Update README.md
Browse files
README.md
CHANGED
|
@@ -10,4 +10,97 @@ pinned: false
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Chart Generation with LLM Agents
|
| 14 |
+
|
| 15 |
+
A Gradio app that uses LLM agents with reflection pattern to generate and improve data visualizations.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- 🤖 **LLM-Powered Chart Generation**: Uses GPT-4 or Claude to generate matplotlib code
|
| 20 |
+
- 🔄 **Reflection Pattern**: Automatically improves charts by analyzing V1 and generating V2
|
| 21 |
+
- 📊 **Coffee Sales Dataset**: Pre-loaded dataset for demonstration
|
| 22 |
+
- 🎨 **Clean UI**: User-friendly Gradio interface
|
| 23 |
+
|
| 24 |
+
## How It Works
|
| 25 |
+
|
| 26 |
+
1. **Generate V1**: LLM creates initial chart code based on your instruction
|
| 27 |
+
2. **Execute V1**: Code runs and generates first chart
|
| 28 |
+
3. **Reflect**: LLM analyzes V1 chart image and original code
|
| 29 |
+
4. **Generate V2**: LLM creates improved code based on feedback
|
| 30 |
+
5. **Execute V2**: Improved code runs and generates final chart
|
| 31 |
+
|
| 32 |
+
## Setup
|
| 33 |
+
|
| 34 |
+
### Local Development
|
| 35 |
+
|
| 36 |
+
1. Install dependencies:
|
| 37 |
+
```bash
|
| 38 |
+
pip install -r requirements.txt
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
2. Set up environment variables:
|
| 42 |
+
```bash
|
| 43 |
+
export OPENAI_API_KEY="your-key-here"
|
| 44 |
+
# OR
|
| 45 |
+
export ANTHROPIC_API_KEY="your-key-here"
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
3. Run the app:
|
| 49 |
+
```bash
|
| 50 |
+
python app.py
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### HuggingFace Spaces Deployment
|
| 54 |
+
|
| 55 |
+
1. Create a new Space on HuggingFace
|
| 56 |
+
2. Upload all files:
|
| 57 |
+
- `app.py`
|
| 58 |
+
- `utils.py`
|
| 59 |
+
- `coffee_sales_local.csv`
|
| 60 |
+
- `requirements.txt`
|
| 61 |
+
- `README.md` (this file)
|
| 62 |
+
|
| 63 |
+
3. Add secrets in Space settings:
|
| 64 |
+
- `OPENAI_API_KEY` (if using OpenAI models)
|
| 65 |
+
- `ANTHROPIC_API_KEY` (if using Anthropic models)
|
| 66 |
+
|
| 67 |
+
4. Set Space SDK to **Gradio**
|
| 68 |
+
|
| 69 |
+
5. The app will automatically deploy!
|
| 70 |
+
|
| 71 |
+
## Usage
|
| 72 |
+
|
| 73 |
+
1. Enter your chart instruction (e.g., "Create a plot comparing Q1 coffee sales in 2024 and 2025")
|
| 74 |
+
2. Select models for generation (V1) and reflection (V2)
|
| 75 |
+
3. Click "Generate Charts"
|
| 76 |
+
4. Compare V1 and V2 charts side by side
|
| 77 |
+
5. Review the reflection feedback and code
|
| 78 |
+
|
| 79 |
+
## Dataset Schema
|
| 80 |
+
|
| 81 |
+
The coffee sales dataset includes:
|
| 82 |
+
- `date` (M/D/YY)
|
| 83 |
+
- `time` (HH:MM)
|
| 84 |
+
- `cash_type` (card or cash)
|
| 85 |
+
- `card` (string)
|
| 86 |
+
- `price` (number)
|
| 87 |
+
- `coffee_name` (string)
|
| 88 |
+
- `quarter` (1-4) - auto-derived
|
| 89 |
+
- `month` (1-12) - auto-derived
|
| 90 |
+
- `year` (YYYY) - auto-derived
|
| 91 |
+
|
| 92 |
+
## Model Recommendations
|
| 93 |
+
|
| 94 |
+
- **Generation (V1)**: Fast models like `gpt-4o-mini` or `gpt-4o`
|
| 95 |
+
- **Reflection (V2)**: Strong reasoning models like `o1-mini`, `o1-preview`, or `claude-3-5-sonnet-20241022`
|
| 96 |
+
|
| 97 |
+
## Requirements
|
| 98 |
+
|
| 99 |
+
- Python 3.8+
|
| 100 |
+
- OpenAI API key OR Anthropic API key
|
| 101 |
+
- See `requirements.txt` for full dependency list
|
| 102 |
+
|
| 103 |
+
## License
|
| 104 |
+
|
| 105 |
+
Educational project for demonstrating LLM agents with reflection pattern.
|
| 106 |
+
|