashmitha
"""

#-----------------------------------------------------------Libraries----------------------------------------------------------------------------
import pandas as pd
import numpy as np
import gradio as gr
#! pip install scikit-learn
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile
import pyinstaller

#--------------------------------Random Forest for Feature selection-------------------------------------------
def RandomForestFeatureSelection(trainX, trainy,num_features=60):
    rf=RandomForestRegressor(n_estimators=1000,random_state=50)
    rf.fit(trainX,trainy)
    importances=rf.feature_importances_
    indices=np.argsort(importances)[-num_features:]
    return indices
#------------------------------------------------------------------GRU model--------------------------------------------------
def GRUModel(trainX,trainy,testX,testy,epochs=1000,batch_size=64,learning_rate=0.0001,l1_reg=0.001,l2_reg=0.001,dropout_rate=0.2,feature_selection=True):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100,random_state=42)
        rf.fit(trainX,trainy)
        selector=SelectFromModel(rf,threshold="mean",prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} features based on feature importance")
    scaler=MinMaxScaler()
    trainX_scaled=scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled=scaler.transform(testX)
    target_scaler=MinMaxScaler()
    trainy_scaled=target_scaler.fit_transform(trainy.reshape(-1,1))
    trainX=trainX_scaled.reshape((trainX.shape[0],1,trainX.shape[1]))
    if testX is not None:
        testX=testX_scaled.reshape((testX.shape[0],1,testX.shape[1]))
    model=Sequential()
    model.add(GRU(512, input_shape=(trainX.shape[1],trainX.shape[2]), return_sequences=False,kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
    model.add(Dense(256,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(128,kernel_initializer="he_normal",kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(64,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(32,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(1,activation="relu"))
    model.compile(loss="mse",optimizer=Adam(learning_rate=learning_rate),metrics=["mse"])
    learning_rate_reduction=ReduceLROnPlateau(monitor="val_loss",patience=10,verbose=1,factor=0.5,min_lr=1e-6)
    early_stopping=EarlyStopping(monitor='val_loss',verbose=1,restore_best_weights=True,patience=10)
    history = model.fit(trainX, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1, 
                        callbacks=[learning_rate_reduction, early_stopping])
    predicted_train=model.predict(trainX)
    predicted_test=model.predict(testX) if testX is not None else None
    predicted_train=model.predict(trainX)
    predicted_test=model.predict(testX) if testX is not None else None
    predicted_train=predicted_train.flatten()
    if predicted_test is not None:
        predicted_test =predicted_test.flatten()
    else:
        predicted_test=np.zeros_like(predicted_train)
    predicted_train=target_scaler.inverse_transform(predicted_train.reshape(-1,1)).flatten()
    if predicted_test is not None:
        predicted_test=target_scaler.inverse_transform(predicted_test.reshape(-1,1).flatten())
    return predicted_train.predicted_test,history
#----------------------------------------------------CNN-----------------------------------------------
def CNNModel(trainX,trainy,testX,testy,epochs=1000,batch_size=64,learning_rate=0.0001,l1_reg=0.0001,l2_reg=0.0001,dropout_rate=0.3,feature_selection=True):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100,random_state=42)
        rf.fit(trainX,trainy)
        selector=SelectFromModel(rf,threshold="mean",prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} feature based on the importance feature")
    scaler=MinMaxScaler()
    trainX_scaled=scaler.fit.transform(trainX)
    if testX is not None:
        testX_scaled=scaler.transfom(testX)
    trainX=trainX_scaled.reshape((trainX.shape[0], trainX.shape[1],1))
    if testX is not None:
        testX = testX_scaled.reshape((testX.shape[0]),testX.shape[1],1)
    model=Sequential()
    model.add(Conv1D(512, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Dropout(dropout_rate))
    
    model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Dropout(dropout_rate))
    
    model.add(Conv1D(128, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Dropout(dropout_rate))
    
    model.add(Flatten())
    model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(LeakyReLU(alpha=0.1))
    model.add(Dropout(dropout_rate))

    model.add(Dense(1, activation='linear'))

    
    model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])

   
    learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
    early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
    
   
    history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1, 
                        callbacks=[learning_rate_reduction, early_stopping])
    
    predicted_train = model.predict(trainX).flatten()
    predicted_test = model.predict(testX).flatten() if testX is not None else None
    
    return predicted_train, predicted_test, history
#-------------------------------------------------------------------RFModel---------------------------------------------------------

def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100, random_state=42)
        rf.fit(trainX, trainy)
        selector=SelectFromModel(rf, threshold="mean", prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} feature based on the feature selection")
        
    
   
   
    
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)
    
   
    rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
    history=rf_model.fit(trainX_scaled, trainy)
    
