File size: 26,321 Bytes
54dd6b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
# -*- coding: utf-8 -*-
"""InceptionV3_Image_Classification.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1UmUDdji0iQ-LK2g0MtxytO8M7cpioH3C
# **Import Dependencies**
"""
import warnings
warnings.filterwarnings('ignore')
import zipfile
import hashlib
import matplotlib.pyplot as plt
import pandas as pd
import os
import uuid
import re
import random
import cv2
import numpy as np
import tensorflow as tf
import seaborn as sns
from google.colab import drive
from google.colab import files
from pathlib import Path
from PIL import Image, ImageStat, UnidentifiedImageError, ImageEnhance
from matplotlib import patches
from tqdm import tqdm
from collections import defaultdict
from sklearn.preprocessing import LabelEncoder, label_binarize
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from tensorflow import keras
from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import layers, models, optimizers, callbacks, regularizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D,Dropout, Flatten, Dense, GlobalAveragePooling2D
from tensorflow.keras.regularizers import l2
from tensorflow.keras.optimizers import Adam, AdamW
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from tensorflow.keras import Input, Model
from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img, array_to_img
from tensorflow.keras.preprocessing import image
from sklearn.metrics import classification_report,ConfusionMatrixDisplay, confusion_matrix, roc_auc_score, roc_curve, precision_score, recall_score, f1_score, precision_recall_fscore_support, auc
print(tf.__version__)
drive.mount('/content/drive')
zip_path = '/content/drive/MyDrive/Animals.zip'
extract_to = '/content/my_data'
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
"""# **Convert Dataset to a Data Frame**"""
image_extensions = {'.jpg', '.jpeg', '.png'}
paths = [(path.parts[-2], path.name, str(path)) for path in Path(extract_to).rglob('*.*') if path.suffix.lower() in image_extensions]
df = pd.DataFrame(paths, columns = ['class', 'image', 'full_path'])
df = df.sort_values('class', ascending = True)
df.reset_index(drop = True, inplace = True)
df
"""# **EDA Process**"""
class_count = df['class'].value_counts()
for cls, count in class_count.items():
print(f'Class: {cls}, Count: {count} images')
print(f"\nTotal dataset size is: {len(df)} images")
print(f"Number of classes: {df['class'].nunique()} classes")
plt.figure(figsize = (32, 16))
class_count.plot(kind = 'bar', color = 'skyblue', edgecolor = 'black')
plt.title('Number of Images per Class')
plt.xlabel('Class')
plt.ylabel('Count')
plt.xticks(rotation = 45)
plt.show()
plt.figure(figsize = (32, 16))
class_count.plot(kind = 'pie', autopct = '%1.1f%%', colors = plt.cm.Paired.colors)
plt.title('Percentage of Images per Class')
plt.ylabel('')
plt.show()
percentages = (class_count / len(df)) * 100
imbalance_df = pd.DataFrame({'Count': class_count, 'Percentage %': percentages.round(2)})
print(imbalance_df)
plt.figure(figsize = (32, 16))
class_count.plot(kind = 'bar', color = 'lightgreen', edgecolor = 'black')
plt.title('Class Distribution Check')
plt.xlabel('Class')
plt.ylabel('Count')
plt.xticks(rotation = 45)
plt.axhline(y = class_count.mean(), color = 'red', linestyle = '--', label = 'Average Count')
plt.legend()
plt.show()
image_sizes = []
for file_path in df['full_path']:
with Image.open(file_path) as img:
image_sizes.append(img.size)
sizes_df = pd.DataFrame(image_sizes, columns=['Width', 'Height'])
#Width
plt.figure(figsize=(8,5))
plt.scatter(x = range(len(sizes_df)), y = sizes_df['Width'], color='skyblue', s=10)
plt.title('Image Width Distribution')
plt.xlabel('Width (pixels)')
plt.ylabel('Frequency')
plt.show()
#Height
plt.figure(figsize=(8,5))
plt.scatter(x = sizes_df['Height'], y = range(len(sizes_df)), color='lightgreen', s=10)
plt.title('Image Height Distribution')
plt.xlabel('Height (pixels)')
plt.ylabel('Frequency')
plt.show()
#For best sure the size of the whole images
unique_sizes = sizes_df.value_counts().reset_index(name='Count')
print(unique_sizes)
image_data = []
for file_path in df['full_path']:
with Image.open(file_path) as img:
width, height = img.size
mode = img.mode # e.g., 'RGB', 'L', 'RGBA', etc.
