File size: 31,342 Bytes
c5828bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
# Recursive Implementation Example

This document provides a detailed example of how the recursive cognitive architecture works in Multi-Agent Debate. We'll walk through the complete lifecycle of a market decision, from data ingestion to trade execution, highlighting the recursive patterns and interpretability mechanisms at each stage.

## Overview

<div align="center">
   <img src="assets/images/recursive_flow_detailed.png" alt="Recursive Flow Detailed" width="800"/>
</div>

In this example, we'll follow a complete decision cycle focused on analyzing Tesla (TSLA) stock, showing how multiple philosophical agents evaluate the same data through different lenses, form consensus, and generate a final decision with full attribution.

## 1. Data Ingestion

The process begins with market data ingestion from Yahoo Finance:

```python
from multi_agent_debate.market.environment import MarketEnvironment

# Initialize market environment
market = MarketEnvironment(data_source="yahoo", tickers=["TSLA"])

# Get current market data
market_data = market.get_current_market_data()
```

The market data includes:
- Price history
- Volume data
- Fundamental metrics
- Recent news sentiment
- Technical indicators

## 2. Agent-Specific Processing

Each philosophical agent processes this data through its unique cognitive lens. Let's look at three agents:

### Graham (Value) Agent

```python
# Graham Agent processing
graham_agent = GrahamAgent(reasoning_depth=3)
graham_processed = graham_agent.process_market_data(market_data)
```

The Graham agent focuses on intrinsic value calculation:

```python
# Internal implementation of Graham's intrinsic value calculation
def _calculate_intrinsic_value(self, fundamentals, ticker_data):
    eps = fundamentals.get('eps', 0)
    book_value = fundamentals.get('book_value_per_share', 0)
    growth_rate = fundamentals.get('growth_rate', 0)
    
    # Graham's formula: IV = EPS * (8.5 + 2g) * 4.4 / Y
    bond_yield = ticker_data.get('economic_indicators', {}).get('aaa_bond_yield', 0.045)
    bond_factor = 4.4 / max(bond_yield, 0.01)
    
    growth_adjusted_pe = 8.5 + (2 * growth_rate)
    earnings_value = eps * growth_adjusted_pe * bond_factor if eps > 0 else 0
    
    # Calculate book value with margin
    book_value_margin = book_value * 1.5
    
    # Use the lower of the two values for conservatism
    if earnings_value > 0 and book_value_margin > 0:
        intrinsic_value = min(earnings_value, book_value_margin)
    else:
        intrinsic_value = earnings_value if earnings_value > 0 else book_value_margin
    
    return max(intrinsic_value, 0)
```

The agent calculates a margin of safety:

```
Ticker: TSLA
Current Price: $242.15
Intrinsic Value: $180.32
Margin of Safety: -34.3% (negative margin indicates overvaluation)
Analysis: TSLA appears overvalued compared to traditional value metrics.
Recommendation: SELL
Confidence: 0.78
```

### Wood (Innovation) Agent

```python
# Wood Agent processing
wood_agent = WoodAgent(reasoning_depth=4)
wood_processed = wood_agent.process_market_data(market_data)
```

The Wood agent focuses on disruptive innovation and growth potential:

```python
# Internal implementation of growth potential analysis
def _analyze_growth_potential(self, ticker_data, market_context):
    # Analyze innovation factors
    innovation_score = self._calculate_innovation_score(ticker_data)
    
    # Analyze addressable market
    tam = self._calculate_total_addressable_market(ticker_data, market_context)
    
    # Project future growth
    growth_projection = self._project_exponential_growth(
        ticker_data, innovation_score, tam
    )
    
    return {
        "innovation_score": innovation_score,
        "total_addressable_market": tam,
        "growth_projection": growth_projection,
    }
```

The agent's analysis shows:

```
Ticker: TSLA
Innovation Score: 0.87
Total Addressable Market: $4.2T
5-Year CAGR Projection: 28.3%
Analysis: TSLA is well-positioned in multiple disruptive fields including EVs, energy storage, AI, and robotics.
Recommendation: BUY
Confidence: 0.82
```

### Dalio (Macro) Agent

```python
# Dalio Agent processing
dalio_agent = DalioAgent(reasoning_depth=3)
dalio_processed = dalio_agent.process_market_data(market_data)
```

