Omartificial-Intelligence-Space's picture
Update utils.py
914c532 verified
# === Standard Library ===
import os
import re
import json
import base64
import mimetypes
from pathlib import Path
# === Third-Party ===
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from dotenv import load_dotenv
from openai import OpenAI
from anthropic import Anthropic
from html import escape
# === Env & Clients ===
load_dotenv()
# Strip whitespace/newlines from API keys (common issue with env vars)
openai_api_key = os.getenv("OPENAI_API_KEY", "").strip()
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY", "").strip()
# Both clients read keys from env by default; explicit is also fine:
openai_client = OpenAI(api_key=openai_api_key) if openai_api_key else OpenAI()
anthropic_client = Anthropic(api_key=anthropic_api_key) if anthropic_api_key else Anthropic()
def get_response(model: str, prompt: str) -> str:
"""Get response from LLM (OpenAI or Anthropic)."""
if "claude" in model.lower() or "anthropic" in model.lower():
# Check if Anthropic API key is available
if not anthropic_api_key:
raise ValueError("ANTHROPIC_API_KEY not set. Please add it as a secret in HuggingFace Spaces settings.")
# Anthropic Claude format
message = anthropic_client.messages.create(
model=model,
max_tokens=1000,
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
)
return message.content[0].text
else:
# Check if OpenAI API key is available
if not openai_api_key:
raise ValueError("OPENAI_API_KEY not set. Please add it as a secret in HuggingFace Spaces settings.")
# Default to OpenAI format for all other models (gpt-4, o3-mini, o1, etc.)
response = openai_client.responses.create(
model=model,
input=prompt,
)
return response.output_text
# === Data Loading ===
def load_and_prepare_data(csv_path: str) -> pd.DataFrame:
"""Load CSV and derive date parts commonly used in charts."""
df = pd.read_csv(csv_path)
# Be tolerant if 'date' exists
if "date" in df.columns:
df["date"] = pd.to_datetime(df["date"], errors="coerce")
df["quarter"] = df["date"].dt.quarter
df["month"] = df["date"].dt.month
df["year"] = df["date"].dt.year
return df
# === Helpers ===
def make_schema_text(df: pd.DataFrame) -> str:
"""Return a human-readable schema from a DataFrame."""
return "\n".join(f"- {c}: {dt}" for c, dt in df.dtypes.items())
def ensure_execute_python_tags(text: str) -> str:
"""Normalize code to be wrapped in <execute_python>...</execute_python>."""
text = text.strip()
# Strip ```python fences if present
text = re.sub(r"^```(?:python)?\s*|\s*```$", "", text).strip()
if "<execute_python>" not in text:
text = f"<execute_python>\n{text}\n</execute_python>"
return text
def encode_image_b64(path: str) -> tuple[str, str]:
"""Return (media_type, base64_str) for an image file path."""
mime, _ = mimetypes.guess_type(path)
media_type = mime or "image/png"
with open(path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
return media_type, b64
def image_anthropic_call(model_name: str, prompt: str, media_type: str, b64: str) -> str:
"""
Call Anthropic Claude (messages.create) with text+image and return *all* text blocks concatenated.
Adds a system message to enforce strict JSON output.
"""
if not anthropic_api_key:
raise ValueError("ANTHROPIC_API_KEY not set. Please add it as a secret in HuggingFace Spaces settings.")
msg = anthropic_client.messages.create(
model=model_name,
max_tokens=2000,
temperature=0,
system=(
"You are a careful assistant. Respond with a single valid JSON object only. "
"Do not include markdown, code fences, or commentary outside JSON."
),
messages=[{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "source": {"type": "base64", "media_type": media_type, "data": b64}},
],
}],
)
# Anthropic returns a list of content blocks; collect all text
parts = []
for block in (msg.content or []):
if getattr(block, "type", None) == "text":
parts.append(block.text)
return "".join(parts).strip()
def image_openai_call(model_name: str, prompt: str, media_type: str, b64: str) -> str:
"""Call OpenAI with text+image input."""
if not openai_api_key:
raise ValueError("OPENAI_API_KEY not set. Please add it as a secret in HuggingFace Spaces settings.")
data_url = f"data:{media_type};base64,{b64}"
resp = openai_client.responses.create(
model=model_name,
input=[
{
"role": "user",
"content": [
{"type": "input_text", "text": prompt},
{"type": "input_image", "image_url": data_url},
],
}
],
)
content = (resp.output_text or "").strip()
return content