Rain-v2
Rain-v2 是一个约 1 亿参数的英文自回归语言模型,专为单张 RTX 4090 在两天内可完成的个人级预训练实验设计。它采用“深而窄”的 Transformer 解码器架构,并结合 RoPE、GQA、SwiGLU 与权重共享等现代技巧,展示了在有限算力下从数据到模型的完整实践路径。
模型与训练配置
- 参数规模:≈100M
- 架构:32 层解码器,隐藏维 512,8 头 GQA(4 个 KV 头),RoPE,RMSNorm,SwiGLU,输入/输出权重共享
- 词表:自训 BPE,16,384 词元,面向英文/代码/数学混合语料
- 上下文长度:1024
- 优化器:AdamW (β1=0.9, β2=0.999),梯度裁剪
- 精度:bfloat16
- Batch:65,536 tokens/step(单卡,无梯度累积)
- 学习率调度:1% warmup + cosine decay
- 训练总量:≈6.64×10^8 tokens,总用时 ~40 小时 @ RTX 4090
- 高效算子:FlashAttention 2
数据配比
- FineWeb-Edu(高质量英文教育语料)60%
- Stack-Edu(Python 教学代码/问答子集)30%
- FineMath-4+(高质量数学/逻辑)10%
策略:小而精,强调知识密度与多样性;总量约 10 B。
评测摘要(5-shot)
- ARC-Easy:40%
- HellaSwag:30%
- PIQA:60%
- Winogrande: 51%
安全与限制
易输出错误事实或伪造信息。未经对齐,可能生成偏见/有害/违法内容;请勿直接面向终端用户。
使用示例
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained("raincandy-u/Rain-v2", torch_dtype=torch.bfloat16, device_map="auto")
tok = AutoTokenizer.from_pretrained("your-namespace/Rain-v2")
prompt = "Here's a fairy tale about a little pig. A long, long time ago, there was a little pig called "
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=120, temperature=0.8, top_p=0.9)
print(tok.decode(out[0], skip_special_tokens=True))
- Downloads last month
- 23
Datasets used to train raincandy-u/Rain-v2
Evaluation results
- accuracyself-reported0.35-0.40
- accuracyself-reported0.28-0.30
- accuracyself-reported0.600
- accuracyself-reported0.51-0.52