channels = len(img.getbands()) # Number of channels
image_data.append((width, height, mode, channels))
# Create DataFrame
image_df = pd.DataFrame(image_data, columns=['Width', 'Height', 'Mode', 'Channels'])
print("Image Mode Distribution:")
print(image_df['Mode'].value_counts())
print("\nNumber of Channels Distribution:")
print(image_df['Channels'].value_counts())
plt.figure(figsize=(6,4))
image_df['Mode'].value_counts().plot(kind='bar', color='coral')
plt.title("Image Mode Distribution")
plt.xlabel("Mode")
plt.ylabel("Count")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
plt.figure(figsize=(6,4))
image_df['Channels'].value_counts().sort_index().plot(kind='bar', color='slateblue')
plt.title("Number of Channels per Image")
plt.xlabel("Channels")
plt.ylabel("Count")
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
sample_df = df.sample(n = 10, random_state = 42)
plt.figure(figsize=(32, 16))
for i, (cls, img_name, full_path) in enumerate(sample_df.values):
with Image.open(full_path) as img:
stat = ImageStat.Stat(img.convert("RGB")) #Convert images to RGB images
brightness = stat.mean[0]
contrast = stat.stddev[0]
width, height = img.size
# Print size to console
print(f"Image: {img_name} | Class: {cls} | Size: {width}x{height} | Brightness: {brightness:.1f} | Contrast: {contrast:.1f}")
plt.subplot(2, 5, i + 1)
plt.imshow(img)
plt.axis('off')
plt.title(f"Class: {cls}\nImage: {img_name}\nBrightness: {brightness:.2f}\nContrast: {contrast:.2f} \nSize: {width}x{height}")
plt.tight_layout
plt.show()
# Sample 20 random images
num_samples = 20
sample_df = df.sample(num_samples, random_state=42)
# Get sorted class list and color map
classes = sorted(df['class'].unique())
colors = plt.cm.tab10.colors
# Grid setup
cols = 4
rows = num_samples // cols + int(num_samples % cols > 0)
# Figure setup
plt.figure(figsize=(15, 5 * rows))
for idx, (cls, img_name, full_path) in enumerate(sample_df.values):
with Image.open(full_path) as img:
ax = plt.subplot(rows, cols, idx + 1)
ax.imshow(img)
ax.axis('off')
# Title with class info
ax.set_title(
f"Class: {cls} \nImage: {img_name} \nSize: {img.width} x {img.height}",
fontsize=10
)
# Rectangle in axes coords: full width, small height at top
label_height = 0.1 # 10% of image height
label_width = 1.0 # full width of the image
rect = patches.Rectangle(
(0, 1 - label_height), label_width, label_height,
transform=ax.transAxes,
linewidth=0,
edgecolor=None,
facecolor=colors[classes.index(cls) % len(colors)],
alpha=0.7
)
ax.add_patch(rect)
# Add class name text centered horizontally
ax.text(
0.5, 1 - label_height / 2,
cls,
transform=ax.transAxes,
fontsize=12,
color="white",
fontweight="bold",
va="center",
ha="center"
)
# Figure title and layout
plt.suptitle("Random Dataset Samples - Sanity Check", fontsize=18, fontweight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
#Check missing files
print("Missing values per column: ")
print(df.isnull().sum())
#Check duplicate files
duplicate_names = df.duplicated().sum()
print(f"\nNumber of duplicate files: {duplicate_names}")
duplicate_names = df[df.duplicated(subset = ['image'], keep = False)]
print(f"Duplicate file names: {len(duplicate_names)}")
#Check if two images or more are the same even if they are having different file names
def get_hash(file_path):
with open(file_path, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
df['file_hash'] = df['full_path'].apply(get_hash)
duplicate_hashes = df[df.duplicated(subset = ['file_hash'], keep = False)]
print(f"Duplicate image files: {len(duplicate_hashes)}")
#This code below just removing the duplicate files, which means will not be feeded to the model, but will be still in the actual directory
#Important note: duplicates are removed from the dataframe only, not from the actual directory.
