File size: 9,204 Bytes
79f470b
 
 
 
 
f8da907
79f470b
 
 
a71ce34
79f470b
c95eb37
e815d88
79f470b
 
c95eb37
 
 
 
 
 
 
 
 
 
 
 
 
 
e46f486
 
 
 
 
c95eb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e8123f
79f470b
3bcc01a
 
8e8123f
79f470b
 
 
 
 
83eb19d
79f470b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/web-assets/model_demo.png)

# QuickSRNetSmall: Optimized for Qualcomm Devices

QuickSRNet Small is designed for upscaling images on mobile platforms to sharpen in real-time.

This is based on the implementation of QuickSRNetSmall found [here](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/quicksrnet).
This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/quicksrnetsmall) library to export with custom configurations. More details on model performance across various devices, can be found [here](#performance-summary).

Qualcomm AI Hub Models uses [Qualcomm AI Hub Workbench](https://workbench.aihub.qualcomm.com) to compile, profile, and evaluate this model. [Sign up](https://myaccount.qualcomm.com/signup) to run these models on a hosted Qualcomm® device.

## Getting Started
There are two ways to deploy this model on your device:

### Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/releases/v0.46.0/quicksrnetsmall-onnx-float.zip)
| QNN_DLC | float | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/releases/v0.46.0/quicksrnetsmall-qnn_dlc-float.zip)
| QNN_DLC | w8a8 | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/releases/v0.46.0/quicksrnetsmall-qnn_dlc-w8a8.zip)
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/releases/v0.46.0/quicksrnetsmall-tflite-float.zip)
| TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/quicksrnetsmall/releases/v0.46.0/quicksrnetsmall-tflite-w8a8.zip)

For more device-specific assets and performance metrics, visit **[QuickSRNetSmall on Qualcomm® AI Hub](https://aihub.qualcomm.com/models/quicksrnetsmall)**.


### Option 2: Export with Custom Configurations

Use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/quicksrnetsmall) Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for [QuickSRNetSmall on GitHub](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/quicksrnetsmall) for usage instructions.

## Model Details

**Model Type:** Model_use_case.super_resolution

**Model Stats:**
- Model checkpoint: quicksrnet_small_3x_checkpoint
- Input resolution: 128x128
- Number of parameters: 33.3K
- Model size (float): 133 KB
- Model size (w8a8): 41.7 KB

## Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit
|---|---|---|---|---|---|---
| QuickSRNetSmall | ONNX | float | Snapdragon® X Elite | 1.049 ms | 8 - 8 MB | NPU
| QuickSRNetSmall | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.809 ms | 0 - 97 MB | NPU
| QuickSRNetSmall | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.138 ms | 0 - 44 MB | NPU
| QuickSRNetSmall | ONNX | float | Qualcomm® QCS9075 | 1.436 ms | 6 - 9 MB | NPU
| QuickSRNetSmall | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.594 ms | 0 - 91 MB | NPU
| QuickSRNetSmall | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.512 ms | 0 - 89 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Snapdragon® X Elite | 0.842 ms | 0 - 0 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.452 ms | 0 - 28 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 1.85 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.742 ms | 0 - 1 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® SA8775P | 1.082 ms | 0 - 22 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® QCS9075 | 1.102 ms | 0 - 5 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.04 ms | 0 - 29 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® SA7255P | 1.85 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Qualcomm® SA8295P | 1.383 ms | 0 - 17 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.359 ms | 0 - 24 MB | NPU
| QuickSRNetSmall | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.326 ms | 0 - 24 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Snapdragon® X Elite | 0.426 ms | 0 - 0 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.214 ms | 0 - 24 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCS6490 | 1.279 ms | 0 - 2 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.774 ms | 0 - 19 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.319 ms | 0 - 1 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® SA8775P | 0.516 ms | 0 - 19 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 0.497 ms | 0 - 2 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCM6690 | 1.208 ms | 0 - 16 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.463 ms | 0 - 25 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® SA7255P | 0.774 ms | 0 - 19 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Qualcomm® SA8295P | 0.703 ms | 0 - 15 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.174 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.351 ms | 0 - 16 MB | NPU
| QuickSRNetSmall | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.145 ms | 0 - 20 MB | NPU
| QuickSRNetSmall | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.628 ms | 0 - 28 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 2.389 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 1.003 ms | 0 - 1 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® SA8775P | 1.419 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® QCS9075 | 1.27 ms | 3 - 8 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.318 ms | 1 - 30 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® SA7255P | 2.389 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | TFLITE | float | Qualcomm® SA8295P | 1.652 ms | 0 - 17 MB | NPU
| QuickSRNetSmall | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.46 ms | 0 - 20 MB | NPU
| QuickSRNetSmall | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.397 ms | 0 - 23 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.27 ms | 0 - 25 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCS6490 | 1.042 ms | 0 - 2 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.89 ms | 0 - 19 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.398 ms | 0 - 1 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® SA8775P | 0.594 ms | 0 - 20 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCS9075 | 0.521 ms | 0 - 3 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCM6690 | 1.5 ms | 0 - 16 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.466 ms | 0 - 26 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® SA7255P | 0.89 ms | 0 - 19 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Qualcomm® SA8295P | 0.806 ms | 0 - 15 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.197 ms | 0 - 21 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.415 ms | 0 - 17 MB | NPU
| QuickSRNetSmall | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.162 ms | 0 - 20 MB | NPU

## License
* The license for the original implementation of QuickSRNetSmall can be found
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).

## References
* [QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster Inference on Mobile Platforms](https://arxiv.org/abs/2303.04336)
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/quicksrnet)

## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).