# -*- coding: utf-8 -*- """InceptionV3_Image_Classification.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1UmUDdji0iQ-LK2g0MtxytO8M7cpioH3C # **Import Dependencies** """ import warnings warnings.filterwarnings('ignore') import zipfile import hashlib import matplotlib.pyplot as plt import pandas as pd import os import uuid import re import random import cv2 import numpy as np import tensorflow as tf import seaborn as sns from google.colab import drive from google.colab import files from pathlib import Path from PIL import Image, ImageStat, UnidentifiedImageError, ImageEnhance from matplotlib import patches from tqdm import tqdm from collections import defaultdict from sklearn.preprocessing import LabelEncoder, label_binarize from sklearn.model_selection import train_test_split from sklearn.utils import resample from tensorflow import keras from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input from tensorflow.keras.utils import to_categorical from tensorflow.keras import layers, models, optimizers, callbacks, regularizers from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D,Dropout, Flatten, Dense, GlobalAveragePooling2D from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam, AdamW from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint from tensorflow.keras import Input, Model from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img, array_to_img from tensorflow.keras.preprocessing import image from sklearn.metrics import classification_report,ConfusionMatrixDisplay, confusion_matrix, roc_auc_score, roc_curve, precision_score, recall_score, f1_score, precision_recall_fscore_support, auc print(tf.__version__) drive.mount('/content/drive') zip_path = '/content/drive/MyDrive/Animals.zip' extract_to = '/content/my_data' with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(extract_to) """# **Convert Dataset to a Data Frame**""" image_extensions = {'.jpg', '.jpeg', '.png'} paths = [(path.parts[-2], path.name, str(path)) for path in Path(extract_to).rglob('*.*') if path.suffix.lower() in image_extensions] df = pd.DataFrame(paths, columns = ['class', 'image', 'full_path']) df = df.sort_values('class', ascending = True) df.reset_index(drop = True, inplace = True) df """# **EDA Process**""" class_count = df['class'].value_counts() for cls, count in class_count.items(): print(f'Class: {cls}, Count: {count} images') print(f"\nTotal dataset size is: {len(df)} images") print(f"Number of classes: {df['class'].nunique()} classes") plt.figure(figsize = (32, 16)) class_count.plot(kind = 'bar', color = 'skyblue', edgecolor = 'black') plt.title('Number of Images per Class') plt.xlabel('Class') plt.ylabel('Count') plt.xticks(rotation = 45) plt.show() plt.figure(figsize = (32, 16)) class_count.plot(kind = 'pie', autopct = '%1.1f%%', colors = plt.cm.Paired.colors) plt.title('Percentage of Images per Class') plt.ylabel('') plt.show() percentages = (class_count / len(df)) * 100 imbalance_df = pd.DataFrame({'Count': class_count, 'Percentage %': percentages.round(2)}) print(imbalance_df) plt.figure(figsize = (32, 16)) class_count.plot(kind = 'bar', color = 'lightgreen', edgecolor = 'black') plt.title('Class Distribution Check') plt.xlabel('Class') plt.ylabel('Count') plt.xticks(rotation = 45) plt.axhline(y = class_count.mean(), color = 'red', linestyle = '--', label = 'Average Count') plt.legend() plt.show() image_sizes = [] for file_path in df['full_path']: with Image.open(file_path) as img: image_sizes.append(img.size) sizes_df = pd.DataFrame(image_sizes, columns=['Width', 'Height']) #Width plt.figure(figsize=(8,5)) plt.scatter(x = range(len(sizes_df)), y = sizes_df['Width'], color='skyblue', s=10) plt.title('Image Width Distribution') plt.xlabel('Width (pixels)') plt.ylabel('Frequency') plt.show() #Height plt.figure(figsize=(8,5)) plt.scatter(x = sizes_df['Height'], y = range(len(sizes_df)), color='lightgreen', s=10) plt.title('Image Height Distribution') plt.xlabel('Height (pixels)') plt.ylabel('Frequency') plt.show() #For best sure the size of the whole images unique_sizes = sizes_df.value_counts().reset_index(name='Count') print(unique_sizes) image_data = [] for file_path in df['full_path']: with Image.open(file_path) as img: width, height = img.size mode = img.mode # e.g., 'RGB', 'L', 'RGBA', etc. channels = len(img.getbands()) # Number of channels image_data.append((width, height, mode, channels)) # Create DataFrame image_df = pd.DataFrame(image_data, columns=['Width', 'Height', 'Mode', 'Channels']) print("Image Mode Distribution:") print(image_df['Mode'].value_counts()) print("\nNumber of Channels Distribution:") print(image_df['Channels'].value_counts()) plt.figure(figsize=(6,4)) image_df['Mode'].value_counts().plot(kind='bar', color='coral') plt.title("Image Mode Distribution") plt.xlabel("Mode") plt.ylabel("Count") plt.xticks(rotation=45) plt.tight_layout() plt.show() plt.figure(figsize=(6,4)) image_df['Channels'].value_counts().sort_index().plot(kind='bar', color='slateblue') plt.title("Number of Channels per Image") plt.xlabel("Channels") plt.ylabel("Count") plt.xticks(rotation=0) plt.tight_layout() plt.show() sample_df = df.sample(n = 10, random_state = 42) plt.figure(figsize=(32, 16)) for i, (cls, img_name, full_path) in enumerate(sample_df.values): with Image.open(full_path) as img: stat = ImageStat.Stat(img.convert("RGB")) #Convert images to RGB images brightness = stat.mean[0] contrast = stat.stddev[0] width, height = img.size # Print size to console print(f"Image: {img_name} | Class: {cls} | Size: {width}x{height} | Brightness: {brightness:.1f} | Contrast: {contrast:.1f}") plt.subplot(2, 5, i + 1) plt.imshow(img) plt.axis('off') plt.title(f"Class: {cls}\nImage: {img_name}\nBrightness: {brightness:.2f}\nContrast: {contrast:.2f} \nSize: {width}x{height}") plt.tight_layout plt.show() # Sample 20 random images num_samples = 20 sample_df = df.sample(num_samples, random_state=42) # Get sorted class list and color map classes = sorted(df['class'].unique()) colors = plt.cm.tab10.colors # Grid setup cols = 4 rows = num_samples // cols + int(num_samples % cols > 0) # Figure setup plt.figure(figsize=(15, 5 * rows)) for idx, (cls, img_name, full_path) in enumerate(sample_df.values): with Image.open(full_path) as img: ax = plt.subplot(rows, cols, idx + 1) ax.imshow(img) ax.axis('off') # Title with class info ax.set_title( f"Class: {cls} \nImage: {img_name} \nSize: {img.width} x {img.height}", fontsize=10 ) # Rectangle in axes coords: full width, small height at top label_height = 0.1 # 10% of image height label_width = 1.0 # full width of the image rect = patches.Rectangle( (0, 1 - label_height), label_width, label_height, transform=ax.transAxes, linewidth=0, edgecolor=None, facecolor=colors[classes.index(cls) % len(colors)], alpha=0.7 ) ax.add_patch(rect) # Add class name text centered horizontally ax.text( 0.5, 1 - label_height / 2, cls, transform=ax.transAxes, fontsize=12, color="white", fontweight="bold", va="center", ha="center" ) # Figure title and layout plt.suptitle("Random Dataset Samples - Sanity Check", fontsize=18, fontweight="bold") plt.tight_layout(rect=[0, 0, 1, 0.96]) plt.show() #Check missing files print("Missing values per column: ") print(df.isnull().sum()) #Check duplicate files duplicate_names = df.duplicated().sum() print(f"\nNumber of duplicate files: {duplicate_names}") duplicate_names = df[df.duplicated(subset = ['image'], keep = False)] print(f"Duplicate file names: {len(duplicate_names)}") #Check if two images or more are the same even if they are having different file names def get_hash(file_path): with open(file_path, 'rb') as f: return hashlib.md5(f.read()).hexdigest() df['file_hash'] = df['full_path'].apply(get_hash) duplicate_hashes = df[df.duplicated(subset = ['file_hash'], keep = False)] print(f"Duplicate image files: {len(duplicate_hashes)}") #This code below just removing the duplicate files, which means will not be feeded to the model, but will be still in the actual directory #Important note: duplicates are removed from the dataframe only, not from the actual directory. #Drop duplicates based on file_hash, keeping the first one # df_unique = df.drop_duplicates(subset='file_hash', keep='first') # print(f"After