The Dalio agent examines macroeconomic factors:

```python
# Internal implementation of macroeconomic analysis
def _analyze_macro_environment(self, ticker_data, economic_indicators):
    # Analyze interest rate impact
    interest_impact = self._calculate_interest_sensitivity(ticker_data, economic_indicators)
    
    # Analyze inflation impact
    inflation_impact = self._calculate_inflation_impact(ticker_data, economic_indicators)
    
    # Analyze growth cycle position
    cycle_position = self._determine_economic_cycle_position(economic_indicators)
    
    # Assess geopolitical risks
    geopolitical_risk = self._assess_geopolitical_risk(economic_indicators)
    
    return {
        "interest_impact": interest_impact,
        "inflation_impact": inflation_impact,
        "cycle_position": cycle_position,
        "geopolitical_risk": geopolitical_risk,
    }
```

The agent's analysis shows:

```
Ticker: TSLA
Interest Rate Sensitivity: -0.65 (high negative sensitivity)
Inflation Impact: -0.32 (moderate negative impact)
Economic Cycle Position: Late Expansion
Analysis: TSLA will face headwinds from high interest rates and potential economic slowdown.
Recommendation: HOLD
Confidence: 0.65
```

## 3. Reasoning Graph Execution

Each agent's reasoning process is executed via a LangGraph reasoning structure. Here's a simplified view of the Wood agent's reasoning graph:

```python
def _configure_reasoning_graph(self) -> None:
    """Configure the reasoning graph for disruptive innovation analysis."""
    # Add custom reasoning nodes
    self.reasoning_graph.add_node(
        "innovation_analysis",
        self._innovation_analysis
    )
    
    self.reasoning_graph.add_node(
        "growth_projection",
        self._growth_projection
    )
    
    self.reasoning_graph.add_node(
        "competition_analysis",
        self._competition_analysis
    )
    
    self.reasoning_graph.add_node(
        "valuation_adjustment",
        self._valuation_adjustment
    )
    
    # Configure reasoning flow
    self.reasoning_graph.set_entry_point("innovation_analysis")
    self.reasoning_graph.add_edge("innovation_analysis", "growth_projection")
    self.reasoning_graph.add_edge("growth_projection", "competition_analysis")
    self.reasoning_graph.add_edge("competition_analysis", "valuation_adjustment")
```

Each reasoning node executes and passes state to the next node, building up a complete reasoning trace:

```
Step 1: Innovation Analysis
- Assessed disruptive potential in key markets
- Analyzed R&D pipeline and technological moats
- Identified 4 significant innovation vectors

Step 2: Growth Projection
- Projected TAM expansion in core markets
- Calculated penetration rates and growth curves
- Estimated revenue CAGR of 28.3% over 5 years

Step 3: Competition Analysis
- Assessed competitive positioning in EV market
- Analyzed first-mover advantages in energy storage
- Identified emerging threats in autonomous driving

Step 4: Valuation Adjustment
- Applied growth-adjusted valuation metrics
- Discounted future cash flows with risk adjustment
- Compared valuation to traditional metrics
```

## 4. Signal Generation

Each agent generates investment signals based on its reasoning:

```python
# Generate signals from each agent
graham_signals = graham_agent.generate_signals(graham_processed)
wood_signals = wood_agent.generate_signals(wood_processed)
dalio_signals = dalio_agent.generate_signals(dalio_processed)
```

Each signal includes:
- Action recommendation (buy/sell/hold)
- Confidence level
- Quantity recommendation
- Complete reasoning chain
- Value basis (philosophical foundation)
- Attribution trace (causal links to evidence)

Example of Wood agent's signal:

```json
{
  "ticker": "TSLA",
  "action": "buy",
  "confidence": 0.82,
  "quantity": 41,
  "reasoning": "Tesla shows strong innovation potential across multiple verticals including EVs, energy storage, AI, and robotics. Their R&D pipeline demonstrates continued technological leadership with high growth potential in the coming decade.",
  "intent": "Capitalize on long-term disruptive innovation growth",
  "value_basis": "Disruptive innovation creates exponential growth and market expansion that traditional metrics fail to capture",
  "attribution_trace": {
    "innovation_score": 0.35,
    "growth_projection": 0.25,
    "competition_analysis": 0.20,
    "valuation_adjustment": 0.20
  },
  "drift_signature": {
    "interest_rates": -0.05,
    "regulation": -0.03,
    "competition": -0.02
  }
}
```

