File size: 8,891 Bytes
1ab03a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import bz2
import os
import os.path as osp
import sys
from multiprocessing import Pool
import dlib
import numpy as np
import PIL.Image
import requests
import scipy.ndimage
from tqdm import tqdm
from argparse import ArgumentParser
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
def image_align(src_file,
dst_file,
face_landmarks,
output_size=1024,
transform_size=4096,
enable_padding=True):
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
lm = np.array(face_landmarks)
lm_chin = lm[0:17] # left-right
lm_eyebrow_left = lm[17:22] # left-right
lm_eyebrow_right = lm[22:27] # left-right
lm_nose = lm[27:31] # top-down
lm_nostrils = lm[31:36] # top-down
lm_eye_left = lm[36:42] # left-clockwise
lm_eye_right = lm[42:48] # left-clockwise
lm_mouth_outer = lm[48:60] # left-clockwise
lm_mouth_inner = lm[60:68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Load in-the-wild image.
if not os.path.isfile(src_file):
print(
'\nCannot find source image. Please run "--wilds" before "--align".'
)
return
img = PIL.Image.open(src_file)
img = img.convert('RGB')
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)),
int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
min(crop[2] + border,
img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border,
0), max(-pad[1] + border,
0), max(pad[2] - img.size[0] + border,
0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img),
((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(
1.0 -
np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]), 1.0 -
np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) -
img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)),
'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD,
(quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
img.save(dst_file, 'PNG')
class LandmarksDetector:
def __init__(self, predictor_model_path):
"""
:param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file
"""
self.detector = dlib.get_frontal_face_detector(
) # cnn_face_detection_model_v1 also can be used
self.shape_predictor = dlib.shape_predictor(predictor_model_path)
def get_landmarks(self, image):
img = dlib.load_rgb_image(image)
dets = self.detector(img, 1)
for detection in dets:
face_landmarks = [
(item.x, item.y)
for item in self.shape_predictor(img, detection).parts()
]
yield face_landmarks
def unpack_bz2(src_path):
dst_path = src_path[:-4]
if os.path.exists(dst_path):
print('cached')
return dst_path
data = bz2.BZ2File(src_path).read()
with open(dst_path, 'wb') as fp:
fp.write(data)
return dst_path
def work_landmark(raw_img_path, img_name, face_landmarks):
face_img_name = '%s.png' % (os.path.splitext(img_name)[0], )
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name)
if os.path.exists(aligned_face_path):
return
image_align(raw_img_path,
aligned_face_path,
face_landmarks,
output_size=256)
def get_file(src, tgt):
if os.path.exists(tgt):
print('cached')
return tgt
tgt_dir = os.path.dirname(tgt)
if not os.path.exists(tgt_dir):
os.makedirs(tgt_dir)
file = requests.get(src)
open(tgt, 'wb').write(file.content)
return tgt
if __name__ == "__main__":
"""
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step
python align_images.py /raw_images /aligned_images
"""
parser = ArgumentParser()
parser.add_argument("-i",
"--input_imgs_path",
type=str,
default="imgs",
help="input images directory path")
parser.add_argument("-o",
"--output_imgs_path",
type=str,
default="imgs_align",
help="output images directory path")
args = parser.parse_args()
# takes very long time ...
landmarks_model_path = unpack_bz2(
get_file(
'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2',
'temp/shape_predictor_68_face_landmarks.dat.bz2'))
# RAW_IMAGES_DIR = sys.argv[1]
# ALIGNED_IMAGES_DIR = sys.argv[2]
RAW_IMAGES_DIR = args.input_imgs_path
ALIGNED_IMAGES_DIR = args.output_imgs_path
if not osp.exists(ALIGNED_IMAGES_DIR): os.makedirs(ALIGNED_IMAGES_DIR)
files = os.listdir(RAW_IMAGES_DIR)
print(f'total img files {len(files)}')
with tqdm(total=len(files)) as progress:
def cb(*args):
# print('update')
progress.update()
def err_cb(e):
print('error:', e)
with Pool(8) as pool:
res = []
landmarks_detector = LandmarksDetector(landmarks_model_path)
for img_name in files:
raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name)
# print('img_name:', img_name)
for i, face_landmarks in enumerate(
landmarks_detector.get_landmarks(raw_img_path),
start=1):
# assert i == 1, f'{i}'
# print(i, face_landmarks)
# face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i)
# aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name)
# image_align(raw_img_path, aligned_face_path, face_landmarks, output_size=256)
work_landmark(raw_img_path, img_name, face_landmarks)
progress.update()
# job = pool.apply_async(
# work_landmark,
# (raw_img_path, img_name, face_landmarks),
# callback=cb,
# error_callback=err_cb,
# )
# res.append(job)
# pool.close()
# pool.join()
print(f"output aligned images at: {ALIGNED_IMAGES_DIR}")
|