removing duplicates, unique images: {len(df_unique)}") #Check for images extentions df['extenstion'] = df['image'].apply(lambda x: Path(x).suffix.lower()) print("File type counts: ") #print(df['extenstion'].value_counts) print(df['extenstion'].value_counts()) #Check for resolution relationships df['Width'] = sizes_df['Width'] df['Height'] = sizes_df['Height'] #print(df.groupby(['Width', 'Height']).size()) print(df.groupby('class')[['Width', 'Height']].agg(['min', 'max', 'mean'])) #Check for class balance (relationship between label and count) class_summary = df['class'].value_counts(normalize = False).to_frame('Count') #class_summary['Percentage'] = class_summary['Count'] / class_summary['Count'].sum() * 100 #class_summary class_summary['Percentage %'] = round((class_summary['Count'] / len(df)) * 100, 2) print(class_summary) """# **Data Cleaning Process**""" corrupted_files = [] for file_path in df['full_path']: try: with Image.open(file_path) as img: img.verify() except (UnidentifiedImageError, OSError): corrupted_files.append(file_path) print(f"Found {len(corrupted_files)} corrupted images.") #except (IOError, SyntaxError) as e: #corrupted_files.append(file_path) #print(f"Number of corrupted files: {len(corrupted_files)}") if corrupted_files: df = df[~df['full_path'].isin(corrupted_files)].reset_index(drop = True) print("Corrupted files removed.") #Outliers detection #Resolution-based outlier detection #width_mean = width_std = sizes_df['Width'].mean(), sizes_df['Width'].std() #height_mean = height_std = sizes_df['Height'].mean(), sizes_df['Height'].std() width_mean = sizes_df['Width'].mean() width_std = sizes_df['Width'].std() height_mean = sizes_df['Height'].mean() height_std = sizes_df['Height'].std() outliers = df[(df['Width'] > width_mean + 3 * width_std) | (df['Width'] < width_mean - 3 * width_std) | (df['Height'] > height_mean + 3 * height_std) | (df['Height'] < height_mean - 3 * height_std)] #print(f"Number of outliers: {len(outliers)}") print(f"Found {len(outliers)} resolution outliers.") df["image"] = df["full_path"].apply(lambda p: Image.open(p).convert('RGB')) #Convert it to RGB for flexibility too_dark = [] too_bright = [] blank_or_gray = [] # Thresholds dark_threshold = 30 # Below this is too dark bright_threshold = 225 # Above this is too bright low_contrast_threshold = 5 # Low contrast ~ blank/gray for idx, img in enumerate(df["image"]): gray = img.convert('L') stat = ImageStat.Stat(gray) # Convert to grayscale for brightness/contrast analysis brightness = stat.mean[0] contrast = stat.stddev[0] if brightness < dark_threshold: too_dark.append(idx) elif brightness > bright_threshold: too_bright.append(idx) elif contrast < low_contrast_threshold: blank_or_gray.append(idx) print(f"Too dark images: {len(too_dark)}") print(f"Too bright images: {len(too_bright)}") print(f"Blank/gray images: {len(blank_or_gray)}") # df = df.drop(index=too_bright + blank_or_gray).reset_index(drop=True) --> DROPS too_bright + blank_or_gray TOGETHER! for idx, row in tqdm(df.iterrows(), total=len(df), desc="Enhancing images"): img = row["image"] # Enhance too dark images if row["full_path"] in df.loc[too_dark, "full_path"].values: img = ImageEnhance.Brightness(img).enhance(1.5) # Increase brightness img = ImageEnhance.Contrast(img).enhance(1.5) # Increase contrast # Decrease brightness for too bright images if row["full_path"] in df.loc[too_bright, "full_path"].values: img = ImageEnhance.Brightness(img).enhance(0.7) # Decrease brightness (less than 1) img = ImageEnhance.Contrast(img).enhance(1.2) # Optionally, you can also enhance contrast # Overwrite the image back into the DataFrame df.at[idx, "image"] = img print(f"Enhanced images in memory: {len(df)}") # Lists to store paths of still too dark and too bright images still_dark = [] still_bright = [] # Threshold for "too bright" (already defined as bright_threshold) for idx, img in enumerate(df["image"]): gray = img.convert('L') # Convert to grayscale for brightness analysis stat = ImageStat.Stat(gray) brightness = stat.mean[0] # Check if the image is still too dark