#Drop duplicates based on file_hash, keeping the first one
# df_unique = df.drop_duplicates(subset='file_hash', keep='first')
# print(f"After removing duplicates, unique images: {len(df_unique)}")
#Check for images extentions
df['extenstion'] = df['image'].apply(lambda x: Path(x).suffix.lower())
print("File type counts: ")
#print(df['extenstion'].value_counts)
print(df['extenstion'].value_counts())
#Check for resolution relationships
df['Width'] = sizes_df['Width']
df['Height'] = sizes_df['Height']
#print(df.groupby(['Width', 'Height']).size())
print(df.groupby('class')[['Width', 'Height']].agg(['min', 'max', 'mean']))
#Check for class balance (relationship between label and count)
class_summary = df['class'].value_counts(normalize = False).to_frame('Count')
#class_summary['Percentage'] = class_summary['Count'] / class_summary['Count'].sum() * 100
#class_summary
class_summary['Percentage %'] = round((class_summary['Count'] / len(df)) * 100, 2)
print(class_summary)
"""# **Data Cleaning Process**"""
corrupted_files = []
for file_path in df['full_path']:
try:
with Image.open(file_path) as img:
img.verify()
except (UnidentifiedImageError, OSError):
corrupted_files.append(file_path)
print(f"Found {len(corrupted_files)} corrupted images.")
#except (IOError, SyntaxError) as e:
#corrupted_files.append(file_path)
#print(f"Number of corrupted files: {len(corrupted_files)}")
if corrupted_files:
df = df[~df['full_path'].isin(corrupted_files)].reset_index(drop = True)
print("Corrupted files removed.")
#Outliers detection
#Resolution-based outlier detection
#width_mean = width_std = sizes_df['Width'].mean(), sizes_df['Width'].std()
#height_mean = height_std = sizes_df['Height'].mean(), sizes_df['Height'].std()
width_mean = sizes_df['Width'].mean()
width_std = sizes_df['Width'].std()
height_mean = sizes_df['Height'].mean()
height_std = sizes_df['Height'].std()
outliers = df[(df['Width'] > width_mean + 3 * width_std) | (df['Width'] < width_mean - 3 * width_std) | (df['Height'] > height_mean + 3 * height_std) | (df['Height'] < height_mean - 3 * height_std)]
#print(f"Number of outliers: {len(outliers)}")
print(f"Found {len(outliers)} resolution outliers.")
df["image"] = df["full_path"].apply(lambda p: Image.open(p).convert('RGB')) #Convert it to RGB for flexibility
too_dark = []
too_bright = []
blank_or_gray = []
# Thresholds
dark_threshold = 30 # Below this is too dark
bright_threshold = 225 # Above this is too bright
low_contrast_threshold = 5 # Low contrast ~ blank/gray
for idx, img in enumerate(df["image"]):
gray = img.convert('L')
stat = ImageStat.Stat(gray) # Convert to grayscale for brightness/contrast analysis
brightness = stat.mean[0]
contrast = stat.stddev[0]
if brightness < dark_threshold:
too_dark.append(idx)
elif brightness > bright_threshold:
too_bright.append(idx)
elif contrast < low_contrast_threshold:
blank_or_gray.append(idx)
print(f"Too dark images: {len(too_dark)}")
print(f"Too bright images: {len(too_bright)}")
print(f"Blank/gray images: {len(blank_or_gray)}")
# df = df.drop(index=too_bright + blank_or_gray).reset_index(drop=True) --> DROPS too_bright + blank_or_gray TOGETHER!
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Enhancing images"):
img = row["image"]
# Enhance too dark images
if row["full_path"] in df.loc[too_dark, "full_path"].values:
img = ImageEnhance.Brightness(img).enhance(1.5) # Increase brightness
img = ImageEnhance.Contrast(img).enhance(1.5) # Increase contrast
# Decrease brightness for too bright images
if row["full_path"] in df.loc[too_bright, "full_path"].values:
img = ImageEnhance.Brightness(img).enhance(0.7) # Decrease brightness (less than 1)
img = ImageEnhance.Contrast(img).enhance(1.2) # Optionally, you can also enhance contrast
# Overwrite the image back into the DataFrame
df.at[idx, "image"] = img
print(f"Enhanced images in memory: {len(df)}")
# Lists to store paths of still too dark and too bright images
still_dark = []
still_bright = []
# Threshold for "too bright" (already defined as bright_threshold)
for idx, img in enumerate(df["image"]):
gray = img.convert('L') # Convert to grayscale for brightness analysis
stat = ImageStat.Stat(gray)
brightness = stat.mean[0]
# Check if the image is still too dark
if brightness < dark_threshold:
still_dark.append(df.loc[idx, 'full_path'])
# Check if the image is too bright
if brightness > bright_threshold:
still_bright.append(df.loc[idx, 'full_path'])
print(f"Still too dark after enhancement: {len(still_dark)} images")
print(f"Still too bright after enhancement: {len(still_bright)} images")
# Point to the extracted dataset, not the zip file location
dataset_root = "/content/my_data/Animals"
# Check mislabeled images
mismatches = []
for i, row in df.iterrows():
folder_name = os.path.basename(os.path.dirname(row["full_path"]))
if row["class"] != folder_name:
mismatches.append((row["full_path"], row["class"], folder_name))
print(f"Found {len(mismatches)} mislabeled images (class vs folder mismatch).")
