new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Agent-Diff: Benchmarking LLM Agents on Enterprise API Tasks via Code Execution with State-Diff-Based Evaluation

We present Agent-Diff, a novel benchmarking framework for evaluating agentic Large Language Models (LLMs) on real-world tasks that execute code via external APIs. Agentic LLM performance varies due to differences in models, external tool access, prompt structures, and agentic frameworks. Benchmarks must make fundamental trade-offs between a sandboxed approach that controls for variation in software environments and more ecologically valid approaches employing real services. Agent-Diff attempts to capture the desirable features of both of these approaches by including access to the real API interfaces for software services while sandboxing the environment in which calls are made, processed, and evaluated. This approach relies on two key innovations. The first is a novel state-diff contract, which separates process from outcome - rather than fuzzy trace or parameter matching, we define task success as whether the expected change in environment state was achieved. The second is a novel sandbox that provides a standardized scripting layer that all models use to execute code against external APIs (Slack, Box, Linear, Google Calendar). Thus, we can evaluate different agentic LLMs against a standardized set of contracts using a unified sandbox while still evaluating their performance on real-world service interfaces. Using the Agent-Diff framework, we provide benchmarks for nine LLMs across 224 tasks utilizing enterprise software workflows. In addition, we evaluate the robustness of the framework with ablation experiments to assess the contribution of access to API documentation on benchmark performance. Code and data: https://github.com/agent-diff-bench/agent-diff.

  • 3 authors
·
Feb 11

Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models

High-performance Multimodal Large Language Models (MLLMs) rely heavily on data quality. This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs by leveraging insights from contrastive learning and image difference captioning. By analyzing object differences between similar images, we challenge models to identify both matching and distinct components. We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements. Our methodology includes a Difference Area Generator for object differences identifying, followed by a Difference Captions Generator for detailed difference descriptions. The result is a relatively small but high-quality dataset of "object replacement" samples. We use the the proposed dataset to fine-tune state-of-the-art (SOTA) MLLMs such as MGM-7B, yielding comprehensive improvements of performance scores over SOTA models that trained with larger-scale datasets, in numerous image difference and Visual Question Answering tasks. For instance, our trained models notably surpass the SOTA models GPT-4V and Gemini on the MMVP benchmark. Besides, we investigate alternative methods for generating image difference data through "object removal" and conduct thorough evaluation to confirm the dataset's diversity, quality, and robustness, presenting several insights on synthesis of such contrastive dataset. To encourage further research and advance the field of multimodal data synthesis and enhancement of MLLMs' fundamental capabilities for image understanding, we release our codes and dataset at https://github.com/modelscope/data-juicer/tree/ImgDiff.

  • 5 authors
·
Aug 8, 2024 2