Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import random as r | |
| import asyncio | |
| import gradio as gr | |
| tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model") | |
| model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model") | |
| classes = { | |
| 0: 'Non-Toxic', | |
| 1: 'Toxic', | |
| 2: 'Severely Toxic', | |
| 3: 'Obscene', | |
| 4: 'Threat', | |
| 5: 'Insult', | |
| 6: 'Identity Hate' | |
| } | |
| def prediction(tweet, model, tokenizer): | |
| inputs = tokenizer(tweet, return_tensors="pt", padding=True, truncation=True) | |
| outputs = model(**inputs) | |
| predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
| predicted_prob = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item() | |
| return classes[predicted_class], predicted_prob | |
| def create_table(predictions): | |
| data = {'Tweet': [], 'Highest Toxicity Class': [], 'Probability': []} | |
| for tweet, prediction in predictions.items(): | |
| data['Tweet'].append(tweet) | |
| data['Highest Toxicity Class'].append(prediction[0]) | |
| data['Probability'].append(prediction[1]) | |
| df = pd.DataFrame(data) | |
| return df | |
| st.title('Toxicity Prediction App') | |
| tweet = st.text_input('Enter a tweet to check for toxicity') | |
| if st.button('Predict'): | |
| predicted_class_label, predicted_prob = prediction(tweet, model, tokenizer) | |
| prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})' | |
| st.write(prediction_text) | |
| predictions = {tweet: (predicted_class_label, predicted_prob)} | |
| table = create_table(predictions) | |
| st.table(table) | |