Update app.py
Browse files
app.py
CHANGED
|
@@ -4,37 +4,29 @@ from PIL import Image
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
-
dataset
|
| 8 |
-
|
| 9 |
-
split="train",
|
| 10 |
-
streaming=True
|
| 11 |
-
)
|
| 12 |
|
| 13 |
def classify_image(img: Image.Image):
|
| 14 |
-
|
| 15 |
if img is None:
|
| 16 |
return "No image uploaded", 0, {}
|
| 17 |
-
|
| 18 |
label, confidence, probs = predict(img)
|
| 19 |
-
|
| 20 |
return (
|
| 21 |
label,
|
| 22 |
round(confidence, 3),
|
| 23 |
{k: round(v, 3) for k, v in probs.items()}
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
def random_example():
|
| 27 |
-
|
| 28 |
-
item = next(iter(dataset.shuffle(buffer_size=1500)))
|
| 29 |
-
|
| 30 |
img = item["image"].convert("RGB")
|
| 31 |
-
label = item["label"]
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
return img, img, label_str
|
| 36 |
-
|
| 37 |
|
|
|
|
| 38 |
demo = gr.Blocks()
|
| 39 |
|
| 40 |
with demo:
|
|
@@ -53,12 +45,14 @@ with demo:
|
|
| 53 |
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 54 |
rand_label = gr.Textbox(label="Sample Label")
|
| 55 |
|
|
|
|
| 56 |
pred_btn.click(
|
| 57 |
classify_image,
|
| 58 |
inputs=input_img,
|
| 59 |
outputs=[output_label, output_conf, output_probs]
|
| 60 |
)
|
| 61 |
|
|
|
|
| 62 |
rand_img.click(
|
| 63 |
random_example,
|
| 64 |
outputs=[input_img, rand_display, rand_label]
|
|
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
# Load the full dataset (non-streaming)
|
| 8 |
+
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train")
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def classify_image(img: Image.Image):
|
|
|
|
| 11 |
if img is None:
|
| 12 |
return "No image uploaded", 0, {}
|
| 13 |
+
|
| 14 |
label, confidence, probs = predict(img)
|
|
|
|
| 15 |
return (
|
| 16 |
label,
|
| 17 |
round(confidence, 3),
|
| 18 |
{k: round(v, 3) for k, v in probs.items()}
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# Random example from the dataset
|
| 22 |
def random_example():
|
| 23 |
+
item = random.choice(dataset)
|
|
|
|
|
|
|
| 24 |
img = item["image"].convert("RGB")
|
| 25 |
+
label = dataset.features["label"].int2str(item["label"])
|
| 26 |
+
# Return image twice: once for input_img (for prediction), once for display
|
| 27 |
+
return img, img, label
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Gradio UI
|
| 30 |
demo = gr.Blocks()
|
| 31 |
|
| 32 |
with demo:
|
|
|
|
| 45 |
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 46 |
rand_label = gr.Textbox(label="Sample Label")
|
| 47 |
|
| 48 |
+
# Predict button uses whatever image is currently in input_img
|
| 49 |
pred_btn.click(
|
| 50 |
classify_image,
|
| 51 |
inputs=input_img,
|
| 52 |
outputs=[output_label, output_conf, output_probs]
|
| 53 |
)
|
| 54 |
|
| 55 |
+
# Random button picks a dataset image
|
| 56 |
rand_img.click(
|
| 57 |
random_example,
|
| 58 |
outputs=[input_img, rand_display, rand_label]
|