AshmithaIRRI commited on
Commit
3d7dbc2
·
verified ·
1 Parent(s): 8eca0a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -1
app.py CHANGED
@@ -184,17 +184,25 @@ def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_
184
  model = Sequential()
185
 
186
  # Convolutional layers
 
 
 
 
187
  model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
188
  model.add(MaxPooling1D(pool_size=2))
189
  model.add(Dropout(dropout_rate))
190
 
191
  model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
192
  model.add(MaxPooling1D(pool_size=2))
 
 
 
 
193
  model.add(Dropout(dropout_rate))
194
 
195
  # Flatten and Dense layers
196
  model.add(Flatten())
197
- model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
198
  model.add(LeakyReLU(alpha=0.1))
199
  model.add(Dropout(dropout_rate))
200
 
 
184
  model = Sequential()
185
 
186
  # Convolutional layers
187
+ model.add(Conv1D(512, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
188
+ model.add(MaxPooling1D(pool_size=2))
189
+ model.add(Dropout(dropout_rate))
190
+
191
  model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
192
  model.add(MaxPooling1D(pool_size=2))
193
  model.add(Dropout(dropout_rate))
194
 
195
  model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
196
  model.add(MaxPooling1D(pool_size=2))
197
+ model.add(Dropout(dropout_rate))
198
+
199
+ model.add(Conv1D(64, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
200
+ model.add(MaxPooling1D(pool_size=2))
201
  model.add(Dropout(dropout_rate))
202
 
203
  # Flatten and Dense layers
204
  model.add(Flatten())
205
+ model.add(Dense(32, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
206
  model.add(LeakyReLU(alpha=0.1))
207
  model.add(Dropout(dropout_rate))
208