Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio App for Chart Generation using LLM Agents
|
| 3 |
+
Deployable on HuggingFace Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import re
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
import tempfile
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import utils
|
| 13 |
+
|
| 14 |
+
# Chart generation functions
|
| 15 |
+
def generate_chart_code(instruction: str, model: str, out_path_v1: str) -> str:
|
| 16 |
+
"""Generate Python code to make a plot with matplotlib using tag-based wrapping."""
|
| 17 |
+
prompt = f"""
|
| 18 |
+
You are a data visualization expert.
|
| 19 |
+
|
| 20 |
+
Return your answer *strictly* in this format:
|
| 21 |
+
|
| 22 |
+
<execute_python>
|
| 23 |
+
# valid python code here
|
| 24 |
+
</execute_python>
|
| 25 |
+
|
| 26 |
+
Do not add explanations, only the tags and the code.
|
| 27 |
+
|
| 28 |
+
The code should create a visualization from a DataFrame 'df' with these columns:
|
| 29 |
+
- date (M/D/YY)
|
| 30 |
+
- time (HH:MM)
|
| 31 |
+
- cash_type (card or cash)
|
| 32 |
+
- card (string)
|
| 33 |
+
- price (number)
|
| 34 |
+
- coffee_name (string)
|
| 35 |
+
- quarter (1-4)
|
| 36 |
+
- month (1-12)
|
| 37 |
+
- year (YYYY)
|
| 38 |
+
|
| 39 |
+
User instruction: {instruction}
|
| 40 |
+
|
| 41 |
+
Requirements for the code:
|
| 42 |
+
1. Assume the DataFrame is already loaded as 'df'.
|
| 43 |
+
2. Use matplotlib for plotting.
|
| 44 |
+
3. Add clear title, axis labels, and legend if needed.
|
| 45 |
+
4. Save the figure as '{out_path_v1}' with dpi=300.
|
| 46 |
+
5. Do not call plt.show().
|
| 47 |
+
6. Close all plots with plt.close().
|
| 48 |
+
7. Add all necessary import python statements
|
| 49 |
+
|
| 50 |
+
Return ONLY the code wrapped in <execute_python> tags.
|
| 51 |
+
"""
|
| 52 |
+
response = utils.get_response(model, prompt)
|
| 53 |
+
return response
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def reflect_on_image_and_regenerate(
|
| 57 |
+
chart_path: str,
|
| 58 |
+
instruction: str,
|
| 59 |
+
model_name: str,
|
| 60 |
+
out_path_v2: str,
|
| 61 |
+
code_v1: str,
|
| 62 |
+
) -> tuple[str, str]:
|
| 63 |
+
"""
|
| 64 |
+
Critique the chart IMAGE and the original code against the instruction,
|
| 65 |
+
then return refined matplotlib code.
|
| 66 |
+
Returns (feedback, refined_code_with_tags).
|
| 67 |
+
"""
|
| 68 |
+
media_type, b64 = utils.encode_image_b64(chart_path)
|
| 69 |
+
|
| 70 |
+
prompt = f"""
|
| 71 |
+
You are a data visualization expert.
|
| 72 |
+
Your task: critique the attached chart and the original code against the given instruction,
|
| 73 |
+
then return improved matplotlib code.
|
| 74 |
+
|
| 75 |
+
Original code (for context):
|
| 76 |
+
{code_v1}
|
| 77 |
+
|
| 78 |
+
OUTPUT FORMAT (STRICT):
|
| 79 |
+
1) First line: a valid JSON object with ONLY the "feedback" field.
|
| 80 |
+
Example: {{"feedback": "The legend is unclear and the axis labels overlap."}}
|
| 81 |
+
|
| 82 |
+
2) After a newline, output ONLY the refined Python code wrapped in:
|
| 83 |
+
<execute_python>
|
| 84 |
+
...