# Compare classes vs folders
classes_in_df = set(df["class"].unique())
folders_in_fs = {f for f in os.listdir(dataset_root) if os.path.isdir(os.path.join(dataset_root, f))}
print("Classes in DF but not in folders:", classes_in_df - folders_in_fs)
print("Folders in FS but not in DF:", folders_in_fs - classes_in_df)
def check_file_naming_issues(df):
issues = {"invalid_chars": [], "spaces": [], "long_paths": [], "case_conflicts": [], "duplicate_names_across_classes": []}
seen_names = {}
for _, row in df.iterrows():
fpath = row["full_path"] # full path
fname = os.path.basename(fpath) # just filename
cls = row["class"]
if re.search(r'[<>:"/\\|?*]', fname): # Windows restricted chars
issues["invalid_chars"].append(fpath)
if " " in fname or fname.startswith(" ") or fname.endswith(" "):
issues["spaces"].append(fpath)
if len(fpath) > 255:
issues["long_paths"].append(fpath)
lower_name = fname.lower()
if lower_name in seen_names and seen_names[lower_name] != cls:
issues["case_conflicts"].append((fpath, seen_names[lower_name]))
else:
seen_names[lower_name] = cls
duplicates = df.groupby(df["full_path"].apply(os.path.basename))["class"].nunique()
duplicates = duplicates[duplicates > 1].index.tolist()
for dup in duplicates:
dup_paths = df[df["full_path"].str.endswith(dup)]["full_path"].tolist()
issues["duplicate_names_across_classes"].extend(dup_paths)
return issues
# Run the check
naming_issues = check_file_naming_issues(df)
for issue_type, files in naming_issues.items():
print(f"\n{issue_type.upper()} ({len(files)})")
for f in files[:10]: # preview first 10
print(f)
"""# **Data Preprocessing Process**"""
def preprocess_image(path, target_size=(256, 256), augment=True):
img = tf.io.read_file(path)
img = tf.image.decode_image(img, channels=3, expand_animations=False)
img = tf.image.resize(img, target_size)
img = tf.cast(img, tf.float32) / 255.0
if augment and tf.random.uniform(()) < 0.1: # Only 10% chance
img = tf.image.random_flip_left_right(img)
img = tf.image.random_flip_up_down(img)
img = tf.image.random_brightness(img, max_delta=0.1)
img = tf.image.random_contrast(img, lower=0.9, upper=1.1)
return img
le = LabelEncoder()
df['label'] = le.fit_transform(df['class'])
# Prepare paths and labels
paths = df['full_path'].values
labels = df['label'].values
AUTOTUNE = tf.data.AUTOTUNE
batch_size = 32
# Split data into train+val and test (10% test)
train_val_paths, test_paths, train_val_labels, test_labels = train_test_split(
paths, labels, test_size=0.1, random_state=42, stratify=labels
)
# Split train+val into train and val (10% of train_val as val)
train_paths, val_paths, train_labels, val_labels = train_test_split(
train_val_paths, train_val_labels, test_size=0.1, random_state=42, stratify=train_val_labels
)
# Create datasets
def load_and_preprocess(path, label):
return preprocess_image(path), label
train_ds = tf.data.Dataset.from_tensor_slices((train_paths, train_labels))
train_ds = train_ds.map(lambda x, y: (preprocess_image(x, augment=True), y), num_parallel_calls=AUTOTUNE)
train_ds = train_ds.shuffle(1024).batch(batch_size).prefetch(AUTOTUNE)
val_ds = tf.data.Dataset.from_tensor_slices((val_paths, val_labels))
val_ds = val_ds.map(load_and_preprocess, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.batch(batch_size).prefetch(AUTOTUNE)
test_ds = tf.data.Dataset.from_tensor_slices((test_paths, test_labels))
test_ds = test_ds.map(load_and_preprocess, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.batch(batch_size).prefetch(AUTOTUNE)
print("Dataset sizes:")
print(f"Train: {len(train_paths)} images")
print(f"Validation: {len(val_paths)} images")
print(f"Test: {len(test_paths)} images")
print("--------------------------------------------------")
print("Train labels sample:", train_labels[:10])
print("Validation labels sample:", val_labels[:10])