## 5. Meta-Agent Arbitration

The portfolio meta-agent receives signals from all philosophical agents:

```python
# Create portfolio manager (meta-agent)
portfolio = PortfolioManager(
    agents=[graham_agent, wood_agent, dalio_agent],
    arbitration_depth=2,
    show_trace=True
)

# Process market data through meta-agent
meta_result = portfolio.process_market_data(market_data)
```

### Consensus Formation

The meta-agent first attempts to find consensus on non-conflicting signals:

```python
def _consensus_formation(self, state) -> Dict[str, Any]:
    """Form consensus from agent signals."""
    # Extract signals by ticker
    ticker_signals = state.context.get("ticker_signals", {})
    
    # Form consensus for each ticker
    consensus_decisions = []
    
    for ticker, signals in ticker_signals.items():
        # Collect buy/sell/hold signals
        buy_signals = []
        sell_signals = []
        hold_signals = []
        
        for item in signals:
            signal = item.get("signal", {})
            action = signal.action.lower()
            
            if action == "buy":
                buy_signals.append((item, signal))
            elif action == "sell":
                sell_signals.append((item, signal))
            elif action == "hold":
                hold_signals.append((item, signal))
        
        # Skip if conflicting signals (handle in conflict resolution)
        if (buy_signals and sell_signals) or (not buy_signals and not sell_signals and not hold_signals):
            continue
        
        # Form consensus for non-conflicting signals
        if buy_signals:
            # Form buy consensus
            consensus = self._form_action_consensus(ticker, "buy", buy_signals)
            if consensus:
                consensus_decisions.append(consensus)
        
        elif sell_signals:
            # Form sell consensus
            consensus = self._form_action_consensus(ticker, "sell", sell_signals)
            if consensus:
                consensus_decisions.append(consensus)
        
    return {
        "context": {
            **state.context,
            "consensus_decisions": consensus_decisions,
            "consensus_tickers": [decision.get("ticker") for decision in consensus_decisions],
        },
        "output": {
            "consensus_decisions": consensus_decisions,
        }
    }
```

### Conflict Resolution

For TSLA, we have a conflict: Graham (SELL) vs. Wood (BUY) vs. Dalio (HOLD). The meta-agent resolves this conflict:

```python
def _resolve_ticker_conflict(self, ticker: str, action_signals: Dict[str, List[Tuple[Dict[str, Any], Any]]]) -> Optional[Dict[str, Any]]:
    """Resolve conflict for a specific ticker."""
    # Calculate total weight for each action
    action_weights = {}
    action_confidences = {}
    
    for action, signals in action_signals.items():
        total_weight = 0.0
        weighted_confidence = for action, signals in action_signals.items():
        total_weight = 0.0
        weighted_confidence = 0.0
        
        for item, signal in signals:
            agent_id = item.get("agent_id", "")
            
            # Skip if missing agent ID
            if not agent_id:
                continue
            
            # Get agent weight
            agent_weight = self.agent_weights.get(agent_id, 0)
            
            # Add to weighted confidence
            weighted_confidence += signal.confidence * agent_weight
            total_weight += agent_weight
        
        # Store action weight and confidence
        if total_weight > 0:
            action_weights[action] = total_weight
            action_confidences[action] = weighted_confidence / total_weight
    
    # Choose action with highest weight
    if not action_weights:
        return None
        
    best_action = max(action_weights.items(), key=lambda x: x[1])[0]
    
    # Check confidence threshold
    if action_confidences.get(best_action, 0) < self.consensus_threshold:
        return None
    
    # Get signals for best action
    best_signals = action_signals.get(best_action, [])
    
    # Form consensus for best action
    return self._form_action_consensus(ticker, best_action, best_signals)
```

In our case, after attributing current agent weights (based on historical performance):
- Graham agent: 0.25 (weight) × 0.78 (confidence) = 0.195 (weighted confidence)
- Wood agent: 0.40 (weight) × 0.82 (confidence) = 0.328 (weighted confidence)
- Dalio agent: 0.35 (weight) × 0.65 (confidence) = 0.228 (weighted confidence)

The Wood agent's BUY signal has the highest weighted confidence, so the meta-agent forms consensus around it.