|
| 85 |
+
</execute_python>
|
| 86 |
+
|
| 87 |
+
3) Import all necessary libraries in the code. Don't assume any imports from the original code.
|
| 88 |
+
|
| 89 |
+
HARD CONSTRAINTS:
|
| 90 |
+
- Do NOT include Markdown, backticks, or any extra prose outside the two parts above.
|
| 91 |
+
- Use pandas/matplotlib only (no seaborn).
|
| 92 |
+
- Assume df already exists; do not read from files.
|
| 93 |
+
- Save to '{out_path_v2}' with dpi=300.
|
| 94 |
+
- Always call plt.close() at the end (no plt.show()).
|
| 95 |
+
- Include all necessary import statements.
|
| 96 |
+
|
| 97 |
+
Schema (columns available in df):
|
| 98 |
+
- date (M/D/YY)
|
| 99 |
+
- time (HH:MM)
|
| 100 |
+
- cash_type (card or cash)
|
| 101 |
+
- card (string)
|
| 102 |
+
- price (number)
|
| 103 |
+
- coffee_name (string)
|
| 104 |
+
- quarter (1-4)
|
| 105 |
+
- month (1-12)
|
| 106 |
+
- year (YYYY)
|
| 107 |
+
|
| 108 |
+
Instruction:
|
| 109 |
+
{instruction}
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
# Handle different model providers
|
| 113 |
+
lower = model_name.lower()
|
| 114 |
+
if "claude" in lower or "anthropic" in lower:
|
| 115 |
+
content = utils.image_anthropic_call(model_name, prompt, media_type, b64)
|
| 116 |
+
else:
|
| 117 |
+
content = utils.image_openai_call(model_name, prompt, media_type, b64)
|
| 118 |
+
|
| 119 |
+
# Parse feedback (first JSON line)
|
| 120 |
+
lines = content.strip().splitlines()
|
| 121 |
+
json_line = lines[0].strip() if lines else ""
|
| 122 |
+
|
| 123 |
+
try:
|
| 124 |
+
obj = json.loads(json_line)
|
| 125 |
+
except Exception as e:
|
| 126 |
+
# Fallback: try to capture the first {...} in all the content
|
| 127 |
+
m_json = re.search(r"\{.*?\}", content, flags=re.DOTALL)
|
| 128 |
+
if m_json:
|
| 129 |
+
try:
|
| 130 |
+
obj = json.loads(m_json.group(0))
|
| 131 |
+
except Exception:
|
| 132 |
+
obj = {"feedback": f"Failed to parse JSON: {e}"}
|
| 133 |
+
else:
|
| 134 |
+
obj = {"feedback": f"Failed to find JSON: {e}"}
|
| 135 |
+
|
| 136 |
+
# Extract refined code from <execute_python>...</execute_python>
|
| 137 |
+
m_code = re.search(r"<execute_python>([\s\S]*?)</execute_python>", content)
|
| 138 |
+
refined_code_body = m_code.group(1).strip() if m_code else ""
|
| 139 |
+
refined_code = utils.ensure_execute_python_tags(refined_code_body)
|
| 140 |
+
|
| 141 |
+
feedback = str(obj.get("feedback", "")).strip()
|
| 142 |
+
return feedback, refined_code
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def run_workflow(
|
| 146 |
+
user_instructions: str,
|
| 147 |
+
generation_model: str,
|
| 148 |
+
reflection_model: str,
|
| 149 |
+
progress=gr.Progress(),
|
| 150 |
+
):
|
| 151 |
+
"""
|
| 152 |
+
End-to-end pipeline for chart generation with reflection.
|
| 153 |
+
Returns results for Gradio display.
