File size: 1,432 Bytes
a4558b3
8c41485
a4558b3
 
 
8c41485
 
 
a4558b3
8c41485
 
 
a4558b3
 
8c41485
 
dadba83
8c41485
dadba83
8c41485
dadba83
8c41485
dadba83
8c41485
dadba83
8c41485
b816f35
8c41485
b816f35
8c41485
dadba83
8c41485
b816f35
8c41485
b816f35
8c41485
b816f35
8c41485
 
 
 
 
 
 
 
 
 
 
dadba83
8c41485
dadba83
 
 
8c41485
dadba83
8c41485
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: peft
license: apache-2.0
base_model: ibm-granite/granite-20b-code-instruct-8k
tags:
- base_model:adapter:ibm-granite/granite-20b-code-instruct-8k
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: granite-20b-code-securecode
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# granite-20b-code-securecode

This model is a fine-tuned version of [ibm-granite/granite-20b-code-instruct-8k](https://huggingface.co/ibm-granite/granite-20b-code-instruct-8k) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.18.1
- Transformers 5.1.0
- Pytorch 2.7.1+cu128
- Datasets 2.21.0
- Tokenizers 0.22.2