### Position Sizing

The meta-agent determines position size based on confidence and attribution:

```python
def _calculate_position_size(self, ticker: str, action: str, confidence: float,
                          attribution: Dict[str, float], portfolio_value: float) -> float:
    """Calculate position size based on confidence and attribution."""
    # Base position size as percentage of portfolio
    base_size = self.min_position_size + (confidence * (self.max_position_size - self.min_position_size))
    
    # Calculate attribution-weighted size
    if attribution:
        # Calculate agent performance scores
        performance_scores = {}
        for agent_id, weight in attribution.items():
            # Find agent
            agent = None
            for a in self.agents:
                if a.id == agent_id:
                    agent = a
                    break
            
            if agent:
                # Use consistency score as proxy for performance
                performance_score = agent.state.consistency_score
                performance_scores[agent_id] = performance_score
        
        # Calculate weighted performance score
        weighted_score = 0
        total_weight = 0
        
        for agent_id, weight in attribution.items():
            if agent_id in performance_scores:
                weighted_score += performance_scores[agent_id] * weight
                total_weight += weight
        
        # Adjust base size by performance
        if total_weight > 0:
            performance_factor = weighted_score / total_weight
            base_size *= (0.5 + (0.5 * performance_factor))
    
    # Calculate currency amount
    target_size = portfolio_value * base_size
    
    return target_size
```

For TSLA:
- Base position size: 0.01 + (0.82 × (0.20 - 0.01)) = 0.165 (16.5% of portfolio)
- Adjusted for agent performance: 16.5% × 1.1 = 18.2% of portfolio
- For a $1,000,000 portfolio: $182,000 position size
- At current price of $242.15: 751 shares

### Meta Reflection

The meta-agent performs a final reflection on its decision process:

```python
def _meta_reflection(self, state) -> Dict[str, Any]:
    """Perform meta-reflection on decision process."""
    # Extract decisions
    sized_decisions = state.context.get("sized_decisions", [])
    
    # Update meta state with arbitration record
    arbitration_record = {
        "id": str(uuid.uuid4()),
        "decisions": sized_decisions,
        "timestamp": datetime.datetime.now().isoformat(),
    }
    
    self.meta_state["arbitration_history"].append(arbitration_record)
    
    # Update agent weights based on performance
    self._update_agent_weights()
    
    # Calculate meta-confidence
    meta_confidence = sum(decision.get("confidence", 0) for decision in sized_decisions) / len(sized_decisions) if sized_decisions else 0.5
    
    # Return final output
    return {
        "output": {
            "consensus_decisions": sized_decisions,
            "meta_confidence": meta_confidence,
            "agent_weights": self.agent_weights,
            "timestamp": datetime.datetime.now().isoformat(),
        },
        "confidence": meta_confidence,
    }
```

The meta-agent final reflection includes:
- Consensus tracking
- Agent weight adjustment
- Meta-confidence calculation
- Temporal memory update

## 6. Trade Execution

The final step is trade execution:

```python
# Execute trades based on consensus decisions
consensus_decisions = meta_result.get("meta_agent", {}).get("consensus_decisions", [])
execution_results = portfolio.execute_trades(consensus_decisions)
```

The execution includes:
- Position sizing
- Order placement
- Confirmation handling
- Portfolio state update

```json
{
  "trades": [
    {
      "ticker": "TSLA",
      "action": "buy",
      "quantity": 751,
      "price": 242.15,
      "cost": 181853.65,
      "timestamp": "2024-04-17T14:23:45.123456"
    }
  ],
  "errors": [],
  "portfolio_update": {
    "timestamp": "2024-04-17T14:23:45.654321",
    "portfolio_value": 1000000.00,
    "cash": 818146.35,
    "positions": {
      "TSLA": {
        "ticker": "TSLA",
        "quantity": 751,
        "entry_price": 242.15,
        "current_price": 242.15,
        "market_value": 181853.65,
        "allocation": 0.182,
        "unrealized_gain": 0.0,
        "entry_date": "2024-04-17T14:23:45.123456"
      }
    },
    "returns": {
      "total_return": 0.0,
      "daily_return": 0.0
    },
    "allocation": {
      "cash": 0.818,
      "TSLA": 0.182
    }
  }
}
```

## 7. Attribution Tracing

Throughout this process, complete attribution tracing is maintained:

```python
# Generate attribution report
attribution_report = portfolio.tracer.generate_attribution_report(meta_result.get("meta_agent", {}).get("consensus_decisions", []))
```