|
| 154 |
+
"""
|
| 155 |
+
try:
|
| 156 |
+
# Use the CSV file in the same directory
|
| 157 |
+
csv_path = "coffee_sales_local.csv"
|
| 158 |
+
if not os.path.exists(csv_path):
|
| 159 |
+
return (
|
| 160 |
+
None,
|
| 161 |
+
None,
|
| 162 |
+
None,
|
| 163 |
+
None,
|
| 164 |
+
None,
|
| 165 |
+
f"Error: CSV file '{csv_path}' not found. Please ensure the file exists.",
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
progress(0.1, desc="Loading dataset...")
|
| 169 |
+
df = utils.load_and_prepare_data(csv_path)
|
| 170 |
+
|
| 171 |
+
# Create temporary directory for charts
|
| 172 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 173 |
+
out_v1 = os.path.join(temp_dir, "chart_v1.png")
|
| 174 |
+
out_v2 = os.path.join(temp_dir, "chart_v2.png")
|
| 175 |
+
|
| 176 |
+
# Step 1: Generate V1 code
|
| 177 |
+
progress(0.2, desc="Generating initial chart code (V1)...")
|
| 178 |
+
code_v1 = generate_chart_code(
|
| 179 |
+
instruction=user_instructions,
|
| 180 |
+
model=generation_model,
|
| 181 |
+
out_path_v1=out_v1,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Step 2: Execute V1
|
| 185 |
+
progress(0.4, desc="Executing V1 code...")
|
| 186 |
+
match = re.search(r"<execute_python>([\s\S]*?)</execute_python>", code_v1)
|
| 187 |
+
if match:
|
| 188 |
+
initial_code = match.group(1).strip()
|
| 189 |
+
exec_globals = {"df": df}
|
| 190 |
+
try:
|
| 191 |
+
exec(initial_code, exec_globals)
|
| 192 |
+
except Exception as e:
|
| 193 |
+
return (
|
| 194 |
+
None,
|
| 195 |
+
None,
|
| 196 |
+
None,
|
| 197 |
+
None,
|
| 198 |
+
None,
|
| 199 |
+
f"Error executing V1 code: {str(e)}\n\nCode:\n{initial_code}",
|
| 200 |
+
)
|
| 201 |
+
else:
|
| 202 |
+
return (
|
| 203 |
+
None,
|
| 204 |
+
None,
|
| 205 |
+
None,
|
| 206 |
+
None,
|
| 207 |
+
None,
|
| 208 |
+
"Error: Could not extract code from V1 response. No <execute_python> tags found.",
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if not os.path.exists(out_v1):
|
| 212 |
+
return (
|
| 213 |
+
None,
|
| 214 |
+
None,
|
| 215 |
+
None,
|
| 216 |
+
None,
|
| 217 |
+
None,
|
| 218 |
+
f"Error: Chart V1 was not generated. Check if the code saves to '{out_v1}'.",
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# Step 3: Reflect and generate V2
|
| 222 |
+
progress(0.6, desc="Reflecting on V1 and generating improvements...")
|
| 223 |
+
feedback, code_v2 = reflect_on_image_and_regenerate(
|
| 224 |
+
chart_path=out_v1,
|
| 225 |
+
instruction=user_instructions,
|
| 226 |
+
model_name=reflection_model,
|
| 227 |
+
out_path_v2=out_v2,
|
| 228 |
+
code_v1=code_v1,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Step 4: Execute V2
|
| 232 |
+
progress(0.8, desc="Executing improved chart code (V2)...")
