File size: 7,752 Bytes
9545fea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
对比YOLOv11 backbone和原始YOLOP backbone的差异
"""
import sys
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)

import torch
from lib.models.YOLOP_YOLOv11 import YOLOPWithYOLOv11, YOLOv11Backbone
from lib.models.YOLOP import get_net
from lib.config import cfg
from lib.config import update_config


def count_parameters(model):
    """统计参数数量"""
    total = sum(p.numel() for p in model.parameters())
    trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
    return total, trainable


def get_model_size(model):
    """估算模型大小(MB)"""
    param_size = sum(p.numel() * p.element_size() for p in model.parameters())
    buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
    size_mb = (param_size + buffer_size) / (1024 ** 2)
    return size_mb


def test_inference_speed(model, input_size=(1, 3, 640, 640), num_runs=100, warmup=10):
    """测试推理速度"""
    import time
    model.eval()
    device = next(model.parameters()).device
    
    # 准备输入
    dummy_input = torch.randn(input_size).to(device)
    
    # 预热
    with torch.no_grad():
        for _ in range(warmup):
            _ = model(dummy_input)
    
    # 测试
    torch.cuda.synchronize() if device.type == 'cuda' else None
    start_time = time.time()
    
    with torch.no_grad():
        for _ in range(num_runs):
            _ = model(dummy_input)
            torch.cuda.synchronize() if device.type == 'cuda' else None
    
    end_time = time.time()
    avg_time = (end_time - start_time) / num_runs * 1000  # ms
    fps = 1000 / avg_time
    
    return avg_time, fps


def main():
    print("="*80)
    print("Backbone Comparison: YOLOv11 vs Original YOLOP")
    print("="*80)
    
    # 创建模型
    print("\n1. Creating models...")
    
    print("   Creating YOLOv11-based YOLOP...")
    model_yolov11 = YOLOPWithYOLOv11(num_seg_class=2)
    
    print("   Creating original YOLOP...")
    try:
        model_original = get_net(cfg)
    except Exception as e:
        print(f"   Failed to create original YOLOP: {e}")
        model_original = None
    
    print("✓ Models created")
    
    # 对比参数数量
    print("\n" + "="*80)
    print("Parameter Comparison")
    print("="*80)
    
    # YOLOv11 backbone
    yolov11_backbone_params, _ = count_parameters(model_yolov11.backbone)
    yolov11_total_params, _ = count_parameters(model_yolov11)
    yolov11_size = get_model_size(model_yolov11)
    
    print("\nYOLOv11-based YOLOP:")
    print(f"  Backbone parameters: {yolov11_backbone_params:,}")
    print(f"  Total parameters: {yolov11_total_params:,}")
    print(f"  Model size: {yolov11_size:.2f} MB")
    
    if model_original:
        original_total_params, _ = count_parameters(model_original)
        original_size = get_model_size(model_original)
        
        print("\nOriginal YOLOP:")
        print(f"  Total parameters: {original_total_params:,}")
        print(f"  Model size: {original_size:.2f} MB")
        
        print("\nDifference:")
        param_diff = yolov11_total_params - original_total_params
        size_diff = yolov11_size - original_size
        print(f"  Parameters: {param_diff:+,} ({param_diff/original_total_params*100:+.2f}%)")
        print(f"  Size: {size_diff:+.2f} MB ({size_diff/original_size*100:+.2f}%)")
    
    # 对比输出形状
    print("\n" + "="*80)
    print("Output Shape Comparison")
    print("="*80)
    
    test_input = torch.randn(1, 3, 640, 640)
    
    print("\nYOLOv11-based YOLOP:")
    with torch.no_grad():
        det_out, da_out, ll_out = model_yolov11(test_input)
        print(f"  Detection output: {type(det_out)}")
        if isinstance(det_out, tuple):
            for i, out in enumerate(det_out):
                if isinstance(out, list):
                    print(f"    Element {i}: list with {len(out)} items")
                    for j, item in enumerate(out):
                        print(f"      [{j}] {item.shape}")
                else:
                    print(f"    Element {i}: {out.shape}")
        print(f"  Drivable area output: {da_out.shape}")
        print(f"  Lane line output: {ll_out.shape}")
    
    if model_original:
        print("\nOriginal YOLOP:")
        with torch.no_grad():
            det_out_orig, da_out_orig, ll_out_orig = model_original(test_input)
            print(f"  Detection output: {type(det_out_orig)}")
            if isinstance(det_out_orig, tuple):
                for i, out in enumerate(det_out_orig):
                    if isinstance(out, list):
                        print(f"    Element {i}: list with {len(out)} items")
                        for j, item in enumerate(out):
                            print(f"      [{j}] {item.shape}")
                    else:
                        print(f"    Element {i}: {out.shape}")
            print(f"  Drivable area output: {da_out_orig.shape}")
            print(f"  Lane line output: {ll_out_orig.shape}")
    
    # 对比推理速度
    print("\n" + "="*80)
    print("Inference Speed Comparison (CPU)")
    print("="*80)
    
    print("\nTesting YOLOv11-based YOLOP...")
    try:
        avg_time_yolov11, fps_yolov11 = test_inference_speed(model_yolov11, num_runs=50, warmup=5)
        print(f"  Average time: {avg_time_yolov11:.2f} ms")
        print(f"  FPS: {fps_yolov11:.2f}")
    except Exception as e:
        print(f"  Failed: {e}")
        avg_time_yolov11, fps_yolov11 = None, None
    
    if model_original:
        print("\nTesting original YOLOP...")
        try:
            avg_time_original, fps_original = test_inference_speed(model_original, num_runs=50, warmup=5)
            print(f"  Average time: {avg_time_original:.2f} ms")
            print(f"  FPS: {fps_original:.2f}")
            
            if avg_time_yolov11 and avg_time_original:
                time_diff = avg_time_yolov11 - avg_time_original
                print(f"\nSpeed difference: {time_diff:+.2f} ms ({time_diff/avg_time_original*100:+.2f}%)")
        except Exception as e:
            print(f"  Failed: {e}")
    
    # Backbone架构对比
    print("\n" + "="*80)
    print("Backbone Architecture Comparison")
    print("="*80)
    
    print("\nYOLOv11 Backbone:")
    print(f"  Number of layers: {len(model_yolov11.backbone.layers)}")
    print(f"  Output feature indices: {model_yolov11.backbone.out_indices}")
    print("  Layer types:")
    for i, layer in enumerate(model_yolov11.backbone.layers):
        print(f"    [{i:2d}] {type(layer).__name__}")
    
    if model_original and hasattr(model_original, 'model'):
        print("\nOriginal YOLOP Backbone:")
        print(f"  Number of layers: {len(model_original.model)}")
        print("  Layer types (first 10):")
        for i in range(min(10, len(model_original.model))):
            layer = model_original.model[i]
            print(f"    [{i:2d}] {type(layer).__name__}")
    
    # 总结
    print("\n" + "="*80)
    print("Summary")
    print("="*80)
    print("\nKey differences:")
    print("  ✓ YOLOv11 uses newer modules: C3k2, C2PSA, SPPF")
    print("  ✓ Original YOLOP uses: Focus, BottleneckCSP, SPP")
    print("  ✓ YOLOv11 backbone can be initialized with pre-trained weights")
    print("  ✓ Both models have the same output format (compatible with training code)")
    
    print("\nRecommendations:")
    print("  • Use YOLOv11 backbone with pre-trained weights for better initial performance")
    print("  • Consider freezing backbone for faster training of detection/segmentation heads")
    print("  • Monitor both training speed and accuracy during experiments")


if __name__ == '__main__':
    main()