The attribution report shows the complete decision provenance:

```json
{
  "agent_name": "PortfolioMetaAgent",
  "timestamp": "2024-04-17T14:23:46.123456",
  "signals": 1,
  "attribution_summary": {
    "Wood": 0.45,
    "Dalio": 0.35,
    "Graham": 0.20
  },
  "confidence_summary": {
    "mean": 0.82,
    "median": 0.82,
    "min": 0.82,
    "max": 0.82
  },
  "top_factors": [
    {
      "source": "innovation_score",
      "weight": 0.35
    },
    {
      "source": "growth_projection",
      "weight": 0.25
    },
    {
      "source": "economic_cycle_position",
      "weight": 0.15
    },
    {
      "source": "competition_analysis",
      "weight": 0.10
    },
    {
      "source": "intrinsic_value_calculation",
      "weight": 0.10
    }
  ],
  "shell_patterns": [
    {
      "pattern": "v07 CIRCUIT-FRAGMENT",
      "count": 1,
      "frequency": 1.0
    }
  ]
}
```

## 8. Visualization

The system provides multiple visualization tools for interpretability:

### Consensus Graph

```python
# Generate consensus graph
consensus_graph = portfolio.visualize_consensus_graph()
```

The consensus graph shows the flow of influence between agents and decisions:

```json
{
  "nodes": [
    {
      "id": "meta",
      "label": "Portfolio Meta-Agent",
      "type": "meta",
      "size": 20
    },
    {
      "id": "agent-1",
      "label": "Graham Agent",
      "type": "agent",
      "philosophy": "Value investing focused on margin of safety",
      "size": 15,
      "weight": 0.20
    },
    {
      "id": "agent-2",
      "label": "Wood Agent",
      "type": "agent",
      "philosophy": "Disruptive innovation investing",
      "size": 15,
      "weight": 0.45
    },
    {
      "id": "agent-3",
      "label": "Dalio Agent",
      "type": "agent",
      "philosophy": "Macroeconomic-based investing",
      "size": 15,
      "weight": 0.35
    },
    {
      "id": "position-TSLA",
      "label": "TSLA",
      "type": "position",
      "size": 10,
      "value": 181853.65
    }
  ],
  "links": [
    {
      "source": "agent-1",
      "target": "meta",
      "value": 0.20,
      "type": "influence"
    },
    {
      "source": "agent-2",
      "target": "meta",
      "value": 0.45,
      "type": "influence"
    },
    {
      "source": "agent-3",
      "target": "meta",
      "value": 0.35,
      "type": "influence"
    },
    {
      "source": "meta",
      "target": "position-TSLA",
      "value": 1.0,
      "type": "allocation"
    },
    {
      "source": "agent-2",
      "target": "position-TSLA",
      "value": 0.45,
      "type": "attribution"
    },
    {
      "source": "agent-3",
      "target": "position-TSLA",
      "value": 0.35,
      "type": "attribution"
    },
    {
      "source": "agent-1",
      "target": "position-TSLA",
      "value": 0.20,
      "type": "attribution"
    }
  ],
  "timestamp": "2024-04-17T14:23:46.987654"
}
```

### Agent Conflict Map

```python
# Generate agent conflict map
conflict_map = portfolio.visualize_agent_conflict_map()
```

The conflict map visualizes the specific disagreements between agents:

```json
{
  "nodes": [
    {
      "id": "agent-1",
      "label": "Graham Agent",
      "type": "agent",
      "philosophy": "Value investing focused on margin of safety",
      "size": 15
    },
    {
      "id": "agent-2",
      "label": "Wood Agent",
      "type": "agent",
      "philosophy": "Disruptive innovation investing",
      "size": 15
    },
    {
      "id": "agent-3",
      "label": "Dalio Agent",
      "type": "agent",
      "philosophy": "Macroeconomic-based investing",
      "size": 15
    },
    {
      "id": "position-TSLA",
      "label": "TSLA",
      "type": "position",
      "size": 10
    }
  ],
  "links": [
    {
      "source": "agent-1",
      "target": "agent-2",
      "value": 1.0,
      "type": "conflict",
      "ticker": "TSLA"
    },
    {
      "source": "agent-2",
      "target": "agent-3",
      "value": 1.0,
      "type": "conflict",
      "ticker": "TSLA"
    },
    {
      "source": "agent-1",
      "target": "agent-3",
      "value": 1.0,
      "type": "conflict",
      "ticker": "TSLA"
    }
  ],
  "conflict_zones": [
    {
      "id": "conflict-1",
      "ticker": "TSLA",
      "agents": ["agent-1", "agent-2", "agent-3"],
      "resolution": "resolved",
      "timestamp": "2024-04-17T14:23:44.567890"
    }
  ],
  "timestamp": "2024-04-17T14:23:47.654321"
}
```