    
   
    predicted_train = rf_model.predict(trainX_scaled)
    predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
    
    return predicted_train, predicted_test,history
#------------------------------------------------------------------------------XGboost---------------------------------------------------------------
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100,random_state=42)
        rf.fit(trainX,trainy)
        selector=SelectFromModel(rf,threshold="mean",prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} features based on feature importance")
        
    
    
   
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)

   
    xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
    history=xgb_model.fit(trainX, trainy)
    param_grid={
        "learning_rate":0.01,
        "max_depth" : 10,
         "n_estimators": 100,
         "min_child_weight": 5
        }
    

    # Predictions
    predicted_train = xgb_model.predict(trainX_scaled)
    predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
    

    return predicted_train, predicted_test,history






#----------------------------------------reading file----------------------------------------------------------------------------------------






def read_csv_file(uploaded_file):
    if uploaded_file is not None:
        if hasattr(uploaded_file, 'data'):
            return pd.read_csv(io.BytesIO(uploaded_file.data))
        elif hasattr(uploaded_file, 'name'):  
            return pd.read_csv(uploaded_file.name)
    return None


#-----------------------------------------------------------------calculate topsis score--------------------------------------------------------


def calculate_topsis_score(df):
    
    metrics = df[['Train_MSE', 'Train_RMSE', 'Train_R2', 'Train_Corr']].dropna()  # Ensure no NaN values
    norm_metrics = metrics / np.sqrt((metrics ** 2).sum(axis=0))
    
    
    ideal_best = pd.Series(index=norm_metrics.columns)
    ideal_worst = pd.Series(index=norm_metrics.columns)

    
    for col in ['Train_MSE', 'Train_RMSE']:
        ideal_best[col] = norm_metrics[col].min()
        ideal_worst[col] = norm_metrics[col].max()

    
    for col in ['Train_R2', 'Train_Corr']:
        ideal_best[col] = norm_metrics[col].max()
        ideal_worst[col] = norm_metrics[col].min()
    
    
    dist_to_best = np.sqrt(((norm_metrics - ideal_best) ** 2).sum(axis=1))
    dist_to_worst = np.sqrt(((norm_metrics - ideal_worst) ** 2).sum(axis=1))

    
    topsis_score = dist_to_worst / (dist_to_best + dist_to_worst)
    df['TOPSIS_Score'] = np.nan  
    df.loc[metrics.index, 'TOPSIS_Score'] = topsis_score  # Assign TOPSIS scores
    return df

#--------------------------------------------------- Nested Cross validation---------------------------------------------------------------------------

def NestedKFoldCrossValidation(training_data, training_additive, testing_data, testing_additive, 
                                training_dominance, testing_dominance, epochs,learning_rate,min_child_weight, batch_size=64,
                                outer_n_splits=2, inner_n_splits=2, output_file='cross_validation_results.csv',
                                predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True):

    if 'phenotypes' not in training_data.columns:
        raise ValueError("Training data does not contain the 'phenotypes' column.")
    
    
    training_additive = training_additive.iloc[:, 1:]
    testing_additive = testing_additive.iloc[:, 1:]
    training_dominance = training_dominance.iloc[:, 1:]
    testing_dominance = testing_dominance.iloc[:, 1:]

    # Merge training and testing data with additive and dominance components
    training_data_merged = pd.concat([training_data, training_additive, training_dominance], axis=1)
    testing_data_merged = pd.concat([testing_data, testing_additive, testing_dominance], axis=1)

    phenotypic_info = training_data['phenotypes'].values
    phenotypic_test_info = testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
    sample_ids = testing_data.iloc[:, 0].values

    training_genotypic_data_merged = training_data_merged.iloc[:, 2:].values
    testing_genotypic_data_merged = testing_data_merged.iloc[:, 2:].values

    
    if feature_selection:
        rf = RandomForestRegressor(n_estimators=100, random_state=42)
        rf.fit(training_genotypic_data_merged, phenotypic_info)
        selector = SelectFromModel(rf, threshold="mean", prefit=True)
        training_genotypic_data_merged = selector.transform(training_genotypic_data_merged)
        testing_genotypic_data_merged = selector.transform(testing_genotypic_data_merged)
        print(f"Selected {training_genotypic_data_merged.shape[1]} features based on importance.")