print("Test labels sample:", test_labels[:10])
# Preview normalized image stats and visualization
for image_batch, label_batch in train_ds.take(1):
# Print pixel value stats for first image in the batch
image = image_batch[0]
label = label_batch[0]
print("Image dtype:", image.dtype)
print("Min pixel value:", tf.reduce_min(image).numpy())
print("Max pixel value:", tf.reduce_max(image).numpy())
print("Label:", label.numpy())
# Show the image
plt.imshow(image.numpy())
plt.title(f"Label: {label.numpy()}")
plt.axis('off')
plt.show()
print("---------------------------------------------------")
print("Number of Classes: ", len(le.classes_))
# After train_ds is defined
for image_batch, label_batch in train_ds.take(1):
print("Image batch shape:", image_batch.shape) # full batch shape
print("Label batch shape:", label_batch.shape) # labels shape
input_shape = image_batch.shape[1:] # shape of a single image
print("Single image shape:", input_shape)
break
"""# **Model Loading**"""
inception = InceptionV3(input_shape=input_shape, weights='imagenet', include_top=False)
# don't train existing weights
for layer in inception.layers:
layer.trainable = False
# Number of classes
print("Number of Classes: ", len(le.classes_))
x = GlobalAveragePooling2D()(inception.output)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
prediction = Dense(len(le.classes_), activation='softmax')(x)
# create a model object
model = Model(inputs=inception.input, outputs=prediction)
# view the structure of the model
model.summary()
# tell the model what cost and optimization method to use
model.compile(
loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
"""# **Model Feature Extraction**"""
callbacks = [
EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True, verbose = 1),
ModelCheckpoint("best_model.h5", save_best_only=True, monitor='val_loss', verbose = 1),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1e-5, verbose=1)
]
history = model.fit(train_ds, validation_data=val_ds, epochs=5, callbacks=callbacks, verbose = 1)
"""# **Model Fine-Tuning**"""
#Fine Tuning
for layer in inception.layers[-30:]: # Unfreeze last 30 layers (tune as needed)
layer.trainable = True
# tell the model what cost and optimization method to use
model.compile(
loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
callbacks = [
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose = 1),
ModelCheckpoint("best_model.h5", save_best_only=True, monitor='val_loss', verbose = 1),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=7, min_lr=1e-5, verbose=1)
]
history = model.fit(train_ds, validation_data=val_ds, epochs=10, callbacks=callbacks, verbose = 1)
"""# **Model Evaluation**"""
model.evaluate(test_ds)
fig, ax = plt.subplots(1, 2)
fig.set_size_inches(20, 8)
train_acc = history.history['accuracy']
train_loss = history.history['loss']
val_acc = history.history['val_accuracy']
val_loss = history.history['val_loss']
epochs = range(1, len(train_acc) + 1)
ax[0].plot(epochs, train_acc, 'g-o', label='Training Accuracy')
ax[0].plot(epochs, val_acc, 'y-o', label='Validation Accuracy')
ax[0].set_title('Training and Validation Accuracy')
ax[0].legend(loc = 'lower right')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Accuracy')
ax[1].plot(epochs, train_loss, 'g-o', label='Training Loss')
ax[1].plot(epochs, val_loss, 'y-o', label='Validation Loss')
ax[1].set_title('Training and Validation Loss')
ax[1].legend()
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Loss')
plt.show()
true_labels = []
for _, labels in test_ds:
true_labels.extend(labels.numpy())
# Predict with the model
pred_probs = model.predict(test_ds)
pred_labels = np.argmax(pred_probs, axis=1)
# Compute confusion matrix
cm = confusion_matrix(true_labels, pred_labels)