### Shell Failure Map

```python
# Create shell diagnostics
shell_diagnostics = ShellDiagnostics(
    agent_id="portfolio",
    agent_name="Portfolio",
    tracing_tools=TracingTools(
        agent_id="portfolio",
        agent_name="Portfolio",
        tracing_mode=TracingMode.DETAILED,
    )
)

# Create shell failure map
failure_map = ShellFailureMap()

# Analyze each agent's state for shell failures
for agent in [graham_agent, wood_agent, dalio_agent]:
    agent_state = agent.get_state_report()
    
    # Simulate shell failures based on agent state
    for shell_pattern in [ShellPattern.CIRCUIT_FRAGMENT, ShellPattern.META_FAILURE]:
        failure_data = shell_diagnostics.simulate_shell_failure(
            shell_pattern=shell_pattern,
            context=agent_state,
        )
        
        # Add to failure map
        failure_map.add_failure(
            agent_id=agent.id,
            agent_name=agent.name,
            shell_pattern=shell_pattern,
            failure_data=failure_data,
        )

# Generate visualization
shell_failure_viz = failure_map.generate_failure_map_visualization()
```

The shell failure map visualizes interpretability patterns detected in the agents:

```json
{
  "nodes": [
    {
      "id": "agent-1",
      "label": "Graham Agent",
      "type": "agent",
      "size": 15,
      "failure_count": 1
    },
    {
      "id": "agent-2",
      "label": "Wood Agent",
      "type": "agent",
      "size": 15,
      "failure_count": 2
    },
    {
      "id": "agent-3",
      "label": "Dalio Agent",
      "type": "agent",
      "size": 15,
      "failure_count": 1
    },
    {
      "id": "v07 CIRCUIT-FRAGMENT",
      "label": "CIRCUIT-FRAGMENT",
      "type": "pattern",
      "size": 10,
      "failure_count": 3
    },
    {
      "id": "v10 META-FAILURE",
      "label": "META-FAILURE",
      "type": "pattern",
      "size": 10,
      "failure_count": 1
    },
    {
      "id": "failure-1",
      "label": "Failure 3f4a9c",
      "type": "failure",
      "size": 5,
      "timestamp": "2024-04-17T14:23:48.123456"
    },
    {
      "id": "failure-2",
      "label": "Failure b7d5e2",
      "type": "failure",
      "size": 5,
      "timestamp": "2024-04-17T14:23:48.234567"
    },
    {
      "id": "failure-3",
      "label": "Failure 9c6f1a",
      "type": "failure",
      "size": 5,
      "timestamp": "2024-04-17T14:23:48.345678"
    },
    {
      "id": "failure-4",
      "label": "Failure 2e8d7f",
      "type": "failure",
      "size": 5,
      "timestamp": "2024-04-17T14:23:48.456789"
    }
  ],
  "links": [
    {
      "source": "agent-1",
      "target": "failure-1",
      "type": "agent_failure"
    },
    {
      "source": "v07 CIRCUIT-FRAGMENT",
      "target": "failure-1",
      "type": "pattern_failure"
    },
    {
      "source": "agent-2",
      "target": "failure-2",
      "type": "agent_failure"
    },
    {
      "source": "v07 CIRCUIT-FRAGMENT",
      "target": "failure-2",
      "type": "pattern_failure"
    },
    {
      "source": "agent-2",
      "target": "failure-3",
      "type": "agent_failure"
    },
    {
      "source": "v10 META-FAILURE",
      "target": "failure-3",
      "type": "pattern_failure"
    },
    {
      "source": "agent-3",
      "target": "failure-4",
      "type": "agent_failure"
    },
    {
      "source": "v07 CIRCUIT-FRAGMENT",
      "target": "failure-4",
      "type": "pattern_failure"
    }
  ],
  "timestamp": "2024-04-17T14:23:49.000000"
}
```