|
| 233 |
+
match = re.search(r"<execute_python>([\s\S]*?)</execute_python>", code_v2)
|
| 234 |
+
if match:
|
| 235 |
+
reflected_code = match.group(1).strip()
|
| 236 |
+
exec_globals = {"df": df}
|
| 237 |
+
try:
|
| 238 |
+
exec(reflected_code, exec_globals)
|
| 239 |
+
except Exception as e:
|
| 240 |
+
return (
|
| 241 |
+
out_v1,
|
| 242 |
+
code_v1,
|
| 243 |
+
None,
|
| 244 |
+
None,
|
| 245 |
+
None,
|
| 246 |
+
f"Error executing V2 code: {str(e)}\n\nCode:\n{reflected_code}",
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
return (
|
| 250 |
+
out_v1,
|
| 251 |
+
code_v1,
|
| 252 |
+
None,
|
| 253 |
+
None,
|
| 254 |
+
None,
|
| 255 |
+
"Error: Could not extract code from V2 response. No <execute_python> tags found.",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
if not os.path.exists(out_v2):
|
| 259 |
+
return (
|
| 260 |
+
out_v1,
|
| 261 |
+
code_v1,
|
| 262 |
+
feedback,
|
| 263 |
+
code_v2,
|
| 264 |
+
None,
|
| 265 |
+
f"Error: Chart V2 was not generated. Check if the code saves to '{out_v2}'.",
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
progress(1.0, desc="Complete!")
|
| 269 |
+
|
| 270 |
+
# Copy files to permanent location (Gradio needs accessible paths)
|
| 271 |
+
import shutil
|
| 272 |
+
final_v1 = "chart_v1.png"
|
| 273 |
+
final_v2 = "chart_v2.png"
|
| 274 |
+
shutil.copy(out_v1, final_v1)
|
| 275 |
+
shutil.copy(out_v2, final_v2)
|
| 276 |
+
|
| 277 |
+
return (
|
| 278 |
+
final_v1,
|
| 279 |
+
code_v1,
|
| 280 |
+
feedback,
|
| 281 |
+
code_v2,
|
| 282 |
+
final_v2,
|
| 283 |
+
"β
Chart generation complete!",
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
import traceback
|
| 288 |
+
error_msg = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
| 289 |
+
return (None, None, None, None, None, error_msg)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# Gradio Interface
|
| 293 |
+
def create_interface():
|
| 294 |
+
"""Create and configure the Gradio interface."""
|
| 295 |
+
|
| 296 |
+
with gr.Blocks(title="Chart Generation with LLM Agents", theme=gr.themes.Soft()) as demo:
|
| 297 |
+
gr.Markdown(
|
| 298 |
+
"""
|
| 299 |
+
# π Chart Generation with LLM Agents
|
| 300 |
+
|
| 301 |
+
This app uses **LLM Agents with Reflection Pattern** to generate and improve data visualizations.
|
| 302 |
+
|
| 303 |
+
**How it works:**
|
| 304 |
+
1. Enter your chart instruction (e.g., "Create a plot comparing Q1 coffee sales in 2024 and 2025")
|
| 305 |
+
2. The LLM generates initial chart code (V1)
|
| 306 |
+
3. The system reflects on V1 and generates improved code (V2)
|
| 307 |
+
4. Both charts are displayed for comparison
|
| 308 |
+
|
| 309 |
+
**Dataset:** Coffee sales data with columns: date, time, cash_type, card, price, coffee_name, quarter, month, year
|
| 310 |
+
"""
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
with gr.Row():
|
| 314 |
+
with gr.Column(scale=2):
|
| 315 |
+
instruction_input = gr.Textbox(
|
| 316 |
+
label="Chart Instruction",
|
| 317 |
+
placeholder="Create a plot comparing Q1 coffee sales in 2024 and 2025 using the data in coffee_sales.csv.",
|
| 318 |
+
lines=3,
|
| 319 |
+
value="Create a plot comparing Q1 coffee sales in 2024 and 2025 using the data in coffee_sales.csv.",
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
with gr.Row():
|
| 323 |
+
generation_model = gr.Dropdown(
|
| 324 |
+