if brightness < dark_threshold: still_dark.append(df.loc[idx, 'full_path']) # Check if the image is too bright if brightness > bright_threshold: still_bright.append(df.loc[idx, 'full_path']) print(f"Still too dark after enhancement: {len(still_dark)} images") print(f"Still too bright after enhancement: {len(still_bright)} images") # Point to the extracted dataset, not the zip file location dataset_root = "/content/my_data/Animals" # Check mislabeled images mismatches = [] for i, row in df.iterrows(): folder_name = os.path.basename(os.path.dirname(row["full_path"])) if row["class"] != folder_name: mismatches.append((row["full_path"], row["class"], folder_name)) print(f"Found {len(mismatches)} mislabeled images (class vs folder mismatch).") # Compare classes vs folders classes_in_df = set(df["class"].unique()) folders_in_fs = {f for f in os.listdir(dataset_root) if os.path.isdir(os.path.join(dataset_root, f))} print("Classes in DF but not in folders:", classes_in_df - folders_in_fs) print("Folders in FS but not in DF:", folders_in_fs - classes_in_df) def check_file_naming_issues(df): issues = {"invalid_chars": [], "spaces": [], "long_paths": [], "case_conflicts": [], "duplicate_names_across_classes": []} seen_names = {} for _, row in df.iterrows(): fpath = row["full_path"] # full path fname = os.path.basename(fpath) # just filename cls = row["class"] if re.search(r'[<>:"/\\|?*]', fname): # Windows restricted chars issues["invalid_chars"].append(fpath) if " " in fname or fname.startswith(" ") or fname.endswith(" "): issues["spaces"].append(fpath) if len(fpath) > 255: issues["long_paths"].append(fpath) lower_name = fname.lower() if lower_name in seen_names and seen_names[lower_name] != cls: issues["case_conflicts"].append((fpath, seen_names[lower_name])) else: seen_names[lower_name] = cls duplicates = df.groupby(df["full_path"].apply(os.path.basename))["class"].nunique() duplicates = duplicates[duplicates > 1].index.tolist() for dup in duplicates: dup_paths = df[df["full_path"].str.endswith(dup)]["full_path"].tolist() issues["duplicate_names_across_classes"].extend(dup_paths) return issues # Run the check naming_issues = check_file_naming_issues(df) for issue_type, files in naming_issues.items(): print(f"\n{issue_type.upper()} ({len(files)})") for f in files[:10]: # preview first 10 print(f) """# **Data Preprocessing Process**""" def preprocess_image(path, target_size=(256, 256), augment=True): img = tf.io.read_file(path) img = tf.image.decode_image(img, channels=3, expand_animations=False) img = tf.image.resize(img, target_size) img = tf.cast(img, tf.float32) / 255.0 if augment and tf.random.uniform(()) < 0.1: # Only 10% chance img = tf.image.random_flip_left_right(img) img = tf.image.random_flip_up_down(img) img = tf.image.random_brightness(img, max_delta=0.1) img = tf.image.random_contrast(img, lower=0.9, upper=1.1) return img le = LabelEncoder() df['label'] = le.fit_transform(df['class']) # Prepare paths and labels paths = df['full_path'].values labels = df['label'].values AUTOTUNE = tf.data.AUTOTUNE batch_size = 32 # Split data into train+val and test (10% test) train_val_paths, test_paths, train_val_labels, test_labels = train_test_split( paths, labels, test_size=0.1, random_state=42, stratify=labels ) # Split train+val into train and val (10% of train_val as val) train_paths, val_paths, train_labels, val_labels = train_test_split( train_val_paths, train_val_labels, test_size=0.1, random_state=42, stratify=train_val_labels ) # Create datasets def load_and_preprocess(path, label): return preprocess_image(path), label train_ds = tf.data.Dataset.from_tensor_slices((train_paths, train_labels)) train_ds = train_ds.map(lambda x, y: (preprocess_image(x, augment=True), y), num_parallel_calls=AUTOTUNE) train_ds = train_ds.shuffle(1024).batch(batch_size).prefetch(AUTOTUNE) val_ds = tf.data.Dataset.from_tensor_slices((val_paths, val_labels)) val_ds = val_ds.map(load_and_preprocess, num_parallel_calls=AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(AUTOTUNE) test_ds = tf.data.Dataset.from_tensor_slices((test_paths, test_labels)) test_ds = test_ds.map(load_and_preprocess, num_parallel_calls=AUTOTUNE) test_ds = test_ds.batch(batch_size).prefetch(AUTOTUNE) print("Dataset sizes:") print(f"Train: {len(train_paths)} images") print(f"Validation: {len(val_paths)} images") print(f"Test: {len(test_paths)} images") print("--------------------------------------------------") print("Train labels sample:", train_labels[:10]) print("Validation labels sample:", val_labels[:10]) print("Test labels sample:", test_labels[:10]) # Preview normalized image stats and visualization for image_batch, label_batch in train_ds.take(1): # Print pixel value stats for first image in the batch image = image_batch[0] label = label_batch[0] print("Image dtype:", image.dtype) print("Min pixel value:", tf.reduce_min(image).numpy()) print("Max pixel value:", tf.reduce_max(image).numpy()) print("Label:", label.numpy()) # Show the image plt.imshow(image.numpy()) plt.title(f"Label: {label.numpy()}") plt.axis('off') plt.show() print("---------------------------------------------------") print("Number of Classes: ", len(le.classes_)) # After train_ds is defined for image_batch, label_batch in train_ds.take(1): print("Image batch shape:", image_batch.shape) # full batch shape print("Label batch shape:", label_batch.shape) # labels shape input_shape = image_batch.shape[1:] # shape of a single image print("Single image shape:", input_shape) break """# **Model Loading**""" inception = InceptionV3(input_shape=input_shape, weights='imagenet', include_top=False) # don't train existing weights for layer in inception.layers: layer.trainable = False # Number of classes print("Number of Classes: ", len(le.classes_)) x = GlobalAveragePooling2D()(inception.output) x = Dense(512, activation='relu')(x) x = Dropout(0.5)(x) prediction = Dense(len(le.classes_), activation='softmax')(x) # create a model object model = Model(inputs=inception.input, outputs=prediction) # view the structure of the model model.summary() # tell the model what cost and optimization method to use model.compile( loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) """# **Model Feature Extraction**""" callbacks = [ EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True, verbose = 1), ModelCheckpoint("best_model.h5", save_best_only=True, monitor='val_loss', verbose = 1), ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1e-5, verbose=1) ] history = model.fit(train_ds, validation_data=val_ds, epochs=5, callbacks=callbacks, verbose = 1) """# **Model Fine-Tuning**""" #Fine Tuning for layer in inception.layers[-30:]: # Unfreeze last 30 layers (tune as needed) layer.trainable = True # tell the model what cost and optimization method to use model.compile( loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) callbacks = [ EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose = 1), ModelCheckpoint("best_model.h5", save_best_only=True, monitor='val_loss', verbose = 1), ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=7, min_lr=1e-5, verbose=1) ] history = model.fit(train_ds, validation_data=val_ds, epochs=10, callbacks=callbacks, verbose = 1) """# **Model Evaluation**""" model.evaluate(test_ds) fig, ax = plt.subplots(1, 2) fig.set_size_inches(20, 8) train_acc = history.history['accuracy'] train_loss = history.history['loss'] val_acc = history.history['val_accuracy'] val_loss = history.history['val_loss'] epochs = range(1, len(train_acc) + 1) ax[0].plot(epochs, train_acc, 'g-o', label='Training Accuracy') ax[0].plot(epochs, val_acc, 'y-o', label='Validation Accuracy') ax[0].set_title('Training and Validation Accuracy') ax[0].legend(loc = 'lower right') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Accuracy') ax[1].plot(epochs, train_loss, 'g-o', label='Training Loss') ax[1].plot(epochs, val_loss, 'y-o', label='Validation Loss') ax[1].set_title('Training and Validation Loss') ax[1].legend() ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Loss') plt.show() true_labels = [] for _, labels in test_ds: true_labels.extend(labels.numpy()) # Predict with the model pred_probs = model.predict(test_ds) pred_labels = np.argmax(pred_probs, axis=1) # Compute confusion matrix cm = confusion_matrix(true_labels, pred_labels) # Display cm_display = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=le.classes_) cm_display.plot(cmap='Blues', values_format='d') plt.show() # Evaluate on test dataset test_loss, test_accuracy = model.evaluate(test_ds, verbose=1) print(f"Test Accuracy: {test_accuracy:.4f}") # Predict probabilities y_pred_probs = model.predict(test_ds) y_pred = np.argmax(y_pred_probs, axis=1) # True labels (same order as test_ds batching) y_true = np.concatenate([y for x, y in test_ds], axis=0) # Metrics precision = precision_score(y_true, y_pred, average='macro') recall = recall_score(y_true, y_pred, average='macro') f1 = f1_score(y_true, y_pred, average='macro') print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}") # detailed report per class print("\nClassification Report:") print(classification_report(y_true, y_pred, target_names=le.classes_)) # Evaluate model test_loss, test_accuracy = model.evaluate(test_ds, verbose=1) print(f"Test Accuracy: {test_accuracy:.4f}") # Predictions y_probs = model.predict(test_ds) # shape: (num_samples, num_classes) y_pred = np.argmax(y_probs, axis=1) # True labels (extract from test_ds) y_true = np.concatenate([y for _, y in test_ds], axis=0) # Classification report print("\nClassification Report:") print(classification_report(y_true, y_pred, target_names=le.classes_)) # Confusion matrix cm = confusion_matrix(y_true, y_pred) plt.figure(figsize=(10,8)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=le.classes_, yticklabels=le.classes_) plt.xlabel("Predicted") plt.ylabel("True") plt.title("Confusion Matrix") plt.show() # ROC curve (multi-class, one-vs-rest) y_true_bin = label_binarize(y_true, classes=np.arange(len(le.classes_))) # binarized true labels plt.figure(figsize=(10,8)) for i in range(len(le.classes_)): fpr, tpr, _ = roc_curve(y_true_bin[:, i], y_probs[:, i]) plt.plot(fpr, tpr, label=f"{le.classes_[i]}") plt.plot([0,1],[0,1],'k--', label='Random') plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curves (One-vs-Rest)") plt.legend() plt.show() # Predictions y_probs = model.predict(test_ds) y_pred = np.argmax(y_probs, axis=1) # True labels y_true = np.concatenate([y for _, y in test_ds], axis=0) # Metrics per class precision, recall, f1, support = precision_recall_fscore_support( y_true, y_pred, average=None, labels=np.arange(len(le.classes_)) ) df_metrics = pd.DataFrame({ 'Class': le.classes_, # use actual class names instead of 0,1,2,3 'Precision': precision, 'Recall': recall, 'F1-score': f1, 'Support': support }) # Sort by F1-score ascending df_metrics_sorted = df_metrics.sort_values(by='F1-score') print(df_metrics_sorted) # Macro averages precision_macro, recall_macro, f1_macro, _ = precision_recall_fscore_support( y_true, y_pred, average='macro' ) print(f"\nMacro Avg -> Precision: {precision_macro:.4f}, Recall: {recall_macro:.4f}, F1-score: {f1_macro:.4f}") # Confusion matrix (no annotations, just intensity heatmap) cm = confusion_matrix(y_true, y_pred) plt.figure(figsize=(15,12)) sns.heatmap(cm, annot=False, fmt='d', cmap='Blues', xticklabels=le.classes_, yticklabels=le.classes_) plt.xlabel("Predicted Class") plt.ylabel("True Class") plt.title("Confusion Matrix Heatmap") plt.show() # Binarize true labels y_test_bin = label_binarize(y_true, classes=np.arange(len(le.classes_))) # Predict class probabilities y_probs = model.predict(test_ds) # Compute macro-average ROC all_fpr = np.linspace(0, 1, 100) mean_tpr = 0 for i in range(len(le.classes_)): fpr, tpr, _ = roc_curve(y_test_bin[:, i], y_probs[:, i]) mean_tpr += np.interp(all_fpr, fpr, tpr) mean_tpr /= len(le.classes_) roc_auc = auc(all_fpr, mean_tpr) # Plot plt.figure(figsize=(10,6)) plt.plot(all_fpr, mean_tpr, color='b', label=f'Macro-average ROC (AUC = {roc_auc:.4f})') plt.plot([0,1],[0,1],'k--', label='Random') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Macro-average ROC Curve') plt.legend() plt.show() """# **Saving the Model**""" model.save("Simple_CNN_Classification.h5") files.download("Simple_CNN_Classification.h5")