## 9. Agent Memory & Learning

After each trading cycle, agents update their internal state:

```python
# Update agent states based on market feedback
market_feedback = {
    'portfolio_value': execution_results['portfolio_update']['portfolio_value'],
    'performance': {'TSLA': 0.02},  # Example: 2% return
    'decisions': consensus_decisions,
    'avg_confidence': 0.82,
}

# Update each agent's state
for agent in [graham_agent, wood_agent, dalio_agent]:
    agent.update_state(market_feedback)
```

Each agent processes the feedback differently based on its philosophy:

### Wood Agent Memory Update

```python
def _update_beliefs(self, market_feedback: Dict[str, Any]) -> None:
    """Update agent's belief state based on market feedback."""
    # Extract relevant signals
    if 'performance' in market_feedback:
        performance = market_feedback['performance']
        
        # Record decision outcomes
        if 'decisions' in market_feedback:
            for decision in market_feedback['decisions']:
                self.state.decision_history.append({
                    'decision': decision,
                    'outcome': performance.get(decision.get('ticker'), 0),
                    'timestamp': datetime.datetime.now()
                })
                
                # For Wood Agent, reinforce innovation beliefs on positive outcomes
                if performance.get(decision.get('ticker'), 0) > 0:
                    ticker = decision.get('ticker')
                    # Strengthen innovation belief
                    current_belief = self.state.belief_state.get(f"{ticker}_innovation", 0.5)
                    self.state.belief_state[f"{ticker}_innovation"] = min(1.0, current_belief + 0.05)
                    
                    # Update industry trend belief
                    industry = self._get_ticker_industry(ticker)
                    if industry:
                        industry_belief = self.state.belief_state.get(f"{industry}_trend", 0.5)
                        self.state.belief_state[f"{industry}_trend"] = min(1.0, industry_belief + 0.03)
        
        # Update general belief state based on performance
        for ticker, perf in performance.items():
            general_belief_key = f"{ticker}_general"
            current_belief = self.state.belief_state.get(general_belief_key, 0.5)
            
            # Wood Agent weights positive outcomes more heavily for innovative companies
            if self._is_innovative_company(ticker):
                update_weight = 0.3  # Higher weight for innovative companies
            else:
                update_weight = 0.1  # Lower weight for traditional companies
            
            # Update belief
            updated_belief = current_belief * (1 - update_weight) + np.tanh(perf) * update_weight
            self.state.belief_state[general_belief_key] = updated_belief
            
            # Track belief drift
            if general_belief_key in self.state.belief_state:
                drift = updated_belief - current_belief
                self.state.drift_vector[general_belief_key] = drift
                
                # Wood Agent's drift pattern analysis
                self._analyze_drift_pattern(ticker, drift)
```

## 10. Command Interface

Throughout the system, the symbolic command interface enables deeper introspection:

```python
# Get a reflection trace from the Graham agent
reflection_trace = graham_agent.execute_command(
    command="reflect.trace",
    depth=3
)

# Generate signals from alternative sources
alt_signals = wood_agent.execute_command(
    command="fork.signal",
    source="beliefs"
)

# Check for decision collapse
collapse_check = dalio_agent.execute_command(
    command="collapse.detect",
    threshold=0.7,
    reason="consistency"
)

# Attribute weight to a justification
attribution = portfolio.execute_command(
    command="attribute.weight",
    justification="Tesla's innovation in AI and robotics represents a paradigm shift that traditional valuation metrics fail to capture."
)

# Track belief drift
drift_observation = wood_agent.execute_command(
    command="drift.observe",
    vector={"TSLA_innovation": 0.05, "AI_trend": 0.03, "EV_market": 0.02},
    bias=0.01
)
```

These commands form the foundation of the system's interpretability architecture, enabling detailed tracing and analysis of decision processes.

## Conclusion

This example demonstrates the recursive cognitive architecture of Multi-Agent Debate in action. From market data ingestion to trade execution, the system maintains complete transparency and interpretability through:

1. Agent-specific cognitive lenses
2. Recursive reasoning graphs
3. Attribution tracing
4. Meta-agent arbitration
5. Position sizing
6. Trade execution
7. Memory and learning

Each component is designed to enable deeper introspection into the decision-making process, creating a truly transparent and interpretable multi-agent market cognition system.

The symbolic command interface and visualization tools provide multiple ways to understand and analyze the system's behavior, making it both effective and explainable.