label="Generation Model (for V1)",
|
| 325 |
+
choices=[
|
| 326 |
+
"gpt-4o-mini",
|
| 327 |
+
"gpt-4o",
|
| 328 |
+
"o1-mini",
|
| 329 |
+
"o1-preview",
|
| 330 |
+
"claude-3-5-sonnet-20241022",
|
| 331 |
+
"claude-3-opus-20240229",
|
| 332 |
+
],
|
| 333 |
+
value="gpt-4o-mini",
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
reflection_model = gr.Dropdown(
|
| 337 |
+
label="Reflection Model (for V2)",
|
| 338 |
+
choices=[
|
| 339 |
+
"o1-mini",
|
| 340 |
+
"o1-preview",
|
| 341 |
+
"gpt-4o",
|
| 342 |
+
"gpt-4o-mini",
|
| 343 |
+
"claude-3-5-sonnet-20241022",
|
| 344 |
+
"claude-3-opus-20240229",
|
| 345 |
+
],
|
| 346 |
+
value="o1-mini",
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
generate_btn = gr.Button("Generate Charts", variant="primary", size="lg")
|
| 350 |
+
|
| 351 |
+
with gr.Column(scale=1):
|
| 352 |
+
status_output = gr.Textbox(
|
| 353 |
+
label="Status",
|
| 354 |
+
interactive=False,
|
| 355 |
+
value="Ready to generate charts...",
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
with gr.Row():
|
| 359 |
+
with gr.Column():
|
| 360 |
+
gr.Markdown("### π Chart V1 (Initial)")
|
| 361 |
+
chart_v1_output = gr.Image(label="Generated Chart V1", type="filepath")
|
| 362 |
+
code_v1_output = gr.Code(
|
| 363 |
+
label="Code V1",
|
| 364 |
+
language="python",
|
| 365 |
+
interactive=False,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
with gr.Column():
|
| 369 |
+
gr.Markdown("### β¨ Chart V2 (Improved)")
|
| 370 |
+
chart_v2_output = gr.Image(label="Generated Chart V2", type="filepath")
|
| 371 |
+
code_v2_output = gr.Code(
|
| 372 |
+
label="Code V2",
|
| 373 |
+
language="python",
|
| 374 |
+
interactive=False,
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
feedback_output = gr.Textbox(
|
| 378 |
+
label="π Reflection Feedback",
|
| 379 |
+
lines=5,
|
| 380 |
+
interactive=False,
|
| 381 |
+
value="",
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Connect the workflow
|
| 385 |
+
generate_btn.click(
|
| 386 |
+
fn=run_workflow,
|
| 387 |
+
inputs=[instruction_input, generation_model, reflection_model],
|
| 388 |
+
outputs=[
|
| 389 |
+
chart_v1_output,
|
| 390 |
+
code_v1_output,
|
| 391 |
+
feedback_output,
|
| 392 |
+
code_v2_output,
|
| 393 |
+
chart_v2_output,
|
| 394 |
+
status_output,
|
| 395 |
+
],
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
gr.Markdown(
|
| 399 |
+
"""
|
| 400 |
+
---
|
| 401 |
+
### π‘ Tips:
|
| 402 |
+
- Be specific in your instructions (mention time periods, chart types, etc.)
|
| 403 |
+
- Use a faster model for generation (V1) and a stronger model for reflection (V2)
|
| 404 |
+
- The reflection model analyzes the V1 chart image and suggests improvements
|
| 405 |
+
"""
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
return demo
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
if __name__ == "__main__":
|
| 412 |
+
# Check for required environment variables
|
| 413 |
+
if not os.getenv("OPENAI_API_KEY") and not os.getenv("ANTHROPIC_API_KEY"):
|
| 414 |
+
print("β οΈ Warning: No API keys found. Please set OPENAI_API_KEY or ANTHROPIC_API_KEY")
|
| 415 |
+
print(" For HuggingFace Spaces, add them as secrets in the Space settings")
|
| 416 |
+
|
| 417 |
+
demo = create_interface()
|
| 418 |
+
demo.launch(
|
| 419 |
+
server_name="0.0.0.0",
|
| 420 |
+
server_port=7860,
|
| 421 |
+
share=True,
|
| 422 |
+
)
|