# Display
cm_display = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=le.classes_)
cm_display.plot(cmap='Blues', values_format='d')
plt.show()
# Evaluate on test dataset
test_loss, test_accuracy = model.evaluate(test_ds, verbose=1)
print(f"Test Accuracy: {test_accuracy:.4f}")
# Predict probabilities
y_pred_probs = model.predict(test_ds)
y_pred = np.argmax(y_pred_probs, axis=1)
# True labels (same order as test_ds batching)
y_true = np.concatenate([y for x, y in test_ds], axis=0)
# Metrics
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
# detailed report per class
print("\nClassification Report:")
print(classification_report(y_true, y_pred, target_names=le.classes_))
# Evaluate model
test_loss, test_accuracy = model.evaluate(test_ds, verbose=1)
print(f"Test Accuracy: {test_accuracy:.4f}")
# Predictions
y_probs = model.predict(test_ds) # shape: (num_samples, num_classes)
y_pred = np.argmax(y_probs, axis=1)
# True labels (extract from test_ds)
y_true = np.concatenate([y for _, y in test_ds], axis=0)
# Classification report
print("\nClassification Report:")
print(classification_report(y_true, y_pred, target_names=le.classes_))
# Confusion matrix
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10,8))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
xticklabels=le.classes_, yticklabels=le.classes_)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix")
plt.show()
# ROC curve (multi-class, one-vs-rest)
y_true_bin = label_binarize(y_true, classes=np.arange(len(le.classes_))) # binarized true labels
plt.figure(figsize=(10,8))
for i in range(len(le.classes_)):
fpr, tpr, _ = roc_curve(y_true_bin[:, i], y_probs[:, i])
plt.plot(fpr, tpr, label=f"{le.classes_[i]}")
plt.plot([0,1],[0,1],'k--', label='Random')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curves (One-vs-Rest)")
plt.legend()
plt.show()
# Predictions
y_probs = model.predict(test_ds)
y_pred = np.argmax(y_probs, axis=1)
# True labels
y_true = np.concatenate([y for _, y in test_ds], axis=0)
# Metrics per class
precision, recall, f1, support = precision_recall_fscore_support(
y_true, y_pred, average=None, labels=np.arange(len(le.classes_))
)
df_metrics = pd.DataFrame({
'Class': le.classes_, # use actual class names instead of 0,1,2,3
'Precision': precision,
'Recall': recall,
'F1-score': f1,
'Support': support
})
# Sort by F1-score ascending
df_metrics_sorted = df_metrics.sort_values(by='F1-score')
print(df_metrics_sorted)
# Macro averages
precision_macro, recall_macro, f1_macro, _ = precision_recall_fscore_support(
y_true, y_pred, average='macro'
)
print(f"\nMacro Avg -> Precision: {precision_macro:.4f}, Recall: {recall_macro:.4f}, F1-score: {f1_macro:.4f}")
# Confusion matrix (no annotations, just intensity heatmap)
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(15,12))
sns.heatmap(cm, annot=False, fmt='d', cmap='Blues',
xticklabels=le.classes_, yticklabels=le.classes_)
plt.xlabel("Predicted Class")
plt.ylabel("True Class")
plt.title("Confusion Matrix Heatmap")
plt.show()
# Binarize true labels
y_test_bin = label_binarize(y_true, classes=np.arange(len(le.classes_)))
# Predict class probabilities
y_probs = model.predict(test_ds)
# Compute macro-average ROC
all_fpr = np.linspace(0, 1, 100)
mean_tpr = 0
for i in range(len(le.classes_)):
fpr, tpr, _ = roc_curve(y_test_bin[:, i], y_probs[:, i])
mean_tpr += np.interp(all_fpr, fpr, tpr)
mean_tpr /= len(le.classes_)
roc_auc = auc(all_fpr, mean_tpr)
# Plot
plt.figure(figsize=(10,6))
plt.plot(all_fpr, mean_tpr, color='b',
label=f'Macro-average ROC (AUC = {roc_auc:.4f})')
plt.plot([0,1],[0,1],'k--', label='Random')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Macro-average ROC Curve')
plt.legend()
plt.show()
"""# **Saving the Model**"""
model.save("Simple_CNN_Classification.h5")
files.download("Simple_CNN_Classification.h5") |