    
    scaler = StandardScaler()
    training_genotypic_data_merged = scaler.fit_transform(training_genotypic_data_merged)
    testing_genotypic_data_merged = scaler.transform(testing_genotypic_data_merged)

    outer_kf = KFold(n_splits=outer_n_splits)

    results = []
    all_predicted_phenotypes = []

    def calculate_metrics(true_values, predicted_values):
        mse = mean_squared_error(true_values, predicted_values)
        rmse = np.sqrt(mse)
        r2 = r2_score(true_values, predicted_values)
        corr = pearsonr(true_values, predicted_values)[0]
        return mse, rmse, r2, corr

    models = [
        ('GRUModel', GRUModel),
        ('CNNModel', CNNModel),
        ('RFModel', RFModel),
        ('XGBoostModel', XGBoostModel)
    ]

    for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
        outer_trainX = training_genotypic_data_merged[outer_train_index]
        outer_trainy = phenotypic_info[outer_train_index]

        outer_testX = testing_genotypic_data_merged
        outer_testy = phenotypic_test_info

        for model_name, model_func in models:
            print(f"Running model: {model_name} for fold {outer_fold}")
            if model_name in ['GRUModel', 'CNNModel']:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
            elif model_name in ['RFModel']:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
            else:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy,learning_rate,min_child_weight)
                

           
            mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
            mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)

            results.append({
                'Model': model_name,
                'Fold': outer_fold,
                'Train_MSE': mse_train,
                'Train_RMSE': rmse_train,
                'Train_R2': r2_train,
                'Train_Corr': corr_train,
                'Test_MSE': mse_test,
                'Test_RMSE': rmse_test,
                'Test_R2': r2_test,
                'Test_Corr': corr_test
            })

            if predicted_test is not None:
                predicted_test_df = pd.DataFrame({
                    'Sample_ID': sample_ids,
                    'Predicted_Phenotype': predicted_test,
                    'Model': model_name
                })
                all_predicted_phenotypes.append(predicted_test_df)

    results_df = pd.DataFrame(results)

    
    avg_results_df = results_df.groupby('Model').agg({
        'Train_MSE': 'mean',
        'Train_RMSE': 'mean',
        'Train_R2': 'mean',
        'Train_Corr': 'mean',
        'Test_MSE': 'mean',
        'Test_RMSE': 'mean',
        'Test_R2': 'mean',
        'Test_Corr': 'mean'
    }).reset_index()

    
    def calculate_topsis_score(df):
    
        norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())

        
        ideal_positive = norm_df.max(axis=0)
        ideal_negative = norm_df.min(axis=0)

        
        dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
        dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))

    
        topsis_score = dist_negative / (dist_positive + dist_negative)

    
        df['TOPSIS_Score'] = topsis_score

        return df

    avg_results_df = calculate_topsis_score(avg_results_df)

    
    avg_results_df.to_csv(output_file, index=False)

    
    if all_predicted_phenotypes:
        predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
        predicted_all_df.to_csv(predicted_phenotype_file, index=False)

    return avg_results_df, predicted_all_df if all_predicted_phenotypes else None

#--------------------------------------------------------------------Gradio interface---------------------------------------------------------------

def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file, 
                         training_dominance_file, testing_dominance_file,feature_selection,learning_rate,min_child_weight):

    
    epochs = 1000
    batch_size = 64
    outer_n_splits = 2
    inner_n_splits = 2
    min_child_weight=5
    learning_rate=0.001
    

   
    training_data = pd.read_csv(training_file.name)
    training_additive = pd.read_csv(training_additive_file.name)
    testing_data = pd.read_csv(testing_file.name)
    testing_additive = pd.read_csv(testing_additive_file.name)
    training_dominance = pd.read_csv(training_dominance_file.name)
    testing_dominance = pd.read_csv(testing_dominance_file.name)

    
    results, predicted_phenotypes = NestedKFoldCrossValidation(
        training_data=training_data,
        training_additive=training_additive,
        testing_data=testing_data,
        testing_additive=testing_additive,
        training_dominance=training_dominance,
        testing_dominance=testing_dominance,
        epochs=epochs,
        batch_size=batch_size,
        outer_n_splits=outer_n_splits,
        inner_n_splits=inner_n_splits,
        learning_rate=learning_rate,
        min_child_weight=min_child_weight,
        feature_selection=feature_selection
    )


    results_file = "cross_validation_results.csv"
    predicted_file = "predicted_phenotype.csv"
    results.to_csv(results_file, index=False)
    predicted_phenotypes.to_csv(predicted_file, index=False)

    return results_file, predicted_file

with gr.Blocks() as interface:
    gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")

    with gr.Row():
        training_file = gr.File(label="Upload Training Data (CSV)")
        training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
        training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")

    with gr.Row():
        testing_file = gr.File(label="Upload Testing Data (CSV)")
        testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
        testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")

    with gr.Row():
        feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)

    output1 = gr.File(label="Cross-Validation Results (CSV)")
    output2 = gr.File(label="Predicted Phenotypes (CSV)")

    submit_btn = gr.Button("Run DeepMap")
    submit_btn.click(
        run_cross_validation,
        inputs=[
            training_file, training_additive_file, testing_file, 
            testing_additive_file, training_dominance_file,testing_dominance_file, 
            feature_selection
        ],
        outputs=[output1, output2]
    )


interface.launch()